
Tight Bounds for Chordal/Interval Vertex Deletion
Parameterized by Treewidth
Michał Włodarczyk #

Ben-Gurion University, Beer Sheva, Israel

Abstract
In Chordal/Interval Vertex Deletion we ask how many vertices one needs to remove from
a graph to make it chordal (respectively: interval). We study these problems under the parameteri-
zation by treewidth tw of the input graph G. On the one hand, we present an algorithm for
Chordal Vertex Deletion with running time 2O(tw) · |V (G)|, improving upon the running time
2O(tw2) ·|V (G)|O(1) by Jansen, de Kroon, and Włodarczyk (STOC’21). When a tree decomposition of
width tw is given, then the base of the exponent equals 2ω−1 ·3+1. Our algorithm is based on a novel
link between chordal graphs and graphic matroids, which allows us to employ the framework of repre-
sentative families. On the other hand, we prove that the known 2O(tw log tw) · |V (G)|-time algorithm
for Interval Vertex Deletion cannot be improved assuming Exponential Time Hypothesis.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases fixed-parameter tractability, treewidth, chordal graphs, interval graphs,
matroids, representative families

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.106

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03440

Funding Supported by the European Research Council (ERC) grant titled PARAPATH. Part of the
work has been carried out when the author was a postdoctorate student at the Eindhoven University
of Technology.

1 Introduction

Treewidth [32, §7] is arguably the most extensively studied width measure in the graph theory.
Simply speaking, treewidth measures to what extent a graph is similar to a tree, where
trees and forests are exactly the graphs of treewidth 1. It plays a crucial role in Robertson
and Seymour’s Graph Minors series [62]. The usefulness of treewidth stems from the fact
that a broad class of problems can be solved in linear time on graphs of bounded treewidth.
The celebrated Courcelle’s Theorem [30] states that any graph problem expressible in the
Counting Monadic Second Order Logic (CMSO) can be solved in time f(tw) · |V (G)|, where
tw denotes the treewidth of graph G and f is some computable function. In other words,
every such problem is fixed-parameter tractable (FPT) when parameterized by treewidth.
Furthermore, bounded-treewidth graphs appear in a wide variety of contexts, which makes
treewidth-based algorithms a ubiquitous tool in algorithm design [36, 47, 56, 57, 61]. The
function f from Courcelle’s Theorem may grow very rapidly and a large body of research
has been devoted to optimize the dependency on tw for particular problems. In the ideal
scenario, we would like the function f to be single-exponential, i.e., f(tw) = 2O(tw), while
possibly allowing a higher (yet constant) exponent at |V (G)|. This is often the best we can
hope for because sub-exponential running times usually contradict the Exponential Time
Hypothesis1 (ETH) [42].

1 The Exponential Time Hypothesis states that there exists a constant δ > 0 so that 3-SAT cannot be
solved in time O(2δn) on n-variable formulas.

EA
T
C
S

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 106; pp. 106:1–106:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.wloda@gmail.com
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ICALP.2023.106
https://arxiv.org/abs/2305.03440
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

106:2 Tight Bounds for Chordal/Interval Vertex Deletion

While the standard dynamic programming technique yields single-exponential algorithms
for problems with “local constraints”, such as Vertex Cover, Dominating Set, or
Bipartization, it falls short for problems with “connectivity constraints”, such as Feedback
Vertex Set, Hamiltonian Cycle, or Connected Vertex Cover, leading to parameter
dependency f(tw) = 2O(tw log tw). On the one hand, this issue was dealt with in the
landmark work of Cygan et al. [35], who introduced the Cut & Count technique and
obtained randomized single-exponential algorithms for the problems above, among others
(see also [59]). In following works, Bodlaender et al. [19] and Fomin et al. [38] presented
alternative techniques that allow to circumvent randomization: matrix-based approaches
and representative families. On the other hand, Lokshtanov et al. [54] provided a framework
for proving “slightly super-exponential” lower bounds under ETH, which paved the way for
establishing tight lower bounds for problems that require dependency f(tw) = 2O(tw log tw).
In the same work, they obtained such bounds for Disjoint Paths and Chromatic Number.
For problems with a single-exponential dependency f(tw) = O(ctw), further research has
been devoted to establish the optimal base of the exponent c [31, 33, 35, 53, 67].

Vertex-deletion problems. Many optimization graph problems can be phrased in terms
of H-Vertex Deletion: remove the smallest number of vertices from a graph so that the
resulting graph belongs to the graph class H. For example, Vertex Cover corresponds to
the class H of edge-less graphs. There is a diverse complexity landscape of ETH-tight running
times for various vertex-deletion problems under treewidth parameterization. The classes
H for which tight bounds have been established include: edge-less graphs [53], forests [35]
(see also [15]), planar graphs [47, 58], classes defined by a connected forbidden minor [9] (see
also [10, 11, 12]), bipartite graphs [53], DAGs [22], even-cycle-free graphs [15, 44], and some
classes defined by a forbidden (induced) subgraph [34, 65].

We extend this list by studying the vertex-deletion problems into the classes of chordal
and interval graphs. A graph is chordal if it does not contain an induced cycle of length at
least 4 (a hole) and a graph is interval if it is an intersection graph of intervals on the real
line. Any interval graph is chordal and any chordal graph is perfect. Applications of these
two graph classes have been long studied in miscellaneous areas of discrete optimization [8,
14, 25, 50, 60, 63]. On the theoretical side, the treewidth (resp. pathwidth) of a graph G

equals the minimum clique number of a chordal (resp. interval) supergraph of G [32, 52].
Moreover, some hard problems become tractable on chordal or interval graphs (or even on
graphs with small vertex-deletion distance to chordality) [26, 43, 49].

Our results. The state of the art for Chordal Vertex Deletion (ChVD) is the running
time 2O(tw2)nO(1), which follows from a more general result for a hybrid graph measure
H-treewidth, where H = chordal [45]. We improve the dependency on treewidth to single-
exponential.

▶ Theorem 1.1. Chordal Vertex Deletion can be solved in deterministic time
O(ckkω+1n) on n-vertex node-weighted graphs when a tree decomposition of width k is
provided. The constant c equals 2ω−1 · 3 + 1.

Here, ω < 2.373 stands for the matrix multiplication exponent [7]. To prove Theorem 1.1
we establish a new link between chordal graphs and graphic matroids, which allows us
to exploit the framework of representative families [37, 38]. ChVD is at least as hard
as Feedback Vertex Set, what implies barriers for a significant improvement in the
constant c (see Lemma 4.1 and the discussion therein). Thanks to a single-exponential
constant-factor FPT approximation for treewidth [20], Theorem 1.1 gives running time
2O(tw)n even when no tree decomposition is provided in the input.

M. Włodarczyk 106:3

The best known running time for Interval Vertex Deletion is 2O(tw log tw)n [64].
(While this algorithm has been described for the edge-deletion variant, we briefly explain in
the full version of the article how it can be adapted for vertex deletion.) We show that, unlike
the chordal case, this running time is optimal under ETH. This gives a sharp separation
between the two studied problems.

▶ Theorem 1.2. Under the assumption of ETH, Interval Vertex Deletion cannot be
solved in time 2o(tw log tw)nO(1) on n-vertex unweighted graphs of treewidth tw.

In fact, we show a stronger lower bound that rules out the same running time with respect
to a different graph parameter, called treedepth, which is never smaller than treewidth.
Our lower bound is obtained via a reduction from k × k Permutation Clique [54], which
produces an instance of size 2O(k) and treedepth O(k).

Related work. The two considered H-Vertex Deletion problems have been studied
in several contexts. Both problems are FPT parameterized by the solution size k, with
the best-known running times O(8k(n + m)) for H = interval [27] and 2O(k log k)nO(1)

for H = chordal [28] (but the problem becomes W[2]-hard for H = perfect [41]).
There are polynomial-time approximation algorithms with approximation factor 8 for
H = interval [27] and kO(1) for H = chordal [48]. Observe that, in these two regimes,
vertex deletion into chordal graphs seems harder than into interval graphs (although no
lower bounds are known to justify such a separation formally); this contrasts our results with
respect to the treewidth parameterization.

