137 research outputs found

    A Secure Random Number Generator with Immunity and Propagation Characteristics for Cryptography Functions

    Get PDF
    Cryptographic algorithms and functions should possess some of the important functional requirements such as: non-linearity, resiliency, propagation and immunity. Several previous studies were executed to analyze these characteristics of the cryptographic functions specifically for Boolean and symmetric functions. Randomness is a requirement in present cryptographic algorithms and therefore, Symmetric Random Function Generator (SRFG) has been developed. In this paper, we have analysed SRFG based on propagation feature and immunity. Moreover, NIST recommended statistical suite has been tested on SRFG outputs. The test values show that SRFG possess some of the useful randomness properties for cryptographic applications such as individual frequency in a sequence and block-based frequency, long run of sequences, oscillations from 0 to 1 or vice-versa, patterns of bits, gap bits between two patterns, and overlapping block bits. We also analyze the comparison of SRFG and some existing random number generators. We observe that SRFG is efficient for cryptographic operations in terms of propagation and immunity features

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research

    Compositional Mining of Multi-Relational Biological Datasets

    Get PDF
    High-throughput biological screens are yielding ever-growing streams of information about multiple aspects of cellular activity. As more and more categories of datasets come online, there is a corresponding multitude of ways in which inferences can be chained across them, motivating the need for compositional data mining algorithms. In this paper, we argue that such compositional data mining can be effectively realized by functionally cascading redescription mining and biclustering algorithms as primitives. Both these primitives mirror shifts of vocabulary that can be composed in arbitrary ways to create rich chains of inferences. Given a relational database and its schema, we show how the schema can be automatically compiled into a compositional data mining program, and how different domains in the schema can be related through logical sequences of biclustering and redescription invocations. This feature allows us to rapidly prototype new data mining applications, yielding greater understanding of scientific datasets. We describe two applications of compositional data mining: (i) matching terms across categories of the Gene Ontology and (ii) understanding the molecular mechanisms underlying stress response in human cells

    Multi-layered model of individual HIV infection progression and mechanisms of phenotypical expression

    Get PDF
    Cite as: Perrin, Dimitri (2008) Multi-layered model of individual HIV infection progression and mechanisms of phenotypical expression. PhD thesis, Dublin City University

    Efficient symbolic model checking of concurrent systems

    Get PDF
    Design errors in software systems consisting of concurrent components are potentially disastrous, yet notoriously difficult to find by testing. Therefore, more rigorous analysis methods are gaining popularity. Symbolic model checking techniques are based on modeling the behavior of the system as a formula and reducing the analysis problem to symbolic manipulation of formulas by computational tools. In this work, the aim is to make symbolic model checking, in particular bounded model checking, more efficient for verifying and falsifying safety properties of highly concurrent system models with high-level data features. The contributions of this thesis are divided to four topics. The first topic is symbolic model checking of UML state machine models. UML is a language widely used in the industry for modeling software-intensive systems. The contribution is an accurate semantics for a subset of the UML state machine language and an automatic translation to formulas, enabling symbolic UML model checking. The second topic is bounded model checking of systems with queues. Queues are frequently used to model, for example, message buffers in distributed systems. The contribution is a variety of ways to encode the behavior of queues in formulas that exploit the features of modern SMT solver tools. The third topic is symbolic partial order methods for accelerated model checking. By exploiting the inherent independence of the components of a concurrent system, the executions of the system are compressed by allowing several actions in different components to occur at the same time. Making the executions shorter increases the performance of bounded model checking. The contribution includes three alternative partial order semantics for compressing the executions, with analytic and experimental evaluation. The work also presents a new variant of bounded model checking that is based on a concurrent instead of sequential view of the events that constitute an execution. The fourth topic is efficient computation of predicate abstraction. Predicate abstraction is a key technique for scalable model checking, based on replacing the system model by a simpler abstract model that omits irrelevant details. In practice, constructing the abstract model can be computationally expensive. The contribution is a combination of techniques that exploit the structure of the underlying system to partition the problem into a sequence of cheaper abstraction problems, thus reducing the total complexity

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore