

INVESTIGATION INTO GA AND GSOA

OPTIMISATION APPROACHES FOR

SOLVING ASSEMBLY SEQUENCE

PROBLEMS

By

FAWAZ SAAD T. ALHARBI

The thesis submitted for the degree of Doctor of Philosophy

To

School of Mechanical and Design Engineering

Faculty of Technology

University of Portsmouth

United Kingdom

 July 2020

i

Table of Contents

DECLARATION ... v

ACKNOWLEDGMENT... vi

LIST OF PUBLICATIONS & DISSEDMINATIONS... viii

ABSTRACT ... x

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

List of abbreviations ... xvi

CHAPTER 1 .. 1

1.1. INTRODUCTION ... 1

1.2. RESEARCH RATIONALE ... 2

1.3. RESEARCH OBJECTIVES .. 3

1.4. SCOPE OF THE RESEARCH .. 4

1.5. RESEARCH METHODOLOGY... 4

1.6. ROADMAP OF CHAPTERS .. 5

1.7. SUMMARY ... 7

CHAPTER 2 .. 8

ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION .. 8

2.1. INTRODUCTION .. 8

2.2. PRODUCT ASSEMBLY AND OPTIMISATION .. 8

2.2.1. Design for assembly ... 11

2.2.2. Assembly sequence planning ... 11

2.3. TYPES OF ASSEMBLY PLANS ... 12

2.4. ASSEMBLY SEQUENCE OPTIMISATION ... 14

2.5. SOLUTION SPACE AND CHARACTER OF THE ASSEMBLY SEQUENCE

PLANNING PROBLEM ... 14

2.6. APPROACHES USED TO SOLVE THE ASP PROBLEM 15

2.6.1. The Three-Step Approach .. 16

2.6.2. Division into subassemblies ... 21

2.6.3. Expert systems and Case-based reasoning ... 22

2.2. APPROACHES USED TO OPTIMISE THE ASP ... 22

ii

2.2.7. Exhaustive Search .. 23

2.2.8. Simulated Annealing .. 23

2.2.9. Genetic Algorithms .. 25

2.3. STATEMENT OF PROBLEMS.. 29

2.4. RESEARCH GAPS ... 29

CHAPTER 3 .. 32

GENETIC ALGORITHMS FOR THE OPTIMISATION OF ASSEMBLY SEQUENCES 32

3.1. INTRODUCTION .. 32

3.1.1. Structure and method of GA .. 33

3.2. GENETIC ALGORITHMS AS AN OPTIMISATION TOOL 34

3.2.1. Termination of the GA Optimisation Process .. 35

3.2.2. Evolutionary Algorithms ... 36

3.3. GENETIC ALGORITHMS AND COMBINATORIAL PROBLEMS 38

3.4. GENETIC OPERATORS ... 38

3.4.1. Chromosome Representation ... 39

3.4.2. Constraints ... 42

3.4.3. Fitness function .. 42

3.4.4. Chromosome generation .. 43

3.4.5. Crossover ... 43

3.4.6. Mutation ... 44

3.4.7. Evaluation .. 44

3.4.8. Selection ... 44

3.5. CONSTRAINTS IN ASSEMBLY ... 48

3.5.1. Absolute Constraints .. 50

3.5.2. Handling Constraints in Genetic Algorithms ... 51

3.6. THE IDEA OF USING GA FOR SOLVING AS .. 53

CHAPTER 4 .. 55

THE REPRESENTATION OF ASSEMBLY SEQUENCES AS CHROMOSOMES 55

4.1. INTRODUCTION .. 55

4.1.1. Representation and modelling problems .. 56

4.2. ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION 57

4.2.1. Assembly for products ... 57

4.2.2. Assembly Plans .. 58

4.2.3. Explicit Representations in Assembly Planning .. 61

iii

4.2.4. Implicit Representations in Assembly Planning .. 67

4.2.4.1. Precedence Relationships between the Establishment of One Connection and

States of the Assembly Process.. 70

4.2.4.2. Precedence Relationships between the Establishment of One Connection and

the Establishment of another Connection .. 71

4.3. SLMC ASSEMBLY SEQUENCES .. 75

4.4. MODELLING AND REPRESENTATION OF NON-LINEAR ASSEMBLY

SEQUENCES .. 76

4.5. MODELLING AND REPRESENTATION OF NON-SEQUENTIAL

ASSEMBLY PLANS... 78

4.6. MODELLING AND REPRESENTATION OF NON-MONOTONE ASSEMBLY

SEQUENCES .. 80

4.7. MODELLING AND REPRESENTATION OF PSEUDO-NON-COHERENT

ASSEMBLY PLANS... 82

CHAPTER 5 .. 84

GLOWWORM SWARM ALGORITHM FOR THE OPTIMISATION OF ASSEMBLY

SEQUENCE ... 84

5.1. INTRODUCTION .. 84

4.1.1. General Collective Behavior of Swarms........ Error! Bookmark not defined.

4.1.2. Collective Behavior of Glowworms .. 86

4.1.3. Differential Methods in Terms of the Extensive Review 87

5.2. GLOWWORM SWARM OPTIMISATION ALGORITHM 90

5.3. GLOWWORM SWARM OPTIMISATION CLUSTERING ALGORITHM 94

5.3.1. GSO Clustering Process ... 94

5.3.2. GSO Clustering Algorithm .. 94

CHAPTER 6 .. 97

A CASE STUDY USING A GENETIC ALGORITHM AND A GLOWWORM SWARM

ALGORITHM FOR SOLVING AN ASSEMBLY SEQUENCE OPTIMISATION

PROBLEM ... 97

6.1. INTRODUCTION .. 97

6.2. PROBLEM STATEMENT MODEL FORMULATION .. 98

6.2.1. Genetic Algorithm ... 101

6.2.2. The Glowworm Swarm Optimisation Algorithm .. 109

6.3. A CAR ENGINE PUMP VALVE CASE STUDY.. 114

iv

6.4. A BALL PEN CASE STUDY ... 132

CHAPTER 7 .. 145

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

.. 145

7.1. DISCUSSION .. 145

7.2. CONCLUSIONS.. 146

7.2.1. GA and GSOA ... 147

7.2.2. NOVELTY ... 147

7.3. FUTURE WORK .. 148

REFRENCES ... 149

APPENDIX 1 ... 162

APPENDIX 2 ... 170

APPENDIX 3 ... 185

v

DECLARATION

I hereby declare that this Ph.D. thesis entitled “Investigation into GA and GSOA Optimisation

Approaches for Solving Assembly Sequence Problems” was carried out by me for the degree

of Doctor of Philosophy. I also declare that, to the best of my knowledge, my thesis does not

contain any materials previously published or written by other people except where due

reference is made in the text.

Name: Fawaz Saad Alharbi

Signature: FAWAZSAAD

Date: 03/07/2020

vi

ACKNOWLEDGMENT

First, I praise God, the almighty, merciful and passionate, for providing me this opportunity

and granting me the capability to proceed successfully.

It would not have been possible to write this doctoral thesis without the support and help

of the kind people around me.

Above all, I am grateful to my mother, father, sisters, brothers and wife, who have provided

me through moral and emotional support in my life. This thesis is a small gift to my mother

and father (my Allah forgive them and have mercy on them, and may Allah make their

graves a garden from the gardens of Jannah and not a pit from the pits of hellfire, and may

Allah have mercy on them and make them in the highest paradise. In addition, by the

patience of my family who experienced all of the ups and downs of my research. I am also

grateful to all my friends, especially Khalaf Alharbi and Ibrahim Aloyayna who have

supported me along the way.

I would like to thank the Saudi Government and the Ministry of Higher Education, for

financial support under a scholarship, not only for providing the funding which allowed

me to do this degree, but also for giving me the opportunity to attend conferences and meet

so many interesting people in the research field. I am indebted to them for their support.

I would like to express my sincere gratitude to my supervisors Dr. Qian Wang, Prof. Nick

Bennett and Prof. David Sanders for the continuous support of my PhD study and related

research, for their patience, motivation, and immense knowledge. Their guidance helped

me in all the time of research and writing of this thesis. I could not have imagined having

a better advisors and mentors for my PhD study.

vii

Beside my advisors, I would like to express my deepest thanks and appreciation to the rest

of my thesis committee: Prof. Ahmed Al-Ashaab and Dr. Andrea Bucchi, for their

encouragement, insightful comments and hard questions.

I would like to take this opportunity to immense gratitude to Prof. Hom Dhakal, Dr. Jovana

Radulovic and Dr. Sarinova Simandjuntak (School of Mechanical and Design

Engineering), also to Linda Janes (Student and Academic Administrator) and to all persons

who have given their invaluable support and recommendations.

Last but not least, I would like to express my sincere appreciation to Miss Valentina

Vuntsova and Mrs. Donna Crighton from the research degrees and for their prompt reply,

and for their valuable assistance and guidance.

viii

LIST OF PUBLICATIONS & DISSEDMINATIONS

JOURNAL

- Alhrbi. F. S., Nujoom. R. and Wang. Q. (2020). A hybrid optimisation approach for

energy-saving assembly systems. (Under review in Journal of Production Economics).

- Alharbi. F. S., Wang, Q., Sanders. D. and Bennett. N. (2019). A case study of using the

genetic algorithm and the glowworm swarm algorithm for solving an assembly sequence

optimisation problem, Robotics and Computer-Integrated Manufacturing, under Major

review.

CONFERENCE PAPERS

- Alharbi, F. S. and Wang, Q. (2018). Solving an assembly sequence optimisation problem

using the genetic algorithm, Proc. of the IEEE 18th International Conference on

Electronics, Control, Optimisation and Computer Science (ICECOCS), published.

- Alharbi, F. S. and Wang, Q. (2018) Applying a glowworm swarm algorithm for optimising

the assembly sequence of a car engine pump valve, Proc. of the IEEE 18th International

Conference on Electronics, Control, Optimisation and Computer Science (ICECOCS),

published.

- Alharbi, F. S. and Wang, Q. (2017). A genetic algorithm for solving assembly sequence

problem, Applied Mechanics and Materials, Vol. 872, pp. 420-424, published.

BOOK CHAPTER

- Alharbi F. S. (2017). An algorithm to optimise the assembly sequence of a product,

Journal of computing in systems and engineering, Vol 18, pp: 399-404. ISSN 1472-9083,

published.

ix

CONFERENCE POSTER

- Alharbi. F. S. (2016). Using a genetic algorithm for solving assembly sequence problem,

9th SSC Conference, University of Birmingham, United Kingdom.

- Alharbi. F. S. (2015). Applying a genetic algorithm for solving assembly sequence

problem of a product, 8th SSC Conference, Imperial College, London, United Kingdom.

I certify that I have obtained a written permission from the copyright owner(s) to include the

above-published material(s) in my thesis. I certify that the above material describes work

completed during my registration as a graduate student at the University of Portsmouth.

x

ABSTRACT

Assembly sequence planning (ASP) is a vital part in reduction of cost and lead time of a

product that needs to be assembled. It involves a determination of assembly process often

coupled with constraints that need also to be addressed. In order to resolve ASP optimisation

problems, it was reported that genetic algorithms (GA) were used for gaining an optimal

solution for sequence-dependent or non-sequence-dependent job scheduling of product

assembly in order to maximise production volume and minimise production delay. A latest

development through a literature review indicates that glowworm swarm optimisation

algorithm (GSOA) can also be used effectively and efficiently for solving system engineering

optimisation problems in terms of such as non-linear equation scheduling. This thesis presents

an investigation of using the GA and the GSOA approaches, respectively to seek an optimal

solution from possible assembly sequences of a car engine pump valve and a ball pen as a

case studies. The research work was conducted based on a comparative result of minimal

assembly time by searching an optimal assembly sequence using these two algorithms, which

were implemented in a JAVA program. The research outcomes show that the GSOA

outperforms the GA in generating an optimal assembly sequence with a minimal assembly

time. It also demonstrates that the GSOA can be a useful decision-making tool for searching

an optimal or near-optimal assembly sequence of a product for product designers.

xi

LIST OF TABLES

Table 1.1. Types of assembly sequences plans

Table 5.1. The differential methods in terms of the extensive review of the GA, PSO, ACO

and GSO, respectively

Table 6.1. The constant values of parameters used the GSOA approach

Table 6.2. Part of the programming approach based on the GSOA

Table 6.3a. Assembly components of the car engine pump valve

Table 6.3b. The feasible assembly sequences of the car engine pump valve

Table 6.4. The priority matrix showing liaisons between two possible assembly components

of the car engine pump valve

Table 6.5. Average assembly time between two possible components of the car engine pump

Valve

Table 6.13. Assembly components of the ball pen

Table 6.14: The liaisons between two possible assembly components of the ball pen

Table 6.15: Average assembly time between two possible components of the ball pen

Table A.2.1. Selections from feasible assembly sequence of the car engine pump valve

obtained by running number of generations

Table A.2.2. Selections from the results obtained by running the GA for the car engine pump

valve

Table A.2.3. Selections from the results obtained by running the GSOA for the car engine

pump valve

xii

LIST OF FIGURES

Figure 2.1. Product development, production planning and assembly

Figure 2.2. Optimisation in Concurrent Engineering and Serial Engineering

Figure 2.3. Co-evolutionary optimisation

Figure 2.4. Assemblies which cannot be assembled by: (a) a contact-coherent plan; (b) a

sequential plan; (c) a linear plan; (d) a monotone plan

Figure 2.5. General methods for solving ASP problems

Figure 2.6. The GA approach for solving the ASP problem

Figure 2.7. Modelling and representation issues in ASP

Figure 3.1. General structure of Genetic Algorithms

Figure 3.2. The steps of Genetic Algorithm approach

Figure 3.3. Coding space and Solution space

Figure 3.4. Feasibility and legality

Figure 3.5. The mapping from chromosomes to solutions

Figure 3.6. A case of crossover operator

Figure 3.7. Selection performed on regular sampling space

Figure 3.8. Selection performed on enlarged sampling space

Figure 3.9. Simple reproduction allocates offspring strings using a roulette wheel

Figure 3.10. The ball pen assembly components

Figure 4.1. A four-part assembly (A) and a graph of liaisons (B)

Figure 4.2. A plan for structure the four-part assembly

Figure 4.3. Bourjault’s representation of all assembly sequences

Figure 4.4. Directed graph of feasible assembly sequences using parts

Figure 4.5. Directed graph of feasible assembly sequences using liaisons

Figure 4.6. AND/OR graph of assembly sequences

xiii

Figure 4.7. Assembly sequences graph (ASG)

Figure 4.8. (a) Structure, (b) its +Z connectivity graph and (c, d, e and f) the representation

of assembly states

Figure 4.9. Example of a product with its matrices

Figure 4.10. Relations between chromosomes and assembly sequences

Figure 4.11. The graph of liaisons of the flashlight

Figure 4.12. Product that can be assembled only with a non-sequential assembly plan (A), a

cross-section (B), the graph of liaisons (C) and the simplified graph of liaisons (D)

Figure 4.13. A product realised with a non-monotone assembly sequence

Figure 4.14. The graph of liaisons of the product

Figure 5.1. The character of collective behavior

Figure 5.2. Flowchart of GSO

Figure 6.1. A combined approach to obtain comparative results using the GA and the GSOA

for resolving the assembly sequence optimisation problem

Figure 6.2. The GA programming approach

Figure 6.3. Selection of a better chromosome

Figure 6.4. The crossover process of swapping genes

Figure 6.5. The mutation operator

Figure 6.6. Mechanisme of the glowworm swarm optimisation algorithm

Figure 6.7. Components of the car engine pump valve

Figure 6.8. The Liaison graph for the car engine pump valve

Figure 6.9. Assembly time obtained using the GA in response to each of chromosomes

Figure 6.10. Comparison in assembly time between the theoretical result and computerised

result using the GA in response to generation number

Figure 6.11. Assembly time obtained using the GSOA in response to the glowworms

xiv

number

Figure 6.12. Comparison in assembly time between the theoretical result and computerised

result of GSOA in response to generation number

Figure 6.13. The ball pen assembly components

Figure 6.14. The feasible assembly sequences (A, B, C, D) of the ball pen

Figure 6.15: The liaison graph for the ball pen

Figure 6.16a-e. Assembly time obtained using the GA in response to each of chromosomes

in generation 1-5

Figure 6.17 shows the comparison in assembly time between the theoretical result and

computerised result of GA in response to the generation number

Figure 6.18a-e. Assembly time obtained using the GSOA in response to each of

chromosomes in generation 1-5

Figure 6.19shows the comparison in assembly time between the theoretical result and

computerised result of GSOA in response to the generation number

Figure A1.1. A product that can be assembled with a C-S-L-NM assembly

Figure A1.2. A product that can be assembled with a C-S-NL-M assembly

Figure A1.3. A product that can be assembled with a C-S-NL-NM assembly

Figure A1.4. A product that can be assembled with a C-NS-L-M assembly

Figure A1.5. A product that can be assembled with a C-NS-L-NM assembly

Figure A1.6. A product that can be assembled with a C-NS-NL-M assembly

Figure A1.7. A product that can be assembled with a C-NS-NL-NM assembly

Figure A1.8. A product that can be assembled with a NC-S-L-M assembly

Figure A1.9. A product that can be assembled with a NC-S-L-NM assembly

Figure A1.10. A product that can be assembled with a NC-S-NL-M assembly

Figure A1.11. A product that can be assembled with a NC-S-NL-NM assembly

xv

Figure A1.12. A product that can be assembled with a NC-NS-L-M assembly

Figure A1.13. A product that can be assembled with a NC-NS-L-NM assembly

Figure A1.14. A product that can be assembled with a NC-NS-NL-M assembly

Figure A1.15. A product that can be assembled with a NC-NS-NL-NM assembly

Figure A2.1. (a, b, c and d) Assembling the car engine pump valve components (3D)

Figure A2.2. Assembling the car engine pump valve components (2D)

xvi

LIST OF ABBREVIATIONS

ACOA - Ant Colony Optimisation algorithms;

AOF - Aggregative Objective Function;

AP - Assembly Planning;

APSO - Adaptive Particle Swarm Optimisation;

ASP - Assembly Sequence Planning;

CE - Combinatorial explosion;

CEng - Concurrent Engineering;

CSG - Constructive Solid Geometry;

CX - Cycle Crossover;

DFA - Design for Assembly;

EA - Evaluation Function;

FF - Fitness Function/s;

GA - Genetic Algorithm/s;

GACIE - Genetic Algorithm-Based Approach to Color Image Enhancement;

GL - Graph of Liaisons;

GO - Genetic Operator/s;

GS - Guided Search;

GSAA - Genetic Simulated Annealing Algorithm;

GSOA - Glowworm Swarm Optimisation Algorithm;

HPCIE - Hue-Preserving Color Image Enhancement;

JSSP - Job Shop Scheduling Problem;

LVQ - Learning Vector Quantization;

MC - Meta-Component;

xvii

OX - Order Crossover;

PM - Pseudo-Mutation;

PMX - Partial-Mapped Crossover;

PSGA - Particle Swarm Genetic Algorithm;

PSOA - Particle Swarm Optimisation Algorithm;

PWOA - Particle Warm Optimisation Algorithms;

SA - Simulated Annealing;

SEng - Serial Engineering;

 SI - Social Insects;

SME - Small-Medium Enterprises.

1

CHAPTER 1

1.1. INTRODUCTION

When a product needs to be assembled, complexity of assembling a product may lead to

possible assembly sequences in various forms that usually need to be pre-defined by product

designers at the early design stage aimed at a reduction of assembly time and therefore

production costs. This is particularly crucial for many small-medium enterprises (SME) that

rely on assembly of products to survive in the fierce competitions of the global market. Apart

from the effect of product design, assembly time is largely subject to its assembly precedence,

accessibility, constrains, geometry and number of assembly components. It is helpful to seek

an optimal assembly sequence for a product that has the shortest assembly time. However, it

can be difficult to find a quick solution using heuristic approaches. For instance, although

genetic algorithms (GA) were reported as a cost-effective way for solving manufacturing

optimisation problems in machining or assembly sequences, a recent literature review shows

a latest development of the glowworm swarm optimisation algorithm (GSOA) that may also

be used effectively and efficiently for resolving some system engineering optimisation

problems on such as non-linear equations and scheduling.

The glowworm swarm optimisation algorithm (GSOA) was introduced by Krishnanand and

Ghose (2006a). GSOA was aiming to solve engineering optimisation problems, its name was

derived from the courtship behaviour of an insect called a glowworm. In nature, these

glowworms are able to modify the amplitude of their light emission (Luciferin) and use the

bioluminescence glow for different purposes. GSOA is involved in a deployment of

glowworms, luciferin-update, movement and local-decision domain. Th location and

movement direction of these glowworms can be deremind by the luciferin value. The GSOA

is useful for a simultaneous search of multiple optimal values usually based on different

2

objective functions (Huang and Zhou 2012, He et al. 2013(a)(b), Marinaki and Marinakis

2016, Yang et al. 2010 and Yu and Yang 2013).

1.2. RESEARCH RATIONALE

In an attempt to provide solutions to assembly sequence problems, some optimisation

algorithms have been developed. Notwithstanding, some of the existing common limitations

of these algorithms include long computational time, cost, complexity.

This research study seeks to solve these limitations through a development of the following

importance:

▪ A suitable optimisation algorithm that can be used to solve a problem of assembly sequence

optimisation for a specified product with a flexible constraint degree that can be specified

according to user needs will be developed.

▪ The users’ desirable characteristics of products include portability, ease of maintenance

and good durability increase as manufacturers tend to improve their products.

Consequently, these properties often result into product complexity. In an attempt to solve

this problem of product complexity as a main contribution to knowledge, products have

been categorised into three basic types based on the number of their expected assembly

parts: very simple, simple and complex, with the assigned components constraints for better

programming.

▪ Due to the exponential increase in the world population resulting into high products

demand. Hence, there is need for GA and a new optimisation approach that has not been

used for solving assembly sequence problem and that could carry out huge assembly

sequence assignments within micro-seconds efficiently. Thus, in this research GSOA will

be used beside GA for solving assembly sequence problem which is the assembly sequence

time.

3

▪ Furthermore, computational time is a function of cost. The computational time increases

with increasing cost.

▪ Therefore, a more flexible GA and GSOA are hereby anticipated within the scope and focus

of this research study.

1.3. RESEARCH OBJECTIVES

The aim of the present thesis involves an investigation of using the GA and the GSOA

approaches, respectively to seek an optimal assembly time from possible assembly sequences

of a specified product with a flexible constraint degree that can be specified according to user

needs. In this research, two products will be used as case studies; 1) a car engine pump valve

and 2) a ball pen. Thus, the research objectives were proposed as follows:

1. Understand the nature of product assembly, assembly sequence (AS) techniques, related

issues and carry out a comprehensive literature study in optimisation methods with the

focus on GA and GSOA in relevance to assembly sequence of products.

2. To develop a novel optimisation algorithm that can be used to reduce assembly sequence

time for a specified product with a flexible constraint degree that can be specified

according to user needs.

3. Defining the effectiveness by implementing GA and GSOA, respectively into a Java

used for generating an assembly sequence optimisation of a specified product as a case

study or experiments.

4. Clarify efficiency by comparing GSOA with GA in terms of comparative results through

experiments.

5. Test and validate research outcomes using feasible case studies.

Within the boundary of the Research Objectives, seven research questions are raised and

highlighted below:

1. What are the most effective factors that may impact on assembly sequence of products?

4

2. What the optimal solutions that can be used in solving assembly sequence problem?

3. What is the appropriate optimisation tools that can be used in the current research to

solve the assembly sequence time?

4. How to employ the GA and GSOA approaches as an aid for solving assembly sequence

problem?

5. What a suitable programming language that can works with GA and GSOA?

6. Are the GA and GSOA models valid?

7. Is the best approach suitable to solve another product problem?

1.4. SCOPE OF THE RESEARCH

This research was carried out based on the following hypothesis;

1. Investigating GA and GSOA algorithms in solving the AS optimisation problems based

on a comprehensive literature review.

2. Implement the proposed optimisaton algorithms in programming.

3. Apply the developed optimsation algorithms into case studies.

4. Analysis of comparative results using these two methods with the focus on the latest

development of the GOSA approach.

1.5. RESEARCH METHODOLOGY

Some methods could be used in solving assembly sequence problem such as GA and GSOA.

Both optimisation approaches will be implemented into JAVA as an effective research tool to

carry out this research work. In this research, the development of three steps approach is an

anticipated methodology.

Basically, this approach involves the following steps.

5

i. Representations. This is broadly categorised into implicit and explicit. The implicit

representations display precedence relations between the assembly parts implicitly, while

the explicit depicts products assembly comprising precedence constraints such as graphical

representation using liaison graphs.

ii. Assembly sequences generation. The most important issue here is the suitability of the

generated sequences.

iii. Evaluation and optimisation. This is will be done by using GA and GSOA approaches.

Before proves its effectiveness and efficient, some set of assumptions are required, these

assumptions are considered within this research work, which are the following:

a) Assembly product parts are inflexible.

b) Establishment of all the component contacts during assembly.

c) Assembly procedure is monotone, in order and sequentially well arranged.

The testing and validation of GA and GSOA techniques and research outcomes through case

studies approach, using a car engine pump valve and a ball pen, respectively will be

conducted.

1.6. ROADMAP OF CHAPTERS

The thesis is structured in 7 chapters and 3 appendices:

Chapter 1: Introduction

This chapter provides an introduction, the aim and objectives of this research work and the

research questions.

6

Chapter 2: ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION

The chapter focuses on the state of the art in assembly sequence planning. It critically studies

various methods developed to solve and optimise the AS, as well as point out the limitation of

each method.

Chapter 3: GENETIC ALGORITHMS FOR THE OPTIMISATION OF ASSEMBLY

SEQUENCES

This chapter introduces GAs and their applications as optimisation tools for solving

engineering problems. A special attention is reserved to combinatorial problems to handle

constraints. Methods, techniques and particular issues used in the GA designed for solving the

ASP are presented and justified.

Chapter4: THE REPRESENTATION OF ASSEMBLY SEQUENCES AS

CHROMOSOMES

This chapter is dedicated to the modelling and representation of assembly sequences using

chromosomes. Generally, the literature in this field encodes assembly sequences under

constraints within the same representation, the literature review of those topics is presented in

this chapter.

Chapter 5: GLOWWORM SWARM ALGORITHM FOR THE OPTIMISATION OF

ASSEMBLY SEQUENCE

This chapter presented GSOA for the optimisation of AS. GSOA is suitable for a concurrent

search of a number of solutions. A number of researchers utilised GSOA in different areas, for

example; clustering and various optimisation problems. In addition, it has been observed that

the literature showed that GSO is better than PSO, ACO and GA.

7

Chapter 6: A CASE STUDIES USING A GENETIC ALGORITHM AND A

GLOWWORM SWARM ALGORITHM FOR SOLVING AN ASSEMBLY

SEQUENCE OPTIMISATION PROBLEM

This chapter applied GA and GSOA approaches for solving an assembly sequence optimisation

problem for a car engine pump valve and a ball pen.

Chapter 7: DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

The final chapter includes a discussion and conclusions of the research work, with an overview

of research rationales, aims, research method used and the overall findings of this study. It also

suggests recommendations for future work and enhancement.

1.7. SUMMARY

This chapter presents an outline by addressing the ASP problem and optimisation techniques

through a literature review. Assembly sequence needs to be optimised partially because of

reduction of lead time and manufacturing costs. The chapter also outlines a scope of the

proposed research work with aims and objectives to be provided as the direction and methods

used for this study.

8

CHAPTER 2

ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION

2.1. INTRODUCTION

This chapter presenting product assembly and optimisation, also, addresses issues by

examining the different methods for solving the assembly sequence planning problems,

discuss their limitations and other issues related, representation, modelling and optimisation

are researched in subsequent chapters. Section 2.3 addresses types of assembly plans. Section

2.4 demonstrates assembly sequence optimization. Section 2.5 describes the solution space

and character of the assembly sequence problem. Section 2.6 details approaches for solving

assembly sequence planning problems and their analysis and justification being carried out in

this research. Section 2.7 focuses on the illustration of various optimisation approaches for

the assembly sequence planning to be analysed critically, the limitations are also discussed.

ASP optimisation is, in this research, is the main issue to investigate in order to determine the

near optimum or optimum sequence of assembling a product. The research methodology used

in this research will be based on a comprehensive literature study to identify the suitable

optimisation techniques for solving the assembly sequence of a product.

2.2. PRODUCT ASSEMBLY AND OPTIMISATION

If a product has more than one component, then it must be assembled. Product assembly is

often involved in final operations of manufactured products before being shipped to either the

next manufacturing phase or directly to the consumer. Figure 2.1. shows a schema related to

issues of assembly.

9

Figure 2.1. Product development, production planning and assembly

Optimisation of a product design can be made during the conceptual design stage. The key

principle from the perspective of assembly is to ensure product assembly can be achieved

easier by reducing complexity in terms of number of parts and operations that are needed to

complete assembly tasks. In production planning, optimisation involves a determination of

locations and allocations of resources of assembly lines/cell plans attempting to identify an

optimal assembly sequence of a product with maximizing efficiency or productivity with

minimal costs. Optimisation can be carried out via concurrent engineering (CEng) or serial

engineering (SEng) as shown in Figure 2.2. When a product’s development is fragmented or

when there is little clarity for determining assembly facilities, SEng often finds favor.

Planning of Assembly
Resource location and

assembly sequence

STAGE 3

Production
Assembly operations

Assembly and

Disassembly
Product Design

Automation &

optimisation of

assembly-operations

STAGE 2

Process Planning

STAGE 1

Product Design

10

Figure 2.2. Optimisation in Concurrent Engineering and Serial Engineering (Marian at al.

