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ABSTRACT 
 

Assembly sequence planning (ASP) is a vital part in reduction of cost and lead time of a 

product that needs to be assembled. It involves a determination of assembly process often 

coupled with constraints that need also to be addressed. In order to resolve ASP optimisation 

problems, it was reported that genetic algorithms (GA) were used for gaining an optimal 

solution for sequence-dependent or non-sequence-dependent job scheduling of product 

assembly in order to maximise production volume and minimise production delay. A latest 

development through a literature review indicates that glowworm swarm optimisation 

algorithm (GSOA) can also be used effectively and efficiently for solving system engineering 

optimisation problems in terms of such as non-linear equation scheduling. This thesis presents 

an investigation of using the GA and the GSOA approaches, respectively to seek an optimal 

solution from possible assembly sequences of a car engine pump valve and a ball pen as a 

case studies. The research work was conducted based on a comparative result of minimal 

assembly time by searching an optimal assembly sequence using these two algorithms, which 

were implemented in a JAVA program. The research outcomes show that the GSOA 

outperforms the GA in generating an optimal assembly sequence with a minimal assembly 

time. It also demonstrates that the GSOA can be a useful decision-making tool for searching 

an optimal or near-optimal assembly sequence of a product for product designers.  
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CHAPTER 1 

1.1. INTRODUCTION 
 

When a product needs to be assembled, complexity of assembling a product may lead to 

possible assembly sequences in various forms that usually need to be pre-defined by product 

designers at the early design stage aimed at a reduction of assembly time and therefore 

production costs. This is particularly crucial for many small-medium enterprises (SME) that 

rely on assembly of products to survive in the fierce competitions of the global market. Apart 

from the effect of product design, assembly time is largely subject to its assembly precedence, 

accessibility, constrains, geometry and number of assembly components. It is helpful to seek 

an optimal assembly sequence for a product that has the shortest assembly time. However, it 

can be difficult to find a quick solution using heuristic approaches. For instance, although 

genetic algorithms (GA) were reported as a cost-effective way for solving manufacturing 

optimisation problems in machining or assembly sequences, a recent literature review shows 

a latest development of the glowworm swarm optimisation algorithm (GSOA) that may also 

be used effectively and efficiently for resolving some system engineering optimisation 

problems on such as non-linear equations and scheduling. 

The glowworm swarm optimisation algorithm (GSOA) was introduced by Krishnanand and 

Ghose (2006a). GSOA was aiming to solve engineering optimisation problems, its name was 

derived from the courtship behaviour of an insect called a glowworm. In nature, these 

glowworms are able to modify the amplitude of their light emission (Luciferin) and use the 

bioluminescence glow for different purposes. GSOA is involved in a deployment of 

glowworms, luciferin-update, movement and local-decision domain. Th location and 

movement direction of these glowworms can be deremind by the luciferin value. The GSOA 

is useful for a simultaneous search of multiple optimal values usually based on different 
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objective functions (Huang and Zhou 2012, He et al. 2013(a)(b), Marinaki and Marinakis 

2016, Yang et al. 2010 and Yu and Yang 2013). 

1.2. RESEARCH RATIONALE 
 

In an attempt to provide solutions to assembly sequence problems, some optimisation 

algorithms have been developed. Notwithstanding, some of the existing common limitations 

of these algorithms include long computational time, cost, complexity.  

This research study seeks to solve these limitations through a development of the following 

importance: 

▪ A suitable optimisation algorithm that can be used to solve a problem of assembly sequence 

optimisation for a specified product with a flexible constraint degree that can be specified 

according to user needs will be developed. 

▪ The users’ desirable characteristics of products include portability, ease of maintenance 

and good durability increase as manufacturers tend to improve their products. 

Consequently, these properties often result into product complexity. In an attempt to solve 

this problem of product complexity as a main contribution to knowledge, products have 

been categorised into three basic types based on the number of their expected assembly 

parts: very simple, simple and complex, with the assigned components constraints for better 

programming. 

▪ Due to the exponential increase in the world population resulting into high products 

demand. Hence, there is need for GA and a new optimisation approach that has not been 

used for solving assembly sequence problem and that could carry out huge assembly 

sequence assignments within micro-seconds efficiently. Thus, in this research GSOA will 

be used beside GA for solving assembly sequence problem which is the assembly sequence 

time. 
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▪ Furthermore, computational time is a function of cost. The computational time increases 

with increasing cost. 

▪ Therefore, a more flexible GA and GSOA are hereby anticipated within the scope and focus 

of this research study. 

1.3. RESEARCH OBJECTIVES 
 

The aim of the present thesis involves an investigation of using the GA and the GSOA 

approaches, respectively to seek an optimal assembly time from possible assembly sequences 

of a specified product with a flexible constraint degree that can be specified according to user 

needs. In this research, two products will be used as case studies; 1) a car engine pump valve 

and 2) a ball pen. Thus, the research objectives were proposed as follows: 

1. Understand the nature of product assembly, assembly sequence (AS) techniques, related 

issues and carry out a comprehensive literature study in optimisation methods with the 

focus on GA and GSOA in relevance to assembly sequence of products. 

2. To develop a novel optimisation algorithm that can be used to reduce assembly sequence 

time for a specified product with a flexible constraint degree that can be specified 

according to user needs. 

3. Defining the effectiveness by implementing GA and GSOA, respectively into a Java 

used for generating an assembly sequence optimisation of a specified product as a case 

study or experiments. 

4. Clarify efficiency by comparing GSOA with GA in terms of comparative results through 

experiments. 

5. Test and validate research outcomes using feasible case studies. 

Within the boundary of the Research Objectives, seven research questions are raised and 

highlighted below: 

1.    What are the most effective factors that may impact on assembly sequence of products? 
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2.  What the optimal solutions that can be used in solving assembly sequence problem? 

3. What is the appropriate optimisation tools that can be used in the current research to 

solve the assembly sequence time? 

4. How to employ the GA and GSOA approaches as an aid for solving assembly sequence 

problem? 

5. What a suitable programming language that can works with GA and GSOA? 

6. Are the GA and GSOA models valid? 

7. Is the best approach suitable to solve another product problem? 

1.4. SCOPE OF THE RESEARCH 
 

This research was carried out based on the following hypothesis; 

1. Investigating GA and GSOA algorithms in solving the AS optimisation problems based 

on a comprehensive literature review. 

2. Implement the proposed optimisaton algorithms in programming. 

3. Apply the developed optimsation algorithms into case studies. 

4. Analysis of comparative results using these two methods with the focus on the latest 

development of the GOSA approach. 

1.5. RESEARCH METHODOLOGY 
 

Some methods could be used in solving assembly sequence problem such as GA and GSOA. 

Both optimisation approaches will be implemented into JAVA as an effective research tool to 

carry out this research work. In this research, the development of three steps approach is an 

anticipated methodology.  

Basically, this approach involves the following steps. 
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i. Representations. This is broadly categorised into implicit and explicit. The implicit 

representations display precedence relations between the assembly parts implicitly, while 

the explicit depicts products assembly comprising precedence constraints such as graphical 

representation using liaison graphs.  

ii. Assembly sequences generation. The most important issue here is the suitability of the 

generated sequences. 

iii. Evaluation and optimisation. This is will be done by using GA and GSOA approaches. 

Before proves its effectiveness and efficient, some set of assumptions are required, these 

assumptions are considered within this research work, which are the following: 

a) Assembly product parts are inflexible. 

b) Establishment of all the component contacts during assembly.  

c) Assembly procedure is monotone, in order and sequentially well arranged. 

The testing and validation of GA and GSOA techniques and research outcomes through case 

studies approach, using a car engine pump valve and a ball pen, respectively will be 

conducted. 

1.6. ROADMAP OF CHAPTERS 
 

The thesis is structured in 7 chapters and 3 appendices: 

Chapter 1: Introduction 

This chapter provides an introduction, the aim and objectives of this research work and the 

research questions. 
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Chapter 2: ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION 

The chapter focuses on the state of the art in assembly sequence planning. It critically studies 

various methods developed to solve and optimise the AS, as well as point out the limitation of 

each method. 

Chapter 3: GENETIC ALGORITHMS FOR THE OPTIMISATION OF ASSEMBLY 

SEQUENCES 

This chapter introduces GAs and their applications as optimisation tools for solving 

engineering problems. A special attention is reserved to combinatorial problems to handle 

constraints. Methods, techniques and particular issues used in the GA designed for solving the 

ASP are presented and justified. 

Chapter4: THE REPRESENTATION OF ASSEMBLY SEQUENCES AS 

CHROMOSOMES 

This chapter is dedicated to the modelling and representation of assembly sequences using 

chromosomes. Generally, the literature in this field encodes assembly sequences under 

constraints within the same representation, the literature review of those topics is presented in 

this chapter. 

Chapter 5: GLOWWORM SWARM ALGORITHM FOR THE OPTIMISATION OF 

ASSEMBLY SEQUENCE 

This chapter presented GSOA for the optimisation of AS. GSOA is suitable for a concurrent 

search of a number of solutions. A number of researchers utilised GSOA in different areas, for 

example; clustering and various optimisation problems. In addition, it has been observed that 

the literature showed that GSO is better than PSO, ACO and GA. 
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Chapter 6: A CASE STUDIES USING A GENETIC ALGORITHM AND A 

GLOWWORM SWARM ALGORITHM FOR SOLVING AN ASSEMBLY 

SEQUENCE OPTIMISATION PROBLEM 

This chapter applied GA and GSOA approaches for solving an assembly sequence optimisation 

problem for a car engine pump valve and a ball pen. 

Chapter 7: DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

The final chapter includes a discussion and conclusions of the research work, with an overview 

of research rationales, aims, research method used and the overall findings of this study. It also 

suggests recommendations for future work and enhancement. 

1.7. SUMMARY 
 

This chapter presents an outline by addressing the ASP problem and optimisation techniques 

through a literature review. Assembly sequence needs to be optimised partially because of 

reduction of lead time and manufacturing costs. The chapter also outlines a scope of the 

proposed research work with aims and objectives to be provided as the direction and methods 

used for this study. 
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CHAPTER 2 

ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION 

2.1. INTRODUCTION 
 

This chapter presenting product assembly and optimisation, also, addresses issues by 

examining the different methods for solving the assembly sequence planning problems, 

discuss their limitations and other issues related, representation, modelling and optimisation 

are researched in subsequent chapters. Section 2.3 addresses types of assembly plans. Section 

2.4 demonstrates assembly sequence optimization. Section 2.5 describes the solution space 

and character of the assembly sequence problem. Section 2.6 details approaches for solving 

assembly sequence planning problems and their analysis and justification being carried out in 

this research. Section 2.7 focuses on the illustration of various optimisation approaches for 

the assembly sequence planning to be analysed critically, the limitations are also discussed. 

ASP optimisation is, in this research, is the main issue to investigate in order to determine the 

near optimum or optimum sequence of assembling a product. The research methodology used 

in this research will be based on a comprehensive literature study to identify the suitable 

optimisation techniques for solving the assembly sequence of a product. 

2.2. PRODUCT ASSEMBLY AND OPTIMISATION 
 

If a product has more than one component, then it must be assembled. Product assembly is 

often involved in final operations of manufactured products before being shipped to either the 

next manufacturing phase or directly to the consumer. Figure 2.1. shows a schema related to 

issues of assembly. 
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Figure 2.1. Product development, production planning and assembly  

 

Optimisation of a product design can be made during the conceptual design stage. The key 

principle from the perspective of assembly is to ensure product assembly can be achieved 

easier by reducing complexity in terms of number of parts and operations that are needed to 

complete assembly tasks. In production planning, optimisation involves a determination of 

locations and allocations of resources of assembly lines/cell plans attempting to identify an 

optimal assembly sequence of a product with maximizing efficiency or productivity with 

minimal costs. Optimisation can be carried out via concurrent engineering (CEng) or serial 

engineering (SEng) as shown in Figure 2.2. When a product’s development is fragmented or 

when there is little clarity for determining assembly facilities, SEng often finds favor.  
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Figure 2.2. Optimisation in Concurrent Engineering and Serial Engineering (Marian at al. 

2006) 

 

CEng, on the other hand, provides more direct and definitive optimisation for a well specified 

and identified assembly or manufacturing environment. Also, there’s a likelihood of co-

evolutionary optimisation for either a single-criteria or multi-criteria optimisation. Co-

evolution occurs because the different design problems do not have rigid specifications due 

to the fluidity of the design environment as well as people changing their minds. Co-

evolutionary optimisation, Figure 2.3. has in optimisation criterion a moving and target states 

(both a problem and solution). Optimisation continues to evolve once a criterion optimisation 

is concluded, thus demanding further or another optimisation. When optimisation for different 

criteria cannot be linked together, then optimisation for once criterion might affect other 

criteria, therefore requiring a number of iterations. The major difference between CEng and 

SEng is that in CEng, several iterations and a number of smaller optimisations needs 

considering while in SEng, optimisation is done once representative of all known criteria. 

Therefore, optimising in assembly can be carried out for either a composite of single criterion. 

Moreover, ‘freezing’ the optimisation conditions for CEng during the process of optimisation 
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results in no difference between SEng and CEng in the application of co-evolutionary 

optimisation. 

 

Figure 2.3. Co-evolutionary optimisation 

 

2.2.1. Design for assembly 
 

According to Boothroyd, Dewhurst et al. (1994), there is a widespread acceptance that a 

product design determines over 70% of a product final cost. Thus, Design for Assembly 

(DFA) is an important process in reduction of assembly costs and lead time Molloy and 

Tilley (1998) and Nof et al. (1997) list the principles associated with DFA: 

1. Reduction of the number of part: fewer number of parts help reduce assembly 

operations and, in many cases, reduces the cycle time as well.  

2. Design for easy insertion: for example, using suitable chamfers and tolerances on 

parts used for mating. 

3. Ease of handling: parts are designed for ease of handling during assembly 

processes. 

4. Standardized processes: promotion of usage of standard parts. 

 

2.2.2. Assembly sequence planning 
 

Wolter (1988) defined the assembly planning as pre-specification of assembly tasks and 
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identification of the optimal sequence. It is important to develop a proper sequence as it 

affects different aspects of the product design and its process of assembly. It is also important 

to define assembly sequence because failure to do so can prove to be costly and it affects 

productivity. Operation sequence is a vital factor to consider in the determination of the cost 

of assembly (Nof et al. 1997). In other terms, an assembly sequence problem (ASP) can be 

translated as the presence of a n-part product problem under assembly constrains. ASP can 

be classified by type and level of detail in both the output (plan of assembly) and input 

(product description). 

2.3. TYPES OF ASSEMBLY PLANS 
 

In Figure 2.4., for simplicity purposes, let us consider assemblies in 2D that are impossible 

to build by 2D monotone, linear and sequential assembly sequences and these properties are 

best described below (Wolter 1991, Jones et al. 1997 and Jones et al. 1998): 

Monotone (M): one of the properties of assembly sequence whereby each component is 

inserted into its final location relative to the assembly. In such an instance, the n-part 

assembly is executed in n-1 operations. An example of an assembly that cannot be 

assembled using a monotone assembly sequence is illustrated in Figure 2.4d.  

Linear (L): To the partial assembly, all parts are added one at a time, meaning that it does 

not form subassemblies. A product that cannot be assembled by a linear assembly sequence 

as shown in Figure 2.4c.  

Sequential (S): If the plan can be broken down into the two-handed plan (where only one 

element can be added at each step). Below is Figure 2.4b. which demonstrates an assembly, 

which in 2D must be assembled through a coordinated movement of the three parts, 

therefore, not requiring a sequence. 

Coherent (C): is a property of assembly sequence whereby each component inserted 
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effectively touches other components inserted earlier as shown in Figure 2.4a. 

 

      

           

  a    b   c   d 

Figure 2.4. Assemblies which cannot be assembled by: (a) a contact-coherent plan; (b) a 

sequential plan; (c) a linear plan; (d) a monotone plan (Jones et al. 1998) 

An assembly plan can be coherent or non-coherent, sequential or non-sequential, linear or 

non-linear, monotone or non-monotone, or any combination of the above situations. Table 2.1 

shows an example of 16 possible assembly sequence. 

Table 2.1. Types of assembly sequences plans (Marian et al. 2003) 

 Coherent Sequential Linear Monotone 

1 NO NO NO NO 

2 NO NO NO YES 

3 NO NO YES NO 

4 NO NO YES YES 

5 NO YES NO NO 

6 NO YES NO YES 

7 NO YES YES NO 

8 NO YES YES YES 

9 YES NO NO NO 

10 YES NO NO YES 

11 YES NO YES NO 

12 YES NO YES YES 

13 YES YES NO NO 

14 YES YES NO YES 

15 YES YES YES NO 

16 YES YES YES YES 
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An assembly sequence planner has to consider all these situations. As most planners tend to 

limit the sequences, C-S-L-M is then perceived as a significant limitation of an assembly 

planner’s capabilities. 

2.4. ASSEMBLY SEQUENCE OPTIMISATION   
  

An engineer assembly sequence is often subject to constraints of time and production cost. 

It becomes increasingly important to structure the optimisation of assembly sequences by 

overlooking certain assembly sequences that can prove to be expensive and considering the 

factors that may affect an assembly sequence including the structure and nature of the 

product. Any change in any of the above factors can also alter the assembly plan and require 

appropriate adjustment (Kavraki et al. 1993).   

It is favourable to have a problem-oriented approach whenever solving or optimising the 

problem of ASP in all its diversity, generality and complexity. Solution-based methods are 

used in solving ASP problems through the incorporation of artificially limiting hypothesis. 

The advantage of the artificially limiting hypothesis is that the solution is representative. This 

hypothesis can be impossible to generalize if it requires a change in the problem. 

2.5. SOLUTION SPACE AND CHARACTER OF THE ASSEMBLY 

SEQUENCE PLANNING PROBLEM 
 

ASP can be a highly constrained, large scale and combinatorial problem. The difficulty of 

identifying an optimal solution is bound to the problem that is solved via an exhaustive search 

proportionate to the size of the solution space. When a tree search that divides the solution 

space is implemented, it is possible that the complexity might increase roughly with the 

increase in size of the solution space (Wolter, 1988). Solution space is identified by the 

number of potential assembly sequence in the ASP where the components of the solution 

space encompasses all the possibilities through which assembly of an n-part product can be 

made possible.  
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According to Wolter (1988), components might be moved via different temporary positions, 

potential sequential non-monotone plans are infinite. It is wise to note that ASP can be a 

combinatorial problem with a large scale: 

➢ Not every component will be connected to any other component; 

➢ The sequence cannot begin with any component; 

➢ No dignified connection can be done between two components at a single time. 

2.6. APPROACHES USED TO SOLVE THE ASP PROBLEM 
 

Several methodologies and techniques have been developed to solve ASP problems. There 

are four general methods, which were presented by Delchambre (1992) aimed at generating 

assembly sequences (as illustrated in Figure 2.5.):  

• The first method contains the three-step approach by definition of precedence 

constraints of assembly sequences.  

• The second method requires the product to receive division into subassemblies which 

are in turn generated by the use of simple enough rules.  

• The third method inloves the Expert Systems for generating specific assemblies.  

• The fourth method is the Case-based reasoning approach.  

The third and fourth methods and sometimes their combination cover virtually all 

methodologies incorporated in the solution of ASP problems. 

Figure 2.5. shows the general methods for solving ASP problems, and all these methods are 

explained through the next 3 sub-sections. 
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Figure 2.5. General methods for solving ASP problems 

2.6.1. The Three-Step Approach 
 

This approach often precludes some of feasible assembly sequences as it must satisfy 

precedence and constraints. The three steps include; 

i. Defining the precedence constraints; 

ii. Generation of all feasible sequences of assembly; 

iii. Selection of an assembly sequence based on defined criteria. 

The three-step approach is the most widely used method based on the following assumptions 
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(Golabi 1996, Jones et al. 1997, Wolter 1990a, Wolter 1990b): 

a) The process of assembly is sequential; 

b) The process of assembly is monotone; 

c) The components are rigid; 

d) All contacts between two components are established. 

The details for the Three Steps are discussed below: 

 

 Defining precedence constraints - infeasible assembly sequences are a result of the 

determination of precedence constraints; 

• The exhaustive approach – a methodology to identify all precedence relations in 

the midst of various assembly connections based on the connection graph of the 

assembly (Bourjault 1984). By considering two sets of questions (what’s the 

possibility of establishing a connection Li when the connection Lj has already been 

established? And what’s the possibility of establishing a connection Li when the 

connection Lj has not already been established?). Bourjault eliminated the prohibited 

partial states via a purely combinatorial computation. The operator needs answer the 

2x (L2 –L) questions for L connections within an assembly. However, this approach 

faces two distinct disadvantages; the first is due to the constant increase in number 

of questions, the number of parts which can be applied to such assemblies is limited. 

The second disadvantage is that it is prone to errors since the operator can mix a 

subjective analysis with a geometric analysis.  

• The simplified approach – this approach identified by De Fazio and Whitney (1987) 

utilises two questions to be asked; “Which connection that cannot be established 
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before connection L?” and “Which connection must be established before connection 

Li?”. In this case, 2L questions may be asked, where precedence relations do not take 

alternative constraints into account, thus omitting some interesting assembly 

sequences (De Fazio and Whitney 1987). 

• The disassembly approach - many researchers use the subassembly approach to 

identify the precedence constraints. Contains information of product parts as well as 

the relations between the two parts. A product assembly or disassembly directly 

implicates the satisfaction of precedence relationships. Precedence constraints might 

fail to be identified until the complete exhaustion of the search has been done (Lee 

1992a; Lee 1992b). Assembly directions and proper relations of contact cannot be 

identified through forward planning. Huang and Lee (1988 and 1991) introduced two 

distinct precedence relations: ‘No Later Than’ (NL) as well as ‘Must Precede’ (MP). 

Based on the component’s geometry, they developed an automatic procedure for 

disassembly to aid in the generation of precedence relations. Wolter (1988) explained 

precedence constraints of a single component that is added during a single operation. 

Homem de Mello and Sanderson (1990) break down the product into subassemblies 

whereby each subset of components (that only have fixed positions) is split into equal 

halves by all means in a feasible disassembly operation. Hyper-archs with three 

nodes represent the initial results; two represent subassemblies derived at via 

decomposition while the other only represents subassemblies. The hyper-archs 
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represent the precedence relations.  Despite this method being the most preferred to 

identify all precedence relations for the product’s assembly, there are setbacks 

associated with it at least in its usage thus far. This method only considers geometric 

and mechanical relations among elements. 

Generation of all feasible sequences of assembly - a number of methods were developed 

for the generation of assembly sequences; this includes graph manipulation, matrix 

manipulation and grouping parts as presented below; 

• Graph manipulation - the purpose of graph manipulation was to capture and store 

the data from connections between components. According to Golabi (1996), graphs 

are used to represent assemblies based on the graph theory techniques that were used 

to determine assembly sequences. For instance, connectivity data is represented by 

connection graphs whereas precedence data regarding the assembly is done by 

AND/OR graphs (Ben-Arieh 1994b), (Bourjault 1984, Homem de Mello and 

Sanderson 1989, Homem de Mello and Sanderson 1990, Gottipolu and Ghosh 1997). 

Manipulation of graphs can be both straightforward and simple especially to model 

feasible assembly sequences. 

• Matrix manipulation - data in connection relation of a product components can be 

stored and expressed in matrix form. For instance, the adjacency matrix of a product 

connection graph can be directly translated in the form of a matrix (n x n matrix for 

an n-component product) (Wilson and Watkins 1990).  
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A 2 x 2matrix can be used to record the mating kind of each individual mating pair, 

where both the row and column are named after the mating pairs. The output matrix 

can then be transformed and analysed by the use of linear algebra techniques and can 

also step up to represent an assembly sequence, according to Gairola (1986). Dini 

and Santochi (1992) explain that precedence constraints of assembly sequences can 

be found through the manipulation of interference and connection matrices. 

• Grouping parts - A group of researchers proposed a simplified approach that may 

avoid sieving through feasible subassemblies as well as their decompositions. Their 

proposal involved classifying a set of components with unique characteristics in a 

subassembly that can be treated as an independent entity during the analysis. The use 

of subassemblies allows the reduction of search space through the early pruning of the 

links considered unnecessary while explicitly defining spatial and temporal 

parallelisms during assembly (Golabi, 1996). 

Lee (1992, 1994)) and Lee, Kim et al. (1993) introduced a new method to evaluate 

and generate assembly plans by a cut-set of liaison graphs. The procedure was aimed 

at determining the assembly partial order. From the graph representing the assembly, 

they extracted preferred subassemblies. The recursive extraction provides the basis for 

the extraction of subassemblies alongside the simultaneous verification of 

disassemblability. A preferred subassembly is where a cluster of components that can 

be disassembled from the original assembly. However, the problem with applying this 
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sort of method is the amount of data that is to be supplied and stored, and there might 

be the impossibility of its automatic extraction. Categorizing components into 

subassemblies is one of the important characteristics of the assembly planner as it 

cannot be overlooked at the expense of the assembly.  

Assembly sequence under certain criteria - Assembly sequences are evaluated using 

optimisation criteria in quantitative terms and the sequence with either the lowest or highest 

value to be chosen. The criterion for one manufacturing company might not be the best fit for 

another. It is also difficult to distinguish between qualitative and quantitative terms and vice 

versa. The operation and construction costs are seen to have significant differences, which are 

associate with weight factors such as assembly costs, difficulty degree and assembly task time 

in the assembly sequence graph (Gottipolu and Ghosh 1997).  