Both studied problems admit exact exponential algorithms with running times of the
form O((2 − ε)n) [18] as well as polynomial kernelizations [3, 4, 48]. The obstructions to
being chordal (resp. interval) enjoy the Erdős-Pósa property: any graph G either contains k

vertex-disjoint subgraphs which are not chordal (resp. not interval) or a vertex set X of size
O(k2 log k) such that G − X is chordal [51] (resp. interval [2]). Vertex deletion into other
subclasses of perfect graphs has been studied as well [1, 5, 6, 68]. For other modification
variants, where instead of vertex deletions one considers removals, insertions, or contractions
of edges, see, e.g., [17, 26, 27, 28, 39, 55, 70].

The concept of representative families, which plays an important role in our algorithm for
ChVD, has found applications outside the context of treewidth as well [66, 71]. Our other
tool, boundaried graphs, has revealed fruitful insights for various graph classes [9, 21, 45].

Organization of the paper. We begin by describing our technical contributions informally
in Section 2. We provide basic preliminaries in Section 3, while the extended preliminaries
including tree decompositions and representative families can be found in the full version
of the article. Section 4 is devoted to establishing a connection between chordal graphs
and graphic matroids. The description of the dynamic programming algorithm over a tree
decomposition follows standard conventions and is provided in the full version. In Section 5
we prove our lower bound for Interval Vertex Deletion. We conclude in Section 6. The
proofs of statements indicated with (⋆) are postponed to the full version. The numbering of
statements is adjusted to match in both versions.

2 Techniques

Chordal Vertex Deletion. The standard approach to design algorithms over a bounded-
width tree decomposition is to assign a data structure to each node t in the decomposition,
which stores information about partial solutions for the subgraph associated with the subtree
of t. Suppose that X ⊆ V (G) is a bag of t, A ⊆ V (G)\X denote the set of vertices appearing

ICALP 2023

106:4 Tight Bounds for Chordal/Interval Vertex Deletion

in the bags of the descendants of t (but not in X), and B ⊆ V (G) is the set of remaining
vertices. We say that a subset S ⊆ V (G) is a solution if G[S] is chordal; we want to maximize
the size of S. Next, a pair (SA ⊆ A, SX ⊆ X) is a partial solution if G[SA ∪ SX] is chordal.
A set SB ⊆ B is an extension of a partial solution (SA, SX) if SA ∪ SX ∪ SB is a solution.
Since X separates SA from SB, the graph G[SA ∪ SX ∪ SB] can be regarded as a result of
gluing G[SA ∪ SX] with G[SB ∪ SX] alongside the boundary SX . For a node t and SX ⊆ X,
we want to store a family of partial solutions Gt,SX

so that for every possible SB ⊆ B: if
SB is an extension for some partial solution (SA, SX), then there exists a partial solution
(S′

A, SX) ∈ Gt,SX
for which (a) SB is still a valid extension, and (b) S′

A is at least as large as
SA. We say that such a family satisfies the correctness invariant for (t, SX).

Jansen et al. [45] showed that any chordal graph H with a boundary of size k can be
condensed to a graph H ′ on O(k) vertices that exhibits the same behavior in terms of gluing.
More precisely, the gluing product of H with any graph J is chordal if and only if the gluing
product of H ′ with J is chordal. Since there are 2O(tw2) graphs on O(tw) vertices and 2O(tw)

choices for the boundary SX , it suffices to store only 2O(tw2) partial solutions.
We take this idea one step further and show that it is actually sufficient to store only

2O(tw) partial solutions. To this end, we investigate the properties of the class of chordal
graphs with respect to the gluing operation and prove a homomorphism theorem relating
it to graphic matroids. A graphic matroid of a graph J is a set system I over E(J) where
a subset S ⊆ E(J) belongs to I (and is called independent) when S contains no cycles.
A rank of a matroid is the largest size of an independent set; here this coincides with the
size of any spanning forest in J . In the following statement, GX,B is a family of graphs
H that satisfy (a) V (H) ⊇ X and (b) H[X] = B. For graphs H1, H2 ∈ GX,B we assume
that V (H1) ∩ V (H2) = X and define their gluing product as H3 = (H1, X) ⊕ (H2, X) where
V (H3) = V (H1) ∪ V (H2) and E(H3) = E(H1) ∪ E(H2).

▶ Theorem 2.1. Consider a family of graphs GX,B for some pair (X, B). There exists
a graphic matroid M = (E, I) of rank at most |X|−1 and a polynomial-time computable map-
ping σ : GX,B → 2E such that (H1, X) ⊕ (H2, X) is chordal if and only if σ(H1) ∩ σ(H2) = ∅
and σ(H1) ∪ σ(H2) ∈ I.

With this criterion at hand, we can employ the machinery of representative families to
truncate the number of partial solutions to be stored for a node of a tree decomposition.
Technical details aside, for a family S of independent sets in a matroid M = (E, I), a subfamily
Ŝ ⊆ S is called representative for S if for every independent set Y in M : if there exists X ∈ S
so that X ∩Y = ∅ and X ∪Y ∈ I, then there exists X̂ ∈ Ŝ so that X̂ ∩Y = ∅ and X̂ ∪Y ∈ I.
Fomin et al. [38] showed that for any family S in a graphic matroid (more generally, in a
linear matroid) of rank k there exists a representative family of size at most 2k and it can be
constructed in time 2O(k). We use Theorem 2.1 to translate this result into the language
of chordal graphs and gluing. When Gt,SX

is a family of partial solutions that satisfies the
correctness invariant for (t, SX), a representative family for σ(Gt,SX

) in the related graphic
matroid M corresponds to a subfamily Ĝt,SX

⊆ Gt,SX
that satisfies condition (a) of the

correctness invariant and |Ĝt,SX
| ≤ 2tw. In order to satisfy condition (b), we need to assign

weights to the elements of the matroid M , encoding the size of the largest partial solution
mapped to each element. We can then utilize the weighted variant of representative families,
which preserves the largest-weight elements [38]. By storing only the condensed forms of the
partial solutions (having O(tw) vertices), we also achieve a linear dependency on |V (G)|.

In order to prove Theorem 2.1, we give a novel criterion for testing chordality of a gluing
product. When G originates from gluing two chordal graphs G1, G2 alongside boundary
X, then any hole in G must visit both V (G1) \ X and V (G2) \ X, so it must traverse X

multiple times. We show that if a hole H intersects at least two connected components of

M. Włodarczyk 106:5

G[X], then it corresponds to a cycle in the graph obtained from G by contracting each of
the connected components of G[X], G1 − X, G2 − X into single vertices. Otherwise, let
C be the unique connected component of G[X] that is intersected by the hole. We prove
that there exists a vertex set S ⊆ V (C) that is disjoint from V (H) and C − S has two
connected components C1, C2 satisfying NC(C1) = NC(C2) = S (below we refer to such
components as relevant) and having non-empty intersections with V (H). Moreover, every
vertex from V (H) ∩ C belongs to some relevant component. Consider a graph Aux(G, X, S)
obtained from G by (1) removing the connected components of G[X] different than C, (2)
contracting relevant components of C − S into single vertices while removing the irrelevant
ones, and (3) contracting the components of G1 − X, G2 − X into single vertices. A detailed
construction is given in Definition 4.10; see also Figure 1 on page 9. Then the hole H

corresponds to a cycle in Aux(G, X, S). The first scenario can be analyzed with this approach
as well, by taking S = ∅. We prove that considering all minimal vertex separators S in G[X]
and checking acyclity of each auxiliary graph Aux(G, X, S) yields a necessary and sufficient
condition for G to be chordal.

This criterion allows us to construct a graphic matroid encoding all the information about
each of the graphs G1, G2 necessary to reconstruct the graphs Aux(G, X, S) and to determine
whether G is chordal. In order to bound the rank of this matroid, we investigate the structure
of minimal vertex separators in a chordal graph and bound the size of a spanning forest in
a certain graph obtained from the union of Aux(G, X, S). A criterion of a similar kind is
known for testing planarity of a gluing product of planar graphs when the boundary has
a Hamiltonian cycle; then the corresponding auxiliary graph (defined in a different way)
should be bipartite [13]. Our criterion can be also compared to the one used by Bonnet et
al. [23] for analyzing gluing products with respect to certain subclasses of chordal graphs.
We elaborate more on their approach in the full version of the paper.