2006)

CEng, on the other hand, provides more direct and definitive optimisation for a well specified

and identified assembly or manufacturing environment. Also, there’s a likelihood of co-

evolutionary optimisation for either a single-criteria or multi-criteria optimisation. Co-

evolution occurs because the different design problems do not have rigid specifications due

to the fluidity of the design environment as well as people changing their minds. Co-

evolutionary optimisation, Figure 2.3. has in optimisation criterion a moving and target states

(both a problem and solution). Optimisation continues to evolve once a criterion optimisation

is concluded, thus demanding further or another optimisation. When optimisation for different

criteria cannot be linked together, then optimisation for once criterion might affect other

criteria, therefore requiring a number of iterations. The major difference between CEng and

SEng is that in CEng, several iterations and a number of smaller optimisations needs

considering while in SEng, optimisation is done once representative of all known criteria.

Therefore, optimising in assembly can be carried out for either a composite of single criterion.

Moreover, ‘freezing’ the optimisation conditions for CEng during the process of optimisation

SEng

3

4

1

CEng 2

3

5

1..5

1

2

5

time

4
Time to
market

reduction

Product development
phases

time

11

results in no difference between SEng and CEng in the application of co-evolutionary

optimisation.

Figure 2.3. Co-evolutionary optimisation

2.2.1. Design for assembly

According to Boothroyd, Dewhurst et al. (1994), there is a widespread acceptance that a

product design determines over 70% of a product final cost. Thus, Design for Assembly

(DFA) is an important process in reduction of assembly costs and lead time Molloy and

Tilley (1998) and Nof et al. (1997) list the principles associated with DFA:

1. Reduction of the number of part: fewer number of parts help reduce assembly

operations and, in many cases, reduces the cycle time as well.

2. Design for easy insertion: for example, using suitable chamfers and tolerances on

parts used for mating.

3. Ease of handling: parts are designed for ease of handling during assembly

processes.

4. Standardized processes: promotion of usage of standard parts.

2.2.2. Assembly sequence planning

Wolter (1988) defined the assembly planning as pre-specification of assembly tasks and

Current
problem

i

evolve Current
problem

i + 1

Optimisation
criteria

Optimisation
criteria

Current
solution

i

evolve Current
solution

i + 1

12

identification of the optimal sequence. It is important to develop a proper sequence as it

affects different aspects of the product design and its process of assembly. It is also important

to define assembly sequence because failure to do so can prove to be costly and it affects

productivity. Operation sequence is a vital factor to consider in the determination of the cost

of assembly (Nof et al. 1997). In other terms, an assembly sequence problem (ASP) can be

translated as the presence of a n-part product problem under assembly constrains. ASP can

be classified by type and level of detail in both the output (plan of assembly) and input

(product description).

2.3. TYPES OF ASSEMBLY PLANS

In Figure 2.4., for simplicity purposes, let us consider assemblies in 2D that are impossible

to build by 2D monotone, linear and sequential assembly sequences and these properties are

best described below (Wolter 1991, Jones et al. 1997 and Jones et al. 1998):

Monotone (M): one of the properties of assembly sequence whereby each component is

inserted into its final location relative to the assembly. In such an instance, the n-part

assembly is executed in n-1 operations. An example of an assembly that cannot be

assembled using a monotone assembly sequence is illustrated in Figure 2.4d.

Linear (L): To the partial assembly, all parts are added one at a time, meaning that it does

not form subassemblies. A product that cannot be assembled by a linear assembly sequence

as shown in Figure 2.4c.

Sequential (S): If the plan can be broken down into the two-handed plan (where only one

element can be added at each step). Below is Figure 2.4b. which demonstrates an assembly,

which in 2D must be assembled through a coordinated movement of the three parts,

therefore, not requiring a sequence.

Coherent (C): is a property of assembly sequence whereby each component inserted

13

effectively touches other components inserted earlier as shown in Figure 2.4a.

 a b c d

Figure 2.4. Assemblies which cannot be assembled by: (a) a contact-coherent plan; (b) a

sequential plan; (c) a linear plan; (d) a monotone plan (Jones et al. 1998)

An assembly plan can be coherent or non-coherent, sequential or non-sequential, linear or

non-linear, monotone or non-monotone, or any combination of the above situations. Table 2.1

shows an example of 16 possible assembly sequence.

Table 2.1. Types of assembly sequences plans (Marian et al. 2003)

 Coherent Sequential Linear Monotone

1 NO NO NO NO

2 NO NO NO YES

3 NO NO YES NO

4 NO NO YES YES

5 NO YES NO NO

6 NO YES NO YES

7 NO YES YES NO

8 NO YES YES YES

9 YES NO NO NO

10 YES NO NO YES

11 YES NO YES NO

12 YES NO YES YES

13 YES YES NO NO

14 YES YES NO YES

15 YES YES YES NO

16 YES YES YES YES

14

An assembly sequence planner has to consider all these situations. As most planners tend to

limit the sequences, C-S-L-M is then perceived as a significant limitation of an assembly

planner’s capabilities.

2.4. ASSEMBLY SEQUENCE OPTIMISATION

An engineer assembly sequence is often subject to constraints of time and production cost.

It becomes increasingly important to structure the optimisation of assembly sequences by

overlooking certain assembly sequences that can prove to be expensive and considering the

factors that may affect an assembly sequence including the structure and nature of the

product. Any change in any of the above factors can also alter the assembly plan and require

appropriate adjustment (Kavraki et al. 1993).

It is favourable to have a problem-oriented approach whenever solving or optimising the

problem of ASP in all its diversity, generality and complexity. Solution-based methods are

used in solving ASP problems through the incorporation of artificially limiting hypothesis.

The advantage of the artificially limiting hypothesis is that the solution is representative. This

hypothesis can be impossible to generalize if it requires a change in the problem.

2.5. SOLUTION SPACE AND CHARACTER OF THE ASSEMBLY

SEQUENCE PLANNING PROBLEM

ASP can be a highly constrained, large scale and combinatorial problem. The difficulty of

identifying an optimal solution is bound to the problem that is solved via an exhaustive search

proportionate to the size of the solution space. When a tree search that divides the solution

space is implemented, it is possible that the complexity might increase roughly with the

increase in size of the solution space (Wolter, 1988). Solution space is identified by the

number of potential assembly sequence in the ASP where the components of the solution

space encompasses all the possibilities through which assembly of an n-part product can be

made possible.

15

According to Wolter (1988), components might be moved via different temporary positions,

potential sequential non-monotone plans are infinite. It is wise to note that ASP can be a

combinatorial problem with a large scale:

➢ Not every component will be connected to any other component;

➢ The sequence cannot begin with any component;

➢ No dignified connection can be done between two components at a single time.

2.6. APPROACHES USED TO SOLVE THE ASP PROBLEM

Several methodologies and techniques have been developed to solve ASP problems. There

are four general methods, which were presented by Delchambre (1992) aimed at generating

assembly sequences (as illustrated in Figure 2.5.):

• The first method contains the three-step approach by definition of precedence

constraints of assembly sequences.

• The second method requires the product to receive division into subassemblies which

are in turn generated by the use of simple enough rules.

• The third method inloves the Expert Systems for generating specific assemblies.

• The fourth method is the Case-based reasoning approach.

The third and fourth methods and sometimes their combination cover virtually all

methodologies incorporated in the solution of ASP problems.

Figure 2.5. shows the general methods for solving ASP problems, and all these methods are

explained through the next 3 sub-sections.

16

Figure 2.5. General methods for solving ASP problems

2.6.1. The Three-Step Approach

This approach often precludes some of feasible assembly sequences as it must satisfy

precedence and constraints. The three steps include;

i. Defining the precedence constraints;

ii. Generation of all feasible sequences of assembly;

iii. Selection of an assembly sequence based on defined criteria.

The three-step approach is the most widely used method based on the following assumptions

Case-based

Reasoning

Method

Defining

Precedence

Constraints

Generation of All

Feasible

Sequences of

Assembly

Selection of AS

Based on

Defining Criteria

Three-step

Method

Division into

Subassemblies

Method

Expert Systems

Method for

Specific

Assemblies

Solving ASP

Problem Methods

Simplified

Approach

Grouping Parts

Matrix

Manipulation

Graph

Manipulation

Disassembled

Approach

Exhaustive

Approach

17

(Golabi 1996, Jones et al. 1997, Wolter 1990a, Wolter 1990b):

a) The process of assembly is sequential;

b) The process of assembly is monotone;

c) The components are rigid;

d) All contacts between two components are established.

The details for the Three Steps are discussed below:

 Defining precedence constraints - infeasible assembly sequences are a result of the

determination of precedence constraints;

• The exhaustive approach – a methodology to identify all precedence relations in

the midst of various assembly connections based on the connection graph of the

assembly (Bourjault 1984). By considering two sets of questions (what’s the

possibility of establishing a connection Li when the connection Lj has already been

established? And what’s the possibility of establishing a connection Li when the

connection Lj has not already been established?). Bourjault eliminated the prohibited

partial states via a purely combinatorial computation. The operator needs answer the

2x (L2 –L) questions for L connections within an assembly. However, this approach

faces two distinct disadvantages; the first is due to the constant increase in number

of questions, the number of parts which can be applied to such assemblies is limited.

The second disadvantage is that it is prone to errors since the operator can mix a

subjective analysis with a geometric analysis.

• The simplified approach – this approach identified by De Fazio and Whitney (1987)

utilises two questions to be asked; “Which connection that cannot be established

18

before connection L?” and “Which connection must be established before connection

Li?”. In this case, 2L questions may be asked, where precedence relations do not take

alternative constraints into account, thus omitting some interesting assembly

sequences (De Fazio and Whitney 1987).

• The disassembly approach - many researchers use the subassembly approach to

identify the precedence constraints. Contains information of product parts as well as

the relations between the two parts. A product assembly or disassembly directly

implicates the satisfaction of precedence relationships. Precedence constraints might

fail to be identified until the complete exhaustion of the search has been done (Lee

1992a; Lee 1992b). Assembly directions and proper relations of contact cannot be

identified through forward planning. Huang and Lee (1988 and 1991) introduced two

distinct precedence relations: ‘No Later Than’ (NL) as well as ‘Must Precede’ (MP).

Based on the component’s geometry, they developed an automatic procedure for

disassembly to aid in the generation of precedence relations. Wolter (1988) explained

precedence constraints of a single component that is added during a single operation.

Homem de Mello and Sanderson (1990) break down the product into subassemblies

whereby each subset of components (that only have fixed positions) is split into equal

halves by all means in a feasible disassembly operation. Hyper-archs with three

nodes represent the initial results; two represent subassemblies derived at via

decomposition while the other only represents subassemblies. The hyper-archs

19

represent the precedence relations. Despite this method being the most preferred to

identify all precedence relations for the product’s assembly, there are setbacks

associated with it at least in its usage thus far. This method only considers geometric

and mechanical relations among elements.

Generation of all feasible sequences of assembly - a number of methods were developed

for the generation of assembly sequences; this includes graph manipulation, matrix

manipulation and grouping parts as presented below;

• Graph manipulation - the purpose of graph manipulation was to capture and store

the data from connections between components. According to Golabi (1996), graphs

are used to represent assemblies based on the graph theory techniques that were used

to determine assembly sequences. For instance, connectivity data is represented by

connection graphs whereas precedence data regarding the assembly is done by

AND/OR graphs (Ben-Arieh 1994b), (Bourjault 1984, Homem de Mello and

Sanderson 1989, Homem de Mello and Sanderson 1990, Gottipolu and Ghosh 1997).

Manipulation of graphs can be both straightforward and simple especially to model

feasible assembly sequences.

• Matrix manipulation - data in connection relation of a product components can be

stored and expressed in matrix form. For instance, the adjacency matrix of a product

connection graph can be directly translated in the form of a matrix (n x n matrix for

an n-component product) (Wilson and Watkins 1990).

20

A 2 x 2matrix can be used to record the mating kind of each individual mating pair,

where both the row and column are named after the mating pairs. The output matrix

can then be transformed and analysed by the use of linear algebra techniques and can

also step up to represent an assembly sequence, according to Gairola (1986). Dini

and Santochi (1992) explain that precedence constraints of assembly sequences can

be found through the manipulation of interference and connection matrices.

• Grouping parts - A group of researchers proposed a simplified approach that may

avoid sieving through feasible subassemblies as well as their decompositions. Their

proposal involved classifying a set of components with unique characteristics in a

subassembly that can be treated as an independent entity during the analysis. The use

of subassemblies allows the reduction of search space through the early pruning of the

links considered unnecessary while explicitly defining spatial and temporal

parallelisms during assembly (Golabi, 1996).

Lee (1992, 1994)) and Lee, Kim et al. (1993) introduced a new method to evaluate

and generate assembly plans by a cut-set of liaison graphs. The procedure was aimed

at determining the assembly partial order. From the graph representing the assembly,

they extracted preferred subassemblies. The recursive extraction provides the basis for

the extraction of subassemblies alongside the simultaneous verification of

disassemblability. A preferred subassembly is where a cluster of components that can

be disassembled from the original assembly. However, the problem with applying this

21

sort of method is the amount of data that is to be supplied and stored, and there might

be the impossibility of its automatic extraction. Categorizing components into

subassemblies is one of the important characteristics of the assembly planner as it

cannot be overlooked at the expense of the assembly.

Assembly sequence under certain criteria - Assembly sequences are evaluated using

optimisation criteria in quantitative terms and the sequence with either the lowest or highest

value to be chosen. The criterion for one manufacturing company might not be the best fit for

another. It is also difficult to distinguish between qualitative and quantitative terms and vice

versa. The operation and construction costs are seen to have significant differences, which are

associate with weight factors such as assembly costs, difficulty degree and assembly task time

in the assembly sequence graph (Gottipolu and Ghosh 1997).

2.6.2. Division into subassemblies

Akagi, Osaki et al. (1980) proposed the classification of the end-product in terms of functional

units ‘fi.’. All components that constitute the product are categorized into functional units.

These units are responsible for categorizing components as fastening methods involved in their

assembly, e.g., riveted and bolted joints, shrinking and pressing fits. The assembly operation

is divided into work elements responsible for fastening the components in each category.

Generation of assembly sequences follows three principle rules;

1. If all elements of fi are included in fj, then fi must precede fj.

2. If fi and fj share common elements, then fi and fj cannot be assembled

simultaneously (in a non-linear assembly sequence).

3. If fi and fj have no common element, then fi and fj can be assembled

simultaneously.

22

2.6.3. Expert systems and Case-based reasoning

The expert and knowledge-based systems was byHuang and Lee (1991) to define the relation

among a pair of components, requiring relationship between the locative configuration

regarding these two components. This method has a major disadvantage which is the search

mechanism, the search mechanism only performs to find a local optimisation without a global

optimum. Another obstacle in using knowledge-based and expert systems is hardly to get data

about the assembly automatically, also translate the knowledge from a case to another.

2.2. APPROACHES USED TO OPTIMISE THE ASP

There are a number of approaches that can determine a near optimum or optimum assembly

plan (Golabi 1996):

(a) Identifying the most suitable assembly sequences based on specified weighting criteria.

(b) Identifying the best assembly sequence by either disassembling or assembling the

product. This method provides a best local solution for a task of assembly but with no

guarantee of a global optimum.

(c) Generation of an assembly sequence using the knowledge-based system. Usually

considering the base criteria by beginning with the base part, other components are

added until all components can be assembled. This method determines the next best

assembly task but also cannot guarantee a global best.

(d) A population search has to be conducted by beginning with the number of assembly

sequences by identifying the best global solution but there is usually no guarantee to

achieve this.

23

2.2.7. Exhaustive Search

In the ASP optimisation, the exhaustive search is merely a theoretical method that can be

applied to decide the optimal assembly sequence by creating all assembly solution and

assessing and selecting the best one. The assessment is done by utilising improvement criteria

or weighting for each assembly sequence. The best assembly sequence may be identified by

correlation of the estimation of an assembly solution to others (Homem de Mello 1989).

2.2.8. Simulated Annealing

Simulated Annealing (SA) is an effective stochastic pursuit technique appropriate to an

extensive variety of issues for which minimal earlier learning is accessible. It may deliver

solutions for hard combinatorial streamlining issues. The disadvantage is the long

computational time required by SA (Yao 1991). The essential thought of SA originates from

reduced matter physics. To minimise energy states, called ground states, of complex system,

for example, solids. The system (solid) is initially warmed to high temperature, then gradually

chilled off. The system will achieve a ground state if the cooling rate around the point of

solidification of the framework is adequately moderate. At each condition of the reproduction,

another condition of the system is produced from the present state by giving an irregular

relocation to an arbitrarily chose molecule. The new state will be acknowledged as the present

one if the vitality of the new state is no more prominent than that of the present state, else, it

may be acknowledged with likelihood (Yao 1991).

Local optimisation of f (x) begins with an initial solution x, xs. At that point, y, a neighbour

of x is chosen, and if f (y) < f (x), y is a downhill move, and is accepted. The procedure proceeds

until no further downhill movements are found (a local minimum is found).

24

SA gives the possibility to avoid being caught in a local minimal by sometimes allowing an

uphill move. The probability of uphill moves is higher at the beginning of the optimisation

and decreases as the optimisation approaches to the end, to the optimum value.

SA has been utilised for the selection of the probable minimum cost assembly sequence

(Milner Graves et al. 1994, Park and Asada 1994). The issues are addressed: given a product

design, determine the minimum cost assembly system for the product. Their way to deal with

select the minimum cost assembly sequence is include three stages:

First, all the probable assembly solutions must be given. De Fazio and Whitney (1987) created

the Diamond Graph to represent to assembly states (by nodes) and tasks to the following

assembly state (arcs). Any descending way from the highest point of the diagram (completely

disassembled unit) to the base (completely assembled unit) represents a unique and valid

assembly sequence.

Second, a technique, by which the cost of an assembly system for a given sequence of tasks

is assessed. The equipment for workstations is selected, then tasks are assigned to

workstations for a given solution in order to minimise the annual cost to produce the required

number of assemblies every year. The presumption is that the cost is not added over steps in

a sequence. The cost of an assembly operation is not a constant and depends on the previous

operations and based on the production volume.

Finally, a search heuristic which can proficiently produce the least cost sequence.

The real disadvantages of the approach and optimisation method when connected to ASP are

the following:

• Because of CE, the technique is restricted to reduced search spaces (assemblies with

a reduced number of components or heavily artificially constrained).

25

• Because of randomly selecting another sequence, this would not provide an idea of

appropriate neighbour of the ideal solution. Thus, the neighbour point is difficult to be

appropriately described. Generally, it is just a matter of preferences and representation

that characterises two points as neighbours.

2.2.9. Genetic Algorithms

Some researchers tried to optimise the ASP using Genetic Algorithms (GA). Sebaaly et al.

(1996a) used a genetic planner for assembly automation. The data for assembly is kept in an

implicit state, in a reference and a connectivity matrix (Sebaaly and Fujimoto 1996b, Sebaaly

and Fujimoto 1996c). If a connection exists between two specific parts ai and aj, then the

elements with the same rows and columns assume all non-zero values, otherwise they are

zero. At the production of the chromosome, a gene is produced from the rules with the highest

value which encodes the precedence constraints. It acts a population-based search rather than

a part-based one and can produce linear and non-linear sequences.

Lazzerini and Dini (1999) and Dini, Failli et al. (1999) brought up another genetic algorithm

to optimise the AS. The optimisation criteria are:

• Reductions of object orientations – reduction of assembly time and cost of assembly

line.

• Reductions of gripper changes – reduction of assembly time.

• Placing as much as possible technologically similar assembly operations, e.g.

screwing, pressing, that can be done with the same mechanical tool.

• Through a specific software module, Feasibility Evaluator (Santochi and Dini 1992)

the evaluation of feasibility of a chromosome is carried out, depending on matrix

measure which normally computes the feasibility degree of an assembly sequence

defined as the length of the longest feasible subsequence in the chromosome.

26

As a weighed sum of the length longest feasible subsequence the fitness associated with a

chromosome is calculated. The following are also weighed, the number of orientation changes

of the assembly, the gripper changes and the number of the same assembly operations placed

together. The Genetic operators are specifically assembled.

The limitations of the algorithm are the following:

• The algorithm cannot be used as it is if the assembly has a component assembled from

a random direction because the Feasibility Evaluator works only on the major axes (x,

y, and z).

• The algorithm can only detect sequential, monotone and coherent assembly sequences.

Marian, Luong and Abhary (2003) used the Three Step Approach to solve the AS problem.

To optimise the AS, a population-based search is utilised as development of (d) approach (see

Section 2.7.). Figure 2.6. illustrates the mechanism of the GA approach for solving the AS

problem.

An assembly sequence demonstrates the progression of operations to amass the item from its

parts. The assembly sequence is characterised by the attributes of the item (geometry of

components, relations between components, materials of components, tolerances and so

forth). The assembly solutions, absolute and enhancement constraints are characterised in the

solution space. The genetic operators work in the model space with chromosomes. Assembly

sequences are demonstrated and presented as chromosomes. There ought to be, a by-unique

mapping between an assembly sequence and a chromosome. Not all assembly sequences are

feasible unless if it satisfies a class of constraints (absolute constraints).

27

REPRESENTATION OF

ASSEMBLY SEQUENCES

REPRESENTATION OF

ABSOLUTE CONSTRAINTS

REPRESENTATION OF

CHROMOSOMES

REPRESENTATION OF

ASSEMBLY SEQUENCES

REPRESENTATION OF

CHROMOSOMES

MODEL SPACE SOLUTION SPACE

POPULATION OF CHROMOSOMES

PSEUDO-MUTATION
OPERATOR

OPTIMISED CHROMOSOME

ASSEMBLY
SEQUENCES

OPTIMISED
ASSEMBLY
SEQUENCES

MODELLING OF
ASP PROBLEM

ISSUES)

GENERATION OF INITIAL POPULATION OF
FEASIBLE CHROMOSOMES
THROUGH GUIDED SEARCH

ABSOLUTE
CONSTRAINTS

OPTIMISATION
CRITERIA

CHROMOSOMES

GUIDED SEARCH OPERATOR

PRECEDENCE RELATIONS
(MODIFIED GENETIC OPERATOR)

CROSSOVER
(MODIFIED GENETIC OPERATOR

BASED ON GUIDED SEARCH)

SELECTION – WEIGHED
ROULETTE

YES

REPEAT

NO

Figure 2.6. The GA approach for solving the ASP problem (Marian et al. 2003)

Figure 2.7. illustrates Modelling and representation issues in ASP. The constraints of the ASP,

characterised in the solution space, are inferred as precedence relations. The assembly table

incorporates the availability data from the table of liaisons and precedence relations that

encode constraints. More precedence relations might be encoded as Boolean relations. Such

a calculation needs to consider the scale, the intricacy and sweeping statement of the issue

with the capacity to produce an attainable assembly sequence in any sensible mechanical

setting.

 FITNESS
FUNCTION

EVALUATION

28

The guided-seek calculation depends on a diagram-look system. It creates doable assembly

solutions by arbitrarily selecting, in each stage, one of assembly operations that can be

performed at this specific step. To accomplish this, the components for each progression are

chosen by utilising the priority relations.

Figure 2.7. Modelling and representation issues in ASP (Marian et al. 2003)

The guided search operator is an adjusted genetic operator intended to beat the combinatorial

blast by changing the combinatorial issue in a polynomial one (by producing and working just

with achievable sequences). GA has capacity and adaptability to deal with expansive scale

issues. The structure of the proposed GA depends on a great GA calculation (Gen and Cheng

1997) and consolidates the guided inquiry. Different methodologies (punishment, dismiss and

repairing methodology) were endeavoured by Marian et al. (1999a); Marian et al. (1999b);

Marian et al. (1999c) and ended up being successful just for assembly with a decreased

SOLUTION SPACE MODEL SPACE

CONSTRAINTS

PRECEDENCE RELATIONS

TABLE OF LIAISONS

ASSEMBLY TABLE

BOOLEAN RELATIONS

GRAPH OF LIAISONS

Vertices

Edges

MODEL OF PRODUCT

Components, operations,
Subassemblies, etc. (EMAS)

Connections, contacts
between components,

operations, subassemblies

PRODUCT

29

number of components (<10) and therefore the solution space was moderately restricted. After

crossover, the chromosomes were made an interpretation of solution space to be are assessed

utilising a fitness function based on pre-defined criteria for generating a suitable assembly

sequence. Once these assembly sequences have been assessed by weighting the fitness value

from which the one with the highest fitness value is chosen through a weighed roulette

calculation (Gen and Cheng 1997).

2.3. STATEMENT OF PROBLEMS

During assembly planning, it is always difficult to make the selection of an assembly sequence

due the presence of increasingly large and small parts coupled with minor variations in design.

This has an effect on the selection of required assembly choices (De Fazio and Whitney,

1987). The possibility of feasible solutions from traditional genetic algorithms becomes a

mirage due to the increase in complexity (Yu and Wang, 2013). In addition, the time spent

and huge costs incurred in the assembly of products, there are other problems that need

solutions and optimisation. There is a need for the reduction in the assembly planning cost

and time. Moreover, these go along with the computing time and cost which could be reduced

using optimised genetic algorithms (Ou and Xu, 2013).

2.4. RESEARCH GAPS

Tseng et al. (2010a) observed that the combinatorial sequence number increases with an

increasing number of components. This implies that a larger number of product components

may result in longer times taken during computation. As a result of the geometric complexity

of components, coupled with the precedence complexity that is characteristic of assembly

operations, it is not clear whether the time complexity can be exactly computed. The GA

method is preferred to other methods because it has a shorter computational time. Chang et

al. (2009) argue that one problem with ASP is that an increase in the number of components

30

implies that more constraints will occur during its assembly, which in turn makes the assembly

problem complex. Thus, researchers have worked with the objective of finding alternative and

suitable methods for getting feasible solutions in the solution space. These include the

traditional GA that uses the method of random searching. It was reported by Tseng et al.

(2010b) that the combinatorial sequence number is capable of increasing as the numbers of

components grow. An increase in components of the products leads to an increase in the time

used in the computation. In general, results show that the GA method has an advantage in

cases where the computational time is shorter. Even though the methods discussed can prove

useful in generating and evaluating useful sequences that have good solutions, a lot remains

to be done for managing complicated products that have many components. According to

Marian et al. (2006) there still exists a need to come up with a new methodology in order to

be able to withstand the extraordinary varied character of the ASPP in large scale because

real-life products have challenging constraints and sizes. To the best knowledge of the authors,

no assembly sequence planner has yet been developed that is capable of reliably solving and

optimising, as well as retaining the possibility of exploring various regions within the search

space, an assembly problem that has 25 elements. Previous attempts only seem to deal with

simplified problems whose components have been significantly reduced with search spaces

that are severely limited. Zeng et al. (2013) stated that the search space, which is associable

with assembly sequence planning, is usually proportional to both the component numbers and

their assembly relationships. It takes a long computation period in cases where the assembly

is complex. When the component numbers are above the set threshold, it is difficult to

accomplish assembly sequence planning.

According to Tseng (2006) the Genetic Algorithms have limited applications as a result of the

fact that the associated algorithms usually take exponential time as they run in relation to the

component numbers. When there are large numbers of components, the assembly product will

31

have more constraints leading to an increase in the complexity of the procedure that is utilized

in solving the assembly problem. According to the studies conducted previously, authors

suggested that large numbers of components result in more complex assembly. In this

research, product nature is among the main problems that face assembly sequences in

contemporary industries. In an attempt to find a solution to this challenge, this research groups

products into three disparate parts; complex products, very simple products, and simple

products. The aforementioned classification has been based on ease of assembly of products,

geometry of products and the time taken to complete the assembly process.

32

CHAPTER 3

GENETIC ALGORITHMS FOR THE OPTIMISATION OF ASSEMBLY

SEQUENCES

3.1. INTRODUCTION

GA is a search technique that can be used for solving the ASP issue. GA are a class of

universally useful search techniques joining coordinated and stochastic search. Genetic

Algorithms was created and presented by Holland in the 1960's and 1970's (Holland 1975)

and it was promoted by David Goldberg (1989). GA is an inquiry-based system with common

determination of “survival of the fittest” and therefore, GA is an Evolutionary Algorithm

(EA), which likewise incorporate evolutionary programming and evolution strategies.

GA was reported to be effectively applied in engineering design and planning (Gen and Cheng

1997, Falkenauer and Delchambre 1992, Karr and Freeman 1999), cell fabricating (Kazerooni

1997), machine learning (Goldberg 1989; Michalewicz 1992; Michalewicz 1994;

Michalewicz 1996), image processing (Pal and Wang 1996), robotics (Davidor 1991), Job

Shop Scheduling Problem (JSSP) (Cheng, Gen et al. 1999), graph matching (Krcmar and

Dhawan 1994).

Chang et al. (2009) stated that one of the problems in assembly sequence planning (ASP) is

that an increase in the number of components often leads to more constraints, which in turn

make the assembly process more complex. Ou and Xu (2013) adopted a matrix approach for

analysing the information derived from a CAD model to obtain the assembly sequence for a

two-stroke engine aiming to reduce both assembly time and cost. Rashid et al. (2011) provided

a review on ASP using the soft computing approach. Three popular soft computing algorithms

have been used in their studies, which are GA, ACOA (ant colony optimisation algorithms)

and PWOA (particle warm optimisation algorithms). Xing et al. (2012) proposed a crossover

particle swarm genetic algorithm (PSGA) to generate the optimised assembly sequence. They

33

compared the generated assembly sequence using a GA. Hongbo et al. (2006) developed a

genetic simulated annealing algorithm (GSAA) for solving an ASP optimisation problem.

Zhou W. et al. (2013) presented the imperialist competitive algorithm used for seeking an

optimal or near-optimal solution of an ASP.

3.1.1. Structure and method of GA

The general structure and method of GA (Gen and Cheng 1997), illustrated in Figure 3.1., can

be condensed as takes after:

- The search begins with an underlying random population of solutions (population-

based pursuit);

- Every person in the population is a chromosome and is a representation of an answer

of the issue;

- A chromosome is a series of images (twofold, whole number, and so forth);

- The chromosomes develop under determined determination runs through progressive

cycles – generations;

- Amid every generation, the chromosomes develop through crossover and additionally

transformation.

Crossover includes mating randomly shaped sets of chromosomes. The new chromosomes

came about because of crossover – offspring - hold a portion of the parents’ characteristics

(correspondence and data trade between parents characteristics).

Mutation includes changes inside a chromosome. The new chromosome comes about because

of the parent through a trade of qualities.

At this stage, another generation is shaped by selecting, as per the fitness value, a portion of

the parents and offspring and dismissing others, in order to keep population, measure

consistent. Fitter chromosomes have higher probabilities of being chosen. After various

34

generations, the calculation meets to a population of chromosomes, which, optimally,

represents to the optimal or close optimal answer for the issue.

Figure 3.1. General structure of Genetic Algorithms (Gen and Cheng 1997)

3.2. GENETIC ALGORITHMS AS AN OPTIMISATION TOOL

Hong and Cho (1999) applied the GA to generate the optimal solution for a robotic assembly

sequence aiming to minimise the assembly cost. Development of the GA used for assembly

sequence optimisation generally involves Three Steps: representation, generation, and

optimisation, as appeared in Figure 3.2. Representation can be categorised as two types:

implicit and explicit. Implicit representation refers to precedence between two mating

assembly parts, while explicit representation is involved in encoding possible assembly

35

sequences with constraints. In this study, a population of possible assembly sequences was

initially generated in a random manner. Such a generation refers to a creation of assembly

sequences allowing a little perturbation during the crossover stage. Within one generation, the

GA is able to select a subset of chromosomes (often two) from the current population, called

parents. These were used for mating to create a new chromosome called a child or offspring.

Optimisation is carried out by executing user-defined criteria to seek an optimal solution

among generated assembly sequences.

Figure 3.2. The steps of Genetic Algorithm approach

3.2.1. Termination of the GA Optimisation Process

Termination of the GA optimisation process occurs after the entire search space is completed.

The solution space is classified into families whereby a single family represented a single

valid assembly sequence (Senin 2000). A chromosome that contains a solution (i.e., parent

assembly sequence) is probabilistically selected based on an evaluation of fitness relating to

the current population. In particular, A chromosome with a higher fitness value has a greater

chance to be selected for mating with another chromosome with a higher fitness value to

produce a new chromosome. A genetic operator is subsequently applied leading to a new

generation of offspring of assembly sequence.

Generally, there are three types of operators, which have crossover, mutation and selection,

respectively, based on some forms of objective function known as a fitness function.

Crossover is used in this case as a process that carries out an exchange of parental genes to

Representation

Generation

Optimisation

36

create a new chromosome. Further, genetic diversity can be introduced into the chromosomes

of a population or family using crossover and mutation to generate a family of new

chromosomes, and the GA repeatedly compares the fitness value of one chromosome with

another until the optimal chromosome is formed. The use of GA to solve assembly sequence

optimisation problems often produces a population of infeasible solutions because of

optimisation problem constraints. Constraints in assembly have number of types, but the most

important are the absolute constraints and optimisation constraints. Absolute constraints (hard

constraints) as geometrical, precedence, accessibility is limiting the number of feasible

assembly sequences.

On the other hand, the optimisation condition (weak constraints) is differentiate the quality of

the assembly sequences (Sebaaly and Fujimoto 1996a) and (Jones et al. 1998). With respect

to the constrained optimisation problem, GA searches the feasible solutions that satisfy the

constraint conditions with the objective function over the entire genetic space. The solutions

that do not satisfy the constraint conditions are referred to as infeasible solution whose

encoding referred to as chromosomes (Zhang et al. 2014).

3.2.2. Evolutionary Algorithms

As one of Evolutionary Algorithms, GA have two conspicuous components:

- Population.

- There is communication and information exchange between individuals in a

population.

Other particular features of GA are (Goldberg 1989, Haupt and Haupt 1998, Marian, Luong

and Abhary 2003):

- GA work with a coding of parameter sets.

- GA utilise result (target work) data, not subordinates or other assistant knowledge;

37

- GA utilise probabilistic, not deterministic.

Thus of those features, GA have various real favourable advantages when contrasted with

other enhancement methods:

1- GA do not have much scientific necessities about the enhancement issues and, because

of their transformative nature:

- GA will look for solutions without regard to the precise internal working of

the problem.

- GA can deal with constraints for parallel PCs, where each processor can assess

a different capacity in the meantime.

- GA work in discrete, constant or blended search spaces.

2- The capability of evalution operators makes GA exceptionally successful at

implementing a probabilistic global search. An algorithm is appropriate in if it is

conceivable to achieve any state from some other state in a limited number of

iterations. Other conventional methodologies perform nearby pursuit by a combined

step-by-step strategy, which analyses values of nearby points and moves to the relative

optimal points. Global optima can be discovered just if the issue has certain convexity

properties that basically ensure that any nearby optimal is a global optimal.

3- GA offer an extraordinary adaptability to hybridise with domain dependent heuristics

to make an effective implementation for a particular issue.

4- Being population based:

- Altogether search from a wide inspecting of the search space;

- GA optimise parameters with to a great degree of complex cost surfaces and

can skip local optima;

- Provide a number of optimal solutions not only one solution.

38

GA can bargain effectively with an extensive variety of issue ranges, including those which

are hard to comprehend with different strategies (Kazerooni 1997).

3.3. GENETIC ALGORITHMS AND COMBINATORIAL PROBLEMS

Finite problems are dealt by combinatorial optimisation, although there are often vast number

of solutions (Gen and Cheng 1997). Everyday such issues abound, particularly in engineering:

the knapsack, quadratic 0-1 integer programming, machine scheduling, vehicle routing,

travelling salesman problem and so on. Combinatorial explosion (CE) is the most challenging

aspect in combinatorial optimisation. The quantity of answers for a combinatorial issue is

normally a component of the factorial or exponential of the quantity of components of the

issue. For combinatorial problems the robustness of the algorithm becomes paramount.

3.4. GENETIC OPERATORS

A straightforward GA represents solutions utilising string of bits (0-1) that may encode whole

numbers, genuine numbers, sets, and so forth. This all-inclusive representation has the upside

of utilising a uniform solution of basic operators and streamlines the examination of GA

properties hypothetically. Nevertheless, bitwise operators are regularly improper for generally

issues. Today, most useful GA frameworks utilise issue particular representations (integers to

represent whole integers, character strings to represent sets, etc.), and modified genetic

operators for those representations (Kazerooni 1997).

This section quickly and thoughtfully reviews the operators that make a genetic algorithm and

find out related issues that are to be considered preceding outline those operations (see Figures

3.1., and 3.2.):

1- Meaning of an underlying generation of chromosomes (Chromosomes generation). It

is critical to note that:

- A representation for chromosomes;

39

- A structure to represent imperatives must be created earlier.

2- Advancement of the parent generation of chromosomes through mating (crossover

operator)

3.4.1. Chromosome Representation

A chromosome represents a solution of the issue, and it is a string of genes that can be coded.

The double strings utilised by Holland, despite the fact that they require exceptionally

straightforward genetic operator, are less reasonable for most complex applications,

particularly for issues from engineering world (Gen and Cheng 1997).The optimal

representation for an issue is pointless if it cannot be produced or are excessively

unpredictable. Because ASP is a combinatorial issue accordingly, a non-string representation

is looked for. Three basic issues rise while considering non-string approaches for the mapping

amongst solutions and chromosomes:

- The legality of a chromosome: whether a chromosome represents to an answer for a given

issue. As illustrated in Figures 3.3and 3.4, respectively, the wrongdoing of chromosomes

begins from the way of encoding strategies. For some combinatorial issues, an illicit

chromosome cannot be decoded to a solution (regardless of the possibility that incomplete

chromosomes may relate to fractional solutions), and, thusly, it cannot be assessed.

Accordingly, punishment techniques cannot be or are hard to be connected for this

situation. For the most part, repair systems are connected for infeasible and unlawful

chromosomes.

40

Figure 3.3. Coding space and solution space (Gen and Cheng 1997)

Figure 3.4. Feasibility and legality (Gen and Cheng 1997)

- The plausibility of a chromosome: Whether an answer decoded from a chromosome lies

in the attainable district of a given issue. The infeasibility of the chromosome starts from

the way of the obliged advancement issue. All GA must have the capacity to deal with

 Solution Space

 EVALUATION
&

 SELECTION

Coding Space

 GENETIC OPERATIONS

ENCODING

 Solution Space

Coding Space

Feasible Area

Feasible one

41

constraints. For the most part, penalty approaches are utilised to drive the genetic search

to approach the optimal from both feasible and infeasible areas.

- The uniqueness of mapping: the mapping from chromosomes to solutions (decoding) may

have a place with one of the accompanying three cases:

• 1-to-1 mapping.

• n-to-1 mapping.

• 1-to-n mapping, as appeared in Figure 3.5.

The 1-to-1 mapping guarantees a bi-special correspondence between a chromosome and an

answer. The other two mappings require supplementary operators to segregate between the

helpful solutions and chromosomes.

Figure 3.5. The mapping from chromosomes to solutions (Gen and Cheng 1997)

A decent representation of solutions into chromosomes for solving the ASP issue requires the

accompanying qualities:

 Solution Space

Coding Space

1-to-n mapping

n -to-1 mapping

1-to-1 mapping

42

- Be conservative, basic and instinctive: the GA infers an iterative procedure in an inquiry

space that is of combinatorial size. The span of the space requires a minimal representation

of answers for chromosomes to empower the capacity and control of populations of

chromosomes in today's computers in a sensible time.

- Be a 1-to-1 mapping: this property keeps away from the need for supplementary

calculations that need to segregate amongst great and parasite solutions/chromosomes

amid the encoding/translating process.

- Enable the coding of all important and helpful assembly plans to the level of detail

required by reasonable applications.

3.4.2. Constraints

The constraints that depict the ASP are of differing nature and source and different effects on

the optimisation procedure. The constraints are detailed in Section 3.5. In the present work,

the genetic operators are custom fitted to tackle the ASP issue and the limitations are intensely

utilise d as a part of the generation of chromosomes and in the crossover operator.

A representation structure for limitations must be produced to make the important requirement

accessible when required. This structure needs to empower the encoding of important

constraints to be straightforward and instinctive.

3.4.3. Fitness function

The fitness estimation of a person in the population is a measure of the nature of that person.

The fitness capacity is connected in the solution space to an answer. A fitness value f (i) is

assigned to every individual element i in the population. In this proposition, a high fitness

value means solid match. The purpose behind this in characterising the fitness is that the GA

just needs an estimation of the fitness allocated to every person, not the way this value changes

from a person to its neighbour or how it is characterised/acquired.

43

3.4.4. Chromosome generation

In established GA with double strings encoding, the chromosomes are produced randomly. In

combinatorial issues, the generation of the chromosome needs to consider the way the

solutions are characterised. The random key representation allows the random generation of

a chromosome to decipher the solution. The generation of chromosomes by utilising the

random key representation is impossible for the ASP issue. This is because of a number of

supplementary limitations (Marian, Luong and Abhary 2003).

3.4.5. Crossover

Crossover is the main genetic operator. Thoughtfully, its input is a couple of randomly chosen

parent chromosomes and the output is a couple of offspring chromosomes that join the couple'

features. The crossover swaps a part of the couple' genetic data to create the new offspring

(Holland 1975, Marian et al. 2000b).

As illustrated in Figure 3.6., two parent chromosomes P1 and P2 if the crossover point is

between loci 6 and 7, the end bits are swapped. The result of this operation is a solution of

two offspring chromosomes, C1 and C2.

This straightforward crossover is appropriate for paired strings, for this situation a1...a10 and

b1...b10 have the qualities 0 or 1. Be that as it may, when combinatorial issues are included,

integer representations are utilised, and the issues are constrained. Various crossover operators

have been created for combinatorial enhancement: PMX (Partial-Mapped Crossover), OX

(Order Crossover), CX (Cycle Crossover), and position-based crossover, order-based

crossover, heuristic crossover, et cetera. They are not suitable for the AS problem because of

its degree of constraint.

44

Figure 3.6. A case of crossover operator

3.4.6. Mutation

Mutation is a foundation operator which produces unconstrained irregular changes in

chromosomes. In GA, mutation serves the part of either:

- Changing the genes lost from the population through the selection procedure so they can

be attempted in another specific circumstance, or

- Giving the genes that were not present in the initial population.

A straightforward approach to create a mutation is to modify at least one genes (Gen and

Cheng 1997).

3.4.7. Evaluation

Every individual of the population is assessed by utilising the fitness function the selection

procedure. To assess a chromosome, it must be decoded back to the assembly sequence. The

assessment relies on upon how the fitness function is characterised.

3.4.8. Selection

The guideline behind genetic algorithms is basically Darwinian natural selection. The

selection in GA is an artificial version of natural selection and it leads a GA towards likely in

the search space. Selection gives the main impetus in a GA, and the selection pressure is

PARENTS

P1= (a1 a2 a3 a4 a5 a6 a7 a8 a9 a10)

P2= (b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

Crossover Point

OFFSPRING

C1= (a1 a2 a3 a4 a5 a6 b7 b8 b9 b10)

C2= (b1 b2 b3 b4 b5 b6 a7 a8 a9 a10)

45

critical in it. At outrageous, if the selection pressure is very high, the pursuit will end rashly.

At the other extraordinary, a low selection pressure indicates a slower than needed progress

(Gen and Cheng 1997).

Three essential issues are included in the choice stage:

• Sampling space: selection may make another population for the following generation

in view of either part of parents and offspring or all of them. The regular sampling

space contains all offspring however simply part of the parents (Figure 3.7.) and

different replacement techniques to abstain from offspring of lower quality than

parents to be methodically selected (Holland 1975) were designed. When utilising an

enlarged sampling space (as shown in Figure 3.8.), both parents and offspring have a

similar possibility of going after survival. In addition, the expanded sampling space

allows the utilisation of a high rate of randomness presented by the crossover and

mutation. To maintain a strategic distance from an untimely merging the selection

utilised for solving the ASP issue depends on the expanded sampling space.

Figure 3.7. Selection performed on regular sampling space (Gen and Cheng 1997)

Population New population

Crossover

Selection

46

• Selection probability: concerns how to decide selection probability for every

chromosome. Scaling and positioning mechanisms are utilised in order to keep up a

sensible differential between relative fitness evaluations of chromosomes and to avert

as well fast takeover by some super chromosomes. A static scaling is utilised as a part

of the GA created for the ASP.

• Sampling mechanism: concerns how to choose chromosomes from sampling space.

Three fundamental mechanisms are accustomed to sampling chromosomes:

a) Stochastic sampling.

b) Deterministic sampling.

c) Mixed sampling.

The sampling system is utilised as a part of this theory is the stochastic sampling, related with

the Holland's proportionate choice or roulette wheel choice. The selection probability for

every chromosome is proportionate to its fitness value: a chromosome with fitness value fi

and with average fitness value of the population fm is assigned fi/fm offspring. A string with a

fitness value higher than the normal has a superior possibility of an offspring, while a string

with a fitness value less than average has a lower opportunity to allow in the next generation.

The proportionate selection assigns fractional number of offspring to strings.

47

Figure 3.8. Selection performed on enlarged sampling space (Gen and Cheng 1997)

The weighed roulette shown below is a graphical representation as shown Figure 3.9. Every

string is assigned an area of 2π fi/fm. A string is assigned a posterity if a randomly produced

number in the range 0 to 2π falls in the division relating to the string. The calculation rehashes

the portion of posterity until all the cutting edge is made (Kazerooni 1997).

Parents New population
Crossover

S
electio

n

Offspring

48

Figure 3.9. Simple reproduction allocates offspring strings using a roulette wheel

(Kazerooni 1997)

3.5. CONSTRAINTS IN ASSEMBLY

When attempting to solve the ASP problem constraints are essential. Erroneous approaches

and, consequently, erroneous or incomplete results are brought up by any attempt to

artificially simplify the problem by, sometimes, even partially ignoring constraints that are

meaningful and important. This section will concisely present the concept of constraints,

categories of constraints and their effect on the assembly process.

Constraints are relations in aspects of a product. The increase of the infeasible portion of the

search space and the number of feasible solutions are limited by constraints. The search area

which have more complex geometric shape yet often will become discontinuous and/or no

longer convex. Consequently, the infeasible solutions are likely to be generated by the

standard genetic operators, probably wasting the computational effort of the GA (Kowalczyk

1997).

49

Constraint can be illustrated in an example as in Figure 3.10. It shows an assembly of a ball

pen product. The components are: c1-cap, c2-head, c3- tube, c4-ink (fluid), c5-body, then c6-

button.

Let us consider the assembly plan is SLMC (Sequential, Linear, Monotone, and Coherent)

then up to expectation c2 and c3 then c4 are to be assembled before c5.

Starting with c2 and, both components have to assembled together before c4 (ink). There is,

consequently, a priority relation between those three components: c2, c3 and c4. On the other

hand, starting assembly together with c1 is also impossible. c1(assembly 1) is in contact only

with c5 the tube. Assembling c1 with c5 precludes the access because of c2, c3 and c4. As a

result, c1-c5 can be done only after c5, c2, c3 and c4 were assembled (coherence condition).

If the first component to be assembled is c3, the next cannot be c1, c5 and c6, as there is no

connection between them.

Figure 3.10. The ball pen assembly components (Fawaz and Qian 2017)

As the constraints above the assembly process may possibly start with c2, followed by c3,

then the ink c4 is squeezed, the body c5 and then the button c6 to be inserted, and the cap

concludes the assembly. Thus, assembly sequence is: c2, c3, c4, c5, c6, c1 Another feasible

assembly sequence is c2, c3, c4, c5, c1, c6, which requires two changes in the assembly

direction: c1 to c5 and c6 after c5.

50

From the above observations, conclusions can be drawn:

- There are a wide variety on constraints as this routinely leads to infeasible assembly

sequences. Those constraints are acknowledged namely absolute or difficult

constraints (Sebaaly and Fujimoto 1996c, Jones et al. 1998).

- Absolute constraints depend on accessibility over parts, and the assembly system used.

3.5.1. Absolute Constraints

Absolute constraints had been labelled into exceptional classes by a range of authors. Jones

and Wilson (1996) and Jones at al. (1998) surveyed that associated constraints are categorized

in accordance attributes:

1. Obligation: Constraints are absolute, both requiring (REQ) and prohibiting (PRH)

certain services about assembly plans. Quality measures both maximise (MAX) then

minimise (MIN) a scalar function.

2. Scope: The scope is concerned with a standard in conformity with the diagram on the

assembly plan.

3. Information required: The relevant information need to be supplied to a standard for

calculation at any given time. Some criteria want an entire plan to calculate, others

require only provincial data – single assembly states or actions.

Internal constraints result from the geometry of the assembly components while external

constraints emerge if the chosen plan should be completed in a robot assembly cell. (e.g.

constraints prompted by way of the gravitational force, applied gripper, and many others.).

The internal constraints taken into consideration are local geometrical feasibility, which

defines the reparability of the involved subassemblies components, and global geometrical

feasibility, derived in dexterity.

51

External constraints derived in grasp ability of the target component, task compatibility, grasp

ability of the energetic subassembly, and assembly stability.

3.5.2. Handling Constraints in Genetic Algorithms

In this section and followed sub-sections will briefly explain optimisation constraints only

during using GA, and these constraints are different of assembly sequence constraints of sloid

components as shown in Figure 3.10. When using of GA to solve an optimisation issue under

constraints, classic operators often yield infeasible offspring. This trouble turns into a scenario

where the opportunity to reap a feasible assembly sequence via random generation of the

assembly sequence is reduced rapidly as the number of components increase. This implies

that genetic operator can probably produce an illegal offspring. Some strategies must be

utilised to decrease the number of operations that required to be done within the genetic

operators and simultaneously to keep the stochastic character of the GA. These strategies are

rejecting, repairing and penalty.

3.5.2.1. Rejecting strategy

The Rejecting approach is a famous approach in GA. It discards all infeasible chromosomes

generated at some point of the evolutionary manner. The approach may go reasonably

properly when the feasible area is convex and constitutes a reasonable part of the whole seek

space (Gen and Cheng 1997). In ASP, the search space is not always convex, viable solutions

are scattered among non-feasible ones, and the ratio between feasible and infeasible solutions

is extremely decreased, of the order of up to 10-18 for a 25 components product (Gen M. and

Cheng R. 1996, Marian et al. 2003, Marian et al. 2006).

As a result, the utility of this approach is to maximise the chance to discard all infeasible

chromosomes to be restricted to landscapes with populations of unrealistic dimensions. Using

the reject approach become useful in an early level of the research, which is especially

52

beneficial for products exceeding 6-10 components (relying at the degree of connectivity

among components).

3.5.2.2. Repairing strategy

The repairing strategy implies beginning with an infeasible chromosome and generating a

feasible one out of it through a repairing process. The repairing method depends on the life of

a deterministic restore process to transform an infeasible offspring right into a feasible one.

The repairing approach is problem-dependent, and a specific repair algorithm must be evolved

for every trouble. For some troubles the repairing technique is as complex as fixing the unique

trouble.

The ASP is one of these problems and a repairing strategy to be carried out could be extremely

complex. Because of the opportunity that any gene may be very likely to make a chromosome

illegal or infeasible, the repairing method might have to be carried out again and again for

each chromosome. There are also valid questions of what to do in a specific case: observe the

repair strategy for a gene or for a group of genes, and in this example for what number of.

Any solution has to be taken into consideration and tested, and the behavior and overall

performance of a restore set of rules would be affected by the nature of the product and the

scale of the problem.

The usage of a repairing approach may be considered at an earlier level of the research.

Because of the severe collateral troubles implied and emerging while the approach turned into

to be advanced, and due to the complexity of those troubles, this course became deserted.

3.5.2.3. Penalty Strategy

The penalty method from the rejecting and repairing techniques, which only consider points

within the feasible areas. For vastly constrained problems infeasible areas take an incredibly

important portion of the legal solutions and constraint management techniques that allow

53

movements through infeasible areas of the quest space may also produce most fulfilling

outcomes faster.

The penalty method, in essence, transforms a limited trouble into an unconstrained one by

penalizing infeasible solutions. The penalty term is brought to the objective function for any

violation of the constraints. Basically, penalty is a feature of the distance from the feasibility

area to the chromosome. The principal situation is how to determine the penalty time period

if you want to strike a balance among the information preservation (retaining a few infeasible

solutions) and the selective stress (rejecting some possible solutions) and void each

underneath-penalty and over-penalty.

The problem of using the penalty method for the ASP is the impossibility to correctly define

a penalty time period or function. In ASP, viable solutions are generally grouped in small

clusters amongst the infeasible ones. It is, consequently, hard to define a penalty term that

would discriminate between infeasible solutions.

This approach works with possible chromosomes with the aid of using custom-tailor-made

genetic operators. Thus, this strategy is a whole lot greater reliable than another GA based

totally on the penalty method (Michalewicz 1994). These methods of genetic algorithms are

subjective on the amount of realization of the issue; well-known issues often have better, more

unique approaches.

3.6. THE IDEA OF USING GA FOR SOLVING AS

GA is an optimisation method for solving assembly sequence optimisation problems due to

its ability to offer a flexible way of defining constraints (Whitley 2014).

This research considers the idea of GA and their utilization to solve the AS problem.

Specifically, it focuses on:

- a review of GA and explanation of their use to solve combinatorial issues of the AS;

54

- an investigation of different GA strategies and operators, evaluation and justification

of their appropriateness and why they have been selected for solving the AS issues;

- types of constraints experienced in solving the AS problem and their impact on the

search space;

- procedures to deal with constraints and the need to design a specific GA to solve the

AS problem.

Genetic algorithms are appropriate to solve the AS problem. GA were selected in this research

to solve the AS problem based on their classifications (Section3.2.), and especially because:

- they can simply deal with substantial search spaces;

- they are flexible in defining the constraints and arise them in a fitness function. This

is mainly useful for AS where a quality function is hard to define;

- they are eligible algorithms to reach from a current solution in the search space to any

further solution.

55

CHAPTER 4

THE REPRESENTATION OF ASSEMBLY SEQUENCES AS

CHROMOSOMES

4.1. INTRODUCTION

The main aim of modeling assembly is to facilitate in developing a framework capable of

representing and encoding any possible solution of the ASP difficulty as a chromosome.

However, In GA, a chromosome can be used to represent an assembly plan that can be

coherent or non-coherent, sequential or non-sequential, monotone or non-monotone and linear

or non-linear. In addition to it, the likelihood to encode mechanisms with variable geometry

and/or volume can be taken under consideration. Hence, the subsequent chromosomes should

have a format that can be considered directly by the Genetic Operators.

Due to the presence of unexpected variety of possibilities observed in assembly, the issue is

required to be analysed in detail, modelled and structured, so that all the required aspects of

an assembly plan can be apprehended. Because of this reason, a modest representation of

assembly sequences as chromosomes is required to be completed with relatively prior,

extensive and modelling activity.

Preferably, it has been observed that for extensive search spaces, specifically for

combinatorial issues, there needs to be a bi-unique mapping among the present entities within

the spaces. On the other hand, the effective and influencing solution to a problem should

present a sound and detailed demonstrations for problem states and transformations from one

state to another for goal achievements. Hence, the identification of a problem has a

considerable impact on the efforts required to find the solution (Nilsson 1980).

A good demonstration for combinatorial issues is required to have a little or at least

controllable state space, which is not simple and easy for combinatorial issues as shown in

56

Chapter 3. Therefore, it is always important to focus on the respective stage that main obstacle

in developing efficient algorithms to solve the AS optimisation problem for assembly.

4.1.1. Representation and modelling problems

It has been observed that there are two main representation and modelling problems linked

with optimisation of AS with the use of GA: modelling of assembly sequences (indicated as

chromosomes) and product modelling for assembly. Moreover, additional information is also

important in the overall procedure of generating potential assembly sequence along with

restrictions in assembly as priority relations.

Furthermore, it has also been observed that two models and the associated representations are

interlinked, even though they are different issues but are interrelated closely. A feasible

assembly plan identified as a chromosome is a sequence that satisfies all assembly constraints

involved in assembly (indicated as precedence relations). However, the two indications are

not completely separated as presented in the literature. There are several representations

which are used in the planning of assembly in terms of (explicit representations) to be encoded

as both assembly constraints and assembly sequences. Moreover, it has been found from the

literature that there are several types of assembly plans (see Section 1.3. and Appendix 1). By

taking into consideration in terms of the identification of assembly sequences, the assembly

plans can be distributed in both sequential and non-sequential assembly plans. On the other

hand, an assembly plan can also consist of a non-sequential aspect which may restrict the

entire scope of the issues of ASP.

This chapter is structured as follows: the following section provides an overview of the state

of the art in the representations used in assembly sequence planning, for both the constraints

and assembly sequences. Then the representation and modeling of assembly sequences is

indicated for SLMC sequences. The last sections simplify this representation for non-SLMC

sequences are trying to integrate any identified assembly plan/sequence.

57

4.2. ASSEMBLY SEQUENCE PLANNING AND OPTIMISATION

It has been observed that a product may have a number of potential assembly sequences, and

combinatorial explosions can intensify greatly with components involved. However, it is not

possible to identify each sequence. Therefore, it is important to develop an efficient and

systematic process to the possible solutions in an effort to select the best and effective solution

based on the resources available.

4.2.1. Assembly for products

Conducted by Ben-Arieh (1994a) and Choi et al. (1998), there are three main categories to

depict assembly for products: language-based approach, graph-based approach, and advanced

data structure approach:

Language-based approach - Language- based approach refers to part assembly description

language mainly oriented towards identifying the parts including the assembly and the

necessary assembly operations. For example, the assembly is described by both its physical

and geometric properties. The assembly instructions may be divided into three types: tools

statement, state change instructions and fastener statements.

Graph-based approach - graph based approach is used for extended assembly analysis for

more in-depth derivation of information with a focus on the assembly process and little on the

properties of the components or assembly operations. In addition to it, the graph-based

approach is based on informative of such as CAD-database or information specified by user.

There are several graph based approaches: directed graphs AND/OR graphs (Homem de

Mello and Sanderson 1990c), and connectivity graphs (Shpitalni et al. 1989), Petri Nets

(Thomas et al. 1996), and hierarchical partial order graphs (Shin et al. 1995, Lee 1994), liaison

diagrams (De Fazio and Whitney 1987), precedence diagrams, assembly constraint graphs

(Wolter 1988 and Wolter 1990a) and interference graphs (DeFloriani and Nagy 1991).

58

Advanced Data Structure approach - Advanced data structure approach utilises designed

data structure in an effort to capture a detailed assembly data using a hierarchical data

structure. This sums up the geometric and topological information considering the

connections that lead to generate the complete assembly.

4.2.2. Assembly Plans

This section presents several different descriptions and definitions that are available for

assembly plans and certainly implied on different representations of the resulting assembly

plans. The definitions determine the system and the method of presenting the assembly plans

and the representations consists precedence relations among assembly operations. They are

demonstrated using the example presented in Figure 4.1. and Figure 4.2. Understanding the

system of assembly plans and all presented figures in all sections will play a key role in

determing and solving the assembly sequence problem of the research case studies (see

Chapter 6).

Assembly plans are to gain feasible assembly sequences and assembly operations. Figure 4.1

shows a four-part assembly (A) and a graph of liaisons (B). It demonstrates an assembly

sequence as C - Cap, S - Stick, R - Receptacle and H – Handle:

Figure 4.1. A four-part assembly (A) and a graph of liaisons (B) (Homem de Mello and

Sanderson 1990, Homem de Mello and Sanderson 1991a, Homem de Mello and Sanderson

1991b)

C1

C2 C4 C3

C5
Cap Stick Receptacl

e

Handle

Cap Stick

Receptacle Handle

A B

59

A State Sequence- consider an assembly plan as an entire sequence of join operations, each

of which is combined in two specific assemblies as demonstrated in the Figure 4.2A.

Assembly states (concerning about monotone plans) are to be identified by the partition of the

specific part set combining sets of parts that are assembled already. For the assembly of four

parts, as an example, the basic state would be {{C}, {S}, {R}, and {H}}, and therefore the

final position will be {{C S R H}}, along with all the parts leading towards one assembly.

Moreover, the assembly plan can be indicated as a sequence of such states in which each

operation is combined with two partial assembles into one (n-1 operations). The state

sequence indicates the operation sequencing in parallel sub-assemblies.

A Partial Assembly Tree- considers an assembly plan as a recursive decomposition of the

assembly into two main subsets that continues until the entire parts have been separated as

demonstrated in the Figure 4.2B. Each node indicates a partial plan of the assembly. The root

node of the tree indicates the entire assembly and the leaves represent single parts, where each

node leads to two children that indicates the two sub-assemblies and the components that are

combined together to construct the product/assembly demonstrated by the node.

 A Sub-Assembly Tree- takes into consideration an assembly plan with regards to a sequence

of operations which eventually leads to insert subassemblies or parts into a base part of a

fixture as exhibited in the Figure 4.2C. In a sub-assembly tree, each node leads to a sub-

assembly where each lead to a part. Moreover, the children of a sub-assembly node include

all the subassemblies and parts that are inserted with the subassembly, in the respective order

within which they are inserted.

60

(C S R H)

(C S) (R H)

(C) (S) (R) (H)

A. (a formal sequence) B. (a partial assembly tree)

(C S R H)

 (C S) (R H)

 (C) (S) (R) (H)

 C. (a subassembly tree)

Figure 4.2. A plan for structure the four-part assembly (shown in Figure 4.1.) (Wolter

1991, Golabi 1996))

Wolter (1991) conducted a study that grouped the approaches considering the identification

of sets of assembly plans in:

- Constraints Based Representations- that leads to identify each and every details that

cannot be done, for example part A cannot be considered as being mate to part B after

parts B and C are already mated;

- Enumerative Representations that indicated every minute details that can be possible,

for example the assembly {A, B, C} can be constructed from the partial assemblies

{A, B} and {C} or fom the {A, C} and {B} or from {A} and {B, C}.

From the understanding of the entire process, it is observed that constraints-based

representations grow smaller and enumerative representations grow larger. However, some of

the systems considered in optimising and solving the ASP issues operate completely with

((C) (S) {R) (H))

((C) {S) (R H))

 ((C S) (R H))

 ((C S R H))

61

constraint-based representations (Wolter 1988), while some undertakes with enumerative

indications (Homem de Mello and Sanderson 1989), and few other systems undertakes both

the representations at the same time. However, the study conducted by the researcher’s

grouped representations of mechanical assembly sequence in both implicit and explicit

(Homem de Mello and Sanderson, 1991a, Homem de Mello and Sanderson 1991b). The next

two sections review critically and analysis in detail the present representations that are

grouped in two characteristics, such as implicit and explicit representations. However, the

particular constraints and qualities are indicated.

4.2.3. Explicit Representations in Assembly Planning

Explicit representation leads to a direct mapping referring to the assembly tasks of

components. An integrated form of state sequence was developed by Bourjault (1984)

indicating as a tree. Figure 4.3. demonstrate the Bourjault’s representation state of sequences.

The root node indicates the unassembled and initial state. The nodes on the other hand indicate

the established links and the edges demonstrate the transformation from ones stated to another

state from rank n to n+1 or assembly. However, any path originating from a root and leading

to leaf node points towards a feasible assembly sequence.

62

Figure 4.3. Bourjault’s representation of all assembly sequences (Golabi 1996)

The directed graph was initially suggested by De Fazio and Whitney (1987), in an effort to

explicitly indicate the assembly sequence. Provided with an assembly whose connection graph

is (P, C)- in which P refers to the set of nodes and C points towards the set of edges. A directed

graph can be taken under consideration to indicate the set of all the possible assembly

sequences (Homem de Mello and Sanderson 1991a, Homem de Mello and Sanderson 1991b).

Figure 4.4. leads to stable state partitions of the set P. The edges representing in the directed

graphs are reflected as ordered pair of nodes leading to feasible state transformations.

{{CR} {SH}} {{C} {SRH}}

{C S R H} {C S R H} {C S R H} {C S R H} {C S R H} {C S R H} {C S R H} {C S R H} {C S R H}

{{H} {CSR}}

{{C} {S} {R} {H}}

{{R} {H} {CS}} {{C} {H} {SR}} {{S} {H} {CR}} {{C} {S} {R H}} {{C} {R} {S H}}

{{H} {RSC}} {{R H} {CS}} {{C} {SRH}} {{H} {CSR}} {{C} {SRH}} {{CS} {RH}}

63

Figure 4.4. Directed graph of feasible assembly sequences using parts (for the assembly

shown in Figure 4.1.) (Golabi 1996)

Furthermore, a path represented in the directed graph concerning feasible assembly sequences

starting from the first node {{C} {S} {R} {H}} towards the terminal node {{C S R H}}

leadings to a feasible assembly sequence. In the same way, Figure 4.5 illustrates the direct

graph of feasible assembly sequences in relation to the product shown in Figure 4.1. The state

of assembly indicates identified connections and each connection is identified by a black

rectangle. Edges join every state to all the states that are reachable from it.

{{C} {S} {R} {H}}

{{C R} {S} {H}} {{C S} {R} {H}} {{C} {S R} {H}} {{C} {S} {R H}} {{C} {R} {S H}}

{{C S R} {H}} {{C R H} {S}} {{C R} {S H}} {{C S H} {R}} {{C S} {R H}}

{C S R H}

{{C} {S R H}}

64

Figure 4.5. Directed graph of feasible assembly sequences using liaisons (for the assembly

shown in Figure 4.1.) (Arthur et al. 1990)

AND/OR graphs are possibly the most widely used in representing the assembly sequences in

an explicit manner (Homem de Mello 1989, Homem de Mello and Sanderson 1990, Homem

de Mello and Sanderson 1991a, Homem de Mello and Sanderson 1991b). The nodes in the

AND/OR graph as indicated in the Figure 4.6. are linked with the subsets of parts that lead to

a stable subassembly. Nevertheless, the root node (node 1, Figure 4.6.) is linked with the group

of parts that leads to the entire assembly. Among the four hyper-arcs, each of them

corresponds to a particular way within which the entire assembly be taken apart and points

towards the two nodes that are linked with the sets of parts that explains the subsequent

subassemblies. In the same way, the remaining nodes in the graph leave a hyper-arc for every

possible way through which their subsequent subassembly can be taken into parts. Path in the

AND/OR graph {{C S R H}} as its initial node and {C}, {S}, {R}, {H} as terminal nodes are

a feasible assembly tree of that specific assembly. An assembly tree consists of partial order

within its hyper-arcs: where hyper-arc hi is considered to be preceding hyper-arc hj, if there is

a node nk in the assembly tree considering the fact that hi is incident from nk and hj is incident

65

to nk. Furthermore, it is observed that one sequence of the hyper-arc from an assembly tree is

persistent with this fractional order. Moreover, each sequence of the hyper-arcs which is

persistent with the fractional order leads to a potential assembly sequence as mentioned in the

study by Homem de Mello and Sanderson (1991a). On the other hand, any stable subassembly

that is linked can be made up of the components that are found to be only once in the AND/OR

graph, even at the stage where it is found to be an outcome of different disassembly operations.

AND/OR the graphical representations are the main foundations for other derived and related

representations.

Figure 4.6. AND/OR graph of assembly sequences of Figure 4.1. using AND/OR graph

(Homem de Mello and Sanderson 1990, Homem de Mello and Sanderson 1991a, Homem de

Mello and Sanderson 1991b)

Gottipolu and Ghosh (1997) developed an Assembly Sequence Graph (ASG), which is found

to be an explicit graph representation linked to the AND/OR graphs and the Liaison Sequence

Graphs (LSG), in an effort to sustain the benefits of the schemes. However, the nodes in the

66

ASG are considered to be the subsets of the parts set P that categorises the possible

subassemblies. Thus, each node leads to a subassembly. Moreover, the nodes are indicated

by the boxes where each box represents N cells leading to the N parts in the assembly. In

addition to it, the blank cell entails that the leading part is not directly assembled whereas a

marked (hatched) cell signifies that the leading part is already been assembled. At the top,

which is the first level, there are N boxes in which each box represents one marked cell

indicating all the individual parts of the assembly within an unassembled state, Figure 4.7.,

for the product in Figure 4.1.

The disadvantage of AND/OR graph that it cannot represent all feasible assembly sequences

for real size problem, hence, the method is restricted to reduced size or heavily constrained

issues. For instance, through this research case studies, AND/OR graph cannot be used for the

first case study (engine pump valve) due to number of components, while in the second case

study (ball pen) AND/OR graph is possible to be used (see Chapter 6).

Figure 4.7. Assembly sequences graph (ASG) from Figure 4.1. (Marian, Luong and

Abhary 2003)

67

At the bottom box, it represents the entire assembly. At level L, the box includes all the “L”

marked cells, i.e. level L consists of all the subassemblies containing L components. The lines

linked to the boxes indicate all the feasible assembly state transformations- assembly tasks.

One assembly task links to two subassemblies holds two arcs corresponding to the subsequent

subassemblies, one from every constituent subassembly. The pair of arcs can be stated as a

hyperarcs leading to an assembly task. The hyper-arcs within the ASG can be linked with the

weight elements for instance assembly task time, degree of difficulty of assembly functions,

assembly costs and subassembly stability etc. The weighted ASG can be utilised for the

assessment of assembly plans (Gottipolu and Ghosh 1997). A mutual disadvantage of explicit

representations is their size. Even though the most compact of representations, the AND/OR

graph has among n*(n+1)/n and 2n -1 nodes based on the level and degree of connectivity to

be identified, stored and linked. They linked to 120 to 32767 nodes for a 15-part assembly,

correspondingly 205 to 1048575 for a 20-part assembly that turns to be difficult or incredible

to store and manage. Considering assemblies with huge number of parts, the AND/OR graph

is quite large. In such cases, parts can be clustered hierarchically into subassemblies.

However, affectedly clustering parts, the size of the AND/OR graphs would be reduced.

According to Homem de Mello and Sanderson (1990) it would not be considered all the

divergent ways within which the parts in clusters could be assembled.

4.2.4. Implicit Representations in Assembly Planning

The implicit identifications include a combination of conditions that needs to content by the

assembly sequences. According to Homem de Mello and Sanderson (1991a) (1991b) that if

the states of the assembly process are indicated by L-dimensional binary vectors, then a

combination of logical expressions can be utilised to encode the directed graph of possible

assembly sequences.

If i= {x1 , x2 ,..., xKi }represents the sets of states due to which the i-th connection can be

68

recognised without impeding the completion of the assembly, the identified condition for the

i-th connection is found to be the logical function:

() (, , ,...,)
1 2 3

1 1

LK
F x F x x x x kl
i i L

k i

= =  
= =

 (4.1)

where the product and the sum are the logical operations AND/OR respectively, L is found

to be the number of liaisons in the liaisons graph and kl is either the symbol xl if the l-th

element of kx is true (T) or the symbol xl if the l - th component of
lx is false (F).

()i kF x T= only if
kx is an element of i (4.2)

Any assembly sequence that is represented as an ordered sequence of state is (x1 , x2 ,..., xN)

and whose identification as an ordered sequence o subsets of connections is (1, 2, …, N – 1)

is possible if it is such that if the i-th connection is identified in the k-th task (i.e. ci  k),

then
()i kF x T=

.

Therefore, the set of establishment conditions is a correct and complete representation of

assembly sequences (Marian et al. 2003). The establishment conditions obtained from the

AND/OR graph for the assembly shown in Figure 4.1. are:

69

()
1 1 2 3 4 5 1 2 3 4 5

F x x x x x x x x x x x= +

 A)
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

51 2 3 4 1 2 3 4

x x x x x x x x x+ +

()
5 52 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +

 B)
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

5 51 2 3 1 2 3 4

x x x x x x x x x+ +

()
5 53 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +

 C)
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

. . . .
51 2 3 4

x x x x x+

()
5 54 1 2 3 4 1 2 3 4

F x x x x x x x x x x x= +

 D)
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

5 51 3 4 1 2 3 4

x x x x x x x x x+ +

()
5 5 51 2 3 4 1 2 3 4

F x x x x x x x x x x x= +

 E)
5 51 2 3 4 1 2 3 4

x x x x x x x x x x+ +

5 52 3 4 1 2 3 4

x x x x x x x x x+ +

70

For example, the first establishing state (F1(x)) matches to the actuality that the only conditions

in which assembly c1 (i.e., the assembly among the cap and the stick) can be established without

prevent the completion of the assembly are either the condition in which no assembly has been

determined (node 1 in Figure 4.4.), or the condition in which only assembly c2 is determined

(node 2), or the condition in which only assembly c3 is determined (node4), or the condition in

which only assembly c5 is determined (node 5), or the condition in which only assembly c2 and

c4 are determined (node 9), or the condition in which only assembly c1 and c2 are determined

(node 12). It should be noticed that there is no term matching to the condition in which only

assembly c4 is determined (node6); but while it is feasible to determine assembly c1, the

resulting condition (node 10) is a dead-end from which the assembly cannot be completed.

De Fazio and Whitney (1987) used priority relationships as an intermediate representation in

their processes for the generation of all the assembly sequences. However, two main kinds of

precedence relationships can be taken under consideration to identify assembly sequences

(Homem de Mello and Sanderson 1991a).

4.2.4.1. Precedence Relationships between the Establishment of One Connection and

States of the Assembly Process

Considering an assembly sequence whose representation is done as an ordered sequence of

subsets of connections is (1, 2, …, N – 1) that actually satisfies the precedence relationship

)(ic S x→ (4.3)

If

S (xk)  l (l  k) (ci   l), for k=1, 2, ...N (4.4)

Where ci → S (x) points towards the establishment of the i-th connection that must precede any

71

state s of the process of assembly used for what the value of the logical function S(x) is true.

4.2.4.2. Precedence Relationships between the Establishment of One Connection and

the Establishment of another Connection

An assembly sequence that is identified as an ordered sequence of binary vector is (x1, x2 ,

..., x N) and it is represented as an ordered sequence of connection’s subsets as (1, 2, …, N – 1)

that actually signifies the precedence relationship ci > cj if ci  a, cj b and a ≤ b. Here, ci >

cj indicates that the establishment of connection ci must precede the establishment of connection

cj.

However, each possible assembly sequence of a given assembly is uniquely categorised by the

logical expressions based on the conjunction of precedence relationships among the

establishments of the connections with one another. Moreover, the disadvantages of such

approach originate from the identification of the establishment conditions which is neither

straightforward nor it is easy to use. In relation to this, Shpitalni and Elber (1989) has

represented a structure that is consisting of four bodies, each body is represented by a CSG

(Constructive Solid Geometry). Also, provide such connectivity or supportive graphs to identify

relations among the structure’s bodies (components) that are required to be assembled. The main

emphasis of the support graph can be considered as a directed graph that indicates internal

connectivity relations between the K components B(1)..B(K) of the related structure. The

support graph can be explained as follows:

• Each component is linked with the structure that is indicated by a single node in the

graph.

• A directed arc from B(j) to B(i) is present only and if B(i) is directly sustained by B(j)

(i.e. B(i) and B(j) do not intersect each other).

72

A structure and its Z+ connectivity graph (i.e. connectivity throughout the +Z axis) is indicated

in the Figure 4.8. a and b. moreover, three kinds of nodes are taken under consideration in the

connectivity graph.

• A regular node along with both incoming and outgoing arrows signifies a regular

component that also supports other components and is also supported by several other

components.

• A sink node refers to a node with only incoming arrows and not the outgoing arrows. The

sink node indicates a component that is supported by other components, but it is not

supported by any other components such as B4.

It can also be seen that a source node refers to a node that is only represented as outgoing arrows.

The source node actually supports other components but itself is not supported by other

components. Therefore, to generate a disassembly sequence, the connectivity graph throughout

the +Z axis is established. In the same manner, the graphs for remaining directions can also be

established as required. Taking in view of the disassembly along with +Z axis, the significant

candidate considered to be disassembled is a factor whose node in the graph of connectivity is

a sink node. i.e., it does not provide any support to any other structure of the graph. In case

where component can be removed if a collision-free path can be identified for it and its removal

would not lead instability, it is removed, and the graph of connectivity is also updated. Figure

4.8.c-e. The breaking lines represent the body to be removed at every stage. If the selected

candidate is not possible to remove, the system makes an effort to opt for any other candidate.

The disadvantage of the approach is based on the representation of the connectivity throughout

the axis. It is not easy to work even throughout the triple axes of coordinates, and the

identification can turn out to be unusable.

73

Figure 4.8. (a) Structure, (b) its +Z connectivity graph and (c, d, e and f) and the

representation of assembly states (Shpitalni and Elber 1989)

Sebaaly and Fujimoto (1996c) stored the information regarding the product in a very compact

or an implicit form. In an effort to overcome the constrained character of the ASP, the complete

place of search involves all the feasible combination of parts, i.e. both the feasible and non-

feasible sequences, which are grouped into families of same sequences, in which each family

(c)

(,

mn

)

(d) ((e) (f)

74

consists of only one feasible sequence satisfying the problem constraints.

Dini and Santochi (1992) have developed a mathematical model for a product used for the

automatic identification of disassembly/assembly sequences and also for the identification of

subassemblies. They utilised the contact, interference and connection matrices where each one

evaluates along with the 3 Cartesian directions, x, y and z of the CAD space, hence requiring 9

matrices. Moreover, the interference matrix Ak is considered to be the square matric of order n-

considering an n-element product in which ai, j=1, if the element ei interfered with ej element

while the translation with +k (k= x, y, z), otherwise ai, j=0. Traditionally always ai, j=0.

However, the contact matrix is considered to be the square matrix of order n, in which bi, j=1

if ei is in connection with ej along +k, on the other hand bi, j=0. Traditionally, bi, j=0. The

connection matrix is considered to be the square matrix of an order n, where ci, j consider a

numerical code which is the process of the types of the connection among ei and ej with k (e.g.

cij=1 for a looped connection, where ei can be considered as disassembled, cij=-1 for threaded

connection, in which ei cannot be considered as disassembled as per Dini and Santochi (1992).

Throughout the generation of a right disassembly sequence, the code can be separated from the

element that can be disassembled. However, a process of utilising the information given in this

model among an element and other elements is able enough to present feasible assembly

sequences. Figure 4.9. shows an example of a product, along with its interference, connectivity

and contact matrices. This identification is restricted by the number of directions through which

the disassembly can be taken under consideration, i.e. 1. In addition, it also takes into

consideration disassembly gained from the linear translation of components.

75

Figure 4.9. Example of a product with its matrices (Dini and Santochi 1992)

4.3. SLMC ASSEMBLY SEQUENCES

In a SLMC (Sequential, Linear, Monotone and Coherent) manner (the number of assembly

operations (m) equals the number of components (n)), an assembly sequence can be encoded

in a chromosome which is a permutation of product components. A gene in locus j, j=1 and n

computed typically to the right from the left encodes the addition of the leading components in

the j-th step and any partial chromosome with k genes, k=1, n indicated an assembly state, in

which the first k components are assembled in a partial assembly and all their liaisons are

developed. A component that is encoded with a gene will come out in the chromosome only for

once. The remaining constraints apply, an n-term sequence of components of the assembly that

can be infeasible or illegal chromosome. However, a simple n-term sequence is considered to

be an illegal chromosome even when it is not a permutation. In this case a component number

is found to be more than once, which does not include all the components that exists, for instance

the torch in Figure 4.1. a1-a1- a3-a4-a4-a6-a7-a8-a9 is an illegal chromosome: a1 and a4 appear

1 2 3 4

1 0 0 0 0

2 1 0 0 0
Interference Matrix

3 0 1 0 0

4 1 1 1 0

1 2 3 4

1 0 0 0 0

2 1 0 0 0
Contact Matrix

3 0 1 0 0

4 0 1 1 0

1 2 3 4

1 0 0 0 1

2 0 0 0 0
Connection Matrix

3 0 0 0 0

4 1 0 0 0

A

B

C

x

x

x

−

 
 

=  
 
  

 
 

=  
 
  

 
 

=  
 
  

76

twice and a2 and a5 do not appear at all). However, a permutation is found to be legal

chromosome and assigns a tentative assembly sequence, where all the components exists and is

possible that that assembly cannot be realised due to the existence of the constraints. (e.g.

geometry, unreachable positions – a1-a2-a3-a4-a5-a6-a7-a8-a9 is infeasible because a3 cannot

be assembled to a2). In addition, a feasible chromosome encodes a feasible assembly sequence.

It is found to be constrained permutation which compiles all the assembly particular conditions

(e.g. a4-a3-a2-a1-a5-a6-a7-a8-a9 is a legal and feasible chromosome, it complies with all

constraints).

Figure 4.10. Relations between chromosomes and assembly sequences (Marian et al.

2006)

4.4. MODELLING AND REPRESENTATION OF NON-LINEAR
ASSEMBLY SEQUENCES

Under this section, the main emphasis is on representation and modeling of non-linear assembly

sequences, subassemblies and assembly plan including components. However, artificially, a

gene can encode the inclusion of subassembly to the partial assembly. Therefore, considering

this case the chromosome indicates a non-linear assembly sequence. As shown in Figure 4.11,

a1, a2, a3 and a4 can be considered as a subassembly. These can be considered as a group in a

subassembly that can be known as A. However, the subassembly A can be considered as a

complex component. Taking into the consideration, the assembly process regarding the

n-term sequence
(non – permutation)

ILLEGAL

CHROMOSOME

Permutation – legal chromosome,
assembly conditions not respected???

Constrained Permutation
(assembly conditions respected)

FEASIBLE CHROMOSOME

INFEASIBLE CHROMOSOME

77

components in the assembly A have been considered before the assembly process of the

flashlight.

Figure 4.11. The graph of liaisons of the flashlight in Figure 4.1.

The relationship among the components in A are built when subassembly A is done. Therefore,

they are not significant at the initial phase of adding A to the rest of the product. Only the related

links between components in A and components outside A are considered. The edges a1-a2, a2-

a4, a3-a4 are internal to A, i.e. among components within the assembly A. However, liaisons

are built when A is assembled, therefore they are no longer related when A is added to the

remaining torch. In addition to it, the edge among a4 and a5 is between component within A (i.e.

a4) and component outside A (i.e. a5) and its identified when A is added to the remaining product.

In fact, this edge is between the rest of the product and the subassembly. Two examples related

to assembly sequences for the flashlight includes A as a subassembly which is made earlier

are: - A-a5-a6-a7-a8-a9 and - a5-A-a6-a7-a8-a9, if a7 and a8 are assembled and added to the

78

flashlight as a subassembly B, the edge a7-a8 is internal to the subassembly B and edges a5-a7

and a8-a9 are between a component in B and a component outside B.

There are two examples of assembly sequences in terms of flashlight, consisting of B as a

subassembly made earlier, which are:

- a4-a3-a2-a1-a5-a6-B-a9 and - a5-a6-B-a9-a4-a3-a2-a1.

Moreover, an assembly sequence can be consisting of two or more subassemblies. The two

instances of assembly sequences for the flashlight includes A and B as subassemblies made

earlier are:

- B-a5-a6-a9-A and - a5-A-a6-B-a9.

However, the modelling of an assembly sequence that consists of non-linear component

includes:

• Selection of the components comprised in each subassembly that is to be assembled

as is.

• Encoding of each subassembly as a complex component that received new name.

• Encoding of each subassembly as a vertex in the graph of liaisons.

• Encoding of each subassembly as a gene in the chromosome.

4.5. MODELLING AND REPRESENTATION OF NON-SEQUENTIAL
ASSEMBLY PLANS

A non-sequential assembly sequence is considered as contradictions with regards to assembly

plans with non-sequential operations. To consider the non-sequential assembly plans in the

operation of optimisation, the non-sequential operations set are aggregated and isolated into

critical components or subassembly. Moreover, a non-sequential operations set cannot be

viewed as assembly sequence optimisation for the critical components because of the fact that

there is only one possible way to assemble it at the same time for diverse directions.

79

Figure 4.12a. shows a product that can be assembled only with a non-sequential assembly plan

and a cross-section through it (b). Its graph of liaisons is presented in Figure 4.12c.

Components a1, a2 and a3 are the components that are required to be assembled at the same

time coordinated set of movements. The remaining components a4, a7 can be assembled in a

sequential manner. The components a1, a2 and a3 are combined in a subassembly A (Figure

4.12d.). By taking a view at A as a subassembly, the assembly plan can be considered as

encoding in a chromosome such as an assembly sequences as a subassembly. In Figure 4.12.,

the product signifies the liaison between a3 and a5 is considered when the liaison is taken into

account between A and the remaining components. In Figure 4.12., three examples of possible

assembly plans for the product are identified including A as a subassembly made earlier and

using a non-sequential plan, which are:

• A-a5-a4-a6-a7.

• a5-a6-A-a4-a7.

• a4-a5-a6-a7-A.

A

80

Figure 4.12. A product that can be assembled only with a non-sequential assembly plan (A), a

cross-section (B), the graph of liaisons (C) and the simplified graph of liaisons (D)

The modelling of a non-sequential assembly plan includes:

• Selection of each set of components in a synchronized sequence of movements.

• Encoding of each of those sets as a complex component receiving a new name.

• Encoding of each complex component as a vertex in the graph of liaisons.

• Encoding of each intricate component as a gene in the chromosome.

4.6. MODELLING AND REPRESENTATION OF NON-MONOTONE
ASSEMBLY SEQUENCES

An assembly sequence can be considered as a non-monotone where a component is

included to the partial assembly and not in its final stage. This case will need a specific

stage down towards the track and a position to the respective component is transformed

and it is moved to its final and specific position with regards to the rest of the product

components. Therefore, an assembly sequence consists of non-monotone operations

signifies that:

• The component (e.g. an, where n= 1,2,3, …, h) needs at least two main sets of assembly

a1 a2
A

a3 A

a4 a5 a6 a4 a5 a6

a7

B C

a7

D

81

operations, and

• The two sets of the respective assembly operations are parted by at least one assembly

operation, not taking into account the component an.

In an effort to represent and model non-monotone assemble sequences in a chromosome, a

gene is required to be perfect enough to encode particular operations and not including the

additional part. In the Figure 4.13. it can be seen that there is a graph of liaison and product,

where the product can be assembled with the monotone assembly sequence consisting of

additional components c1 (a1), c2 (a2) and c3 (a3) along with the assembly operation, a4. In

relation to this case, the chromosome a2-a3-a1-a4 encodes within homogeneous notation and

non-homogeneous information. The components c2 is assembled initially and after which c3 is

included then c1. At the final stage, c3 is pulled in the c1 slot. However, each substring a2, a2-

a3, a2-a3-a1 and a2-a3-a1-a4 indicates an assembly stated, the last one encodes more advanced

stage of assembly plan than the prior one.

Figure 4.13. A product realised with a non-monotone assembly sequence (Marian et al.

2006)

Modelling non-monotone assembly plan includes:

• Selection of appropriate assembly-like operations to be considered in the

assembly sequence.

• Encoding of each of those operations as a pseudo-mutation (PM) or meta-

82

component (MC) which receives a new name.

• Encoding of each pseudo-component as a vertex in the graph of liaisons.

• Encoding of each pseudo-component as a gene in the chromosome.

4.7. MODELLING AND REPRESENTATION OF PSEUDO-NON-
COHERENT ASSEMBLY PLANS

It is observed that assembly plans are coherent in which each part is actually inserted and touch

other placed part. However, the two different situations can be taken as exceptions. In relation

to this, first situation happens in the non-linear plans and in this case the assembly process is

coherent at each level of subassembly. On the other hand, the whole assembly process of the

product is coherent subassembly. In relation to this, each subassembly can be viewed as

complex component made previously and indicated as a vertex along with its leading external

liaisons the process of assembly. Considering this the plan can be treated and encoded as

mentioned above, specifically for non-linear plans. The other situation happens when auxiliary

fixture is utilised temporarily in the initial phase of the assembly process. For modelling, for

instance assembly process, the auxiliary tool or fixture can be taken as auxiliary component to

be included to the product then removed. Therefore, the assembly sequence is changed to form

a non-coherent one into a coherent and non-monotone sequence which can also be encoded.

Figure 4.14 indicates a product that can be considered as assembling with a pseudo-non-

coherent assembly plan. The product is based on two vertical poles a1 and a2 in a horizontal

bar a3. Figure 4.14. indicates the liaison graph of product with three components a1, a2 and a3.

However, it can be seen that assembly sequence is coherent. In the graph of liaisons, can be

seen relating to the product and the ground as an auxiliary component a4 (upper surface). A

negative component -a4 (bottom surface), is also added to the graph of liaisons which holds

the same contacts as a4, respectively a1 and a2. The feasible assembly sequences in this case

will be a4-a1-a2-a3-(-a4) and a4-a2-a1-a3-(-a4).

