65,289 research outputs found

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo.

    Get PDF
    Experiments were designed to study the effect of systemically administered IL-5 on local eosinophil accumulation induced by the intradermal injection of the chemokine eotaxin in the guinea pig. Intravenous interleukin-5 (IL-5) stimulated a rapid and dramatic increase in the numbers of accumulating eosinophils induced by i.d.-injected eotaxin and, for comparison, leukotriene B4. The numbers of locally accumulating eosinophils correlated directly with a rapid increase in circulating eosinophils: circulating eosinophil numbers were 13-fold higher 1 h after intravenous IL-5 (18.3 pmol/kg). This increase in circulating cells corresponded with a reduction in the number of displaceable eosinophils recovered after flushing out the femur bone marrow cavity. Intradermal IL-5, at the doses tested, did not induce significant eosinophil accumulation. We propose that these experiments simulate important early features of the tissue response to local allergen exposure in a sensitized individual, with eosinophil chemoattractant chemokines having an important local role in eosinophil recruitment from blood microvessels, and IL-5 facilitating this process by acting remotely as a hormone to stimulate the release into the circulation of a rapidly mobilizable pool of bone marrow eosinophils. This action of IL-5 would be complementary to the other established activities of IL-5 that operate over a longer time course

    Tissue eosinophilia and eosinophil degranulation in Riedel's invasive fibrous thyroiditis.

    Get PDF
    The etiology of Riedel's invasive fibrous thyroiditis (IFT) has remained obscure. This rare disorder has been confused in the past with the more common fibrous variant of Hashimoto's disease. The typical histological features of IFT, in particular the presence of an invasive fibrosclerotic process in conjunction with a prominent chronic inflammatory infiltrate, suggest that the release of fibrogenic cytokines and other factors from these cellular infiltrates may play an important role in the pathogenesis of this condition. Our observations in routinely processed tissue sections obtained from patients with documented IFT of striking tissue eosinophilia led us to hypothesize that eosinophils and their products may play a role in the evolution of this disease. Immunofluorescence staining with affinity-purified polyclonal rabbit antibody directed against human eosinophil granule major basic protein revealed marked tissue eosinophilia and abundant extracellular deposition of major basic protein in all specimens from 16 patients with IFT. By contrast, only occasional eosinophils and no extracellular major basic protein were detected in control thyroid tissues obtained from patients with multinodular goiter, Graves' disease, Hashimoto's disease, and normal thyroid tissue. The presence of marked eosinophil infiltration and extracellular major basic protein deposition in IFT and other associated fibrosclerotic conditions suggests a role for eosinophils and their products in propagating the fibrogenesis seen in IFT

    High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability.

    Get PDF
    The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease

    A monoclonal antibody recognizing very late activation antigen-4 inhibits eosinophil accumulation in vivo.

    Get PDF
    Using an in vivo test system, the role of the β1 integrin very late activation antigen-4 (VLA-4) in eosinophil accumulation in allergic and nonallergic inflammatory reactions was investigated. Eosinophil infiltration and edema formation were measured as the local accumulation of intravenously injected 111In-labeled eosinophils and 125I-human serum albumin. The inflammatory reactions investigated were a passive cutaneous anaphylaxis (PCA) reaction and responses elicited by intradermal soluble inflammatory mediators (platelet-activating factor, leukotriene B4, C5a des Arg), arachidonic acid, and zymosan particles. The in vitro pretreatment of 111In-eosinophils with the anti-VLA-4 monoclonal antibody (mAb) HP1/2, which crossreacts with guinea pig eosinophils, suppressed eosinophil accumulation in all the inflammatory reactions investigated. Eosinophil accumulation was inhibited to the same extent when mAb HP1/2 was administered intravenously. It is interesting that HP1/2 had no effect on stimulated edema formation. These results suggest a role for VLA-4 in eosinophil accumulation in vivo and indicate a dissociation between the inflammatory events of eosinophil accumulation and edema formation

    A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae

    Get PDF
    The aim of this study was to explore the mechanisms of resistance against invading Ascaris suum larvae in pigs. Pigs received a low dose of 100 A. suum eggs daily for 14 weeks. This resulted in a .99% reduction in the number of larvae that could migrate through the host after a challenge infection of 5000 A. suum eggs, compared to naı¨ve pigs. Histological analysis at the site of parasite entry, i.e. the caecum, identified eosinophilia, mastocytosis and goblet cell hyperplasia. Increased local transcription levels of genes for IL5, IL13, eosinophil peroxidase and eotaxin further supported the observed eosinophil influx. Further analysis showed that eosinophils degranulated in vitro in response to contact with infective Ascaris larvae in the presence of serum from both immune and naı¨ve animals. This effect was diminished with heat-inactivated serum, indicating a complement dependent mechanism. Furthermore, eosinophils were efficient in killing the larvae in vitro when incubated together with serum from immune animals, suggesting that A. suum specific antibodies are required for efficient elimination of the larvae. Together, these results indicate an important role for eosinophils in the intestinal defense against invading A. suum larvae