Interval Vertex Deletion. In order to prove Theorem 1.2 we present a parameterized
reduction from k × k Permutation Clique. Here, the input is a graph G on ver-
tex set [k] × [k], and we ask whether there exists a permutation π : [k] → [k] such that
(1, π(1)), (2, π(2)), . . . , (k, π(k)) forms a clique in G. Lokshtanov et al. [54] proved that k × k

Permutation Clique cannot be solved in time 2o(k log k) under ETH. So we seek a reduction
from k × k Permutation Clique to Interval Vertex Deletion that produces a graph
of treewidth O(k).

Imagine an interval model of a complete graph Y on vertex set [k] in which all the right
endpoints of the intervals coincide and all the left endpoints are distinct. Choosing the
order of the left endpoints encodes some permutation π : [k] → [k] (see Figure 2 on page
13). We can extend this interval model by inserting a new vertex v only if N(v) corresponds
to a set of intervals intersecting at a single point. This is possible only when N(v) = π([ℓ])
for some ℓ ∈ [k]. Furthermore, inserting to Y independent vertices v1, v2, . . . , vk, such that
|N(vi)| = i and N(vi) ⊂ N(vi+1), enforces the choice of permutation π. We can thus encode
a permutation π by an ascending family of sets N1 ⊂ N2 ⊂ · · · ⊂ Nk = [k], satisfying
Ni = π([i]), which correspond to the neighborhoods of v1, v2, . . . , vk in Y . On the other
hand, any ascending family of sets for which the construction above gives an interval graph,
must encode some permutation. On an intuitive level, a partial interval model of a size-k
separator can encode one of k! permutations.

We need a mechanism to verify that a chosen permutation π encodes a clique, i.e., that it
satisfies

(
k
2
)

constraints of the form (i, π(i))(j, π(j)) ∈ E(G). To implement a single constraint,
we construct a choice gadget, inspired by the reduction to Planar Vertex Deletion [58].
Such a gadget Ci,j is defined as a path-like structure, divided into blocks, so that each
block has some special vertices adjacent to Y (see Figure 3 on page 14). We show that

ICALP 2023

106:6 Tight Bounds for Chordal/Interval Vertex Deletion

any minimum-size interval deletion set in Ci,j must “choose” one block and leave its special
vertices untouched while it can remove the remaining special vertices. We use this gadget
to check if a permutation π encoded by an ascending family of sets N1 ⊂ N2 ⊂ · · · ⊂ Nk

satisfies the constraint (i, π(i))(j, π(j)) ∈ E(G). As π(i) is the only element in Ni \ Ni−1,
this information can be extracted from the tuple (Ni−1, Ni, Nj−1, Nj). We create a single
block in Ci,j for each valid tuple. Since the number of such tuples is 2O(k), we need a choice
gadget of exponential length, unlike the mentioned reduction which works in polynomial
time. However, producing an instance of size 2O(k) and treewidth O(k) is still sufficient to
achieve the claimed lower bound.

3 Preliminaries

We write [k] = {1, 2, . . . , k} and assume that [0] = ∅. We abbreviate X \ v = X \ {v}. For
a function w : X → N and S ⊆ X we use shorthand w(S) =

∑
x∈S w(x). We follow the

standard notational conventions for graphs, which are omitted from this extended abstract.

Separators. For vertices u, v ∈ V (G) a vertex set S ⊆ V (G) \ {u, v} is called a (u, v)-
separator if u, v belong to different connected components of G − S. A (u, v)-separator is
minimal when no proper subset of it is a (u, v)-separator. A vertex set S is called a minimal
vertex separator if S is a minimal (u, v)-separator for some u, v ∈ V (G).

▶ Lemma 3.1 (⋆). Let u, v be vertices in a graph G and S be a (u, v)-separator in G. Denote
by Cu, Cv the connected components of G − S that contain respectively u and v. Then S is
minimal if and only if NG(Cu) = NG(Cv) = S.

A vertex (or a vertex set) is called simplicial if its open neighborhood is a clique.

▶ Lemma 3.2 (⋆). Let S be a minimal vertex separator in a graph G. Then S does not
contain any simplicial vertices.

Chordal and interval graphs. An interval graph is an intersection graph of intervals on the
real line. In an interval model IG = {I(v) | v ∈ V (G)} of a graph G, each vertex v ∈ V (G)
corresponds to a closed interval I(v); there is an edge between vertices u and v if and only
if I(v) ∩ I(u) ̸= ∅.

A hole in a graph is an induced (i.e., chordless) cycle of length at least four. A graph is
chordal when it does not contain any hole. An equivalent definition states that a chordal
graph is an intersection graph of a family of subtrees in a tree [40]. This implies that any
interval graph is chordal. For more background on these graph classes see surveys [16, 24].

The characterization of the two classes as intersection graphs of intervals/subtrees leads
to the following observation.

▶ Observation 3.3. The classes of chordal and interval graphs are closed under vertex
deletions and edge contractions.

An asteroidal triple (AT) is a triple of vertices such that for any two of them there exists
a path between them avoiding the closed neighborhood of the third. Interval graphs cannot
contain ATs, which is a consequence of a linear ordering of any interval model. It turns out
that this is the only property that separates the two graph classes.

▶ Lemma 3.4 ([24]). A graph is interval if and only if it is chordal and does not contain an AT.

We collect two more useful facts about chordal graphs.

▶ Lemma 3.5 ([24]). Every non-empty chordal graph contains a simplicial vertex.

M. Włodarczyk 106:7

When a chordal graph contains a cycle then it also contains a triangle. As a bipartite
graph does not have any triangles, we obtain the following.

▶ Observation 3.6. If a graph is chordal and bipartite, then it is a forest.

A vertex set S in graph G is called a chordal deletion set (resp. interval deletion set) if
G − S is chordal (resp. interval). The Chordal/Interval Vertex Deletion problem is
defined as follows. We are given a graph G, a non-negative weight function w : V (G) → N,
an integer p, and we ask whether there exists a chordal (resp. interval) deletion set S in G

such that w(S) ≤ p.

Boundaried graphs. For a set X and a graph B on vertex set X, we define a family GX,B

of graphs G that satisfy (a) V (G) ⊇ X, (b) G[X] = B. For graphs G1, G2 ∈ GX,B we
define their gluing product (G1, X) ⊕ (G2, X) by taking a disjoint union of G1 and G2 and
identifying vertices from X. Note that two vertices from X are adjacent in G1 if and only if
they are adjacent in G2.

For X ⊆ V (G) a pair (G, X) is called a boundaried graph. We say that two boundaried
graphs (G1, X), (G2, X) are compatible if G1, G2 ∈ GX,B for some B. We remark that
it is common in the literature to define a boundaried graph as a triple (G, X, λ) where
λ : X → [|X|] is a labeling (cf. [9, 21]). Since we do not need to perform gluing of abstract
boundaried graphs, but only ones originating from subgraphs of a fixed graph, this simpler
definition is sufficient.

As an example, consider a graph G and X ⊆ V (G). Then for any A ⊆ V (G) \ X the
graph G[A ∪ X] belongs to GX,G[X]. When A, B ⊆ V (G) \ X are disjoint and non-adjacent
then G[A ∪ B ∪ X] is isomorphic to (G[A ∪ X], X) ⊕ (G[B ∪ X], X).

4 Chordal Deletion

We begin with a simple treewidth-preserving reduction from Feedback Vertex Set.

▶ Lemma 4.1 (⋆). Let G be a graph and ℓ ∈ N. Let G′ be obtained from G by subdividing
each edge. Then tw(G′) = tw(G) and G has a feedback vertex set (FVS) of size ℓ if and only
if G′ has a chordal deletion set of size ℓ.

As a consequence, the base of the exponent c in Theorem 1.1 must be at least 3 under
Strong Exponential Time Hypothesis [35] and c must be at least 2ω + 1 if the current-
best deterministic algorithm for Feedback Vertex Set parameterized by treewidth is
optimal [69]. While we have no evidence that the mentioned algorithm should be optimal
for deterministic time, we provide this comparison to indicate that breaching this gap for
ChVD would imply the same for a more heavily studied problem.

Minimal vertex separators. We set the stage for the proof of Theorem 2.1. First we need
to develop some theory about minimal vertex separators in chordal graphs.

▶ Definition 4.2. Let MinSep(G) denote the set of minimal vertex separators in a graph G.
For a graph G and a (possibly empty) set S ⊆ V (G), we define Comp(G, S) to be the set of
connected components Ci of G − S for which it holds that NG(Ci) = S.

Note that whenever G is disconnected then ∅ ∈ MinSep(G) and Comp(G, ∅) is just the
set of connected components of G. According to Lemma 3.1, the set S is a minimal (u, v)-
separator if and only if u, v belong to some (distinct) components from Comp(G, S). For later
use, we establish a relation between sets MinSep(G), Comp(G, S) in G and a graph obtained
by a removal of a simplicial vertex.

ICALP 2023

106:8 Tight Bounds for Chordal/Interval Vertex Deletion

▶ Lemma 4.3 (⋆). Let v be a simplicial vertex in G and S ∈ MinSep(G). If S ̸= NG(v) then
S ∈ MinSep(G − v) and |Comp(G, S)| = |Comp(G − v, S)|.

We need a simple technical lemma about minimal vertex separators.

▶ Lemma 4.4 (⋆). Let G be a connected graph and V1, . . . , Vk ⊆ V (G), k ≥ 2, be disjoint
sets so that G[Vi] is connected, for i ∈ [k], and EG(Vi, Vj) = ∅, for i ̸= j. Then there exists a
minimal vertex separator S ⊆ V (G) \ (V1 ∪ · · · ∪ Vk) in G which is a (Vi, Vj)-separator for
some i ̸= j and each set Vi is contained in some component C ∈ Comp(G, S).

We will use the following concept which appears in the current-best algorithm for ChVD
by Jansen et al [45]. In the full version, we also provide several properties of this operation,
used to process partial solutions in a treewidth DP.

▶ Definition 4.5 ([46, Def. 5.55]). For a graph G and a vertex set X ⊆ V (G) let the graph
Condense(G, X) be obtained from G by contracting the connected connected components of
G − X into single vertices and then removing those of them which are simplicial.

In this section we will exploit the following property of condensation.

▶ Lemma 4.9 (⋆). Consider a graph G with a vertex set X so that G[X] is chordal. Then
G is chordal if and only if the following conditions hold:
1. for each connected component C of G − X the graph G[X ∪ C] is chordal,
2. the graph Condense(G, X) is chordal.

In order to turn Lemma 4.9 into a more convenient criterion, we will compress information
about a graph G with a vertex subset X into multiple auxiliary graphs, one for each minimal
vertex separator in G[X].

▶ Definition 4.10. Consider a graph G with a vertex set X so that G[X] is chordal. For a
set S ∈ MinSep(G[X]) we construct the graph Aux(G, X, S) as follows:
1. contract each C ∈ Comp(G[X], S) into a vertex and remove the remaining vertices of X

(including all of S),
2. contract each connected component of G − X into a vertex.

Note that Aux(G, X, ∅) is obtained by just contracting each connected component of G[X]
and each connected component of G − X. Moreover, observe that Aux(G, X, S) is always a
bipartite graph because there can be no edges between two components from Comp(G[X], S)
nor between two components of G − X. See Figure 1 for an example of this construction.

To make a connection between holes in G and cycles in Aux(G, X, S), we need a criterion
to derive existence of a cycle from a closed walk with certain properties. In the following
lemma we consider a cyclic order on a sequence of length k. We define the successor operator
as s(i) = i + 1, for i ∈ [k − 1], and s(k) = 1.

▶ Lemma 4.11 (⋆). Let G be a bipartite graph with vertex partition V (G) = A ∪ B. Suppose
there exists a sequence of vertices (v1, . . . , vk) in G such that:
1. for i ∈ [k] it holds vi = vs(i) or vivs(i) ∈ E(G),
2. the multiset {v1, . . . , vk} contains at most one occurrence of each vertex from A,
3. the set {v1, . . . , vk} contains at least two vertices from B.

Then G contains a cycle.

We are ready to prove a proposition creating a link between chordality and acyclicity.

M. Włodarczyk 106:9

x

y

z

u

v

Figure 1 On the left: graph G and set X ⊆ V (G) represented by black disks. The graph G[X] is
drawn with solid edges. There are two minimal vertex separators in G[X]: S1 = {v} and S2 = {u, v},
sketched in gray. In the middle: the graph Aux(G, X, S1) with thick edges indicating a component
that gets contracted into a single vertex; the gray vertices and edges are removed. On the right:
the graph Aux(G, X, S2); note that |Comp(G[X], S2)| = 2 because the lower vertices of X are not
adjacent to every vertex in S2. The graph Aux(G, X, S1) contains a cycle and this witnesses that G

is not chordal. However, removing from G any single vertex among x, y, z results in a chordal graph.

▶ Proposition 4.12. Consider a graph G with a vertex subset X ⊆ V (G) so that for each
connected component C of G − X the graph G[X ∪ C] is chordal. Then G is chordal if and
only if for each S ∈ MinSep(G[X]) the graph Aux(G, X, S) is acyclic.

Proof. First we argue that if G is chordal then all graphs Aux(G, X, S) are acyclic. Because
the class of chordal graphs is closed under vertex deletions and edge contractions, the
graphs Aux(G, X, S) are chordal as well. Since each graph Aux(G, X, S) is also bipartite, by
Observation 3.6 we obtain that Aux(G, X, S) is acyclic.

Now suppose that G is not chordal. Let G′ = Condense(G, X) (recall Definition 4.5).
By Lemma 4.9, the graph G′ is not chordal as well but for each vertex v ∈ V (G′) \ X

the graph G′[X ∪ {v}] is chordal (because contraction preserves chordality). Note that
Aux(G′, X, S) is an induced subgraph of Aux(G, X, S) for each S ∈ MinSep(G[X]) (they may
differ only due to removal of simplicial vertices), so it suffices to show that one of the graphs
Aux(G′, X, S) has a cycle.

As G′ is not chordal, it contains a hole H = (u1, . . . , uk). We consider two cases: either
V (H) intersects at least two connected components of G′[X] or only one. In the first case, let
ϕ0 : V (G′) → V (Aux(G′, X, ∅)) be the mapping given by the contractions from Definition 4.10.
Recall that V (G′) \ X is an independent set in G′ so ϕ0 is an identity on this set. The
sequence (ϕ0(u1), . . . , ϕ0(uk)) meets the preconditions of Lemma 4.11 for A = V (G′) \ X

and B = ϕ0(X) so Aux(G′, X, ∅) has a cycle. As G′[X] = G[X] is disconnected, we have
∅ ∈ MinSep(G[X]).

In the second case, let Y ⊆ X induce the only connected component of G′[X] that
intersects V (H). Let V1, . . . , Vℓ ⊆ Y be the vertex sets of maximal subpaths of H within
Y . By the definition of a hole, we have EG′(Vi, Vj) = ∅ for distinct i, j ∈ [ℓ]. It must be
ℓ ≥ 2 because for each v ∈ V (G′) \ X the graph G′[X ∪ {v}] is chordal and the hole H

must visit at least two vertices from the independent set V (G′) \ X. By Lemma 4.4, there
exists a minimal vertex separator S ⊆ Y \ V (H) in G′[Y] such that every set Vi is contained
in some component from Comp(G′[Y], S) and at least two components from Comp(G′[Y], S)
intersect V (H). Note that S ∈ MinSep(G[X]). Let CS be the union of the components from
Comp(G′[Y], S); note that V (H) ⊆ V (CS) ∪ (V (G′) \ X).

Let ϕS : V (CS)∪(V (G′)\X) → V (Aux(G′, X, S)) be the mapping given by the contractions
from Definition 4.10 which turn each component from Comp(G′[Y], S) into a single vertex.
Again, the sequence (ϕS(u1), . . . , ϕS(uk)) meets the preconditions of Lemma 4.11 for A =
V (G′) \ X and B = ϕS(V (CS)) so Aux(G′, X, S) has a cycle. See Figure 1 for an illustration.

◀

ICALP 2023

106:10 Tight Bounds for Chordal/Interval Vertex Deletion

Signatures of boundaried graphs. The next step is to construct a graphic matroid MB

for a chordal graph B so that for any two graphs G1, G2 ∈ GX,B the information about
chordality of (G1, X) ⊕ (G2, X) could be read from MB. Proposition 4.12 already relates
chordality to acyclicity but the corresponding graphic matroids for G1, G2 are disparate. To
circumvent this, we will further compress the information about cycles.

