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Zusammenfassung

Die vorliegende Arbeit behandelt Fragestellungen im Zusammenhang mit Kreisen und
unabhängigen Mengen in Graphen.
Kapitel 2 handelt von unabhängigen Kreisen: Die Parameter νe bzw. νv geben die ma-

ximale Größe kanten- bzw. eckendisjunkter Kreispackungen an, d.h. die maximale Anzahl
von Kreisen in einem Graph, die paarweise keine gemeinsame Kante bzw. Ecke haben. Da
die Berechnung dieser Parameter bekanntermaßen schon für subkubische Graphen schwer
ist, geht es im ersten Abschnitt um die Komplexität eines einfacheren Problems, des
Packens von Kreisen einer festen Länge ` in Graphen mit Maximalgrad ∆. Für ` = 3 und
beliebiges ∆ wurde diese Komplexität bereits von Caprara and Rizzi in [12] bestimmt,
und wir verallgemeinern ihre Ergebnisse auf alle größeren Kreislängen `. Im zweiten Ab-
schnitt von Kapitel 2 untersuchen wir die Struktur von Graphen, für die µ(G) − νe(G)
bzw. µ(G) − νv(G) einen vorgegebenen Wert haben. Die 2-zusammenhängenden derar-
tigen Graphen können erzeugt werden, indem eine einfache Erweiterungsregel auf eine
endliche Menge von Graphen angewandt wird. Aus diesem Strukturergebnis können wir
folgern, daß die Parameter νe(G) und νv(G) „fixed parameter tractable“ bezüglich ihrer
Differenz zur zyklomatischen Zahl sind.
In Kapitel 3 bestimmen wir die Größenordnung der minimalen Anzahl von Kreislän-

gen in einem Hamiltongraph mit q Sehnen. Wir geben eine Familie von Beispielen an,
in denen nur

√
q + 1 Kreislängen auftreten, zeigen aber, daß jeder Hamiltongraph mit

q Sehnen mindestens
√

4
7q Kreislängen enthält. Der Beweis beruht auf einem Lemma

von Faudree et al. in [23], demzufolge der Graph, der aus einem Weg mit Endecken x
und y und q gleichlangen Sehnen besteht, x-y-Wege von mindestens q

3 verschiedenen
Längen enthält. Im ersten Abschnitt korrigieren wir den ursprünglich fehlerhaften Be-
weis und leiten zusätzliche Schranken her. Im zweiten Abschnitt folgern wir daraus die
Unterschranke für die Anzahl der Kreislängen.
Im letzten Kapitel untersuchen wir Unterschranken für den Unabhängigkeitsquotien-

ten, d.h. den Bruch α(G)
n(G) , für Graphen gegebener Dichte. Wir stellen fest, daß bestmögli-

che Schranken für die Klasse aller Graphen sowie für große zusammenhängende Graphen
bereits bekannt sind. Deshalb verändern wir die Fragestellung, indem wir Graphenklassen
betrachten, die durch das Verbot kleiner ungerader Kreise definiert sind. Das Hauptergeb-
nis des ersten Abschnitts ist eine Verallgemeinerung eines Ergebnisses von Heckman und
Thomas, das die bestmögliche Schranke für zusammenhängende dreiecksfreie Graphen
mit Durchschnittsgrad bis zu 10

3 impliziert und die extremalen Graphen charakterisiert.
Der Rest der ersten beiden Abschnitte enthält Vermutungen ähnlichen Typs für zusam-
menhängende dreiecksfreie Graphen mit Durchschnittsgrad im Intervall

[
10
3 ,

54
13

]
und für

zusammenhängende Graphen mit ungerader Taillenweite 7 mit Durchschnittsgrad bis
zu 14

5 . Der letzte Abschnitt enthält analoge Beobachtungen zum Bipartitionsquotienten.
Möglicherweise lassen sich viele Unterschranken für den Unabhängigkeitsquotienten auf
den Bipartitionsquotienten übertragen, indem man sie einfach verdoppelt. Diese neuen
Schranken sind stärker, und die zugehörigen Klassen extremaler Graphen oft viel reich-
haltiger. Am Ende dieser Arbeit diskutieren wir Vermutungen dieser Art.
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1 Introduction

1.1 Summary

This thesis discusses several problems related to cycles and the independence number in
graphs.
In Chapter 2, we discuss independent sets of cycles. The parameters νe resp. νv denote

the maximum cardinality of edge-disjoint resp. vertex-disjoint cycle packings, i.e. the
maximum number of cycles in a graph that can be arranged such that no two of them
share an edge resp. a vertex. Since the computation of these parameters is known to
be hard even for subcubic graphs, the first section discusses the complexity of a simpler
problem, packing cycles of fixed length ` in graphs of maximum degree ∆. For ` = 3
and arbitrary ∆, the complexity has been determined by Caprara and Rizzi in [12], and
we extend their results to all greater values of `. In the second section of Chapter 2, we
discuss the structure of graphs for which µ(G)− νe(G) resp. µ(G)− νv(G) equals some
given integer. The 2-connected graphs of this kind can be obtained by a simple extension
rules applied to a finite set of graphs, which yields a fixed-parameter-tractability result
for νe(G) and νv(G).
In Chapter 3, we approximate the minimum number of cycle lengths in a Hamiltonian

graph with q chords. We give a family of examples that contain only
√
q + 1 cycle lengths,

but show that
√

4
7q cycle lengths can be guaranteed. The proof relies on a lemma by

Faudree et al. in [23], which states that the graph that contains a path with endvertices x
and y and q chords of equal length contains paths between x and y of at least q

3 different
lengths. In the first section, we correct the originally faulty proof and derive additional
bounds. The second section we use these bounds to derive the lower bound on the size
of the cycle spectrum.
In the last chapter, we study lower bounds on the independence ratio, i.e. the fraction

α(G)
n(G) , for graphs of given density. We observe that best-possible bounds are already
known both for arbitrary graphs and for large connected graphs. Therefore, we modify
the question by considering classes of graphs defined by forbidding small odd cycles as
subgraphs. The main result of the first section is a generalisation of a result of Heckman
and Thomas that determines the best possible lower bound for connected triangle-free
graphs with average degree at most 10

3 and characterises the extremal graphs. The rest of
the first two sections contains conjectures with similar statements on connected triangle-
free graphs of average degree in

[
10
3 ,

54
13

]
and on connected graphs of odd girth 7 with

average degree up to 14
5 . The last section collects analogous observations for the bipartite

ratio. It seems possible to translate many lower bounds on the independence ratio to
bounds on the bipartite ratio by just doubling them. Those new bounds are stronger

3



1 Introduction

and the corresponding classes of extremal graphs usually much richer. The thesis ends
with some conjectures for statements of such generalisations.

Acknowledgement

I would like to thank Prof. Dieter Rautenbach for giving me the opportunity to enter
graph theoretical research and to write this dissertation. He was a most competent,
friendly and committed advisor. I have also enjoyed the collaboration with Dr. Stephan
Brandt, Dr. Christian Löwenstein, Janina Müttel and Anders Sune Pedersen in joint
projects very much.
The Ilmenau graph theory group and the Kammerchor der TU Ilmenau made me feel

at home in Ilmenau. I am very grateful to my family for their support and inspiration.

1.2 Notation

In this section, we briefly define the graph theoretical concepts used in this thesis. It
is included merely as a reference and should be skipped both by the graph theorist and
the newcomer, who will find well motivated and accessible introductions in the books
by Diestel [18] and by Korte and Vygen [41]. The former covers more areas of “purely
mathematical” interest while the latter emphasises algorithmic questions.

1.2.1 Graph Theory

A graph G is a pair
(
V (G), E(G)

)
, where V (G) is an arbitrary set called the vertex setV (G), E(G)

of G, and E(G) ⊆
{
{v, w} : v, w ∈ V (G), v 6= w

}
is called the edge set of G. We may also

refer to an edge {v, w} by the shorthand notations vw or wv. Throughout this thesis, we
only consider finite graphs, i.e. graphs whose vertex set is finite. The elements of V (G)
are called the vertices, the elements of E(G) the edges of G. The cardinality of V (G) is
the order n(G) := |V (G)| of G, the cardinality of E(G) the size m(G) := |E(G)| of G.n(G), m(G)

Neighbourhoods and degrees A vertex v is incident with an edge e, if v ∈ e. The
(open) neighbourhood of a vertex v is defined by NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}.NG(v), NG[v]

w is called adjacent to v, if w ∈ NG(v). The closed neighbourhood of v is defined by
NG[v] := NG(v)∪{v}. The degree of v is dG(v) := |NG(v)|. The minimum degree of G isdG(v)

δ(G) := min{dG(v) | v ∈ V (G)}, the maximum degree of G is ∆(G) := max{dG(v) | v ∈
V (G)}, and the average degree of G is d(G) := 2m(G)

n(G) , since each edge contributes toδ(G), ∆(G), d(G)

the degree of two vertices. Vertices of degree 0 are called isolated. A graph all of whose
vertices have degree r is called r-regular. In particular, 3-regular graphs are called cubic,
4-regular graphs are called quartic, and a graph is called subcubic, if its maximum degree
is at most 3. Two edges in G are called adjacent, if they share a common vertex.

Operations on graphs A subgraph of G is a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆
E(G). For each subset T ⊆ V (G), we define G[T ] to be the subgraph with vertex
set T and the maximal edge set, i.e. E(G[T ]) =

{
{v, w} ∈ E(G) : v, w ∈ T

}
. Those

4



1.2 Notation

subgraphs are called induced subgraphs, while subgraphs that contain all vertices of G
are called spanning. The edge sets of subgraphs of maximum degree at most one are
called matchings. For X ⊆ V (G), let G−X be the induced subgraph G[V (G) \X], and G− · · ·

for v ∈ V (G) we define G − v := G − {v}. For Y ⊆ E(G), let G − Y be the spanning
subgraph of G with edge set E(G) \Y , and for e ∈ E(G) we define G− e := G−{e}. To
avoid an ambiguity, the expression G−{u, v} with u, v ∈ V (G) always denotes a deletion G− {u, v}

of two vertices instead of one edge, since the edge deletion can be expressed by G− uv.
The complement G is given by V (G) = V (G), and E(G) =

(
V (G)

2

)
\ E(G). For a set G

Y ⊆ E(G), let G+Y be the graph with vertex set V (G) and edge set E(G)∪Y , and for a G + · · ·

single edge e ∈ E(G), we define G+ e := G+{e}. If G1 and G2 are two graphs, then the
cartesian product G1�G2 of G1 and G2 is the graph G with vertex set V (G1) × V (G2)
and edge set G1�G2

E(G) =
{
{(a, b), (c, d)} ⊆ V (G) :

(
(a = c) ∧ (b, d) ∈ G2

)
∨
(
(a, c) ∈ G1 ∧ (b = d)

)
}
}
.

If X is a nonempty set of vertices in a graph G, then the vertex identification with
respect to X yields the graph G′ with vertex set V (G′) = (V (G) \X)∪{ξ} and edge set

E(G′) = E(G−X) ∪ {ξw : ∃x ∈ X,w 6∈ X : xw ∈ E(G)}.

If X = {u, v} induces a connected subgraph in G, then the vertex identification of X is
called a contraction.

Morphisms A homomorphism ϕ from G→ G′ between two graphs is a map ϕ : V (G)→
V (G′) with ∀e ∈ E(G) : ϕ(e) ∈ E(G′). An isomorphism ϕ between G and G′ is a bijective
map ϕ : V (G)→ V (G′) such that ϕ and ϕ−1 are homomorphisms.
In many situations, it is common to talk about specific graphs instead of isomorphism caveat

classes: For example, the statement “The graph G does not contain K3,3 as a subgraph”
usually only means that G contains no subgraph which is isomorphic to K3,3. Similarly,
lists of graphs with special properties should be understood as lists as isomorphism classes
of graphs. We adopt this simplified notation although it is imprecise.

Special graphs The following special graph classes are used throughout the following
text.
For a set L = {l1, . . . , lk} ⊆ Z/nZ, we define the circulant graph Cin[l1, . . . , lk] to be Cin[. . .]

the graph with vertex set {vi}i∈Z/nZ and edge set
{
vivj : i − j ∈ L}

}
. Graphs that are

isomorphic to Kn := Cin[1, . . . , n] are called complete graphs on n vertices. Graphs that
are isomorphic to Cn := Cin[1] are called cycles, if n ≥ 3. Graphs that are isomorphic Kn, Cn, Pn

to Pn with P1 = K1, P2 = K2 and Pn = Cn − v1vn for n ≥ 3 are called paths with
endvertices v1 and vn. An expression of the form “P = x1x2 . . . xn” defines a path P
on the vertex set {x1, . . . , xn} in which two vertices are adjacent if and only if they
are consecutive entries of the sequence. Similarly, a cycle can be given by a sequence
x1x2 . . . xnx1 of vertices. The length of a path or a cycle is its size. A cycle of length k
is called a k-cycle.

5



1 Introduction

Parameters A vertex set X ⊆ V (G) is a dominating set of a graph G, if V (G) =⋃
v∈X NG[v]. The minimum cardinality of a dominating set is the dominating numberγ(G)

γ(G) of G.
A vertex set is called an independent set of a graph G, if it does not contain a pair of

adjacent vertices. It is called a clique, if its vertices are pairwise adjacent. The maximum
cardinality of an independent set is the independence number α(G). The clique numberα(G), ω(G), χ(G)

ω(G) = α(G) denotes the maximum cardinality of a clique. The chromatic number χ(G)
denotes the minimum value of k such that G admits a homomorphism G → Kk. Since
the fibres of homomorphisms are independent sets, this means that χ(G) is the minimum
cardinality of a partition of V (G) into independent sets. Obviously, χ(G) ≥ ω(G) for
every graph G. Graphs are called perfect, if all of their induced subgraphs G′ satisfy
χ(G′) = ω(G′).

Cycle subgraphs A set of cycles in a graph no two of which contain a common vertex
is called a vertex-disjoint cycle packing. A set of cycles in a graph no two of which share
an edge is called an edge-disjoint cycle packing. The parameters νv(G) and νe(G) denoteνv(G), νe(G)

the largest cardinalities of vertex-disjoint resp. edge-disjoint cycle packings of G.
A cycle or a path in G of order n(G) is called Hamiltonian. A graph is called Hamil-

tonian, if it contains a Hamiltonian cycle. The cycle spectrum of a graph is the set
of the lengths of all cycles. If a graph G has the maximum possible cycle spectrum
{3, . . . , n(G)}, then G is called pancyclic.
The girth g(G) of a graph is the length of a shortest cycle, if G contains a cycle, andg(G)

∞ if no such cycle exists. The odd girth godd(G) of a graph G is the minimum length of
a cycle of odd length in G, and ∞ G contains no odd cycle.

Definitions by forbidden cycles A forest is a graph that does not contain a cycle. A
tree is a connected forest. Vertices of degree one in a forest are called leaves. A star is a
tree in which at most one vertex is no leaf.
A cactus is a graph for which every edge is contained in at most one cycle. A bipartite

graph is a graph that does not contain a cycle of odd length. For each bipartite graph G,
there exist disjoint independent sets A and B with V (G) = A ∪ B; this decomposition
is called a bipartition of G. For r, s ∈ N, the complete bipartite Kr,s is the graph whoseKr,s

vertex set is the disjoint union of two A, B with |A| = r, |B| = s and which contains all
edges with exactly one endvertex in A.

Connectivity In a graph G, the distance distG(v, w) between two vertices is defineddistG(v, w)

to be the length of the shortest path containing both vertices and ∞ if no such path
exists. The maximum distance between two vertices of G is the diameter diam(G) :=
supv,w∈V (G) distG(v, w). The k-th power of a graph G is the graph Gk with V (Gk) =Gk

V (G) and E(Gk) =
{
{v, w} ∈

(
V (G)

2

)
: distG(v, w) ≤ k

}
.

A graph is connected, if diam(G) < ∞. The equivalence classes of the equivalence
relation ∼⊆ V (G) × V (G) with v ∼ w :⇔ distG(v, w) < ∞ are called the (connected)
components of G. The number of components of a graph G is denoted by κ(G). Theκ(G), µ(G)

6



1.2 Notation

cyclomatic number µ(G) of a graph G with κ(G) components is given by µ(G) = m(G)−
n(G) + κ(G) and counts, for any spanning forest of G, the edges not contained in this
forest.
For k ∈ N, a graph is called k-connected, if for every X ⊆ V (G) with |X| < k, G−X

is connected, and it is called k-edge-connected, if for every X ⊆ E(G) with |X| < k,
G − E is connected. A cutvertex of a connected graph G is a vertex whose removal
disconnects G. A block of a graph is a maximal subgraph without a cutvertex, i.e. a
maximal 2-connected subgraph. An endblock of a connected graph G is a block that
contains at most one cutvertex of G. A bridge is an edge whose removal increases the
number of components.
The cut induced by some vertex set X ⊆ V (G) is the set of edges for which exactly

one endpoint is contained in X.

Ear decompositions A proper ear of G is a path in G of length at least 1 such that
all its internal vertices have degree 2 in G. An ear of G is maximal, if it is not properly
contained in another ear of G. If P is an ear of G and I is the set of internal vertices of
P , then we say that G arises from G′ := G − I by adding the ear P and that G′ arises
from G by removing the ear P . Whitney [66, 79] has proved that a graph of order at
least 3 is 2-connected if and only if it has an proper ear decomposition, i.e. it arises from
a cycle by iteratively adding ears.

Multigraphs

In Section 2.2, we use multigraphs instead of graphs. In multigraphs, multiple edges
between vertices are allowed, and an edge may connect a vertex with itself. Since we
allow multiple edges, the edge set cannot be defined as a subset of

(
V (G)

2

)
. Instead, a

finite multigraph (V (G), E(G), ϕG) is a triple of a finite vertex set V (G), an arbitrary
edge set E(G), and an incidence map ϕG : E(G) → {{v, w} ⊆ V (G)} that assigns to ϕ(G)

each edge its endvertices. An edge with only one endvertex would be called a loop, but
in this thesis we shall only consider loopless multigraphs. Any edges that are incident
to the same set of endvertices are called parallel. Again, an edge with endvertices v and
w is denoted by vw, although this may not be a unique description, if {v, w} has more
than one preimage under ϕG.
An edge e is incident with a vertex v, if v ∈ ϕG(e). The degree of a vertex of a loopless

multigraph is the number of incident edges. A cycle in G is a connected 2-regular
subgraph of G. In particular, multigraphs may contain cycles of length 2.

1.2.2 Complexity Theory

When evaluating the efficiency of algorithms, we use standard terminology of Complexity
Theory as introduced e.g. in chapters 15 and 16 of [41]. Although most fundamental
concepts such as polynomial time solvability or NP -completeness do not rely on specific
definitions of machine models and graph representations, the claim that an algorithm can
be implemented in linear time does. For such claims, we assume that the algorithms run

7



1 Introduction

on a random access machine (RAM) and that the input graph is given by an adjacency
matrix. This implies in particular that we can verify or modify membership of a constant
in a set of edges or vertices in constant time. These assumptions allow to estimate the
asymptotic running time of the implementation of a typical contemporary computer,
provided that the input size does not exceed some constant fraction of the address space.

8



2 Cycle Packings

The problems to determine the cycle packing numbers νv and νe are algorithmically
hard: Extending a method of Chuzhoy and Khanna in [15], Friggstad and Salavatipour
showed in [26] that, even if restricted to graphs of maximum degree at most 3, both
parameters are hard to approximate within ratio O( 2+ε

√
log n) for any ε > 0 provided

that NP 6⊆ ZPTIME(npolylog(n)). On the other hand, Krivelevich et al. have shown in
[42] that a slightly enhanced greedy algorithm approximates νe with approximation ratio
O(
√

log n). For the parameter νv, the best approximation algorithm known so far is due
to Salivatipour and Verstraëte [62] and has approximation ratio O(log n).

In this chapter, we study two simplifications of the general cycle packing problem.

The first section deals with packing only cycles of a given length ` ∈ N. For graphs
of a fixed maximum degree ∆, the maximum cardinality of `-cycle packings can be
approximated in linear time: The cycles of length ` can be enumerated in O(n(G) ·∆`),
and at least 1

`∆` of them can be included in an `-cycle packing because each cycle shares
a vertex with less than `∆` other cycles.

In [12], Caprara and Rizzi have considered the case ` = 3, i.e. the problem of pack-
ing edge-disjoint and vertex-disjoint triangles. For both problems, they determined the
weakest condition on the maximum degree of a graph that allows to determine the max-
imum number of disjoint 3-cycles in polynomial time. Furthermore, they proved that for
all weaker conditions this optimisation problem is APX-hard , i.e. there does not exist APX-hard

an approximation algorithm with arbitrary good approximation factor unless P = NP .
The main result of this section is a generalisation of this result to cycles of arbitrary, but
still fixed length.

In the second section, we characterise the structure of graphs in which one of the
packing numbers differs from the cyclomatic number only by a given constant k. Since
the edge-disjoint cycle packing number of a graph is the sum of the cycle packing numbers
of its blocks, it suffices to consider two-connected graphs. We show that all blocks with
µ(G) − νe(G) = k can be constructed from a finite list of graphs by a simple easily
reversible operation in which edges are replaced by what we call cycle paths. This implies
that for given k, there is a linear-time algorithm which decides if µ(G) − νe(G) = k for
a given graph G.