2.6.2. Division into subassemblies 
 

Akagi, Osaki et al. (1980) proposed the classification of the end-product in terms of functional 

units ‘fi.’. All components that constitute the product are categorized into functional units. 

These units are responsible for categorizing components as fastening methods involved in their 

assembly, e.g., riveted and bolted joints, shrinking and pressing fits. The assembly operation 

is divided into work elements responsible for fastening the components in each category. 

Generation of assembly sequences follows three principle rules; 

1. If all elements of fi are included in fj, then fi must precede fj. 

2. If fi and fj share common elements, then fi and fj cannot be assembled 

simultaneously (in a non-linear assembly sequence). 

3. If fi and fj have no common element, then fi and fj can be assembled 

simultaneously. 
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2.6.3. Expert systems and Case-based reasoning  
 

The expert and knowledge-based systems was byHuang and Lee (1991) to define the relation 

among a pair of components, requiring relationship between the locative configuration 

regarding these two components. This method has a major disadvantage which is the search 

mechanism, the search mechanism only performs to find a local optimisation without a global 

optimum. Another obstacle in using knowledge-based and expert systems is hardly to get data 

about the assembly automatically, also translate the knowledge from a case to another. 

2.2. APPROACHES USED TO OPTIMISE THE ASP 
 
 

There are a number of approaches that can determine a near optimum or optimum assembly 

plan (Golabi 1996):  

(a) Identifying the most suitable assembly sequences based on specified weighting criteria. 

(b) Identifying the best assembly sequence by either disassembling or assembling the 

product. This method provides a best local solution for a task of assembly but with no 

guarantee of a global optimum.  

(c) Generation of an assembly sequence using the knowledge-based system. Usually 

considering the base criteria by beginning with the base part, other components are 

added until all components can be assembled. This method determines the next best 

assembly task but also cannot guarantee a global best.  

(d) A population search has to be conducted by beginning with the number of assembly 

sequences by identifying the best global solution but there is usually no guarantee to 

achieve this. 
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2.2.7. Exhaustive Search 
 

In the ASP optimisation, the exhaustive search is merely a theoretical method that can be 

applied to decide the optimal assembly sequence by creating all assembly solution and 

assessing and selecting the best one. The assessment is done by utilising improvement criteria 

or weighting for each assembly sequence. The best assembly sequence may be identified by 

correlation of the estimation of an assembly solution to others (Homem de Mello 1989). 

2.2.8. Simulated Annealing 
 

Simulated Annealing (SA) is an effective stochastic pursuit technique appropriate to an 

extensive variety of issues for which minimal earlier learning is accessible. It may deliver 

solutions for hard combinatorial streamlining issues. The disadvantage is the long 

computational time required by SA (Yao 1991). The essential thought of SA originates from 

reduced matter physics. To minimise energy states, called ground states, of complex system, 

for example, solids. The system (solid) is initially warmed to high temperature, then gradually 

chilled off. The system will achieve a ground state if the cooling rate around the point of 

solidification of the framework is adequately moderate. At each condition of the reproduction, 

another condition of the system is produced from the present state by giving an irregular 

relocation to an arbitrarily chose molecule. The new state will be acknowledged as the present 

one if the vitality of the new state is no more prominent than that of the present state, else, it 

may be acknowledged with likelihood (Yao 1991).  

Local optimisation of f (x) begins with an initial solution x, xs. At that point, y, a neighbour 

of x is chosen, and if f (y) < f (x), y is a downhill move, and is accepted. The procedure proceeds 

until no further downhill movements are found (a local minimum is found). 
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SA gives the possibility to avoid being caught in a local minimal by sometimes allowing an 

uphill move. The probability of uphill moves is higher at the beginning of the optimisation 

and decreases as the optimisation approaches to the end, to the optimum value. 

SA has been utilised for the selection of the probable minimum cost assembly sequence 

(Milner Graves et al. 1994, Park and Asada 1994). The issues are addressed: given a product 

design, determine the minimum cost assembly system for the product. Their way to deal with 

select the minimum cost assembly sequence is include three stages:  

First, all the probable assembly solutions must be given. De Fazio and Whitney (1987) created 

the Diamond Graph to represent to assembly states (by nodes) and tasks to the following 

assembly state (arcs). Any descending way from the highest point of the diagram (completely 

disassembled unit) to the base (completely assembled unit) represents a unique and valid 

assembly sequence. 

Second, a technique, by which the cost of an assembly system for a given sequence of tasks 

is assessed. The equipment for workstations is selected, then tasks are assigned to 

workstations for a given solution in order to minimise the annual cost to produce the required 

number of assemblies every year. The presumption is that the cost is not added over steps in 

a sequence. The cost of an assembly operation is not a constant and depends on the previous 

operations and based on the production volume.  

Finally, a search heuristic which can proficiently produce the least cost sequence.  

The real disadvantages of the approach and optimisation method when connected to ASP are 

the following:  

• Because of CE, the technique is restricted to reduced search spaces (assemblies with 

a reduced number of components or heavily artificially constrained). 
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• Because of randomly selecting another sequence, this would not provide an idea of 

appropriate neighbour of the ideal solution. Thus, the neighbour point is difficult to be 

appropriately described. Generally, it is just a matter of preferences and representation 

that characterises two points as neighbours. 

2.2.9. Genetic Algorithms 
 

Some researchers tried to optimise the ASP using Genetic Algorithms (GA). Sebaaly et al. 

(1996a) used a genetic planner for assembly automation. The data for assembly is kept in an 

implicit state, in a reference and a connectivity matrix (Sebaaly and Fujimoto 1996b, Sebaaly 

and Fujimoto 1996c). If a connection exists between two specific parts ai and aj, then the 

elements with the same rows and columns assume all non-zero values, otherwise they are 

zero. At the production of the chromosome, a gene is produced from the rules with the highest 

value which encodes the precedence constraints. It acts a population-based search rather than 

a part-based one and can produce linear and non-linear sequences.  

Lazzerini and Dini (1999) and Dini, Failli et al. (1999) brought up another genetic algorithm 

to optimise the AS. The optimisation criteria are: 

• Reductions of object orientations – reduction of assembly time and cost of assembly 

line. 

• Reductions of gripper changes – reduction of assembly time. 

• Placing as much as possible technologically similar assembly operations, e.g. 

screwing, pressing, that can be done with the same mechanical tool. 

• Through a specific software module, Feasibility Evaluator (Santochi and Dini 1992) 

the evaluation of feasibility of a chromosome is carried out, depending on matrix 

measure which normally computes the feasibility degree of an assembly sequence 

defined as the length of the longest feasible subsequence in the chromosome. 
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As a weighed sum of the length longest feasible subsequence the fitness associated with a 

chromosome is calculated. The following are also weighed, the number of orientation changes 

of the assembly, the gripper changes and the number of the same assembly operations placed 

together. The Genetic operators are specifically assembled. 

The limitations of the algorithm are the following: 

• The algorithm cannot be used as it is if the assembly has a component assembled from 

a random direction because the Feasibility Evaluator works only on the major axes (x, 

y, and z). 

• The algorithm can only detect sequential, monotone and coherent assembly sequences. 

Marian, Luong and Abhary (2003) used the Three Step Approach to solve the AS problem. 

To optimise the AS, a population-based search is utilised as development of (d) approach (see 

Section 2.7.). Figure 2.6. illustrates the mechanism of the GA approach for solving the AS 

problem.  

An assembly sequence demonstrates the progression of operations to amass the item from its 

parts. The assembly sequence is characterised by the attributes of the item (geometry of 

components, relations between components, materials of components, tolerances and so 

forth). The assembly solutions, absolute and enhancement constraints are characterised in the 

solution space. The genetic operators work in the model space with chromosomes. Assembly 

sequences are demonstrated and presented as chromosomes. There ought to be, a by-unique 

mapping between an assembly sequence and a chromosome. Not all assembly sequences are 

feasible unless if it satisfies a class of constraints (absolute constraints). 
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Figure 2.6. The GA approach for solving the ASP problem (Marian et al. 2003) 

 

Figure 2.7. illustrates Modelling and representation issues in ASP. The constraints of the ASP, 

characterised in the solution space, are inferred as precedence relations. The assembly table 

incorporates the availability data from the table of liaisons and precedence relations that 

encode constraints. More precedence relations might be encoded as Boolean relations. Such 

a calculation needs to consider the scale, the intricacy and sweeping statement of the issue 

with the capacity to produce an attainable assembly sequence in any sensible mechanical 

setting.  
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The guided-seek calculation depends on a diagram-look system. It creates doable assembly 

solutions by arbitrarily selecting, in each stage, one of assembly operations that can be 

performed at this specific step. To accomplish this, the components for each progression are 

chosen by utilising the priority relations. 

  
 

 

Figure 2.7. Modelling and representation issues in ASP (Marian et al. 2003) 

 

The guided search operator is an adjusted genetic operator intended to beat the combinatorial 

blast by changing the combinatorial issue in a polynomial one (by producing and working just 

with achievable sequences). GA has capacity and adaptability to deal with expansive scale 

issues. The structure of the proposed GA depends on a great GA calculation (Gen and Cheng 

1997) and consolidates the guided inquiry. Different methodologies (punishment, dismiss and 

repairing methodology) were endeavoured by Marian et al. (1999a); Marian et al. (1999b); 

Marian et al. (1999c) and ended up being successful just for assembly with a decreased 
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number of components (<10) and therefore the solution space was moderately restricted. After 

crossover, the chromosomes were made an interpretation of solution space to be are assessed 

utilising a fitness function based on pre-defined criteria for generating a suitable assembly 

sequence. Once these assembly sequences have been assessed by weighting the fitness value 

from which the one with the highest fitness value is chosen through a weighed roulette 

calculation (Gen and Cheng 1997). 

2.3. STATEMENT OF PROBLEMS 
 

During assembly planning, it is always difficult to make the selection of an assembly sequence 

due the presence of increasingly large and small parts coupled with minor variations in design. 

This has an effect on the selection of required assembly choices (De Fazio and Whitney, 

1987). The possibility of feasible solutions from traditional genetic algorithms becomes a 

mirage due to the increase in complexity (Yu and Wang, 2013). In addition, the time spent 

and huge costs incurred in the assembly of products, there are other problems that need 

solutions and optimisation.  There is a need for the reduction in the assembly planning cost 

and time. Moreover, these go along with the computing time and cost which could be reduced 

using optimised genetic algorithms (Ou and Xu, 2013). 

2.4. RESEARCH GAPS  
 

Tseng et al. (2010a) observed that the combinatorial sequence number increases with an 

increasing number of components. This implies that a larger number of product components 

may result in longer times taken during computation. As a result of the geometric complexity 

of components, coupled with the precedence complexity that is characteristic of assembly 

operations, it is not clear whether the time complexity can be exactly computed. The GA 

method is preferred to other methods because it has a shorter computational time. Chang et 

al. (2009) argue that one problem with ASP is that an increase in the number of components 
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implies that more constraints will occur during its assembly, which in turn makes the assembly 

problem complex. Thus, researchers have worked with the objective of finding alternative and 

suitable methods for getting feasible solutions in the solution space. These include the 

traditional GA that uses the method of random searching. It was reported by Tseng et al. 

(2010b) that the combinatorial sequence number is capable of increasing as the numbers of 

components grow. An increase in components of the products leads to an increase in the time 

used in the computation. In general, results show that the GA method has an advantage in 

cases where the computational time is shorter. Even though the methods discussed can prove 

useful in generating and evaluating useful sequences that have good solutions, a lot remains 

to be done for managing complicated products that have many components. According to 

Marian et al. (2006) there still exists a need to come up with a new methodology in order to 

be able to withstand the extraordinary varied character of the ASPP in large scale because 

real-life products have challenging constraints and sizes. To the best knowledge of the authors, 

no assembly sequence planner has yet been developed that is capable of reliably solving and 

optimising, as well as retaining the possibility of exploring various regions within the search 

space, an assembly problem that has 25 elements. Previous attempts only seem to deal with 

simplified problems whose components have been significantly reduced with search spaces 

that are severely limited. Zeng et al. (2013) stated that the search space, which is associable 

with assembly sequence planning, is usually proportional to both the component numbers and 

their assembly relationships. It takes a long computation period in cases where the assembly 

is complex. When the component numbers are above the set threshold, it is difficult to 

accomplish assembly sequence planning. 

According to Tseng (2006) the Genetic Algorithms have limited applications as a result of the 

fact that the associated algorithms usually take exponential time as they run in relation to the 

component numbers. When there are large numbers of components, the assembly product will 
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have more constraints leading to an increase in the complexity of the procedure that is utilized 

in solving the assembly problem. According to the studies conducted previously, authors 

suggested that large numbers of components result in more complex assembly. In this 

research, product nature is among the main problems that face assembly sequences in 

contemporary industries. In an attempt to find a solution to this challenge, this research groups 

products into three disparate parts; complex products, very simple products, and simple 

products. The aforementioned classification has been based on ease of assembly of products, 

geometry of products and the time taken to complete the assembly process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

CHAPTER 3 

GENETIC ALGORITHMS FOR THE OPTIMISATION OF ASSEMBLY 

SEQUENCES 

3.1. INTRODUCTION 
 

GA is a search technique that can be used for solving the ASP issue. GA are a class of 

universally useful search techniques joining coordinated and stochastic search. Genetic 

Algorithms was created and presented by Holland in the 1960's and 1970's (Holland 1975) 

and it was promoted by David Goldberg (1989). GA is an inquiry-based system with common 

determination of “survival of the fittest” and therefore, GA is an Evolutionary Algorithm 

(EA), which likewise incorporate evolutionary programming and evolution strategies.  

GA was reported to be effectively applied in engineering design and planning (Gen and Cheng 

1997, Falkenauer and Delchambre 1992, Karr and Freeman 1999), cell fabricating (Kazerooni 

1997), machine learning (Goldberg 1989; Michalewicz 1992; Michalewicz 1994; 

Michalewicz 1996), image processing (Pal and Wang 1996), robotics (Davidor 1991), Job 

Shop Scheduling Problem (JSSP) (Cheng, Gen et al. 1999), graph matching (Krcmar and 

Dhawan 1994). 

Chang et al. (2009) stated that one of the problems in assembly sequence planning (ASP) is 

that an increase in the number of components often leads to more constraints, which in turn 

make the assembly process more complex. Ou and Xu (2013) adopted a matrix approach for 

analysing the information derived from a CAD model to obtain the assembly sequence for a 

two-stroke engine aiming to reduce both assembly time and cost. Rashid et al. (2011) provided 

a review on ASP using the soft computing approach. Three popular soft computing algorithms 

have been used in their studies, which are GA, ACOA (ant colony optimisation algorithms) 

and PWOA (particle warm optimisation algorithms). Xing et al. (2012) proposed a crossover 

particle swarm genetic algorithm (PSGA) to generate the optimised assembly sequence. They 
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compared the generated assembly sequence using a GA. Hongbo et al. (2006) developed a 

genetic simulated annealing algorithm (GSAA) for solving an ASP optimisation problem. 

Zhou W. et al. (2013) presented the imperialist competitive algorithm used for seeking an 

optimal or near-optimal solution of an ASP. 

3.1.1. Structure and method of GA 
 

The general structure and method of GA (Gen and Cheng 1997), illustrated in Figure 3.1., can 

be condensed as takes after:  

- The search begins with an underlying random population of solutions (population-

based pursuit);  

- Every person in the population is a chromosome and is a representation of an answer 

of the issue;  

- A chromosome is a series of images (twofold, whole number, and so forth);  

- The chromosomes develop under determined determination runs through progressive 

cycles – generations;  

- Amid every generation, the chromosomes develop through crossover and additionally 

transformation.  

Crossover includes mating randomly shaped sets of chromosomes. The new chromosomes 

came about because of crossover – offspring - hold a portion of the parents’ characteristics 

(correspondence and data trade between parents characteristics).  

Mutation includes changes inside a chromosome. The new chromosome comes about because 

of the parent through a trade of qualities.  

At this stage, another generation is shaped by selecting, as per the fitness value, a portion of 

the parents and offspring and dismissing others, in order to keep population, measure 

consistent. Fitter chromosomes have higher probabilities of being chosen. After various 
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generations, the calculation meets to a population of chromosomes, which, optimally, 

represents to the optimal or close optimal answer for the issue. 

 

Figure 3.1. General structure of Genetic Algorithms (Gen and Cheng 1997) 

3.2. GENETIC ALGORITHMS AS AN OPTIMISATION TOOL 
 

Hong and Cho (1999) applied the GA to generate the optimal solution for a robotic assembly 

sequence aiming to minimise the assembly cost. Development of the GA used for assembly 

sequence optimisation generally involves Three Steps: representation, generation, and 

optimisation, as appeared in Figure 3.2. Representation can be categorised as two types: 

implicit and explicit. Implicit representation refers to precedence between two mating 

assembly parts, while explicit representation is involved in encoding possible assembly 
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sequences with constraints. In this study, a population of possible assembly sequences was 

initially generated in a random manner. Such a generation refers to a creation of assembly 

sequences allowing a little perturbation during the crossover stage. Within one generation, the 

GA is able to select a subset of chromosomes (often two) from the current population, called 

parents. These were used for mating to create a new chromosome called a child or offspring. 

Optimisation is carried out by executing user-defined criteria to seek an optimal solution 

among generated assembly sequences. 

 

 

 

 

 

Figure 3.2. The steps of Genetic Algorithm approach 

3.2.1. Termination of the GA Optimisation Process 
 

Termination of the GA optimisation process occurs after the entire search space is completed. 

The solution space is classified into families whereby a single family represented a single 

valid assembly sequence (Senin 2000). A chromosome that contains a solution (i.e., parent 

assembly sequence) is probabilistically selected based on an evaluation of fitness relating to 

the current population. In particular, A chromosome with a higher fitness value has a greater 

chance to be selected for mating with another chromosome with a higher fitness value to 

produce a new chromosome. A genetic operator is subsequently applied leading to a new 

generation of offspring of assembly sequence.  

Generally, there are three types of operators, which have crossover, mutation and selection, 

respectively, based on some forms of objective function known as a fitness function. 

Crossover is used in this case as a process that carries out an exchange of parental genes to 
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create a new chromosome. Further, genetic diversity can be introduced into the chromosomes 

of a population or family using crossover and mutation to generate a family of new 

chromosomes, and the GA repeatedly compares the fitness value of one chromosome with 

another until the optimal chromosome is formed. The use of GA to solve assembly sequence 

optimisation problems often produces a population of infeasible solutions because of 

optimisation problem constraints. Constraints in assembly have number of types, but the most 

important are the absolute constraints and optimisation constraints. Absolute constraints (hard 

constraints) as geometrical, precedence, accessibility is limiting the number of feasible 

assembly sequences.  

On the other hand, the optimisation condition (weak constraints) is differentiate the quality of 

the assembly sequences (Sebaaly and Fujimoto 1996a) and (Jones et al. 1998). With respect 

to the constrained optimisation problem, GA searches the feasible solutions that satisfy the 

constraint conditions with the objective function over the entire genetic space. The solutions 

that do not satisfy the constraint conditions are referred to as infeasible solution whose 

encoding referred to as chromosomes (Zhang et al. 2014). 

 

3.2.2. Evolutionary Algorithms 
 

As one of Evolutionary Algorithms, GA have two conspicuous components:  

- Population. 

- There is communication and information exchange between individuals in a 

population. 

Other particular features of GA are (Goldberg 1989, Haupt and Haupt 1998, Marian, Luong 

and Abhary 2003):  

- GA work with a coding of parameter sets. 

- GA utilise result (target work) data, not subordinates or other assistant knowledge;  
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- GA utilise probabilistic, not deterministic. 

Thus of those features, GA have various real favourable advantages when contrasted with 

other enhancement methods: 

1- GA do not have much scientific necessities about the enhancement issues and, because 

of their transformative nature:  

- GA will look for solutions without regard to the precise internal working of 

the problem. 

- GA can deal with constraints for parallel PCs, where each processor can assess 

a different capacity in the meantime. 

- GA work in discrete, constant or blended search spaces. 

2- The capability of evalution operators makes GA exceptionally successful at 

implementing a probabilistic global search. An algorithm is appropriate in if it is 

conceivable to achieve any state from some other state in a limited number of 

iterations. Other conventional methodologies perform nearby pursuit by a combined 

step-by-step strategy, which analyses values of nearby points and moves to the relative 

optimal points. Global optima can be discovered just if the issue has certain convexity 

properties that basically ensure that any nearby optimal is a global optimal.  

3- GA offer an extraordinary adaptability to hybridise with domain dependent heuristics 

to make an effective implementation for a particular issue.  

4- Being population based:  

- Altogether search from a wide inspecting of the search space;  

- GA optimise parameters with to a great degree of complex cost surfaces and 

can skip local optima;  

- Provide a number of optimal solutions not only one solution. 



38 

 

GA can bargain effectively with an extensive variety of issue ranges, including those which 

are hard to comprehend with different strategies (Kazerooni 1997). 

3.3. GENETIC ALGORITHMS AND COMBINATORIAL PROBLEMS 
 

Finite problems are dealt by combinatorial optimisation, although there are often vast number 

of solutions (Gen and Cheng 1997). Everyday such issues abound, particularly in engineering: 

the knapsack, quadratic 0-1 integer programming, machine scheduling, vehicle routing, 

travelling salesman problem and so on. Combinatorial explosion (CE) is the most challenging 

aspect in combinatorial optimisation. The quantity of answers for a combinatorial issue is 

normally a component of the factorial or exponential of the quantity of components of the 

issue. For combinatorial problems the robustness of the algorithm becomes paramount. 

3.4. GENETIC OPERATORS 
 

A straightforward GA represents solutions utilising string of bits (0-1) that may encode whole 

numbers, genuine numbers, sets, and so forth. This all-inclusive representation has the upside 

of utilising a uniform solution of basic operators and streamlines the examination of GA 

properties hypothetically. Nevertheless, bitwise operators are regularly improper for generally 

issues. Today, most useful GA frameworks utilise issue particular representations (integers to 

represent whole integers, character strings to represent sets, etc.), and modified genetic 

operators for those representations (Kazerooni 1997).  

This section quickly and thoughtfully reviews the operators that make a genetic algorithm and 

find out related issues that are to be considered preceding outline those operations (see Figures 

3.1., and 3.2.):  

1- Meaning of an underlying generation of chromosomes (Chromosomes generation). It 

is critical to note that:  

- A representation for chromosomes; 
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- A structure to represent imperatives must be created earlier. 

2- Advancement of the parent generation of chromosomes through mating (crossover 

operator) 

3.4.1. Chromosome Representation 
 

A chromosome represents a solution of the issue, and it is a string of genes that can be coded. 

The double strings utilised by Holland, despite the fact that they require exceptionally 

straightforward genetic operator, are less reasonable for most complex applications, 

particularly for issues from engineering world (Gen and Cheng 1997).The optimal 

representation for an issue is pointless if it cannot be produced or are excessively 

unpredictable. Because ASP is a combinatorial issue accordingly, a non-string representation 

is looked for. Three basic issues rise while considering non-string approaches for the mapping 

amongst solutions and chromosomes:  

- The legality of a chromosome: whether a chromosome represents to an answer for a given 

issue. As illustrated in Figures 3.3and 3.4, respectively, the wrongdoing of chromosomes 

begins from the way of encoding strategies. For some combinatorial issues, an illicit 

chromosome cannot be decoded to a solution (regardless of the possibility that incomplete 

chromosomes may relate to fractional solutions), and, thusly, it cannot be assessed. 

Accordingly, punishment techniques cannot be or are hard to be connected for this 

situation. For the most part, repair systems are connected for infeasible and unlawful 

chromosomes.   
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Figure 3.3. Coding space and solution space (Gen and Cheng 1997) 

 

 

 

 

 

 

Figure 3.4. Feasibility and legality (Gen and Cheng 1997) 

- The plausibility of a chromosome: Whether an answer decoded from a chromosome lies 

in the attainable district of a given issue. The infeasibility of the chromosome starts from 
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constraints. For the most part, penalty approaches are utilised to drive the genetic search 

to approach the optimal from both feasible and infeasible areas.  

- The uniqueness of mapping: the mapping from chromosomes to solutions (decoding) may 

have a place with one of the accompanying three cases:  

• 1-to-1 mapping. 

• n-to-1 mapping. 

• 1-to-n mapping, as appeared in Figure 3.5.  

The 1-to-1 mapping guarantees a bi-special correspondence between a chromosome and an 

answer. The other two mappings require supplementary operators to segregate between the 

helpful solutions and chromosomes. 

 

 

 

 

 

 

Figure 3.5. The mapping from chromosomes to solutions (Gen and Cheng 1997) 

A decent representation of solutions into chromosomes for solving the ASP issue requires the 

accompanying qualities: 
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- Be conservative, basic and instinctive: the GA infers an iterative procedure in an inquiry 

space that is of combinatorial size. The span of the space requires a minimal representation 

of answers for chromosomes to empower the capacity and control of populations of 

chromosomes in today's computers in a sensible time. 

- Be a 1-to-1 mapping: this property keeps away from the need for supplementary 

calculations that need to segregate amongst great and parasite solutions/chromosomes 

amid the encoding/translating process. 