▶ Definition 4.13. Consider a graph B. For S ∈ MinSep(B), let Base(B, S) be the complete
graph on vertex set Comp(B, S). The graph Base(B) is a disjoint union of all the graphs
Base(B, S) for S ∈ MinSep(B).

That is, we treat the components from Comp(B, S) as abstract vertices of a new graph
which is a union of cliques.

The following transformation is similar to the one used in the algorithm for Steiner Tree
based on representative families [38]. For the sake of disambiguation, in the definition below we
assume an implicit linear order on the vertices of B; this order may be arbitrary. Since vertices
of Base(B) correspond to distinct subsets of V (B), which can ordered lexicographically,
fixing the order on V (B) yields an order on V (Base(B)). We can thus assume that also the
vertices of V (Base(B)) are linearly ordered.

▶ Definition 4.14. Consider a chordal graph B and Y ⊆ V (B). We define the spanning
signature Span(B, Y) ⊆ E(Base(B)) as follows. For each S ∈ MinSep(B) let CS,Y ⊆
V (Base(B, S)) be given by components from Comp(B, S) with a non-empty intersection with Y .
Let PS,Y ⊆ E(Base(B, S)) be the path connecting the vertices of CS,Y in the increasing order.
Then Span(B, Y) =

⋃
S∈MinSep(B) PS,Y .

In other words, Span(B, Y) is a disjoint union of paths in the graph Base(B), where each
path encodes the relation between Y and a respective minimal vertex separator in B.

The next lemma states that under certain conditions replacing a vertex v with a tree over
N(v) (in particular: a path) does not affect acyclicity of the graph. Note that due to the
precondition |N(u) ∩ N(v)| ≤ 1 we never attempt to insert an edge that is already present.

▶ Lemma 4.15 (⋆). Let G be a bipartite graph with a vertex partition V (G) = A ∪ B so that
for each distinct u, v ∈ A it holds that |NG(u) ∩ NG(v)| ≤ 1. Consider a graph G′ obtained
from G by replacing each vertex v ∈ A by an arbitrary tree on vertex set NG(v). Then G is
acyclic if and only if G′ is acyclic.

This allows us to translate the criterion from Proposition 4.12 into a more convenient
one, in which the vertex set of the auxiliary graph depends only on G[X] rather than G.

▶ Lemma 4.16. Consider a graph G with a vertex subset X ⊆ V (G). Let C denote the
family of connected components of G − X. Suppose that for each C ∈ C the graph G[X ∪ C]
is chordal. Then G is chordal if and only if:
1. the sets Span(G[X], NG(C)), for different C ∈ C, are pairwise disjoint,
2. the union of sets Span(G[X], NG(C)), over C ∈ C, forms an acyclic edge set in

E(Base(G[X])).

Proof. From Proposition 4.12 we know that G is chordal if and only if for each S ∈
MinSep(G[X]) the graph Aux(G, X, S) is acyclic. We consider two cases.

First, suppose that for some S ∈ MinSep(G[X]) there are two vertices representing distinct
components C1, C2 ∈ C that share two common neighbors x, y in Aux(G, X, S). In other
words, there are two components from Comp(G[X], S) that intersect both NG(C1) and NG(C2).
Then Aux(G, X, S) contains a cycle of length 4, so G is not chordal. If Span(G[X], NG(C1))

M. Włodarczyk 106:11

and Span(G[X], NG(C2)) share an edge, then condition (1) fails, so suppose this is not the
case. But then the paths PS,N(C1) and PS,N(C2) (recall Definition 4.14) are edge-disjoint
and they both visit x and y. As a consequence, x, y lie on a cycle contained in the edge set
Span(G[X], NG(C1)) ∪ Span(G[X], NG(C2)) so condition (2) fails. In summary, both G is
not chordal and one of conditions (1, 2) does not hold.

Next, suppose that for each S ∈ MinSep(G[X]) and any two vertices representing distinct
components C1, C2 ∈ C the intersection of their neighborhoods in Aux(G, X, S) contains at
most one element. This implies condition (1). Consider a graph H given by a disjoint union
of all graphs Aux(G, X, S) over S ∈ MinSep(G[X]). This graph meets the preconditions
of Lemma 4.15. Replacing each C-component-vertex in Aux(G, X, S) by the path PS,N(C)
transforms H into a subgraph of Base(G[X]) with the edge set

⋃
C∈C Span(G[X], NG(C)).

By Lemma 4.15, this graph is acyclic if and only if the graph H is. By Proposition 4.12, this
condition is equivalent to G being chordal. The lemma follows. ◀

We are ready to define the graphic matroid encoding all the necessary information about
where a hole can appear after gluing two chordal graphs. Recall that a graphic matroid of a
graph G is a set system over E(G) where a subset S ⊆ E(G) is called independent when S

contains no cycles. More information about matroids can be found in the preliminaries of
the full version of the article.

▶ Definition 4.17. For a graph B on vertex set X we define matroid MB as the graphic
matroid of the graph Base(B). For a graph G ∈ GX,B the signature Sign(G, X) ⊆ E(Base(B))
is defined as a union of Span(B, NG(C)) over all connected components C of G − X.

It follows from Lemma 4.16 that whenever G is chordal then Sign(G, X) is acyclic and so
it forms an independent set in the matroid MG[X]. We can now give the existential part of
Theorem 2.1. The mapping σ : GX,B → 2E(MB) therein is given here as σ(G) = Sign(G, X).

▶ Lemma 4.18 (⋆). Let (G1, X) and (G2, X) be compatible boundaried chordal graphs.
Then G = (G1, X) ⊕ (G2, X) is chordal if and only if the sets Sign(G1, X), Sign(G2, X) ⊆
E(Base(G[X])) are disjoint and Sign(G1, X) ∪ Sign(G2, X) is acyclic.

Furthermore, Sign(G, X) = Sign(G1, X) ∪ Sign(G2, X).

The following lemma is the main ingredient in the running time analysis. As the bound
on the representative family’s size is exponential in the rank of a matroid2, it is necessary
to bound the rank of MB. It is known that the number of minimal vertex separators in a
chordal graph is bounded by the number of vertices but we need a strengthening of this fact.

▶ Lemma 4.19. For a non-empty chordal graph B, the rank of MB is at most |V (B)| − 1.

Proof. Let k = |V (B)|. The rank of MB equals the size of a spanning forest in Base(B). The
vertex sets of connected components of Base(B) are the sets Comp(B, S) for S ∈ MinSep(B).
Therefore it suffices to estimate∑

S∈MinSep(B)

(|Comp(B, S)| − 1) ≤ k − 1.

We first prove the inequality for connected chordal graphs by induction on k. For k = 1
the sum is zero. Consider k > 1. By Lemma 3.5, B contains a simplicial vertex. Let v be
a simplicial vertex in B and suppose that the claim holds for the graph B − v (which is

2 We remark that Fomin et al. [38] also considered a case when the rank might be large and the exponential
term is governed by a different parameter but it is not applicable in our case.

ICALP 2023

106:12 Tight Bounds for Chordal/Interval Vertex Deletion

connected). Let S be a minimal vertex separator in B. By Lemma 4.3 when S ̸= NB(v)
then S ∈ MinSep(B − v) and |Comp(B, S)| = |Comp(B − v, S)|. In that case the summand
coming from S is the same for B and B − v.

It remains to handle the case S = NB(v). Clearly, {v} ∈ Comp(B, S). If |Comp(B, S)| = 1
then S ̸∈ MinSep(B) (Lemma 3.1). If |Comp(B, S)| = 2 then S ∈ MinSep(B) \ MinSep(B − v)
and the sum grows by one. If |Comp(B, S)| ≥ 3 then S ∈ MinSep(B) ∩ MinSep(B − v) and
|Comp(B, S)| = |Comp(B − v, S)| + 1 so the sum again grows by one. This concludes the proof
of the inequality for connected chordal graphs.

When B is disconnected, let B1, B2, . . . , Bt denote its connected components and let
ki = |V (Bi)|. We have |Comp(B, ∅)| − 1 = t − 1. Together with the sums for B1, B2, . . . , Bt

the total sum is at most
∑t

i=1 ki − t + t − 1 = k − 1. ◀

The last thing to be checked is whether we can compute the signatures efficiently. To
this end, we enumerate minimal vertex separators using Lemma 4.3.