We obtain a similar result for vertex-disjoint cycle packings. Although the vertex-
disjoint cycle packing number of a graph does not need to be the sum of the cycle
packing numbers of its blocks, we can still give a linear time algorithm for diciding
whether µ(G)− νv(G) = k.

9



2 Cycle Packings

2.1 Cycles of a given length

Definition 1. For a graph G and an integer ` ∈ N, the parameter νv,`(G) resp. νe,`(G)νv,`(G), νe,`(G)

is the cardinality of a largest set of vertex-disjoint resp. edge-disjoint cycles of length `.
We denote the optimisation problems to determine νv,` and νe,` by `-VCP and `-ECP.

Note that for a graph G with ∆(G) ≤ 3, a pair of cycles that shares a vertex also
shares an edge, so subcubic graphs satisfy νe(G) = νv(G) and νe,`(G) = νv,`(G) for every
` ≥ 3.
The case ` = 3 has been thoroughly studied in the literature: In [27], Garey and

Johnson show that the problem to find the maximum number of vertex-disjoint triangles
in a graph is NP-hard. In [36], Holyer proves that the problem to find the maximum
number of edge-disjoint triangles in a graph is NP-hard. Both sources actually consider
arbitrarily large cliques instead of triangles. Finally, in [12], Caprara and Rizzi study the
approximability of both triangle packing problems. On one hand, they give a polynomial
time algorithm for the restriction of 3-ECP to graphs with maximum degree 4 and a
polynomial time algorithm for the restriction of 3-VCP to graphs with maximum degree
3. On the other hand, they show that both problems are APX-hard under all weaker
maximum degree assumptions. In this section, we generalise their results to packing
cycles of arbitrary, but fixed length.

Theorem 1 (Caprara and Rizzi [12]). The restrictions of 3-ECP to graphs with maximum
degree 5 and of 3-VCP to graphs with maximum degree 4 are APX-hard.

For given k ∈ N, this result immediately implies that the restriction of 3k-ECP to
graphs with maximum degree 5 and of 3k-VCP to graphs with maximum degree 4 are
APX-hard: This follows by considering the classes of graphs which arise from graphs of
maximum degree 5 resp. 4 by subdividing1 each edge k − 1 times.
In this section, we are going to show that the restriction of `-ECP to subcubic graphs

is APX-hard for any ` ≥ 6. Due to the maximum degree condition, the same result
applies to `-VCP. For ` ∈ {4, 5}, we give polynomial time algorithms for the restriction
of `-ECP to subcubic graphs — and thus for the restriction of `-VCP to subcubic graphs
— but we show that both `-ECP and `-VCP are APX-hard under all weaker maximum
degree restrictions.
The results of this section are based on [59].

2.1.1 Exact Algorithms

As in [12], we assign to each graph G two auxiliary graphs which reflect the intersection
relation of its cycles.

Definition 2. For a graph G and a positive integer `, let C(G, `) be the set of cycles of
length ` in G. We defineEC(G, `), V C(G, `)

1Subdividing an edge uv x times means removing this edge, adding x new vertices w1, w2, . . . , wx and
adding the edges of the path uw1w2 . . . wxv.

10



2.1 Cycles of a given length

EC(G, `) :=
(
C(G, `),

{
{C,D} ⊆ C(G, `) : C 6= D, E(C) ∩ E(D) 6= ∅

})
and V C(G, `) :=

(
C(G, `),

{
{C,D} ⊆ C(G, `) : C 6= D, V (C) ∩ V (D) 6= ∅

})
.

Clearly, νe,`(G) = α(EC(G, `)) and νv,`(G) = α(V C(G, `)). Since all pairs of cycles of
length g can be trivially enumerated in O(n2`), the auxiliary graphs can be constructed
in polynomial time for fixed `, so the problems `-ECP and `-VCP can be polynomially
reduced to determining the independence number of auxiliary graphs. For instances with
a maximum degree restriction, the auxiliary graphs can even be constructed in linear time
because all pairs of intersecting cycles that contain a specified vertex can be found in
constant time. Note that the restrictions of the general cycle packing problem do not
allow this reduction, since e.g. any cubic subgraph of Ci4k[1, 2] contains at least 2k cycles
of length 3k.

Theorem 2. The restrictions of 4-ECP and 5-ECP to subcubic graphs can be solved in
polynomial time.

Proof. It is sufficient to show that EC(G, `) is claw-free because Minty [50] and Sbihi
[63] have designed polynomial time algorithms for determining the independence number
of a claw-free graph, i.e. of a graph that does not contain the star K1,3 as an induced
subgraph. Indeed, if EC(G, `) vertex v with three neighbours v1, v2 and v3, then G
contains a cycle C of length at most five that intersects three other cycles C1, C2 and
C3. Each of these cycles uses two of the at most five edges of the cut induced by V (C),
so they cannot all be edge-disjoint, i.e. {v, v1, v2, v3} does not induce a claw.

Note that these problems coincide with the restrictions of 4-VCP and 5-VCP to sub-
cubic graphs.

The same argument shows that auxiliary graphs of graphs with girth 4 are quasi-line
graphs, i.e. the neighbourhood of each of their vertices can be partitioned into two cliques.
Indeed, only few auxiliary graphs of girth 4 do not allow trivial reductions, so this case
can be solved by a simple algorithm that does not rely on the deep results by Minty and
Sbihi.
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2 Cycle Packings

Input: A subcubic graph G
Output: νe,4(G)

1 begin
2 H ←− EC(G, 4);
3 k ←− 0;
4 while H contains a vertex v of degree at most 1 do
5 k ←− k + 1;
6 H ←− H −NH [v];
7 G←− G− E(v);
8 end
9 Let V1, . . . , Vt be the connected components of H;

10 for i←− 1 to t do
11 if ∆(H[Vi]) = 2 then
12 k ←− k +

⌊
|Vi|
2

⌋
;

13 else

14 k ←− k +

⌊ ∣∣∣⋃C∈Vi V (C)
∣∣∣

4

⌋
;

15 end
16 end
17 return k;
18 end

Algorithm 1: SubcubicFourCyclePacking

Theorem 3. Algorithm 1 solves the restriction of 4-ECP to subcubic graphs in linear
time.

Proof. The construction of EC(G, 4) in line 2 can be performed in linear time because
the maximum degree of G is bounded. The running time for the reduction step (line 4) is
linearly bounded in the number of deleted vertices of H and edges of H. Note that E(v)
is the edge set of the cycle v ∈ V (H). Since the size of EC(G, 4) is linear in the size of
G by the above argument, this step can also be performed in linear time. Counting and
labelling of the connected components in line 9 can be implemented inO(|E(H)|+|V (H)|)
by repeatedly performing breadth-first-search at an unlabelled vertex. It remains to prove
that k = νe,4(G) at the end of the algorithm.
In each reduction step in line 4, G and H are modified such that α(H) drops by one, k

increases by one and the property H = EC(G, 4) continues to hold. Therefore, it suffices
to show that in each step of the for-loop, k is increased by α(H[Vi]). If ∆(H[Vi]) = 2,
this holds because H[Vi] is a cycle. Otherwise, H[Vi] contains a vertex of degree at least
3.
Let G′ := G

[⋃
C∈Vi V (C)

]
. Since H[Vi] is connected, so is G′. We may assume that

every edge of is contained in a 4-cycle, since a removal of edges in G′ which are not
contained in a 4-cycle does not affect the auxiliary graph of G′ and the final for -loop

12



2.1 Cycles of a given length

only depends on the auxiliary graph H[Vi] of G′. Now it suffices to show that G′ is one
of the graphs in Figure 2.1, since each of those contains exactly

⌊
|V (G′)|

4

⌋
edge-disjoint

4-cycles.

Case 1: G′ contains a triangle T .
If G′ does not contain the diamond K4− e as a subgraph, then each edge of T lies in a

4-cycle with two vertices outside T . Since every vertex of T has at most one neighbour
outside of T , the union of these three 4-cycles is the prism graph of the triangle, i.e. the
cubic graph that can be constructed by two disjoint copies of a triangle by connecting
the three pairs of corresponding vertices. Since G′ is subcubic and connected, it does not
contain any further vertices. If G′ contains the diamond D = K4− e as a subgraph, let v
and w be the vertices of degree 3 in the diamond. Since the edge {v, w} is contained in
a 4-cycle, the two other vertices in D are connected with each other, so G′ = K4. Note
that in both subcases, H[Vi] is a triangle, so ∆(H[Vi]) = 2.

Case 2: G′ contains no triangle, but a K2,3 subgraph induced by the union of the
independent sets {v1, v2} and {w1, w2, w3}.
Since this subgraph contains only three 4-cycles, we may assume that w1 has another

neighbour x. In order for the edge w1x to be contained in a 4-cycle, x must be adjacent
to one of the vertices w2 and w3, w.l.o.g. it is adjacent to w2. Therefore, G′ contains
K3,3 − e as a subgraph. Since the vertices x and w3 have distance 3 in the K3,3 − e
subgraph and every edge of G is contained in a 4-cycle, any further edge that contains
one of them must contain them both. Therefore, in this subcase either G′ = K3,3 − e or
G′ = K3,3.

Case 3: G′ contains neither a triangle nor a K2,3 subgraph.
In this case, each pair of different 4-cycles in G′ shares at most one edge. Since H[Vi]

is claw-free but contains a vertex of degree at least 3, G′ contains three 4-cycles each pair
of which shares exactly an edge. These three 4-cycles form a subgraph that consists of
an induced 6-cycle v1w1v2w2v3w3v1 and a vertex y with NG′(y) = {v1, v2, v3}. As in the
above case, we may assume that G′ contains a path w1xw2 for a new vertex x, and either
G′ contains no further edge or another edge xw3. In the first case, G′ = K2�P4− e, and
in the second case, G′ = K2�C4.

The proof implies that nonempty subcubic graphs which allow no trivial reductions
(i.e. they are connected, each edge is contained in a 4-cycle, and each 4-cycle intersects
at least two other 4-cycles) either belong to one of the graphs in Figure 2.1 or realise a
cycle graph, in which case they belong to one of the following two families:

• Möbius ladders Mk = Ci2k[1, k] for k ≥ 2 (M2 = K4, EC(Mk, 4) ∼= Ck)

• cycle prisms K2�Ck for k ≥ 3 (EC(Ck�P2, 4) ∼= Ck for k 6= 4)
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w2

v1

w3

v2

w1

x

K3,3 − e

w2

v1

w3

v2

w1

x

K3,3

v1 w1

v2

w2v3

w3

y

x

K2�C4 − e

v1 w1

v2

w2v3

w3

y

x

K2�C4

Figure 2.1: Minimal subcubic realisations of connected auxiliary graphs H with δ(H) ≥ 2
and ∆(H) > 2
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2.1 Cycles of a given length

2.1.2 Hardness of Approximation

In order to show the hardness of packing `-cycles in graphs of a given maximum degree,
we are going to use hardness results for finding the independence number in a graph class
with the property that each member of the class is isomorphic to some graph EC(G, `)
resp. V C(G, `).
A MAX-SAT instance consists of a set X of some s Boolean variables x1, . . . , xs and

of a set Z of some t clauses, which are subsets of the set L of literals, where L is the
disjoint union of X and the set {x1, . . . , xs} of negations of the variables. We say that
a truth assignment X → {true, false} satisfies a clause C, if C contains a Boolean
variable set to true or the negation of a Boolean variable set to false. The maximum
satisfiability problem asks for the maximum number of clauses that can be satisfied by a
truth assignment.
Our proofs of the hardness of `-cycle packings rely on a result of Berman and Karpinski

on the 3-OCC-MAX 2SAT problem. This problem is the restriction of the maximum
satisfiability problem to instances for which each clause contains at most two variables
and each variable x occurs in at most three clauses, i.e. at most three clauses contain
one of the literals x and x.

Theorem 4 (Berman and Karpinski [7]). For every ε > 0, it is NP-hard to approximate
3-OCC-MAX 2SAT within a factor of 2012

2011 − ε.

Definition 3. We call a 3-OCC-MAX 2SAT instance reduced, if for any two different reduced

literals l1, l2 ∈ L,

1. none of its clauses is of the form
{
l1, l1

}
,

2. at least two clauses contain one of the literals l1 and l1,

3. the instance does not contain both the clauses {l1, l2} and
{
l1, l2

}
,

4. the instance does not contain two clauses
{
l1, l2

}
and {l1, l2} and a third clause

that contains the literal l1.

Lemma 1. For every ε > 0, it is NP-hard to approximate the restriction of 3-OCC-MAX
2SAT to reduced instances within a factor of 2012

2011 − ε.

Proof. By Theorem 4, it is sufficient to show that for every unreduced instance I of the
3-OCC-MAX 2SAT problem, we can compute an integer d and a smaller instance I ′ with
OPT (I) = OPT (I ′) + d in polynomial time.
If the first condition on reduced instances is violated, we construct I ′ from I by re-

moving the clause {l1, l1} and setting d := 1.
If the second condition is violated, let C be a clause such that neither l1 nor l1 occurs

outside of C. Then we construct I ′ from I by removing the clause C and set d := 1.
If the third condition is violated, we have two clauses {l1, l2} and

{
l1, l2

}
. Let x1 and

x2 be the two variables corresponding to the literals l1 and l2. If there exists a partial
truth assignment {x1, x2} → {true, false} that satisfies all clauses in which the literals
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2 Cycle Packings

x1, x1, x2 and x2 occur, we set d to be the number of these clauses and construct I ′ from
I by removing them. Otherwise, there are w.l.o.g. two clauses {l1, l3} and {l2, l4} for
literals l3, l4 corresponding to two further variables. Any truth assignment that assigns
the same value to l1 and l2 satisfies at most three of the four clauses in which l1 and l2
occur, while a truth assignment that assigns different values to these literals satisfies at
least three of the four clauses. Therefore, we can set d := 2 and construct I ′ from I by
removing the clauses {l1, l2} and

{
l1, l2

}
and replacing the literal l1 by the literal l2.

If the fourth condition is violated, at most one of the literals l2 and l2 occurs in a fourth
clause; w.l.o.g. there is no further occurrence of the literal l2. Then any optimal truth
setting remains optimal after the value of the variable corresponding to l2 is adjusted
such that l2 is true. Therefore, we can set d to be the number of occurrences of the literal
l2 in I and construct I ′ from I by removing the clauses in which l2 occurs and replacing
the clause

{
l1, l2

}
by {l1}.

We can associate graphs to MAX-SAT instances via a construction from Karp’s proof
of the NP-completeness of STABLE SET [39].

Definition 4. For a given MAX-SAT instance the vertices of the SAT graph correspondSAT graph

to the pairs (l, C) ∈ L × Z with l ∈ C. Its edge set is a union EC ∪ EV of the set
EC of clause edges between each pair of vertices (l1, C) and (l2, C) that belong to the
same clause, and of the set EV of variable edges between each pair (x,C1) and (x,C2)
of vertices.

x1 x1 x1

x2 x2

(x1 ∨ x2), (x1), (x1 ∨ x2)

x1 x1 x1

x2 x2 x2

x3 x3

(x2 ∨ x3), (x1 ∨ x2), (x1 ∨ x2), (x1 ∨ x3)

Figure 2.2: SAT graphs to two unreduced 3-OCC MAX 2-SAT instances

Obviously, the solution of the MAX-SAT problem corresponds the size of a maximum
independent set in its SAT graph. For reduced 3-OCC MAX 2-SAT instances the SAT
graphs have some properties summarised in the following lemma.

Lemma 2. The SAT graph corresponding to a reduced 3-OCC-MAX 2SAT instance is
a simple graph G with δ(G) ≤ 2 ≤ 3 ≤ ∆(G) and g(G) ≥ 6, whose vertices of degree 3
induce a graph of maximum degree 1.

Proof. Let H be the SAT graph for a reduced 3-OCC-MAX 2SAT instance. Parallel
edges in SAT graphs arise only if a clause contains two literals corresponding to the same
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2.1 Cycles of a given length

variable, and this case is excluded for reduced graphs. The degree of any vertex in H
cannot be larger than three because it is incident to at most one clause edge and at most
two variable edges. As each variable occurs in at least two clauses, there is no vertex of
degree one.
Let us assume that H contains a 3-cycle T . Since the clause edges are a matching, T

contains at least two variable edges. Therefore, all three vertices in T correspond to the
same variable, so none of the three edges is a clause edge. This is impossible because
(V,EV ) is a disjoint union of paths of length one and two.
Let us assume that H contains a 4-cycle Q. Since the clause edges are a matching,

and every path with three edges in H contains at least one clause edge, clause edges and
variable edges alternate on Q. Therefore, the vertices of C correspond to two clauses of
the form {l1, l2} and

{
l1, l2

}
, but this is the third excluded case for reduced instances.

Let us assume that H contains a 5-cycle P . As the clause edges are a matching, P
contains at most two of them, so the vertices of P correspond to only two variables, and
the 5-cycle corresponds to clauses

{
l1, l2

}
, {l1, l2} and

{
l1
}
, where the third clause may

contain another literal. This is the fourth excluded case for reduced instances.
Finally, since the clause edges are a matching, every vertex v with dG(v) = 3 is adjacent

to one clause edge and two variable edges. The two vertices that are connected to v by
variable edges are not incident to a clause edge, so their degree is at most two, which
implies that each vertex of degree three has at most one neighbour of degree three.

To prove the hardness results, we use a construction which, under suitable conditions,
provides graphs with given girth and given auxiliary graph.

Definition 5. For any triangle-free graph H of maximum degree ∆ and any integer
` ≥ max{3,∆}, we call a graph G a C(`, H)-graph, if it is obtained from the disjoint C(`, H)

union G′ of `-cycles Cv for each vertex v ∈ V (H) by the following identification process:
For each v ∈ V (H), we select dH(v) different glueing edges {ev,w}w∈NH(v) ⊆ E(Cv) such
that for each pair w 6= w′ of neighbours of v, the distance between the vertex sets ev,w
and ev,w′ is at least

⌊
`−dH(v)
dH(v)

⌋
=
⌊

`
dH(v) − 1

⌋
. For each edge {v, w} ∈ E(H), we define

two identification sets {a1, a2} and {b1, b2} with ev,w = {a1, b1} and ew,v = {a2, b2}. We
obtain G from G′ by identifying the vertices that are contained in a common identification
set and removing double edges, i.e. one edge from each pair of glueing edges.

For fixed `, this construction can be performed in polynomial time. It does not yield
a unique C(`, H)-graph, as it depends upon the choice of glueing edges and identifica-
tion sets. Each C(`, H)-graph contains the `-cycles Cv for each v ∈ V (H) as induced
subgraphs, and for each edge {v, w} ∈ H, it contains an edge e{v,w} representing the
pair of glueing edges ev,w and ew,v. Figure 2.3 shows a C(5, K4− e)-graph that, besides
the 5-cycles Ca, Cb, Cc, and Cd, contains two 3-cycles and an additional 4-cycle, so its
EC(·, 4)-graph is not K4 − e. However the following definition and lemma describe a
condition on H that guarantees that all additional cycles in the constructed graph have
length greater than `.
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a

b

c

d

Ca

Cb

Cc

Cd

Ca

Cb

Cc

Cd

Figure 2.3: Construction of a C(`, H)-graph for ` = 5 and H = K4 − e

Definition 6. The `-weight of a cycle CH in a graph H is

w`(CH) :=
∑

v∈V (CH)

⌊
`

dH(v)
− 1

⌋
.

Lemma 3. If a graph H contains no cycle CH of `-weight w`(CH) ≤ `, then the girth of
any C(`, H)-graph G is `, and EC(C(`, H), `) ∼= H.

Proof. It suffices to show that G contains no cycle C 6∈ {Cv : v ∈ H} of length less than
or equal to `. Let us assume that C is such a cycle. Then we can split the sequence of
the edges of C into a sequence P1, P2, . . . , Pl of consecutive paths such that for 1 ≤ i ≤ l
the path Pi is entirely contained in some `-cycle Cvi . Furthermore, allowing paths of
length 0, it is possible to choose these paths such that ∀i ∈ {1, . . . , l} : vi−1vi ∈ E(H)

with v0 := vl. The length of Pi is at least
⌊

`
dH(vi)

− 1
⌋
. Since the length of C is at most `,

we obtain that ` ≥
l∑

i=1

⌊
`

dH(vi)
− 1
⌋
and that ∀i ∈ {0, . . . , l−2} : vi 6= vi+2. As l > 1, this

implies that the sequence v0, v1, v2, . . . , vl contains a cycle CH of H with w`(CH) ≤ `.

Theorem 5. For every ε > 0 and every ` ≥ 6, it is NP-hard to approximate the restric-
tion of `-ECP to graphs with maximum degree at most 3 within a factor of 2012

2011 − ε.

Proof. Let H be the SAT graph for a given reduced instance of the 3-OCC-MAX 2SAT
problem. By Lemma 1, the theorem can be proved by a polynomial time construction of
a graph G with maximum degree 3 such that EC(G, `) ∼= H.
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2.1 Cycles of a given length

We choose G as an arbitrary C(`, H)-graph. Since ` ≥ 2∆(H), the glueing edges
in any C(`, H)-graph G are disjoint, so ∆(G) ≤ 3. By Lemma 3, G has girth `, and
EC(G, `) ∼= H, provided that the `-weight of each cycle CH in H is greater than `.
As the clause edges on CH are disjoint, each vertex of CH is contained in a path of

length one or two that contains only variable edges. Now each path of variable edges
contains at most one vertex of degree three, so at least half of the vertices of CH have
degree two. Therefore, w`(CH) =

∑
v∈V (CH)

⌊
`

dH(v) − 1
⌋
≥ 3 ·

(⌊
`
2

⌋
+
⌊
`
3

⌋
− 2
)
. Since

` ≥ 6, this implies that the `-weight of CH is strictly greater than `.

Theorem 6. For every ε > 0 and each ` ∈ {4, 5}, it is NP-hard to approximate the
restriction of `-ECP to graphs with maximum degree at most 4 within a factor of 6036

6035−ε.

Proof. Let H ′ be the SAT graph to an arbitrary reduced instance of the 3-OCC-MAX
2SAT problem. By Lemma 2, the vertices of degree 3 induce a subgraph of H ′ of maxi-
mum degree 1.
In polynomial time, we can determine a set A of vertices of degree 2 of H ′ such that

every cycle of H ′ contains a vertex of A and subject to this property the set A is minimal
with respect to inclusion. Since A is independent, |A| ≤ α(H ′).
Let H be the graph that we obtain by each vertex v ∈ A with neighbours a and b by

adding five vertices v1, . . . , v5 of degree 2, such that av1v2v3v4v5b is a path inH. It is easy
to see that α(H) = α(H ′) + 2|A| and that every independent set I of H efficiently yields
an independent set I ′ of H ′ with |I ′| ≥ |I| − 2|A|. This implies that every independent
set I of H with α(H)

|I| ≤ 1+ δ would efficiently yield an independent set I ′ of H ′ for which
α(H′)
|I′| ≤

1+δ
1−2δ .

Since each cycle in H ′ contains at least two vertices of degree 2, each cycle CH in H
contains at least six vertices of degree 2, so w`(CH) ≥ 6 > `, and by Lemma 3, any
C(`, H)-graph G has girth ` and satisfies EC(G, `) ∼= H.
The vertices of degree 3 in H induce a subgraph of maximum degree 1 as they do in

H ′, i.e. a collection of isolated vertices and disjoint edges. We are now going to show
that this allows us to use the freedom of choosing the glueing edges and the identification
sets in such a way that we obtain a C(`, H)-graph G of maximum degree at most 4.
For vertices v of H of degree 3 all neighbours of which are of degree 2, the identification
processes involving the edges of Cv cannot create vertices of degree more than 4. If
vw is an edge of H between two vertices of degree 3, then we choose the glueing edge
ev,w = xy in Cv such that y is not contained in another glueing edge of Cv and the
glueing edge ew,v = x′y′ in Cw such that x′ is not contained in another glueing edge of
Cw. Furthermore, for the edge vw we choose the identification sets {x, x′} and {y, y′}.
By these choices, the identification processes involving the edges of Cv and Cw do not
create vertices of degree more than 4. Hence G has maximum degree at most 4.
By Lemma 1, we can finish the proof by showing that the modified graph H is still

the SAT graph of a reduced instance of the 3-OCC-MAX 2SAT problem. It suffices to
show that for each vertex v of degree 2 in the SAT graph of a reduced instance I of the
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3-OCC-MAX 2SAT problem, we can construct an instance I ′ whose SAT graph is the
graph obtained by replacing v with a path v1v2v3v4v5 as above.
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Figure 2.4: Replacement of a vertex v of degree two in Theorem 6

If v corresponds to the only literal l in a clause {l}, then there exist two further clauses
C1 and C2 containing the literal l. In this case, we construct I from I ′ by replacing the
occurrence of l in C2 with a new variable x1 and adding two new clauses

{
l, x2

}
and

{x2, x1}, where x2 is a second new variable. Otherwise, v corresponds to a literal l in
a clause {l, α} that contains another literal α, and the literal l occurs in precisely one
clause. In this case, we construct I from I ′ by replacing the occurrence of l by a new
variable x and adding three new clauses

{
l
}
, {l, x}, and {x}.

Finally, we show the APX-hardness of `-VCP for ` < 6 by a similar construction in
which each two `-cycles intersect in at most one vertex.

Theorem 7. For every ε > 0 and every ` ∈ {3, 4, 5}, it is NP-hard to approximate the
restriction of `-VCP to graphs with maximum degree at most 4 within a factor of 2012

2011−ε.

Proof. Let H be the SAT graph for a given reduced instance of the 3-OCC-MAX 2SAT
problem. We are going give a polynomial time construction of a graph G of girth ` and
maximum degree at most 4 whose shortest cycles are a set {Cv}v∈V (H), such that two
cycles Cv and Cw are vertex-disjoint if and only if {v, w} 6∈ E(H). Since vertex-disjoint
packings of shortest cycles in G correspond to stable sets in H, Lemma 1 then implies
the statement.
Let G′ be the disjoint union of |H| `-cycles Cv. Since the maximum degree of H is at

most 3, we can select vertices xv,w ∈ Cv and xw,v ∈ Cw for each edge {v, w} ∈ E(H) such
that all 2|E(H)| selected vertices are pairwise different. We construct G by identifying
xv,w with xw,v for each {v, w} ∈ E(H). Then each vertex of G is contained in at most
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2.2 Cyclomatic Number

two `-cycles Cv, so the maximum degree of G is at most 4. It remains to show that the
length of any cycle CG 6∈ {Cv}v∈H is greater than g.
Indeed, the edge sequence CG can be uniquely decomposed into maximal non-empty

subpaths P1, P2, . . . , Pl, such that l > 2, and for each 1 ≤ i ≤ l the edges of the path
Pi are contained in some cycle Cvi for vi ∈ H. Then the edges v1vl and vivi+1 for
i ∈ {1, . . . , l− 1} are contained in H, and since ∀i ∈ {1, . . . , l− 2} : vi 6= vi+2, the vertex
sequence contains a cycle of H. Since the girth of H is at least 6 by Lemma 2, we have
|E(CG)| ≥ l ≥ 6 > `.

2.2 Cyclomatic Number

In this section, graphs are considered to be multigraphs without loops as defined in 1.2.1.
Clearly, the cyclomatic number µ(G) is an upper bound for the maximum cardinality
νe(G) of an edge-disjoint cycle packing, since if G would contain a collection of more than
µ(G) edge-disjoint cycles, removing one edge from each cycle would not create any new
components and thus yield a graph with a negative cyclomatic number, a contradiction.
In Section 2.2.1, we prove that for every fixed nonnegative integer k, there is a finite

set Pe(k) of isomorphism types of graphs such that every 2-connected graph G with Pe(k)

n(G) ≥ 2 and µ(G)− νe(G) = k arises by applying a simple extension rule to one of the
graphs in Pe(k), i.e. there are essentially only finitely many configurations which cause
µ(G) and νe(G) to deviate by k. Furthermore, we determine Pe(k) for k ≤ 2. The results
of this section are based on [32].
A related problem is to find the minimum value p such that all graphs G with m(G)−

n(G) ≥ p contain k edge-disjoint cycles. This parameter is defined as p(k), and there are p(k)

several classical results:

p(k) =


0 , k = 1
4 , k = 2 [21]
10 , k = 3 [53]
18 , k = 4 [8, 73]
Θ (k log k) [21, 69, 74, 73].

In Section 2.2.2, we obtain results analogous to those in Section 2.2.1, applied to
vertex-disjoint cycle packings. We obtain a similar characterisation of the two-connected
graphs with µ(G)− νv(G) = k and apply this result to construct a linear-time algorithm
that determines in linear time whether an arbitrary graph satisfies µ(G) − νv(G) = k.
The results of this section are based on [60].

2.2.1 Graphs G with µ(G)− νe(G) = k

The connected graphs G with µ(G)− νe(G) = 0 are exactly the cactus graphs, i.e. their
blocks are either edges or arise by possibly subdividing the edges of a cycle of length
2: These are precisely the graphs in which all cycles are edge-disjoint. If all cycles in
G are edge-disjoint, then removing one edge from each of the νe(G) cycles yields a tree,
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u v

G H

u v

Figure 2.5: Replacing the edge e ∈ E(G) with a 4-cycle-path

so µ(G) = νe(G). Conversely, if µ(G) = νe(G), then there exists a set C of µ(G) edge-
disjoint cycles. Since removing one edge from each of these cycles yields a tree, no edge
in E(G) \ E(C) is contained in a cycle, so all edges of G are edge-disjoint.
For k ∈ N0, let Ge(k) denote the set of 2-connected graphs G with n(G) ≥ 2 andGe(k)

µ(G) − νe(G) = k. By the above remark on cactus graphs, Ge(0) contains exactly the
2-connected cactus graphs, i.e. K2 and the cycles C2, C3, . . .. The next lemma shows that
it suffices to restrict our attention to 2-connected graphs.

Lemma 4. Let k ∈ N0. If G is a graph with µ(G)−νe(G) = k whose blocks B1, B2, . . . , Bl

satisfy Bi ∈ Ge(ki) for 1 ≤ i ≤ l, then k =
l∑

i=1
ki.

Proof. Every cycle of G is entirely contained in some block of G.

Now we need some notation to explain the extension rule for the definition of Pe(k).
Let l ∈ N0. An l-cycle-path is a cactus with at most 2 endblocks and exactly l cycles.
An l-cycle-path-subgraph of a graph G with attachment vertices u and v is an induced

l-cycle-path H in G such that u and v are two distinct vertices of H for which dG(w) =
dH(w) for all w ∈ VH \ {u, v}, and the graph obtained from H by adding an edge
between u and v is 2-connected, i.e. only the attachment vertices may have neighbours
outside of VH and, if H has more than one block, then the attachment vertices are two
non-cutvertices from the two endblocks of H.
Note that a 0-cycle-path-subgraph of G with attachment vertices u and v is an ear of

G with endvertices u and v.
A graph H is said to arise from a graph G by replacing the an edge e incident with

u, v ∈ V (G) with an l-cycle-path, if H has an l-cycle-path-subgraph Q with attachment
vertices u and v such that (cf. Figure 2.5)

V (G) = V (H) \
(
V (Q) \ {u, v}

)
, and

E(G) =
(
E(H) \ E(Q)

)
∪ {e}.

A graph H is said to extend a graph G, if there is a maximum edge-disjoint cycle
packing C ofG such thatH arises fromG by replacing every edge e ∈ E(C) :=

⋃
C∈C E(C)E(C)

with a 0-cycle-path and replacing every edge e ∈ E(G) \ E(C) with an l-cycle-path for
some l ∈ N0. A graph H is said to be reduced, if it extends no graph other than itself.
For k ∈ N0, let Pe(k) denote the set of reduced graphs in Ge(k). Note that the

characterisation of Ge(0) implies Pe(0) = {K2, C2}. For k ≥ 1, a graph in Pe(k) contains
neither vertices of degree at most 2 nor l-cycle-path-subgraphs for l ≥ 2.
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2.2 Cyclomatic Number

The next lemma summarises some important properties of the above extension notion.

Lemma 5. If G0 ∈ Ge(k), G1 extends G0, and G2 extends G1, then

(i) G1 ∈ Ge(k),

(ii) G2 extends G0, and

(iii) every graph in Ge(k) extends a graph in Pe(k).

Proof. Let C0 be a maximum edge-disjoint cycle packing of G0 such that G1 arises from
G0 by replacing every edge e ∈ E(G0) with an le-cycle-path Le with le = 0 for e ∈ E(C0).
Let C′1 denote the set of the

∑
e∈E(G0) le edge-disjoint cycles contained in the le-cycle-

paths Le for e ∈ E(G0). Then µ(G1) = µ(G0) + |C′1|.
Since the set of the cycles in G1 that are subdivisions of the cycles in C0 together

with the cycles in C′1 form an edge-disjoint cycle packing of G1, we obtain νe(G1) ≥
νe(G0) + |C′1|.
Let C1 be a maximum edge-disjoint cycle packing of G1 such that G2 arises from G1

by replacing every edge f ∈ E(G1) with an hf -cycle-path Hf with hf = 0 for f ∈ E(C1)
and such that subject to this condition |C′1 ∩ C1| is as large as possible.

If E′1 is an arbitrary set of edges which contains exactly one edge from every cycle
in C′1, then removing the |C′1| edges in E′1 from G1 can destroy at most |C′1| cycles in
C1. Since the remaining cycles are subdivisions of edge-disjoint cycles in G0, we obtain
νe(G0) ≥ νe(G1)− |C′1|.
In view of the above, this implies that

νe(G1) = νe(G0) + |C′1| (2.1)

and hence (i).
Furthermore, this implies that every edge contained in a cycle in C′1 belongs to E(C1),

and edges contained in different cycles in C′1 are contained in different cycles in C1:
Otherwise there would be a choice for E′1 such that removing the edges in E′1 would
only delete at most |C′1| − 1 cycles in C1, which implies the contradiction νe(G0) ≥
νe(G1)− |C′1|+ 1.
If follows that C1 contains all edge-disjoint cycles contained in the le-cycle-path Le for

each e ∈ E(G0) with le ≥ 2.
Furthermore, if le = 1 for some e ∈ E(G0) and C1 does not contain the unique cycle

Ce within the 1-cycle-path Le, then there are exactly two cycles C ′e and C ′′e in C1 which
contain E(Ce). Since

(
E(C ′e) ∪ E(C ′′e )

)
\ E(Ce) contains the edge set of a cycle C ′′′e ,

C̃1 =
(
C1 \ {C ′e, C ′′e }

)
∪ {Ce, C ′′′e })

is a maximum edge-disjoint cycle packing of G1 such that E(C̃1) ⊆ E(C1) and

|C′1 ∩ C̃1| > |C′1 ∩ C1|,

which contradicts the choice of C1.
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Hence C′1 ⊆ C1. By (2.1), the cycles in C1 \ C′1 are subdivisions of the cycles in a
maximum cycle packing C′0 of G0. Clearly, le > 0 implies e 6∈ E(C′0). Since hf > 0 for
some f ∈ E(G1) \E(C1) implies that f is a bridge of an le-cycle-path Le with e 6∈ E(C′0),
G2 extends G0, i.e. (ii) holds.
By definition, for every graph H ∈ Ge(k) there is a graph G ∈ Pe(k) such that H arises

from G by a finite sequence of extensions. By (ii), H extends G, and (iii) follows.

We proceed to our main result.

Theorem 8. The set Pe(k) is finite for every k ∈ N0.

Proof. We prove the result by induction on k. Since |Pe(0)| = 2, we may assume k ≥ 1.
We will argue that every graph in Pe(k) arises from some graph in Pe(k−1) by applying
a subset of a finite set of operations. Since, by induction, Pe(k− 1) is finite, so is Pe(k).
Let H ∈ Pe(k). Let H0, H1, . . . ,Ht = H be an ear decomposition of H, i.e. H0 is a

cycle and, for 1 ≤ i ≤ t, the graph Hi arises from Hi−1 by adding an ear. Clearly, for
1 ≤ i ≤ t, µ(Hi) = µ(Hi−1) + 1 and νe(Hi−1) ≤ νe(Hi) ≤ νe(Hi−1) + 1, which implies

µ(Hi−1)− νe(Hi−1) ≤ µ(Hi)− νe(Hi) ≤ µ(Hi−1)− νe(Hi−1) + 1.

Therefore, since H0 ∈ Ge(0), H = Ht ∈ Ge(k) and k ≥ 1, there is some 1 ≤ i∗ ≤ t
such that Hi∗−1 ∈ Ge(k − 1) and Hi ∈ Ge(k) for i∗ ≤ i ≤ l. Setting l = t − i∗ + 1 and
Gi = Hi∗+i−1 for 0 ≤ i ≤ l yields a sequence of 2-connected graphs

G0, G1, . . . , Gl

such that

• Gl = H,

• Gi arises by adding the ear Pi to Gi−1 for 1 ≤ i ≤ l,

• νe(G0) = νe(G1) and

• νe(Gi−1) = νe(Gi)− 1 for 2 ≤ i ≤ l.

We assume that the sequence is chosen to be shortest possible, i.e. l is minimum.
Note that G0 ∈ Ge(k − 1) and Gi ∈ Ge(k) for 1 ≤ i ≤ l.
By Lemma 5 (iii), G0 extends some graph G ∈ Pe(k − 1).
Let Cl be an optimal cycle packing of H = Gl.
Since νe(Gl−1) = νe(Gl) − 1 for l ≥ 2, and removing the ear Pl from Gl destroys at

most one cycle from Cl, the ear Pl is contained in a unique cycle Cl ∈ Cl, and Cl−1 :=
Cl \ {Cl} is an optimal cycle packing of Gl−1. Iterating this argument, we obtain that
for i = l, (l− 1), (l− 2), . . . , 2, the ear Pi is contained in a unique cycle Ci ∈ Ci ⊆ Cl and
that Ci−1 := Cl \ {Ci, Ci+1, . . . , Cl} is an optimal cycle packing of Gi−1. Note that this
argument does not apply to i = 1 because νe(G0) = νe(G1).
Since each of the ears in E := {P2, P3, . . . , Pl} is contained in a unique different cycle

in Cl, no internal vertex of any Pi is contained in any Pj for indices i 6= j with 2 ≤ i ≤ l
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and 1 ≤ j ≤ l. Since H is reduced and hence has no vertex of degree 2, this implies that
the ears in E all have length 1, i.e. they are all edges.
Let P = v0e1v1e2v2 . . . ervr be a maximal ear of G1. Since G1 is 2-connected and

k ≥ 1, the endvertices v0 and vr of P have degree at least 3. Let I = {v1, v2, . . . , vr−1}
be the set of internal vertices of P .
The next claim is obvious.

Claim A If an ear Pi for 2 ≤ i ≤ l has exactly one endvertex in I, then Ci contains
either the edge e1 or the edge er. Therefore, at most two ears in E have exactly one
endvertex in I.

Claim B No ear Pi for 2 ≤ i ≤ l has both endvertices in I.

Proof of Claim B. For contradiction, we assume that the index i with 2 ≤ i ≤ l is
minimum such that Pi has the endvertices vx, vy ∈ I for 1 ≤ x < y ≤ r − 1. Since
νe(Gi−1) = νe(Gi) − 1, the cycle Ci consists of Pi and the subpath P ′ of P between vx
and vy. This implies that no internal vertex of P ′ is an endvertex of an ear Pj ∈ E \{Pi}.
Hence Pi is an ear of H, and Ci is a 1-cycle-path-subgraph of H.
Let H ′ arise from H by removing the ear Pi.
If νe(H ′) = νe(H), we may choose G̃0 = H ′, P̃1 = Pi and G̃1 = H, contradicting the

minimality of the sequence G0, G1, . . . , Gl. Hence νe(H ′) = νe(H)− 1. This implies that
H ′ has a maximum edge-disjoint cycle packing that does not use the edges of P ′ and H
is not reduced, which is a contradiction.

Claim C G1 does not contain a 2-cycle-path-subgraph.

Proof of Claim C. For contradiction, we assume that Q is a 2-cycle-path-subgraph of G1

with attachment vertices u and v. We may assume that dQ(u), dQ(v) ≥ 2, i.e. the two
cycles C ′ and C ′′ of Q are the endblocks of Q.
Clearly, for every maximum edge-disjoint cycle packing C′1 of G1, we have E(C ′) ∪

E(C ′′) ⊆ E(C′1). This implies that EC′ ∪ EC′′ ⊆ E(C1) and, by Claims A and B, no ear
in E has an endvertex in VQ \ {u, v}. Hence Q is also a 2-cycle-path-subgraph of H, and
H is not reduced, which is a contradiction.

Since G1 arises by adding the ear P1 to G0, Claim C implies that G0 does not contain
any s-cycle-path-subgraph for s ≥ 6. Since every s-cycle-path-subgraph for s ≤ 5 yields
at most 2·5+6 = 16 maximal ears, the number of maximal ears of G0 is at most 16m(G),
so the number of maximal ears of G1 is at most 16m(G) + 3.

Since H is reduced and hence has no vertex of degree 2, Claim A implies that no
maximal ear of G1 has more than 2 internal vertices. Therefore, order and size of G1 are
bounded in terms of m(G).
Since all ears in E are edges between vertices of G1, the number of ears in E with

different endvertices is bounded in terms of n(G1), so it is bounded in terms of m(G).
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Furthermore, since all ears in E are contained in different edge-disjoint cycles, the
number of ears in E which have the same endvertices is bounded by m(G1), so it is
bounded in terms of m(G).
Altogether, G1 arises from G by applying a subset of a set of operations whose cardi-

nality is bounded in terms of m(G), and H arises from G1 by applying a subset of a set
of operations whose cardinality is also bounded in terms of m(G).

Note that the proof of Theorem 8 yields a — rather inefficient — algorithm which for
k ≥ 1 allows to derive Pe(k) from Pe(k−1) and whose running time is bounded in terms
of |Pe(k− 1)| and the maximum size of graphs in Pe(k− 1). Therefore the set Pe(k) can
be constructed for every k ∈ N.
We conclude with another algorithmic consequence of Theorem 8.
Let k ∈ N0 be fixed and let G be a fixed graph in P(k). For a given 2-connected graph

H as input, we can decide in linear time whether H extends G. A simple argument for
this is to consider all injective maps V (G) → V (H) and check whether the edges of G
can be suitably replaced by cycle-paths in order to obtain H. This can clearly be done
in polynomial time.
Therefore, in view of Lemma 4 and Theorem 8, for a given graph H as input, it can

be decided in polynomial time whether µ(H)− νe(H) = k. Furthermore, in view of the
proof of Lemma 5, we can also efficiently construct an optimal cycle packing of H —
even all of them — in this case.

Pe(1) and Pe(2)

In this subsection we illustrate Theorem 8 and determine Pe(1) and Pe(2) explicitly.
The following lemma captures a straightforward yet important observation which was

essentially also used in the proof of Theorem 8.

Lemma 6. Let k ≥ 1.

(i) Every graph H ∈ Pe(k) arises by adding an edge to a graph G such that either
νe(G) = νe(H) and G extends a graph in Pe(k − 1), or νe(G) = νe(H)− 1 and G
extends a graph in Pe(k).

(ii) Let Q ⊆ Pe(k).

If every graph H in Pe(k) which arises by adding an edge to a graph G such that
either νe(G) = νe(H) and G extends a graph in P(k − 1), or νe(G) = νe(H) − 1
and G extends a graph in Q, also belongs to Q, then Q = Pe(k).

Proof. (i) Let H ∈ Pe(k) and let P be the last ear in some ear decomposition of H.
Since H is reduced, P has length 1. Let G arise by removing E(P ) from H. Then
µ(G) = µ(H)− 1, and νe(G) ∈ {νe(H), νe(H)− 1}.

By the definition of Pe(k), νe(G) = νe(H) implies that G extends a graph in
Pe(k − 1) and νe(G) = νe(H)− 1 implies that G extends a graph in Pe(k).
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(ii) Let H ∈ Pe(k).

By iteratively deleting edges as in (i) and reducing the constructed graphs, we
obtain a finite sequence G0, G1, . . . , Gl such that Gl = H, Gi ∈ Pe(k) for 1 ≤ i ≤ l,
G0 ∈ Pe(k− 1), and for 1 ≤ i ≤ l, Gi contains an edge ei such that Gi− ei extends
Gi−1.

By inductive application of the hypothesis, we obtain that Gi ∈ Q for 1 ≤ i ≤ l,
i.e. H ∈ Q which implies Q = Pe(k).

Note that Lemma 6 (ii) yields a criterion to check whether some subset Q of Pe(k)
already contains all of Pe(k). Therefore, the proofs of the following two results reduce to
case analysis. The following result is equivalent to a result in [16].

Theorem 9. Pe(1) = {K3
2}, where K3

2 is the unique graph with two vertices and three
parallel edges (cf. Figure 2.6).

Proof. It is easy to verify that K3
2 ∈ Pe(1).

Let H ∈ Pe(1) be a graph that arises by adding an edge to a graph G. If G extends a
graph in Pe(0), then G is a cycle-path. This implies that, since H is reduced, H ∼= K3

2 .
Furthermore, if H ∈ Pe(1) arises by adding an edge to a graph G with νe(G) =

νe(H)− 1 and G extends K3
2 , then H is not reduced, a contradiction. By Lemma 6 (ii),

the proof is complete.

Figure 2.6: Pe(1) =
{
K3

2

}
.

We say that the graphs which arise from one of the two graphs G1 or G2 in Figure 2.7
by contracting a subset of the edges indicated by dashed lines are generated from G1 or
G2, respectively.

Theorem 10. Pe(2) consists of K4 and all graphs which are generated from G1 or G2.

Proof. It is easy to verify that K4 and all graphs which are generated from G1 or G2

belong to Pe(2).
Let H ∈ Pe(2). We consider different cases.

Case 1 H arises by adding an edge uv to a graph G with νe(G) = νe(H) = 1 such that
G extends K3

2 .
In this case, G is a subdivision of K3

2 . Since νe(H) = 1, the vertices u and v are not
contained in a common maximal ear of G. As H is reduced, this implies that H = K4.
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G1

u1 v1

u2 v2

u3 v3

u1 v1 w1

u2 v2 w2

G2

Figure 2.7: The graphs G1, G2 ∈ Pe(2).

Case 2 H arises by adding an edge uv to a graph G with ν(G) = ν(H) ≥ 2 such that
G extends K3

2 .
In this case G has a unique optimal cycle packing C.
If dG(u) = dG(v) = 2 and u and v are inner vertices of some maximal ear contained in

a cycle in C, then H = G2.
If dG(u) = dG(v) = 2 and u and v are inner vertices in different maximal ears contained

in a cycle in C, then H extends K4. Since H 6= K4, H is not reduced, which is a
contradiction.
If dG(u) = dG(v) = 2 and u and v are contained in different cycles in C, then H is

generated from G1.
If dG(u) ≥ 3, dG(v) = 2, and v is contained in a cycle in C, then H extends K4. Since

H 6= K4, H is not reduced, which is a contradiction.
In all remaining subcases, H is generated from G2.

Case 3 H arises by adding an edge uv to a graph G with νe(G) = νe(H)− 1 such that
G extends K4.
Let v1, v2, v3, v4 denote the vertices of K4. We may assume that G arises by replacing

the edges vivj with li,j-cycle-paths Qi,j .
Since H is reduced and νe(G) = νe(H)−1, the vertices u and v are not both contained

in one of the cycle-paths Qi,j and we obtain that H is generated from G1.

Case 4 H arises by adding an edge uv to a graph G with νe(G) = νe(H)− 1 such that
G extends a graph generated from G1.
It is easy to verify that νe(G) = νe(H)− 1 implies that H is generated from G1.

Case 5 H arises by adding an edge uv to a graph G with νe(G) = νe(H)− 1 such that
G extends a graph generated from G2.
It is easy to verify that νe(G) = νe(H)− 1 implies that H is generated from K4 or G2.

By Lemma 6 (ii), the proof is complete.
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2.2.2 Graphs G with µ(G)− νv(G) = k

Since every vertex-disjoint cycle packing is also an edge-disjoint cycle packing, the in-
equality νv(G) ≤ νe(G) ≤ µ(G) holds for all graphs G.
In analogy to the results of the previous subsection, we are now going to prove the

existence of a finite set Pv(k) of graphs for all k ∈ N0 such that every 2-connected graph
G with µ(G)− νv(G) = k arises by applying a simple extension rule to a graph in Pv(k).
As an algorithmic consequence we describe an algorithm that calculates min{µ(G) −
νv(G), k + 1} in linear time for fixed k. Unlike in the edge-disjoint case, the problem to
find many vertex-disjoint cycles in a graph can not be reduced to its blocks.
We start by giving a constructive characterization of the graphs in Gv(k)

Gv(k) = {G | n(G) ≥ 2, µ(G)− νv(G) = k, and G is 2-connected}.

In order to define the extension rule, we need similar definitions as in the previous
subsection. For l ∈ N0, a graph P is an l-cycle-chain between u and v, if

• P is cactus with at most two endblocks,

• the set C(P ) of cycles of P consists of l vertex-disjoint cycles,

• u 6= v and dP (u) = dP (v) = 1.

If G is a graph and e ∈ E(G) is an edge with endvertices u and v, then the graph H
is said to arise from G by replacing the edge e with an l-cycle-chain P (cf. Figure 2.8),
if H arises from the disjoint union of G and an l-cycle-chain P between u′ and v′ by
removing the edge e and identifying u with u′ and v with v′. In this case H is said to
contain the l-cycle-chain P . Note that subdividing an edge is the same as replacing it
with a 0-cycle-chain.

G

u v
e

H

u v

Figure 2.8: Replacing the edge e = uv ∈ E(G) with a 2-cycle-chain

We say that a graph H extends a graph G, if H arises from G by replacing every edge
e ∈ E(G) with an le-cycle-chain Pe such that µ(H) − νv(H) = µ(G) − νv(G). A graph
H is called reduced, if H does not extend a graph G different from H.

29



2 Cycle Packings

Let Pv(k) be the set of the reduced elements of Gv(k). Pv

The next lemma summarises some important properties of the above extension notion.

Lemma 7. Let H arise from G by replacing every edge e ∈ E(G) with an le-cycle-chain
Pe. Let

l =
∑

e∈E(G)

le and C =
⋃

e∈E(G)

C(Pe).

(i) If H extends G, then µ(H) − µ(G) = νv(H) − νv(G) = l, and every maximum
vertex-disjoint cycle packing of H contains all l cycles in C.

(ii) H extends G if and only if G has a maximum vertex-disjoint cycle packing C(G)
such that le = 0 for all e ∈ E(C(G)).

Proof. Let C(H) be a maximum vertex-disjoint cycle packing of H. Let E be a set of l
edges that intersects every cycle in C. Removing the edges in E destroys at most l cycles
in C(H), so

νv(H)− νv(G) ≤ l. (2.2)

Clearly, µ(H)− µ(G) = l.

(i) Since H extends G, we have µ(H) − ν(H) = µ(G) − ν(G), so ν(H) − ν(G) =
l. Furthermore, since (2.2) holds with equality for every choice of E, we obtain
E(C) ⊆ E(C(H)). By the definition of a cycle-chain, this implies C ⊆ C(H).

(ii) If H extends G, then, by (i), the cycles in C(H) \ C are subdivisions of the cycles
in an optimal cycle packing C(G) of G. Clearly, le = 0 for all e ∈ E(C(G)).
Conversely, if C(G) is a maximum vertex-disjoint cycle packing ofG such that le = 0
for all e ∈ E(C(G)), then the cycles in H which are subdivisions of the cycles in
C(G) together with the cycles in C form a cycle packing of H, so νv(H)−νv(G) ≥ l.
Together with (2.2), it follows that νv(H)− νv(G) = l and H extends G.

As for the extension operation for the definition of Pe, iterated extensions as used for
the definition of Pv are not more powerful than single extensions. The proof is simpler
than that of the corresponding Lemma 5.

Lemma 8. (i) If G2 extends G1 and G1 extends G0, then G2 extends G0.

(ii) For k ∈ N0, every graph in Gv(k) extends a graph in Pv(k).

Proof. (i) For i ∈ {1, 2}, let Gi extend Gi−1 by replacing every edge e ∈ E(Gi−1)

with an l(i)e -cycle-chain P (i)
e . If e ∈ E(G0), f ∈ E

(
P

(1)
e

)
, and l(2)

f ≥ 1, then, by

Lemma 7 (i), f is a bridge of P (1)
e . Therefore, G2 extends G0 by replacing every

edge e ∈ E(G0) with an le-cycle-chain, where

le = l(1)
e +

∑
f∈E

(
P

(1)
e

) l(2)
f .
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2.2 Cyclomatic Number

(ii) Let H ∈ Gv(k). By definition, there is a finite sequence G0, G1, . . . , Gs ∈ Gv(k)
such that Gi extends Gi−1 for 1 ≤ i ≤ s, G0 ∈ Pv(k) and H = Gs. Repeated
application of (i) implies that H extends G0.

In view of the observation on graphs G with µ(G) = νv(G) made in the introduction
it is easy to determine Gv(0) and Pv(0).

Lemma 9. (i) No reduced graph H contains a vertex u with dH(u) = |NH(u)| = 2 or
a 2-cycle-chain.

(ii) Gv(0) = {K2} ∪ {Cn | n ≥ 2} and Pv(0) = {K2, C2}.

Proof. (i) If u ∈ V (H) is a vertex with dH(u) = |NH(u)| = 2, then contracting an edge
incident with u results in a graph G such that H extends G, so H is not reduced.
If H contains a 2-cycle-chain P , then every maximum vertex-disjoint cycle packing
of H contains both cycles of P . Therefore, if G arises from H by contracting one
cycle C in P together with one further edge incident with C (cf. Figure 2.9), then
H extends G, so H is not reduced.

(ii) Let G ∈ Gv(0). Since νv(G) ≤ νe(G) ≤ µ(G), we have Gv(0) ⊆ Ge(0). Indeed,
Gv(0) = Ge(0) = {K1,K2} ∪ {Cn | n ≥ 2}. By (i), K0, K1, K2 and C2 are the only
reduced graphs in Gv(0).

H

C

G

Figure 2.9: Contraction in the proof of Lemma 9 (i)

In analogy to Theorem 8, we can now prove the main result of this section.

Theorem 11. Pv(k) is finite for every k ∈ N0.

Proof. We prove the result by induction on k. For k = 0, the result follows from Lemma
9 (ii).
For positive k, we are going to show that the number of edges in any graph H ∈ Pv(k)

is bounded in terms of the number of edges in some graph in Pv(k − 1).
Since H is 2-connected and has order at least 2, it has an ear decomposition, i.e. it

arises from a chordless cycle by iteratively adding ears. Since removing an ear from H
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2 Cycle Packings

reduces µ(H) by exactly 1 and νv(H) by at most 1, iteratively removing the ears of an
ear decomposition of H yields a sequence of 2-connected graphs G0, G1, . . . , Gl = H,
such that

• for each i ∈ {1, . . . , l}, Gi arises by adding the ear Eari to Gi−1,

• νv(Gi−1) =

{
ν(Gi) , if i = 1

νv(Gi)− 1 , if i > 1.

The second condition implies that G0 ∈ Gv(k − 1) and Gi ∈ G(k) for i ∈ {1, . . . , l}. By
Lemma 8 (ii), G0 extends some graph G ∈ Pv(k − 1).
Let Cl be an optimal cycle packing of Gl. If l ≥ 2, then the ear El is contained in

a unique cycle Cycl of Cl, and Cl \ {Cycl} is a maximum vertex-disjoint cycle packing
of Gl−1. By repeated applications of this argument to indices from l down to 2, we
obtain vertex-disjoint cycles Cyc2, . . . , Cycl ∈ Cl such that Eari is contained in Cyci for
2 ≤ i ≤ l. Since H is reduced, Lemma 9 (i) implies that E := {Ear2, . . . , Earl} is a set
of subgraphs which are isomorphic to K2.

Claim: The graph G1 does not contain a 2-cycle-chain.

Proof of the Claim: For contradiction, we assume that G1 contains a 2-cycle-chain P . It
suffices to show that G2 contains a 2-cycle-chain. Repeating this argument we obtain
that Gl = H contains a 2-cycle-chain, so by Lemma 9, it is not reduced, which is a
contradiction.
Clearly, any maximum vertex-disjoint cycle packing C1 of G1 contains both cycles C ′

and C ′′ of P . Let P ′ denote the path in P between C ′ and C ′′. Recall that Ear2 is
contained in the cycle Cyc2 which is vertex-disjoint to all cycles in C1. Therefore, if Ear2

has no endvertex in P ′, then G2 contains a 2-cycle-chain contained in P , and, if Ear2

has an endvertex in P ′, then Ear2 has both its endvertices in P ′ and G2 even contains
a 3-cycle-chain.

Since G1 arises from G0 by adding the ear Ear1, the claim implies that the graph G0

does not contain a 6-cycle-chain. Since every l-cycle-chain for l ≤ 5 contains at most
2 ·5+6 = 16 maximal ears, the number of maximal ears of G0 is at most 16m(G). Hence
the number of maximal ears of G1 is at most 16m(G) + 3.
Since H is reduced, all internal vertices of a maximal ear P of G1 must be endvertices

of edges in E . At most two internal vertices can be contained in some Eari ∈ E such that
Cyci contains an endvertex of P . Each further internal vertex must be incident with the
edge of an ear Eari ∈ E such that Cyci consists of Eari and a subpath of P . Hence, since
H is reduced, Lemma 9 (i) implies that each maximal ear of G1 contains at most four
internal vertices. Therefore, each maximal ear contributes at most five edges to G1, i.e.
m(G1) ≤ 5(16m(G) + 3). Finally, since the edges in E are vertex-disjoint and n(G1) ≤
m(G1), we obtain |E| ≤ 5

2(16m(G) + 3), which implies m(H) ≤ 8(16m(G) + 3).

We proceed to an algorithmical consequence of Theorem 11:
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Input: A graph G
Output: min{µ(G)− νv(G), k + 1}

1 begin
2 while G contains a bridge e ∈ E(G) do
3 Delete e;
4 end
5 while G contains a vertex u with dG(u) = |NG(u)| = 2 do
6 Contract one of the edges incident with u;
7 end
8 while G contains a 2-cycle-chain P do
9 Contract one cycle C in P together with one further edge incident with C;

10 end
11 while G contains a component C isomorphic to K1 or C2 do
12 Delete C;
13 end
14 if V (G) = ∅ then return 0;

15 Select an endblock B of G;

16 if µ(B)− νv(B) ≥ k + 1 then return k + 1;

17 if B contains a cutvertex then
18 Let u ∈ V (B) be the cutvertex;
19 else
20 Let u ∈ V (B) be any vertex;
21 end
22 Let u be contained in s blocks of G;

23 ∆k ←− µ(B)− νv(B);

24 if u is contained in every optimal cycle packing of B then
25 ∆k ←− ∆k + dG−E(B)(u)− (s− 1);
26 G′ ←− G− V (B);
27 if ∆k ≥ k + 1 then return k + 1;
28 else
29 G′ ←− G− (V (B) \ {u});
30 end

31 Let k′ be the output of Difference(k −∆k) applied to G′;

32 return min{∆k + k′, k + 1};
33 end

Algorithm 2: Difference(k)
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Theorem 12. For every k ∈ N0, Algorithm 2 works correctly and has linear running
time.

Proof of correctness: By induction on the recursive depth, we may assume that the out-
put of the recursive call performed in line 31 is correct.
Up to line 13, G is modified such that the difference µ(G)−νv(G) does not change (cf.

the argument in the proof of Lemma 9 (i)). Note that after these preprocessing steps, G
contains neither a bridge, nor a vertex u with dG(u) = |NG(u)| = 2, nor a 2-cycle-chain,
nor a component which is an isolated vertex or a chordless cycle.
Clearly, it is correct to return 0 in line 14.
Since µ(G)− νv(G) ≥ µ(B)− νv(B), it is correct to return k + 1 in line 16.
If u is contained in every optimal cycle packing of B, then there is an optimal cycle

packing of G which is the union of an optimal cycle packing of G−V (B) and an optimal
cycle packing of B. Since

µ(G) = µ(G− V (B)) + µ(B) + dG−E(B)(u)− (s− 1),

we obtain

µ(G)−νv(G) = µ(G−V (B))−νv(G−V (B)) + µ(B)−ν(B) + dG−E(B)(u)− (s−1),

and the value returned in line 27 or line 32 is correct.
If u is not contained in every optimal cycle packing of B, then there exists a maximum

vertex-disjoint cycle packing of G that is the union of a maximum cycle packing of
G′ := G − (V (B) \ {u}) and a maximum cycle packing of B′ := G[V (B) \ {u}]. Since
µ(G) = µ(G′) + µ(B) and νv(B) = νv(B

′), we obtain

µ(G)− νv(G) = µ(G′)− νv(B′) + µ(B)− νv(B),

and the value returned in line 32 is correct.

Proof of linear running time: If B is a component of G or u is not contained in every
optimal cycle packing of B, then, by Lemma 9 (ii) and the preprocessing, µ(B)−νv(B) >
0. If B is contained in s ≥ 2 blocks of G, then, by the preprocessing, G has no bridge
and hence dG−E(B)(u) − (s − 1) > 0. This implies that ∆k > 0 in line 31. Therefore,
the recursive depth is at most k, and it suffices to show that all steps until line 30 can
be done in linear time.
Since the block-cutvertex tree of G can be determined in linear time [71], the deletion

of bridges (line 3), the deletion of trivial components (line 12), the selection of B (line
15) and the selection of u (line 22) can be done in linear time. Furthermore, it is easy to
see that the contractions in the preprocessing (lines 6 and 9) can be done in linear time.
By Lemma 8 (ii), if µ(B)− νv(B) ≤ k, then there exists a graph B′ ∈ P :=

⋃k
i=0 Pv(i)

such that B extends B′. Since B contains at most one vertex v with dG(v) = |NG(v)| = 2
— the cutvertex u — and since G contains no 2-cycle-chain after the preprocessing, B
contains no 4-cycle-chain. Therefore, in order to obtain B, each edge of B′ is replaced by
a subgraph with at most 11 edges. Since, by Theorem 11, P is finite, µ(B)− νv(B) ≤ k
can only hold, if B belongs to a finite set of graphs depending on k and lines 16, 23, and
24 can be done in constant time.
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2.2 Cyclomatic Number

It is easy to modify Difference(k) such that it also returns a maximum vertex-disjoint
cycle packing of G in linear time provided that µ(G)− ν(G) ≤ k. Such a packing would
consist of the cycles contracted in line 9, the cycles of length 2 deleted in line 12, an
optimal cycle packing of B which, if possible, avoids u and an optimal cycle packing of
G′ obtained recursively.
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3 Cycle Spectrum of Hamiltonian Graphs

The cycle spectrum of a graph G is the set of cycle lengths of G. In this chapter, we will
study lower bounds on the size s(G) of the cycle spectrum of Hamiltonian graphs. s(G)

In the study of Hamiltonian graphs, interest in cycle spectra developed due to Bondy’s
“Metaconjecture” (based on [9]) that sufficient conditions for the existence of Hamilto-
nian cycles usually also imply that a graph is pancyclic, with possibly a small family of
exceptional graphs. In particular, the result of [9] showed that the sufficient condition for
the existence of a Hamiltonian cycle due to Ore [55] — every two nonadjacent vertices x
and y have degrees dG(x) and dG(y) summing to at least the order n — implies further
that G is pancyclic or is the complete bipartite graph Kn

2
,n
2
. Schmeichel and Hakimi

[64] advanced our understanding of Bondy’s Metaconjecture by studying conditions for
a Hamiltonian graph to be pancyclic. They showed that if a spanning cycle in a graph
G of order n has two consecutive vertices x and y with dG(x) + dG(y) ≥ n, then G is
pancyclic or bipartite or lacks only a cycle of length n − 1 from the spectrum, and if
dG(x) + dG(y) ≥ n+ 1, then G is pancyclic. Bauer and Schmeichel [5] used this to give
unified proofs that the sufficient conditions of Bondy [10], Chvátal [14], and Fan [22] for
the existence of Hamiltonian cycles in fact imply pancyclicity, except for a small family
of exceptions. Further results about what is forced into the cycle spectrum by conditions
on vertex degrees of selected vertices on a spanning cycle appear in [24] and [65].
At the 1999 conference “Paul Erdős and His Mathematics”, Jacobson and Lehel initi-

ated the study of a related question: Under weaker conditions than those that guarantee
the existence of a Hamiltonian cycle, how small can the cycle spectrum of a Hamiltonian
graph be?
By Bondy’s result [9], dn(G)/2e-regular graphs G are both Hamiltonian and pancyclic

except for Kn(G)
2
,
n(G)

2

. Graphs that are 2-regular and Hamiltonian have only the cycle
length n(G). For regular graphs with degree greater than 2, the question becomes in-
teresting. Jacobson and Lehel asked for the minimum size of the cycle spectrum of a
k-regular Hamiltonian graph of given order, in particular for k = 3. They observed that
for some positive constant c, c log n(G) is a lower bound. For an upper bound, they
constructed the following regular examples G with s(G) = (k−2)n(G)

2k + k for sufficiently
large orders divisible by 2k.