- Enable the coding of all important and helpful assembly plans to the level of detail 

required by reasonable applications. 

3.4.2. Constraints 
 

The constraints that depict the ASP are of differing nature and source and different effects on 

the optimisation procedure. The constraints are detailed in Section 3.5. In the present work, 

the genetic operators are custom fitted to tackle the ASP issue and the limitations are intensely 

utilise d as a part of the generation of chromosomes and in the crossover operator. 

A representation structure for limitations must be produced to make the important requirement 

accessible when required. This structure needs to empower the encoding of important 

constraints to be straightforward and instinctive.  

3.4.3. Fitness function 
 

The fitness estimation of a person in the population is a measure of the nature of that person. 

The fitness capacity is connected in the solution space to an answer. A fitness value f (i) is 

assigned to every individual element i in the population. In this proposition, a high fitness 

value means solid match. The purpose behind this in characterising the fitness is that the GA 

just needs an estimation of the fitness allocated to every person, not the way this value changes 

from a person to its neighbour or how it is characterised/acquired.  
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3.4.4. Chromosome generation 
 

In established GA with double strings encoding, the chromosomes are produced randomly. In 

combinatorial issues, the generation of the chromosome needs to consider the way the 

solutions are characterised. The random key representation allows the random generation of 

a chromosome to decipher the solution. The generation of chromosomes by utilising the 

random key representation is impossible for the ASP issue. This is because of a number of 

supplementary limitations (Marian, Luong and Abhary 2003). 

3.4.5. Crossover 
 

Crossover is the main genetic operator. Thoughtfully, its input is a couple of randomly chosen 

parent chromosomes and the output is a couple of offspring chromosomes that join the couple' 

features. The crossover swaps a part of the couple' genetic data to create the new offspring 

(Holland 1975, Marian et al. 2000b).  

As illustrated in Figure 3.6., two parent chromosomes P1 and P2 if the crossover point is 

between loci 6 and 7, the end bits are swapped. The result of this operation is a solution of 

two offspring chromosomes, C1 and C2.  

This straightforward crossover is appropriate for paired strings, for this situation a1...a10 and 

b1...b10 have the qualities 0 or 1. Be that as it may, when combinatorial issues are included, 

integer representations are utilised, and the issues are constrained. Various crossover operators 

have been created for combinatorial enhancement: PMX (Partial-Mapped Crossover), OX 

(Order Crossover), CX (Cycle Crossover), and position-based crossover, order-based 

crossover, heuristic crossover, et cetera. They are not suitable for the AS problem because of 

its degree of constraint. 
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Figure 3.6. A case of crossover operator 

3.4.6. Mutation  
 

Mutation is a foundation operator which produces unconstrained irregular changes in 

chromosomes. In GA, mutation serves the part of either: 

- Changing the genes lost from the population through the selection procedure so they can 

be attempted in another specific circumstance, or  

- Giving the genes that were not present in the initial population. 

A straightforward approach to create a mutation is to modify at least one genes (Gen and 

Cheng 1997). 

3.4.7. Evaluation 
 

Every individual of the population is assessed by utilising the fitness function the selection 

procedure. To assess a chromosome, it must be decoded back to the assembly sequence. The 

assessment relies on upon how the fitness function is characterised. 

3.4.8. Selection 
 

The guideline behind genetic algorithms is basically Darwinian natural selection. The 

selection in GA is an artificial version of natural selection and it leads a GA towards likely in 

the search space. Selection gives the main impetus in a GA, and the selection pressure is 

PARENTS 

P1= (a1  a2  a3  a4  a5  a6    a7  a8  a9  a10) 

P2= (b1  b2  b3  b4  b5  b6   b7  b8  b9  b10) 

Crossover Point 

 

OFFSPRING 

C1= (a1  a2  a3  a4  a5  a6  b7  b8  b9  b10) 

C2= (b1  b2  b3  b4  b5  b6  a7  a8  a9  a10) 



45 

 

critical in it. At outrageous, if the selection pressure is very high, the pursuit will end rashly. 

At the other extraordinary, a low selection pressure indicates a slower than needed progress 

(Gen and Cheng 1997). 

Three essential issues are included in the choice stage:  

• Sampling space: selection may make another population for the following generation 

in view of either part of parents and offspring or all of them. The regular sampling 

space contains all offspring however simply part of the parents (Figure 3.7.) and 

different replacement techniques to abstain from offspring of lower quality than 

parents to be methodically selected (Holland 1975) were designed. When utilising an 

enlarged sampling space (as shown in Figure 3.8.), both parents and offspring have a 

similar possibility of going after survival. In addition, the expanded sampling space 

allows the utilisation of a high rate of randomness presented by the crossover and 

mutation. To maintain a strategic distance from an untimely merging the selection 

utilised for solving the ASP issue depends on the expanded sampling space.  

 

 

 

 

 

Figure 3.7. Selection performed on regular sampling space (Gen and Cheng 1997) 

Population New population 

Crossover 

Selection 



46 

 

• Selection probability: concerns how to decide selection probability for every 

chromosome. Scaling and positioning mechanisms are utilised in order to keep up a 

sensible differential between relative fitness evaluations of chromosomes and to avert 

as well fast takeover by some super chromosomes. A static scaling is utilised as a part 

of the GA created for the ASP.  

• Sampling mechanism: concerns how to choose chromosomes from sampling space. 

Three fundamental mechanisms are accustomed to sampling chromosomes: 

a) Stochastic sampling. 

b) Deterministic sampling. 

c) Mixed sampling.  

The sampling system is utilised as a part of this theory is the stochastic sampling, related with 

the Holland's proportionate choice or roulette wheel choice. The selection probability for 

every chromosome is proportionate to its fitness value: a chromosome with fitness value fi 

and with average fitness value of the population fm is assigned fi/fm offspring. A string with a 

fitness value higher than the normal has a superior possibility of an offspring, while a string 

with a fitness value less than average has a lower opportunity to allow in the next generation. 

The proportionate selection assigns fractional number of offspring to strings. 
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Figure 3.8. Selection performed on enlarged sampling space (Gen and Cheng 1997) 

The weighed roulette shown below is a graphical representation as shown Figure 3.9. Every 

string is assigned an area of 2π fi/fm. A string is assigned a posterity if a randomly produced 

number in the range 0 to 2π falls in the division relating to the string. The calculation rehashes 

the portion of posterity until all the cutting edge is made (Kazerooni 1997).  
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Figure 3.9. Simple reproduction allocates offspring strings using a roulette wheel 

(Kazerooni 1997) 

3.5. CONSTRAINTS IN ASSEMBLY 
 

When attempting to solve the ASP problem constraints are essential. Erroneous approaches 

and, consequently, erroneous or incomplete results are brought up by any attempt to 

artificially simplify the problem by, sometimes, even partially ignoring constraints that are 

meaningful and important. This section will concisely present the concept of constraints, 

categories of constraints and their effect on the assembly process.  

Constraints are relations in aspects of a product. The increase of the infeasible portion of the 

search space and the number of feasible solutions are limited by constraints. The search area 

which have more complex geometric shape yet often will become discontinuous and/or no 

longer convex. Consequently, the infeasible solutions are likely to be generated by the 

standard genetic operators, probably wasting the computational effort of the GA (Kowalczyk 

1997). 
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Constraint can be illustrated in an example as in Figure 3.10. It shows an assembly of a ball 

pen product. The components are: c1-cap, c2-head, c3- tube, c4-ink (fluid), c5-body, then c6-

button. 

Let us consider the assembly plan is SLMC (Sequential, Linear, Monotone, and Coherent) 

then up to expectation c2 and c3 then c4 are to be assembled before c5. 

Starting with c2 and, both components have to assembled together before c4 (ink). There is, 

consequently, a priority relation between those three components: c2, c3 and c4. On the other 

hand, starting assembly together with c1 is also impossible. c1(assembly 1) is in contact only 

with c5 the tube. Assembling c1 with c5 precludes the access because of c2, c3 and c4. As a 

result, c1-c5 can be done only after c5, c2, c3 and c4 were assembled (coherence condition). 

If the first component to be assembled is c3, the next cannot be c1, c5 and c6, as there is no 

connection between them. 

 

Figure 3.10. The ball pen assembly components (Fawaz and Qian 2017) 

As the constraints above the assembly process may possibly start with c2, followed by c3, 

then the ink c4 is squeezed, the body c5 and then the button c6 to be inserted, and the cap 

concludes the assembly. Thus, assembly sequence is: c2, c3, c4, c5, c6, c1 Another feasible 

assembly sequence is c2, c3, c4, c5, c1, c6, which requires two changes in the assembly 

direction: c1 to c5 and c6 after c5. 
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From the above observations, conclusions can be drawn:  

- There are a wide variety on constraints as this routinely leads to infeasible assembly 

sequences. Those constraints are acknowledged namely absolute or difficult 

constraints (Sebaaly and Fujimoto 1996c, Jones et al. 1998). 

- Absolute constraints depend on accessibility over parts, and the assembly system used.  

3.5.1. Absolute Constraints 
 

Absolute constraints had been labelled into exceptional classes by a range of authors. Jones 

and Wilson (1996) and Jones at al. (1998) surveyed that associated constraints are categorized 

in accordance attributes: 

1. Obligation: Constraints are absolute, both requiring (REQ) and prohibiting (PRH) 

certain services about assembly plans. Quality measures both maximise (MAX) then 

minimise (MIN) a scalar function. 

2. Scope: The scope is concerned with a standard in conformity with the diagram on the 

assembly plan. 

3. Information required: The relevant information need to be supplied to a standard for 

calculation at any given time. Some criteria want an entire plan to calculate, others 

require only provincial data – single assembly states or actions. 

Internal constraints result from the geometry of the assembly components while external 

constraints emerge if the chosen plan should be completed in a robot assembly cell. (e.g. 

constraints prompted by way of the gravitational force, applied gripper, and many others.). 

The internal constraints taken into consideration are local geometrical feasibility, which 

defines the reparability of the involved subassemblies components, and global geometrical 

feasibility, derived in dexterity. 



51 

 

External constraints derived in grasp ability of the target component, task compatibility, grasp 

ability of the energetic subassembly, and assembly stability. 

3.5.2. Handling Constraints in Genetic Algorithms 
 

In this section and followed sub-sections will briefly explain optimisation constraints only 

during using GA, and these constraints are different of assembly sequence constraints of sloid 

components as shown in Figure 3.10. When using of GA to solve an optimisation issue under 

constraints, classic operators often yield infeasible offspring. This trouble turns into a scenario 

where the opportunity to reap a feasible assembly sequence via random generation of the 

assembly sequence is reduced rapidly as the number of components increase. This implies 

that genetic operator can probably produce an illegal offspring. Some strategies must be 

utilised to decrease the number of operations that required to be done within the genetic 

operators and simultaneously to keep the stochastic character of the GA. These strategies are 

rejecting, repairing and penalty. 

3.5.2.1. Rejecting strategy 
 

The Rejecting approach is a famous approach in GA. It discards all infeasible chromosomes 

generated at some point of the evolutionary manner. The approach may go reasonably 

properly when the feasible area is convex and constitutes a reasonable part of the whole seek 

space (Gen and Cheng 1997). In ASP, the search space is not always convex, viable solutions 

are scattered among non-feasible ones, and the ratio between feasible and infeasible solutions 

is extremely decreased, of the order of up to 10-18 for a 25 components product (Gen M. and 

Cheng R. 1996, Marian et al. 2003, Marian et al. 2006). 

As a result, the utility of this approach is to maximise the chance to discard all infeasible 

chromosomes to be restricted to landscapes with populations of unrealistic dimensions. Using 

the reject approach become useful in an early level of the research, which is especially 
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beneficial for products exceeding 6-10 components (relying at the degree of connectivity 

among components). 

3.5.2.2. Repairing strategy 
 

The repairing strategy implies beginning with an infeasible chromosome and generating a 

feasible one out of it through a repairing process. The repairing method depends on the life of 

a deterministic restore process to transform an infeasible offspring right into a feasible one. 

The repairing approach is problem-dependent, and a specific repair algorithm must be evolved 

for every trouble. For some troubles the repairing technique is as complex as fixing the unique 

trouble. 

The ASP is one of these problems and a repairing strategy to be carried out could be extremely 

complex. Because of the opportunity that any gene may be very likely to make a chromosome 

illegal or infeasible, the repairing method might have to be carried out again and again for 

each chromosome. There are also valid questions of what to do in a specific case: observe the 

repair strategy for a gene or for a group of genes, and in this example for what number of. 

Any solution has to be taken into consideration and tested, and the behavior and overall 

performance of a restore set of rules would be affected by the nature of the product and the 

scale of the problem. 

The usage of a repairing approach may be considered at an earlier level of the research. 

Because of the severe collateral troubles implied and emerging while the approach turned into 

to be advanced, and due to the complexity of those troubles, this course became deserted. 

3.5.2.3. Penalty Strategy 
 

The penalty method from the rejecting and repairing techniques, which only consider points 

within the feasible areas. For vastly constrained problems infeasible areas take an incredibly 

important portion of the legal solutions and constraint management techniques that allow 
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movements through infeasible areas of the quest space may also produce most fulfilling 

outcomes faster. 

The penalty method, in essence, transforms a limited trouble into an unconstrained one by 

penalizing infeasible solutions. The penalty term is brought to the objective function for any 

violation of the constraints. Basically, penalty is a feature of the distance from the feasibility 

area to the chromosome. The principal situation is how to determine the penalty time period 

if you want to strike a balance among the information preservation (retaining a few infeasible 

solutions) and the selective stress (rejecting some possible solutions) and void each 

underneath-penalty and over-penalty. 

The problem of using the penalty method for the ASP is the impossibility to correctly define 

a penalty time period or function. In ASP, viable solutions are generally grouped in small 

clusters amongst the infeasible ones. It is, consequently, hard to define a penalty term that 

would discriminate between infeasible solutions. 

This approach works with possible chromosomes with the aid of using custom-tailor-made 

genetic operators. Thus, this strategy is a whole lot greater reliable than another GA based 

totally on the penalty method (Michalewicz 1994). These methods of genetic algorithms are 

subjective on the amount of realization of the issue; well-known issues often have better, more 

unique approaches. 

3.6. THE IDEA OF USING GA FOR SOLVING AS 
 

GA is an optimisation method for solving assembly sequence optimisation problems due to 

its ability to offer a flexible way of defining constraints (Whitley 2014).  

This research considers the idea of GA and their utilization to solve the AS problem. 

Specifically, it focuses on: 

- a review of GA and explanation of their use to solve combinatorial issues of the AS; 
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- an investigation of different GA strategies and operators, evaluation and justification 

of their appropriateness and why they have been selected for solving the AS issues;  

- types of constraints experienced in solving the AS problem and their impact on the 

search space; 

- procedures to deal with constraints and the need to design a specific GA to solve the 

AS problem.  

Genetic algorithms are appropriate to solve the AS problem. GA were selected in this research 

to solve the AS problem based on their classifications (Section3.2.), and especially because: 

- they can simply deal with substantial search spaces; 

- they are flexible in defining the constraints and arise them in a fitness function. This 

is mainly useful for AS where a quality function is hard to define; 

- they are eligible algorithms to reach from a current solution in the search space to any 

further solution. 
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CHAPTER 4 

THE REPRESENTATION OF ASSEMBLY SEQUENCES AS 

CHROMOSOMES 

4.1. INTRODUCTION 
 

The main aim of modeling assembly is to facilitate in developing a framework capable of 

representing and encoding any possible solution of the ASP difficulty as a chromosome. 

However, In GA, a chromosome can be used to represent an assembly plan that can be 

coherent or non-coherent, sequential or non-sequential, monotone or non-monotone and linear 

or non-linear. In addition to it, the likelihood to encode mechanisms with variable geometry 

and/or volume can be taken under consideration. Hence, the subsequent chromosomes should 

have a format that can be considered directly by the Genetic Operators. 

Due to the presence of unexpected variety of possibilities observed in assembly, the issue is 

required to be analysed in detail, modelled and structured, so that all the required aspects of 

an assembly plan can be apprehended. Because of this reason, a modest representation of 

assembly sequences as chromosomes is required to be completed with relatively prior, 

extensive and modelling activity. 

Preferably, it has been observed that for extensive search spaces, specifically for 

combinatorial issues, there needs to be a bi-unique mapping among the present entities within 

the spaces. On the other hand, the effective and influencing solution to a problem should 

present a sound and detailed demonstrations for problem states and transformations from one 

state to another for goal achievements. Hence, the identification of a problem has a 

considerable impact on the efforts required to find the solution (Nilsson 1980).  

A good demonstration for combinatorial issues is required to have a little or at least 

controllable state space, which is not simple and easy for combinatorial issues as shown in 
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Chapter 3. Therefore, it is always important to focus on the respective stage that main obstacle 

in developing efficient algorithms to solve the AS optimisation problem for assembly. 

4.1.1. Representation and modelling problems 
 

It has been observed that there are two main representation and modelling problems linked 

with optimisation of AS with the use of GA: modelling of assembly sequences (indicated as 

chromosomes) and product modelling for assembly. Moreover, additional information is also 

important in the overall procedure of generating potential assembly sequence along with 

restrictions in assembly as priority relations.  

Furthermore, it has also been observed that two models and the associated representations are 

interlinked, even though they are different issues but are interrelated closely. A feasible 

assembly plan identified as a chromosome is a sequence that satisfies all assembly constraints 

involved in assembly (indicated as precedence relations). However, the two indications are 

not completely separated as presented in the literature.  There are several representations 

which are used in the planning of assembly in terms of (explicit representations) to be encoded 

as both assembly constraints and assembly sequences. Moreover, it has been found from the 

literature that there are several types of assembly plans (see Section 1.3. and Appendix 1). By 

taking into consideration in terms of the identification of assembly sequences, the assembly 

plans can be distributed in both sequential and non-sequential assembly plans. On the other 

hand, an assembly plan can also consist of a non-sequential aspect which may restrict the 

entire scope of the issues of ASP. 

This chapter is structured as follows: the following section provides an overview of the state 

of the art in the representations used in assembly sequence planning, for both the constraints 

and assembly sequences. Then the representation and modeling of assembly sequences is 

indicated for SLMC sequences. The last sections simplify this representation for non-SLMC 

sequences are trying to integrate any identified assembly plan/sequence. 
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4.2. ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION  
 

It has been observed that a product may have a number of potential assembly sequences, and 

combinatorial explosions can intensify greatly with components involved. However, it is not 

possible to identify each sequence. Therefore, it is important to develop an efficient and 

systematic process to the possible solutions in an effort to select the best and effective solution 

based on the resources available. 

4.2.1. Assembly for products 
 

Conducted by Ben-Arieh (1994a) and Choi et al. (1998), there are three main categories to 

depict assembly for products: language-based approach, graph-based approach, and advanced 

data structure approach: 

Language-based approach - Language- based approach refers to part assembly description 

language mainly oriented towards identifying the parts including the assembly and the 

necessary assembly operations. For example, the assembly is described by both its physical 

and geometric properties. The assembly instructions may be divided into three types: tools 

statement, state change instructions and fastener statements. 

Graph-based approach - graph based approach is used for extended assembly analysis for 

more in-depth derivation of information with a focus on the assembly process and little on the 

properties of the components or assembly operations. In addition to it, the graph-based 

approach is based on informative of such as CAD-database or information specified by user. 

There are several graph based approaches: directed graphs AND/OR graphs (Homem de 

Mello and Sanderson 1990c), and connectivity graphs (Shpitalni et al. 1989), Petri Nets 

(Thomas et al. 1996), and hierarchical partial order graphs (Shin et al. 1995, Lee 1994), liaison 

diagrams (De Fazio and Whitney 1987), precedence diagrams, assembly constraint graphs 

(Wolter 1988 and Wolter 1990a) and interference graphs (DeFloriani and Nagy 1991). 
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Advanced Data Structure approach - Advanced data structure approach utilises designed 

data structure in an effort to capture a detailed assembly data using a hierarchical data 

structure. This sums up the geometric and topological information considering the 

connections that lead to generate the complete assembly.  

4.2.2. Assembly Plans 
 

This section presents several different descriptions and definitions that are available for 

assembly plans and certainly implied on different representations of the resulting assembly 

plans. The definitions determine the system and the method of presenting the assembly plans 

and the representations consists precedence relations among assembly operations. They are 

demonstrated using the example presented in Figure 4.1.  and Figure 4.2. Understanding the 

system of assembly plans and all presented figures in all sections will play a key role in 

determing and solving the assembly sequence problem of the research case studies (see 

Chapter 6). 

Assembly plans are to gain feasible assembly sequences and assembly operations. Figure 4.1 

shows a four-part assembly (A) and a graph of liaisons (B). It demonstrates an assembly 

sequence as C - Cap, S - Stick, R - Receptacle and H – Handle: 

 

Figure 4.1. A four-part assembly (A) and a graph of liaisons (B) (Homem de Mello and 

Sanderson 1990, Homem de Mello and Sanderson 1991a, Homem de Mello and Sanderson 

1991b) 
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A State Sequence- consider an assembly plan as an entire sequence of join operations, each 

of which is combined in two specific assemblies as demonstrated in the Figure 4.2A.  

Assembly states (concerning about monotone plans) are to be identified by the partition of the 

specific part set combining sets of parts that are assembled already. For the assembly of four 

parts, as an example, the basic state would be {{C}, {S}, {R}, and {H}}, and therefore the 

final position will be {{C S R H}}, along with all the parts leading towards one assembly. 

Moreover, the assembly plan can be indicated as a sequence of such states in which each 

operation is combined with two partial assembles into one (n-1 operations). The state 

sequence indicates the operation sequencing in parallel sub-assemblies.  

A Partial Assembly Tree- considers an assembly plan as a recursive decomposition of the 

assembly into two main subsets that continues until the entire parts have been separated as 

demonstrated in the Figure 4.2B. Each node indicates a partial plan of the assembly. The root 

node of the tree indicates the entire assembly and the leaves represent single parts, where each 

node leads to two children that indicates the two sub-assemblies and the components that are 

combined together to construct the product/assembly demonstrated by the node.   

 A Sub-Assembly Tree- takes into consideration an assembly plan with regards to a sequence 

of operations which eventually leads to insert subassemblies or parts into a base part of a 

fixture as exhibited in the Figure 4.2C.  In a sub-assembly tree, each node leads to a sub-

assembly where each lead to a part. Moreover, the children of a sub-assembly node include 

all the subassemblies and parts that are inserted with the subassembly, in the respective order 

within which they are inserted. 
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       C. (a subassembly tree) 

Figure 4.2. A plan for structure the four-part assembly (shown in Figure 4.1.) (Wolter 

1991, Golabi 1996)) 

Wolter (1991) conducted a study that grouped the approaches considering the identification 

of sets of assembly plans in: 

- Constraints Based Representations- that leads to identify each and every details that 

cannot be done, for example part A cannot be considered as being mate to part B after 

parts B and C are already mated; 

- Enumerative Representations that indicated every minute details that can be possible, 

for example the assembly {A, B, C} can be constructed from the partial assemblies 

{A, B} and {C} or fom the {A, C} and {B} or from {A} and {B, C}. 

From the understanding of the entire process, it is observed that constraints-based 

representations grow smaller and enumerative representations grow larger. However, some of 

the systems considered in optimising and solving the ASP issues operate completely with 

((C) (S) {R) (H)) 
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constraint-based representations (Wolter 1988), while some undertakes with enumerative 

indications (Homem de Mello and Sanderson 1989), and few other systems undertakes both 

the representations at the same time. However, the study conducted by the researcher’s 

grouped representations of mechanical assembly sequence in both implicit and explicit 

(Homem de Mello and Sanderson, 1991a, Homem de Mello and Sanderson 1991b). The next 

two sections review critically and analysis in detail the present representations that are 

grouped in two characteristics, such as implicit and explicit representations. However, the 

particular constraints and qualities are indicated. 

4.2.3. Explicit Representations in Assembly Planning 
 

Explicit representation leads to a direct mapping referring to the assembly tasks of 

components. An integrated form of state sequence was developed by Bourjault (1984) 

indicating as a tree. Figure 4.3. demonstrate the Bourjault’s representation state of sequences. 

The root node indicates the unassembled and initial state. The nodes on the other hand indicate 

the established links and the edges demonstrate the transformation from ones stated to another 

state from rank n to n+1 or assembly. However, any path originating from a root and leading 

to leaf node points towards a feasible assembly sequence. 
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Figure 4.3. Bourjault’s representation of all assembly sequences (Golabi 1996) 

The directed graph was initially suggested by De Fazio and Whitney (1987), in an effort to 

explicitly indicate the assembly sequence. Provided with an assembly whose connection graph 

is (P, C)- in which P refers to the set of nodes and C points towards the set of edges. A directed 

graph can be taken under consideration to indicate the set of all the possible assembly 

sequences (Homem de Mello and Sanderson 1991a, Homem de Mello and Sanderson 1991b). 

Figure 4.4. leads to stable state partitions of the set P. The edges representing in the directed 

graphs are reflected as ordered pair of nodes leading to feasible state transformations.  