83

Figure 4.14. The graph of liaisons of the product (K and H) (Marian et al. 2003)

-a4

a2

a3

a4

a1

H K

84

CHAPTER 5

GLOWWORM SWARM ALGORITHM FOR THE OPTIMISATION OF

ASSEMBLY SEQUENCE

5.1. INTRODUCTION

Krishnanand and Chose (2006a) introduced GSOA aiming to solve engineering optimisation

problems. It has been reported that the GSOA is effectively used for optimisation of multi-

function wireless sensors, solving a number of analytical problems (Yu and Yang 2013) and

(Pengzhen et al. 2014). Variants of such an algorithm namely particle swarm optimisation

(PSOA) and niching particle swarm optimisation (NichePSOA) have the similar approach. The

NichePSOA is a technique that extends the unimodal particle swarm optimizer for solving

multimodal problems, i.e., multiple subswarms are grown from an initial particle swarm by

monitoring the fitness of individual particles (Brits et al. 2002, Kennedy and Eberhart 1995).

By comparing NichePSOA and GSOA, it was reported that a better performance of

NichePSOA has been observed than GSOA in terms of acquiring an optimal solution for

multimodal problems (Kennedy and Eberhart 1995), (Van den-bergh 2002) and (Yu and Wang

2013).

Glowworms, ants and bees behave differently, and their social behavior is impacted by the

interactions of each other. The versatile behavior of social insects (SI) can be transformed into

digital software solutions. In SI systems these behaviors can be imitated. The basis of these

systems is that they focus on the behavior of local agents interacting with each other and

behaving as a local swarm. The interaction of different swarms with each other is also

considered. Their movement depends on the local sources placed in the simulation system.

5.1.1. General Collective Behavior of Swarms

The main properties of the collective behavior can be pointed out as follows and is summarised

in Figure 5.1:

85

Homogeneity - Every agent in swarm has the same behavior. It may appear that different

leaders are formed during the movement of swarm.

Locality - The locality is the influence of subgroups of agents affecting each other in the region

(Krause and Ruxton 2002). Within the swarm organization, the most important quality of swarm

is the ability of vision of each leader and their subordinates during the movement.

Swarm Centering - Due to this inherent ability of swarm, it is easy for the agents to stay close

to each other. It is their ability that a specific distance can be maintained between them and

other agents.

This is observed in a large swarm of animals that they give this the highest priority (Krause and

Ruxton 2002).

Velocity Matching - Attempting to match the velocity with the nearby swarm mates.

Collision Avoidance - This ability is used by the stock mates to avoid the collision with nearby

swarm mates. It is done by using the velocity matching technique which results in matched

velocities (Krause and Ruxton 2002). They are attracted towards other members of swarm if they

don’t do the action of avoidance. It is not in their power to remain isolated as they are attracted

towards other individuals and to align themselves with neighbours (Partridge BL 1982) and

(Partridge and Pitcher 1980).

86

Figure 5.1. The character of collective behavior (Thiruvenkadam and Perumal 2017)

5.1.2. Collective Behavior of Glowworms

Krishnanand and Ghose (2009a) analysed the flashing behavior of glowworms. Each

glowworm carries a luminescence amount called luciferin, which is decided by the function

value of glowworms’ current location. A range is defined for each glowworm and through this

range, depending upon the level of luciferin, a glowworm moves towards another glowworm.

The higher luciferin level of the glowworm leads to attraction to movement which is decided

by a probability mechanism (Krishnanand and Ghose 2006a, Krishnanand and Ghose 2006b,

Krishnanand and Ghose 2009a, Krishnanand and Ghose 2008, Liao, Kao and Li 2011, Wu et. al.

2012 and Jayakumar and Venkatesh 2014).

Collective Global

Behaviour

Locality

Velocity

Matching
Collision

Avoidance

Homogeneity

Flock

Centring

87

Zhang et al. (2011) used a methodology for limitation of scent sources with respect to an

advanced GSO calculation. It has been observed that the far-reaching calculations of tuft

following can be performed by the applications for utilisation independent robots. Tang et al.

(2013) proposed the GSO solution that was developed on a global base using the mutation

program in optimum conditions. This process is called the parallel crossover mutation

glowworm swarm optimisation. Jayakumar and Venkatesh (2014) developed the optimal

solution for resolving the problem of multiple objectives based on ecological and economic

parameters using GSO algorithm.

Atheer and Nordin (2017) proposed GSO technique by increasing the population range using

the mutation process. Diffusion solutions in space research are retained by way of mutation

operation. Some solutions turn into infeasible following the operation of mutation and

migration during the problems of optimisation. Multiple solutions can be added by the addition

of other methods to verify the possibility of the solution in such cases (Pan and Xu 2016, Mo,

Li and Zhang 2016).

5.1.3. Differential Methods in Terms of the Extensive Review

A multimodal optimisation problem can be formulated as the clustering problem using a GSOA

method (Aljarah and Ludwig 2013). These methods have been known to provide better results

compared to traditional clustering methods of such as the K-Means clustering, average linkage

agglomerative hierarchal clustering, furthest first (FF) and learning vector quantization (LVQ).

Gorai and Ghosh (2011) find the best enhancement setting of images which was based on PSO

(Particle Swarm Optimisation Algorithm). The quality of intensity of image is enhanced by the

parameterized transformation function which was a similar proposition to earlier. The rescaling

method has also been utilised for solving scale problem. Table 5.1 shows a summary that

distinguishes the differential methods in terms of GA, PSO, ACO and GSO, respectively (Zhan,

Zhang, Li and Chung 2009).

88

Table 5.1. The differential methods in terms of the extensive review of the GA, PSO, ACO and

GSO, respectively

Items
Algorithm

GA ACO PSO GSO

Year 1975 1999 1995 2005

Author John Holland
Dorigo & Di

Caro

Kennedy &

Eberhart

Krishnanand &

Ghose

Optimisation
Discrete

Optimisation

Meta heuristic

Optimisation

Stochastic

Optimisation

Meta heuristic

Optimisation

Parameters

Reproduction,

Crossover,

Mutation.

Construct Ant

Solutions,

Daemon

Actions

(optional),

Update

Pheromones.

Current

velocity,

Personal Best,

Neighbourhood

Best.

Initialization,

Updating

Luciferin,

Movement,

Updating the

Local Decision

Range.

Purpose
Find the best

among others.

Find the

shortest path.

Reach target

with minimal

duration.

Find the local

finest solution.

Advantages

1.Large

combinatorial

problems can

be solved by

means of

efficient

investigation

2. Exhaustive

brute forces

searches appear

slow as

compared to

1. Parallelism

is present

inherently.

2. Rapid

discovery of

goods solution

are given as

positive

feedback.

3. Travelling

salesman and

other similar

1. Scientific and

engineering

problems can be

accounted in

this mechanism.

2. Mutation

calculation and

overlapping

does not occur

in this method.

1. Highly

nonlinear and

multimodal

optimisation

problems can be

handled naturally

and efficiently.

2. Velocities are

not used in GSO.

PSO also shows

no problem

89

many orders of

magnitude

problems are

efficiently

solved.

4. Dynamic

applications

can be used

(the changes in

new distances

can be

formulated)

3. Speed of

particle can help

carry the search.

4. Real number

code is adopted

by PSO. The

solution decides

this directly.

associated with

velocity.

3. Global

optimised

solution has a

very high

probability of

reaching as the

speed of

convergence in

GSO is very high.

Disadvantages

1. It is

expensive

computational

2. Weeks or

days may be

consumed to

analyse the

large problems.

3. It is faster

than force.

4. Glowworm

algorithm can

be directed

towards

optimal

solution but it

is blind.

1. Difficulty

has been

observed in

theoretical

analysis.

2. Independent

use of

sequences of

random

decisions.

3. Iterations

are changed by

probability

distribution.

4. The research

has been

experimental

and not

theoretical.

1. Mid optimum

point can reach

premature

convergence

have a fast

tendency.

2. Scattering

and

optimisation

problems

cannot be

solved by this

method.

3. For each

iterative process

there is slow

convergence.

1. High

dimensional

problems have a

problem with

GSO.

2. The

conventional

speed for the

algorithm is

slowed for

glowworms

moving as the

dynamic change

of decision

domain is GSO.

3. Slow iteration

process occurs as

the local search

ability is reduced.

Medical Field

The

optimisation of

artificial neural

The neural

network has

been optimised

1. Image

segmentation

(MRI) has been

1. The future

selection

problems can be

90

networks

among others

seem slow as

compared to

genetic

algorithm.

artificially in

ACO. This has

been used in

the field of

medical image

processing.

used to detect

the Brain

tumour

2. The artificial

neural networks

have been

optimised for

medical image

processing by

using PSO.

optimised by

using GSO.

5.2. GLOWWORM SWARM OPTIMISATION ALGORITHM

According to Krishnanand and Ghose (2009b) glowworm swarm s which contains of m

glowworms, is distributed in the search space. A random position pj is assigned to the

glowworms gj (j=1…m) in the search space. A specific luciferin level Lj is assigned to each

glowworm gj in the local decision range rdj. A glowworm having a higher level of luciferin

will be brighter. Within the neighbourhood range of the glowworms, they move towards the

brighter glowworms that are having high luciferin level value within their restricted domain

range. At multiple optimal locations in search space, compact groups are formed by most of

glowworms. During the initial stages when the glowworms are placed in the search space, they

have a luciferin level (L0) which is equal for all. The rs radial sensor range is also initialised

with the condition of r0. At a position of glowworm pi the objective function is evaluated at

luciferin level update. After that the luciferin level for the combined group is set to drive the

new objective function values. For the glowworm, the luciferin level is Lj is defined as follows:

() (1) (1) (())j j i jL t L t F p t = − − + (5.1)

Here  is the luciferin decay constant and Lj (t-1) shows the value of luciferin at the previous

level. γ is the luciferin enhancement fraction.

91

At any current glowworm position pj for any glowworm j, F (pj (t)) represents the objective

function. T is the current iteration for glowworm j. During iteration, the glowworm j explores

its neighbourhood region for finding the highest luciferin level by applying the following rule.

()jz N t if ()jz jd rd t and () ()z jL t L t (5.2)

Where distance is represented by d. Glowworm j is closer to glowworm z. Nj (t) is defined as

the neighbourhood set. djz is the distance between the glowworm z and glowworm j. Local

decision range for the glowworm j is defined by rdj (t). Lz (t) defines the luciferin value for

glowworm z for time t while Lj (t) defines the glowworm j luciferin level for time t.

()

() ()

() ()

z j

jz

z j
k N tj

L t L t
prob

L t L t


−
=

−
 (5.3)

This equation 5.3. describes the preference of glowworms to select the best neighbour in the

neighbourhood. For this purpose, the equation drives test for each glowworm and analyze the

probability for selecting best neighbours. Z is described as one of the many neighbourhoods set

for glowworm j. A glowworm which has a high level of probability will have a higher chance

of getting selected from the neighbourhood, while the direction is measured by the roulette

wheel method. Previous glowworm is adjusted according to the new neighbour glowworm.

𝑝𝑗(𝑡) = 𝑝𝑗(𝑡 − 1) + 𝑠
𝑝𝑧(𝑡)−𝑝𝑗(𝑡)

𝑑𝑗𝑧
 (5.4)

Distance jz is defined as the Euclidean distance between the glowworm j and z. At the end of

the glowworm iterations, the range for the local decision domain with the new adjusted

glowworms is given by,

 () min ,max{0, (1) ((1))}i i

d s d t jr t r r t n N t= − + − − (5.5)

β is a constant parameter that affects the rate of change of the neighbor

92

domain.

The neighbour set size is restricted by a constant parameter nt. The actual neighbourhood set

size is described by Nj (t).

The computational procedure for the GSOA is shown in the Figure 5.2.

93

Figure 5.2. Flowchart of GSO (Thiruvenkadam and Perumal 2017)

94

5.3. GLOWWORM SWARM OPTIMISATION CLUSTERING
ALGORITHM

GSO clustering algorithm turned to be a significant method in machine learning, pattern

recognition and other engineering fields. The clustering algorithm aimed to identify and extract

important groups in underlying data. Emerging Clustering with GSO based algorithm as an

alternative to more classical clustering approaches.

In GSO clustering algorithm two processes has been added to the main GSO processes. First

one is defining a cluster data object and the second process is defining the attraction data object.

5.3.1. GSO Clustering Process

GSO clustering algorithm has additional processes and defined as follows:

For A cluster data object x (x1, x2, …., xm), the equation 5.6. describes the local space relative

density:

 ()
()()

()
ir

i

x tN
d x t

g
= (5.6)

Where r is the local space radius, Nr (xi(t)) is the data set containing in local space within r of

x at iteration t, g is the overall numbers of data object. The bigger d (xi(t)) value, the more data

object X (x1, x2, …., xm).

For attraction data object x (x1, x2, …., xm) is described by the next equation:

() ()()() In ()i iJ x t d x t= − (5.7)

Where ln() is the natural logarithm. Also, The bigger J (xi(t)) value, the more data object X (x1,

x2, …., xm).

5.3.2. GSO Clustering Algorithm

GSO clustering algorithm is described as follows:

Input cluster data object;

Set maximum iteration number = iter_max;

95

Let s be the step size;

Let r be the local space radius;

Let Li (0) be the initial luciferin;

Let
i

dr (0) be the initial dynamic decision domain radius

Set t =1.

While (t < = iter_max) do:

{

for i =1.

()() { : () () }i j ir
x t j x t x t rN = −  ; %Where x is the norm of x

()
()()

()
ir

i

x tN
d x t

g
=

() ()()() In ()i iJ x t d x t= −

() (1) (1) (())j j i jL t L t F p t = − − +

For each glowworm i do: %movement-phase

{

,
{ : () () () ()}

d

ii i j i j
j t t and t tN d l lr=  

Where x is the norm for x

for every glowworm () do:ij N t

()

() ()
()

() ()

i

ij
ik

k N tj

j
L t L t

p t
L t L t



−
=

−

j= select glowworm (p)

96

where p is the maximal element of P

() - ()
(1) ()

() - ()

j i

i

j i

x t x t
x t x t s

x t x t

 
 + = +
 
 

(1) min{ ,max{0, () (())}}i i

d s d t ir t r r t n N t+ = + −

}

1;t t +

}

Algorithm symbolic description: ()ix t is the glowworm i in t iteration location; ()iL t is the

luciferin of the glowworm i in t iteration; ()iN t is the neighbourhood set of glowworm i in t

iteration; ()i

dr t is the dynamic decision domain radius of glowworm i in t iteration; is the upper

bound of the ()i

dr t ; ()ijp t is the probability of glowworm i selects neighbour j (Thiruvenkadam

and Perumal 2017).

97

CHAPTER 6

A CASE STUDY USING A GENETIC ALGORITHM AND A GLOWWORM

SWARM ALGORITHM FOR SOLVING AN ASSEMBLY SEQUENCE

OPTIMISATION PROBLEM

6.1. INTRODUCTION

An assembly sequence must usually be pre-defined when a product needs to be assembled.

This is ideally considered at the early design stage and is aimed at a reduction of assembly time

and therefore costs. That is particularly crucial for many small-medium enterprises (SME) that

rely on assembly of products to survive in fierce competition. Apart from the effect of product

design, assembly time is largely subject to its assembly precedence, accessibility, constraints,

geometry and number of assembly components. Marian et al. (2006) suggested a GA for

solving an ASP optimisation problem with an aid provided by a guided search effective

algorithm. Choi et al (2009) developed an approach to optimise multi-criteria ASP based on a

GA. Yasin et al (2010) investigated the application of GA in optimising product assembly

sequences and the study concluded that GA can be used to obtain a near optimal solution for

seeking a minimal process time of sequence assembly. Thus, GA is an efficient algorithm to

find an optimal or a near optimal solution for assembly sequence time.

As presented earlier in the research literature, GSOA was introduced by Krishnanand and

Chose (2006a) to solve engineering optimisation issues. To accomplish GSOA objective

(engineering optimisation problems), a swarm must have an ability to be split into disjoint

groups. During one program run, the GSOA is capable of determining the multiple optimal

solutions in parallel. First, the algorithm involves a random deployment of a population in a

specified size n glowworm in a search space at the inception and each carries a luminescence

containing a quantity of luciferin as physical entity. Location of a glowworm is determined by

an objective function calculating the strength of luciferin, i.e., the intensity of luciferin is

98

associated with the objective function of a glowworm’s location. A greater luciferin intensity

implies a better location associated with an objective function value. Each individual

glowworm updates its luciferin level based on the objective function value of its recent

position.

Unlike GA which are commonly used for solving assembly sequence optimisation problems,

GSOA was not reported as being used for solving similar issues. This research presents two

case studies that applies the GA approach and the GSOA approach to obtain the fastest solution

for the assembly sequence of a car engine pump valve and a ball pen product. GSOA

outperformed the GA in terms of reducing assembly time for an assembly sequence.

6.2. PROBLEM STATEMENT MODEL FORMULATION

It is widely understood that efficiency of assembling a product by reducing assembly times

(therefore costs) is vital particularly for small manufacturing companies to survive in an

increasingly competitive market. Optimally, it is helpful for determining an optimal assembly

sequence of a product at the early design stage. The complexity of assembling a product is

often subject to the number of assembly components and the relationship between mating parts.

Products complexity can be divided to three types;

- Large product: That has more than 25 components, for example, a car engine (will

be one of the research future work).

- Medium product: that has up to 25 components (Marian et al. 2006). For instance, a

car engine pump valve (first case study).

- Simple product: that has a small number of components, for example, a ball pen

product (second case study). The product assembly sequences can be determined at

the early design stage.

99

Nevertheless, it may find inefficient using the heuristic approaches in acquisition of a quick

solution in terms of an optimal assembly sequence with a minimal assembly time. It starts by

selecting input parameters based on number of sequences, priority matrix and assembly

sequence time.

100

START

Input parameters

Generate initial population

of feasible assembly

sequences
Luciferin level

(7)

Movement phase
 (8)

Discrete-time

model
 (9)

Neighbouring

range
 (10)

If Fitness function

 Fi+1 ˂ Fi

Evaluation
(Fitness function)

Roulette Wheel

Crossover

Mutation

If Fitness function

 Fi+1 ˂ Fi

E
n

d
 Yes

Yes

Yes

No

No

No

Number of

sequences
Priority

matrix
Assembly time

for each sequence

Best Fitness

value of GSOA
Best Fitness

value of GA

If Fitness

value of
GSOA ˂ GA

Reset maximum

number of iteration

Figure 6.1. A combined approach to obtain

comparative results using the GA and the

GSOA for resolving the assembly sequence

optimisation problem

101

6.2.1. Genetic Algorithm

Figure 6.2. illustrates the mechanism of the GA used in programming. It starts with the initial

population that is usually generated randomly as a binary string of zeros and ones or as integers

or real numbers; this is also known as a genetic representation or encoding. The next process

is the evaluation stage, which involves a computation of a fitness value based on an objective

(fitness) function. Thus, selection plays a key role in GA programming; only those representing

a possible solution with either a highest or lowest fitness value are selected. The Roulette Wheel

approach was used to ensure that a certain number of the population of chromosomes are

retained in the next generation, which contains chromosomes with greater fitness. Crossover

operates on pairs of chromosomes simultaneously with the aim of creating offspring that

combines the features of both parental chromosomes. This is usually carried out via a random

selection of parental chromosomes to produce new chromosomes. In this study, however, it

was performed by crossing over the genes as illustrated in Figure 6.3. to generate possible

assembly sequences for the car engine pump valve with assumption that the bits of

chromosomes can be swapped freely without following the precedence required for assembly.

Mutation is used to have a complete loss of a particular allele or bit, i.e, the mutation of

swapped genes is utilised to prevent chromosomes from repeating the gene of a new offspring.

This was performed by crossing over the genes in different sequences leading to various

assembly paths and total time of assembly. Only the bits of chromosomes that do not have a

successor or precedence are swapped as illustrated in Figure 6.4. and these chromosomes were

used.

102

Figure 6.2. The GA programming approach

The following notations and parameters are used:

i: Number of a chromosome, i = 1, 2, 3,…, k;

f i: Fitness of chromosome i;

t i: Time taken of chromosome i;

F: Fitness of the population;

Cr: Crossover rate;

Ri: A Roulette Wheel probability;

Pi: The cumulative probability for chromosome i;

L: Total length of gene in a population;

e: Number of genes in a chromosome, e = 1, 2, 3, …, n;

mr: Mutation rate;

r: Random number;

M: Number of mutations.

Evaluation

(Fitness function)

Encoding

N
ex

t
G

en
er

at
io

n

Fi+1 ˂ Fi

NO

YES

Roulette Wheel

Crossover

Mutation

Generate initial population

of chromosomes

START

Decoding

Feasible assembly

sequences

Best chromosome

Optimised assembly

sequence

S
electio

n

103

The Fitness Function

In this study, the GA uses a single objective function as the fitness function for selecting a

chromosome with a higher fitness value. The fitness fi, which is a function of assembly time of

an assembly sequence represented by chromosome i, is described as:

𝑓
𝑖

=
1

∑ 𝑡𝑖
𝑚
𝑖=1

 (6.1)

Thus, the total fitness F is given:

𝐹 =
1

∑ 𝑓𝑗
𝑚
𝑗=1

 (6.2)

The for loop is used to compute the fitness value for each of the generations with the above-

mentioned formula. The computed fitness values are stored in the array future usage. The

pseudocode that is used to implement the fitness function is provided below:

int noGenerations = F_Obj.length;

 double Fitness[] = new double[noGenerations];

 for(int i=0;i<noGenerations;i++)

 {

 Fitness[i]=(1/(1+(double) F_Obj[i]));

 }

 return Fitness;

Selection of a chromosome

As illustrated in Figure 6.3., in the proportionate fitness selection, which is also known as the

roulette wheel selection, fitness is calculated by assigning a fitness value to one of possible

chromosomes or solutions. This fitness value is often associated with a probability of a

selection with each of individual chromosomes. Only a chromosome with a high fitness value

will be selected during a selection process.

104

Figure 6.3. Selection of a better chromosome

Thus, only a chromosome, which is fittest with the greater roulette wheel probability, is

selected. The roulette wheel probability Ri is given by:

𝑅𝑖 =
𝑓𝑖

𝐹
 (6.3)

The percentage of the chance for chromosome i is expressed as probability Pi where,

𝑃𝑖 = 𝑅𝑖 × 100% (6.4)

The probability is calculated with the use of Fitness value of the chromosome. However, before

calculating the probability the total sum of the fitness values of the entire chromosomes should

be calculated. The pseudocode used to compute the probability using the fitness function is

provided below:

int noGenerations = Fitness.length;

 double Probability[] = new double[noGenerations];

 double sum =0;

 for(int i=0;i<noGenerations;i++)

 sum =sum+Fitness[i];

 for(int i=0;i<noGenerations;i++)

 {

 Probability[i]=Fitness[i]/sum;

 }

 return Probability;

Selection

Fitness Function
Number of

chromosomes

Diversity

105

Crossover

Figure 6.4. illustrates a crossover process where the first two genes of two different

chromosomes are exchanged. The crossover process is controlled by a probabilistic operator.

Repetition of the same gene number is strictly avoided during the crossover process, and each

of the genes involved is thoroughly checked before completing the process.

Parents

C8 C11 C4 C6 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7

Offspring

C11 C8 C4 C6 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7

Figure 6.4. The crossover process of swapping genes

The two different genes that will be used for the crossover is selected using the random

function. The pseudocode that is used for the random selection of the genes are provided below:

Random rn = new Random();

firstChromosome=chromosome[rn.nextInt(noGenerations)];

secondChromosome=chromosome[rn.nextInt(noGenerations)];

Mutation

A mutation is performed by a random replacement of a gene from its original state with a new

quantity in other position or attributes, according to a user-defined mutation probability or

mutation rate. The only thing this prevents is the taking of the fittest of the population in the

next generation rather than randomly selecting those that are fitter. Parameters of C6 and C4

were used for the calculation of the mutated chromosomes in a particular population, as shown

in Figure 6.5.

C11 C8 C6 C4 C10 C13 C2 C1 C12 C9 C3 C5 C14 C7

Figure 6.5. The mutation operator

C8 C11 C6 C4 C13 C10 C2 C1 C3 C9 C12 C5 C14 C7

P 1

P 2

New

Child

Gene 1 Gene 2

Crossover point

106

Thus, the total length of genes L in a chromosome is thereby given by:

L = 𝑒 𝑛
𝑖 (6.5)

Where i = 1, 2, 3, …, k. L is a random integer ranging from 1 to 14 in this case. As a result of

this, a probability of a mutation of a gene is 1/L, If the mutation rate mr is greater than the

selected random number r, i.e., mr >r, where is r a random number r in the range between (0,

…1), 0 ≤ r < n, then the mutation should be performed. Hence, the number of mutations M is

given by

𝑀 = 𝑟
1

𝐿
 (6.6)

After a re-allocation of the suitable gene position of the chosen parent, a new child chromosome

is established. This implies that the new child chromosome has a new identification which

possibly makes it a new parent for the next generation of the continuous population.

The pseudocode that is used to perform the mutation of the genes in a chromosome is provided

below:

 for(int j=0;j<mutation.length;j++)

 {

 for(int k=0;k<mutation[0].length;k++)

 {

 sum1=sum1 +mutation[j][k];

 }

 if (sum1!=0)

 counter++;

 }

6.2.1.1. Acquisition of an assembly sequence time using the GA

The notation used in this study to summarise and highlight the proposed solutions to the

assembly sequence problem is subsequently explained.

107

 Indices

g: generation index (g = 1, ……G), where G represents the number of generations.

s: assembly sequence index (s = 1,….Sg), where Sg represents the number of assembly

sequences in a specific generation g.

c: an assembly component index (c = 1, ….Csg), where Csg represents the number of assembly

components in a particular sequence of assembly of a generation.

P: priority, P ={
1
0

Decision variables

Xcsg={
1
0

Parameters

HTs: Handling time for assembly sequence S

ITs: Insertion time for assembly sequence S

TTs: Total time for assembly sequence s, where TTs is a sum of HTs and ITs

r: Random number

CP: Cumulative probability

Fs: Fitness of assembly sequence s (s = 1, 2, 3, …Sg) in a generation

Fg: Fitness of generation g, Fg = (1, ….G), where the total number of fitness for a generation g

Indicator variables

𝑡𝑐𝑔
𝑠 : Starting time of component c on assembly sequence s in generation g

Zcsg = {
1
0

The computation of cumulative probability is the sum of the probabilities computed for the

chromosomes. The pseudocode used to compute the cumulative probability is provided below:

if component c is utilised on assembly sequence s of generationg g

otherwise

if component c is utilised on assembly sequence s of generation g with a priority compliance

otherwise

if priority exists

otherwise

108

int noGenerations = Probability.length;

 double Cumulative[] = new double[noGenerations];

 double sum =0;

 for(int i=0;i<noGenerations;i++)

 {

 for (int j=0;j<=i;j++)

 {

 sum =sum+Probability[j];

 }

 Cumulative[i]=sum;

 }

 return Cumulative;

The objective function

The aim of seeking the minimum time taken for assembling a product associated with an

assembly sequence of a specific generation can be described as the objective function where a

minimal assembly time TTs can be sought as follows:

{Min (TTs)g, where s = 1…..Sg and g = 1…..G

If a minimum assembly time is repeated over generations, then the most dominant assembly

sequence will be selected with the minimum assembly time.

Constraints

In this study, the total assembly time TTs was subject to a sum of handling assembly time HTs

and insertion assembly time ITs, where

 s s sTT HT IT= + (6.7)

Let us define the probability of an assembly sequence PS,

The probability P of an assembly sequence s is:

/s s gP F F= (6.8)

Where Fs is the fitness of assembly sequence s and Fg is the fitness for the generation g. Thus,

109

the cumulative probability of CP is given by:

CP = ∑ 𝑃(𝑖)𝑠
𝑖=1 , Where i = 1, 2, 3, …S (6.9)

Fitness Value

The value of fitness Fs for assembly sequence s can be expressed as the function of assembly

time TTs:

 1 / s sF TT= (6.10)

Stopping Criteria

Stopping criteria are the rules that govern the termination of the iteration are as follows:

Criteria 1: When g = G, where it occurs at the end of the generation, all preceding components

are satisfactorily assembled, and there is no component remaining for assembly within a

particular assembly sequence.

Criteria 2: In this case study, after 10 iterations, then the creation of a new generation will be

terminated, i.e.,

{Min (TTs)} g - (n-10) = {Min (TTs)} g - (n-9) =……. = {Min (TTs)} g - (n-1).

6.2.2. The Glowworm Swarm Optimisation Algorithm

Figure 6.6. illustrates the mechanism of the glowworm swarm optimisation algorithm (GSOA).

In this work, a glowworm denotes a component and a swarm of components is a population

that is initially distributed randomly in a search space. Like the natural world, each component

also acts as if it is a luminescent or glowing glowworm emitting a light whose intensity is

proportional to the associated luciferin interacting with other glowworms or components within

a defined neighbourhood. The neighbourhood area is categorised as a local-decision domain

that has a variable neighbourhood range 𝑟𝑑
𝑖 bounded by a radial luciferin sensor range rs (0 <

𝑟𝑑
𝑖≤ rs). In nature, the neighbourhood range is a dynamic quantity.

110

In this study, assuming that component i considers another component j of its neighbour, if j is

within the neighbourhood range of i and the luciferin level (in this case, it refers to the gap in

dimensions between two mating components, i.e., mating component i with component j or

parts based on the time taken to assemble) of j is higher than that of i. The decision domain

allows a selective neighbour interaction. Each component is attracted by a suitable dimension

of another glowworn in the neighbourhood. Components in a GSOA depend only on

information accessible in their neighbourhood to make possible decisions. Thus, each

component selects a probabilistic neighbour that has a higher suitable dimension and moves

toward it. These movements, which are based only on local information and selective

neighbour interactions, enable a swarm of components to partition into disjoint subgroups that

steer toward and meet with a multiple optimum of a given multimodal function, whereby the

functional integrity of the components is not compromised.

Figure 6.6. Mechanisme of the glowworm swarm optimisation algorithm

E
N

D

Yes

Best solution

found

Set initial iteration number =1

Movement phase

𝑃𝑖𝑗(𝑡) =
𝐿𝑗(𝑡) − 𝐿(𝑡)

∑ 𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)

Neighbouring range

𝑟𝑑
𝑖 (𝑡) = 𝑚𝑖𝑛ሼ𝑟𝑠, 𝑚𝑎𝑥ሼ0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}}

Set the maximum iteration

number tmax

Luciferin level

𝐿𝑖 (𝑡) = (1 − 𝜌)𝐿𝑖(𝑡) + 𝛾𝐽(𝑃𝑖(𝑡))
Discrete-time model

𝑥(𝑡) = 𝑥𝑖(𝑡) + ቆ
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

∥ 𝑥𝑗(𝑡) − 𝑥𝑖(𝑡) ∥
ቇ

START

Generate initial

population of glowworms

If Fitness

function

 Fi+1 ˂ Fi

No

111

The following variables are used:

𝐿0 : quantity of luciferin

n: random population of n glowworms (1 ≤ n ≤ 14 in this study)

𝑟𝑑
𝑖 : neighbourhood range

𝑟𝑠: radial sensor range

𝛾: luciferin enhancement constant

𝜌: luciferin decay constant

6.2.2.1. The Luciferin Level

At the inception of the initial iteration, all the glowworms begin with the same value of luciferin

 𝐿0 , these values change depending on the function value at a glowworm position. During the

luciferin-update phase; each glowworm adds its previous luciferin level, i.e., a luciferin

quantity proportional to the fitness of its current location based on the objective function. Also,

a fraction of the luciferin value is subtracted due to the decay in luciferin over time. Thus, the

objective function value for a glowworm at iteration t is calculated using the luciferin update

rule as follows:

𝐿𝑖 (𝑡) = (1 − 𝜌)𝐿𝑖(𝑡) + 𝛾𝐽(𝑃𝑖(𝑡)) (6.11)

Where 𝐿𝑖(𝑡) denotes the luciferin level of glowworm i at time t; J (xi (t)) denotes the

objective function value of glowworm i at time t; xi represents the luciferin’s location of a

glowworm i; 𝜌 represents the luciferin decay constant (0 < 𝜌 < 1), and 𝛾 is enhancement

constant of the luciferin.

6.2.2.2. The Movement Phase

During the movement phase, the probability of the location of a glowworm moves towards a

neighbour that has a luciferin value higher than its own value. The glowworm tends to gain

more attraction as its luciferin level increases. This is derived from the fact that glowworms

112

are attracted to neighbours that glow brighter. The probability p of glowworm i that moves

towards j at time t is given below:

𝑃𝑖𝑗(𝑡) =
𝐿𝑗(𝑡)−𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡)−𝐿𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)
 (6.12)

Where, j ∈ Ni (t) and Ni (t) = {j : dij (t) < 𝑟𝑑
𝑖 (t); 𝐿𝑖 (t) < 𝐿𝑗 (t)}, which is a set of neighbour of

glowworm i at time t, dij (t) denotes the Euclidean space, usually from glowworms i and j at

time t, and 𝑟𝑑
𝑖 (t) denotes the variable neighbourhood difference related to glowworms i and at

time t. Let glowworm i select a glowworm j ∈ Ni (t) with pij (t) given by Eq. 6.12. Then, the

discrete-time of the glowworm movements can be stated as:

𝑥(𝑡) = 𝑥𝑖(𝑡) + (
𝑥𝑗(𝑡)−𝑥𝑖(𝑡)

∥𝑥𝑗(𝑡)−𝑥𝑖(𝑡)∥
) (6.13)

Where, xi (t) represents glowworm i location at time t, . denotes the norm operator in an

Euclidean space.

The pseudocode used to compute the Euclidean space is provided below:

 return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));

6.2.2.3. The Neighbourhood Range

There is an association between glowworm i and j within a neighbourhood range. The term 𝑟𝑑
𝑖

of glowworm i is a dynamic radial range at initial iteration, providing 0 < 𝑟𝑑
𝑖 ≤ rs. When the

glowworms depend only on local information to decide their movements, it is expected that

the number of peaks-captured may be a function of the radial sensor range. In fact, if the sensor

range of each agent covers the entire search space, all the agents move to the global optimum

and the local optima are ignored. Since assuming a priori information about the objective

function (e.g., number of maximum and minimum) is not available, it is difficult to fix the

113

neighborhood range at a value that works well for different function landscapes. For instance,

a chosen neighborhood range rd may work relatively better on objective functions where the

minimum agent distance is more than rd rather than on those where it is less than rd

(Krishnanand and Ghose 2009a). There is an improvement in capability of GSOA to set the

peaks-captured as a function of agents by substituting a constant neighbourhood range with a

variable function, where the number of peaks captured is a strong function of the radial sensor

range (Krishnanand and Ghose 2006b, Krishnanand and Ghose 2009b). Hence, the GSOA

applies an adaptive local-decision domain, which is used effectively to detect the multiple

optimum locations of the multimodal function. Therefore, the neighbourhood range can be

updated as:

𝑟𝑑
𝑖 (𝑡) = 𝑚𝑖𝑛ሼ𝑟𝑠, 𝑚𝑎𝑥ሼ0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}} (6.14)

The pseudocode that is used to select the glowwarm from the neighbourhood based on the

probability is provided below:

int index = rouletteSelect(probabilities);

if(neighborhood.size() > 0) {

 return neighborhood.get(index);

}

return null;

Table 6.1. shows the constant values of the parameters used in this study using the GSOA

approach.

Table 6.1. The constant values of parameters used the GSOA approach

Parameters 𝜌 𝛾 𝛽 𝐿0

Constant values 0.4 0.6 0.08 5

Table 6.2. shows part of the programming approach based on the GSOA. It starts with a random

population of glowworms, which generates a new population of glowworms by updating the

position of glowworms and terminates when the stopping conditions or criteria are met.

114

Table 6.2. Part of the programming approach based on the GSOA

Set number of glowworms = n

Let xi (t) be the location of glowswam i at time t

delay_components_randomly

for i=1 to n do 𝐿𝑖(0) = 𝐿0

𝑟𝑑
𝑖 (0) = r0

set maximum iteration number =

set in = 1

while (in < tmax) do:

{

for each glowworm i do:

 𝐿𝑖 (𝑡 + 1) = (1 − 𝜌)𝐿𝑖(𝑡) + 𝛾𝐽(𝑃𝑖(𝑡 + 1))

 for each glowworm i do:

 {

 Ni(t) = {j : dij (t) < 𝑟𝑑
𝑖 (t); Li(t) < Lj (t)};

 for each glowworm j ∈ Ni(t) do:

 𝑃𝑖𝑗(𝑡) =
𝐿𝑗(𝑡) − 𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)

 J= select_glowworm(p)

𝑥(𝑡) = 𝑥𝑖(𝑡) + ቆ
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

∥ 𝑥𝑗(𝑡) − 𝑥𝑖(𝑡) ∥
ቇ

 𝑟𝑑
𝑖 (𝑡 + 1) = 𝑚𝑖𝑛ሼ𝑟𝑠, 𝑚𝑎𝑥ሼ0,𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}}

 }

 t t+1;

}

6.3. A CAR ENGINE PUMP VALVE CASE STUDY

The engine pump valve is a real product and the University of Portsmouth has the entire details

of this product, also the university make it possible for students who want to do their research

115

specially the Manufacturing and Formula Racing Team. The current issues with the engine

pump valve are described below:

- The original number of feasible assembly sequences that provided by the designer at

the early design stage (this information based on the product details obtained from the

university) shows less than expected number of feasible sequences (five feasible

assembly sequences) due to the number of components. Thus, the time of assembly

sequence of a product can be optimise.

- The number of components can be reduced, for example, number of screws.

- The size of components can be resized.

This experiment will focus on the first issue which is the number of feasible assembly

sequences and that to define the optimal assembly sequence time of the engine pump valve by

using GA and GSOA and comparing the results from each algorithm to find the optimal result.

Figure 6.1. illustrates the integrated programming approach used in this work. The GA and the

GSOA are used to obtain an optimal solution in terms of assembly sequence with a minimal

assembly time. It starts by selecting input parameters based on number of sequences, priority

In order to examine the applicability and the validation of GA (Figure 6.2.) and GSOA models

(Figure 6.6.), a real case study was applied. Table 6.3a. shows a list of components used for

assembly of a car engine pump valve as a case study of this work. Figure 6.7. (also see

Appendix 2) shows the drawing of assembly parts of the pump valve to be used. The drawing

has been done by using CAD. Table 6.3b. (also see Appendix 2) shows the feasible assembly

sequences for the engine pump valve. As clarified above, there are five feasible assembly

sequences that have been provided with the entire details of this product from the University

of Portsmouth (Table 6.3b. (A, B, C, D and E)). The database for the generation of the rest of

116

feasible assembly sequences was constituted by the Liaison graph, Figure 6.8., the table of

liaisons, Table 6.4. and the table of assembly, Table 6.5.

The liaison graph is very conjectural for humans but is complicated to be managed by a

computer, while it can easily handle the data in matrix method. To operate data about the

product (possible assembly between components), the table of liaison will be linked to the

graph of liaison.

Lij = {
1 if there is a liaison between component 𝑎𝑖 and component 𝑎𝑗

 0 otherwise

The table of liaisons is the description of the abutment matrix of the graph of liaisons (Wilson

and Watkins 1990).

Figure 6.8a. illustrates the liaison graph of the engine pump valve assembly sequences. Figure

6.8b. shows an example of the feasible assembly sequences in (A):

(A): 11,8,6,4,13,10,2,1,12,3,9,5,14,7

As described below, will start connecting component 11 with component 8, and so on, until all

components assembled together.

{11,8},{6},{4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6},{4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6,4},{13},{10},{2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6,4,13},{10},{2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6,4,13,10},{2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6,4,13,10,2},{1},{12},{3},{9},{5},{14},{7}

{11,8,6,4,13,10,2,1},{12},{3},{9},{5},{14},{7}

{11,8,6,4,13,10,2,1,12},{3},{9},{5},{14},{7}

117

{11,8,6,4,13,10,2,1,12,3},{9},{5},{14},{7}

{11,8,6,4,13,10,2,1,12,3,9},{5},{14},{7}

{11,8,6,4,13,10,2,1,12,3,9,5},{14},{7}

{11,8,6,4,13,10,2,1,12,3,9,5,14},{7}

{11,8,6,4,13,10,2,1,12,3,9,5,14,7}

Table 6.4. shows the liaisons between two possible assembly components. The binary numbers

0 and 1 indicate the impossibility and possibility, respectively. Table 6.5. shows the average

time taken for assembly between two possible components.

 Table 6.3a. Assembly components of the car engine pump valve

Component Number Component

 Names

1 Arm

2 Body

3 Bolt

4 Bolt-Shaft

5 Key

6 Nut-Shaft

7 Nut3

8 Plate

9 Retainer

10 Shaft

11 Sleeve1

12 Sleeve2

13 Washer-shaft

14 Washer3

118

Figure 6.7. Components of the car engine pump valve

119

Table 6.3b. The feasible assembly sequences of the car engine pump valve

Figure 6.8b. The Liaison graph of assembly sequence A

Create (A M) of the feasible

assembly sequences of an automobile

engine pump valve

(A): 11,8,6,4,13,10,2,1,12,3,9,5,14,7

(B): 8,11,10,6,13,4,2,1,12,9,3,5,14,7

(C): 8,11,6,10,13,4,2,1,12,9,3,5,14,7

(D): 11,8,6,4,13,10,2,1,9,12,3,5,14,7

(E): 8,11,4,6,10,13,2,1,12,9,3,5,14,7

(F): 11,8,4,6,13,10,2,1,12,3,9,5,14,7

(G): 8,11,6,4,13,10,2,1,12,9,3,5,14,7

(H): 11,8,6,4,13,10,2,1,3,9,12,5,14,7

(J): 8,11,4,10,13,6,2,1,12,9,3,5,14,7

(K): 8,11,10,6,13,4,2,1,12,9,3,5,14,7

(L): 11,8,6,4,13,10,2,1,3,9,12,5,14,7

(M): 8,11,4,10,13,6,2,1,12,9,3,5,14,7

Figure 6.8. The Liaison graph for the car

engine pump valve

11 8

6

4

2

10

13

1

12

3 9

14

5

7

120

Table 6.4. The priority matrix showing liaisons between two possible assembly components of the car engine pump valve

Component

(name &

number)

Sleeve

(11)

Plate

(8)

Nut-

Shaft

(6)

Bolt-

Shaft

(4)

Washer-

Shaft

(13)

Shaft

(10)

Body

(2)

Arm

(1)

Sleeve

(12)

Retainer

(9)

Bolt

(3)

Key

(5)

Washer

(14)

Nut

(7)

Sleeve (11) 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Plate (8) 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Nut-Shaft

(6)

1 1 1 0 0 0 0 0 0 0 0 0 0 0

Bolt-Shaft

(4)

1 1 1 1 0 0 0 0 0 0 0 0 0 0

Washer-

Shaft (13)

1 1 1 1 1 0 0 0 0 0 0 0 0 0

Shaft (10) 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Body (2) 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Arm (1) 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Sleeve (12) 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Retainer

(9)

1 1 1 1 1 1 1 1 1 1 0 0 0 0

Bolt (3) 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Key (5) 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Washer

(14)

1 1 1 1 1 1 1 1 1 1 1 1 1 0

Nut (7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

121

Table 6.5. Average assembly time between two possible components of the car engine pump valve

Component

(name &

number)

Sleeve

(11)

Plate

(8)

Nut-

Shaft

(6)

Bolt-

Shaft

(4)

Washer-

Shaft

(13)

Shaft

(10)

Body

(2)

Arm

(1)

Sleeve

(12)

Retainer

(9)

Bolt

(3)

Key

(5)

Washer

(14)

Nut

(7)

Sleeve1

(11)

0 2 2 1 1 3 4 2 3 1 4 5 5 4

Plate (8) 2 0 5 2 2 6 6 3 10 3 2 2 5 2

Nut-Shaft

(6)

3 3 0 2 2 3 3 1 3 4 5 3 4 5

Bolt-Shaft

(4)

2 5 5 0 11 15 4 4 4 4 4 5 8 2

Washer-

Shaft (13)

4 4 10 10 0 7 13 2 5 6 5 4 6 3

Shaft (10) 3 5 2 7 7 0 2 13 7 8 6 6 4 5

Body (2) 4 8 1 3 3 4 0 3 18 7 7 7 6 8

Arm (1) 6 7 2 8 8 5 6 0 6 6 4 3 5 6

Sleeve (12) 8 6 4 5 5 8 7 17 0 52 2 4 7 4

Retainer

(9)

9 8 6 2 2 7 18 7 4 0 42 2 8 7

Bolt (3) 7 6 8 8 8 13 6 5 3 3 0 5 5 5

Key (5) 4 14 18 7 7 4 4 3 6 4 5 0 4 4

Washer

(14)

2 6 6 2 9 6 2 4 1 5 6 4 0 1

Nut (7) 4 3 5 4 4 5 3 4 8 7 3 4 1 0

Note: Assembly time is calculated in seconds.

122

Output from the Genetic Algorithm Implementation for Pump

The Genetic Algorithm was implemented and in Java and it is continuously iterated for 5

generations by creating new chromosome. Each result shows the assembly time in response

to each of 10 chromosomes, of which each depicts a possible assembly sequence for the car

engine pump valve. In the end of each generation assembly time in seconds were computed

of the chromosomes were generated to plot the graphs. The Java implementation of the GA

algorithm is provided in appendix A. The figure 6.9a provides the generation 1 from the GA

where the highest assembly time was 690s and the smallest assembly time was 567s. The

figure 6.9b provides the generation 2 from the GA where the highest assembly time was still

690 and the smallest assembly time was 510s. This indicates that the assembly time from

generation 1 to generation 2 was reduced by 57s. The figure 6.9c provides the generation 3

from the GA where the highest assembly time was 580 and the smallest assembly time was

500s. This indicates that the assembly time was further reduced in 3rd generation by 10s. The

figure 6.9d provides the generation 4 from the GA where the highest assembly time was 530s

and the smallest assembly time was 500s. The figure 6.9e provides the generation 5 from the

GA where there is no highest or smallest assembly time where all the iteration got the same

results which is 500s. Therefore, it is clear that the lowest assembly time taken in the GA was

500s which came in the 3rd and 4th generation but got prevalence in 5th generation. Moreover,

from the observation it is possible to state that the 2nd generation of GA had more fluctuation

in the assembly times compared to other generations.

123

Figure 6.9 a. Assembly time obtained using the GA in response to each of chromosomes in

generation 1

Figure 6.9 b. Assembly time obtained using the GA in response to each of chromosomes in

generation 2

124

Figure 6.9 c. Assembly time obtained using the GA in response to each of chromosomes in

generation 3

Figure 6.9 d. Assembly time obtained using the GA in response to each of chromosomes in

generation 4

125

Figure 6.9e. Assembly time obtained using the GA in response to each of chromosomes in

generation 5

Figure 6.10. shows the comparison in assembly time between the theoretical results and the

computerised results obtained from the GA programming (using Java language) under the

same conditions, which are associated with the generation number from 1 to 5, respectively.

There is a reason behind using the theoretical calculation in the research case studies and that

because both products are between Simple product and Medium product (see section 6.2.),

also the feasible assembly sequence for both products are defined whether by the product

designer at the early stage or during the experiment. Based on the feasible assembly sequence

and the assembly time for each component and the calculation formula that has been applied

during this research, then it can be clear to obtain 2 types of results (Theoretical results and

Computerised results) and compare between them to find the optimal solution. But it is really

hard to apply the theoretical calculation for a large product (see section 6.2.) due to the number

of components and hard to manage all feasible assembly sequence.

126

It can be seen that the assembly time obtained from generation 1 is 570 seconds, which is

slightly higher than 567 seconds obtained from the theoretical result. For the result of

generation 2, the assembly time obtained from both ways is approximately the same. After

this generation, the difference of assembly time between theoretical results and computerised

results is equal to 50 seconds. It is important to note that both in theoretical results and

computerised results the minimum assembly time of the pump did not change. Therefore, it

is possible to derive that the computerised algorithm is more effective in evolving and

identifying new chromosome that can minimise the assembly time.

Figure 6.10. Comparison in assembly time between the theoretical result and computerised

result using the GA in response to generation number

567

559

550 550 550

570
560

500 500 500

400

420

440

460

480

500

520

540

560

580

600

1 2 3 4 5

A
ss

em
b

ly
 T

im
e

(s
)

Generation number

Theoritical Results

Computerised Results

127

Output from the Glowswarm Algorithm Implementation for Pump

The Glowswarm Optimisation Algorithm was implemented and in Java and it is continuously

iterated for 5 generations by creating new agents. In the end of each generation fitness values

of the gents were generated to plot the graphs. The Java implementation of the GSOA

algorithm is provided in appendix 2. From the analysis with GA algorithm the generation

responses from the GSOA algorithm is slightly different. The figure 6.11a provides the

generation 1 from the GSOA where the highest assembly time was 646s and the smallest

assembly time was 520s. The figure 6.11b provides the generation 2 from the GSOA where

the highest assembly time was still 649s and the smallest assembly time was 510s. This

indicates that the assembly time from generation 1 to generation 2 was reduced by 10s. The

figure 6.11c provides the generation 3 from the GSOA where the highest assembly time was

646s and the smallest assembly time was 500s. This indicates that the assembly time was

further reduced in 3rd generation by 10s. The figure 6.11d provides the generation 4 from the

GSOA where the highest assembly time was 530s and the smallest assembly time was 494s.

The figure 6.11e provides the generation 5 from the GSOA where the highest assembly time

was 500s and the smallest assembly time was 494s. Therefore, it is clear that the lowest

assembly time taken in the GSOA was 494s which came in the 4th generation but got

prevalence in 5th generation. Moreover, from the observation it is possible to state that the

3rd generation of GSOA had more fluctuation in the assembly times compared to other

generations.

128

Figure 6.11a. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 1

Figure 6.11b. Assembly time obtained using the GSOA in response to each of chromosomes

in generation2

129

Figure 6.11c. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 3

Figure 6.11d. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 4

130

Figure 6.11e. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 5

Figure 6.12. shows the comparison in assembly time between the theoretical results and the

computerised results obtained from the GSOA programming (using Java language) under the

same conditions, which are associated with the generation number from 1 to 5, respectively.

The graph indicates that that the computerised assembly time in 1st generation is higher than

the theoretical results by 16s. However, the difference between them reduced in 2nd

generation but still the theoretical results remained better than the computerised results. The

theoretical results and computerised results of GSOA are same. However, from the 4th and 5th

generations the computerised results are lower than theoretical results by 6s. However, it is

identified in the theoretical results the lowest assembly time was identified in the 3rd

generation where else, in the computerised results the lowest assembly time was identified

only in the 4th generation. It is possible to derive that the computerised algorithm is more

effective in evolving and identifying new chromosome that can minimise the assembly time.

131

Figure 6.12 shows the comparison in assembly time between the theoretical result and

computerised result of GSOA in response to the generation number

By comparing the results obtained using the GA and the GSOA, respectively, it can be seen

in Figure 6.9e and 6.11e that both the computerised results have the lowest value of assembly

time which is 500 seconds for GA and 494 seconds for GSOA. The comparative result also

shows that the GSOA outperforms the GA as the minimal assembly time obtained using the

GA is 500 seconds, compared to 494 seconds using the GSOA as illustrated in Figure 6.10

and Figure 6.12. As a result of this, there is an average of 6 seconds per unit in the reduction

of assembly time of the engine pump valve assembly. However, it is also identified that in the

5th generation all the iterations got the lowest assembly time for GA but only some of the

iterations got the lowest assembly time for GSOA.

504
502

500 500 500

520

510

500

494 494

485

490

495

500

505

510

515

520

525

1 2 3 4 5

SH
O

R
TE

ST
 A

SS
EM

B
LY

 T
IM

E
(S

)

GENERATION NUMBER

COMPARISON FOR GSOA

Theoretical Results Computerised Results

132

6.4. A BALL PEN CASE STUDY

The ball pen is defined as a small product due to the number of components. This product has

been used by some researchers for different reasons (e.g. explaining the assembly system)

(Fawaz and Qian 2017), (see section 3.5).

The current issues with a ball pen product are described below:

- Reducing assembly times (therefore costs) is vital particularly for small

manufacturing companies to survive in an increasingly competitive market. Thus, the

study provides and approach in obtaining an optimal or near-optimal assembly

sequence of the product for a small-sized company.

- The material of components.

This second experiment will use GA and GSOA to define the optimal assembly sequence time

of ball pen and comparing the results from each algorithm to find the optimal result.

Table 6.13. shows a list of components used for assembly of a ball pen. Figure 6.13. illustrates

a sequential order of assembly components of a ball pen. Figure 6.15. shows the feaseible

assembly sequences of the ball pen. Figure 6.15. illustrates the liaison graph of the ball pen

assembly sequences. Table 6.14. shows the liaisons between two possible assembly

components. Table 6.15. shows the average time taken for assembly between two possible

components.

Table 6.13. Assembly components of the ball pen

Component

Number

Component

Name

1 Cap

2 Head

3 Tube

4 Ink (fluid)

5 Body

 6 Button

Figure 6.13. The ball pen assembly components

133

Figure 6.14. The feasible assembly sequences (A, B, C, D) of the ball pen

{{2},{3},{4},{5},{6},{1}}

{{2,3},{4},{5},{6},{1}}

{{2,3,4},{5},{6},{1}}

{{2,3,4,5},{6},{1}}

{{2,3,4,5,6},{1}}

{{3},{2},{4},{5},{1},{6}}

{{3,2},{4},{5},{1},{6}}

{{3,2,4},{5},{1},{6}}

{{3,2,4,5},{1},{6}}

{{3,2,4,5,1},{6}}

{{2},{3},{4},{5},{1},{6}}

{{2,3},{4},{5},{1},{6}}

{{2,3,4},{5},{1},{6}}

{{2,3,4,5},{1},{6}}

{{2,3,4,5,1},{6}}

{{3},{2},{4},{5},{6},{1}}

{{3,2},{4},{5},{6},{1}}

{{3,2,4},{5},{6},{1}}

{{3,2,4,5},{6},{1}}

{{3,2,4,5,6},{1}}

{{3,2,4,5,6,1}} {{2,3,4,5,1,6}}

{{2,3,4,5,6,1}}

{{3,2,4,5,1,6}}

D C B A

134

The components of the entire ball pen are assigned an assembly part numbers, ranging from

1-6, most importantly, all the possible sequences are equally shown in Figure 6.14. The four

chosen possible sequences are taken as only reasonable paths and for the sake of time and cost

management, as well as putting simplicity into consideration. The first part to start the

assembly cannot be c4 or c1. Starting with c4 is obviously impossible, as the ink (liquid) has

to be contained in something, in this case in c2 and c3. The assembly might start with c2, to

which c3 is added, then the link c4 is squirted, the body c5 and the button c6 are inserted, then

the cap concludes the assembly. This assembly sequence is: c2, c3, c4, c5, c6, c1, another

feasible assembly sequence is: c2, c3, c4, c5, c1, c6.

Figure 6.15. The liaison graph for the ball pen

2 3

4

5

6 1

135

Table 6.14. The liaisons between two possible assembly components of the ball pen

Component

number

a1 a2 a3 a4 a5 a6

a1 0 1 0 0 0 0

a2 1 0 1 0 1 0

a3 0 1 0 1 0 0

a4 0 0 1 0 1 0

a5 0 1 0 1 0 1

a6 0 0 0 0 1 0

Table 6.15. Average assembly time between two possible components of the ball pen

Component

number

Cap Head Tube Ink Body Button

Cap
0 3 4 5 6 6

Head
3 0 4 5 6 8

Tube
4 5 0 6 7 7

Ink
5 6 7 0 8 8

Body
6 7 8 9 0 7

Button
3 4 6 7 4 0

Output from the Genetic Algorithm Implementation for Pen

The Genetic Algorithm was implemented and in Java and it is continuously iterated for 5

generations by creating new chromosome. Each result shows the assembly time in response

to each of 10 chromosomes, of which each depicts a possible assembly sequence for the pen.

In the end of each generation assembly time in seconds were computed of the chromosomes

were generated to plot the graphs. The Java implementation of the GA algorithm is provided

in appendix A. The figure 6.16a provides the generation 1 from the GA where the highest

assembly time was 40s and the smallest assembly time was 30s. The figure 6.16b provides

136

the generation 2 from the GA where the highest assembly time was still 38s and the smallest

assembly time was 30s. This indicates that the assembly time from generation 1 to generation

2 did not reduce. The figure 6.16c provides the generation 3 from the GA where the highest

assembly time was 33s and the smallest assembly time was 26s. This indicates that the

assembly time was reduced in 3rd generation by 4s. The figure 6.16d provides the generation

4 from the GA where the highest assembly time was 33s and the smallest assembly time was

26s. The figure 6.16e provides the generation 5 from the GA where there is no highest or

smallest assembly time where all the iteration got the same results which is 26s. Therefore, it

is clear that the lowest assembly time taken in the GA was 26s which came in the 3rd and 4th

generation but got prevalence in 5th generation. Moreover, from the observation it is possible

to state that the 2nd generation of GA had more fluctuation in the assembly times compared

to other generations.

 Figure 6.16a. Assembly time obtained using the GA in response to each of

chromosomes in generation 1

137

Figure 6.16b. Assembly time obtained using the GA in response to each of chromosomes in

generation 2

Figure 6.16c. Assembly time obtained using the GA in response to each of chromosomes in

generation 3

138

Figure 6.16d. Assembly time obtained using the GA in response to each of chromosomes in

generation 4

Figure 6.16e. Assembly time obtained using the GA in response to each of chromosomes in

generation 5

139

Figure 6.17. shows the comparison in assembly time between the theoretical results and the

computerised results obtained from the GA programming (using Java language) under the

same conditions, which are associated with the generation number from 1 to 5, respectively.

The graph indicates that that the computerised assembly time in 1st generation is higher than

the theoretical results by 1s. However, the difference between them was same in 2nd

generation. However, since 3rd generation the assembly time of computerised results is 2s

lower than the theoretical results. It is important to note that both in theoretical results and

computerised results the minimum assembly time of the pen did not change. Therefore, it is

possible to derive that the computerised algorithm is more effective in evolving and

identifying new chromosome that can minimise the assembly time.