Example 1 (Jacobson, Lehel). For an integer k > 1 and an integer n which is a multiple
of 2k, arrange n

2k disjoint copies of Kk,k in cyclic order, with vertex sets V1 up to V n
2k
.

Remove one edge from each copy, and replace it by an edge to the next copy to restore
regularity (see Figure 3.1 for the case k = 3). If the order of the construction is suffi-
ciently large, then a cycle of length greater than 2k must pass through each Vi, and in
each Vi it uses an even number of vertices ranging from 4 to 2k. Hence the cycle lengths

37



3 Cycle Spectrum of Hamiltonian Graphs

Figure 3.1: Example of regular graphs with s(G) = (k−2)n(G)
2k + k by Jacobson and Lehel

are the even numbers from 4 up to 2k, and each even integer from 2n
k through n.

Main result The new results of this chapter are motivated by the question of Jacobson
and Lehel. As the main result of this chapter, we prove that every Hamiltonian graph
satisfies s(G) ≥

√
4
7(m(G)− n(G)). The following example shows that there exist graphs

with s(G) = Θ
(√

m(G)− n(G)
)
and that the factor

√
4
7 cannot be increased above 1.

Example 2. For t ≤ n
2 , the graph G of order n and size m = n + t2 − 2t which

arises by subdividing one edge of Kt,t exactly n− 2t times is bipartite and Hamiltonian.
Its cycle spectrum equals {4, 6, . . . , 2t} ∪ {n − 2t + 4, n − 2t + 6, . . . , n} which implies
s(G) ≤ 2(t − 1) = 2

√
m− n+ 1 with equality for n > 4(t − 1) and s(G) =

√
m− n+ 1

for n = 2t.

An important tool in our proof of the main result is a lemma due to Faudree et al.
(Lemma 3 in [23]). Since the original proof of this lemma given in [23] implies a slightly
weaker statement, we first present a corrected proof of this lemma and some extensions
in Section 3.1. In Section 3.2 we derive the consequences concerning the cycle spectrum.
The results of this chapter are based on [52].
We conclude with an open question: The graphs from Example 1 satisfy s(G) =

m(G)−n(G)
k + k. Although there exist some graphs with even smaller cycle spectrum (e.g.

the cubic bipartite graph of order 14 and girth 6), it seems possible that for any fixed
k, sufficiently large k-regular graphs satisfy s(G) ≥ m(G)−n(G)

k + k. However, no lower
bounds on the cycle spectrum that exploit regularity are known, so we only know that
the size of the cycle spectrum is at least linear in

√
n(G).

Question 1. Does there exist a constant c > 0 such that s(G) ≥ cn(G) for all cubic
Hamiltonian graphs G?
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e1 e2 · · · eq−1 eq

Figure 3.2: Chords in Lemma 10

3.1 Chords of a Hamiltonian Path

Throughout this section, let G be a graph with a Hamiltonian path P = v1v2 . . . vn such
that

E(G) \ E(P ) =
{
ej
∣∣ j ∈ {1, . . . , q}},

where ej = vijvij+l for some l ∈ {2, . . . , n − 1} and the sequence ij is monotonously l, q, ej , ij

increasing. We call the edges in E(G)\E(P ) chords (of length l). For any 1 ≤ a ≤ b ≤ n,
we define

P [a, b] := P [{vi : a ≤ i ≤ b}].

We say that two chords ej and ek overlap, if P [ij , ij+l] and P [ik, ik+l] contain a common
edge. By a route in G, we denote a path with endpoints v1 and vn. Finally, let r be the r

number of lengths of routes in G.
Lemma 3 in [23] claims that in this setting, r ≥ q/3 + 1. However, the argument in

[23] produces only q/6 + 1 path lengths in the following example.

Example 3. Let G be the cubic graph of order 12k that is obtained from a Hamil-
tonian path P = v0v1 . . . v12k by adding three chords {v6i, v6i+3}, {v6i+1, v6i+4}, and
{v6i+2, v6i+5} of length three for each i ∈ {0, . . . , 2k − 1}. Any route passes through the
2k + 1 vertices v0, v6, v12, . . . , v12k in increasing order. Each subpath from v6i to v6(i+1)

has either length 4 or length 6, so the lengths of routes are the 2k + 1 = q/3 + 1 even
numbers from 4 · 2k up to 6 · 2k.
The argument in [23] discards either the chords indexed by odd or by even values of i.

By the same argument as above, the remaining graph admits only routes of k+1 = q/6+1
different lengths.

Theorem 13 below will provide a lower bound on r that is always at least as large as
q/3 + 1. The graph in Example 3 demonstrates sharpness.

Lemma 10. If any two of the chords e1, . . . , eq−1 overlap, then r ≥ q − 1, with equality
possible only if l is odd.

Proof. Suppose first that eq overlaps e1. For 2 ≤ j ≤ q, let Pj be the unique route that
uses the chords e1 and ej and no other chords. It traverses, in this order, P [1, i1], e1,
P [ij , i1 + l], ej , P [ij , n], so its length is n + 1 − 2(ij − i1), and P2, . . . , Pq have distinct
lengths. Furthermore, the route Q that contains e1 and no other chord has length n− l.
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Since P2, . . . , Pq have distinct lengths, r ≥ q − 1. If l is even, then the length of Q has
opposite parity from the lengths of P2, . . . , Pq, and hence r ≥ q.
Now suppose that eq does not overlap e1. Let P ′ be the route using e1 and eq and no

other chords. It has length n+ 1− 2l, so it is shorter than any of the paths P2, . . . , Pq−1

or Q.

Lemma 11. Let Q1, . . . , Qt be pairwise edge-disjoint subpaths of P , and let Hj be the
subgraph of G induced by V (Qj). If there are paths of rj different lengths in Hj that join
the endpoints of Qj, then G has routes of at least 1 +

∑t
j=1(rj − 1) different lengths.

Proof. For each j, the route P can be shortened rj − 1 times while replacing only edges
in Hj . Combining these modifications for different values of j, we can produce paths of∑t

j=1(rj − 1) different lengths, each of which is shorter than P .

Theorem 13. If G is a graph consisting of a Hamiltonian path P with vertices v1, . . . , vn
and q chords of length l, then the number r of lengths of routes in G is at least

max

{
q

2
− n− 1

2l
+ 1,

q

3
+ 1

}
.

If l is even, then r ≥ q/2 + 1.

Proof. We start by greedily selecting “independent chords” in order to decompose G:
Choose chords c1, . . . ck such that for j ∈ {1, . . . , k}, cj is the first chord in the sequence
e1, . . . , eq that overlaps no chord ci with i < j and such that all chords coincide with or
overlap one of the chords c1, . . . , ck.
Let Q0 := P [1,max c1], Qj := P [min cj ,max cj+1] for j ∈ [1, k − 1] and Qq :=

P [min ck, n]. For j ∈ [0, k], let Hj be the subgraph of G induced by V (Qj), and let
rj be the number of lengths of paths in Hj that connect the endvertices of Qj .
Since the chord cj is contained both in Hj and Hj−1 for 1 ≤ j ≤ k and every other

chord of G belongs to exactly one of these subgraphs,
∑k

j=0 qj = q + k, where qj is the
number of chords in Hj . Each Hj has the form discussed in Lemma 10. Hence rj ≥ qj−1
for 1 ≤ j ≤ k, and we have r0 = q0 + 1 = 2 since H0 contains only one chord.
The odd-indexed subgraphs among H0, . . . ,Hk are pairwise disjoint, as are the even-

indexed subgraphs. By applying Lemma 11 separately to the graphs arising from P
by adding all chords in

⋃
E(H2j) resp.

⋃
E(H2j+1) and summing the resulting two

inequalities, we obtain

2r ≥ 2 +

k∑
j=0

(rj − 1) ≥ 2 + q0 +
k∑
j=1

(qj − 2) = 2 + q − k,

so r ≥ (q − k)/2 + 1. Since no two chords among c1, . . . , ck overlap, n− 1 ≥ kl, so

r ≥ q

2
− n− 1

2l
+ 1. (3.1)
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Furthermore, considering routes that use no chords other than c1, . . . , ck, we obtain
r ≥ 1 + k. Hence

r ≥ max

{
1 + k,

q − k
2

+ 1

}
.

Optimizing k yields r ≥ q/3 + 1.
If l is even, then Lemma 10 yields ri ≥ qi for 1 ≤ i ≤ k, hence

2r ≥ 2 +
k∑
j=0

(rj − 1) ≥ 2 + q0 +
k∑
i=1

(qi − 1) = 2 + q.

Therefore, r ≥ q/2 + 1 in this case.

Corollary 1. In the setting of Theorem 13, if l ≤ n/2, then

r ≥ q

3

(
1 +

l

n

)
.

Proof. By using (3.1) to improve upon the second bound in Theorem 13, we obtain
r ≥ max{f1(q), f2(q)} with f1(x) = x

2 −
n
2l + 1 and f2(x) = x

3 + 1.
Note that f1 and f2 are linear functions of x that intersect at a point (x0, y0) =(

3n
l ,

n
l + 1

)
. Since f1(0) < 0 < f2(0), the line y = x

3

(
1 + l

n

)
that passes through (0, 0)

and (x0, y0) provides a uniform lower bound on max{f1(x), f2(x)}.

3.1.1 Chords of length greater than three

It is natural to ask in which sense the above bounds are tight. Although this question
has no impact on the discussions in Section 3.2, we are going to give improved bounds
in this subsection.
Tight examples for the inequality r ≥ q/3+1 include Example 3 and the path of order

n with n− 3 chords of length 3. Similarly, paths of order n with n− 2 chords of length
2 show that r ≥ q/2 + 1 is best possible for even values of l. In fact, it is easy to check
that for any value of l and any even value of q, the graph that arises by adding chords of
length l with start vertices v2lj and v2lj+1 for j ∈ {1, . . . , q2} to the path v1v2 . . . v(q+2)l

satisfies r = q/2 + 1. However, the following theorem shows that a very weak condition
that excludes similar special configurations allows to improve the bounds for all values
of l > 3.

Theorem 14. Let P = v1v2 . . . vn be a Hamiltonian path of a graph G, and define a total
order on V (G) by vi < vj :⇔ i < j. Let l be such that all other edges are chords of length
l, i.e. of the form vxvx+l. Let r be the number of lengths of paths with endvertices v1

und vn in G and let q the number of chords in G. If G contains two overlapping chords
vxvx+l and vyvy+l with y − x ≥ 2, then

r(G) ≥

{
l−1
l q(G)− 14l , if l is even,
l−1
2l q(G)− 6l , if l is odd.
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Proof. Let

λ =

{
l − 1 , if l is even,
l−1
2 , if l is odd.

Let Q0 denote the set of chords in G. Let c1, c2, . . . , ck be a sequence of pairwise non-
overlapping chords that is obtained by the following construction: If the sequence has
been constructed up to the chord ci−1, we select ci ∈ Qi−1 such that

Li := {ci} ∪ {c′ ∈ Qi−1 : min c′ < min ci < max c′}

has maximum cardinality. If |Li| < 3, then we stop the construction and set k := i− 1.
Otherwise, we define Qi to be the set of all chords from Qi−1 that do not overlap any
chord in Li. We stop the construction and set k := i, if

S :=

i∑
j=1

⌊
|Lj | − 1

2

⌋
≥ λ− 1.

First, we consider the case S < λ− 1. In this case,

|Qk| = q(G)−
k∑
i=1

|Qi−1 \Qi|

≥ q(G)−
k∑
i=1

3|Li|

≥ q(G)−
k∑
i=1

12

⌊
|Li| − 1

2

⌋
> q(G)− 12λ.

If k = 0, then G contains no triple of pairwise overlapping chords. Since

2 ≤ 2(y − x)− 2 ≤ 2l − 4,

the lengths of the route P that uses no chord and of the route P ′ that uses the two chords
vxvx+l and vyvy+l do not differ by a multiple of (l−1). Now G contains a set I of q(G)−4

2
pairwise non-overlapping chords that neither coincide with nor overlap the chords vxvx+l

and vyvy+l, and for each 0 ≤ i ≤ |I| both paths P and P ′ can be shortened by i · (l− 1)
using i chords in I. Hence r(G) ≥ 2(|I|+ 1) ≥ q(G)− 2, which is larger than the desired
bound.
If k > 0, then G contains a route P ′ that uses only chords from L1 such that the lengths

of P and P ′ do not differ by a multiple of (l−1). Since Qk ⊆ Q1, |Qk| ≥ q(G)−12λ, and
Qk contains no triple of pairwise overlapping chords, Q1 contains a set I of

⌈
q(G)−12λ

2

⌉
pairwise non-overlapping chords, and we obtain r(G) ≥ q(G)− 12λ+ 2 as above.
It remains to consider the case S ≥ λ− 1. In this case,

|Qk| ≥ q(G)− 12λ− |Qk−1 \Qk| ≥ q(G)− 12λ− 3l,
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3.1 Chords of a Hamiltonian Path

and the set
k⋃
i=1

Li \ {ei}

contains λ− 1 disjoint sets C1, C2, . . . , Cλ−1, such that each Cj contains two consecutive
chords exj and exj+1 for some index xj . Let I ⊆ Qk be a maximum set of pairwise
non-overlapping chords. Clearly,

|I| ≥ q(G)− 12λ− 3l

l
=
q(G)

l
− 12

λ

l
− 3.

Now we can construct a route of length

n− 1 + 2a− (l − 1)(k + b)

for each pair
(a, b) ∈ {0, 1, . . . , λ− 1} × {0, 1, . . . , |I|}

as follows: Let Pb be a route of length n − 1 − (l − 1)(k + b) in G that uses the chords
c1, c2, . . . , ck and b chords from I. If Ci = {vrvr+l, vtvt+l} for some 1 ≤ i ≤ λ − 1, then
replacing the subpath of Pb with endvertices min exi and min exi+1 with the chords exi
and exi+1 and the subpath of P with endvertices max exi and max exi+1 increases the
length of Pb by exactly 2 (cf. Figure 3.3). Executing such a replacement a times for

exj exj+1 cj

min exj max exj+1

Figure 3.3: Increasing the length by 2

0 ≤ a ≤ λ − 1 results in a path of the desired length. Note that such replacements can
be combined without conflict.
Since 0, 2, 4, . . . , 2λ− 2 are members of different residue classes modulo l− 1, the path

lengths corresponding to the pairs (a, b) are pairwise different. Hence

r(G) ≥ λ(|I|+ 1) ≥ λq(G)

l
− 12

λ2

l
− 2λ,

which again implies the desired statement.

Note that, if G contains the maximum possible number q(G) = n − l of chords of
length l, then

r(G) =

{
l−1
l q(G) +O(l) , if l is even,
l−1
2l q(G) +O(l) , if l is odd,

i.e. up to the O(l) term Theorem 14 is best-possible. Furthermore, the graphs which are
excluded by the hypothesis of Theorem 14 satisfy r(G) ≥ q(G)

2 + 1.
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3 Cycle Spectrum of Hamiltonian Graphs

3.2 Cycle Lengths in Hamiltonian Graphs

In the following discussion, G is a graph with a distinguished Hamiltonian cycle C. The
edges in E(G) \E(C) are called chords. The length of a chord {u, v} is distC(u, v). The
length of any chord is at least 2 and at most bn/2c. Let the normalised length of a chord
{u, v} be distC(u,v)

n/2 . Two chords {u, v} and {x, y} cross, if each of the two paths in C
with endvertices u and v contains exactly one of the vertices x and y as an inner vertex.
The bound r ≥ q

3 + 1 of Lemma 3 in [23] and of Theorem 13 easily implies a lower
bound on s(G) of the right order of magnitude.

Corollary 2. Every Hamiltonian graph G satisfies s(G) ≥
√

m(G)−n(G)
3 .

Proof. Let C be a Hamiltonian cycle of G and let S = E(G) \ E(C) be the set of all
q := m(G) − n(G) chords. If S contains a subset S′ of at least

√
q
12 chords of pairwise

different lengths, then G contains cycles of 2q ≥
√

q
3 different lengths that use at most

one chord, chosen from S′. Otherwise, G contains a set L of more than q√
q
12

=
√

12q

chords of some length l. Let e be an arbitrary edge of C and let P := C − e be a
distinguished Hamiltonian path of G − e. Then the elements of L are chords of P of
length l or n − l, so a subset L′ ⊆ L of at least

√
3q of them are P -chords of the same

length. Therefore, G− e contains paths of
√

3q
3 + 1 =

√
q
3 + 1 different lengths. Adding

e to these paths yields
√

q
3 + 1 cycles in G of different lengths.

In the remainder of the section, we are going to improve the constant by more careful
arguments: Lemma 12 applies an independent argument to improve upon the naive
argument above, if the average length of the chords is greater than n

12 , while Lemma
13 refines the argument of Corollary 2. A combination of these bounds yields our main
result.

Lemma 12. Let G be graph with a Hamiltonian cycle C. If the average normalised
length of the chords of C is β, then s(G) >

√
β(m(G)− n(G)).

Proof. We seek a large set of chords in one of two special configurations.
If G contains a set I of q pairwise noncrossing chords, then we obtain s(G) ≥ q+ 1 by

considering cycles in G that contain at most one chord, chosen from I.
If G contains a set X of q pairwise crossing chords, then we obtain s(G) ≥ q − 1 by

considering cycles that use two chords, both chosen from X, one of which is a fixed chord
x ∈ X.
For any choice of a path S in C, let GS be the graph whose vertices are the chords

joining V (S) and V (C) \ V (S) and in which two vertices of GS are adjacent, if they
are crossing chords. This graph is called a permutation graph, since — after embedding
C into the Euclidean plane such that its edges are arcs of a circle — the vertices of
GS correspond to straight lines that join two points of the circle and cross the straight
line connecting the two endvertices of S. By [58], such a graph is perfect, so it satisfies
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3.2 Cycle Lengths in Hamiltonian Graphs

χ(GS) = ω(GS) and, since χ(G)α(G) ≥ n for any graph G, ω(GS) · α(GS) ≥ n(GS).
This implies that α(GS) >

√
n(GS) − 1 or ω(GS) >

√
n(GS) + 1, both of which imply

s(G) >
√
n(GS) by the above arguments.

Choose one of the n sets of bn/2c consecutive vertices of C at random with equal
probability. The probability that a chord of length l has exactly one endpoint in S is 2l

n ,
i.e. the normalised length of the chord. Therefore, the expected number of chords with one
endpoint in S is the sum of the normalised lengths, i.e. β(m(G)−n(G)). This implies that,
for some choice of S, n(GS) ≥ β(m(G)−n(G)) and thus s(G) >

√
β(m(G)− n(G)).

Lemma 13. Let G be a graph with a Hamiltonian cycle C. If the average normalised
length of the chords of C is β, then

s(G) ≥

√
2

3

(
1− β

4

)
(m(G)− n(G)).