{{CR} {SH}} {{C} {SRH}} 
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Figure 4.4. Directed graph of feasible assembly sequences using parts (for the assembly 

shown in Figure 4.1.) (Golabi 1996) 

Furthermore, a path represented in the directed graph concerning feasible assembly sequences 

starting from the first node {{C} {S} {R} {H}} towards the terminal node {{C S R H}} 

leadings to a feasible assembly sequence. In the same way, Figure 4.5 illustrates the direct 

graph of feasible assembly sequences in relation to the product shown in Figure 4.1. The state 

of assembly indicates identified connections and each connection is identified by a black 

rectangle. Edges join every state to all the states that are reachable from it. 
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Figure 4.5. Directed graph of feasible assembly sequences using liaisons (for the assembly 

shown in Figure 4.1.) (Arthur et al. 1990) 

AND/OR graphs are possibly the most widely used in representing the assembly sequences in 

an explicit manner (Homem de Mello 1989, Homem de Mello and Sanderson 1990, Homem 

de Mello and Sanderson 1991a, Homem de Mello and Sanderson 1991b). The nodes in the 

AND/OR graph as indicated in the Figure 4.6. are linked with the subsets of parts that lead to 

a stable subassembly. Nevertheless, the root node (node 1, Figure 4.6.) is linked with the group 

of parts that leads to the entire assembly. Among the four hyper-arcs, each of them 

corresponds to a particular way within which the entire assembly be taken apart and points 

towards the two nodes that are linked with the sets of parts that explains the subsequent 

subassemblies. In the same way, the remaining nodes in the graph leave a hyper-arc for every 

possible way through which their subsequent subassembly can be taken into parts. Path in the 

AND/OR graph {{C S R H}} as its initial node and {C}, {S}, {R}, {H} as terminal nodes are 

a feasible assembly tree of that specific assembly. An assembly tree consists of partial order 

within its hyper-arcs: where hyper-arc hi is considered to be preceding hyper-arc hj, if there is 

a node nk in the assembly tree considering the fact that hi is incident from nk and hj is incident 
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to nk. Furthermore, it is observed that one sequence of the hyper-arc from an assembly tree is 

persistent with this fractional order. Moreover, each sequence of the hyper-arcs which is 

persistent with the fractional order leads to a potential assembly sequence as mentioned in the 

study by Homem de Mello and Sanderson (1991a). On the other hand, any stable subassembly 

that is linked can be made up of the components that are found to be only once in the AND/OR 

graph, even at the stage where it is found to be an outcome of different disassembly operations. 

AND/OR the graphical representations are the main foundations for other derived and related 

representations. 

 

  

 

 

 

 

 

 

 

Figure 4.6. AND/OR graph of assembly sequences of Figure 4.1. using AND/OR graph 

(Homem de Mello and Sanderson 1990, Homem de Mello and Sanderson 1991a, Homem de 

Mello and Sanderson 1991b) 

Gottipolu and Ghosh (1997) developed an Assembly Sequence Graph (ASG), which is found 

to be an explicit graph representation linked to the AND/OR graphs and the Liaison Sequence 

Graphs (LSG), in an effort to sustain the benefits of the schemes.  However, the nodes in the 
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ASG are considered to be the subsets of the parts set P that categorises the possible 

subassemblies. Thus, each node leads to a subassembly.  Moreover, the nodes are indicated 

by the boxes where each box represents N cells leading to the N parts in the assembly. In 

addition to it, the blank cell entails that the leading part is not directly assembled whereas a 

marked (hatched) cell signifies that the leading part is already been assembled.  At the top, 

which is the first level, there are N boxes in which each box represents one marked cell 

indicating all the individual parts of the assembly within an unassembled state, Figure 4.7., 

for the product in Figure 4.1. 

The disadvantage of AND/OR graph that it cannot represent all feasible assembly sequences 

for real size problem, hence, the method is restricted to reduced size or heavily constrained 

issues. For instance, through this research case studies, AND/OR graph cannot be used for the 

first case study (engine pump valve) due to number of components, while in the second case 

study (ball pen) AND/OR graph is possible to be used (see Chapter 6). 

  

Figure 4.7. Assembly sequences graph (ASG) from Figure 4.1. (Marian, Luong and 

Abhary 2003) 
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At the bottom box, it represents the entire assembly. At level L, the box includes all the “L” 

marked cells, i.e. level L consists of all the subassemblies containing L components. The lines 

linked to the boxes indicate all the feasible assembly state transformations- assembly tasks. 

One assembly task links to two subassemblies holds two arcs corresponding to the subsequent 

subassemblies, one from every constituent subassembly.  The pair of arcs can be stated as a 

hyperarcs leading to an assembly task. The hyper-arcs within the ASG can be linked with the 

weight elements for instance assembly task time, degree of difficulty of assembly functions, 

assembly costs and subassembly stability etc.  The weighted ASG can be utilised for the 

assessment of assembly plans (Gottipolu and Ghosh 1997). A mutual disadvantage of explicit 

representations is their size. Even though the most compact of representations, the AND/OR 

graph has among n*(n+1)/n and 2n -1 nodes based on the level and degree of connectivity to 

be identified, stored and linked. They linked to 120 to 32767 nodes for a 15-part assembly, 

correspondingly 205 to 1048575 for a 20-part assembly that turns to be difficult or incredible 

to store and manage. Considering assemblies with huge number of parts, the AND/OR graph 

is quite large. In such cases, parts can be clustered hierarchically into subassemblies. 

However, affectedly clustering parts, the size of the AND/OR graphs would be reduced. 

According to Homem de Mello and Sanderson (1990) it would not be considered all the 

divergent ways within which the parts in clusters could be assembled.  

4.2.4. Implicit Representations in Assembly Planning 
 

The implicit identifications include a combination of conditions that needs to content by the 

assembly sequences. According to Homem de Mello and Sanderson (1991a) (1991b) that if 

the states of the assembly process are indicated by L-dimensional binary vectors, then a 

combination of logical expressions can be utilised to encode the directed graph of possible 

assembly sequences. 

If i= {x1 , x2 ,..., xKi }represents the sets of states due to which the i-th connection can be 
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recognised without impeding the completion of the assembly, the identified condition for the 

i-th connection is found to be the logical function: 

( ) ( , , ,..., )
1 2 3

1 1

LK
F x F x x x x kl
i i L

k i

= =  
= =

                                                (4.1) 

where the product and the sum are the logical operations  AND/OR respectively, L is found 

to be the number of liaisons in the liaisons graph and kl is either the symbol xl if the l-th 

element of kx  is true (T) or the symbol xl if the l - th component of 
lx   is false (F). 

( )i kF x T=    only if 
kx is an element of i                                                (4.2) 

Any assembly sequence that is represented as an ordered sequence of state is (x1 , x2 ,..., xN) 

and whose identification as an ordered sequence o  subsets  of connections is (1,  2, …, N – 1) 

is possible if it is such that if the i-th connection is identified in the k-th task  (i.e. ci  k), 

then  
( )i kF x T=

. 

Therefore, the set of establishment conditions is a correct and complete representation of 

assembly sequences (Marian et al. 2003). The establishment conditions obtained from the 

AND/OR graph for the assembly shown in Figure 4.1. are: 

 

 

 

 

 

 



 

69 

 

( ) . . . . . . . .
1 1 2 3 4 5 1 2 3 4 5

F x x x x x x x x x x x= +  

 A)             . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

      . . . . . . .
51 2 3 4 1 2 3 4

x x x x x x x x x+ +  

 

( ) . . . . . . . .
5 52 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +  

 B)            . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

     . . . . . . .
5 51 2 3 1 2 3 4

x x x x x x x x x+ +  

 

( ) . . . . . . . .
5 53 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +  

 C)            . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

           . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

. . . .
51 2 3 4

x x x x x+  

 

( ) . . . . . . . .
5 54 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +  

 D)            . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

     . . . . . . .
5 51 3 4 1 2 3 4

x x x x x x x x x+ +  

 

( ) . . . . . . . .
5 5 51 2 3 4 1 2 3 4

F x x x x x x x x x x x= +  

 E)            . . . . . . . .
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +  

      . . . . . . .
5 52 3 4 1 2 3 4

x x x x x x x x x+ +  
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For example, the first establishing state (F1(x)) matches to the actuality that the only conditions 

in which assembly c1 (i.e., the assembly among the cap and the stick) can be established without 

prevent the completion of the assembly are either the condition in which no assembly has been 

determined (node 1 in Figure 4.4.), or the condition in which only assembly c2 is determined 

(node 2), or the condition in which only assembly c3 is determined (node4), or the condition in 

which only assembly c5 is determined (node 5), or the condition in which only assembly c2 and 

c4 are determined (node 9), or the condition in which only assembly c1 and c2 are determined 

(node 12). It should be noticed that there is no term matching to the condition in which only 

assembly c4 is determined (node6); but while it is feasible to determine assembly c1, the 

resulting condition (node 10) is a dead-end from which the assembly cannot be completed. 

De Fazio and Whitney (1987) used priority relationships as an intermediate representation in 

their processes for the generation of all the assembly sequences. However, two main kinds of 

precedence relationships can be taken under consideration to identify assembly sequences 

(Homem de Mello and Sanderson 1991a). 

4.2.4.1. Precedence Relationships between the Establishment of One Connection and 

States of the Assembly Process 

Considering an assembly sequence whose representation is done as an ordered sequence of 

subsets of connections is (1, 2, …, N – 1) that actually satisfies the precedence relationship 

    )(ic S x→                                                                      (4.3) 

If 

S (xk)  l (l  k ) (ci   l ),    for k=1, 2, ...N                                  (4.4) 

Where ci → S (x) points towards the establishment of the i-th connection that must precede any 
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state s of the process of assembly used for what the value of the logical function S(x) is true. 

 

4.2.4.2. Precedence Relationships between the Establishment of One Connection and 

the Establishment of another Connection 

An assembly sequence that is identified as an ordered sequence of binary vector is (x1,  x2 , 

..., x N) and it is represented as an ordered sequence of connection’s subsets as (1, 2, …, N – 1)  

that actually signifies the precedence relationship  ci > cj if ci  a, cj b and a ≤ b. Here, ci > 

cj indicates that the establishment of connection ci must precede the establishment of connection 

cj. 

However, each possible assembly sequence of a given assembly is uniquely categorised by the 

logical expressions based on the conjunction of precedence relationships among the 

establishments of the connections with one another. Moreover, the disadvantages of such 

approach originate from the identification of the establishment conditions which is neither 

straightforward nor it is easy to use. In relation to this, Shpitalni and Elber (1989) has 

represented a structure that is consisting of four bodies, each body is represented by a CSG 

(Constructive Solid Geometry). Also, provide such connectivity or supportive graphs to identify 

relations among the structure’s bodies (components) that are required to be assembled. The main 

emphasis of the support graph can be considered as a directed graph that indicates internal 

connectivity relations between the K components B(1)..B(K) of the related structure. The 

support graph can be explained as follows: 

• Each component is linked with the structure that is indicated by a single node in the 

graph. 

• A directed arc from B(j) to B(i) is present only and if B(i) is directly sustained by B(j) 

(i.e. B(i) and B(j) do not intersect each other). 
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A structure and its Z+ connectivity graph (i.e. connectivity throughout the +Z axis) is indicated 

in the Figure 4.8. a and b. moreover, three kinds of nodes are taken under consideration in the 

connectivity graph. 

• A regular node along with both incoming and outgoing arrows signifies a regular 

component that also supports other components and is also supported by several other 

components. 

• A sink node refers to a node with only incoming arrows and not the outgoing arrows. The 

sink node indicates a component that is supported by other components, but it is not 

supported by any other components such as B4.     

It can also be seen that a source node refers to a node that is only represented as outgoing arrows. 

The source node actually supports other components but itself is not supported by other 

components. Therefore, to generate a disassembly sequence, the connectivity graph throughout 

the +Z axis is established. In the same manner, the graphs for remaining directions can also be 

established as required. Taking in view of the disassembly along with +Z axis, the significant 

candidate considered to be disassembled is a factor whose node in the graph of connectivity is 

a sink node. i.e., it does not provide any support to any other structure of the graph. In case 

where component can be removed if a collision-free path can be identified for it and its removal 

would not lead instability, it is removed, and the graph of connectivity is also updated. Figure 

4.8.c-e. The breaking lines represent the body to be removed at every stage. If the selected 

candidate is not possible to remove, the system makes an effort to opt for any other candidate. 

 

The disadvantage of the approach is based on the representation of the connectivity throughout 

the axis. It is not easy to work even throughout the triple axes of coordinates, and the 

identification can turn out to be unusable.  
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Figure 4.8. (a) Structure, (b) its +Z connectivity graph and (c, d, e and f) and the 

representation of assembly states (Shpitalni and Elber 1989) 

Sebaaly and Fujimoto (1996c) stored the information regarding the product in a very compact 

or an implicit form. In an effort to overcome the constrained character of the ASP, the complete 

place of search involves all the feasible combination of parts, i.e. both the feasible and non-

feasible sequences, which are grouped into families of same sequences, in which each family 

(c)

(,
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) 
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consists of only one feasible sequence satisfying the problem constraints.  

 

Dini and Santochi (1992) have developed a mathematical model for a product used for the 

automatic identification of disassembly/assembly sequences and also for the identification of 

subassemblies. They utilised the contact, interference and connection matrices where each one 

evaluates along with the 3 Cartesian directions, x, y and z of the CAD space, hence requiring 9 

matrices. Moreover, the interference matrix Ak is considered to be the square matric of order n- 

considering an n-element product in which ai, j=1, if the element ei interfered with ej element 

while the translation with +k (k= x, y, z), otherwise ai, j=0. Traditionally always ai, j=0. 

However, the contact matrix is considered to be the square matrix of order n, in which bi, j=1 

if ei is in connection with ej along +k, on the other hand bi, j=0. Traditionally, bi, j=0. The 

connection matrix is considered to be the square matrix of an order n, where ci, j consider a 

numerical code which is the process of the types of the connection among ei and ej with k (e.g. 

cij=1 for a looped connection, where ei can be considered as disassembled, cij=-1 for threaded 

connection, in which ei cannot be considered as disassembled as per Dini and Santochi (1992). 

Throughout the generation of a right disassembly sequence, the code can be separated from the 

element that can be disassembled. However, a process of utilising the information given in this 

model among an element and other elements is able enough to present feasible assembly 

sequences. Figure 4.9. shows an example of a product, along with its interference, connectivity 

and contact matrices. This identification is restricted by the number of directions through which 

the disassembly can be taken under consideration, i.e. 1. In addition, it also takes into 

consideration disassembly gained from the linear translation of components. 
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Figure 4.9. Example of a product with its matrices (Dini and Santochi 1992) 

4.3. SLMC ASSEMBLY SEQUENCES 
 

In a SLMC (Sequential, Linear, Monotone and Coherent) manner (the number of assembly 

operations (m) equals the number of components (n)), an assembly sequence can be encoded 

in a chromosome which is a permutation of product components. A gene in locus j, j=1 and n 

computed typically to the right from the left encodes the addition of the leading components in 

the j-th step and any partial chromosome with k genes, k=1, .... n indicated an assembly state, in 

which the first k components are assembled in a partial assembly and all their liaisons are 

developed. A component that is encoded with a gene will come out in the chromosome only for 

once. The remaining constraints apply, an n-term sequence of components of the assembly that 

can be infeasible or illegal chromosome. However, a simple n-term sequence is considered to 

be an illegal chromosome even when it is not a permutation. In this case a component number 

is found to be more than once, which does not include all the components that exists, for instance 

the torch in Figure 4.1. a1-a1- a3-a4-a4-a6-a7-a8-a9 is an illegal chromosome: a1 and a4 appear 
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twice and a2 and a5 do not appear at all). However, a permutation is found to be legal 

chromosome and assigns a tentative assembly sequence, where all the components exists and is 

possible that that assembly cannot be realised due to the existence of the constraints. (e.g. 

geometry, unreachable positions – a1-a2-a3-a4-a5-a6-a7-a8-a9 is infeasible because a3 cannot 

be assembled to a2).  In addition, a feasible chromosome encodes a feasible assembly sequence. 

It is found to be constrained permutation which compiles all the assembly particular conditions 

(e.g. a4-a3-a2-a1-a5-a6-a7-a8-a9 is a legal and feasible chromosome, it complies with all 

constraints). 

 

Figure 4.10. Relations between chromosomes and assembly sequences (Marian et al. 

2006) 

4.4. MODELLING AND REPRESENTATION OF NON-LINEAR 
ASSEMBLY SEQUENCES 
 
  

Under this section, the main emphasis is on representation and modeling of non-linear assembly 

sequences, subassemblies and assembly plan including components. However, artificially, a 

gene can encode the inclusion of subassembly to the partial assembly. Therefore, considering 

this case the chromosome indicates a non-linear assembly sequence. As shown in Figure 4.11, 

a1, a2, a3 and a4 can be considered as a subassembly. These can be considered as a group in a 

subassembly that can be known as A. However, the subassembly A can be considered as a 

complex component. Taking into the consideration, the assembly process regarding the 

n-term sequence 
(non – permutation) 

 
ILLEGAL

CHROMOSOME 

Permutation – legal chromosome, 
assembly conditions not respected??? 

Constrained Permutation 
(assembly conditions respected) 

 

FEASIBLE CHROMOSOME 

INFEASIBLE CHROMOSOME 



 

77 

 

components in the assembly A have been considered before the assembly process of the 

flashlight. 

 

Figure 4.11. The graph of liaisons of the flashlight in Figure 4.1. 

The relationship among the components in A are built when subassembly A is done. Therefore, 

they are not significant at the initial phase of adding A to the rest of the product. Only the related 

links between components in A and components outside A are considered. The edges a1-a2, a2-

a4, a3-a4 are internal to A, i.e. among components within the assembly A. However, liaisons 

are built when A is assembled, therefore they are no longer related when A is added to the 

remaining torch. In addition to it, the edge among a4 and a5 is between component within A (i.e. 

a4) and component outside A (i.e. a5) and its identified when A is added to the remaining product. 

In fact, this edge is between the rest of the product and the subassembly. Two examples related 

to assembly sequences for the flashlight includes A as a subassembly which is made earlier 

are: - A-a5-a6-a7-a8-a9 and - a5-A-a6-a7-a8-a9, if a7 and a8 are assembled and added to the 
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flashlight as a subassembly B, the edge a7-a8 is internal to the subassembly B and edges a5-a7 

and a8-a9 are between a component in B and a component outside B. 

There are two examples of assembly sequences in terms of flashlight, consisting of B as a 

subassembly made earlier, which are:  

- a4-a3-a2-a1-a5-a6-B-a9 and - a5-a6-B-a9-a4-a3-a2-a1. 

Moreover, an assembly sequence can be consisting of two or more subassemblies. The two 

instances of assembly sequences for the flashlight includes A and B as subassemblies made 

earlier are: 

- B-a5-a6-a9-A and - a5-A-a6-B-a9. 

However, the modelling of an assembly sequence that consists of non-linear component 

includes: 

• Selection of the components comprised in each subassembly that is to be assembled 

as is. 

• Encoding of each subassembly as a complex component that received new name. 

• Encoding of each subassembly as a vertex in the graph of liaisons. 

• Encoding of each subassembly as a gene in the chromosome. 

4.5. MODELLING AND REPRESENTATION OF NON-SEQUENTIAL 
ASSEMBLY PLANS 
 

A non-sequential assembly sequence is considered as contradictions with regards to assembly 

plans with non-sequential operations. To consider the non-sequential assembly plans in the 

operation of optimisation, the non-sequential operations set are aggregated and isolated into 

critical components or subassembly. Moreover, a non-sequential operations set cannot be 

viewed as assembly sequence optimisation for the critical components because of the fact that 

there is only one possible way to assemble it at the same time for diverse directions.  
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Figure 4.12a. shows a product that can be assembled only with a non-sequential assembly plan 

and a cross-section through it (b). Its graph of liaisons is presented in Figure 4.12c. 

Components a1, a2 and a3 are the components that are required to be assembled at the same 

time coordinated set of movements. The remaining components a4, a7 can be assembled in a 

sequential manner. The components a1, a2 and a3 are combined in a subassembly A (Figure 

4.12d.). By taking a view at A as a subassembly, the assembly plan can be considered as 

encoding in a chromosome such as an assembly sequences as a subassembly. In Figure 4.12., 

the product signifies the liaison between a3 and a5 is considered when the liaison is taken into 

account between A and the remaining components.  In Figure 4.12., three examples of possible 

assembly plans for the product are identified including A as a subassembly made earlier and 

using a non-sequential plan, which are: 

•  A-a5-a4-a6-a7. 

• a5-a6-A-a4-a7. 

• a4-a5-a6-a7-A. 

 

 

 
 

A 
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Figure 4.12. A product that can be assembled only with a non-sequential assembly plan (A), a 

cross-section (B), the graph of liaisons (C) and the simplified graph of liaisons (D) 

The modelling of a non-sequential assembly plan includes: 

• Selection of each set of components in a synchronized sequence of movements. 

• Encoding of each of those sets as a complex component receiving a new name. 

• Encoding of each complex component as a vertex in the graph of liaisons. 

• Encoding of each intricate component as a gene in the chromosome. 

4.6. MODELLING AND REPRESENTATION OF NON-MONOTONE 
ASSEMBLY SEQUENCES 
 

An assembly sequence can be considered as a non-monotone where a component is 

included to the partial assembly and not in its final stage. This case will need a specific 

stage down towards the track and a position to the respective component is transformed 

and it is moved to its final and specific position with regards to the rest of the product 

components. Therefore, an assembly sequence consists of non-monotone operations 

signifies that: 

• The component (e.g. an, where n= 1,2,3, …, h) needs at least two main sets of assembly 
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operations, and 

• The two sets of the respective assembly operations are parted by at least one assembly 

operation, not taking into account the component an. 

In an effort to represent and model non-monotone assemble sequences in a chromosome, a 

gene is required to be perfect enough to encode particular operations and not including the 

additional part.  In the Figure 4.13. it can be seen that there is a graph of liaison and product, 

where the product can be assembled with the monotone assembly sequence consisting of 

additional components c1 (a1), c2 (a2) and c3 (a3) along with the assembly operation, a4. In 

relation to this case, the chromosome a2-a3-a1-a4 encodes within homogeneous notation and 

non-homogeneous information. The components c2 is assembled initially and after which c3 is 

included then c1. At the final stage, c3 is pulled in the c1 slot. However, each substring a2, a2-

a3, a2-a3-a1 and a2-a3-a1-a4 indicates an assembly stated, the last one encodes more advanced 

stage of assembly plan than the prior one. 

 

Figure 4.13.  A product realised with a non-monotone assembly sequence (Marian et al. 

2006) 

Modelling non-monotone assembly plan includes:  

• Selection of appropriate assembly-like operations to be considered in the 

assembly sequence. 

• Encoding of each of those operations as a pseudo-mutation (PM) or meta-
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component (MC) which receives a new name. 

• Encoding of each pseudo-component as a vertex in the graph of liaisons. 

• Encoding of each pseudo-component as a gene in the chromosome. 

4.7. MODELLING AND REPRESENTATION OF PSEUDO-NON-
COHERENT ASSEMBLY PLANS 
 

It is observed that assembly plans are coherent in which each part is actually inserted and touch 

other placed part. However, the two different situations can be taken as exceptions. In relation 

to this, first situation happens in the non-linear plans and in this case the assembly process is 

coherent at each level of subassembly. On the other hand, the whole assembly process of the 

product is coherent subassembly. In relation to this, each subassembly can be viewed as 

complex component made previously and indicated as a vertex along with its leading external 

liaisons the process of assembly. Considering this the plan can be treated and encoded as 

mentioned above, specifically for non-linear plans. The other situation happens when auxiliary 

fixture is utilised temporarily in the initial phase of the assembly process. For modelling, for 

instance assembly process, the auxiliary tool or fixture can be taken as auxiliary component to 

be included to the product then removed. Therefore, the assembly sequence is changed to form 

a non-coherent one into a coherent and non-monotone sequence which can also be encoded. 

Figure 4.14 indicates a product that can be considered as assembling with a pseudo-non-

coherent assembly plan. The product is based on two vertical poles a1 and a2 in a horizontal 

bar a3. Figure 4.14. indicates the liaison graph of product with three components a1, a2 and a3. 

However, it can be seen that assembly sequence is coherent. In the graph of liaisons, can be 

seen relating to the product and the ground as an auxiliary component a4 (upper surface). A 

negative component -a4 (bottom surface), is also added to the graph of liaisons which holds 

the same contacts as a4, respectively a1 and a2. The feasible assembly sequences in this case 

will be a4-a1-a2-a3-(-a4) and a4-a2-a1-a3-(-a4). 
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Figure 4.14. The graph of liaisons of the product (K and H) (Marian et al. 2003) 
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CHAPTER 5 

GLOWWORM SWARM ALGORITHM FOR THE OPTIMISATION OF 

ASSEMBLY SEQUENCE 

5.1. INTRODUCTION 
 

Krishnanand and Chose (2006a) introduced GSOA aiming to solve engineering optimisation 

problems. It has been reported that the GSOA is effectively used for optimisation of multi-

function wireless sensors, solving a number of analytical problems (Yu and Yang 2013) and 

(Pengzhen et al.  2014). Variants of such an algorithm namely particle swarm optimisation 

(PSOA) and niching particle swarm optimisation (NichePSOA) have the similar approach. The 

NichePSOA is a technique that extends the unimodal particle swarm optimizer for solving 

multimodal problems, i.e., multiple subswarms are grown from an initial particle swarm by 

monitoring the fitness of individual particles (Brits et al. 2002, Kennedy and Eberhart 1995). 

By comparing NichePSOA and GSOA, it was reported that a better performance of 

NichePSOA has been observed than GSOA in terms of acquiring an optimal solution for 

multimodal problems (Kennedy and Eberhart 1995), (Van den-bergh 2002) and (Yu and Wang 

2013).  

Glowworms, ants and bees behave differently, and their social behavior is impacted by the 

interactions of each other. The versatile behavior of social insects (SI) can be transformed into 

digital software solutions. In SI systems these behaviors can be imitated. The basis of these 

systems is that they focus on the behavior of local agents interacting with each other and 

behaving as a local swarm. The interaction of different swarms with each other is also 

considered. Their movement depends on the local sources placed in the simulation system.  

5.1.1. General Collective Behavior of Swarms 
 

The main properties of the collective behavior can be pointed out as follows and is summarised 

in Figure 5.1: 
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Homogeneity - Every agent in swarm has the same behavior. It may appear that different 

leaders are formed during the movement of swarm. 

Locality - The locality is the influence of subgroups of agents affecting each other in the region 

(Krause and Ruxton 2002). Within the swarm organization, the most important quality of swarm 

is the ability of vision of each leader and their subordinates during the movement.  

Swarm Centering - Due to this inherent ability of swarm, it is easy for the agents to stay close 

to each other. It is their ability that a specific distance can be maintained between them and 

other agents. 

This is observed in a large swarm of animals that they give this the highest priority (Krause and 

Ruxton 2002). 

Velocity Matching - Attempting to match the velocity with the nearby swarm mates. 

Collision Avoidance - This ability is used by the stock mates to avoid the collision with nearby 

swarm mates. It is done by using the velocity matching technique which results in matched 

velocities (Krause and Ruxton 2002). They are attracted towards other members of swarm if they 

don’t do the action of avoidance. It is not in their power to remain isolated as they are attracted 

towards other individuals and to align themselves with neighbours (Partridge BL 1982) and 

(Partridge and Pitcher 1980). 
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Figure 5.1. The character of collective behavior (Thiruvenkadam and Perumal 2017) 

5.1.2. Collective Behavior of Glowworms 
 

Krishnanand and Ghose (2009a) analysed the flashing behavior of glowworms. Each 

glowworm carries a luminescence amount called luciferin, which is decided by the function 

value of glowworms’ current location. A range is defined for each glowworm and through this 

range, depending upon the level of luciferin, a glowworm moves towards another glowworm. 

The higher luciferin level of the glowworm leads to attraction to movement which is decided 

by a probability mechanism (Krishnanand and Ghose 2006a, Krishnanand and Ghose 2006b, 

Krishnanand and Ghose 2009a, Krishnanand and Ghose 2008, Liao, Kao and Li 2011, Wu et. al. 

2012 and Jayakumar and Venkatesh 2014). 
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Zhang et al. (2011) used a methodology for limitation of scent sources with respect to an 

advanced GSO calculation. It has been observed that the far-reaching calculations of tuft 

following can be performed by the applications for utilisation independent robots. Tang et al. 

(2013) proposed the GSO solution that was developed on a global base using the mutation 

program in optimum conditions. This process is called the parallel crossover mutation 

glowworm swarm optimisation. Jayakumar and Venkatesh (2014) developed the optimal 

solution for resolving the problem of multiple objectives based on ecological and economic 

parameters using GSO algorithm. 

Atheer and Nordin (2017) proposed GSO technique by increasing the population range using 

the mutation process. Diffusion solutions in space research are retained by way of mutation 

operation. Some solutions turn into infeasible following the operation of mutation and 

migration during the problems of optimisation. Multiple solutions can be added by the addition 

of other methods to verify the possibility of the solution in such cases (Pan and Xu 2016, Mo, 

Li and Zhang 2016). 

5.1.3. Differential Methods in Terms of the Extensive Review 
 

A multimodal optimisation problem can be formulated as the clustering problem using a GSOA 

method (Aljarah and Ludwig 2013). These methods have been known to provide better results 

compared to traditional clustering methods of such as the K-Means clustering, average linkage 

agglomerative hierarchal clustering, furthest first (FF) and learning vector quantization (LVQ). 

Gorai and Ghosh (2011) find the best enhancement setting of images which was based on PSO 

(Particle Swarm Optimisation Algorithm). The quality of intensity of image is enhanced by the 

parameterized transformation function which was a similar proposition to earlier. The rescaling 

method has also been utilised for solving scale problem. Table 5.1 shows a summary that 

distinguishes the differential methods in terms of GA, PSO, ACO and GSO, respectively (Zhan, 

Zhang, Li and Chung 2009). 
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Table 5.1. The differential methods in terms of the extensive review of the GA, PSO, ACO and 

GSO, respectively 

Items 
Algorithm 

GA ACO PSO GSO 

Year 1975 1999 1995 2005 

Author John Holland 
Dorigo & Di 

Caro 

Kennedy & 

Eberhart 

Krishnanand & 

Ghose 

Optimisation 
Discrete 

Optimisation 

Meta heuristic 

Optimisation 

Stochastic 

Optimisation 

Meta heuristic 

Optimisation 

Parameters 

Reproduction, 

Crossover, 

Mutation. 

Construct Ant 

Solutions, 

Daemon 

Actions 

(optional), 

Update 

Pheromones. 

Current 

velocity, 

Personal Best, 

Neighbourhood 

Best. 

Initialization, 

Updating 

Luciferin, 

Movement, 

Updating the 

Local Decision 

Range. 

Purpose 
Find the best 

among others. 

Find the 

shortest path. 

Reach target 

with minimal 

duration. 

Find the local 

finest solution. 

Advantages 

1.Large 

combinatorial 

problems can 

be solved by 

means of 

efficient 

investigation 

2. Exhaustive 

brute forces 

searches appear 

slow as 

compared to 

1. Parallelism 

is present 

inherently. 

2. Rapid 

discovery of 

goods solution 

are given as 

positive 

feedback. 

3. Travelling 

salesman and 

other similar 

1. Scientific and 

engineering 

problems can be 

accounted in 

this mechanism. 

2. Mutation 

calculation and 

overlapping 

does not occur 

in this method. 

1. Highly 

nonlinear and 

multimodal 

optimisation 

problems can be 

handled naturally 

and efficiently. 

2. Velocities are 

not used in GSO. 

PSO also shows 

no problem 



 

89 

 

many orders of 

magnitude 

problems are 

efficiently 

solved. 

4. Dynamic 

applications 

can be used 

(the changes in 

new distances 

can be 

formulated) 

3. Speed of 

particle can help 

carry the search. 

4. Real number 

code is adopted 

by PSO. The 

solution decides 

this directly. 

 

associated with 

velocity. 

3. Global 

optimised 

solution has a 

very high 

probability of 

reaching as the 

speed of 

convergence in 

GSO is very high. 

Disadvantages 

1. It is 

expensive 

computational 

2. Weeks or 

days may be 

consumed to 

analyse the 

large problems. 

3. It is faster 

than force. 

4. Glowworm 

algorithm can 

be directed 

towards 

optimal 

solution but it 

is blind. 

1. Difficulty 

has been 

observed in 

theoretical 

analysis. 

2. Independent 

use of 

sequences of 

random 

decisions. 

3. Iterations 

are changed by 

probability 

distribution. 

4. The research 

has been 

experimental 

and not 

theoretical. 

1. Mid optimum 

point can reach 

premature 

convergence 

have a fast 

tendency. 

2. Scattering 

and 

optimisation 

problems 

cannot be 

solved by this 

method. 

3. For each 

iterative process 

there is slow 

convergence. 

1. High 

dimensional 

problems have a 

problem with 

GSO. 

2. The 

conventional 

speed for the 

algorithm is 

slowed for 

glowworms 

moving as the 

dynamic change 

of decision 

domain is GSO. 

3. Slow iteration 

process occurs as 

the local search 

ability is reduced. 

Medical Field 

The 

optimisation of 

artificial neural 

The neural 

network has 

been optimised 

1. Image 

segmentation 

(MRI) has been 

1. The future 

selection 

problems can be 
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networks 

among others 

seem slow as 

compared to 

genetic 

algorithm. 

artificially in 

ACO. This has 

been used in 

the field of 

medical image 

processing. 

used to detect 

the Brain 

tumour  

2. The artificial 

neural networks 

have been 

optimised for 

medical image 

processing by 

using PSO. 

optimised by 

using GSO. 

 

5.2. GLOWWORM SWARM OPTIMISATION ALGORITHM 
 

According to Krishnanand and Ghose (2009b) glowworm swarm s which contains of m 

glowworms, is distributed in the search space. A random position pj is assigned to the 

glowworms gj (j=1…m) in the search space. A specific luciferin level Lj is assigned to each 

glowworm gj in the local decision range rdj. A glowworm having a higher level of luciferin 

will be brighter. Within the neighbourhood range of the glowworms, they move towards the 

brighter glowworms that are having high luciferin level value within their restricted domain 

range. At multiple optimal locations in search space, compact groups are formed by most of 

glowworms. During the initial stages when the glowworms are placed in the search space, they 

have a luciferin level (L0) which is equal for all. The rs radial sensor range is also initialised 

with the condition of r0. At a position of glowworm pi the objective function is evaluated at 

luciferin level update. After that the luciferin level for the combined group is set to drive the 

new objective function values. For the glowworm, the luciferin level is Lj is defined as follows:   

 

( ) (1 ) ( 1) ( ( ))j j i jL t L t F p t = − − +                                                       (5.1) 

Here   is the luciferin decay constant and Lj (t-1) shows the value of luciferin at the previous 

level. γ is the luciferin enhancement fraction. 
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At any current glowworm position pj for any glowworm j, F (pj (t)) represents the objective 

function. T is the current iteration for glowworm j. During iteration, the glowworm j explores 

its neighbourhood region for finding the highest luciferin level by applying the following rule.  

( )jz N t  if  ( )jz jd rd t  and  ( ) ( )z jL t L t                                  (5.2) 

Where distance is represented by d. Glowworm j is closer to glowworm z. Nj (t) is defined as 

the neighbourhood set. djz is the distance between the glowworm z and glowworm j. Local 

decision range for the glowworm j is defined by rdj (t). Lz (t) defines the luciferin value for 

glowworm z for time t while Lj (t) defines the glowworm j luciferin level for time t.  

( )

( ) ( )

( ) ( )

z j

jz

z j
k N tj

L t L t
prob

L t L t


−
=

−
                                                 (5.3) 

This equation 5.3. describes the preference of glowworms to select the best neighbour in the 

neighbourhood. For this purpose, the equation drives test for each glowworm and analyze the 

probability for selecting best neighbours. Z is described as one of the many neighbourhoods set 

for glowworm j. A glowworm which has a high level of probability will have a higher chance 

of getting selected from the neighbourhood, while the direction is measured by the roulette 

wheel method. Previous glowworm is adjusted according to the new neighbour glowworm. 

 

𝑝𝑗(𝑡) = 𝑝𝑗(𝑡 − 1) + 𝑠
𝑝𝑧(𝑡)−𝑝𝑗(𝑡)

𝑑𝑗𝑧
                                         (5.4) 

 
 

Distance jz is defined as the Euclidean distance between the glowworm j and z.  At the end of 

the glowworm iterations, the range for the local decision domain with the new adjusted 

glowworms is given by, 

 

 

 ( ) min ,max{0, ( 1) ( ( 1) )}i i

d s d t jr t r r t n N t= − + − −                                   (5.5) 

 

β is a constant parameter that affects the rate of change of the neighbor 
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domain. 

 

The neighbour set size is restricted by a constant parameter nt. The actual neighbourhood set 

size is described by Nj (t). 

The computational procedure for the GSOA is shown in the Figure 5.2. 
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Figure 5.2. Flowchart of GSO (Thiruvenkadam and Perumal 2017) 
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5.3. GLOWWORM SWARM OPTIMISATION CLUSTERING 
ALGORITHM 

 

GSO clustering algorithm turned to be a significant method in machine learning, pattern 

recognition and other engineering fields. The clustering algorithm aimed to identify and extract 

important groups in underlying data. Emerging Clustering with GSO based algorithm as an 

alternative to more classical clustering approaches. 

In GSO clustering algorithm two processes has been added to the main GSO processes. First 

one is defining a cluster data object and the second process is defining the attraction data object. 

5.3.1. GSO Clustering Process 
 

GSO clustering algorithm has additional processes and defined as follows: 

For A cluster data object x (x1, x2, …., xm), the equation 5.6. describes the local space relative 

density: 

  ( )
( )( )

( )
ir

i

x tN
d x t

g
=                                                                     (5.6) 

Where r is the local space radius, Nr (xi(t)) is the data set containing in local space within r of 

x at iteration t, g is the overall numbers of data object. The bigger d (xi(t)) value, the more data 

object X (x1, x2, …., xm). 

For attraction data object x (x1, x2, …., xm) is described by the next equation: 

  

( ) ( )( )( ) In ( )i iJ x t d x t= −                                                                     (5.7) 

Where ln() is the natural logarithm. Also, The bigger J (xi(t)) value, the more data object X (x1, 

x2, …., xm). 

5.3.2. GSO Clustering Algorithm 
 

GSO clustering algorithm is described as follows: 

Input cluster data object; 

Set maximum iteration number = iter_max; 
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Let s be the step size; 

Let r be the local space radius; 

Let Li (0) be the initial luciferin; 

Let 
i

dr  (0) be the initial dynamic decision domain radius 

Set t =1. 

While (t < = iter_max) do: 

{ 

for i =1. 

( )( ) { : ( ) ( ) }i j ir
x t j x t x t rN = −  ;  %Where x  is the norm of x   

( )
( )( )

( )
ir

i

x tN
d x t

g
=  

( ) ( )( )( ) In ( )i iJ x t d x t= −  

( ) (1 ) ( 1) ( ( ))j j i jL t L t F p t = − − +  

For each glowworm i do: %movement-phase 

{ 

,
{ : ( ) ( ) ( ) ( )}

d

ii i j i j
j t t and t tN d l lr=    

Where x  is the norm for x  

for every glowworm ( )  do:ij N t  

( )

( ) ( )
( )

( ) ( )

i

ij
ik

k N tj

j
L t L t

p t
L t L t



−
=

−
 

j= select glowworm ( p ) 
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where p  is the maximal element of P 

( ) - ( )
( 1) ( )

( ) - ( )

j i

i

j i

x t x t
x t x t s

x t x t

 
 + = +
 
 

 

( 1) min{ ,max{0, ( ) ( ( ) )}}i i

d s d t ir t r r t n N t+ = + −  

} 

1;t t +  

} 

Algorithm symbolic description: ( )ix t is the glowworm i  in t  iteration location; ( )iL t is the 

luciferin of the glowworm i  in t  iteration; ( )iN t is the neighbourhood set of glowworm i  in t  

iteration; ( )i

dr t is the dynamic decision domain radius of glowworm i in t  iteration; is the upper 

bound of the ( )i

dr t ; ( )ijp t  is the probability of glowworm i selects neighbour j (Thiruvenkadam 

and Perumal 2017).   
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CHAPTER 6 

A CASE STUDY USING A GENETIC ALGORITHM AND A GLOWWORM 

SWARM ALGORITHM FOR SOLVING AN ASSEMBLY SEQUENCE 

OPTIMISATION PROBLEM  

6.1. INTRODUCTION 
 

An assembly sequence must usually be pre-defined when a product needs to be assembled. 

This is ideally considered at the early design stage and is aimed at a reduction of assembly time 

and therefore costs. That is particularly crucial for many small-medium enterprises (SME) that 

rely on assembly of products to survive in fierce competition. Apart from the effect of product 

design, assembly time is largely subject to its assembly precedence, accessibility, constraints, 

geometry and number of assembly components. Marian et al. (2006) suggested a GA for 

solving an ASP optimisation problem with an aid provided by a guided search effective 

algorithm. Choi et al (2009) developed an approach to optimise multi-criteria ASP based on a 

GA. Yasin et al (2010) investigated the application of GA in optimising product assembly 

sequences and the study concluded that GA can be used to obtain a near optimal solution for 

seeking a minimal process time of sequence assembly. Thus, GA is an efficient algorithm to 

find an optimal or a near optimal solution for assembly sequence time. 

As presented earlier in the research literature, GSOA was introduced by Krishnanand and 

Chose (2006a) to solve engineering optimisation issues. To accomplish GSOA objective 

(engineering optimisation problems), a swarm must have an ability to be split into disjoint 

groups. During one program run, the GSOA is capable of determining the multiple optimal 

solutions in parallel. First, the algorithm involves a random deployment of a population in a 

specified size n glowworm in a search space at the inception and each carries a luminescence 

containing a quantity of luciferin as physical entity. Location of a glowworm is determined by 

an objective function calculating the strength of luciferin, i.e., the intensity of luciferin is 
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associated with the objective function of a glowworm’s location. A greater luciferin intensity 

implies a better location associated with an objective function value. Each individual 

glowworm updates its luciferin level based on the objective function value of its recent 

position.  

Unlike GA which are commonly used for solving assembly sequence optimisation problems, 

GSOA was not reported as being used for solving similar issues. This research presents two 

case studies that applies the GA approach and the GSOA approach to obtain the fastest solution 

for the assembly sequence of a car engine pump valve and a ball pen product. GSOA 

outperformed the GA in terms of reducing assembly time for an assembly sequence. 

6.2. PROBLEM STATEMENT MODEL FORMULATION 
 

It is widely understood that efficiency of assembling a product by reducing assembly times 

(therefore costs) is vital particularly for small manufacturing companies to survive in an 

increasingly competitive market. Optimally, it is helpful for determining an optimal assembly 

sequence of a product at the early design stage. The complexity of assembling a product is 

often subject to the number of assembly components and the relationship between mating parts. 

Products complexity can be divided to three types;  

- Large product: That has more than 25 components, for example, a car engine (will 

be one of the research future work). 

 

- Medium product: that has up to 25 components (Marian et al. 2006). For instance, a 

car engine pump valve (first case study). 

 

- Simple product: that has a small number of components, for example, a ball pen 

product (second case study). The product assembly sequences can be determined at 

the early design stage.  
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Nevertheless, it may find inefficient using the heuristic approaches in acquisition of a quick 

solution in terms of an optimal assembly sequence with a minimal assembly time. It starts by 

selecting input parameters based on number of sequences, priority matrix and assembly 

sequence time. 
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6.2.1. Genetic Algorithm 
 

Figure 6.2. illustrates the mechanism of the GA used in programming. It starts with the initial 

population that is usually generated randomly as a binary string of zeros and ones or as integers 

or real numbers; this is also known as a genetic representation or encoding. The next process 

is the evaluation stage, which involves a computation of a fitness value based on an objective 

(fitness) function. Thus, selection plays a key role in GA programming; only those representing 

a possible solution with either a highest or lowest fitness value are selected. The Roulette Wheel 

approach was used to ensure that a certain number of the population of chromosomes are 

retained in the next generation, which contains chromosomes with greater fitness. Crossover 

operates on pairs of chromosomes simultaneously with the aim of creating offspring that 

combines the features of both parental chromosomes. This is usually carried out via a random 

selection of parental chromosomes to produce new chromosomes. In this study, however, it 

was performed by crossing over the genes as illustrated in Figure 6.3. to generate possible 

assembly sequences for the car engine pump valve with assumption that the bits of 

chromosomes can be swapped freely without following the precedence required for assembly. 

Mutation is used to have a complete loss of a particular allele or bit, i.e, the mutation of 

swapped genes is utilised to prevent chromosomes from repeating the gene of a new offspring. 

This was performed by crossing over the genes in different sequences leading to various 

assembly paths and total time of assembly. Only the bits of chromosomes that do not have a 

successor or precedence are swapped as illustrated in Figure 6.4. and these chromosomes were 

used. 
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Figure 6.2. The GA programming approach 

 
 

The following notations and parameters are used:   

i: Number of a chromosome, i = 1, 2, 3,…, k; 

f i: Fitness of chromosome i; 

t i: Time taken of chromosome i;  

F: Fitness of the population; 

Cr: Crossover rate; 

Ri: A Roulette Wheel probability; 

Pi: The cumulative probability for chromosome i; 

L: Total length of gene in a population; 

e: Number of genes in a chromosome, e = 1, 2, 3, …, n; 

mr: Mutation rate; 

r: Random number; 

M: Number of mutations. 
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The Fitness Function 

In this study, the GA uses a single objective function as the fitness function for selecting a 

chromosome with a higher fitness value. The fitness fi, which is a function of assembly time of 

an assembly sequence represented by chromosome i, is described as:            

𝑓
𝑖

=
1

∑ 𝑡𝑖
𝑚
𝑖=1

                                                                     (6.1) 

Thus, the total fitness F is given:  

𝐹 =
1

∑ 𝑓𝑗
𝑚
𝑗=1

                                                                   (6.2) 

The for loop is used to compute the fitness value for each of the generations with the above-

mentioned formula. The computed fitness values are stored in the array future usage. The 

pseudocode that is used to implement the fitness function is provided below: 

int noGenerations = F_Obj.length; 

 double Fitness[] = new double[noGenerations]; 

 for(int i=0;i<noGenerations;i++) 

 { 

  Fitness[i]=(1/(1+(double) F_Obj[i])); 

 } 

 return Fitness; 

 

Selection of a chromosome 

As illustrated in Figure 6.3., in the proportionate fitness selection, which is also known as the 

roulette wheel selection, fitness is calculated by assigning a fitness value to one of possible 

chromosomes or solutions. This fitness value is often associated with a probability of a 

selection with each of individual chromosomes. Only a chromosome with a high fitness value 

will be selected during a selection process. 
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Figure 6.3. Selection of a better chromosome 

 

 

Thus, only a chromosome, which is fittest with the greater roulette wheel probability, is 

selected. The roulette wheel probability Ri is given by: 

𝑅𝑖 =      
𝑓𝑖

𝐹
                                                                           (6.3) 

The percentage of the chance for chromosome i is expressed as probability Pi  where, 

 

𝑃𝑖 =  𝑅𝑖 × 100%                                                                                                  (6.4) 

The probability is calculated with the use of Fitness value of the chromosome. However, before 

calculating the probability the total sum of the fitness values of the entire chromosomes should 

be calculated. The pseudocode used to compute the probability using the fitness function is 

provided below:  

int noGenerations = Fitness.length; 

 double Probability[] = new double[noGenerations]; 

 double sum =0; 

 for(int i=0;i<noGenerations;i++) 

  sum =sum+Fitness[i]; 

 for(int i=0;i<noGenerations;i++) 

 { 

  Probability[i]=Fitness[i]/sum; 

 } 

 return Probability; 
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Number of 

chromosomes 

Diversity 
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Crossover 

Figure 6.4. illustrates a crossover process where the first two genes of two different 

chromosomes are exchanged. The crossover process is controlled by a probabilistic operator. 

Repetition of the same gene number is strictly avoided during the crossover process, and each 

of the genes involved is thoroughly checked before completing the process.  

Parents 

C8 C11 C4 C6 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7 
 

 

 
                              

 
Offspring 

C11 C8 C4 C6 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7 
 
 

Figure 6.4. The crossover process of swapping genes 

The two different genes that will be used for the crossover is selected using the random 

function. The pseudocode that is used for the random selection of the genes are provided below:  

Random rn = new Random(); 

firstChromosome=chromosome[rn.nextInt(noGenerations)]; 

secondChromosome=chromosome[rn.nextInt(noGenerations)]; 

 
Mutation 

A mutation is performed by a random replacement of a gene from its original state with a new 

quantity in other position or attributes, according to a user-defined mutation probability or 

mutation rate. The only thing this prevents is the taking of the fittest of the population in the 

next generation rather than randomly selecting those that are fitter. Parameters of C6 and C4 

were used for the calculation of the mutated chromosomes in a particular population, as shown 

in Figure 6.5. 

 
C11 C8 C6 C4 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7 

 

Figure 6.5. The mutation operator 
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Thus, the total length of genes L in a chromosome is thereby given by: 

L = 𝑒 𝑛
𝑖                                                                          (6.5) 

Where i = 1, 2, 3, …, k. L is a random integer ranging from 1 to 14 in this case. As a result of 

this, a probability of a mutation of a gene is 1/L, If the mutation rate mr is greater than the 

selected random number r, i.e., mr >r, where is r a random number r in the range between (0, 

…1), 0 ≤ r < n, then the mutation should be performed. Hence, the number of mutations M is 

given by 

𝑀 = 𝑟
1

𝐿
                                                                (6.6) 

After a re-allocation of the suitable gene position of the chosen parent, a new child chromosome 

is established. This implies that the new child chromosome has a new identification which 

possibly makes it a new parent for the next generation of the continuous population. 

The pseudocode that is used to perform the mutation of the genes in a chromosome is provided 

below:  

  for(int j=0;j<mutation.length;j++) 

  { 

   for(int k=0;k<mutation[0].length;k++) 

   { 

    sum1=sum1 +mutation[j][k]; 

   } 

   if (sum1!=0)    

    counter++; 

  } 

6.2.1.1. Acquisition of an assembly sequence time using the GA 
 

The notation used in this study to summarise and highlight the proposed solutions to the 

assembly sequence problem is subsequently explained. 
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 Indices 

g: generation index (g = 1, ……G), where G represents the number of generations. 

s: assembly sequence index (s = 1,….Sg), where Sg represents the number of assembly 

sequences in a specific generation g. 

c: an assembly component index (c = 1, ….Csg ), where Csg represents the number of assembly 

components in a particular sequence of assembly of a generation. 