Figure 6.17 shows the comparison in assembly time between the theoretical result and

computerised result of GA in response to the generation number

29 29
28 28 28

30 30

26 26 26

24

25

26

27

28

29

30

31

1 2 3 4 5

SH
O

R
TE

ST
 A

SS
EM

B
LY

 T
IM

E
(S

)

GENERATION NUMBER

COMPARISON FOR GA

Theoretical Results Computerised Results

140

Output from the Glowswarm Algorithm Implementation for Pen

The Glowswarm Optimisation Algorithm was implemented and in Java and it is continuously

iterated for 5 generations by creating new agents. In the end of each generation fitness values

of the gents were generated to plot the graphs. The Java implementation of the GSOA

algorithm is provided in appendix B. From the analysis with GA algorithm the generation

responses from the GSOA algorithm is slightly different. The figure 6.18a provides the

generation 1 from the GSOA where the highest assembly time was 38s and the smallest

assembly time was 31s. The figure 6.18b provides the generation 2 from the GSOA where the

highest assembly time was still 38s and the smallest assembly time was 31s. This indicates

that the assembly time from generation 1 to generation 2 did not reduce. The figure 6.18c

provides the generation 3 from the GSOA where the highest assembly time was 33s and the

smallest assembly time was 24s. This indicates that the assembly time was further reduced in

3rd generation by 7s. The figure 6.18d provides the generation 4 from the GSOA where the

highest assembly time was 32s and the smallest assembly time was 24s. The figure 6.18e

provides the generation 5 from the GSOA there is no highest or smallest assembly time

because all the iterations were 24s assembly time. Therefore, it is clear that the lowest

assembly time taken in the GSOA was 24s which came in the 3rd and 4th generation but got

prevalence in 5th generation. Moreover, from the observation it is possible to state that the

2nd generation of GSOA had more fluctuation in the assembly times compared to other

generations.

141

Figure 6.18a. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 1

Figure 6.18b. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 2

142

Figure 6.18c. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 3

Figure 6.18d. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 4

143

Figure 6.18e. Assembly time obtained using the GSOA in response to each of chromosomes

in generation 5

Figure 6.19. shows the comparison in assembly time between the theoretical results and the

computerised results obtained from the GSOA programming (using Java language) under the

same conditions, which are associated with the generation number from 1 to 5, respectively.

The graph indicates that that the computerised assembly time in 1st generation is higher than

the theoretical results by 2s. However, the difference between them increased in 2nd

generation by 4s. However, from the 3rd, 4th and 5th generations the computerised results are

lower than theoretical results by 1s. However, it is identified in the lowest assembly time was

identified in the 3rd generation. It is possible to derive that the computerised algorithm is more

effective in evolving and identifying new chromosome that can minimise the assembly time.

144

Figure 6.19 shows the comparison in assembly time between the theoretical result and

computerised result of GSOA in response to the generation number

By comparing the results obtained using the GA and the GSOA, respectively, it can be seen

in Figure 6.16e and 6.18e that both the computerised results have the lowest value of assembly

time which is 26 seconds for GA and 24 seconds for GSOA. The comparative result also

shows that the GSOA outperforms the GA as the minimal assembly time obtained using the

GA is 26 seconds, compared to 24 seconds using the GSOA as illustrated in Figure 6.14 and

Figure 6.16. As a result of this, there is an average of 2 seconds per unit in the reduction of

assembly time of the ball pen assembly.

29

27

25 25 25

31

31

24 24 24

0

5

10

15

20

25

30

35

1 2 3 4 5

SH
O

R
TE

ST
 A

SS
EM

B
LY

 T
IM

E
(S

)

GENERATION NUMBER

COMPARIOSN FOR GSOA

Theoretical Results Computerised Results

145

CHAPTER 7

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK

7.1. DISCUSSION

The thesis reports a study into investigation of GA and GSOA optimisation methods

for solving assembly sequence optimisation problems with a development of a multi-

objective optimisation model that can be used for quantifying energy consumptions

and costs for assembly of a product. Assembly has an important share in manufacturing

costs and lead time, thus, optimisation of assembly sequence of a product can have a

significant positive impact. Chapter 1 introduced the ASP and its optimisation involves

components and operations of these components in possible forms. The research was carried

out in chapter 2 by examining the previous attempts to solve the ASP optimisation problem,

and the authors identified a number of issues, so far that it is not adequately handled in the

context of optimising dealing with a large scale, highly constrained, combinatorial

optimisation problem, which are, precisely, the features of the ASP problem. It was pointed

out that all previous developments in S/O of the ASP only concerned reduced-size problems.

Due to the character of the problem and the lack of proper tools, it is the impossibility to

tackle full-scale problems required large scale, artificial, reductions in its size and

complexity. This has been done, previously, by using artificially simplifying hypothesis,

Hence, the results may not be used directly in practice, if and when they were obtained.

Chapter 3, 4 reviewed,The study shows that GA can be used as an optimisation tool for

solving combinatorial problems by representing assembly sequences as chromosomes. Their

selection as an optimisation tool for ASP was justified, along with particulars of the special

146

GA to be used in this case.It was also pointed out that a successful S/O of the ASP has

to start with a proper modelling activity. Thus, prior to attempting to S/O the ASP problem,

a number of models had to be considered and assessed. A proper modelling method of the

AS problem encoded as chromosomes is crucial as it directly influences the type and variety

of assembly sequences and plans that can be generated/optimised. It also modelling the

product for assembly purposes - encoding and storing constraints in assembly. The quality of

this model directly affects the complexity of relations that appear between the components

and assembly operations in a product and can be considered during assembly sequence

generation and optimisation. The degree of realism can also be incorporated in the

optimisation algorithms. In Chapter 5, the idea of GSOA was derived from the nature of

glowworms who are able to modify the amplitude of their light emission and use the

bioluminescence glow for different purposes. It is involved in a deployment of glowworms,

luciferin-update, movement and local-decision domain. Through a literature review, it was

found that the GSOA method was not reported as being used for solving the assembly

sequence optimisation problem. The glowworm swarm optimisation is the latest and most

advance method of swarm intelligence method. Also, this study shows that the GSOA can be

an effective approach used for a simultaneous search in obtaining an optimal solution in terms

of assemble sequence of a product of multiple optimal values usually based on different

objective functions.

7.2. CONCLUSIONS

The study demonstrates the feasibility and applicability using the GA and the GSOA

approaches for resolving the assembly sequence optimisation problem for the car engine pump

valve and the ball pen products in terms of reduction of assembly time. The result indicates

147

that the GSOA outperforms the GA with a reduction of 3 seconds in assembly time per unit

of the car engine pump valve. The study also demonstrated that this can be a useful decision-

making tool in obtaining an optimal or near-optimal assembly sequence of for product

designers. Moreover, it can be proofed that GSOA gives minimal assembly time than GA by

looking at the results from the ball pen case study.

7.2.1. GA and GSOA

The study demonstrates the feasibility and applicability using the GA and the GSOA

approaches for resolving the assembly sequence optimisation problem for the car engine pump

valve. The aim of this study aimed to reduce assembly time using in terms of reduction of

assembly time, both algorithms were implemented in Java. Both GA and GSOA programing

approaches were described. It The result indicates that the GSOA outperforms is

outperforming the GA with a reduction of 6 seconds in assembly time per unit of the car

engine pump valve. A reduction of 6 seconds is not generic and not the same if GSOA applied

to different product. Furthermore, the results of the second case study (ball pen) shows that

GSOA has an optimal assembly time than GA with a reduction of 2 seconds. The study also

demonstrated that this can be a useful decision-making tool in obtaining an optimal or near-

optimal assembly sequence of for product designers.

7.2.2. NOVELTY

The previous studies show that GSOA has not been used to solve the ASP issued and the

results of this research shows that GSOA gives optimal results specially for assembly

sequence time.

148

7.3. FUTURE WORK

It is suggested that the further work in assembly planning and optimisation may consider the

following issues:

• Development of a multi-objective GSOA model which can be used for making a trade-off

decision based on a number of criteria specified by users.

• This model can also incorporate a number of parameters relating to walking-worker

assembly of products in which assembly performance can be largely affected by human

workers in a human-centred assembly system.

• Mathematical or analytical modelling techniques might not be sufficient if a detailed

analysis is required for a complex assembly process as the objective function may not be

expressible as an explicit function of the input parameters. Thus, an integrated simulation-

based GSOA method incorporating these parameters based on a discrete even simulation

model is recommended as part of this study.

• Development of the proposed GSOA to become a commercial product, linked, as a module,

in CAD modelling packages.

• Simulation can manipulated by upgrading GSOA.

• Applying a hybrid GSOA for solving other assembly issues.

149

REFRENCES

Akagi F. and Osaki H. (1980). The method of analysis of assembly of assembly work based on the

fastener method. Bulletin of the JSME 23(184): 1670-75.

Alçada-Almeida, L., Coutinho-Rodrigues, J. and Current, J. (2009). A multi-objective modeling

approach to locating incinerators, Socio-Economic Planning Sciences, 43, 111–120.

Aljarah I. and Ludwig S. A. (2013). A New Clustering Approach based on Glowworm Swarm

Optimisation, IEEE Congress on Evolutionary Computation, pp. 2642-2649.

Aljarah I. and Ludwig S.A. (2016). A Scalable MapReduceenabled Glowworm Swarm

Optimisation Approach for High Dimensional Multimodal Functions, International Journal of

Swarm Intelligence Research (IJSIR), vol. 7, no. 1, pp. 32-54.

Arthur C. Sanderson, Luiz S. Homem de Mello and Hui Zhang (1990). Assembly Sequence

Planning, AI Magazine, vol. 11, no. 1, pp. 1-20.

Atheer B. and Nordin M. J. (2017). Mutation and Memory mechanism for improving Glowworm

Swarm Optimisation Algorithm, 7th Annual Computing and Communication Workshop and

Conference (CCWC), IEEE.

Azzi, A., Battini, D., Faccio, M., and Persona, A. (2012). Mixed model assembly system with

multiple secondary feeder lines: layout design and balancing procedure for ATO environment.

International Journal of Production Research, 50(18), 5132-5151.

Barrera J. and Coello C.A.C. (2009). A review of particle swarm optimisation methods used for

multimodal optimisation, in Innovations in swarm intelligence: Springer, pp. 9-37.

Ben-Arieh D. B. (1994). Computer-Aided Process Planning for Assembly l -Generation of

Assembly Operation Sequence. Int. J. Prod. Res. 32(3): 643-656.

Ben-Arieh D. B. (1994). A Methodology for Analysis of Assembly Operation's difficulty. Int. J.

Prod. Res 32(8): 1879-1895.

Biao Y., Chaoyong Z., Kunlei L. and Xinyu S. (2008). A crossover honey-bees mating optimisation

algorithm for assembly sequence planning problem, 8th International Conference on Natural

Computation, pp. 1-6.

Boothroyd G. and P. Dewhurst (1994). Product design for manufacture and assembly. New York,

150

Marcel Dekker.

Bourjault A. (1984). Contribution a une Approche Methodologique de l'Assemblage Automatise.

Sciences Physiques, Universite de Franche Comte.

Brits R., Engelbrecht A.P. and Van Den-Bergh F. (2002). A niching particle swarm optimizer. Proc.

of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, pp. 692–

696.

Chang C.C., Tseng H.E. and Meng L.P. (2009). Artificial immune systems for assembly sequence

planning exploration, Eng. App. of Artif. Intell, 22, pp. 1218-1232.

Cheng R. and Gen M. (1999). A Survey of Job-Shop Scheduling Based on Genetic Algorithms.

EDA Conference '99, Vancouver.

Choi C. K. and Zha X. F. (1998). On the Automatic generation of product Assembly Sequences.

Int. J. Prod. Res. 36: 617-633.

Choi Y.K., Lee D.M. and Cho Y.B. (2009). An approach to multi-criteria assembly sequence

planning using genetic algorithms, Int. J. of Adv. Manuf. Tech. 42, pp. 180-188.

Davidor Y. (1991) Genetic Algorithms and Robotics: a Heuristic Strategy for Optimisation.

Singapore, World Scientific.

De Fazio T. L. and D. E. Whitney (1987). Simplified Generation of All Mechanical Assembly

Sequences. IEEE Journal of Robotics and Automation RA-3 no. 6: 640-658.

De Fazio T. L. and Rhee S. J. (1997). A Design-Specific Approach to Design-for- Assembly (DFA)

for Complex Mechanical Assemblies. IEEE International Symposium on Assembly Task

Planning, Marina del Rey, CA.

DeFloriani L. and G. Nagy (1991). Representation of Solid Objects by a Modular Boundary Model.

Computer-Aided Mechanical Assembly Planning. Boston, Kluwer Academic: 41-80.

Delchambre A. (1992). Computer_aided Assembly Planning. London, Chapman & Hall.

Dini G. and Santochi M. (1992). Automated Sequencing and Subassembly Detection in Assembly

Planning. Annals of the CIRP 41(1): 1-4.

Dini G. and Failli F. (1999). Generation of Optimised Assembly Sequences Using Genetic

Algorithms. Annals of the CIRP 48(1): 17-20.

151

Donoso, Y. and Fabregat, R. (2007). Multi-Objective Optimisation In Computer Networks Using

Metaheuristics. New York (US): Taylor & Francis Group.

Dorigo M. and Di Caro G. (1999) Ant colony optimization: a new meta-heuristic. IEEE, Congress

on Evolutionary Computation-CEC99, Washington, DC, USA.

Ehrgott, M. (2005) Multicriteria Optimisation. 2nd ed., Springer, New York.

Falkenauer E. and Delchambre A. (1992). A Genetic Algorithm for Bin Packaging and Line

Balancing. IEEE Intl. Conference on Robotics and Automation, Nice, France.

Fawaz H and Qian W. (2017). A Genetic Algorithm for Solving an Assembly Sequence Problem,

Applied Mechanics and Materials, ISSN: 1662-7482, Vol. 872, pp 420-424, Trans Tech

Publications, Switzerland.

Gairola A. (1986). Design Analysis for Automatic Assembly. International Journal for Production

Research 24(4): 839-849.

Gao H., Xu W., Sun J. and Tang Y. (2010). Multilevel Thresholding for Image Componentation

Through an Improved Quantum-Behaved Particle Swarm Algorithm, IEEE Transactions on

Instrumentation and Measurement, vol.59, no.4, pp. 934,946.

Gen M. and Cheng R. (1997). Genetic Algorithms and Engineering Design, John Wiley & Sons,

Inc., 605 Third Ave., New York, NY 10158, 411, pp. 89-95.

Gen M. and Cheng R. (1996). A Survey of Penalty Techniques in Genetic Algorithms, Proceedings

of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 804-809.

Golabi S. I. (1996) Automatic generation of all geometrically feasible assembly sequences using

solid modelling, University of South Australia.

Goldberg D. E. (1989). Genetic Algorithms in Search, Optimisation & Machine Learning, Addison

Wesley Publishing Company, Inc.

Gorai A., and Ghosh A. (2011). Hue-preserving color image enhancement using particle swarm

optimisation, Recent Advances in Intelligent Computational Systems (RAICS), IEEE,

pp.563,568.

Gottipolu R. B. and K. Ghosh (1997). Representation and Selection of Assembly Sequences in

Computer-Aided Assembly Process Planning. Int. J. Prod. Res. 35(12): 3447-3465.

https://ieeexplore.ieee.org/xpl/conhome/6342/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6342/proceeding
https://ieeexplore.ieee.org/xpl/conhome/3838/proceeding
https://ieeexplore.ieee.org/xpl/conhome/3838/proceeding

152

Hart, W. E., Laird, C., Watson, J. P. and Woodruff, D. L. (2012). Pyomo–optimisation modeling in

python, 67, Springer Science & Business Media.

Haupt R. L. and S. E. Haupt (1998). Feasible Genetic Algorithms. New York, John Wiley & Sons,

Inc.

He L., Tong X. and Wang Q. (2013a). Glowworm Swarm Optimisation Algorithm Based on

Hierarchical Multi-subgroups, Journal of Information & Computational Science 10: 4, pp.1245-

1251, 2013.

He L., Tong X. and Wang Q. (2013b). Glowworm Swarm Optimisation Algorithm with improved

movement pattern, Proc. of the IEEE 6th International Conference on Intelligent Networks and

Intelligent Systems.

Holland J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan

Press.

Homem de Mello L. S. and A. C. Sanderson (1989). A Correct and Complete Algorithm for the

Generation of Mechanical Assembly Sequences. IEEE International Conference on Robotics and

Automation.

Homem de Mello L. S. and A. C. Sanderson (1990). AND/OR Graph Representation of Assembly

Plans. IEEE Transactions on Robotics and Automation 6, no. 2(April 1990): 188-199.

Homem de Mello L. S. and A. C. Sanderson (1991a). Representation of Mechanical Assembly

Sequences.” IEEE Transactions on Robotics and Automation 7, no. 2: 211-227.

Homem de Mello L. S. and A. C. Sanderson (1991b). Two Criteria for the Selection of Assembly

Plans: Maximising the Flexibility of Sequencing the Assembly Tasks and Minimising the

Assembly Time through Parallel Execution of Assembly Tasks. IEEE Transactions on Robotics

and Automation 7, no. 5.

Homem de Mello L. S. and S. Lee, Eds. (1991c). Computer-Aided Mechanical Assembly Planning.

Boston/Dordecht/London, Kluver Academic Publishers.

Homem de Mello, L. S. (1989). Task Sequence Planning for Robotic Assembly. Electrical and

Computer Engineering. Pittsburg, Pennsylvania, Carnegie Mellon: 212.

Hong D.S. and Cho H.S. (1999). A genetic-algorithm based approach to the generation of robotic

153

assembly sequence, Control Engineering Practice, 7, pp. 151-159.

Hongbo S. and shuxia L. (2008). The Comparison Between Genetic Simulated Annealing

Algorithm and Ant Colony Optimisation Algorithm for ASP, Proceedings of the IEEE

International Conference on Automation and Logistics, pp. 1-6.

Hongbo S., Shuxia L., Degang G. and Peng L. (2006). Genetic Simulated Annealing Algorithm-

Based Assembly Sequence Planning, International Technology and Innovation Conference, pp.

1573-1579.

Huang K. and Zhou Y. Q. (2012). A Novel Chaos Glowworm Swarm Optimisation Algorithm for

Optimisation Functions, Proc. of Springer, Bio-Inspired Computing and Applications, Volume

6840 of the series Lecture Notes in Computer Science pp. 426-434.

Huang Y. F. and C. S. G. Lee (1988). Precedence Knowledge in Feature Mating Operation

Assembly Planning. West Lafayette, Indiana, Engineering Research Center for Intelligent

Manufacturing Systems, School of Engineering, Purdue University.

Huang Y. F. and C. S. G. Lee (1991). A Framework of Knowledge-based Assembly Planning.

IEEE International Conference on Robotics and Automation, Sacramento, California.

Jayakumar D. N. and Venkatesh P. (2014). Glowworm swarm optimisation algorithm with topsis

for solving multiple objective environmental economic dispatch problem, Applied Soft

Computing, vol. 23, pp. 375-386.

Jayakumar, D. N. and Venkatesh, P. (2014). Glowworm swarm optimisation algorithm with topsis

for solving multiple objective environmental economic dispatch problem, Applied Soft

Computing, vol. 23, pp. 375-386.

Jones R. E. and R. H. Wilson (1996). A Survey of Constraints in Automated Assembly Planning.

IEEE International Conference on Robotics and Automation.

Jones R. E., Wilson R.H., and Calton T. L. (1997). Constraint-Based Interactive Assembly

planning. IEEE International Conference on Robotics and Automation.

Jones R. E., Wilson R. H., and Calton T. L. (1998). On constraints in assembly planning. IEEE

Transactions on Robotics and Automation, 16(6): 849–863.

Karr C. L. and Freeman L. M. (1999). Industrial Applications of Genetic Algorithms. International

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4629333
http://link.springer.com/book/10.1007/978-3-642-24553-4
http://link.springer.com/bookseries/558

154

Series on Computational Intelligence. New York.

Kavraki L. and Latombe J. C. (1993). On the Complexity of Assembly Partitioning. Information

Processing Letters 48(5): 229-235.

Kazerooni M. (1997). An Integrated Methodology for Cellular Manufacturing System Design. IT,

Engineering and Environment. Adelaide, South Australia.

Kennedy J. and Eberhart R. (1995). Particle Swarm Optimisation. Proc. IEEE International

Conference on Neural Networks, pp. IV: 1942–1948.

Kowalczyk R. (1997). Constrained Genetic Operators preserving Feasibility of Solutions in Genetic

Algorithms. IEE Genetic Algorithms in Engineering Systems: Innovations and Applications.

Krause J. and Ruxton G. D. (2002). Living in Groups. Oxford: Oxford University Press.

Krcmar M. and A. P. Dhawan (1994). Application of Genetic Algorithms in Graph Matching. IEEE

World Congress on computational Intelligence.

Krishnanand, K. N. and Ghose, D. (2005). Detection of multiple source locations using a glowworm

metaphor with applications to collective robotics. In Proceedings of IEEE swarm intelligence

symposium, pp. 84-91.

Krishnanand K. N. and Ghose D. (2006 a). Glowworm swarm based optimisation algorithm for

multimodal functions with collective robotics applications, Multiagent and Grid Systems, vol. 2,

no. 3, pp. 209-222.

Krishnanand K. N. and Ghose D. (2006 b). Theoretical foundations for multiple rendezvous of

glowworm-inspired mobile agents with variable local decision domains. In Proceedings of

American control conference. Piscataway: IEEE Press, pp. 3588-3593.

Krishnanand K. N. and Ghose D. (2008). Theoretical foundations for rendezvous of glowworm-

inspired agent swarms at multiple locations, Robotics and Autonomous Systems, vol. 56, no. 7,

pp.549-569.

Krishnanand K. N. and Ghose D. (2009a). Glowworm swarm optimisation: a new method for

optimizing multimodal functions, Int. J. Computational Intellingence Studies, vol.1, no.1, pp. 93-

119.

Krishnanand K. N. and Ghose D. (2009b). Glowworm swarm optimisation for simultaneous

155

capture of multiple local optima of multimodal functions, Swarm Intelligenece, vol. 3, no. 2, pp.

87–124.

Lazzerini B. and G. Dini (1999). Assembly Planning Based on Genetic Algorithms. 18th

International Conference of the North American Fuzzy information.

Lee S. (1992a). Backward Assembly Planning with Assembly Cost Analysis. IEEE International

Conference on Robotics and Automation, Nice, France.

Lee S. (1992b). Backward Assembly Planning. Artificial intelligence applications in

manufacturing. D. S. N. S. H. K. A. (Fazel) Famili. Menlo Park, CA, AAAI Press/MIT Press: 61-

101.

Lee S. (1994). Subassembly Identification and Evaluation for Assembly Planning. IEEE

Transactions on Systems, Man and Cybernetics 24(3): 493-503.

Lee S. and Y. G. Shin (1991). Assembly Coplanner: Cooperative Assembly Planner Based on

Subassembly Extraction. Computer-Aided Mechanical Assembly Planning. S.

Lee S. and Kim G. J. (1993). Combining Assembly Planning with Redesign: An Approach for

More Effective DFA. IEEE International Conference on Robotics and Automation.

Lei, D. and Guo, X. (2015). A parallel neighbourhood search for order acceptance and scheduling

in flow shop environment. International Journal of Production Economics, 165, 12-18.

Liao W. H., Kao Y. and Li Y. S. (2011). A sensor deployment approach using glowworm swarm

optimisation algorithm in wireless sensor networks, Expert Systems with Applications, vol. 38,

no. 10, pp. 12180-12188.

Marian R., Luong L.H.S. and Abhary K. (2006). A genetic algorithm for the optimisation of

assembly sequences, Computers & Industrial Engineering, 50, pp. 503–527.

Marian R., Abhary K. and Luong L. (2000a). On the Definition of Fitness Function for the

Optimisation of Assembly Sequences using GA. ICME - The Eight International Conference on

Manufacturing Engineering, Sydney.

Marian R., Abhary K. and Luong L. (2001). Definition and Representation of Precedence Relations

in Assembly Optimisation. 5-th Intl &9-th Annual Mechanical Engineering Conference, Rasht -

Iran.

156

Marian R., Luong L. and Abhary K. (1999). Applications of Genetic Algorithms in Design for

Assembly. EDA Conference, Vancouver.

Marian R., Luong L. and Abhary K. (1999). Chromosome Generation for Assembly Planning

Using a Guided Search. The Third Australia-Japan Joint Workshop on Intelligent and

Evolutionary Systems, Canberra, Australia.

Marian R., Luong L. and Abhary K. (1999). Optimisation of Assembly Sequences Using Genetic

Algorithms. 10-th International DAAAM Symposium, Viena, Austria.

Marian R., Luong L. and Abhary K. (2000b). A new crossover technique for Assembly Sequence

Planning Using GA. Computer Integrated Manufacturing CIM 2000, Singapore.

Marian R., Luong L. and Abhary K. (2003). Assembly sequence planning and optimisation using

genetic algorithms Part I. Automatic generation of feasible assembly sequences, Applied Soft

Computing, 2/3F, pp. 223–253.

Marinaki M. and Marinakis Y. (2016). A Glowworm Swarm Optimisation algorithm for the

Vehicle Routing Problem with Stochastic Demands, Proc. of ELSEVIER Expert Systems With

Applications 46, 145–163.

Messac, A. (2015). Optimisation in Practice with MATLAB: For Engineering Students and

Professionals, 1st Edition, Cambridge University Press.

Michalewicz Z. (1992). Genetic algorithms + Data Structures = Evolution Programs. Berlin,

Springer-Verlag.

Michalewicz Z. (1994). Genetic algorithms + Data Structures = Evolution Programs. Berlin,

Springer-Verlag.

Michalewicz Z. (1996). Genetic algorithms + Data Structures = Evolution Programs. Berlin,

Springer-Verlag.

Milner J. M. and Graves S. C. (1994). Using Simulated Annealing to Select Least-Cost Assembly

Sequences. IEEE International Conference on Robotics and Automation.

Min L., Xiaohu Y., Yongxing C., Qian P. and Hailong Z. (2013). A Method for the Oil

Chromatographic On-line Data Reconciliation Based on GSO and SVM, TENCON Spring

Conference, pp. 322-326.

157

Mo X., Li X. and Zhang Q. (2016). The variation step adaptive Glowworm swarm optimisation

algorithm in optimum log interpretation for reservoir with complicated lithology. In Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), 12th International

Conference, IEEE, pp. 1044-1050.

Molloy, O., S. Tilley (1998). Design for manufacturing and assembly - concepts, arhitectures and

implementation. London, Chapman & Hall.

Nilsson N., J. (1980). Principles of Artificial Intelligence. Palo Alto, CA, Tioga Publishing Co.

Nof S. Y., Wilbert W. and Warnecke H. (1997). Industrial Assembly, Chapman & Hall.

Ou L.M. and Xu X. (2013). Relationship matrix based automatic assembly sequence generation

from a CAD model, Comp.-Aided Design, 45, pp. 1053-1067.

Pal S. K. and P. P. Wang, Eds. (1996). Genetic algorithms for pattern recognition. Boca Raton, FL,

CRC Press.

Pan G. and Xu Y. (2016). Chaotic glowworm swarm optimisation algorithm based on Gauss

mutation. In Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),

2016 12th International Conference, IEEE, pp. 205-210).

Pandu, R. G. (2009). Multi-Objective Optimisation: Techniques And Applications In Chemical

Engineering (Advances in Process Systems Engineering). Singapore: World Scientific

Publishing.

Pareto, V. (1906). Manual of political economy. New York: A.M. Kelley.

Park J. H. and H. Asada (1994). Sequence Optimisation for High Speed Robotic Assembly Using

Simulated Annealing. EEE International Conference on Robotics and Automation.

Partridge B. L. (1982). The structure and function of fish schools. Science American, 245, pp. 90-

99.

Partridge B. L. and Pitcher T. J. (1980). The sensory basis of fish schools: relative role of lateral line

and vision. Journal of Comparative Physiology, 135, pp. 315-325.

Pengzhen D., Zhenmin T. and Yan S. (2014). A Quantum Glowworm Swarm Optimisation

Algorithm based on Chaotic Sequence, International Journal of Control and Automation Vol.7,

No.9, pp.165-178.

158

Rashid M., Hutabarat W. and Tiwari A. (2011). A review on assembly sequence planning and

assembly line balancing optimisation using soft computing approaches, Int. J. of Adv. Manuf.

Tech.59, pp. 335-349.

Romney B. and Goddard C. (1995). An Efficient System for Geometric Assembly Sequence

Generation and Evaluation. ASME International Computers in Engineering Conference, Boston,

Massachussets.

Ruzica, S., and Wiecek, M. M. (2003). A Survey of Approximation Methods In Multi-objective

Programming. Research Report, Fachbereich Mathematik, Universit¨at, Kaiserslautern, Gottlieb-

Daimler-Straße, 676(63), Kaiserslautern, Germany.

Santochi M. and G. Dini (1992). Computer Aided Planning of Assembly Operations: The Selection

of Assembly Sequences. Robotics and Computer Integrated Manufacturing 9(6): 439-446.

Sebaaly M. F. and Fujimoto H. (1996a). A Genetic Planner for Assembly Automation. 5th

International Conference on Concurrent Engineering Research and Applications, Tokyo, Japan.

Sebaaly M. F. and Fujimoto H. (1996b). A genetic planner for assembly automation. In Proceedings

of international conference on evolutionary computation (pp. 401–406). Nagoya: IEEE.

Sebaaly M. F. and Fujimoto H. (1996c). Linear and Non-Linear Assembly Planning: Fuzzy Graph

Representation and GA Search.

Senin N., Groppetti R. and Wallace D.R. (2000). Concurrent assembly planning with genetic

algorithms, Robotics and Computer Integrated Manufacturing, 16, pp. 65-72.

Shin C. K. and Hong D. S. (1995). Disassemblability Analysis for Generating Robotic Assembly

Sequences. IEEE International Conference on Robotics and Automation.

Shpitalni M. and Elber G. (1989). Automatic assembly of three-dimensional structures via

connectivity graphs. annals of the CIRP 38(11): 21-28.

Tang Z., Zhou Y., and Chen X. (2013). An improved glowworm swarm optimisation algorithm

based on parallel crossover mutation, in International Conference on Intelligent Computing, pp.

198-206: Springer.

Tseng H.E. (2006). Guided genetic algorithms for solving a larger constraint assembly problem,

International Journal of Production Research, Vol. 44, No. 3, pp. 601–625.