Proof. For any given chord of length l, the lengths of the two cycles using this and no
other chord are l + 1 and n − l + 1. Both cycles are shorter than C, and their lengths
coincide only if l = n/2. If t is the number of different lengths of chords in G, then the
bound s(G) ≥ 2t is achieved by cycles using at most one chord.
If t is small, then many chords have equal length. In order to benefit from the

improvement in Corollary 1, we assign to each chord of C with length l the weight
w(l) := (1 + l/n)/3. Choose an edge e ∈ E(C) chosen uniformly at random and consider
P := C − e to be a distinguished Hamiltonian path of G. Any chord of C is also a chord
of P ; let the P -length of a chord {x, y} of C be distP (x, y). The P -length of a chord e
of length l is equal to l with probability 1 − l/n. Let W be the expected value of the
total weight of all chords whose length and P -length coincide. The expected number of
chords of length l that contribute to W is al(1− l/n), where al is the number of chords
of length l. Now

W =
∑
l≥2

1

3

(
1 +

l

n

)
al

(
1− l

n

)
=

1

3

∑
l≥2

al

(
1− l2

n2

)

=
1

3

∑
l≥2

al −
1

4

∑
l≥2

al

(
l

n/2

)2
 ≥ 1

3

(m(G)− n(G))− 1

4

∑
l≥2

al
l

n/2


=

1

3

(
(m(G)− n(G))− 1

4
β(m(G)− n(G))

)
=

1

3
(m(G)− n(G))

(
1− β

4

)
.

For some choice of e ∈ E(C), the total weight of the chords whose length and P -length
coincide is at least W . If t is the number of lengths of chords, some particular length
contributes at least W/t to this total weight. Let l be this length. We have al ≥ W

tw(l) ,
so by Corollary 1 the chords of this length contribute at least W/t cycle lengths.
We now have

s(G) ≥ max

{
2t,

(m(G)− n(G))

3t

(
1− β

4

)}
≥

√
2

3

(
1− β

4

)
(m− n),
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3 Cycle Spectrum of Hamiltonian Graphs

where the final inequality chooses t to minimise the maximum.

Theorem 15. If G is a Hamiltonian graph, then s(G) ≥
√

4
7(m(G)− n(G)).

Proof. By Lemmas 12 and 13, s(G) ≥
√

(m(G)− n(G)) max
{
β, 2

3(1− β
4 )
}
. Choosing

β = 4/7 minimises the larger lower bound.
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4 Forbidden Cycles and the
Independence Ratio

The independence number is a fundamental and well-studied graph parameter [49]. Cal-
culation of α(G) is computationally difficult: Berman and Fujito [6] have shown that
even its restriction to subcubic graphs is APX-hard; incidentally, Lemma 2 and Lemma
4 imply that this also holds if restricted further to graphs of girth at least 6. The aim
of this chapter is to derive lower bounds on the independence ratio α(G)

n(G) in terms of the
average degree d(G) for connected graphs with given (odd) girth.

Graphs of given order While the research of this chapter only differentiates graphs by
their density, not by their order or size alone, we mention two results in which the order
of the graph is fixed. For graphs with a nontrivial odd girth condition and fixed order,
increasing the number of edges forces the graph to become more structured. Therefore,
unlike in our setting, in which the order is unrestricted, high average degree forces a high
independence number in graphs of fixed order. This is reflected by Shearer’s short proof
of the inequality α(G) ≥ m(G) for graphs of odd girth 7 in [68].
The minimum order of a triangle-free graph that forces the existence of an independent

set of order t is the Ramsey-number R(3, t). While Ajtai, Kómlos and Szemerédi proved in
[2] that R(3, t) = O

(
t2

log(t)

)
, Kim showed in [44] that R(3, t) = Ω

(
t2

log(t)

)
. Together, this

roughly determines the minimum possible independence number of triangle-free graphs
of given order.
Since the independence ratio α(G)

n(G) of triangle-free graphs of given odd girth and un-
bounded order can become arbitrarily small, we are going to discuss lower bounds of this
ratio in terms of the density in the remainder of this chapter.

Bounds for arbitrary graphs Caro [13] and Wei [78] proved

α(G) ≥
∑

v∈V (G)

1

dG(v) + 1
(4.1)

for every graph G. In [3], Alon and Spencer show that this bound is achieved by the
naive algorithm that obtains an independent set I by randomly selecting vertices of the
graph as members of I and removing their closed neighbourhoods. Indeed, let Gi be the
graph that arises after i neighbourhood removals for some i ∈ N0. If v ∈ V (Gi) for some
v ∈ V (G), then the conditional probability that v is selected in the next step, provided
that v is removed in the next step, is reciprocal to |NGi(v)| ≤ |NG(v)| = dG(v) + 1.
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4 Forbidden Cycles and the Independence Ratio

Note that this argument also shows that the bound is only tight, if NGi(v) = NG(v)
whenever v ∈ V (Gi), so the only tight examples for inequality (4.1) are disjoint unions
of complete graphs.
We can derive a tight bound on the independence ratio in terms of the average degree,

as illustrated in Figure 4.1.

Corollary 3. For every r ∈ N and every graph G,

α(G)

n(G)
≥ 2r − d(G)

r(r + 1)
.

Each bound is tight for disjoint unions of Kr and Kr+1.

Proof. Since Kr and Kr+1 satisfy the bound assigned to r with equality, so do their
disjoint unions because of its linearity. The bound assigned to a given r is stronger than
all other bounds for d(G) ∈ ]r − 1, r[, so it is sufficient to prove each bound for

d(G) ∈ [r − 1, r]. (4.2)

For graphs of fixed order and size, the bound (4.1) is minimal if and only if no two
vertex degrees differ by more than one: Indeed, if a graph G contains two vertices v and
w with dG(w) > dG(v) + 1, then replacing an edge {w, x} for x ∈ NG(w) \ NG[v] with
the edge {v, x} lowers the value of the bounding function due to the strict convexity of
the map x 7→ 1

x+1 . Therefore, under the assumption (4.2), the bound (4.1) is minimal, if
all vertices have degree r − 1 or r.
Using the representation d(G) = pr+ (1− p)(r− 1) for p = d(G)− r+ 1, (4.1) implies

α(G)

n(G)
≥ p · 1

r + 1
+ (1− p) · 1

r
=
d(G)− r + 1

r + 1
+
r − d(G)

r
=

2r − d(G)

r(r + 1)
.

Although this lower bound is best-possible for all rational average degrees, it is not
tight for any graph that contains a component of order at least d + 2, so it appears
natural to ask for the best lower bound for large connected graphs. More precisely, we
define, for a class P of graphs, the asymptotic independence ratio byα(P, d)

α(P, d) = lim
n→∞

(
inf

{
α(G)

n(G)

∣∣∣∣ G ∈ P, d(G) ≤ d, n(G) ≥ n
})

.

By the presence of tight examples of arbitrary order and rational average degree, Corol-
lary 3 implies that α(G, d) is the linear interpolation of the map d 7→ 1

d+1 , where G is theG

class of all graphs.

48



Improvement for connected graphs As an improvement of an earlier result due to
Harant and Schiermeyer [33], Harant and Rautenbach [31] proved that for each connected
graph G, there exists a positive integer k ∈ N and a function f : V (G) → N0 such that
f(u) ≤ dG(u) for u ∈ V (G),

α(G) ≥ k ≥
∑

u∈V (G)

1

dG(u) + 1− f(u)
, and

∑
u∈V (G)

f(u) = 2(k − 1). (4.3)

Corollary 4. For every r ∈ N \ {1} and every connected graph G, α(G)
n(G) ≥ br

(
d̃(G)

)
with

br(d) =
2r − d

(r − 1)(r + 2)

and

d̃(G) =
2(m(G) + 1)

n(G)
.

This bound is satisfied with equality for connected graphs that arise from disjoint unions
of Kr−1 and Kr components by adding bridges.

Proof. The tightness result can be easily verified. For given r, the lower bound br is
at least as strong as all other bounds bi for d ∈

[
r − 1 + 2

r , r + 2
r+1

]
, while br+1 is a

stronger bound, if d > r + 2
r+1 and br−1 is stronger, if r > 2 and d < r − 1 + 2

r . Hence
we may assume that d̃(G) is contained in that interval.
In equation (4.3), we may assume k < n(G) 2r−d̃(G)

(r−1)(r+2) because otherwise the desired
bound follows immediately, so we obtain α(G) ≥

∑n
i=1

1
xi

with xi ∈ N and

n∑
i=1

xi = n(G) + 2m(G)− 2(k − 1) = n(G)

(
1 + d̃(G)− 2

2r − d̃(G)

(r − 1)(r + 2)

)
.

For d̃(G) = r − 1 + 2
r , the sum of the denominators is n(G)r, so the bound in (4.3) is

minimal if all denominators are r, which implies the desired bound in this case. Similarly,
if d̃(G) = r + 2

r+1 , the sum of the denominators is n(G)(r + 1), which again implies the
bound. By the convexity of the function x 7→ 1

x , the bound in (4.3) is minimised, if no

two values of xi differ by more than one, so for any d̃(G) ∈
[
r − 1 + 2

r , r + 2
r+1

]
, all

summands of this bound are either 1
r or 1

r+1 . Since the fraction of those summands that
are of the form 1

r is linear in d̃(G), the resulting bound is linear. Since it coincides with

the linear function br at both margins of the interval
[
r − 1 + 2

r , r + 2
r+1

]
, the proof is

complete.

Let Gconn be the class of connected graphs. The corollary implies that α(Gconn, d) is Gconn

the linear interpolation of the values α(Gconn, d) = 1
r for d = r − 1 + 2

r with r ∈ N \ {1}.
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4 Forbidden Cycles and the Independence Ratio

Bounds for triangle-free graphs For triangle-free graphs G, Shearer [67] has proved

α(G) ≥
∑

u∈V (G)

fSh(dG(u)) (4.4)

where fSh(0) = 1 and fSh(d) = 1+(d2−d)fSh(d−1)
d2+1

for d ∈ N.

The function fSh has the best-possible order of magnitude fSh(d) = Ω
(

log d
d

)
. It

also serves as a lower bound for the expected cardinality of an independent vertex set
obtained by iteratively choosing a random vertex and deleting its closed neighbourhood.
Denley [17] and Shearer [68] also gave bounds with the best-possible order of magnitude
for graphs with specified odd girth. By a similar argument as in Corollary 3, using the
convexity of fSh (cf. Lemma 1 in [67]), we obtain that α(G∆-free, d) is at least the linear
interpolation of the values α(G∆-free, d) = fSh(d) for integral d, where G∆-free denotesG∆-free

the class of triangle-free graphs. Suitable disjoint unions of complete graphs of orders
1 and 2 and cycles of length 5 imply that α(G∆-free, d) is exactly this lower bound for
d ≤ 2. Results by Kreher and Radziskowski [43] imply α(G∆-free, d) = 10−d

20 for d ∈
[
2, 10

3

]
and α(G∆-free, d) = 12−d

26 for d ∈
[

10
3 , 4

]
. In [38], Jones and Locke have given an efficient

algorithm that achieves the independence ratio of 12−d
26 based on the earlier work of Jones

in [37]. Tight examples have been independently discovered by Kreher and Radziskowski
in [43] and Jones in [37]. Some of them appear in the following as difficult blocks.

α(P, d)

d1 2 3 4 5 6

1

1/2

1/3

1/4

α(G∆-free, d)

d

1/2

2/5

1/3

4/13

1 2 3 4
10
3

Figure 4.1: The left graph shows the α(P, d) for P ∈ {G,Gconn}. The right graph shows
the exact value of α(G∆-free, d) for d ≤ 4 and the lower bound based on (4.4).

Improvements for connected triangle-free graphs For triangle-free graphs G with
maximum degree at most 3, Heckman and Thomas [35] proved the best-possible inequal-
ity

α(G) ≥ 1

7
(4n(G)−m(G)− λ(G)) , (4.5)
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4.1 Triangle-free Graphs

where λ(G) counts the number of so-called difficult components of G, which will be
defined later. Their result implies

α(G) ≥ 5

14
n(G)

for triangle-free graphs G of maximum degree at most 3, which was originally conjectured
by Albertson, Bollobás, and Tucker [1] and first proved by Staton [70] (cf. also [4, 22,
37, 30, 34]). In [80], Zhu proved a theorem that generalises the bound of Heckman and
Thomas and implies that every connected triangle-free graph with maximum degree at
most 3 contains an induced bipartite subgraph of order at least 2

7 (4n(G)−m(G)− 1).
In the next section, we are going to prove that — after a suitable modification —

inequality (4.5) still holds even if we drop the maximum degree condition. As a conse-
quence, we determine the exact value of α(G∆-free ∩ Gconn, d) for d ≤ 10

3 .
Most results of this chapter are based on [48].

4.1 Triangle-free Graphs

4.1.1 Average degrees below 10/3

In order to state the result of Heckman and Thomas [35], we need to define λ(G) for
triangle-free graphs G of maximum degree at most 3.
Heckman and Thomas call a graph a difficult block, if it is one of the two graphs G2

and G3 in Figure 4.2. Furthermore, they call a graph G difficult, if every block of G is
either difficult or is an edge between two difficult blocks. For a graph G, λ(G) counts
the number of components of G that are difficult graphs.

Theorem 16 (Heckman and Thomas [35]). If G is a triangle-free graph of maximum
degree at most 3, then

α(G) ≥ 1

7
(4n(G)−m(G)− λ(G)) .

We will show that, in a suitably modified form, Theorem 16 remains true without the
bound on the maximum degree. Our approach will closely follow the method from [35].
A main ingredient of our proof are further difficult blocks, which are special cases of
general pentagons as defined in [72].
Since we need to extend the definition of Heckman and Thomas to graphs that are not

necessarily subcubic and are going to use various difficult blocks for subsequent results,
we define

Definition 7. Let S be a set of 2-connected graphs. We refer to the elements of S as
S-difficult blocks. A connected graph which after the removal of all its bridges is the
union of vertex-disjoint S-difficult blocks is called an S-difficult component. A graph in
which each component is S-difficult is called an S-difficult graph. For a graph G, let
λS(G) denote the number of S-difficult components of G. λS(G)
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4 Forbidden Cycles and the Independence Ratio

G2

w0 w1 w2 w3

v0

G3

w0 w1 w2 w3 w4 w5

v0 v1

G4

w0 w1 w2 w3 w4 w5 w6 w7

v0 v1 v2

G5

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

v0 v1 v2 v3

Figure 4.2: The smallest four G1-difficult blocks.

For the extension of Theorem 16, we define a class G1 = {Gk : k ∈ N \ {1}} of graphs, G1, Gk

which has been independently defined in [29], [37], and [43] before. The first four members
of this sequence are shown in Figure 4.2. In general, these difficult blocks are defined by

V (Gk) = {wi : i ∈ {0, 1, . . . , 2k − 1}} ∪ {vi : i ∈ {0, 1, . . . , k − 2}} and

E(Gk) = {wiwi+1 : i ∈ {0, . . . , 2k − 2}} ∪ {vivi+1 : i ∈ {0, . . . , k − 3}}.

Note that for k ≥ 3, Gk−1 is an induced subgraph of Gk with

V (Gk) = V (Gk−1) ∪ {vk−2, w2k−2, w2k−1} and

E(Gk) = E(Gk−1) ∪ {w2k−3w2k−2, w2k−2w2k−1, w2k−1vk−2, vk−2vk−3, vk−3w2k−2}.

In analogy to Theorem 16, our result is as follows.

Theorem 17. If G is a triangle-free graph, thenf(G)

α(G) ≥ f(G) :=
1

7
(4n(G)−m(G)− λG1(G)) .

The bound in Theorem 17 is best-possible for all G1-difficult graphs (cf. Lemma 15 (i)
below). Furthermore, it is clearly also best-possible for all graphs for which the bound
in Theorem 16 is best-possible. These graphs have been characterised by Heckman [34].

Before we prove Theorem 17, we establish some useful properties of the G1-difficult
blocks. Properties (i) and (ii) have already been shown in [43], and we include the proofs
for the sake of completeness.

Lemma 14. Let k ≥ 2.

(i) For any k ≥ 2 and any two vertices v, w ∈ Gk of degree two, there is an automor-
phism that maps v to w.

(ii) Gk has order 3k − 1, size 5k − 5, and independence number k.

(iii) For every two vertices u and v of Gk, the graph Gk has a maximum independent
set containing neither u nor v.

(iv) If abcd is an induced path of Gk such that the vertices b and c have degree 2 and
u 6∈ {a, d} is a vertex of Gk, then the graph Gk has a maximum independent set
containing a and d but not u.
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4.1 Triangle-free Graphs

Proof. (i) For k = 2, this is obvious. Otherwise, let f1 be the “mirror” automorphism
defined by vi 7→ vk−2−i and wi 7→ w2k−1−i, and let f2 be the automorphism that
exchanges w0 with w1 and v0 with w2 and is identical on all other vertices. Then
the images of any of the four vertices of degree two under the four automorphisms
id, f1, f2, f1 ◦ f2 are pairwise different.

(ii) Order and size of Gk are obvious from the definition, and the vertices w2i form an
independent set of order k. Suppose that k is the minimum integer for which Gk
contains a larger independent set I. By (i), G′ := Gk − NGk [w] ∼= Gk−1 for any
vertex w of degree 2, so by the minimality of k, |I ∩NGk [w]| = 2. For w = w0, this
implies {v0, w1} ⊆ I. For w = w1, it implies {w0, w2} ⊆ I, a contradiction to the
independence of I.

(iii) We prove this by induction on k. For k = 2, the statement is easily verified.
Therefore, let k ≥ 3. Let w be a vertex of degree 2 other than u or v and G′ be
defined as in (ii). By the induction hypothesis, G′ contains an independent set I ′

of order k − 1 that contains neither u nor v. Then we may choose I := I ′ ∪ {w}.

(iv) Since the result is easy to check for k = 2, we assume that k ≥ 3. By (i), we
may assume b = w2k−1, which implies a = vk−2 and d = w2k−3. Since deleting
NGk [a] ∪NGk [d] from Gk results in Gk−2, the statement follows from (iii).

Now we can prove Theorem 17 in analogy to the proof of Heckman and Thomas [35] by
showing that each counterexample could be reduced to a smaller instance by excising a
vertex set whose choice depends on the order and degree sum of a smallest neighbourhood.
We begin with some generic observations that can be applied to prove similar bounds

with respect to other classes of difficult blocks. The property in part (iii) of the Lemma
can be reformulated as r(G1) ≥ 2, where the robustness r(G) of a graph G is defined by r(G)

r(G) := max {k ∈ N0 : ∀M ⊆ V (G) : |M | ≤ k ⇒ α(G) = α(G−M)} ,

and the robustness of a graph class G is the minimum over the robustness of its members

r(G) := min{r(G) : G ∈ G}.

Note that for each vertex v in a triangle-free graph G, removal of NG[v] destroys sG(v) :=∑
w∈NG(v) dG(w) edges. sG(v)

Lemma 15. Let a, b ∈ N with a ≤ b + 1 and let G be a set of 2-connected graphs with
r(G) ≥ 1 for which the inequality f(G)

α(G) ≥ f(G) := (an(G)−m(G)− λG(G))/b (4.6)

holds with equality. If G is a vertex-minimal triangle-free counterexample to inequality
(4.6), then

(i) G is 2-edge-connected and not G-difficult.
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4 Forbidden Cycles and the Independence Ratio

(ii) If H is a connected G-difficult induced subgraph of G, then the number ϕ(H) of ϕ(H)

edges with exactly one endvertex in V (H) is at least (r(G)− 1)x+ 2, where x is the
number of difficult blocks in H.

(iii) If G′ = G −X for some vertex set X ⊆ V (G), α(G) − α(G′) ≥ αX and m(G) −
m(G′) ≤ mX , then

ϕ(X) ≥ (r(G) + 1) · (b · αX +mX − a|X|+ 1).

(iv) For each v ∈ V (G), sG(v) ≤ dG(v) + r(G)+1
r(G)

(
(a− 1)dG(v) + a− b− 1

)
.

Proof. In the following proof, we write difficult instead of G-difficult and λ instead of λG .
Note that, as a minimum counterexample, G is connected.

(i) Suppose that G contains a bridge e = {u, v}. Since G is vertex-minimal, neither
of the components that arises by removing e violates (4.6), so both u and v are
contained in every maximum independent set of their respective components, in
particular α(G − u) = α(G) − 1. Removing the vertex u increases the number of
difficult components by at most dG(u)−1, reduces the size by dG(u) and reduces the
order by one, so it reduces the value of f by at most a−dG(u)+(dG(u)−1)

b = a−1
b ≤ 1,

contradicting the minimality of G. Therefore, G is 2-edge-connected. By the
definition of a difficult graph, this implies that G can only be difficult, if it is
2-connected, but all 2-connected graphs satisfy (4.6).

Since a minimum counterexample is 2-connected and the 2-connected difficult
graphs are elements of G, which satisfy (4.6) with equality, it cannot be a diffi-
cult graph.

(ii) For x = 1, let S be the set of vertices of H that are adjacent to a vertex outside
H. Suppose for contradiction that ϕ(H) ≤ r(G). Then α(G[V (H) \ S]) = α(H),
so removing H from G reduces the independence number by α(H). On the other
hand, this removal introduces at most ϕ(H)− 1 difficult components, reduces the
order by n(H) and the size by m(H) + ϕ(H), so the bound drops by at most

a · n(H)− (m(H) + ϕ(H)) + (ϕ(H)− 1)

b
= f(H) = α(H),

which contradicts the minimality of G.

For general x, the above argument implies that each of the x blocks ofH has at least
r(G)+1 outgoing edges; 2(x−1) of these edges are bridges of H (edges are counted
twice iff they are bridges), so ϕ(H) ≥ (r(G) + 1)x− 2(x− 1) = (r(G)− 1)x+ 2.