▶ Lemma 4.20 (⋆). There is a polynomial-time algorithm that, given a graph G with a vertex
subset X ⊆ V (G) such that G[X] is chordal, computes Sign(G, X).

Lemmas 4.18, 4.19, and 4.20 entail Theorem 2.1 but instead of working with that abstract
statement we use these three lemmas directly when describing the final algorithm. The
results of this section allow us to employ the framework of representative families in order to
truncate the number of partial solutions stored at a node of a tree decomposition to 2O(tw).
The dynamic programming algorithm follows the lines of proofs in [37] and is described in
detail in the full version. The main technical hurdle comes from the necessity to store only
the condensed counterparts of the partial solutions. The condensed graphs have only O(tw)
vertices each, what is the key to obtain a linear dependency on |V (G)|.

5 Interval Deletion

We switch our attention to Interval Vertex Deletion and show that in this case it is
unlikely to achieve any speed-up over the existing 2O(tw log tw) · n-time algorithm. We prove
Theorem 1.2 via a parameterized reduction from k × k Permutation Clique, which is
defined as follows.

k × k Permutation Clique
Input: Graph G over the vertex set [k] × [k].
Question: Is there a permutation π : [k] → [k] so that (1, π(1)), (2, π(2)), . . . , (k, π(k))
forms a clique in G?

Permutation gadget. We will encode a permutation π : [k] → [k] as a family of sets
N1, N2, . . . , Nk so that Ni = π([i]) (i.e., Ni is the set of i numbers appearing first in π). First,
we need a gadget to verify that such a family represents some permutation.

▶ Definition 5.1. For an integer k, let Yk be a graph on a vertex set {y1, y2, . . . , yk+2} so
that {y1, y2, . . . , yk+1} induces a clique and yk+2 is adjacent only to yk+1.

We shall enforce a linear order on N1, . . . , Nk by demanding that a particular supergraph
of Yk is interval. The corresponding interval model is depicted on Figure 2.

▶ Lemma 5.3 (⋆). Let N1, . . . , Nℓ ⊆ [k]. Consider a graph G obtained from Yk by inserting
an independent set of vertices x1, . . . , xℓ so that NG(xi) = {yj | j ∈ Ni}. Then G is interval
if and only if there exists a permutation π : [k] → [k] so that for each i ∈ ℓ it holds that
Ni = π([ni]) where ni = |Ni|.

M. Włodarczyk 106:13

y1

y2

y3

y4

y5

y6

Figure 2 Illustration for Lemma 5.3. The intervals for vertices of Y4 are blank, ordered from bottom
to top. They encode permutation (2, 4, 3, 1). The black intervals represent vertices x1, x2, x3, x4, x5

with neighborhoods encoding sets {2}, {2, 4} (twice), {2, 4, 3}, and {2, 4, 3, 1}.

Choice gadget. We need to verify that (i, π(i))(j, π(j)) ∈ E(G) for each 1 ≤ i < j ≤ k.
As π(i) is the only element in Ni \ Ni−1, the information whether (i, π(i)), (j, π(j)) ∈ E(G)
can be extracted from the tuple (Ni−1, Ni, Nj−1, Nj). We construct a gadget that enforces a
solution to select one such valid tuple.

We use a following convention to describe the gadgets. When P is a graph with a
distinguished vertex named v and a graph H is constructed using explicit vertex-disjoint
copies of the graph P , referred to as P1, P2, . . . , Pℓ, we refer to the copy of v within the
subgraph Pi as Pi[v]. We construct the choice gadget as a path-like structure consisting of
blocks, each equipped with four special vertices. These are the only vertices that later get
connected to the permutation gadget. On the intuitive level, a solution should choose one
block, leave its special vertices untouched, and remove the remaining special vertices. See
Figure 3 for an illustration.

▶ Definition 5.4. The graph P is obtained from a path (u1, u2, . . . , u9) by appending to u2
two subdivided edges, one subdivided edge to u7, and inserting edge u4u8.

The choice gadget of order s is a graph constructed as follows. We begin
with a vertex set

⋃s
i=1{v1

i , v2
i , v3

i } ∪ {vleft, vright}. For each pair (x, y) of the form
(v1

i , v2
i), (v2

i , v3
i), (v3

i , v1
i), (v3

i , v1
i+1) as well as for (vleft, v1

1), (v3
s , vright) we create two sub-

divided edges between x and y. We refer to the subgraph given by the two subdivided edges
between x, y as ⟨x, y⟩. We refer to the union of ⟨v1

i , v2
i ⟩, ⟨v2

i , v3
i ⟩, ⟨v3

i , v1
i ⟩ as Qi.

Next, for each i ∈ [s] we create four copies of the graph P , denoted P 1
i , P 2

i , P 3
i , P 4

i .
We insert edges between v2

i and P 1
i [u1], P 2

i [u1], P 3
i [u1], P 4

i [u1]. We refer to vertices P α
i [u8],

P α
i [u9], α ∈ [4], as respectively hα

i , gα
i .

The choice gadget is designed to enforce a special structure of minimum-size interval
deletion sets. We exploit the fact that P contains two vertex-disjoint subgraphs with
asteroidal triples (see Figure 3) so any interval deletion set in a choice gadget must contain
at least two vertices from each copy of P .

We prove several properties of the choice gadget which are analogous to the properties
of the gadget used by Pilipczuk in the lower bound for Planar Vertex Deletion [58].
However, in that construction every block has only one special vertex with edges leaving the
gadget, while in our case there are four special vertices. We also need to ensure that when
the special vertices in some block are not being removed then a solution can remove their
neighbors in the gadget. (Inserting a planar graph attached to a single vertex of G does
not affect planarity of G but the analogous property does not hold for the class of interval
graphs.) The special structure of the graph P allows us to resolve these two issues.

▶ Lemma 5.6 (⋆). Let Hs be the choice gadget of order s.
1. The minimal size of an interval deletion set in Hs is 10s.
2. For every i ∈ [s] there exists a minimum-size interval deletion set X in Hs such that

{h1
i , h2

i , h3
i , h4

i } ⊆ X and {g1
j , g2

j , g3
j , g4

j } ⊆ X for each j ̸= i.

ICALP 2023

106:14 Tight Bounds for Chordal/Interval Vertex Deletion

u9 = g

u8 = h

vleft v11 v31

v21

v12 v32

v22

v13

u1

u2

u3

u4

u5

u6

u7

Figure 3 Top: the choice gadget H5 with the subgraph Q1 highlighted in green. The copies of P

are sketched symbolically with dashed lines and the squares represent vertices gα
i . The red disks

and squares represent a solution constructed in Lemma 5.6(2). This solution “chooses” i = 2, leaves
untouched the four vertices gα

2 , and removes hα
2 as well as gα

i for i ̸= 2. Bottom left: the graph P

and vertices named h, g. Two vertex-disjoint non-interval subgraphs of P have green edges. Bottom
right: a closer look at the first two blocks of H5 with two copies of P drawn in detail. The subgraph
highlighted in green witnesses that if a minimum-size solution removes gα

i for at least one α ∈ [4]
then it must also remove v2

i , what is exploited in Lemma 5.6(3).

3. For every minimum-size interval deletion set X in Hs there is i ∈ [s] such that
{g1

i , g2
i , g3

i , g4
i } ∩ X = ∅.

4. If s ≤ 2k then td(Hs) ≤ td(H1) + k, where td(G) stands for the treedepth of G.

Lokshtanov et al. [54] proved that k × k Permutation Clique cannot be solved in time
2o(k log k) assuming ETH. According to the reduction below, this also rules out running time
of the form 2o(td log td) · nO(1) for Interval Vertex Deletion, where td is the treedepth
of the input graph. As tw(G) ≤ td(G), this entails the same hardness for treewidth, what
proves Theorem 1.2.

▶ Proposition 5.7. There is an algorithm that, given an instance (G, k) of k×k Permutation
Clique, runs in time 2O(k) and returns an equivalent unweighted instance (H, p) of Interval
Vertex Deletion such that |V (H)| = 2O(k) and td(H) = O(k).

Proof. For 1 ≤ i < j ≤ k and x ̸= y ∈ [k] let Si,x,j,y be the family of tuples (S1, S2, S3, S4)
of subsets of [k] satisfying:

S1 ⊂ S2 ⊆ S3 ⊂ S4,
|S1| = i − 1,
S2 \ S1 = {x},
|S3| = j − 1,
S4 \ S3 = {y}.

