442 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Estudio de métodos de construcción de ensembles de clasificadores y aplicaciones

    Get PDF
    La inteligencia artificial se dedica a la creación de sistemas informáticos con un comportamiento inteligente. Dentro de este área el aprendizaje computacional estudia la creación de sistemas que aprenden por sí mismos. Un tipo de aprendizaje computacional es el aprendizaje supervisado, en el cual, se le proporcionan al sistema tanto las entradas como la salida esperada y el sistema aprende a partir de estos datos. Un sistema de este tipo se denomina clasificador. En ocasiones ocurre, que en el conjunto de ejemplos que utiliza el sistema para aprender, el número de ejemplos de un tipo es mucho mayor que el número de ejemplos de otro tipo. Cuando esto ocurre se habla de conjuntos desequilibrados. La combinación de varios clasificadores es lo que se denomina "ensemble", y a menudo ofrece mejores resultados que cualquiera de los miembros que lo forman. Una de las claves para el buen funcionamiento de los ensembles es la diversidad. Esta tesis, se centra en el desarrollo de nuevos algoritmos de construcción de ensembles, centrados en técnicas de incremento de la diversidad y en los problemas desequilibrados. Adicionalmente, se aplican estas técnicas a la solución de varias problemas industriales.Ministerio de Economía y Competitividad, proyecto TIN-2011-2404

    Cost-sensitive ensemble learning: a unifying framework

    Get PDF
    Over the years, a plethora of cost-sensitive methods have been proposed for learning on data when different types of misclassification errors incur different costs. Our contribution is a unifying framework that provides a comprehensive and insightful overview on cost-sensitive ensemble methods, pinpointing their differences and similarities via a fine-grained categorization. Our framework contains natural extensions and generalisations of ideas across methods, be it AdaBoost, Bagging or Random Forest, and as a result not only yields all methods known to date but also some not previously considered.publishedVersio

    The diversity-accuracy duality in ensembles of classifiersd

    Get PDF
    Horizontal scaling of Machine Learning algorithms has the potential to tackle concerns over the scalability and sustainability of Deep Learning methods, viz. their consumption of energy and computational resources, as well their increasing inaccessibility to researchers. One way to enact horizontal scaling is by employing ensemble learning methods, since they enable distribution. There is a consensus on the point that diversity between individual learners leads to better performance, which is why we have focused on it as the criterion for distributing the base models of an ensemble. However, there is no standard agreement on how diversity should be defined and thus how to exploit it to construct a high-performing classifier. Therefore, we have proposed different definitions of diversity and innovative algorithms which promote it in a systematic way. We have first considered architectural diversity with an algorithm called WILDA: Wide Learning of Diverse Architectures. In a distributed fashion, this algorithm evolves a set of neural networks that are pretrained on the target task and diverse w.r.t. architectural feature descriptors. We have then generalised this notion by defining behavioural diversity on the basis of the divergence between the errors made by different models on a dataset. We have defined several diversity metrics and used them to guide a novelty search algorithm which builds an ensemble of behaviourally diverse classifiers. The algorithm promotes diversity in ensembles by explicitly searching for it, without selecting for accuracy. We have then extended this approach with a surrogate diversity model, which reduces the computational burden of this search by eliminating the need to train each network in the population with stochastic gradient descent at each step. These methods have enabled us to investigate the role that both architectural and behavioural diversity play in contributing to the performance of an ensemble. In order to study the relationship between diversity and accuracy in classifier ensembles, we have then proposed several methods that extend the novelty search with accuracy objectives. Surprisingly, we have observed that, with the highest-performing diversity metrics, there is an equivalence between searching for diversity objectives and searching for accuracy objectives. This contradicts widespread assumptions that a trade-off must be found by balancing diversity and accuracy objectives. We therefore posit the existence of a diversity-accuracy duality in ensembles of classifiers. An implication of this is the possibility of evolving diverse ensembles without detriment to their accuracy, since it is implicitly ensured.Open Acces

    Adaptive Algorithms For Classification On High-Frequency Data Streams: Application To Finance

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the nonstationary nature and the likelihood of drastic structural changes in financial markets. The most recent literature suggests the use of conventional machine learning and statistical approaches for this. However, these techniques are unable or slow to adapt to non-stationarities and may require re-training over time, which is computationally expensive and brings financial risks. This thesis proposes a set of adaptive algorithms to deal with high-frequency data streams and applies these to the financial domain. We present approaches to handle different types of concept drifts and perform predictions using up-to-date models. These mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The core experiments of this thesis are based on the prediction of the price movement direction at different intraday resolutions in the SPDR S&P 500 exchange-traded fund. The proposed algorithms are benchmarked against other popular methods from the data stream mining literature and achieve competitive results. We believe that this thesis opens good research prospects for financial forecasting during market instability and structural breaks. Results have shown that our proposed methods can improve prediction accuracy in many of these scenarios. Indeed, the results obtained are compatible with ideas against the efficient market hypothesis. However, we cannot claim that we can beat consistently buy and hold; therefore, we cannot reject it.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Gustavo Recio Isasi.- Secretario: Pedro Isasi Viñuela.- Vocal: Sandra García Rodrígue

    Computer simulations of martensitic transition in zirconium

    Get PDF

    Imputation of missing sub-hourly precipitation data in a large sensor network : a machine learning approach

    Get PDF
    This research was supported by a UKRI-NERC Constructing a Digital Environment Strategic Priority grant “Engineering Transformation for the Integration of Sensor Networks: A Feasibility Study” [NE/S016236/1 & NE/S016244/1].Peer reviewedPostprin

    Interpretable Models Capable of Handling Systematic Missingness in Imbalanced Classes and Heterogeneous Datasets

    Get PDF
    Application of interpretable machine learning techniques on medical datasets facilitate early and fast diagnoses, along with getting deeper insight into the data. Furthermore, the transparency of these models increase trust among application domain experts. Medical datasets face common issues such as heterogeneous measurements, imbalanced classes with limited sample size, and missing data, which hinder the straightforward application of machine learning techniques. In this paper we present a family of prototype-based (PB) interpretable models which are capable of handling these issues. The models introduced in this contribution show comparable or superior performance to alternative techniques applicable in such situations. However, unlike ensemble based models, which have to compromise on easy interpretation, the PB models here do not. Moreover we propose a strategy of harnessing the power of ensembles while maintaining the intrinsic interpretability of the PB models, by averaging the model parameter manifolds. All the models were evaluated on a synthetic (publicly available dataset) in addition to detailed analyses of two real-world medical datasets (one publicly available). Results indicated that the models and strategies we introduced addressed the challenges of real-world medical data, while remaining computationally inexpensive and transparent, as well as similar or superior in performance compared to their alternatives
    corecore