(iii) If the inequality does not hold, then
⌊
ϕ(X)
r(G)+1

⌋
≤ b · αX + mX − a · |X|. Since, by

(ii), each difficult component of G′ contributes at least r(G) + 1 edges to the cut
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4.1 Triangle-free Graphs

induced by X in G, we have λ(G′) ≤ b · αX +mx − a · |X|. Hence,

α(G′) ≤ α(G)− αX < f(G)− αX =
an(G)−m(G)

b
− αX

≤ a · n(G′)−m(G′) + a · |X| − b · αX −mX

b
≤ an(G′)−m(G′)− λ(G′)

b
= f(G′),

which contradicts the minimality of G.

(iv) Removing NG[v] from G reduces the independence number by at least one, destroys
dG(v) + 1 vertices and sG(v) edges, and introduces at most

⌊
sG(v)−dG(v)

r(G)+1

⌋
difficult

components, since ϕ(H) ≥ r(G)+1 for every difficult componentH of the remaining
graph by (ii). Therefore, the bound drops by at most

a (dG(v) + 1)− sG(v) +
⌊
sG(v)−dG(v)

r(G)+1

⌋
b

=
a+ (a− 1)dG(v)−

⌈
r(G)
r(G)+1

(
sG(v)− dG(v)

)⌉
b

,

which contradicts the minimality of G, if

(a− 1)dG(v) + (a− b) ≤
⌈

r(G)

r(G) + 1

(
sG(v)− dG(v)

)⌉
⇔ r(G)

r(G) + 1
(sG(v)− dG(v)) > (a− 1)dG(v) + (a− b)− 1

⇔ sG(v) > dG(v) +
r(G) + 1

r(G)

(
(a− 1)dG(v) + a− b− 1

)
.

We can now apply this result to prove the main theorem, Theorem 17. Throughout
the proof, we write λ for λG1 and difficult for G1-difficult.

Proof of Theorem 17: In order to obtain a contradiction, we assume that G is a coun-
terexample of minimum order. Since r(G1) = 2 by Lemma 14 (iii), Lemma 15 (ii)
implies that for any difficult subgraph H of G, the size of the cut induced by H satisfies
ϕ(H) ≥ 3 with equality only possible if H is a difficult block. Lemma 15 (i) implies that
G is 2-edge-connected and not difficult. In particular, δ(G) ≥ 2.

Case 1: δ(G) = 2. Let v ∈ V (G) be a vertex of degree 2. Lemma 15 (iii) implies
sG(v) ≤ 5.
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4 Forbidden Cycles and the Independence Ratio

Subcase 1.A: sG(v) = 4. In this case, both neighbours of v have degree 2. Let NG(v) =
{u,w}, NG(u) = {v, u′} and NG(w) = {v, w′}.
If u′ = w′, then the removal of X := NG[u]∪NG[w] reduces the independence number

by αX = 2 and the size by mX = 2 + dG(w′). Lemma 15 (iii) yields ϕ(X) ≥ 3(7αX +
mX − 4|X| + 1) = 3(dG(w′) + 1), a contradiction to ϕ(X) = dG(w′) − 2. Therefore,
u′ 6= w′.
If u′ and w′ are not adjacent, then the graph G′ := G−{u,w}+ {vu′, vw′} is triangle-

free. Since α(G′) = α(G)−1 and f(G′) ≤ f(G)− 4·2−2+1
7 , G′ is a smaller counterexample,

a contradiction. Therefore, u′ and v′ are adjacent.
Now the removal of X := NG[u]∪NG[w] reduces the independence number by αX = 2

and the size by mX = dG(u′) + dG(w′) + 1, so Lemma 15 (iii) yields ϕ(X) ≥ 3(7αX +
mX − 4|X|+ 1) = 3(dG(u′) + dG(w′)− 4). As ϕ(X) = dG(u′) + dG(w′)− 4, this implies
dG(u′) = dG(w′) = 2, i.e. G ∼= G2, a contradiction to Lemma 15 (i).

Subcase 1.B: sG(v) = 5. Let NG(v) = {a, c} with dG(a) = 3 and dG(c) = 2. If G′ :=
G−NG[v] contains no difficult component, then the f(G′) = f(G)− 4·3−5

7 = f(G)− 1, a
contradiction to the minimality of G. Therefore, G′ contains a difficult component, and
α(G′) = α(G)−1. Since ϕ(NG[v]) = 3, Lemma 15 (ii) implies that G′ is a difficult block.
If G′ ∼= G2, then G ∼= G3, a contradiction to Lemma 15 (i). Therefore, we may assume
that G′ = Gk for some k ≥ 3, and we are going to show that this implies G ∼= Gk+1.
By the contradiction in Subcase 1.A, the neighbour of c different from v has degree 3

in G, so it has degree 2 in G′. By Lemma 14 (i), we may assume NG(c) = {v, w2k−1}.
Since sG(w2k−2) ≥ 6, w2k−2 cannot have degree two in G by the contradiction in Subcase
1.A, so w2k−2 ∈ NG(a). Since G is triangle-free, w2k−3 6∈ NG(a).
Suppose that a is not adjacent to vk−2 in G. Then Lemma 14 (iv) — applied to G′, the

induced path w2k−3w2k−2w2k−1vk−2 of G′, and the unique vertex u ∈ NG(a)\{v, w2k−2}
— implies the existence of a maximum independent set I ′ of G′ that contains w2k−3 and
vk−2 but not u. Now I ′∪{a, c} is an independent set of G, which implies the contradiction
α(G) ≥ 2 + α(G′). Hence a is adjacent to f in G, i.e. NG(a) = {v, w2k−2, vk−2}.
The identification of a with v2k−1, of v with w2k+1 and of c with w2k shows that G is

isomorphic to Gk+1, again contradicting Lemma 15 (i).

Case 2: δ(G) ≥ 3. In this case, every difficult induced subgraph H of G satisfies
ϕ(H) ≥ 4, since H has at least four vertices of degree 2 while G has none.
Suppose first that δ(G) = d ≥ 4 and let u be a vertex of minimum degree. Clearly,

sG(u) ≥ d2. Removing the closed neighbourhood NG[u] of u reduces the independence
number by at least 1. On the other hand, it destroys d + 1 vertices and sG(u) edges,
while it introduces at most sG(u)−d

4 difficult components, since the cut induced by each
of these components contains at least four edges. Therefore

f(G)− f(G′) ≤
4(d+ 1)− sG(u) + sG(u)−d

4

7
=

3d+ 4− 3
4(sG(u)− d)

7

≤
3d+ 4− 3

4(d2 − d)

7
≤ 1,
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4.1 Triangle-free Graphs

which contradicts the minimality of G.
Suppose now that G is not cubic. Then there exists a vertex u of degree 3 with sG(u) ≥

10. Removing the closed neighbourhood NG[u] reduces the independence number by at
least 1. On the other hand, it destroys 4 vertices and sG(u) edges while introducing at
most

⌊
sG(u)−3

4

⌋
difficult components. Therefore,

f(G)− f(G′) ≤
16− sG(u) +

⌊
sG(u)−3

4

⌋
7

≤
13−

⌈
3
4(10− 3)

⌉
7

= 1,

which contradicts the minimality of G.
Since, by Theorem 16, the statement holds for cubic graphs, the proof of Theorem 17

is complete.1

Heckman and Thomas [35] have described a linear time algorithm that determines an
independent set of an order as guaranteed by Theorem 16 in a given triangle-free graph
of maximum degree at most 3. The proof of Theorem 17 easily yields a polynomial time
algorithm that determines an independent set of an order as guaranteed by Theorem 17
in a given triangle-free graph, since the excision arguments correspond to reduction steps
in an obvious recursive procedure and it is possible to check in polynomial time whether
a given graph is G1-difficult.
Finally, Theorem 17 allows to determine the following bound.

Corollary 5.

α(G∆-free ∩ Gconn, d) ≥ 8− d
14

with equality for 12
5 ≤ d ≤

10
3 .

Proof. Theorem 17 implies that α(G∆-free ∩ Gconn, d) has at least the given values. That
α(G∆-free ∩ Gconn, d) is not larger for 12

5 ≤ d ≤ 10
3 follows by considering connected

G1-difficult graphs.

Figure 4.3 illustrates the result from Corollary 5 (values for d ≤ 12
5 are due to Corollary

3 below).

4.1.2 Average degrees beyond 10/3

As mentioned in the introduction, results by [43] and [38] imply

∀d ∈
[

10
3 , 4

]
: α(G∆-free, d) =

12− d
26

.

This bound is achieved by disjoint unions of the quartic Ramsey graph Ci13[1, 5] and
a family X := {Xk : k ≥ 4} of graphs of average degree 10

3 , where Xk is the graph that X , Xk

arises from two cycles v0v1 . . . vk−1 and w0w1 . . . w2k−1 by adding the edges {vi, w2i} and
{vi, w2i+3 mod 2k−1} for each i ∈ {0, . . . , k − 1} (cf. Figure 4.4). Note that the difficult
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4 Forbidden Cycles and the Independence Ratio

d

α(P, d)

2 12/5 3 10/3 4 54/13

1/2

2/5

1/3

4/13

Figure 4.3: The upper line shows the value of α(G∆-free ∩ Gconn, d) for d ∈
[
2, 10

3

]
. For

comparison, the lower line shows the value of α(G∆-free, d) for d ≤ 4, and the
dashed line shows the expected value of α(G∆-free ∩ Gconn, d) for d ∈ [10

3 ,
54
13 ]

according to Conjecture 1.

v0
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w1
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w6 w7
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Figure 4.4: X5
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4.1 Triangle-free Graphs

block Gk in Figure 4.2 is the subgraph of Xk that arises by removing the vertex vk−1

and the edge {w0, w2k−1}.
In view of the asymptotic independence ratio of connected graphs without girth re-

striction and Corollary 17, it seems natural to assume that the asymptotic independence
ratio of connected triangle-free graphs is governed by connected graphs that arise from the
disjoint union of Ci13[1, 5] and elements of X by adding bridges: Let G2 = {Ci13[1, 5]}. G2

Conjecture 1. If G is a triangle-free graph, then

α(G) ≥ 1

16
(7n(G)−m(G)− λG2(G)) .

This statement would determine the asymptotic independence ratio for connected
graphs for average degrees d ∈

[
10
3 , 4 2

13

]
(cf. Figure 4.3), since it is tight for both

aforementioned graph classes. The following Lemma supports the conjecture.

Lemma 16. r(G2) = 4, and any minimal counterexample H to Conjecture 1 satisfies
δ(H) ≥ 3.

Proof. Since G := Ci13[1, 5] satisfies r(G) ≤ α(G) = 4, it suffices to show that for each
choice of a set X of four vertices in G, there exists an independent set of size 4 that avoids
X. Denote the vertex set of G by Z/13Z with {x, y} ∈ E(G) ⇔ x− y ∈ {±1,±5}. We
may assume w.l.o.g. that 0 ∈ X.
Consider the three disjoint independent sets Ij := {j, j+3, j+6, j+9} for j ∈ {1, 2, 3}.

If there is a j such that Ij and X are disjoint, then we can select Ij as the desired
independent set, so we may assume that each Ij contains exactly one element of X.
Similarly, the three independent sets Jj := {j, j + 2, j + 4, j + 6} for j ∈ {2, 5, 10} are
disjoint, so we may assume that each Jj contains exactly one element of X.
Let x be the element of I2 ∩ X. Since the automorphism of G[Z/13Z∗] given by

i 7→ 13− i maps 2 to 11 and 5 to 8, we may assume x ∈ {2, 5}.
Suppose first x = 2. Then X is disjoint to Y2 := (I2 ∪ J2) \ {2} = {4, 5, 6, 8, 11}.

Therefore, one of the two remaining elements of X is contained in I1 \ Y2 = {1, 7, 10}
and the other one in I3 \ Y2 = {3, 9, 12}. Similarly, one of them is contained in
J5 \ Y2 = {7, 9} and the other one in J10 = {10, 12, 1, 3}. This implies X \ {0, 2} ∈{
{7, 3}, {7, 12}, {9, 10}, {9, 1}

}
. In each of these four cases, X is disjoint to one of the

independent sets {4, 6, 8, 10} and {1, 3, 5, 7}.
Suppose now x = 5. Then X is disjoint to Y5 := (I2 ∪ J5) \ {5} = {2, 7, 8, 9, 11}.

Therefore, one of the remaining elements of X is contained in I1 \Y5 = {1, 4, 10} and the
other one in I3\Y5 = {3, 6, 12}. Also, one of them is contained in J2\Y5 = {4, 6} and the
other one in J10 = {10, 12, 1, 3}. This impliesX\{0, 5} ∈

{
{4, 3}, {4, 12}, {6, 1}, {6, 10}

}
.

In each of these four cases, X is disjoint to one of the independent sets {6, 8, 10, 12},
{1, 3, 7, 10} and {2, 4, 8, 11}. This finishes the proof of r(G) ≥ 4.
In order to prove the statement on the minimum degree, note that by Lemma 15 (iii),

sH(v) ≤ 17dH(v)−25
2 . H contains no vertex of v degree less than 2, since in this case the

1The only argument missing for a proof that does not rely on Theorem 16 is given by Claim 6 in [35].
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4 Forbidden Cycles and the Independence Ratio

inequality yields sH(v) < 0. For a vertex of degree 2, we obtain sH(v) ≤ 4, so H is a
cycle, but cycles other than the triangle satisfy the conjecture.

Instead of proving Conjecture 1 in general, it may be easier to restrict it to graphs
of maximum degree at most four. Note that in this context, excisions never produce
difficult components.

Lemma 17. Let G be a minimum counterexample to Conjecture 1 with ∆(G) ≤ 4.

(i) Every vertex of degree 3 has at most two neighbours of degree 4.

(ii) Every C4 subgraph in G contains two adjacent vertices of degree 4.

(iii) If G contains an K2,3 subgraph H with partite sets {v1, v2} and {w1, w2, w3}, then
each vi has a fourth neighbour v′i such that v′1 and v′2 are adjacent vertices of degree
three, and exactly one element of {w1, w2, w3} has degree three.

Proof. (i) If dG(v) = 3 and sG(v) = 12, then removing NG[v] lowers the bounding
function by 4·7−12

16 = 1 and the independence number by at least 1, contradicting
the minimality of G.

(ii) Let C be such a cycle, and let v1v2v3v4 be its vertices. Suppose dG(v1) = dG(v3) =
3. If N(v1) 6= N(v3), then removing X := NG[v1] ∪ NG[v3] destroys six vertices
and at least 11 edges, so the bound drops by at most 7·6−11

16 ≤ 2, contradicting the
minimality of G. Otherwise, removing the same set destroys five vertices and at
least nine edges, so the bound drops by at most 7·5−9

16 ≤ 2, again a contradiction
to the minimality of G.

(iii) Since G is triangle-free, H is an induced subgraph.

It suffices to show that the removal of the vertex set X := NG[v1] ∪NG[v2] results
in a smaller counterexample. By an application of (ii) to the three C4 subgraphs of
H, we may assume that dG(v) = 4 for all vertices of H with the possible exception
of v1 and w1.

If dG(v1) = 3, then removing X destroys |X| = 6 vertices and sG(v2) ≥ 14 edges,
i.e. it lowers the bound by at most 7·6−14

16 ≤ 2, contradicting the minimality of G.
Suppose now dG(v1) = 4. If v1 and v2 have a common neighbour outside H, then
removing X destroys six vertices and sG(v2) ≥ 15 edges, a contradiction as above.
If v1 and v2 have two different neighbours v′1 resp. v′2, then removing X destroys

|X| = 7 vertices and sG(v1) + dG(v′2)− ε vertices, where ε =

{
1 , if v′1 ∈ NG(v′2)

0 , if v′1 6∈ NG(v′2)
.

Now sG(v1) + dG(v′2) ≥ 17 with equality only if dG(v′1) = dG(v′2) = dG(w1) = 3, so
unless equality holds and v′1 and v′2 are adjacent, removing X destroys at least 17
edges and therefore lowers the bound by at most 7·7−17

16 = 2.
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The best lower bound on the independence ratio of possibly disconnected triangle-
free graphs seems to be unknown for average degrees beyond four. It is natural to ask
whether the situation is similar to the case without odd girth restriction, i.e. whether
α(G∆-free, ·) continues to be piecewise-linear for large average degrees, and whether there
exists a graph X of average degree greater than four such that all disjoint unions of X
and Ci13[1, 5] minimise the independence ratio among all graphs with the same average
degree. A natural candidate for such a graph X is the unique sparsest instance among
the triangle-free graphs with α = 6 and maximum order, which contains 22 vertices and
60 edges. Denser graphs with even lower independence ratio include a graph or order 27
and size 85 with α = 7 and the graph Ci35[1, 7, 11, 16] with α = 8. The following bound
would be best possible for Ci13[1, 5] and R6:

Question 2. Do all triangle-free graphs G satisfy α(G)
n(G) ≥

84−5d(G)
208 ?

Unfortunately, a proof by simple reduction arguments as applied in this chapter ap-
pears to be very difficult for graphs with average degree greater than four.

4.2 Graphs with odd girth 7

It seems possible that a result similar to Theorem 17 holds for graphs of odd girth at
least 7.

Question 3. Does there exist a set H of 2-connected graphs such that

α(G) ≥ 1

9
(5n(G)−m(G)− λH(G))

for each graph G of odd girth at least 7?

The answer of this question is unknown even when restricted to the structurally sim-
pler class of subcubic graphs of girth 7. If it is positive, then H is a richer family of
difficult blocks than the family G1 used for Theorem 17: G1 can be constructed from
C5 by repeated application of an extension operation that turns a given difficult block
into a unique supergraph with three additional vertices, five additional edges and an
independence number that rises by one. Similarly, H contains graphs that can be con-
structed from C5 by repeated application of an extension operation that turns a given
difficult block into a supergraph with five additional vertices, seven additional edges and
an independence number that rises by two.
There are two circumstances that make the construction ofHmore difficult than that of
G1: First, the extension does not always yield a unique supergraph. C7 itself for example
allows the two extensions shown in Figure 4.5. While H12 and its extensions give rise to
a family of uniquely extendable blocks similar to the family G1 (see Figure 4.7), there are
several ways to extend F12 and its extensions. One choice of such extensions is shown in
Figure 4.6, but the general structure of these blocks has yet to be explored.
A second problem is that not all difficult blocks are extensions of C7 as above. There

are two cubic graphs of girth 7 and order 26 that must be contained in H because their
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Figure 4.5: The two H-difficult blocks F12 and H12.

Figure 4.6: First members of an infinite sequence of H-difficult blocks starting with C7

and F12.

Figure 4.7: First members of a second infinite sequence of H-difficult blocks starting with
C7 and H12.
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4.2 Graphs with odd girth 7

independence number is 10, but all extensions have an order of residue 2 modulo 5. One
of them is the graph which arises from the disjoint union of two cycles v0v1 . . . v12 and
w0w1 . . . w12 of order 13 by adding the edges {vi, w5i} for i ∈ {0, . . . , 12}. While all ele-

ments of G∞ satisfy α(G) =
n(G)−m(G)

5
2 and all extensions of C7 satisfy α(G) =

n(G)−m(G)
7

2 ,
these two graphs are more dense than all extensions of C7 and have independence number

smaller than n(G)−m(G)
7

2 , which may raise doubts that Question 3 has a positive answer.
Using a computer, we have verified Question 3 for small graphs with the result that

the answer is positive for all subcubic triangle-free graphs of order at most 23. If the
bound holds, then every connected subcubic graph G of odd girth at least 7 would have
an independent set of order at least (5n(G)−m(G)−1)/9. In particular, every connected
subcubic graph G of odd girth at least 7 would have an independent set of order at least
(7n(G)− 2)/18 which would be best-possible in view of the two cubic graphs of order 26
mentioned above.
We now give two theorems which give positive answers to restrictions of Question 3.
Let H0 = {C7, F12, H12}. From now on, we will write “difficult” for “H0-difficult” and

λ(G) for λH0(G). Note that the elements of H0 (and in fact all extensions of C7) satisfies
the hypotheses of Lemma 15: Removal of at most two vertices from an element of H0

does not reduce its independence number, i.e. r(H0) = 2, and all extensions of C7 satisfy
α(G) = 5n(G)−m(G)−1

9 .
The following two theorems show that the statement holds when restricted to graphs

in which high degree vertices are sparse as expressed by the conditions (?) and (??).

Theorem 18. If G is a graph of odd girth at least 7 such that

(?) every vertex of degree more than 2 in G has at most one neighbour of degree more
than 2,

then α(G) ≥ 5n(G)−m(G)−λ(G)
9 .

Theorem 19. If G is a subcubic graph of odd girth at least 7 such that

(??) for every pair of vertices u and v of degree 3 and at distance 3 in G, u or v has at
most one neighbour of degree 3,

then α(G) ≥ 5n(G)−m(G)−λ(G)
9 .