Furthermore, for 1 ≤ i < j ≤ k, let Si,j be the union of Si,x,j,y over all pairs x ≠ y ∈ [k]
such that (i, x)(j, y) ∈ E(G). Let si,j = |Si,j | and ρi,j : [si,j] → Si,j be an arbitrary bijection.
Clearly si,j ≤ 4kk2.

M. Włodarczyk 106:15

The graph H consists of a permutation gadget Yk and, for each 1 ≤ i < j ≤ k, a choice
gadget Ci,j of order si,j . For S ⊆ [k] we use shorthand Yk[S] = {yi | i ∈ S}. For ℓ ∈ [si,j]
and (S1, S2, S3, S4) = ρi,j(ℓ) the vertices Ci,j [g1

ℓ], Ci,j [g2
ℓ], Ci,j [g3

ℓ], Ci,j [g4
ℓ] get connected to

vertex sets Yk[S1], Yk[S2], Yk[S3], Yk[S4], respectively. This finishes the construction of H.
The number of vertices in H is clearly 2O(k) and the construction can be performed in time
polynomial in the size of H. We set p = 10 ·

∑
1≤i<j≤k si,j .

▷ Claim 5.8. If (G, k) admits a solution, then H has an interval deletion set of size p.

Proof. Let π : [k] → [k] be a permutation encoding a clique in G. By the construction, for
each 1 ≤ i < j ≤ k we have (π([i − 1]), π([i]), π([j − 1]), π([j]) ∈ Si,j . Let ℓ ∈ [si,j] be the
index mapped to this tuple by ρi,j . By Lemma 5.6(2) the choice gadget Ci,j has an interval
deletion set Xi,j ⊆ V (Ci,j) of size 10si,j such that {Ci,j [h1

ℓ], Ci,j [h2
ℓ], Ci,j [h3

ℓ], Ci,j [h4
ℓ]} ⊆ Xi,j

and {Ci,j [g1
r], Ci,j [g2

r], Ci,j [g3
r], Ci,j [g4

r]} ⊆ Xi,j for each r ̸= ℓ. In other words, Xi,j contains
all vertices in Ci,j which are adjacent to Yk except for the Ci,j-copies of g1

ℓ , g2
ℓ , g3

ℓ , g4
ℓ and

Xi,j also contains the neighbors of Ci,j [g1
ℓ], Ci,j [g2

ℓ], Ci,j [g3
ℓ], Ci,j [g4

ℓ] in Ci,j .
We set X =

⋃
1≤i<j≤k Xi,j . Then the only connected component of H − X which is not

a connected component of any Ci,j − Xi,j is given by Yk together with an independent set
of the vertices described above. The neighborhood of each such vertex in Yk is of the form
Yk[π([k′])] for some 0 ≤ k′ ≤ k. By Lemma 5.3 this component is an interval graph. This
shows that X is indeed an interval deletion set. ◁

▷ Claim 5.9. If H has an interval deletion set of size at most p, then (G, k) admits a solution.

Proof. Let X be an interval deletion set in H. By Lemma 5.6(1) a minimum-size interval
deletion set in Ci,j has size 10si,j . As the choice gadgets are vertex-disjoint subgraphs
of H, the set X must contain exactly 10si,j vertices from V (Ci,j). This also implies that
V (Yk) ∩ X = ∅.

Let Xi,j = V (Ci,j) ∩ X. By Lemma 5.6(3) there exists ℓ ∈ [si,j] such that{
Ci,j [g1

ℓ], Ci,j [g2
ℓ], Ci,j [g3

ℓ], Ci,j [g4
ℓ]

}
∩ Xi,j = ∅. Therefore for each pair (i, j) there

is a tuple (S1
i,j , S2

i,j , S3
i,j , S4

i,j) ∈ Si,j so that vertices from Ci,j with neighborhoods
Yk[S1

i,j], Yk[S2
i,j], Yk[S3

i,j], Yk[S4
i,j] are present in H − X. By Lemma 5.3 there exists a single

permutation π : [k] → [k] so that each set Sα
i,j is of the form π([|Sα

i,j |]). By the definition of
family Si,j this implies that (i, π(i))(j, π(j)) ∈ E(G) for each pair (i, j). Hence there is a
k-clique in G. ◁

▷ Claim 5.10. The treedepth of H is O(k).

Proof. The treedepth of H is at most |Yk| = k + 2 plus td(H − Yk), which equals the
maximum of td(Ci,j) over all employed choice gadgets Ci,j . As si,j ≤ 4kk2, Lemma 5.6(4)
implies that td(Ci,j) ≤ 2k + 2 log2 k + O(1). ◁

This concludes the proof of the proposition. ◀

6 Conclusion and open problems

We have obtained ETH-tight bounds for vertex-deletion problems into the classes of chordal
and interval graphs, under the treewidth parameterization. The status of the corresponding
edge-deletion problems remains unclear (see [64]). The related problem, Feedback Vertex
Set, can be solved using representative families within the same running time as our
algorithm for ChVD [37]. However, it admits a faster deterministic algorithm based on the
determinant approach [69] and an even faster randomized algorithm based on the Cut &
Count technique [35]. Could ChVD also be amenable to one of those techniques?

ICALP 2023

106:16 Tight Bounds for Chordal/Interval Vertex Deletion

Our algorithm for ChVD is based on a novel connection between chordal graphs and
graphic matroids, which might come in useful in other settings. In particular, we ask whether
this insight can be leveraged to improve the running time for ChVD parameterized by the
solution size k, where the current-best algorithm runs in time 2O(k log k)nO(1) [29]. A direct
avenue for a potential improvement would be to reduce the problem in time 2O(k)nO(1)

to the case with treewidth O(k) and then apply Theorem 1.1. Such a strategy has been
employed in the state-of-the-art algorithm for Planar Vertex Deletion parameterized
by the solution size [47].

References
1 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT

algorithm and a smaller kernel for block graph vertex deletion. In Evangelos Kranakis,
Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics – 12th
Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume
9644 of Lecture Notes in Computer Science, pages 1–13. Springer, 2016. doi:10.1007/
978-3-662-49529-2_1.

2 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Erdös-Pósa property of obstructions to interval graphs. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 7:1–7:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.7.

3 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms,
15(1):11:1–11:28, 2019. doi:10.1145/3284356.

4 Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex
deletion admits a polynomial kernel. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’19, pages 1711–1730, USA, 2019. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611975482.103.

5 Jungho Ahn, Eduard Eiben, O joung Kwon, and Sang il Oum. A Polynomial Kernel for 3-Leaf
Power Deletion. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.5.

6 Jungho Ahn, Eun Jung Kim, and Euiwoong Lee. Towards constant-factor approximation
for chordal/distance-hereditary vertex deletion. Algorithmica, 84(7):2106–2133, 2022. doi:
10.1007/s00453-022-00963-7.

7 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’21, pages 522–539, USA, 2021. Society for Industrial and Applied
Mathematics. doi:10.5555/3458064.3458096.

8 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–
1090, September 2001. doi:10.1145/502102.502107.

9 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951–970. SIAM, 2020.
doi:10.1137/1.9781611975994.57.

10 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. SIAM J. Discret. Math., 34(3):1623–1648, 2020. doi:
10.1137/19M1287146.

https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.4230/LIPIcs.STACS.2018.7
https://doi.org/10.1145/3284356
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.4230/LIPIcs.MFCS.2020.5
https://doi.org/10.1007/s00453-022-00963-7
https://doi.org/10.1007/s00453-022-00963-7
https://doi.org/10.5555/3458064.3458096
https://doi.org/10.1145/502102.502107
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/19M1287146
https://doi.org/10.1137/19M1287146

M. Włodarczyk 106:17

11 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theor. Comput. Sci., 814:135–152, 2020. doi:
10.1016/j.tcs.2020.01.026.

12 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. J. Comput. Syst. Sci., 109:56–77, 2020. doi:10.1016/j.jcss.
2019.11.002.

13 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, USA, 1st edition, 1998. URL:
https://dl.acm.org/doi/10.5555/551884.

14 Seymour Benzer. On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences of the United States of America, 45(11):1607–1620, 1959. URL: http:
//www.jstor.org/stable/90127.