 

P: priority, P ={
1
0

  

Decision variables 

Xcsg={
1
0

   

Parameters 

HTs: Handling time for assembly sequence S 

ITs: Insertion time for assembly sequence S 

TTs: Total time for assembly sequence s, where TTs is a sum of HTs and ITs 

r: Random number 

CP: Cumulative probability 

Fs:  Fitness of assembly sequence s (s = 1, 2, 3, …Sg) in a generation 

Fg: Fitness of generation g, Fg = (1, ….G), where the total number of fitness for a generation g 

Indicator variables 

𝑡𝑐𝑔
𝑠 :  Starting time of component c on assembly sequence s in generation g  

Zcsg =  {
1
0

   

The computation of cumulative probability is the sum of the probabilities computed for the 

chromosomes. The pseudocode used to compute the cumulative probability is provided below:  

if component c is utilised on assembly sequence s of generationg g 

otherwise 

if component c is utilised on assembly sequence s of generation g with a priority compliance  

otherwise 

if priority exists 

otherwise  
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int noGenerations = Probability.length; 

 double Cumulative[] = new double[noGenerations]; 

 double sum =0; 

 for(int i=0;i<noGenerations;i++) 

 { 

  for (int j=0;j<=i;j++) 

  { 

   sum =sum+Probability[j]; 

  } 

   Cumulative[i]=sum; 

 } 

 return Cumulative; 

The objective function 

The aim of seeking the minimum time taken for assembling a product associated with an 

assembly sequence of a specific generation can be described as the objective function where a 

minimal assembly time TTs can be sought as follows: 

{Min (TTs)g, where s = 1…..Sg and g = 1…..G 

If a minimum assembly time is repeated over generations, then the most dominant assembly 

sequence will be selected with the minimum assembly time. 

Constraints 

In this study, the total assembly time TTs was subject to a sum of handling assembly time HTs 

and insertion assembly time ITs, where 

  s s sTT HT IT= +                                                               (6.7) 

Let us define the probability of an assembly sequence PS, 

The probability P of an assembly sequence s is: 

 

/s s gP F F=                                                                            (6.8) 

Where Fs is the fitness of assembly sequence s and Fg is the fitness for the generation g. Thus, 
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the cumulative probability of CP is given by:  

CP = ∑ 𝑃(𝑖)𝑠
𝑖=1    , Where i = 1, 2, 3, …S                                     (6.9) 

 

Fitness Value 

The value of fitness Fs for assembly sequence s can be expressed as the function of assembly 

time TTs: 

 1 /  s sF TT=                                                                      (6.10) 

Stopping Criteria 

Stopping criteria are the rules that govern the termination of the iteration are as follows: 

Criteria 1: When g = G, where it occurs at the end of the generation, all preceding components 

are satisfactorily assembled, and there is no component remaining for assembly within a 

particular assembly sequence. 

Criteria 2: In this case study, after 10 iterations, then the creation of a new generation will be 

terminated, i.e.,  

{Min (TTs)} g - (n-10) = {Min (TTs)} g - (n-9) =……. = {Min (TTs)} g - (n-1). 

6.2.2. The Glowworm Swarm Optimisation Algorithm 
 

Figure 6.6. illustrates the mechanism of the glowworm swarm optimisation algorithm (GSOA). 

In this work, a glowworm denotes a component and a swarm of components is a population 

that is initially distributed randomly in a search space. Like the natural world, each component 

also acts as if it is a luminescent or glowing glowworm emitting a light whose intensity is 

proportional to the associated luciferin interacting with other glowworms or components within 

a defined neighbourhood. The neighbourhood area is categorised as a local-decision domain 

that has a variable neighbourhood range 𝑟𝑑
𝑖  bounded by a radial luciferin sensor range rs (0 < 

𝑟𝑑
𝑖≤ rs). In nature, the neighbourhood range is a dynamic quantity. 
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In this study, assuming that component i considers another component j of its neighbour, if j is 

within the neighbourhood range of i and the luciferin level (in this case, it refers to the gap in 

dimensions between two mating components, i.e., mating component i with component j or 

parts based on the time taken to assemble) of j is higher than that of i. The decision domain 

allows a selective neighbour interaction. Each component is attracted by a suitable dimension 

of another glowworn in the neighbourhood. Components in a GSOA depend only on 

information accessible in their neighbourhood to make possible decisions. Thus, each 

component selects a probabilistic neighbour that has a higher suitable dimension and moves 

toward it. These movements, which are based only on local information and selective 

neighbour interactions, enable a swarm of components to partition into disjoint subgroups that 

steer toward and meet with a multiple optimum of a given multimodal function, whereby the 

functional integrity of the components is not compromised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Mechanisme of the glowworm swarm optimisation algorithm 
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The following variables are used: 

𝐿0 : quantity of luciferin 

n:  random population of n glowworms (1 ≤ n ≤ 14 in this study) 

𝑟𝑑
𝑖 : neighbourhood range 

𝑟𝑠: radial sensor range  

𝛾: luciferin enhancement constant 

𝜌: luciferin decay constant 

6.2.2.1. The Luciferin Level 
 

At the inception of the initial iteration, all the glowworms begin with the same value of luciferin 

 𝐿0 , these values change depending on the function value at a glowworm position. During the 

luciferin-update phase; each glowworm adds its previous luciferin level, i.e., a luciferin 

quantity proportional to the fitness of its current location based on the objective function. Also, 

a fraction of the luciferin value is subtracted due to the decay in luciferin over time. Thus, the 

objective function value for a glowworm at iteration t is calculated using the luciferin update 

rule as follows: 

 

𝐿𝑖 (𝑡) = (1 − 𝜌)𝐿𝑖(𝑡) + 𝛾𝐽(𝑃𝑖(𝑡))                                                    (6.11) 

Where 𝐿𝑖(𝑡) denotes the luciferin level of glowworm i at time t; J (xi (t)) denotes the 

objective function value of glowworm i at time t; xi represents the luciferin’s location of a 

glowworm i; 𝜌 represents the luciferin decay constant (0 < 𝜌 < 1), and 𝛾 is enhancement 

constant of the luciferin. 

6.2.2.2. The Movement Phase 
 

During the movement phase, the probability of the location of a glowworm moves towards a 

neighbour that has a luciferin value higher than its own value. The glowworm tends to gain 

more attraction as its luciferin level increases. This is derived from the fact that glowworms 
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are attracted to neighbours that glow brighter. The probability p of glowworm i that moves 

towards j at time t is given below: 

𝑃𝑖𝑗(𝑡) =  
𝐿𝑗(𝑡)−𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡)−𝐿𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)
                                                              (6.12)                                                                           

Where,  j ∈ Ni (t) and Ni (t) = {j : dij (t) < 𝑟𝑑
𝑖  (t); 𝐿𝑖 (t) < 𝐿𝑗 (t)}, which is a set of neighbour of 

glowworm i at time t, dij (t) denotes the Euclidean space, usually from glowworms i and j at 

time t, and 𝑟𝑑
𝑖  (t) denotes the  variable neighbourhood difference related to glowworms i and at 

time t. Let glowworm i select a glowworm j ∈ Ni (t) with pij (t) given by Eq. 6.12. Then, the 

discrete-time of the glowworm movements can be stated as: 

𝑥(𝑡) = 𝑥𝑖(𝑡) + (
𝑥𝑗(𝑡)−𝑥𝑖(𝑡)

∥𝑥𝑗(𝑡)−𝑥𝑖(𝑡)∥
)                                                         (6.13) 

Where, xi (t) represents glowworm i location at time t, .  denotes the norm operator in an 

Euclidean space. 

The pseudocode used to compute the Euclidean space is provided below:  

  return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)); 

 

6.2.2.3. The Neighbourhood Range 
 

There is an association between glowworm i and j within a neighbourhood range. The term 𝑟𝑑
𝑖  

of glowworm i is a dynamic radial range at initial iteration, providing 0 < 𝑟𝑑
𝑖  ≤ rs. When the 

glowworms depend only on local information to decide their movements, it is expected that 

the number of peaks-captured may be a function of the radial sensor range. In fact, if the sensor 

range of each agent covers the entire search space, all the agents move to the global optimum 

and the local optima are ignored. Since assuming a priori information about the objective 

function (e.g., number of maximum and minimum) is not available, it is difficult to fix the 
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neighborhood range at a value that works well for different function landscapes. For instance, 

a chosen neighborhood range rd may work relatively better on objective functions where the 

minimum agent distance is more than rd rather than on those where it is less than rd 

(Krishnanand and Ghose 2009a).  There is an improvement in capability of GSOA to set the 

peaks-captured as a function of agents by substituting a constant neighbourhood range with a 

variable function, where the number of peaks captured is a strong function of the radial sensor 

range (Krishnanand and Ghose 2006b, Krishnanand and Ghose 2009b). Hence, the GSOA 

applies an adaptive local-decision domain, which is used effectively to detect the multiple 

optimum locations of the multimodal function. Therefore, the neighbourhood range can be 

updated as: 

𝑟𝑑
𝑖 (𝑡) = 𝑚𝑖𝑛ሼ𝑟𝑠, 𝑚𝑎𝑥ሼ0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}}                                         (6.14) 

The pseudocode that is used to select the glowwarm from the neighbourhood based on the 

probability is provided below:  

int index = rouletteSelect(probabilities); 

if(neighborhood.size() > 0) { 

 return neighborhood.get(index); 

} 

return null; 

Table 6.1. shows the constant values of the parameters used in this study using the GSOA 

approach.  

Table 6.1. The constant values of parameters used the GSOA approach 

Parameters 𝜌 𝛾 𝛽 𝐿0 

Constant values 0.4 0.6 0.08 5 

 

Table 6.2. shows part of the programming approach based on the GSOA. It starts with a random 

population of glowworms, which generates a new population of glowworms by updating the 

position of glowworms and terminates when the stopping conditions or criteria are met. 
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Table 6.2. Part of the programming approach based on the GSOA  

Set number of glowworms = n 

Let xi (t) be the location of glowswam i at time t 

delay_components_randomly 

for i=1 to n do  𝐿𝑖(0) =  𝐿0 

𝑟𝑑
𝑖  (0) = r0 

set maximum iteration number =  

set in = 1 

while (in < tmax) do: 

{ 

for each glowworm i do: 

    𝐿𝑖 (𝑡 + 1) = (1 − 𝜌)𝐿𝑖(𝑡) + 𝛾𝐽(𝑃𝑖(𝑡 + 1)) 

    for each glowworm i do: 

   { 

  Ni(t) = {j : dij (t) < 𝑟𝑑
𝑖  (t); Li(t) < Lj (t)}; 

  for each glowworm  j ∈ Ni(t) do: 

  𝑃𝑖𝑗(𝑡) =  
𝐿𝑗(𝑡) − 𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)
 

  J= select_glowworm(p) 

𝑥(𝑡) = 𝑥𝑖(𝑡) + ቆ
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

∥ 𝑥𝑗(𝑡) − 𝑥𝑖(𝑡) ∥
ቇ 

  𝑟𝑑
𝑖 (𝑡 + 1) = 𝑚𝑖𝑛ሼ𝑟𝑠, 𝑚𝑎𝑥ሼ0,𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}} 

  }  

  t       t+1; 

} 

 

6.3. A CAR ENGINE PUMP VALVE CASE STUDY 
 

The engine pump valve is a real product and the University of Portsmouth has the entire details 

of this product, also the university make it possible for students who want to do their research 
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specially the Manufacturing and Formula Racing Team. The current issues with the engine 

pump valve are described below: 

- The original number of feasible assembly sequences that provided by the designer at 

the early design stage (this information based on the product details obtained from the 

university) shows less than expected number of feasible sequences (five feasible 

assembly sequences) due to the number of components. Thus, the time of assembly 

sequence of a product can be optimise. 

- The number of components can be reduced, for example, number of screws. 

- The size of components can be resized. 

This experiment will focus on the first issue which is the number of feasible assembly 

sequences and that to define the optimal assembly sequence time of the engine pump valve by 

using GA and GSOA and comparing the results from each algorithm to find the optimal result. 

Figure 6.1. illustrates the integrated programming approach used in this work. The GA and the 

GSOA are used to obtain an optimal solution in terms of assembly sequence with a minimal 

assembly time.  It starts by selecting input parameters based on number of sequences, priority 

In order to examine the applicability and the validation of GA (Figure 6.2.) and GSOA models 

(Figure 6.6.), a real case study was applied. Table 6.3a. shows a list of components used for 

assembly of a car engine pump valve as a case study of this work. Figure 6.7. (also see 

Appendix 2) shows the drawing of assembly parts of the pump valve to be used. The drawing 

has been done by using CAD. Table 6.3b. (also see Appendix 2) shows the feasible assembly 

sequences for the engine pump valve.  As clarified above, there are five feasible assembly 

sequences that have been provided with the entire details of this product from the University 

of Portsmouth (Table 6.3b. (A, B, C, D and E)). The database for the generation of the rest of 
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feasible assembly sequences was constituted by the Liaison graph, Figure 6.8., the table of 

liaisons, Table 6.4. and the table of assembly, Table 6.5. 

The liaison graph is very conjectural for humans but is complicated to be managed by a 

computer, while it can easily handle the data in matrix method. To operate data about the 

product (possible assembly between components), the table of liaison will be linked to the 

graph of liaison. 

Lij = {
1      if there is a liaison between component 𝑎𝑖 and component 𝑎𝑗 

   0   otherwise                                                                                                        
 

The table of liaisons is the description of the abutment matrix of the graph of liaisons (Wilson 

and Watkins 1990). 

Figure 6.8a. illustrates the liaison graph of the engine pump valve assembly sequences. Figure 

6.8b. shows an example of the feasible assembly sequences in (A): 

(A): 11,8,6,4,13,10,2,1,12,3,9,5,14,7 

As described below, will start connecting component 11 with component 8, and so on, until all 

components assembled together. 

{11,8},{6},{4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6},{4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4,13},{10},{2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4,13,10},{2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4,13,10,2},{1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4,13,10,2,1},{12},{3},{9},{5},{14},{7} 

{11,8,6,4,13,10,2,1,12},{3},{9},{5},{14},{7} 
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{11,8,6,4,13,10,2,1,12,3},{9},{5},{14},{7} 

{11,8,6,4,13,10,2,1,12,3,9},{5},{14},{7} 

{11,8,6,4,13,10,2,1,12,3,9,5},{14},{7} 

{11,8,6,4,13,10,2,1,12,3,9,5,14},{7} 

{11,8,6,4,13,10,2,1,12,3,9,5,14,7} 

Table 6.4. shows the liaisons between two possible assembly components. The binary numbers 

0 and 1 indicate the impossibility and possibility, respectively. Table 6.5. shows the average 

time taken for assembly between two possible components. 

           Table 6.3a. Assembly components of the car engine pump valve 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Component Number Component 

 Names 

1 Arm 

2 Body  

3 Bolt 

4 Bolt-Shaft 

5 Key 

6 Nut-Shaft 

7 Nut3 

8 Plate 

9 Retainer 

10 Shaft 

11 Sleeve1 

12 Sleeve2 

13 Washer-shaft 

14 Washer3 
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Figure 6.7. Components of the car engine pump valve 
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Table 6.3b. The feasible assembly sequences of the car engine pump valve 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8b. The Liaison graph of assembly sequence A

Create (A        M) of the feasible 

assembly sequences of an automobile 

engine pump valve 

(A): 11,8,6,4,13,10,2,1,12,3,9,5,14,7 

(B): 8,11,10,6,13,4,2,1,12,9,3,5,14,7 

(C): 8,11,6,10,13,4,2,1,12,9,3,5,14,7 

(D): 11,8,6,4,13,10,2,1,9,12,3,5,14,7 

(E): 8,11,4,6,10,13,2,1,12,9,3,5,14,7 

(F): 11,8,4,6,13,10,2,1,12,3,9,5,14,7 

(G): 8,11,6,4,13,10,2,1,12,9,3,5,14,7 

(H): 11,8,6,4,13,10,2,1,3,9,12,5,14,7 

(J): 8,11,4,10,13,6,2,1,12,9,3,5,14,7 

(K): 8,11,10,6,13,4,2,1,12,9,3,5,14,7 

(L): 11,8,6,4,13,10,2,1,3,9,12,5,14,7 

(M): 8,11,4,10,13,6,2,1,12,9,3,5,14,7 

Figure 6.8. The Liaison graph for the car 

engine pump valve 
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Table 6.4. The priority matrix showing liaisons between two possible assembly components of the car engine pump valve 

Component 

(name & 

number) 

Sleeve 

(11) 

Plate 

(8) 

Nut-

Shaft 

(6) 

Bolt-

Shaft 

(4) 

Washer-

Shaft 

(13) 

Shaft 

(10) 

Body 

(2) 

Arm 

(1) 

Sleeve 

(12) 

Retainer 

(9) 

Bolt 

(3) 

Key 

(5) 

Washer 

(14) 

Nut 

(7) 

Sleeve (11) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Plate (8) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Nut-Shaft 

(6) 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 

Bolt-Shaft 

(4) 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Washer-

Shaft (13) 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Shaft (10) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Body (2) 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

Arm (1) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Sleeve (12) 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

Retainer 

(9) 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 

Bolt (3) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

Key (5) 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

Washer 

(14) 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Nut (7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Table 6.5. Average assembly time between two possible components of the car engine pump valve  

Component 

(name & 

number) 

Sleeve 

(11) 

Plate 

(8) 

Nut-

Shaft 

(6) 

Bolt-

Shaft 

(4) 

Washer-

Shaft 

(13) 

Shaft 

(10) 

Body 

(2) 

Arm 

(1) 

Sleeve 

(12) 

Retainer 

(9) 

Bolt 

(3) 

Key 

(5) 

Washer 

(14) 

Nut 

(7) 

Sleeve1 

(11) 

0 2 2 1 1 3 4 2 3 1 4 5 5 4 

Plate (8) 2 0 5 2 2 6 6 3 10 3 2 2 5 2 

Nut-Shaft 

(6) 

3 3 0 2 2 3 3 1 3 4 5 3 4 5 

Bolt-Shaft 

(4) 

2 5 5 0 11 15 4 4 4 4 4 5 8 2 

Washer-

Shaft (13) 

4 4 10 10 0 7 13 2 5 6 5 4 6 3 

Shaft (10) 3 5 2 7 7 0 2 13 7 8 6 6 4 5 

Body (2) 4 8 1 3 3 4 0 3 18 7 7 7 6 8 

Arm (1) 6 7 2 8 8 5 6 0 6 6 4 3 5 6 

Sleeve (12) 8 6 4 5 5 8 7 17 0 52 2 4 7 4 

Retainer 

(9) 

9 8 6 2 2 7 18 7 4 0 42 2 8 7 

Bolt (3) 7 6 8 8 8 13 6 5 3 3 0 5 5 5 

Key (5) 4 14 18 7 7 4 4 3 6 4 5 0 4 4 

Washer 

(14) 

2 6 6 2 9 6 2 4 1 5 6 4 0 1 

Nut (7) 4 3 5 4 4 5 3 4 8 7 3 4 1 0 

Note: Assembly time is calculated in seconds.
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Output from the Genetic Algorithm Implementation for Pump 

The Genetic Algorithm was implemented and in Java and it is continuously iterated for 5 

generations by creating new chromosome. Each result shows the assembly time in response 

to each of 10 chromosomes, of which each depicts a possible assembly sequence for the car 

engine pump valve. In the end of each generation assembly time in seconds were computed 

of the chromosomes were generated to plot the graphs. The Java implementation of the GA 

algorithm is provided in appendix A. The figure 6.9a provides the generation 1 from the GA 

where the highest assembly time was 690s and the smallest assembly time was 567s. The 

figure 6.9b provides the generation 2 from the GA where the highest assembly time was still 

690 and the smallest assembly time was 510s. This indicates that the assembly time from 

generation 1 to generation 2 was reduced by 57s. The figure 6.9c provides the generation 3 

from the GA where the highest assembly time was 580 and the smallest assembly time was 

500s.  This indicates that the assembly time was further reduced in 3rd generation by 10s. The 

figure 6.9d provides the generation 4 from the GA where the highest assembly time was 530s 

and the smallest assembly time was 500s. The figure 6.9e provides the generation 5 from the 

GA where there is no highest or smallest assembly time where all the iteration got the same 

results which is 500s. Therefore, it is clear that the lowest assembly time taken in the GA was 

500s which came in the 3rd and 4th generation but got prevalence in 5th generation. Moreover, 

from the observation it is possible to state that the 2nd generation of GA had more fluctuation 

in the assembly times compared to other generations. 
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Figure 6.9 a. Assembly time obtained using the GA in response to each of chromosomes in 

generation 1  

 

 

Figure 6.9 b. Assembly time obtained using the GA in response to each of chromosomes in 

generation 2  
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Figure 6.9 c. Assembly time obtained using the GA in response to each of chromosomes in 

generation 3 

 

Figure 6.9 d. Assembly time obtained using the GA in response to each of chromosomes in 

generation 4  
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Figure 6.9e. Assembly time obtained using the GA in response to each of chromosomes in 

generation 5  

Figure 6.10. shows the comparison in assembly time between the theoretical results and the 

computerised results obtained from the GA programming (using Java language) under the 

same conditions, which are associated with the generation number from 1 to 5, respectively.  

There is a reason behind using the theoretical calculation in the research case studies and that 

because both products are between Simple product and Medium product (see section 6.2.), 

also the feasible assembly sequence for both products are defined whether by the product 

designer at the early stage or during the experiment. Based on the feasible assembly sequence 

and the assembly time for each component and the calculation formula that has been applied 

during this research, then it can be clear to obtain 2 types of results (Theoretical results and 

Computerised results) and compare between them to find the optimal solution. But it is really 

hard to apply the theoretical calculation for a large product (see section 6.2.) due to the number 

of components and hard to manage all feasible assembly sequence. 
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It can be seen that the assembly time obtained from generation 1 is 570 seconds, which is 

slightly higher than 567 seconds obtained from the theoretical result. For the result of 

generation 2, the assembly time obtained from both ways is approximately the same. After 

this generation, the difference of assembly time between theoretical results and computerised 

results is equal to 50 seconds. It is important to note that both in theoretical results and 

computerised results the minimum assembly time of the pump did not change. Therefore, it 

is possible to derive that the computerised algorithm is more effective in evolving and 

identifying new chromosome that can minimise the assembly time. 

 
Figure 6.10. Comparison in assembly time between the theoretical result and computerised 

result using the GA in response to generation number 
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Output from the Glowswarm Algorithm Implementation for Pump 

The Glowswarm Optimisation Algorithm was implemented and in Java and it is continuously 

iterated for 5 generations by creating new agents. In the end of each generation fitness values 

of the gents were generated to plot the graphs. The Java implementation of the GSOA 

algorithm is provided in appendix 2. From the analysis with GA algorithm the generation 

responses from the GSOA algorithm is slightly different. The figure 6.11a provides the 

generation 1 from the GSOA where the highest assembly time was 646s and the smallest 

assembly time was 520s. The figure 6.11b provides the generation 2 from the GSOA where 

the highest assembly time was still 649s and the smallest assembly time was 510s. This 

indicates that the assembly time from generation 1 to generation 2 was reduced by 10s. The 

figure 6.11c provides the generation 3 from the GSOA where the highest assembly time was 

646s and the smallest assembly time was 500s.  This indicates that the assembly time was 

further reduced in 3rd generation by 10s. The figure 6.11d provides the generation 4 from the 

GSOA where the highest assembly time was 530s and the smallest assembly time was 494s. 

The figure 6.11e provides the generation 5 from the GSOA where the highest assembly time 

was 500s and the smallest assembly time was 494s. Therefore, it is clear that the lowest 

assembly time taken in the GSOA was 494s which came in the 4th generation but got 

prevalence in 5th generation. Moreover, from the observation it is possible to state that the 

3rd generation of GSOA had more fluctuation in the assembly times compared to other 

generations.  
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Figure 6.11a. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 1 

 

 

Figure 6.11b. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation2 
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Figure 6.11c. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 3 

 

 

Figure 6.11d. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 4 
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Figure 6.11e. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 5 

 

Figure 6.12. shows the comparison in assembly time between the theoretical results and the 

computerised results obtained from the GSOA programming (using Java language) under the 

same conditions, which are associated with the generation number from 1 to 5, respectively. 

The graph indicates that that the computerised assembly time in 1st generation is higher than 

the theoretical results by 16s. However, the difference between them reduced in 2nd 

generation but still the theoretical results remained better than the computerised results. The 

theoretical results and computerised results of GSOA are same. However, from the 4th and 5th 

generations the computerised results are lower than theoretical results by 6s. However, it is 

identified in the theoretical results the lowest assembly time was identified in the 3rd 

generation where else, in the computerised results the lowest assembly time was identified 

only in the 4th generation. It is possible to derive that the computerised algorithm is more 

effective in evolving and identifying new chromosome that can minimise the assembly time. 
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Figure 6.12 shows the comparison in assembly time between the theoretical result and 

computerised result of GSOA in response to the generation number 

By comparing the results obtained using the GA and the GSOA, respectively, it can be seen 

in Figure 6.9e and 6.11e that both the computerised results have the lowest value of assembly 

time which is 500 seconds for GA and 494 seconds for GSOA. The comparative result also 

shows that the GSOA outperforms the GA as the minimal assembly time obtained using the 

GA is 500 seconds, compared to 494 seconds using the GSOA as illustrated in Figure 6.10 

and Figure 6.12. As a result of this, there is an average of 6 seconds per unit in the reduction 

of assembly time of the engine pump valve assembly. However, it is also identified that in the 

5th generation all the iterations got the lowest assembly time for GA but only some of the 

iterations got the lowest assembly time for GSOA.  
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6.4. A BALL PEN CASE STUDY 
 

The ball pen is defined as a small product due to the number of components. This product has 

been used by some researchers for different reasons (e.g. explaining the assembly system) 

(Fawaz and Qian 2017), (see section 3.5). 