    PENGARUH PEMBERIAN EKSTRAK KUNYIT (Curcuma longa) TERHADAP JUMLAH EOSINOFIL DI JARINGAN PARU PADA PENYAKIT ALERGI : Studi Eksperimental pada Mencit BALB/c yang Diinduksi Ovalbumin

    Get PDF
    Background: Turmeric (Curcuma longa) is a spice that is often used as traditional medicine. The active ingredient of turmeric, curcumin, acts as an anti-inflammatory on the allergic reaction. Allergy is not a deadly disease, but the disease can be a global health and social economic problems. Aim: This study aimed to prove that turmeric extract influence on the number of eosinophils in the lung tissue of BALB/c mice induced by ovalbumin. Method: This was a true experimental study with post test only controlled group design. The subjects were 18 BALB/c mice, randomly divided into three groups: a negative control group, a positive control group induced by ovalbumin, and a treatment group induced by ovalbumin and administered with turmeric extract at a dose of 100 mg/kgBW. The extract was orally given with sonde for 16 days. At the end of the study mice were terminated, the lung was taken for histopathological examination, and the number of eosinophils calculated in the peribronkhial tissue of lung. Result: This study showed significant differences between the negative control group, the positive control group, and the treatment group (p=0,000). The mean of the number of eosinophils was significantly higher in the positive control group compared to the negative control group (p=0,000) dan significantly lower in the treatment group compared to the positive control group (p=0,016). Conclusion: The turmeric extract can reduce the number of eosinophils in the lung tissue of mice induced by ovalbumin. Keywords: Turmeric extract, eosinophil, mice model of allerg

    Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1

    Get PDF
    Galectin-1 (Gal-1), a glycan-binding protein with broad antiinflammatory activities, functions as a proresolving mediator in autoimmune and chronic inflammatory disorders. However, its role in allergic airway inflammation has not yet been elucidated. We evaluated the effects of Gal-1 on eosinophil function and its role in a mouse model of allergic asthma. Allergen exposure resulted in airway recruitment of Gal-1-expressing inflammatory cells, including eosinophils, as well as increased Gal-1 in extracellular spaces in the lungs. In vitro, extracellular Gal-1 exerted divergent effects on eosinophils that were N-glycan- And dose-dependent. At concentrations ≤0.25 μM, Gal-1 increased eosinophil adhesion to vascular cell adhesion molecule-1, caused redistribution of integrin CD49d to the periphery and cell clustering, but inhibited ERK(1/2) activation and eotaxin-1-induced migration. Exposure to concentrations ≥1 μM resulted in ERK(1/2)- dependent apoptosis and disruption of the F- Actin cytoskeleton. At lower concentrations, Gal-1 did not alter expression of adhesion molecules (CD49d, CD18, CD11a, CD11b, L-selectin) or of the chemokine receptor CCR3, but decreased CD49d and CCR3 was observed in eosinophils treated with higher concentrations of this lectin. In vivo, allergen-challenged Gal-1-deficient mice exhibited increased recruitment of eosinophils and CD3+ T lymphocytes in the airways as well as elevated peripheral blood and bone marrow eosinophils relative to corresponding WT mice. Further, these mice had an increased propensity to develop airway hyperresponsiveness and displayed significantly elevated levels of TNF-α in lung tissue. This study suggests that Gal-1 can limit eosinophil recruitment to allergic airways and suppresses airway inflammation by inhibiting cell migration and promoting eosinophil apoptosis.Fil: Ge, Xiao Na. University of Minnesota; Estados UnidosFil: Ha, Sung Gil. University of Minnesota; Estados UnidosFil: Greenberg, Yana G.. University of Minnesota; Estados UnidosFil: Rao, Amrita. University of Minnesota; Estados UnidosFil: Bastan, Idil. University of Minnesota; Estados UnidosFil: Blidner, Ada Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rao, Savita P.. University of Minnesota; Estados UnidosFil: Rabinovich, Gabriel Adrián. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Sriramarao, P.. University of Minnesota; Estados Unido
    • …
    corecore