15 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O joung Kwon. Close Relatives
of Feedback Vertex Set Without Single-Exponential Algorithms Parameterized by Treewidth.
In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium on Parameterized
and Exact Computation (IPEC 2020), volume 180 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 3:1–3:17, 2020. doi:10.4230/LIPIcs.IPEC.2020.3.

16 Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrix Computation, pages 1–29, New York, NY, 1993. Springer New York.

17 Ivan Bliznets, Marek Cygan, Pawel Komosa, Michal Pilipczuk, and Lukás Mach. Lower bounds
for the parameterized complexity of minimum fill-in and other completion problems. ACM
Trans. Algorithms, 16(2):25:1–25:31, 2020. doi:10.1145/3381426.

18 Ivan Bliznets, Fedor V Fomin, Michał Pilipczuk, and Yngve Villanger. Largest chordal and
interval subgraphs faster than 2n. Algorithmica, 76(2):569–594, 2016.

19 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

20 Hans L. Bodlaender, Pål Gronås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

21 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

22 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in
Computer Science – 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29,
2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer,
2018. doi:10.1007/978-3-030-00256-5_6.

23 Édouard Bonnet, Nick Brettell, O joung Kwon, and Dániel Marx. Generalized Feedback Vertex
Set Problems on Bounded-Treewidth Graphs: Chordality Is the Key to Single-Exponential
Parameterized Algorithms. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th Inter-
national Symposium on Parameterized and Exact Computation (IPEC 2017), volume 89 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:13, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2017.7.

24 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999. doi:10.1137/1.
9780898719796.

25 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9(3):205–212,
September 1974. doi:10.1016/0012-365X(74)90002-8.

ICALP 2023

https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1016/j.jcss.2019.11.002
https://dl.acm.org/doi/10.5555/551884
http://www.jstor.org/stable/90127
http://www.jstor.org/stable/90127
https://doi.org/10.4230/LIPIcs.IPEC.2020.3
https://doi.org/10.1145/3381426
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1007/978-3-030-00256-5_6
https://doi.org/10.4230/LIPIcs.IPEC.2017.7
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1016/0012-365X(74)90002-8

106:18 Tight Bounds for Chordal/Interval Vertex Deletion

26 Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics,
127(3):415–429, 2003. doi:10.1016/S0166-218X(02)00242-1.

27 Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115. SIAM, 2016.
doi:10.1137/1.9781611974331.ch77.

28 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3), January 2015. doi:10.1145/2629595.

29 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, May 2016. doi:10.1007/s00453-015-0014-x.

30 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

31 Radu Curticapea, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting
hamiltonian cycles via matrix rank. In Proceedings of the 2018 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1080–1099, 2018. doi:10.1137/1.9781611975031.70.

32 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

33 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

34 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

35 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. Van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. ACM Trans. Algorithms, 18(2), March 2022. doi:10.1145/3506707.

36 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51(3):292–302, 2008. doi:10.1093/comjnl/
bxm033.

37 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
sets of product families. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms
– ESA 2014, pages 443–454, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. doi:
10.1007/978-3-662-44777-2_37.

38 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

39 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for minimum
fill-in. SIAM Journal on Computing, 42(6):2197–2216, 2013. doi:10.1137/11085390X.

40 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-8956(74)
90094-X.

41 Pinar Heggernes, Pim van ’t Hof, Bart M.P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Computer
Science, 511:172–180, 2013. Exact and Parameterized Computation. doi:10.1016/j.tcs.
2012.03.013.

42 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

43 Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural parameteriza-
tions with modulator oblivion. In Yixin Cao and Marcin Pilipczuk, editors, 15th International
Symposium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020,
Hong Kong, China (Virtual Conference), volume 180 of LIPIcs, pages 19:1–19:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.19.

https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1145/2629595
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1145/3506707
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/978-3-662-44777-2_37
https://doi.org/10.1007/978-3-662-44777-2_37
https://doi.org/10.1145/2886094
https://doi.org/10.1137/11085390X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.IPEC.2020.19

M. Włodarczyk 106:19

44 Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close Relatives (Of
Feedback Vertex Set), Revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th
International Symposium on Parameterized and Exact Computation (IPEC 2021), volume
214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:15, Dagstuhl,
Germany, 2021. doi:10.4230/LIPIcs.IPEC.2021.21.

45 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pages 1757–1769, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3406325.3451068.

46 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized
by elimination distance and even less. CoRR, abs/2103.09715, 2021. arXiv:2103.09715v4.

47 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

48 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

49 J.Mark Keil. Finding hamiltonian circuits in interval graphs. Information Processing Letters,
20(4):201–206, 1985. doi:10.1016/0020-0190(85)90050-X.

50 David Kendall. Incidence matrices, interval graphs and seriation in archeology. Pacific Journal
of mathematics, 28(3):565–570, 1969.

51 Eun Jung Kim and O-joung Kwon. Erdős-Pósa property of chordless cycles and its applications.
J. Comb. Theory, Ser. B, 145:65–112, 2020. doi:10.1016/j.jctb.2020.05.002.

52 Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and searching. Discrete
Mathematics, 55(2):181–184, 1985. doi:10.1016/0012-365X(85)90046-9.

53 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2), April 2018. doi:
10.1145/3170442.

54 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.

55 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating small
induced subgraphs by contracting edges. In Gregory Z. Gutin and Stefan Szeider, editors,
Parameterized and Exact Computation – 8th International Symposium, IPEC 2013, Sophia
Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes
in Computer Science, pages 243–254. Springer, 2013. doi:10.1007/978-3-319-03898-8_21.

56 Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. In Fedor V.
Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms
– Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume
12160 of Lecture Notes in Computer Science, pages 129–144. Springer, 2020. doi:10.1007/
978-3-030-42071-0_10.

57 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013. doi:10.1145/2500119.

58 Marcin Pilipczuk. A tight lower bound for vertex planarization on graphs of bounded treewidth.
Discret. Appl. Math., 231:211–216, 2017. doi:10.1016/j.dam.2016.05.019.

59 Michał Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011, pages 520–531, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-22993-0_47.

60 R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, 1957. doi:10.1002/j.1538-7305.1957.tb01515.x.

61 N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

ICALP 2023

https://doi.org/10.4230/LIPIcs.IPEC.2021.21
https://doi.org/10.1145/3406325.3451068
https://arxiv.org/abs/2103.09715v4
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1137/17M112035X
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1016/j.jctb.2020.05.002
https://doi.org/10.1016/0012-365X(85)90046-9
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1137/16M1104834
https://doi.org/10.1007/978-3-319-03898-8_21
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.dam.2016.05.019
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1006/jctb.1995.1006

106:20 Tight Bounds for Chordal/Interval Vertex Deletion

62 Neil Robertson and P.D Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

63 Donald J Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In Graph theory and computing, pages 183–217. Elsevier, 1972.

64 Toshiki Saitoh, Ryo Yoshinaka, and Hans L. Bodlaender. Fixed-treewidth-efficient algorithms
for edge-deletion to interval graph classes. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C.
Nandy, editors, WALCOM: Algorithms and Computation – 15th International Conference and
Workshops, 2021, Yangon, Myanmar, volume 12635 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2021. doi:10.1007/978-3-030-68211-8_12.

65 Ignasi Sau and Uéverton dos Santos Souza. Hitting Forbidden Induced Subgraphs on Bounded
Treewidth Graphs. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.82.

66 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
Journal of Computer and System Sciences, 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.
11.008.

67 Johan MM Van Rooij, Hans L Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In European Symposium on
Algorithms, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

68 Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–
867, 2013. doi:10.1007/s00453-012-9661-3.

69 Michał Włodarczyk. Clifford algebras meet tree decompositions. Algorithmica, 81(2):497–518,
2019. doi:10.1007/s00453-018-0489-3.

70 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77–79, 1981. doi:10.1137/0602010.

71 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms-ESA 2015, pages
1037–1049. Springer, 2015. doi:10.1007/978-3-662-48350-3_86.

https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/978-3-030-68211-8_12
https://doi.org/10.4230/LIPIcs.MFCS.2020.82
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1007/s00453-012-9661-3
https://doi.org/10.1007/s00453-018-0489-3
https://doi.org/10.1137/0602010
https://doi.org/10.1007/978-3-662-48350-3_86

	1 Introduction
	2 Techniques
	3 Preliminaries
	4 Chordal Deletion
	5 Interval Deletion
	6 Conclusion and open problems