The current issues with a ball pen product are described below: 

- Reducing assembly times (therefore costs) is vital particularly for small 

manufacturing companies to survive in an increasingly competitive market. Thus, the 

study provides and approach in obtaining an optimal or near-optimal assembly 

sequence of the product for a small-sized company. 

- The material of components. 

This second experiment will use GA and GSOA to define the optimal assembly sequence time 

of ball pen and comparing the results from each algorithm to find the optimal result. 

Table 6.13. shows a list of components used for assembly of a ball pen. Figure 6.13. illustrates 

a sequential order of assembly components of a ball pen. Figure 6.15. shows the feaseible 

assembly sequences of the ball pen. Figure 6.15. illustrates the liaison graph of the ball pen 

assembly sequences. Table 6.14. shows the liaisons between two possible assembly 

components. Table 6.15. shows the average time taken for assembly between two possible 

components. 

Table 6.13. Assembly components of the ball pen 

 

Component 

Number 

Component 

Name 

1 Cap 

2 Head 

3 Tube 

4 Ink (fluid) 

5 Body 

 6 Button 

Figure 6.13. The ball pen assembly components 
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Figure 6.14. The feasible assembly sequences (A, B, C, D) of the ball pen

{{2},{3},{4},{5},{6},{1}} 

 

{{2,3},{4},{5},{6},{1}} 

 

{{2,3,4},{5},{6},{1}} 

 

{{2,3,4,5},{6},{1}} 

 

{{2,3,4,5,6},{1}} 

 

{{3},{2},{4},{5},{1},{6}} 

{{3,2},{4},{5},{1},{6}} 

{{3,2,4},{5},{1},{6}} 

{{3,2,4,5},{1},{6}} 

{{3,2,4,5,1},{6}} 

{{2},{3},{4},{5},{1},{6}} 

 

{{2,3},{4},{5},{1},{6}} 

{{2,3,4},{5},{1},{6}} 

 

{{2,3,4,5},{1},{6}} 

 

{{2,3,4,5,1},{6}} 

 

{{3},{2},{4},{5},{6},{1}} 

{{3,2},{4},{5},{6},{1}} 

{{3,2,4},{5},{6},{1}} 

{{3,2,4,5},{6},{1}} 

{{3,2,4,5,6},{1}} 

{{3,2,4,5,6,1}} {{2,3,4,5,1,6}} 

 

{{2,3,4,5,6,1}} 

 

{{3,2,4,5,1,6}} 

D C B A 
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The components of the entire ball pen are assigned an assembly part numbers, ranging from 

1-6, most importantly, all the possible sequences are equally shown in Figure 6.14. The four 

chosen possible sequences are taken as only reasonable paths and for the sake of time and cost 

management, as well as putting simplicity into consideration. The first part to start the 

assembly cannot be c4 or c1. Starting with c4 is obviously impossible, as the ink (liquid) has 

to be contained in something, in this case in c2 and c3. The assembly might start with c2, to 

which c3 is added, then the link c4 is squirted, the body c5 and the button c6 are inserted, then 

the cap concludes the assembly. This assembly sequence is: c2, c3, c4, c5, c6, c1, another 

feasible assembly sequence is: c2, c3, c4, c5, c1, c6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. The liaison graph for the ball pen 
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Table 6.14. The liaisons between two possible assembly components of the ball pen 

 

Component 

number 

a1 a2 a3 a4 a5 a6 

a1 0 1 0 0 0 0 

a2 1 0 1 0 1 0 

a3 0 1 0 1 0 0 

a4 0 0 1 0 1 0 

a5 0 1 0 1 0 1 

a6 0 0 0 0 1 0 

 

Table 6.15. Average assembly time between two possible components of the ball pen 

Component 

number 

Cap Head Tube Ink Body Button 

Cap 
0 3 4 5 6 6 

Head 
3 0 4 5 6 8 

Tube 
4 5 0 6 7 7 

Ink 
5 6 7 0 8 8 

Body 
6 7 8 9 0 7 

Button 
3 4 6 7 4 0 

 

 

Output from the Genetic Algorithm Implementation for Pen 

The Genetic Algorithm was implemented and in Java and it is continuously iterated for 5 

generations by creating new chromosome. Each result shows the assembly time in response 

to each of 10 chromosomes, of which each depicts a possible assembly sequence for the pen. 

In the end of each generation assembly time in seconds were computed of the chromosomes 

were generated to plot the graphs. The Java implementation of the GA algorithm is provided 

in appendix A. The figure 6.16a provides the generation 1 from the GA where the highest 

assembly time was 40s and the smallest assembly time was 30s. The figure 6.16b provides 



 

136 

 

 

 

the generation 2 from the GA where the highest assembly time was still 38s and the smallest 

assembly time was 30s. This indicates that the assembly time from generation 1 to generation 

2 did not reduce. The figure 6.16c provides the generation 3 from the GA where the highest 

assembly time was 33s and the smallest assembly time was 26s. This indicates that the 

assembly time was reduced in 3rd generation by 4s. The figure 6.16d provides the generation 

4 from the GA where the highest assembly time was 33s and the smallest assembly time was 

26s. The figure 6.16e provides the generation 5 from the GA where there is no highest or 

smallest assembly time where all the iteration got the same results which is 26s. Therefore, it 

is clear that the lowest assembly time taken in the GA was 26s which came in the 3rd and 4th 

generation but got prevalence in 5th generation. Moreover, from the observation it is possible 

to state that the 2nd generation of GA had more fluctuation in the assembly times compared 

to other generations.  

 

 
 Figure 6.16a. Assembly time obtained using the GA in response to each of 

chromosomes in generation 1  
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Figure 6.16b. Assembly time obtained using the GA in response to each of chromosomes in 

generation 2  

 

 
Figure 6.16c. Assembly time obtained using the GA in response to each of chromosomes in 

generation 3  
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Figure 6.16d. Assembly time obtained using the GA in response to each of chromosomes in 

generation 4 

 

 
 

Figure 6.16e. Assembly time obtained using the GA in response to each of chromosomes in 

generation 5  
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Figure 6.17. shows the comparison in assembly time between the theoretical results and the 

computerised results obtained from the GA programming (using Java language) under the 

same conditions, which are associated with the generation number from 1 to 5, respectively. 

The graph indicates that that the computerised assembly time in 1st generation is higher than 

the theoretical results by 1s. However, the difference between them was same in 2nd 

generation. However, since 3rd generation the assembly time of computerised results is 2s 

lower than the theoretical results. It is important to note that both in theoretical results and 

computerised results the minimum assembly time of the pen did not change. Therefore, it is 

possible to derive that the computerised algorithm is more effective in evolving and 

identifying new chromosome that can minimise the assembly time. 

 

 

Figure 6.17 shows the comparison in assembly time between the theoretical result and 

computerised result of GA in response to the generation number 
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Output from the Glowswarm Algorithm Implementation for Pen 

The Glowswarm Optimisation Algorithm was implemented and in Java and it is continuously 

iterated for 5 generations by creating new agents. In the end of each generation fitness values 

of the gents were generated to plot the graphs. The Java implementation of the GSOA 

algorithm is provided in appendix B. From the analysis with GA algorithm the generation 

responses from the GSOA algorithm is slightly different. The figure 6.18a provides the 

generation 1 from the GSOA where the highest assembly time was 38s and the smallest 

assembly time was 31s. The figure 6.18b provides the generation 2 from the GSOA where the 

highest assembly time was still 38s and the smallest assembly time was 31s. This indicates 

that the assembly time from generation 1 to generation 2 did not reduce. The figure 6.18c 

provides the generation 3 from the GSOA where the highest assembly time was 33s and the 

smallest assembly time was 24s.  This indicates that the assembly time was further reduced in 

3rd generation by 7s. The figure 6.18d provides the generation 4 from the GSOA where the 

highest assembly time was 32s and the smallest assembly time was 24s. The figure 6.18e 

provides the generation 5 from the GSOA there is no highest or smallest assembly time 

because all the iterations were 24s assembly time. Therefore, it is clear that the lowest 

assembly time taken in the GSOA was 24s which came in the 3rd and 4th generation but got 

prevalence in 5th generation. Moreover, from the observation it is possible to state that the 

2nd generation of GSOA had more fluctuation in the assembly times compared to other 

generations.  
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Figure 6.18a. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 1  

 

 

Figure 6.18b. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 2 
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Figure 6.18c. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 3  

 

 

Figure 6.18d. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 4  

 



 

143 

 

 

 

 

 

Figure 6.18e. Assembly time obtained using the GSOA in response to each of chromosomes 

in generation 5  

 

Figure 6.19. shows the comparison in assembly time between the theoretical results and the 

computerised results obtained from the GSOA programming (using Java language) under the 

same conditions, which are associated with the generation number from 1 to 5, respectively. 

The graph indicates that that the computerised assembly time in 1st generation is higher than 

the theoretical results by 2s. However, the difference between them increased in 2nd 

generation by 4s. However, from the 3rd, 4th and 5th generations the computerised results are 

lower than theoretical results by 1s. However, it is identified in the lowest assembly time was 

identified in the 3rd generation. It is possible to derive that the computerised algorithm is more 

effective in evolving and identifying new chromosome that can minimise the assembly time. 
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Figure 6.19 shows the comparison in assembly time between the theoretical result and 

computerised result of GSOA in response to the generation number 

By comparing the results obtained using the GA and the GSOA, respectively, it can be seen 

in Figure 6.16e and 6.18e that both the computerised results have the lowest value of assembly 

time which is 26 seconds for GA and 24 seconds for GSOA. The comparative result also 

shows that the GSOA outperforms the GA as the minimal assembly time obtained using the 

GA is 26 seconds, compared to 24 seconds using the GSOA as illustrated in Figure 6.14 and 

Figure 6.16. As a result of this, there is an average of 2 seconds per unit in the reduction of 

assembly time of the ball pen assembly.  
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CHAPTER 7 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

7.1. DISCUSSION 
 

The thesis reports a study into investigation of GA and GSOA optimisation methods 

for solving assembly sequence optimisation problems with a development of a multi-

objective optimisation model that can be used for quantifying energy consumptions 

and costs for assembly of a product. Assembly has an important share in manufacturing 

costs and lead time, thus, optimisation of assembly sequence of a product can have a 

significant positive impact. Chapter 1 introduced the ASP and its optimisation involves 

components and operations of these components in possible forms. The research was carried 

out in chapter 2 by examining the previous attempts to solve the ASP optimisation problem, 

and the authors identified a number of issues, so far that it is not adequately handled in the 

context of optimising dealing with a large scale, highly constrained, combinatorial 

optimisation problem, which are, precisely, the features of the ASP problem. It was pointed 

out that all previous developments in S/O of the ASP only concerned reduced-size problems. 

Due to the character of the problem and the lack of proper tools, it is the impossibility to 

tackle full-scale problems required large scale, artificial, reductions in its size and 

complexity. This has been done, previously, by using artificially simplifying hypothesis, 

Hence, the results may not be used directly in practice, if and when they were obtained. 

Chapter 3, 4 reviewed,The study shows that GA can be used as an optimisation tool for 

solving combinatorial problems by representing  assembly sequences as chromosomes. Their 

selection as an optimisation tool for ASP was justified, along with particulars of the special 
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GA to be used in this case.It was also pointed out that a successful S/O of the ASP has 

to start with a proper modelling activity. Thus, prior to attempting to S/O the ASP problem, 

a number of models had to be considered and assessed. A proper modelling method of the 

AS problem encoded as chromosomes is crucial as it directly influences the type and variety 

of assembly sequences and plans that can be generated/optimised.  It also modelling the 

product for assembly purposes - encoding and storing constraints in assembly. The quality of 

this model directly affects the complexity of relations that appear between the components 

and assembly operations in a product and can be considered during assembly sequence 

generation and optimisation.  The degree of realism can also be incorporated in the 

optimisation algorithms. In Chapter 5, the idea of GSOA was derived from the nature of 

glowworms who are able to modify the amplitude of their light emission and use the 

bioluminescence glow for different purposes. It is involved in a deployment of glowworms, 

luciferin-update, movement and local-decision domain. Through a literature review, it was 

found that the GSOA method was not reported as being used for solving the assembly 

sequence optimisation problem. The glowworm swarm optimisation is the latest and most 

advance method of swarm intelligence method. Also, this study shows that the GSOA can be 

an effective approach used for a simultaneous search in obtaining an optimal solution in terms 

of assemble sequence of a product of multiple optimal values usually based on different 

objective functions. 

7.2. CONCLUSIONS 
 

The study demonstrates the feasibility and applicability using the GA and the GSOA 

approaches for resolving the assembly sequence optimisation problem for the car engine pump 

valve and the ball pen products in terms of reduction of assembly time. The result indicates 
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that the GSOA outperforms the GA with a reduction of 3 seconds in assembly time per unit 

of the car engine pump valve. The study also demonstrated that this can be a useful decision-

making tool in obtaining an optimal or near-optimal assembly sequence of for product 

designers. Moreover, it can be proofed that GSOA gives minimal assembly time than GA by 

looking at the results from the ball pen case study. 

7.2.1. GA and GSOA  
 

The study demonstrates the feasibility and applicability using the GA and the GSOA 

approaches for resolving the assembly sequence optimisation problem for the car engine pump 

valve. The aim of this study aimed to reduce assembly time using in terms of reduction of 

assembly time, both algorithms were implemented in Java. Both GA and GSOA programing 

approaches were described. It The result indicates that the GSOA outperforms is 

outperforming the GA with a reduction of 6 seconds in assembly time per unit of the car 

engine pump valve. A reduction of 6 seconds is not generic and not the same if GSOA applied 

to different product. Furthermore, the results of the second case study (ball pen) shows that 

GSOA has an optimal assembly time than GA with a reduction of 2 seconds. The study also 

demonstrated that this can be a useful decision-making tool in obtaining an optimal or near-

optimal assembly sequence of for product designers. 

 

7.2.2. NOVELTY 
 

The previous studies show that GSOA has not been used to solve the ASP issued and the 

results of this research shows that GSOA gives optimal results specially for assembly 

sequence time. 
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7.3. FUTURE WORK 
 

It is suggested that the further work in assembly planning and optimisation may consider the 

following issues: 

•  Development of a multi-objective GSOA model which can be used for making a trade-off 

decision based on a number of criteria specified by users.  

• This model can also incorporate a number of parameters relating to walking-worker 

assembly of products in which assembly performance can be largely affected by human 

workers in a human-centred assembly system.  

• Mathematical or analytical modelling techniques might not be sufficient if a detailed 

analysis is required for a complex assembly process as the objective function may not be 

expressible as an explicit function of the input parameters. Thus, an integrated simulation-

based GSOA method incorporating these parameters based on a discrete even simulation 

model is recommended as part of this study. 

• Development of the proposed GSOA to become a commercial product, linked, as a module, 

in CAD modelling packages. 

• Simulation can manipulated by upgrading GSOA. 

• Applying a hybrid GSOA for solving other assembly issues. 
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APPENDIX 1 
 

Types of assembly plans: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1. A product that can be assembled with a C-S-L-NM assembly 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.2. A product that can be assembled with a C-S-NL-M assembly 
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Figure A1.3. A product that can be assembled with a C-S-NL-NM assembly  
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.4. A product that can be assembled with a C-NS-L-M assembly
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Figure A1.5. A product that can be assembled with a C-NS-L-NM assembly 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.6. A product that can be assembled with a C-NS-NL-M assembly 
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Figure A1.7. A product that can be assembled with a C-NS-NL-NM assembly 
 

 

 

 

  

 
 

Figure A1.8. A product that can be assembled with a NC-S-L-M assembly
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Figure A1.9. A product that can be assembled with a NC-S-L-NM assembly 
 

 
 

 
 

Figure A1.10. A product that can be assembled with a NC-S-NL-M assembly 
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Figure A1.11. A product that can be assembled with a NC-S-NL-NM assembly 
 

 
 

 

 

 
Figure A1.12. A product that can be assembled with a NC-NS-L-M assembly  
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Figure A1.13. A product that can be assembled with a NC-NS-L-NM assembly 
 

 

 

 
Figure A1.14. A product that can be assembled with a NC-NS-NL-M assembly  
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Figure A1.15. A product that can be assembled with a NC-NS-NL-NM 

assembly 
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APPENDIX 2 
 

CASE STUDY 1: 

 

Another drawing (3D and 2D) of assembling the car engine pump valve by using Creo: 
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(d) 

Figure A2.1. (a, b, c and d) Assembling the car engine pump valve components (3D) 
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Figure A2.2. Assembling the car engine pump valve components (2D) 
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Table A.2.1. Selections from feasible assembly sequence of the car engine pump valve obtained by running number of generations, 

as detailed in Chapter 6 
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Table A.2.2. Selections from the results obtained by running the GA for t h e  c a r  engine pump valve, as detailed in Chapter 7 

    Evaluation Fitness Function Probability Cumulative Probability Random generation 

Generation 1 

Chromosome1 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.100630 0.897400 

Chromosome2 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.201261 0.332350 

Chromosome3 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.301891 0.212770 

Chromosome4 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.407128 0.473301 

Chromosome5 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.512365 0.202089 

Chromosome6 11,8,6,4,13,10,2,1,3,9,12,5,14,7 646 0.001546 0.092387 0.604752 0.876247 

Chromosome7 11,8,6,4,13,10,2,1,3,9,12,5,14,7 690 0.001546 0.092387 0.697139 0.316298 

Chromosome8 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.802376 0.058517 

Chromosome9 11,8,6,4,13,10,2,1,3,9,12,5,14,7 646 0.001546 0.092387 0.894763 0.066287 

Chromosome10 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 1.000000 0.886208 

Generation 2 

Chromosome1 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 0.101771 0.764770 

Chromosome2 8,11,6,10,13,4,2,1,12,9,3,5,14,7 559 0.001786 0.103224 0.204995 0.257894 

Chromosome3 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.097316 0.302311 0.038804 

Chromosome4 8,11,6,10,13,4,2,1,12,9,3,5,14,7 559 0.001786 0.103224 0.405536 0.278019 

Chromosome5 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 0.507306 0.625510 

Chromosome6 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.097316 0.604622 0.665656 

Chromosome7 11,8,6,4,13,10,2,1,9,12,3,5,14,7 567 0.001761 0.101771 0.706393 0.086999 

Chromosome8 8,11,10,6,13,4,2,1,12,9,3,5,14,7 563 0.001773 0.102492 0.808885 0.060807 

Chromosome9 11,8,6,4,13,10,2,1,3,9,12,5,14,7 690 0.001546 0.089344 0.898229 0.744691 

Chromosome10 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 1.000000 0.479808 
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Generation 3 

Chromosome1 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.098508 0.098508 0.098182 

Chromosome2 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.094196 0.192703 0.412804 

Chromosome3 8,11,10,6,13,4,2,1,12,9,3,5,14,7 563 0.001773 0.099206 0.291909 0.369934 

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.101547 0.393456 0.891797 

Chromosome5 8,11,4,10,13,6,2,1,12,9,3,5,14,7 520 0.001812 0.101363 0.494819 0.596652 

Chromosome6 8,11,4,6,10,13,2,1,12,9,3,5,14,7 520 0.001812 0.101363 0.596182 0.492588 

Chromosome7 8,11,4,6,10,13,2,1,12,9,3,5,14,7 531 0.001802 0.100815 0.696997 0.363546 

Chromosome8 11,8,4,6,13,10,2,1,12,3,9,5,14,7 538 0.001789 0.100094 0.797090 0.276685 

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 520 0.001815 0.101547 0.898637 0.660970 

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 520 0.001812 0.101363 1.000000 0.772859 

Generation 4 

Chromosome1 8,11,4,10,13,6,2,1,12,9,3,5,14,7 507 0.001812 0.100089 0.100089 0.127972 

Chromosome2 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.200359 0.443244 

Chromosome3 11,8,4,6,13,10,2,1,12,3,9,5,14,7 528 0.001789 0.098835 0.299194 0.655711 

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.399464 0.389733 

Chromosome5 8,11,4,6,10,13,2,1,12,9,3,5,14,7 519 0.001802 0.099548 0.499012 0.645236 

Chromosome6 8,11,4,10,13,6,2,1,12,9,3,5,14,7 504 0.001812 0.100089 0.599101 0.392541 

Chromosome7 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.699371 0.227274 

Chromosome8 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.799641 0.683385 

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.899911 0.733207 

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 500 0.001812 0.100089 1.000000 0.438438 

Generation 5 

Chromosome1 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.100018 0.133368 

Chromosome2 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.200036 0.409262 

Chromosome3 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.300054 0.127552 

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.400072 0.563917 

Chromosome5 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.500091 0.706026 
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Chromosome6 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.600109 0.493229 

Chromosome7 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.700127 0.389490 

Chromosome8 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.800145 0.358732 

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.900163 0.024617 

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 500 0.001812 0.099837 1.000000 0.656380 

 

Table A.2.3. Selections from the results obtained by running the GSOA for t h e  c a r  engine pump valve, as detailed in Chapter 6 

Swarms Population  Fitness value 

11,8,6,4,13,10,2,1,12,9,3,5,14,7 510 

11,8,4,6,13,10,2,1,12,9,3,5,14,7 507 

11,8,4,13,6,10,2,1,12,9,3,5,14,7 520 

11,8,4,13,6,10,2,1,12,3,9,5,14,7 504 

8,11,6,4,13,10,2,1,12,9,3,5,14,7 550 

8,11,4,6,10,13,2,1,12,9,3,5,14,7 540 

8,11,4,10,13,6,2,1,12,9,3,5,14,7 551 

11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 

11,8,4,6,13,10,2,1,12,3,9,5,14,7 502 

1,5,3,4,2,6,7,8,9,10,11,12,13,14 563 

1,6,4,3,2,5,7,9,8,10,13,12,11,14 560 

1,9,4,2,3,5,7,6,8,11,10,14,13,12 640 

13,10,11,9,12,14,8,5,7,6,3,4,2,1 500 

5,2,3,1,13,11,10,12,14,6,7,9,8,4 515 

5,7,6,8,9,4,3,1,2,10,14,13,12,11 516 

5,7,6,8,9,4,3,1,2,10,14,13,11,12 613 

5,7,6,8,9,4,3,1,2,10,14,12,11,13 497 

5,7,6,8,9,4,3,1,2,14,13,12,11,10 509 

5,7,6,8,9,4,3,1,10,14,13,12,11,2 514 

13,10,9,12,14,8,5,7,6,3,4,2,1,11 562 
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1,3,2,5,7,9,8,10,13,12,11,14,6,4 511 

1,5,3,4,2,6,8,9,10,11,12,13,14,7 497 

1,9,4,3,5,7,6,8,11,10,14,13,12,2 532 

13,10,11,9,12,14,5,7,6,3,4,2,1,8 540 

5,7,6,8,9,4,3,2,14,13,12,11,10,1 525 

1,9,4,2,3,5,7,6,8,10,14,13,12,11 497 

13,10,11,12,14,8,5,7,6,3,4,2,1,9 520 

13,11,9,12,14,8,5,7,6,3,4,2,1,10 570 

11,8,4,6,13,2,1,12,9,3,5,14,7,10 551 

8,11,4,6,10,2,1,12,9,3,5,14,7,13 564 

13,11,9,12,14,8,7,6,3,4,2,1,10,5 578 

11,8,4,6,13,2,1,12,9,3,14,7,10,5 497 

8,11,4,6,10,2,1,12,9,3,14,7,13,5 502 

7,6,8,9,4,3,2,14,13,12,11,10,1,5 509 

1,9,4,3,7,6,8,11,10,14,13,12,2,5 502 

1,2,3,4,6,7,8,9,10,11,12,13,14,5 576 

1,3,2,4,5,6,7,8,9,10,11,12,13,14 497 

3,2,1,4,6,5,7,9,8,11,10,13,12,14 545 

6,3,1,2,4,5,8,9,10,11,14,13,12,7 587 

1,3,2,4,7,8,9,10,11,12,13,14,6,5 613 

3,2,1,4,6,5,7,9,11,10,13,12,14,8 600 

6,3,1,2,4,5,8,9,11,14,13,12,7,10 601 

8,11,6,4,13,10,2,1,12,9,3,5,14,7 497 

1,3,2,4,7,,8,9,10,11,12,13,14,6,5 560 

7,6,8,9,4,3,2,14,13,12,11,10,1,5 504 

13,11,9,12,14,8,5,7,6,3,4,2,1,10 575 

5,7,6,8,9,4,3,2,14,13,12,11,10,1 525 

13,11,9,12,14,8,7,6,3,4,2,1,10,5 570 
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APPENDIX 3 
 