Note that if a graph satisfies (?), then it does not contain H12 as a subgraph. The
condition (?) is equivalent to requiring that the vertices of degree more than 2 induce a
subgraph of maximum degree at most 1. By Lemma 1 and Lemma 2, the problem to find
a maximum independent set remains APX-hard when restricted to the classes of graphs
considered in Theorem 18 and Theorem 19.
The proof of Theorem 19 is significantly more complicated than that of Theorem 18,

but relies on similar reduction techniques. Therefore, we give the proof of Theorem 18
here and refer the interested reader to [57] for a proof of Theorem 19.
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Proof of Theorem 18. Note that any induced subgraph H of G satisfies (?) with G re-
placed by H. In order to obtain a contradiction, we assume that G is a counterexample
to α(G) ≤ b(G) := 5n(G)−m(G)−λ(G)

9 of minimum order. By Lemma 15 (i), G is 2-edge- b(G)

connected and not difficult. In particular, the minimum degree of G is at least 2. Since it
is easy to verify r(H0) = 2, Lemma 15 (ii) implies that removal of a vertex set X which
induces a cut of size ϕ(X) creates at most ϕ(X)

3 difficult components.
Let v be a vertex of maximum degree in G, let NG(v) = {v1, v2, . . . , vk} for k := dG(v).

By (?), we may assume dG(vi) = 2 for all i < k. Since the bound holds for all cycles
other than C3 and C5, we have k ≥ 3. We claim that removing the vertex set X :=
NG[v1] ∪NG[v2] ∪ · · · ∪NG[vk−1] decreases the independence number by at least k − 1.
Note first that G[X] is a tree: It cannot contain a cycle of length at least six, since

the distance of any vertex to v is at most two, cycles of length three or five are forbidden
by the odd girth condition, so suppose that G[X] contains a C4. It contains the vertex
v, w.l.o.g. the vertices v1 and v2, and a common neighbour w of v1 and v2. Removing
Y := NG[v1] ∪ NG[v2] = {v, v1, w, v2} decreases the independence number by two, the
order by four and the size by 4 +ϕ(Y ), while creating at most ϕ(Y )

3 difficult components.
Therefore the bound decreases by at most

5 · 4− (4 + ϕ(X))− ϕ(Y )
3

9
<

5 · 4− 4

9
< 2,

contradicting the minimality of G and thus the assumption that G[X] contains a cycle.
Let G′ := G − X. The removal of X destroys |X| = 2k − 1 vertices and mX =

ϕ(X)+2(k−1) edges, where ϕ(X) ≥ k because all k elements of X \{v1, . . . , vk−1} have
at least one neighbour outside X. Altogether, the removal of X decreases the bound by
at most

b(G)− b(G′) ≤
5|X| −mX +

⌊
1
3ϕ(X)

⌋
9

=
5|X| − (mX − ϕ(X))−

⌈
2
3ϕ(X)

⌉
9

≤
5(2k − 1)− 2(k − 1)−

⌈
2ϕ(X)

3

⌉
9

=
8k −

⌈
2ϕ(X)

3

⌉
− 3

9
.

For k ≥ 4, we have
8k−

⌈
2ϕ(X)

3

⌉
−3

9 ≤ 8k− 2k
3
−3

9 ≤ k − 1, which contradicts the minimality
of G because α(G)− α(G′) ≥ k − 1.
Therefore, we may assume k = 3. If ϕ(X) > 3, then

b(G)− b(G′) ≤
8 · 3−

⌈
2ϕ(X)

3

⌉
− 3

9
=

24− 3− 3

9
= 2,

contradicting the minimality of G. Therefore, ϕ(X) = 3, i.e. the neighbours of v1 and v2

other than v have only degree two, and G′ is a difficult block by Lemma 15 (ii).
First, suppose G′ ' C7. In view of the freedom to choose v among the vertices of

degree 3, we may assume that every vertex of degree 3 has exactly one neighbour of
degree 3 and that there are no two vertices of degree 3 at distance 2 in G. Since G has
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odd girth at least 7, this implies that y′ and z′ are adjacent to adjacent vertices of G′

and that G is isomorphic to F12, which contradicts the fact that G is not difficult.
Finally, suppose G′ ' F12. By (?), all the vertices of degree 2 in G′ also have degree 2

in G. This implies that G has maximum degree at least 4, which is a contradiction.

4.3 Bipartite ratio

For a graph G, let αα(G) denote the maximum order of an induced bipartite subgraph αα(G)

graph of G, i.e. the maximum size of the union of two disjoint independent sets. Note
that this parameter is closely related to n(G)−αα(G), the minimum size of an odd cycle
transversal, i.e. of a vertex set that meets every odd cycle in G.
In [46], Lewis and Yannakakis show that it is NP-hard to determine the minimum

number of nodes that have to be deleted in order to obtain a graph that belongs to
some nontrivial hereditary class, which implies that it is NP-hard to find a minimum odd
cycle transversal or to determine αα(G). On the other hand, Reed, Smith and Vetta
show in [61] that the determination of this parameter is fixed-parameter-tractable: They
introduce a method called iterative compression and show that for any fixed value of k,
the inequality αα(G) ≥ k can be verified in O(mn). The running time of this verification
is improved to O(mα(m,n)), where α(m,n) denotes the inverse Ackermann function,
by Reed and Kawarabayashi in [40]. A linear time algorithm for the determination of
αα(G) on planar graphs is given by Fiorini et al. in [25].
In this section, we discuss best possible lower bounds for the bipartite ratio α(G)

n(G) for
graphs of given odd girth and given average degree. In analogy to the definition of the
asymptotic independence ratio, we define, for a class P of graphs, the asymptotic bipartite
ratio by αα(P, d)

αα(P, d) = lim
n→∞

(
inf

{
αα(G)

n(G)

∣∣∣∣ G ∈ P, d(G) ≤ d, n(G) ≥ n
})

.

Since α(G) ≤ αα(G) ≤ 2α(G) for any graph G, the results cited in the introduction
imply that the asymptotic bipartite ratio of arbitrary and connected graphs has the
order of magnitude Θ

(
1
d

)
, while the asymptotic bipartite ratio of the class of graphs

with godd = k is Θ
(

log d
d

)
for any fixed odd integer k > 3.

In [80], Zhu gives a comprehensive answer to the question of best lower bounds for the
bipartite ratio of subcubic triangle-free graphs. It implies that every connected subcubic
triangle-free graph satisfies

αα(G) =
2

7
(4n(G)−m(G)− 1) (4.7)

and all instances with αα(G) < 2
7 (4n(G)−m(G)) can be constructed from the disjoint

union of elements of a set of ten graphs by adding bridges. These ten graphs allow to
determine the asymptotic bipartite ratio of arbitrary and connected subcubic triangle-free
graphs.
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4 Forbidden Cycles and the Independence Ratio

4.3.1 Odd girth 3

Proposition 1. For every t ∈ N \ {1, 2} and every graph G, αα(G)
n(G) ≥ bt(d(G)) with

bt(d) = 4t−2d
t(t+1) .

Proof. For a contradiction, suppose that t is minimal such that the bound αα(G) ≥
n(G)bt(d(G)) does not hold, and G is a vertex-minimal counterexample. Then ∆(G) < t,
since a graph G′ that arises by removing a vertex of degree at least t satisfies αα(G′) ≤
αα(G) and n(G′)bt(G

′) ≥ n(G)bt(G), a contradiction to the minimality of G. Similarly
δ(G) ≥ 2, since removing a vertex of degree at most 1 decreases αα by exactly one and
bt by at most 1.
For t = 3 this implies that G is 2-regular, i.e. a disjoint union of cycles. Since every

cycle C contains an induced bipartite subgraph of order at least n(C)− 1, and its length
is at least 3, this implies αα(C) ≥ 2

3n(C) = n(C) ·b3(2), i.e. cycles and thus their disjoint
unions are no counterexamples.
For t > 3 note that αα(G) < n(G)bt(d(G)) and αα(G) ≥ n(G)bt−1(d(G)) implies

bt(d(G)) > bt−1(d(G)), which is equivalent to d(G) > t − 1. Therefore, G contains a
vertex of degree at least t, which contradicts the initial observation ∆(G) < t.

Since α(G) ≥ αα(G)
2 for all graphs G, Proposition 1 generalises Corollary 3 for d ≥ 2.

It allows to determine the asymptotic bipartite ratio of arbitrary graphs (see Figure 4.8):

Corollary 6.

αα(G, d) =

{
1− d

6 d ≤ 3
4bd+1c−2d
bd+1cbd+2c d ≥ 2

Proof. In both cases, the given value coincides with n(G) mint∈N\{1,2} bt(d) on the inter-
vals [0, 3] resp. [2,∞), so by Proposition 1 it suffices to show that there are tight exam-
ples for all rational average degrees. Indeed, for each t ∈ N \ {1, 2}, the bound αα(G) =
n(G)bt(d(G)) holds for disjoint unions of Kt and Kt+1, and αα(G) = n(G)b3(d(G)) is
satisfied by disjoint unions of K1, K3 and K4.

By a similar argument, we obtain a slightly stronger statement which generalises the
bound (4.1) of Caro and Wei for graphs without isolated vertices:

Proposition 2. Every graph G satisfies αα(G) ≥
∑

v∈V (G)
2

max{1,dG(v)}+1 .

Proof. Suppose G is a counterexample of minimum order. If G contains a vertex of degree
at most one, then removing this vertex decreases αα by exactly one and the bound by at
most one, so it yields a smaller counterexample. Therefore, δ(G) ≥ 2. Let v be a vertex
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αα(G, d)

d1 2 3 4 5 6

1

2/4

2/5

2/6
2/7

Figure 4.8: Asymptotic bipartite ratio of arbitrary graphs

of maximum degree and let G′ = G− v. Then δ(G′) ≥ 1, and thus

αα(G′) = αα(G)− 2

dG(v) + 1
+

∑
w∈NG(v)

(
2

dG(w)
− 2

dG(w) + 1

)
= αα(G)− 2

dG(v) + 1
+

∑
w∈NG(v)

2

dG(w)(dG(w) + 1)

≥ αα(G)− 2

dG(v) + 1
+ |NG(v)| 2

dG(v)(dG(v) + 1)
= αα(G),

a contradiction to the minimality of G.

Connected graphs The bound αα(G) ≥ 2n(G) − m(G) − 1 holds for all connected
graphs because it is satisfied with equality by trees and remains true whenever an edge is
added. For odd values of g, tight instances of odd girth g include the connected graphs
that arise from disjoint unions of Cg by adding bridges.
Let Gc(g) be the class of connected graphs of odd girth at least g. The above observation Gc(g)

determines the asymptotic bipartite ratio of this class for low average degrees:

Proposition 3. ∀d ∈ [2, 2 + 2
g ] : αα(Gc(g), d) = 2− d

2 .

This agrees with the following natural metaconjecture.

Conjecture 2. αα(Gc(g), d) = 2α(Gc(g), d) for all d ≥ 2.

For larger average degrees, it is still open if the bound implied by Conjecture 2 and
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4 Forbidden Cycles and the Independence Ratio

Corollary 4 holds. In Theorem 4 of [48]2, we show that for graphs G with d(G) ≥
2 + 2

godd(G) ,

αα(G) ≥ (3godd(G)− 1)n(G)− godd(G)(m(G) + 1)

2godd(G)
,

which implies the following lower bound.

Corollary 7. ∀d ≥ 2 + 2
g : αα(Gc(g), d) ≥ (6−d) g−2

4g .

4.3.2 Triangle-free graphs

No connectivity restriction

The exact value of αα(G∆-free, d) is still unknown for any positive value of d. It seems
natural to conjecture that αα(G∆-free, d) = 2α(G∆-free, d) for sufficiently high values of d
(since disjoint unions of C5 and K1 of degree d ∈ (0, 2) satisfy αα(G) < 2α(G∆-free, d),
this does not hold for d < 2). This leads to the conjecture

Conjecture 3. For all triangle-free graphs G, αα(G) ≥ b1(G) := n(G)− m(G)
5 .

If this bound holds, then tight examples includes the set G1 of all difficult blocks used
in Theorem 17 and the set X defined in Section 4.1.2, the Petersen graph X4 (cf. Figure
4.10) and the graphs D1, D2, D3 in Figure 4.9.

x1

x2

x3

x4

x5

x6

x7

x8

D1

x1

x2

x3
x4

x5

x6

x7

x8
x9

x10

x11

D2

x1

x2

x3
x4x5

x6

x7

x8

x9

x10
x11 x12

x13

x14

D3

Figure 4.9: Some tight examples for Conjecture 3

Conjecture 4. If G is a connected graph with n(G) > 1 and αα(G) = n(G) − m(G)
5 ,

then
G ∈ G1 ∪ X ∪ {X4, D1, D2, D3} .

The following Lemma restricts the class of possible counterexamples:
2The precise statement is slightly stronger: The bound given in the paper is

αα(G) ≥
⌈
(godd(G)− 1)n(G)

godd(G)

⌉
− 1

2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1

))
.
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Lemma 18. Any vertex-minimal counterexample G to Conjecture 3 satisfies δ(G) ≥ 3
and ∆(G) = 4.

Proof. Since Theorem 2.1 in [80] implies that Conjectures 3 and 4 hold for subcubic
graphs, it suffices to show that every vertex v ∈ V (G) has degree three or four. Let
G′ = G − v. If dG(v) ≥ 5, then αα(G′) ≤ αα(G) < b1(G) ≤ b1(G′). If dG(v) ≤ 1, then
αα(G′) = αα(G)− 1 < b1(G)− 1 ≤ b1(G′). In both cases, we obtain a contradiction to
the minimality of G, so we may assume that G is a connected graph with δ(G) ≥ 2 and
∆(G) = 4. Let v be a vertex of degree two such that NG(v) = {u,w} with dG(w) > 2.

Claim 1 dG(u) = dG(w) = 3
Indeed, if dG(u) = 2, then let G′ = G−NG[v]. Now n(G)−n(G′) = 3, m(G)−m(G′) =

dG(w) + 2 and αα(G′) ≤ αα(G)− 2 because for every set S ⊆ V (G′) such that G′[S] is
bipartite, G[S ∪ {v, u}] is bipartite. Hence

αα(G′) ≤ αα(G)− 2 < b1(G)− 2 = b1(G′) +

(
3− dG(w)

5

)
− 2 ≤ b1(G′).

If u or w has degree four, w.l.o.g. dG(w) = 4, then let G′ = G − {v, w}. Now n(G) −
n(G′) = 2, m(G) −m(G′) = 5 and αα(G′) ≤ αα(G) − 1 because for every S ⊆ V (G′)
such that G′[S] is bipartite, G[S ∪ {v}] is bipartite. Hence

αα(G′) ≤ αα(G)− 1 < b1(G)− 1 = b1(G′) + (2− 1)− 1 = b1(G′),

again contradicting the minimality of G.

Claim 2 No vertex x with distG(v, x) = 2 has degree two.
Suppose x ∈ NG(u) and dG(x) = 2. Let G′ = G− {v, u, x}. Then n(G)− n(G′) = 3,

m(G) − m(G′) = 5 and αα(G) − αα(G′) ≥ 2 because for every S ⊆ V (G′) such that
G′[S] is bipartite, G[S ∪ {v, x}] is bipartite. Hence we obtain the contradiction

αα(G′) ≤ αα(G)− 2 < b1(G)− 2 = b1(G′) +

(
3− 5

5

)
− 2 = b1(G′).

Claim 3 v is not contained in a 4-cycle.
Suppose u and w have more than one common neighbour. We may assume NG(u) =
{v, x, u′} and NG(w) = {v, x, w′} for vertices x, u′ and w′ with x 6∈ {u′, w′}. Let
G′ = {v, u, w, x}. Then n(G) − n(G′) = 4 and m(G) − m(G′) = dG(x) + 4 > 5,
so b1(G) − b1(G′) < 4 − 5

5 = 3. Since G is no minimal counterexample, this implies
αα(G)− αα(G′) ≤ 2. This implies that for every maximum subset S ⊆ V (G′) such that
G′[S] is bipartite and every set X ⊂ V (G) \ V (G′) of cardinality three, G[S ∪X] is not
bipartite. For X = {u, v, w} this implies that G′[S] contains neighbours of u and w in
different colour classes, i.e. u′ and w′ are contained in opposite partite sets of G′[S]. For
X = {v, u, x} this implies that x has a neighbour in the partite set of G′[S] containing
u′, and for X = {v, w, x} it shows that x has a neighbour in the partite set of G′[S]
containing w′. We conclude that dG(x) = 4.
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Let G′′ = G−{v, u, w, x, u′}. Then n(G)−n(G′′) = 5,m(G)−m(G′) = 7+dG(u′) ≥ 10,
and for every set S ⊆ V (G′) such that G′[S] is bipartite, G[S ∪ {u, v, w}] is bipartite, so
αα(G) ≥ αα(G′′) + 3. This leads to the contradiction

αα(G′) ≤ αα(G)− 3 < b1(G)− 3 ≤ b1(G′) +

(
5− 10

5

)
− 3 = b1(G′′)

and concludes the proof of Claim 3.

By Claim 3, we may assume NG(u) = {v, u1, u2}. Let G′ = G−{v, u, w, u1, u2}. Then
n(G)−n(G′) = 5, m(G)−m(G′) = 4 + dG(u1) + dG(u2) ≥ 10, and αα(G)−αα(G′) ≥ 3
because for every set S ⊆ V (G′) such that G′[S] is bipartite, G[S ∪ NG[v]] is bipartite.
This implies the contradiction

αα(G′) ≤ α(G)− 3 < b1(G)− 3 ≤ b1(G′) +

(
5− 10

5

)
− 3 = b1(G′),

which concludes the proof.

Note that under the assumption that Conjecture 3 holds, the argument of the proof
implies that every graph G of minimum degree 2 with αα(G) = n(G) − m(G)

5 contains
a proper induced subgraph of order at least n(G)− 5 that satisfies the same inequality.
Therefore, a computer search shows that the list of graphs in Conjecture 4 does not miss
any graph with minimum degree 2, if Conjecture 3 holds.
It seems natural to ask whether αα(G) ≥ n(G)− m(G)

godd(G) holds for graphs of arbitrary

odd girth, which would agree with the bound αα(G) ≥ n(G) − m(G)
3 in Proposition 1,

Conjecture 3 and the fact that bipartite graphs satisfy αα(G) = n(G). However, the
answer is negative, since the two cubic graphs of order 26 and girth 7 mentioned as tight
examples to 3, satisfy αα(G) = 20 < 20 + 3

7 = n(G)− m(G)
7 .

Connected graphs

The asymptotic bipartite ratio of connected triangle-free graphs up to an average degree
of 12

5 is given by Corollary 3. Conjecture 2 suggests that this value can be obtained for
average degrees in the interval

[
12
5 ,

10
3

]
by doubling the bound of Theorem 17. Here, we

conjecture the statement of such a possible generalisation, but its validity remains open.

Conjecture 5. Let G be a triangle-free graph and let G′ be the graph that arises from G

by removing all bridges. Then αα(G) ≥ b2(G) := 8n(G)−2m(G′)−λ1(G′)−2λ2(G′)
7 , where λi

counts the number of components that are contained in some class Li to be defined below.

The removal of bridges and the distinction between G and G′ are a slight strengthening
of the statement, which is possible because bridges have no influence on the parameter
αα. We call the elements of the sets Li difficult blocks, specifically those of L1 weakly
difficult and those of L2 strongly difficult.
The class L2 should contain the class G1 of the difficult blocks used in Theorem 17,

since ∀k ≥ 2: αα(Gk) = 2α(Gk). We defineL2
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L2 := G1 ∪ {X1, X2, X3},

where the additional elements are drawn in Figure 4.9.
Most elements of L1 can be obtained from an element of L2 by a simple operation: For

a graph G, let f(G) be the set of isomorphism classes of 2-connected graphs G′(u, v, y) f(G)

that can be constructed from G as follows: Let {u, v} ∈ E(G), and let y ∈ NG(v) \ {u}
be a vertex that is contained in every maximum induced bipartite subgraph of G−{u, v}.
ThenG′(u, v, y) is the graph obtained fromG by removing {u, v} and adding a new vertex
x with NG(x) = {u, y}. The following Lemma quantifies how this operation “reduces the
difficulty” of a strongly difficult block:

Lemma 19. Let G be a graph that is edge-minimal with respect to αα, i.e. satisfies
αα(G − e) > αα(G) for each e ∈ E(G). Then all graphs G′ ∈ f(G) are bridgeless and
satisfy αα(G′) = αα(G) + 1, n(G′) = n(G) + 1 and m(G′) = m(G) + 1.

Proof. Since G is edge-minimal, it is bridgeless, and so is G′. The statements on order
and size are obvious from the construction. It remains to show that the graph G′ that is
obtained from G by removing the edge {u, v} and adding a vertex x with NG(x) = {u, y}
satisfies αα(G′) = αα(G) + 1.
By the edge-minimality of G, αα(G − {u, v}) = αα(G) + 1, and both u and v are

contained in the same partite set of every maximum induced bipartite subgraph of G.
By assumption, y is also contained in every such subgraph, but since it is adjacent to
v, it belongs to the opposite partite set. Therefore, x has neighbours in both partite
sets of every maximum induced bipartite subgraph of G, and αα(G′) = αα(G′ − x) =
αα(G− {u, v}).

It turns out that f(G2) = f(X1) = ∅, and ∀G ∈ L2 \ {G2, X1} : |f(G)| = 1. Since all
elements of L2 are edge-minimal with respect to αα, the class L1 should contain f(L2).
We define L1

L1 := f(L2) ∪ {K1, X4, X5},

where the graphs X4 and X5 are given in Figure 4.10.

X4 X5

Figure 4.10: Two weakly difficult graphs
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