The software codes used during this research: 

Code 1: 

%initialize population  

  
N=6; % number of parts 
M = 100;% population size 
preMatrix = []; 
cr=0.20; %set cross over rate 
mr=0.1; %set mutation rate 
cp; %cross point 
G; %total genes length 
mr; %mutation rate 
gn; %number of genes in assembly chromosome 
f = [0,0,0,0,0,0,0]; %initialize fitness sum for each assembly 

chromosome 
F=0; % total fitness sum for all assembly chromosome 
R; % roulette wheel probability for each assembly chromosome 
r; % random number generated for each assembly chromosome 
P; % cumulative probability of each assembly chromosome 
parentChromosome; %denotes selected parents chromosome that will 

mate 
genearation =1; 
% generate initial random chromosomes 

  
global init= randi([4,10],M,N);disp(R); % generate random 

chromosome values 1-10 minutes           

                            

  
%validity check using precedence matrix 
function a = checkValidity(randNum,prec) 
    % Check random Matrix against precedence Matrix 
    a = 0; % validity checker variable 
    randCount =1;% used to hold randNum count 
    len=length(prec); 
    sumRow =0;  
    if(randCount=1) % check for first element to see if its a 

valid starting sequence 
       disp(randNum(1)); 
       S = sum(prec(randNum(1)),2); 
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       disp(S); 

        
       % start  

        
    else 
       return 0; 
    end 

     

     
end 

  
% generate valid initial random chromosomes 
%val=randi([4,10],M,N); 
while 1 
    if genCount>=100 
        break; 
    end 
    randMatrix = randperm(4) 
    checkValidity(randMatrix,precMatrix); 
    genCount=genCount+1; 

     
end                         

  

                            
%main loop runs for 100 generation 

  
while generation < 100 do 
    %Evaluation & Selection of assembly chromosome 

                           
        for countOuter = 1:C % for each chromosome 
            %Evaluate each chromosome 
            for countInner = 1 :i 
                            

f[countOuter]+=1/chromosome[countOuter][countInner]; 

                         
            end %end inner for loop 
            %compute total fitness sum for all chromosome 
                 F += f [countOuter]; 
            end %end outer for loop 
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    %chromosomes probability computation using Roulette wheel 
    %obtaining probability using Roulette Wheel 
                for countR =1 To countR <=C  % for each 

chromosome 
                                  %compute probability of each 

chromosome 
                                  R[countR] = f[countR]/F; 
                end %end for loop 
                     %cumulative probability 
                     holdCount; % hold current chromosome count 
                      for countC =1 To countC <=C % for each 

chromosome 
                                 holdCount = countC; 
                                %compute probability of each 

chromosome 
                            while (holdCount>=1): 
                                P[countC] += R[holdCount]; 
                                --holdCount; 
                            end %end while loop 
                      end %end for loop 

                           

  
                     %chromosomes actual selection 
                     %generate random number for each 

chromosomes 
                     for countN =1 To countN <=C  % for each 

chromosome 
                            r[countN] = rand(0,1) % generate 

random number between 0 and 1 
                     end % 

                           

  
%choose which chromosome to retain, if the random number 

generated is less than the  
%the cumulative probability of the any of the chromosome, the 

chromosome at the  
%first instance is replaced e.g. If random number r [1] is 

greater than P [1] and %smaller than P [2] then select 

Chromosome [2] as a chromosome in the new %population for next 

generation: 
     for countR =1 To countR <=C  % for each chromosome random 

number 
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          for countCP=1 to CountCP<C  % for each chromosome 

cumulative probability 
                            if(r[countR] <  P[countCP]) 
                                chromosome[countCP] = chromosome 

[countR]   
                                end %end if statement 
                            end%end inner for loop   
          end %end outer for loop 

  
    generation +=generation; 

  

  
%CrossOver (using one-cut point) 

                          
    % select parents assembly chromosomes to mate                     
    countP=1; %parent chromosome count 
    for countC=1:C  % for each chromosome  
                                    cp[countC] = rand(0,1) 

%generate random number between 0 & 1 
                                    if(r[countC] < cr) 
                                        parentChromosome[countP] 

= chromosome[countC]   
                                    end %end if statement 
    end %end for loop   
    % mate parent chromosomes    
    for countC=1:CountP  % for each parent chromosome  
        R[countC] = rand(1, CountP) %generate random number 

between 1 & parent chromosome count 

                         
                                    if(r[countC] != countP)  
                                        %replace chromosome at 

countC with chromosomes at countC++ %from randomly generated 

cross point cp 
                                        

swapFromRandomCrossPoint(parentChromoses[countC], 

parentChromosomes[++countC], cp) 
                                    else 
                                         %replace chromosome at 

countP with chromosomes at 1 %from randomly generated cross 

point cp 
                                        

swapFromRandomCrossPoint(parentChromoses[countP], 

parentChromosomes[1], cp) 
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                                    end %end if statement 
    end %end for loop                            

                          
% Mutation        
%compute total length of chromosomes 
        G=gn * i 
% number of mutations 
         M = r*G 
% Carry out mutation and replace mutated chromosomes with random 

number from (1-6mins) 
  count =0;% to track which gene is referred to by random number 
        for countM=1:M  % for each mutation M 
               r[countM] = rand (1, G) %generate random number 

between 1 and G 
            for countOuter =1:C % for each chromosome 
                %Evaluate each chromosome 
                    for countInner= 1:i 
                                 count++; 
                                   if(count==r[countM]) 
                                          if(r[countM]<mr) 
                                            

chromosomes[countOuter][countInner]= random(1,6); 
                                          end % end inner if 

statement 
                                   end % end outer if statement 
                    end %end inner for loop 
            end %end outer for loop 
        end %end outer outer for loop 

                  
    %compute fitness again 
    for countOuter =1 :C % for each chromosome 
        %Evaluate each chromosome 
        for countInner= 1 :i 
                        

f[countOuter]+=1/chromosome[countOuter][countInner]; 
        end %end inner for loop 
    %compute total fitness sum for all chromosome 
         F += f [countOuter] 
    end %end outer for loop  

  
end % end main while loop 
 



 

190 

 

 

 

 

Code 2: 

import java.util.Scanner; 

import java.util.stream.IntStream; 

import java.util.Random; 

public class GSOAlgorithm { 

public static void main (String[] args) 

{ 

 int noComponent =0; //variable to save the no of chromosome for simulation 

 int noGeneration =0; 

 int noIteration =0; 

 int logIteration =0; 

 Scanner s = new Scanner(System.in); 

 System.out.println("Please send the number of components in a chromosome"); 

 noComponent =s.nextInt(); 

 s.nextLine(); // throw away the new line 

 int[][] priorityMatrix = new int[noComponent][noComponent]; // initialise the priority matrix 

with the number of components 

 int[][] setUpTimeMatrix = new int[noComponent][noComponent]; 

  

 //Scan the priority matrix values 

 for (int i=0;i<noComponent;i++) 

 { 

  System.out.println("Enter Priority Matrix Row "+(i+1)); 

  for (int j =0;j<noComponent;j++ ) 

  { 

   priorityMatrix[i][j] = s.nextInt(); // scan the integer values from the user 

  } 
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 } 

 //Scan the setup time matrix values 

  for (int i=0;i<noComponent;i++) 

  { 

   System.out.println("Enter Setup Time Matrix Row "+(i+1)); 

   for (int j =0;j<noComponent;j++ ) 

   { 

    setUpTimeMatrix[i][j] = s.nextInt(); // scan the integer values from the user 

   } 

  } 

 //display the priority matrix entered 

 System.out.println("Your priority matrix is given below:"); 

 for (int i=0;i<noComponent;i++) 

 { 

  for (int j =0;j<noComponent;j++ ) 

  { 

   System.out.print(priorityMatrix[i][j]);  

  } 

  System.out.println();  

 } 

 System.out.println("Your SetUp time matrix is given below:"); 

 for (int i=0;i<noComponent;i++) 

 { 

  for (int j =0;j<noComponent;j++ ) 

  { 

   System.out.print(setUpTimeMatrix[i][j]);  

  } 

  System.out.println();  
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 } 

 System.out.println("Please insert the number of generation"); 

 noGeneration =s.nextInt(); 

 s.nextLine(); 

 System.out.println("Please insert the number of iterations"); 

 noIteration =s.nextInt(); 

 s.nextLine(); 

 int[] minF_Obj = new int[noIteration]; 

  

 while (logIteration != noIteration) 

 { 

 System.out.println("Chromosome initialisation"); 

 int[][] Chromosome = new int[noGeneration][noComponent]; 

 for(int i=0;i<noGeneration;i++) 

 { 

  Chromosome[i] = chromosomeInitialisation(priorityMatrix); 

 } 

 for(int i=0;i<noGeneration;i++) 

 { 

  for (int j=0;j<noComponent;j++) 

  { 

   System.out.print(Chromosome[i][j]);  

  } 

  System.out.println(); 

 } 

 System.out.println("Chromosome Evaluation"); 

 int[] F_Obj = new int[noGeneration]; 

 F_Obj = chromosomeEvaluation(Chromosome,setUpTimeMatrix); 
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 for (int i=0;i<noGeneration;i++) 

  System.out.println(F_Obj[i]); 

 System.out.println("Chromosome Fitness"); 

 double[] Fitness = new double[noGeneration]; 

 Fitness = chromosomeFitness(F_Obj); 

 for (int i=0;i<noGeneration;i++) 

  System.out.println(Fitness[i]); 

 System.out.println("Chromosome Probability"); 

 double[] Probability = new double[noGeneration]; 

 Probability = chromosomeProbability(Fitness); 

 for (int i=0;i<noGeneration;i++) 

  System.out.println(Probability[i]); 

System.out.println("Chromosome Cumulative"); 

 double[] Cumulative = new double[noGeneration]; 

 Cumulative = chromosomeCumulative(Probability); 

 for (int i=0;i<noGeneration;i++) 

  System.out.println(Cumulative[i]); 

 System.out.println("Chromosome RandomNumber"); 

 double[] randomNumber = new double[noGeneration]; 

 randomNumber = chromosomeRandomNumber(Chromosome); 

 for (int i=0;i<noGeneration;i++) 

  System.out.println(randomNumber[i]); 

 System.out.println("Chromosome New Chromosome Generation"); 

 int[][] newChromosome = new int[noGeneration][noComponent]; 

 newChromosome = NewCromosomeGeneration(Chromosome,Probability, randomNumber); 

 for (int i=0;i<noGeneration;i++) 

 { 

  for (int j=0;j<noComponent;j++) 
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  { 

   System.out.print(newChromosome[i][j]); 

  } 

   System.out.println(); 

 } 

 System.out.println("Chromosome crossover"); 

 int cP= (int)(noGeneration *((double)10/(double)100)); 

 int[][] crossover = new int[cP][noComponent]; 

 crossover = chromosomeCrossover(Chromosome,10); 

 for (int i=0;i<cP;i++) 

 { 

  for (int j=0;j<noComponent;j++) 

  { 

   System.out.print(crossover[i][j]); 

  } 

   System.out.println(); 

 }  

 System.out.println("Chromosome mutation"); 

 int[][] mutation = new int[2][noComponent]; 

 mutation = chromosomeMutation(Chromosome,10,priorityMatrix); 

 for (int i=0;i<2;i++) 

 { 

  for (int j=0;j<noComponent;j++) 

  { 

   System.out.print(mutation[i][j]); 

  } 

   System.out.println(); 

 }  
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 System.out.println("Chromosome New Generation"); 

 int[][] newGeneration = new int[noGeneration][noComponent]; 

 newGeneration = chromosomeNewGeneration(Chromosome,mutation,crossover); 

 for (int i=0;i<noGeneration;i++) 

 { 

  for (int j=0;j<noComponent;j++) 

  { 

   System.out.print(newGeneration[i][j]); 

  } 

   System.out.println(); 

 } 

 //new LineChart_GA("Evaluation of Chromosomes","Evaluation",F_Obj); 

 Chromosome =newGeneration; 

 int min =F_Obj[0]; 

  

 for(int k=0;k<F_Obj.length;k++) 

 { 

  if (min >F_Obj[k]) 

   min= F_Obj[k]; 

 } 

 minF_Obj[logIteration]=min; 

 System.out.println(min); 

 logIteration++; 

 } 

  

 new LineChart_GA("Evaluation of Chromosomes","Evaluation",minF_Obj); 

} 
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public static int[] chromosomeInitialisation (int[][] priorityMatrix) 

{ 

 int noComponents = priorityMatrix.length; 

 int[] chromosome = new int[noComponents]; 

 int[] firstComponent = new int[noComponents]; 

 int[] otherComponent = new int[noComponents]; 

 int sum =0; 

 int counter = 0; 

 int chromosomeCounter=0; 

 boolean componentExist=false; 

 for (int i=0;i < noComponents; i++) //for each components 

 { 

  if (i==0)//for the first component 

  { 

   for (int j=0;j<noComponents;j++) 

   { 

    sum = IntStream.of(priorityMatrix[j]).sum(); // Sum each row of priorityMatrix  

    if (sum == 0) 

    { 

     counter=0; 

     for (int k = 0; k < firstComponent.length; k++) 

     { 

         if (firstComponent[k] != 0) 

             counter ++; 

     } 

     firstComponent[counter]= j+1; 

    } 

   } 
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   //Check whether initial component for chromosome available (priority should be 0) 

   if(counter == 0) 

    System.out.println("Given priority Matrix is not valid"); 

   else 

   { 

    for (int k = 0; k < chromosome.length; k++) 

    { 

        if (chromosome[k] != 0) 

         chromosomeCounter ++; 

    } 

    //generate random number and pick one component 

    Random rn = new Random(); 

    counter = 0; 

    for (int k = 0; k < firstComponent.length; k++) 

    { 

        if (firstComponent[k] != 0) 

            counter ++; 

    } 

    chromosome[chromosomeCounter]=firstComponent[rn.nextInt(counter)];  

   } 

  } 

  else 

  { 

   for (int j=0;j<noComponents;j++) 

   { 

    componentExist = false; 

    sum = IntStream.of(priorityMatrix[j]).sum(); // Sum each row of priorityMatrix  

    if (sum < i) 



 

198 

 

 

 

    { 

     for (int k = 0; k < chromosome.length; k++) 

     { 

      if (chromosome[k] == j+1) 

       componentExist=true; 

     } 

     if (componentExist == false) 

     { 

      counter = 0; 

      for (int k = 0; k < otherComponent.length; k++) 

      { 

          if (otherComponent[k] != 0) 

              counter ++; 

      } 

      otherComponent[counter]= j+1; 

     } 

    } 

   } 

    chromosomeCounter=0; 

    for (int k = 0; k < chromosome.length; k++) 

    { 

        if (chromosome[k] != 0) 

         chromosomeCounter ++; 

    } 

    //generate random number and pick one component 

    Random rn = new Random(); 

    counter = 0; 

    for (int k = 0; k < otherComponent.length; k++) 
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    { 

        if (otherComponent[k] != 0) 

            counter ++; 

    } 

    chromosome[chromosomeCounter]=otherComponent[rn.nextInt(counter)]; 

  } 

  otherComponent = new int[noComponents]; // empty an array 

 } 

 return chromosome; // return the chromosome generated 

} 

public static int[] chromosomeEvaluation (int[][] chromosomeMatrix, int[][] setupTime) 

{ 

 int noGenerations = chromosomeMatrix.length; 

 int noComponents = chromosomeMatrix[0].length; 

 int[] F_Obj = new int [noGenerations]; 

 int component; 

 int time=0; 

 int assemblyTime =0; 

 System.out.println(noComponents); 

 System.out.println(noGenerations); 

 for (int i=0; i<noGenerations;i++) 

 { 

  for (int j=0;j<noComponents;j++) 

  { 

   if (j==0) 

   { 

    component =chromosomeMatrix[i][j]; 

    assemblyTime = setupTime[component-1][component-1]; 
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   } 

   else 

   { 

    component = chromosomeMatrix[i][j]; 

    for(int k=0;k<=j;k++) 

    { 

     int tempComponent = chromosomeMatrix[i][k]; 

     time=time+setupTime[component-1][tempComponent-1]; 

    } 

    assemblyTime =assemblyTime+time; 

    time=0; 

   } 

  } 

  F_Obj[i]= assemblyTime; 

 } 

 return F_Obj; 

} 

public static double[] chromosomeFitness (int[] F_Obj) 

{ 

 int noGenerations = F_Obj.length; 

 double Fitness[] = new double[noGenerations]; 

 for(int i=0;i<noGenerations;i++) 

 { 

  Fitness[i]=(1/(1+(double) F_Obj[i])); 

 } 

 return Fitness; 

} 

public static double[] chromosomeProbability (double[] Fitness) 
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{ 

 int noGenerations = Fitness.length; 

 double Probability[] = new double[noGenerations]; 

 double sum =0; 

 for(int i=0;i<noGenerations;i++) 

  sum =sum+Fitness[i]; 

 for(int i=0;i<noGenerations;i++) 

 { 

  Probability[i]=Fitness[i]/sum; 

 } 

 return Probability; 

} 

public static double[] chromosomeCumulative (double[] Probability) 

{ 

 int noGenerations = Probability.length; 

 double Cumulative[] = new double[noGenerations]; 

 double sum =0; 

 for(int i=0;i<noGenerations;i++) 

 { 

  for (int j=0;j<=i;j++) 

  { 

   sum =sum+Probability[j]; 

  } 

   Cumulative[i]=sum; 

 } 

 return Cumulative; 

} 

public static double[] chromosomeRandomNumber (int[][] chromosome) 
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{ 

 int noGenerations = chromosome.length; 

 double randomNumber[] = new double[noGenerations]; 

 for(int i=0;i<noGenerations;i++) 

 { 

  randomNumber[i]= Math.random(); //Generate random number between 0 and 1 

 } 

 return randomNumber; 

} 

 

public static int[][] NewCromosomeGeneration(int[][] chromosome,double[] Probability, 

double[] randomNumber) 

{ 

 int logs=0; 

 int noGenerations = chromosome.length; 

 int noComponents = chromosome[0].length; 

 int[] tempMatrix = new int[noComponents]; 

 int[][] newChromosome = new int[noGenerations][noComponents]; 

 for (int i=0;i<noGenerations;i++) 

 { 

  for(int j=0;j<noGenerations;j++) 

  { 

   if (j==0 && logs ==0) 

   { 

    if (Probability[j] > randomNumber[i]) 

    { 

     logs=1; 

     for(int k=0;k<noComponents;k++) 
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      tempMatrix[k]=chromosome[j][k]; 

    } 

   } 

   else 

   { 

    if(j<noGenerations-1 && logs==0 && Probability[j] < randomNumber[i] && 

Probability[j+1] > randomNumber[i]) 

    { 

     logs=1; 

     for(int k=0;k<noComponents;k++) 

      tempMatrix[k]=chromosome[j+1][k]; 

    } 

    if(j<noGenerations-1 && logs==0 &&  Probability[j] > randomNumber[i]) 

    { 

     logs=1; 

     for(int k=0;k<noComponents;k++) 

      tempMatrix[k]=chromosome[j][k]; 

 

    } 

    if (logs==0 && j>noGenerations && Probability[j] > randomNumber[i] ) 

    { 

     logs=1; 

     for(int k=0;k<noComponents;k++) 

      tempMatrix[k]=chromosome[j][k]; 

    } 

   } 

   if (j==noGenerations) 

   { 
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    if (logs==0) 

    { 

     Random rn = new Random(); 

     tempMatrix=chromosome[rn.nextInt(noGenerations)]; 

    } 

   } 

  } 

  newChromosome[i]=tempMatrix; 

 } 

 return newChromosome; 

} 

 

public static int[][] chromosomeCrossover(int[][] chromosome,int percentage) 

{ 

 int noGenerations = chromosome.length; 

 int noComponents = chromosome[0].length; 

  

 int[] firstChromosome =new int[noComponents]; 

 int[] secondChromosome =new int[noComponents]; 

 int[] tempChromosome =new int[noComponents]; 

 int counter=0,logs=0,exist =0; 

 int cP=(int)(noGenerations *((double)percentage/(double)100)); 

 int[][] crossover =new int[cP][noComponents]; 

 for (int i=0;i<cP;i++)  

 { 

  Random rn = new Random(); 

  firstChromosome=chromosome[rn.nextInt(noGenerations)]; 

  secondChromosome=chromosome[rn.nextInt(noGenerations)]; 
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  for(int j=0;j<noComponents;j++) 

  { 

   if (j==0) 

   { 

    if (rn.nextInt(2)==1) 

    { 

     tempChromosome[0]= firstChromosome[j]; 

    } 

    else 

    { 

     tempChromosome[0]= secondChromosome[j]; 

    } 

   } 

   else 

   { 

    if (rn.nextInt(2)==1) 

    { 

     for(int k=0;k<noComponents;k++) 

     { 

      exist =0; 

      logs=0; 

      if(logs==0) 

      { 

       for(int x=0; x<tempChromosome.length; x++) 

       { 

        if (tempChromosome[x]== firstChromosome[k]) 

         exist=1; 

          



 

206 

 

 

 

       } 

       if (exist != 1) 

       { 

        counter=0; 

        for (int y=0; y<tempChromosome.length; y++) 

        { 

            if (tempChromosome[y] != 0) 

            { 

             counter ++; 

            } 

        } 

        tempChromosome[counter]= firstChromosome[k]; 

        logs=1; 

       } 

         

      } 

     } 

    } 

    else 

    { 

     for(int k=0;k<noComponents;k++) 

     { 

      exist=0; 

      logs=0; 

      if(logs==0) 

      { 

       for(int x=0; x<tempChromosome.length; x++) 

       { 
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        if (tempChromosome[x] == secondChromosome[k]) 

         exist=1; 

       } 

       if (exist != 1) 

       { 

        counter=0; 

        for (int y=0; y<tempChromosome.length; y++) 

        { 

            if (tempChromosome[y] != 0) 

            { 

             counter =counter+1; 

            }        

        } 

        tempChromosome[counter]= secondChromosome[k]; 

        logs=1; 

       } 

      } 

     } 

    } 

   } 

   logs=0; 

  } 

  crossover[i]=tempChromosome; 

  tempChromosome =new int[noComponents]; 

  firstChromosome = new int[noComponents]; 

  secondChromosome = new int[noComponents]; 

  exist=0; 

  logs=0; 
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  counter=0;  

 } 

 return crossover; 

} 

 

public static int[][] chromosomeMutation(int[][] chromosome,int percentage,int[][] 

priorityMatrix) 

{ 

 int noGenerations = chromosome.length; 

 int noComponents = chromosome[0].length; 

  

 int[] firstChromosome =new int[noComponents]; 

 int[] secondChromosome =new int[noComponents]; 

 int[][] tempChromosome =new int[noGenerations][noComponents]; 

 int sum1=0,log1=0,log2=0,counter=0, element1=0,element2=0,sum=0,value1=0,value2=0; 

 int cP=(int)(noGenerations *((double)percentage/(double)100)); 

 int[][] mutation =new int[cP][noComponents]; 

 for (int i=0;i<cP;i++) 

 { 

  Random rn = new Random(); 

  firstChromosome=chromosome[rn.nextInt(noGenerations)]; 

  secondChromosome=chromosome[rn.nextInt(noGenerations)]; 

  while(log1==0) 

  { 

   value1=rn.nextInt(noComponents); 

   element1=firstChromosome[value1]; 

   for(int j=0;j<noComponents;j++) 

   { 
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    sum=sum+priorityMatrix[element1-1][j]; 

   } 

   if (sum==0) 

    log1=1; 

  } 

  sum=0; 

  while(log2==0) 

  { 

   value2=rn.nextInt(noComponents); 

   element2=secondChromosome[value2]; 

   for(int j=0;j<noComponents;j++) 

   { 

    sum=sum+priorityMatrix[element2-1][j]; 

   } 

   if (sum==0) 

    log2=1; 

  } 

  firstChromosome[value1]=element2; 

  secondChromosome[value2]=element1; 

  for(int j=0;j<mutation.length;j++) 

  { 

   for(int k=0;k<mutation[0].length;k++) 

   { 

    sum1=sum1 +mutation[j][k]; 

   } 

   if (sum1!=0)    

    counter++; 

  }  
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  tempChromosome[counter]=firstChromosome; 

  tempChromosome[counter+1]=secondChromosome; 

  counter=0; 

  sum=0; 

 } 

 mutation=tempChromosome; 

 return mutation; 

} 

 

public static int[][] chromosomeNewGeneration(int[][] chromosome,int[][] mutation, int[][] 

crossover) 

{ 

 int noGenerations = chromosome.length; 

 int noComponents = chromosome[0].length; 

 int[][] newGenerationChromosome =new int[noGenerations][noComponents]; 

 int count=0,count1=0,sum1=0,sum2=0; 

 for(int i=0;i<mutation.length;i++) 

 { 

  for(int k=0;k<mutation[0].length;k++) 

  { 

   sum1=sum1 +mutation[i][k]; 

  } 

  if (sum1!=0)    

   count++; 

 } 

 for (int i=0;i<count;i++) 

 { 

  newGenerationChromosome[i]=mutation[i]; 

 } 
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for(int k=0;k<(noGenerations);k++) 

 { 

  Random rn = new Random(); 

  newGenerationChromosome[k]=chromosome[rn.nextInt(noGenerations)]; 

 } 

 return newGenerationChromosome; 

} 

} 
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