159

Tseng Y.J., Kao H.T. and Huang F.Y. (2010a). Integrated assembly and disassembly sequence

planning using a GA approach, International Journal of Production Research, Vol. 48, No. 20, pp.

5991–6013.

Tseng Y.J., Chen J.Y., Huang F.Y (2010b). A multi-plant assembly sequence planning model with

integrated assembly sequence planning and plant assignment using GA, Int J Adv Manuf Technol,

48, pp. 333–345.

Thiruvenkadam K. and Perumal N. (2017). A Review on Glowworm Swarm Optimization,

International Journal of Information Technology (IJIT) – Vol. 3 Issue 2, pp. 49-56.

Thomas J. P. and Nissanke N. (1996). A Hyerarchical Petri Net Framework for the Representation

and Analysis of Assembly. IEEE Transactions on Robotics and Automation 12, no. 2: 268-279.

Tichem M. and Storm T. (1999). How to Achieve a Breakthrough in Industrialisation of Flexible

Assembly Automation. 9-th International Flexible Automation and Intelligent Manufacturing

(FAIM) Conference, Tilburn, The Netherlands.

Van Den-Bergh F. (2002). An analysis of Particle Swarm Optimizers. PhD Thesis, Department of

Computer Science, University of Pretoria, Pretoria, South Africa.

Van Den-Bergh F. and Engelbrecht A. P. (2002). A new locally convergenet particle swarm

optimizer. Proc. of IEEE International Conference on Systems, Man, and Cybernetics, pp. 96–

101.

Wang, R., & Fang, H. (2001). Aggregate production planning with multiple objectives in a fuzzy

environment. European Journal of Operational Research, 133, 521–536.

Whitley D. (2014). An executable model of a simple genetic algorithm. Foundations of genetic

algorithms, 2 (15-19), pp. 45-62.

Wilson R. J. and J. J. Watkins (1990). Graphs - An Introductory approach. New York, John Wiley

and Sons.

Wolter J. and P. Chandrasekaran (1991). A Concept for a Constraint-Based Representation of

Functional and Geometric Design Knowledge. ACM Symposium on Solid Modeling

Foundations and CAD/CAM Applications, AUstin, Texas, USA.

Wolter J. D. (1989). On the automatic generation of assembly plans. IEEE International Conference

160

on Robotics and Assembly Planning, Scottsdale, Arizona.

Wolter J. D. (1990). A Constraint Based Approach to Planning with Subassemblies. IEEE

International Conference on Systems Engineering.

Wolter J. D. (1990). Representing Subassembly Trees by Deepest Common Ancestor Relations,

Texas A&M University.

Wolter J. D. (1991). A Combinatorial Analysis of Enumerative Data Structures for Assembly

Planning. IEEE International Conference on Robotics and Automation, Sacramento, California,

USA.

Wolter J. D. (1988). On the Automatic Generation of Plans for Mechanical Assembly. Computer,

Information and Control Engineering. Ann Arbor, Michigan: 127.

Wu B., Qian C., Ni W. and Fan S. (2012). The improvement of glowworm swarm optimisation for

continuous optimisation problems, Expert Systems with Applications, vol. 39, no. 7, pp. 6335-

6342.

Xing Y. and Wang Y. (2012). Assembly sequence planning based on a crossover particle swarm

optimisation and genetic algorithm, Int. J. of Prod. Res, 24, pp. 7303-7312.

Yandra (1999). Optimisation of AGV-Based Flexible Manufacturing Systems Design Using

Genetic Algorithms and Expert Systems. IT, Engineering and Environment. Adelaide, South

Australia.

Yang J. and X. Li (2013). Map reduce based method for big data semantic clustering, in Proceedings

of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC’13.

Washington, DC, USA: IEEE Computer Society, pp. 2814-2819.

Yang Y., Zhou Y. and Gong Q. (2010). Crossover Artificial Glowworm Swarm Optimisation

Algorithm for Solving System of Nonlinear Equations, Journal of Computational Information

Systems 6:10, pp. 3431-3438.

Yao X. (1991). Simmulated Annealing with Extended Neighbourhood. International Journal of

Computer Mathematics 40: 169-189.

Yasin A., Puteh N., Daud R., Omar M. and Abdullah S.L.S. (2010). Product assembly sequence

optimisation based on genetic algorithm, Int. J. on Comp. Sci. and Eng. 29, pp. 3065-3070.

161

Yu J. and Wang C. (2013). A max–min ant colony system for assembly sequence planning, Int J

Adv Manuf Technol, 67, pp. 2819–2835.

Yu Z. and Jine Z. (2012). Glowworm Swarm Optimisation and Heuristic Algorithm for Rectangle

Packing Problem, International Conference on Information Science and Technology, IEEE, pp.

136-140.

Yu Z. and Yang X. (2013). Full Glowworm Swarm Optimisation Algorithm for Whole-Set Orders

Scheduling in Single Machine, The ScientificWorld Journal, Volume, Article ID 652061, 6 pages.

Zeng C., Gu T., Chang L. and F. Li (2013). A Novel Multi-agent Evolutionary Algorithm for

Assembly Sequence Planning, Journal of Software, Vol. 8, No. 6, pp. 1518-1525.

Zhan Z. H., Zhang J., Li Y. and Chung H. S. (2009). Adaptive particle swarm optimisation, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1362-

1381

Zhang Y., MA X. and MIAO Y. (2011). Localization of Multiple Odor Sources Using Modified

Glowworm Swarm Optimisation with Collective Robots, Proceedings of the 30th Chinese

Control, pp. 1899-1904.

Zhang Y., Ogura H., Ma X., Kuroiwa J. and Odaaka T. (2014). A Genetic Algorithm Using

Infeasible Solutions for Constrained Optimisation Problems, The Open Cybernetics & Systemics

Journal, 8, 904-912.

Zhou W., Yan J., Li Y., Xia C. and Zheng J. (2013). Imperialist competitive algorithm for assembly

sequence planning, Int. J. of Adv. Manuf Tech. 67, pp. 2207–2216.

Zhou Y., Zhe O., Jiakun L. and Gaoli S. (2012). A Novel K-means Image Clustering Algorithm

Based on Glowworm Swarm Optimisation, przegląd elektrotechniczny, pp. 266-270.

Zhou, C. C., Yin, G. F. and Hu, X. B. (2009). Multi-objective optimisation of material selection for

sustainable products: artificial neural networks and genetic algorithm approach. Materials &

Design, 30(4), 1209-1215.

162

APPENDIX 1

Types of assembly plans:

Figure A1.1. A product that can be assembled with a C-S-L-NM assembly

Figure A1.2. A product that can be assembled with a C-S-NL-M assembly

163

Figure A1.3. A product that can be assembled with a C-S-NL-NM assembly

Figure A1.4. A product that can be assembled with a C-NS-L-M assembly

164

Figure A1.5. A product that can be assembled with a C-NS-L-NM assembly

Figure A1.6. A product that can be assembled with a C-NS-NL-M assembly

165

Figure A1.7. A product that can be assembled with a C-NS-NL-NM assembly

Figure A1.8. A product that can be assembled with a NC-S-L-M assembly

166

Figure A1.9. A product that can be assembled with a NC-S-L-NM assembly

Figure A1.10. A product that can be assembled with a NC-S-NL-M assembly

167

Figure A1.11. A product that can be assembled with a NC-S-NL-NM assembly

Figure A1.12. A product that can be assembled with a NC-NS-L-M assembly

168

Figure A1.13. A product that can be assembled with a NC-NS-L-NM assembly

Figure A1.14. A product that can be assembled with a NC-NS-NL-M assembly

169

Figure A1.15. A product that can be assembled with a NC-NS-NL-NM

assembly

170

APPENDIX 2

CASE STUDY 1:

Another drawing (3D and 2D) of assembling the car engine pump valve by using Creo:

(a)

171

(b)

(c)

172

(d)

Figure A2.1. (a, b, c and d) Assembling the car engine pump valve components (3D)

173

Figure A2.2. Assembling the car engine pump valve components (2D)

174

Table A.2.1. Selections from feasible assembly sequence of the car engine pump valve obtained by running number of generations,

as detailed in Chapter 6

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

175

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Retainer
(9)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

176

Sleeve1
(11)

Plate
(8)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

177

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

178

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Sleeve2
(12)

Bolt(3) Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

179

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Sleeve1
(11)

Plate
(8)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Retainer
(9)

Sleeve2
(12)

Bolt(3) Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

180

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Retainer
(9)

Sleeve2
(12)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Shaft
(10)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Shaft
(10)

Washer-
Shaft
(13)

Nut-
Shaft
(6)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Bolt-
Shaft(4)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Plate
(8)

Sleeve1
(11)

Shaft
(10)

Nut-
Shaft
(6)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

181

Plate
(8)

Sleeve1
(11)

Nut-
Shaft
(6)

Shaft
(10)

Washer-
Shaft
(13)

Bolt-
Shaft(4)

Body
(2)

Arm(1) Bolt(3) Sleeve2
(12)

Retainer
(9)

Key
(5)

Washer3(14) Nut3(7)

Table A.2.2. Selections from the results obtained by running the GA for t h e c a r engine pump valve, as detailed in Chapter 7

 Evaluation Fitness Function Probability Cumulative Probability Random generation

Generation 1

Chromosome1 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.100630 0.897400

Chromosome2 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.201261 0.332350

Chromosome3 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.100630 0.301891 0.212770

Chromosome4 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.407128 0.473301

Chromosome5 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.512365 0.202089

Chromosome6 11,8,6,4,13,10,2,1,3,9,12,5,14,7 646 0.001546 0.092387 0.604752 0.876247

Chromosome7 11,8,6,4,13,10,2,1,3,9,12,5,14,7 690 0.001546 0.092387 0.697139 0.316298

Chromosome8 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 0.802376 0.058517

Chromosome9 11,8,6,4,13,10,2,1,3,9,12,5,14,7 646 0.001546 0.092387 0.894763 0.066287

Chromosome10 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.105237 1.000000 0.886208

Generation 2

Chromosome1 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 0.101771 0.764770

Chromosome2 8,11,6,10,13,4,2,1,12,9,3,5,14,7 559 0.001786 0.103224 0.204995 0.257894

Chromosome3 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.097316 0.302311 0.038804

Chromosome4 8,11,6,10,13,4,2,1,12,9,3,5,14,7 559 0.001786 0.103224 0.405536 0.278019

Chromosome5 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 0.507306 0.625510

Chromosome6 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.097316 0.604622 0.665656

Chromosome7 11,8,6,4,13,10,2,1,9,12,3,5,14,7 567 0.001761 0.101771 0.706393 0.086999

Chromosome8 8,11,10,6,13,4,2,1,12,9,3,5,14,7 563 0.001773 0.102492 0.808885 0.060807

Chromosome9 11,8,6,4,13,10,2,1,3,9,12,5,14,7 690 0.001546 0.089344 0.898229 0.744691

Chromosome10 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.101771 1.000000 0.479808

182

Generation 3

Chromosome1 8,11,10,6,13,4,2,1,12,9,3,5,14,7 567 0.001761 0.098508 0.098508 0.098182

Chromosome2 11,8,6,4,13,10,2,1,12,3,9,5,14,7 593 0.001684 0.094196 0.192703 0.412804

Chromosome3 8,11,10,6,13,4,2,1,12,9,3,5,14,7 563 0.001773 0.099206 0.291909 0.369934

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.101547 0.393456 0.891797

Chromosome5 8,11,4,10,13,6,2,1,12,9,3,5,14,7 520 0.001812 0.101363 0.494819 0.596652

Chromosome6 8,11,4,6,10,13,2,1,12,9,3,5,14,7 520 0.001812 0.101363 0.596182 0.492588

Chromosome7 8,11,4,6,10,13,2,1,12,9,3,5,14,7 531 0.001802 0.100815 0.696997 0.363546

Chromosome8 11,8,4,6,13,10,2,1,12,3,9,5,14,7 538 0.001789 0.100094 0.797090 0.276685

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 520 0.001815 0.101547 0.898637 0.660970

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 520 0.001812 0.101363 1.000000 0.772859

Generation 4

Chromosome1 8,11,4,10,13,6,2,1,12,9,3,5,14,7 507 0.001812 0.100089 0.100089 0.127972

Chromosome2 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.200359 0.443244

Chromosome3 11,8,4,6,13,10,2,1,12,3,9,5,14,7 528 0.001789 0.098835 0.299194 0.655711

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.399464 0.389733

Chromosome5 8,11,4,6,10,13,2,1,12,9,3,5,14,7 519 0.001802 0.099548 0.499012 0.645236

Chromosome6 8,11,4,10,13,6,2,1,12,9,3,5,14,7 504 0.001812 0.100089 0.599101 0.392541

Chromosome7 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.699371 0.227274

Chromosome8 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.799641 0.683385

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100270 0.899911 0.733207

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 500 0.001812 0.100089 1.000000 0.438438

Generation 5

Chromosome1 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.100018 0.133368

Chromosome2 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.200036 0.409262

Chromosome3 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.300054 0.127552

Chromosome4 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.400072 0.563917

Chromosome5 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.500091 0.706026

183

Chromosome6 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.600109 0.493229

Chromosome7 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.700127 0.389490

Chromosome8 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.800145 0.358732

Chromosome9 8,11,6,4,13,10,2,1,12,9,3,5,14,7 500 0.001815 0.100018 0.900163 0.024617

Chromosome10 8,11,4,6,10,13,2,1,12,9,3,5,14,7 500 0.001812 0.099837 1.000000 0.656380

Table A.2.3. Selections from the results obtained by running the GSOA for t h e c a r engine pump valve, as detailed in Chapter 6

Swarms Population Fitness value

11,8,6,4,13,10,2,1,12,9,3,5,14,7 510

11,8,4,6,13,10,2,1,12,9,3,5,14,7 507

11,8,4,13,6,10,2,1,12,9,3,5,14,7 520

11,8,4,13,6,10,2,1,12,3,9,5,14,7 504

8,11,6,4,13,10,2,1,12,9,3,5,14,7 550

8,11,4,6,10,13,2,1,12,9,3,5,14,7 540

8,11,4,10,13,6,2,1,12,9,3,5,14,7 551

11,8,6,4,13,10,2,1,12,3,9,5,14,7 593

11,8,4,6,13,10,2,1,12,3,9,5,14,7 502

1,5,3,4,2,6,7,8,9,10,11,12,13,14 563

1,6,4,3,2,5,7,9,8,10,13,12,11,14 560

1,9,4,2,3,5,7,6,8,11,10,14,13,12 640

13,10,11,9,12,14,8,5,7,6,3,4,2,1 500

5,2,3,1,13,11,10,12,14,6,7,9,8,4 515

5,7,6,8,9,4,3,1,2,10,14,13,12,11 516

5,7,6,8,9,4,3,1,2,10,14,13,11,12 613

5,7,6,8,9,4,3,1,2,10,14,12,11,13 497

5,7,6,8,9,4,3,1,2,14,13,12,11,10 509

5,7,6,8,9,4,3,1,10,14,13,12,11,2 514

13,10,9,12,14,8,5,7,6,3,4,2,1,11 562

184

1,3,2,5,7,9,8,10,13,12,11,14,6,4 511

1,5,3,4,2,6,8,9,10,11,12,13,14,7 497

1,9,4,3,5,7,6,8,11,10,14,13,12,2 532

13,10,11,9,12,14,5,7,6,3,4,2,1,8 540

5,7,6,8,9,4,3,2,14,13,12,11,10,1 525

1,9,4,2,3,5,7,6,8,10,14,13,12,11 497

13,10,11,12,14,8,5,7,6,3,4,2,1,9 520

13,11,9,12,14,8,5,7,6,3,4,2,1,10 570

11,8,4,6,13,2,1,12,9,3,5,14,7,10 551

8,11,4,6,10,2,1,12,9,3,5,14,7,13 564

13,11,9,12,14,8,7,6,3,4,2,1,10,5 578

11,8,4,6,13,2,1,12,9,3,14,7,10,5 497

8,11,4,6,10,2,1,12,9,3,14,7,13,5 502

7,6,8,9,4,3,2,14,13,12,11,10,1,5 509

1,9,4,3,7,6,8,11,10,14,13,12,2,5 502

1,2,3,4,6,7,8,9,10,11,12,13,14,5 576

1,3,2,4,5,6,7,8,9,10,11,12,13,14 497

3,2,1,4,6,5,7,9,8,11,10,13,12,14 545

6,3,1,2,4,5,8,9,10,11,14,13,12,7 587

1,3,2,4,7,8,9,10,11,12,13,14,6,5 613

3,2,1,4,6,5,7,9,11,10,13,12,14,8 600

6,3,1,2,4,5,8,9,11,14,13,12,7,10 601

8,11,6,4,13,10,2,1,12,9,3,5,14,7 497

1,3,2,4,7,,8,9,10,11,12,13,14,6,5 560

7,6,8,9,4,3,2,14,13,12,11,10,1,5 504

13,11,9,12,14,8,5,7,6,3,4,2,1,10 575

5,7,6,8,9,4,3,2,14,13,12,11,10,1 525

13,11,9,12,14,8,7,6,3,4,2,1,10,5 570

185

APPENDIX 3

The software codes used during this research:

Code 1:

%initialize population

N=6; % number of parts
M = 100;% population size
preMatrix = [];
cr=0.20; %set cross over rate
mr=0.1; %set mutation rate
cp; %cross point
G; %total genes length
mr; %mutation rate
gn; %number of genes in assembly chromosome
f = [0,0,0,0,0,0,0]; %initialize fitness sum for each assembly

chromosome
F=0; % total fitness sum for all assembly chromosome
R; % roulette wheel probability for each assembly chromosome
r; % random number generated for each assembly chromosome
P; % cumulative probability of each assembly chromosome
parentChromosome; %denotes selected parents chromosome that will

mate
genearation =1;
% generate initial random chromosomes

global init= randi([4,10],M,N);disp(R); % generate random

chromosome values 1-10 minutes

%validity check using precedence matrix
function a = checkValidity(randNum,prec)
 % Check random Matrix against precedence Matrix
 a = 0; % validity checker variable
 randCount =1;% used to hold randNum count
 len=length(prec);
 sumRow =0;
 if(randCount=1) % check for first element to see if its a

valid starting sequence
 disp(randNum(1));
 S = sum(prec(randNum(1)),2);

186

 disp(S);

 % start

 else
 return 0;
 end

end

% generate valid initial random chromosomes
%val=randi([4,10],M,N);
while 1
 if genCount>=100
 break;
 end
 randMatrix = randperm(4)
 checkValidity(randMatrix,precMatrix);
 genCount=genCount+1;

end

%main loop runs for 100 generation

while generation < 100 do
 %Evaluation & Selection of assembly chromosome

 for countOuter = 1:C % for each chromosome
 %Evaluate each chromosome
 for countInner = 1 :i

f[countOuter]+=1/chromosome[countOuter][countInner];

 end %end inner for loop
 %compute total fitness sum for all chromosome
 F += f [countOuter];
 end %end outer for loop

187

 %chromosomes probability computation using Roulette wheel
 %obtaining probability using Roulette Wheel
 for countR =1 To countR <=C % for each

chromosome
 %compute probability of each

chromosome
 R[countR] = f[countR]/F;
 end %end for loop
 %cumulative probability
 holdCount; % hold current chromosome count
 for countC =1 To countC <=C % for each

chromosome
 holdCount = countC;
 %compute probability of each

chromosome
 while (holdCount>=1):
 P[countC] += R[holdCount];
 --holdCount;
 end %end while loop
 end %end for loop

 %chromosomes actual selection
 %generate random number for each

chromosomes
 for countN =1 To countN <=C % for each

chromosome
 r[countN] = rand(0,1) % generate

random number between 0 and 1
 end %

%choose which chromosome to retain, if the random number

generated is less than the
%the cumulative probability of the any of the chromosome, the

chromosome at the
%first instance is replaced e.g. If random number r [1] is

greater than P [1] and %smaller than P [2] then select

Chromosome [2] as a chromosome in the new %population for next

generation:
 for countR =1 To countR <=C % for each chromosome random

number

188

 for countCP=1 to CountCP<C % for each chromosome

cumulative probability
 if(r[countR] < P[countCP])
 chromosome[countCP] = chromosome

[countR]
 end %end if statement
 end%end inner for loop
 end %end outer for loop

 generation +=generation;

%CrossOver (using one-cut point)

 % select parents assembly chromosomes to mate
 countP=1; %parent chromosome count
 for countC=1:C % for each chromosome
 cp[countC] = rand(0,1)

%generate random number between 0 & 1
 if(r[countC] < cr)
 parentChromosome[countP]

= chromosome[countC]
 end %end if statement
 end %end for loop
 % mate parent chromosomes
 for countC=1:CountP % for each parent chromosome
 R[countC] = rand(1, CountP) %generate random number

between 1 & parent chromosome count

 if(r[countC] != countP)
 %replace chromosome at

countC with chromosomes at countC++ %from randomly generated

cross point cp

swapFromRandomCrossPoint(parentChromoses[countC],

parentChromosomes[++countC], cp)
 else
 %replace chromosome at

countP with chromosomes at 1 %from randomly generated cross

point cp

swapFromRandomCrossPoint(parentChromoses[countP],

parentChromosomes[1], cp)

189

 end %end if statement
 end %end for loop

% Mutation
%compute total length of chromosomes
 G=gn * i
% number of mutations
 M = r*G
% Carry out mutation and replace mutated chromosomes with random

number from (1-6mins)
 count =0;% to track which gene is referred to by random number
 for countM=1:M % for each mutation M
 r[countM] = rand (1, G) %generate random number

between 1 and G
 for countOuter =1:C % for each chromosome
 %Evaluate each chromosome
 for countInner= 1:i
 count++;
 if(count==r[countM])
 if(r[countM]<mr)

chromosomes[countOuter][countInner]= random(1,6);
 end % end inner if

statement
 end % end outer if statement
 end %end inner for loop
 end %end outer for loop
 end %end outer outer for loop

 %compute fitness again
 for countOuter =1 :C % for each chromosome
 %Evaluate each chromosome
 for countInner= 1 :i

f[countOuter]+=1/chromosome[countOuter][countInner];
 end %end inner for loop
 %compute total fitness sum for all chromosome
 F += f [countOuter]
 end %end outer for loop

end % end main while loop

190

Code 2:

import java.util.Scanner;

import java.util.stream.IntStream;

import java.util.Random;

public class GSOAlgorithm {

public static void main (String[] args)

{

 int noComponent =0; //variable to save the no of chromosome for simulation

 int noGeneration =0;

 int noIteration =0;

 int logIteration =0;

 Scanner s = new Scanner(System.in);

 System.out.println("Please send the number of components in a chromosome");

 noComponent =s.nextInt();

 s.nextLine(); // throw away the new line

 int[][] priorityMatrix = new int[noComponent][noComponent]; // initialise the priority matrix

with the number of components

 int[][] setUpTimeMatrix = new int[noComponent][noComponent];

 //Scan the priority matrix values

 for (int i=0;i<noComponent;i++)

 {

 System.out.println("Enter Priority Matrix Row "+(i+1));

 for (int j =0;j<noComponent;j++)

 {

 priorityMatrix[i][j] = s.nextInt(); // scan the integer values from the user

 }

191

 }

 //Scan the setup time matrix values

 for (int i=0;i<noComponent;i++)

 {

 System.out.println("Enter Setup Time Matrix Row "+(i+1));

 for (int j =0;j<noComponent;j++)

 {

 setUpTimeMatrix[i][j] = s.nextInt(); // scan the integer values from the user

 }

 }

 //display the priority matrix entered

 System.out.println("Your priority matrix is given below:");

 for (int i=0;i<noComponent;i++)

 {

 for (int j =0;j<noComponent;j++)

 {

 System.out.print(priorityMatrix[i][j]);

 }

 System.out.println();

 }

 System.out.println("Your SetUp time matrix is given below:");

 for (int i=0;i<noComponent;i++)

 {

 for (int j =0;j<noComponent;j++)

 {

 System.out.print(setUpTimeMatrix[i][j]);

 }

 System.out.println();

192

 }

 System.out.println("Please insert the number of generation");

 noGeneration =s.nextInt();

 s.nextLine();

 System.out.println("Please insert the number of iterations");

 noIteration =s.nextInt();

 s.nextLine();

 int[] minF_Obj = new int[noIteration];

 while (logIteration != noIteration)

 {

 System.out.println("Chromosome initialisation");

 int[][] Chromosome = new int[noGeneration][noComponent];

 for(int i=0;i<noGeneration;i++)

 {

 Chromosome[i] = chromosomeInitialisation(priorityMatrix);

 }

 for(int i=0;i<noGeneration;i++)

 {

 for (int j=0;j<noComponent;j++)

 {

 System.out.print(Chromosome[i][j]);

 }

 System.out.println();

 }

 System.out.println("Chromosome Evaluation");

 int[] F_Obj = new int[noGeneration];

 F_Obj = chromosomeEvaluation(Chromosome,setUpTimeMatrix);

193

 for (int i=0;i<noGeneration;i++)

 System.out.println(F_Obj[i]);

 System.out.println("Chromosome Fitness");

 double[] Fitness = new double[noGeneration];

 Fitness = chromosomeFitness(F_Obj);

 for (int i=0;i<noGeneration;i++)

 System.out.println(Fitness[i]);

 System.out.println("Chromosome Probability");

 double[] Probability = new double[noGeneration];

 Probability = chromosomeProbability(Fitness);

 for (int i=0;i<noGeneration;i++)

 System.out.println(Probability[i]);

System.out.println("Chromosome Cumulative");

 double[] Cumulative = new double[noGeneration];

 Cumulative = chromosomeCumulative(Probability);

 for (int i=0;i<noGeneration;i++)

 System.out.println(Cumulative[i]);

 System.out.println("Chromosome RandomNumber");

 double[] randomNumber = new double[noGeneration];

 randomNumber = chromosomeRandomNumber(Chromosome);

 for (int i=0;i<noGeneration;i++)

 System.out.println(randomNumber[i]);

 System.out.println("Chromosome New Chromosome Generation");

 int[][] newChromosome = new int[noGeneration][noComponent];

 newChromosome = NewCromosomeGeneration(Chromosome,Probability, randomNumber);

 for (int i=0;i<noGeneration;i++)

 {

 for (int j=0;j<noComponent;j++)

194

 {

 System.out.print(newChromosome[i][j]);

 }

 System.out.println();

 }

 System.out.println("Chromosome crossover");

 int cP= (int)(noGeneration *((double)10/(double)100));

 int[][] crossover = new int[cP][noComponent];

 crossover = chromosomeCrossover(Chromosome,10);

 for (int i=0;i<cP;i++)

 {

 for (int j=0;j<noComponent;j++)

 {

 System.out.print(crossover[i][j]);

 }

 System.out.println();

 }

 System.out.println("Chromosome mutation");

 int[][] mutation = new int[2][noComponent];

 mutation = chromosomeMutation(Chromosome,10,priorityMatrix);

 for (int i=0;i<2;i++)

 {

 for (int j=0;j<noComponent;j++)

 {

 System.out.print(mutation[i][j]);

 }

 System.out.println();

 }

195

 System.out.println("Chromosome New Generation");

 int[][] newGeneration = new int[noGeneration][noComponent];

 newGeneration = chromosomeNewGeneration(Chromosome,mutation,crossover);

 for (int i=0;i<noGeneration;i++)

 {

 for (int j=0;j<noComponent;j++)

 {

 System.out.print(newGeneration[i][j]);

 }

 System.out.println();

 }

 //new LineChart_GA("Evaluation of Chromosomes","Evaluation",F_Obj);

 Chromosome =newGeneration;

 int min =F_Obj[0];

 for(int k=0;k<F_Obj.length;k++)

 {

 if (min >F_Obj[k])

 min= F_Obj[k];

 }

 minF_Obj[logIteration]=min;

 System.out.println(min);

 logIteration++;

 }

 new LineChart_GA("Evaluation of Chromosomes","Evaluation",minF_Obj);

}

196

public static int[] chromosomeInitialisation (int[][] priorityMatrix)

{

 int noComponents = priorityMatrix.length;

 int[] chromosome = new int[noComponents];

 int[] firstComponent = new int[noComponents];

 int[] otherComponent = new int[noComponents];

 int sum =0;

 int counter = 0;

 int chromosomeCounter=0;

 boolean componentExist=false;

 for (int i=0;i < noComponents; i++) //for each components

 {

 if (i==0)//for the first component

 {

 for (int j=0;j<noComponents;j++)

 {

 sum = IntStream.of(priorityMatrix[j]).sum(); // Sum each row of priorityMatrix

 if (sum == 0)

 {

 counter=0;

 for (int k = 0; k < firstComponent.length; k++)

 {

 if (firstComponent[k] != 0)

 counter ++;

 }

 firstComponent[counter]= j+1;

 }

 }

197

 //Check whether initial component for chromosome available (priority should be 0)

 if(counter == 0)

 System.out.println("Given priority Matrix is not valid");

 else

 {

 for (int k = 0; k < chromosome.length; k++)

 {

 if (chromosome[k] != 0)

 chromosomeCounter ++;

 }

 //generate random number and pick one component

 Random rn = new Random();

 counter = 0;

 for (int k = 0; k < firstComponent.length; k++)

 {

 if (firstComponent[k] != 0)

 counter ++;

 }

 chromosome[chromosomeCounter]=firstComponent[rn.nextInt(counter)];

 }

 }

 else

 {

 for (int j=0;j<noComponents;j++)

 {

 componentExist = false;

 sum = IntStream.of(priorityMatrix[j]).sum(); // Sum each row of priorityMatrix

 if (sum < i)

198

 {

 for (int k = 0; k < chromosome.length; k++)

 {

 if (chromosome[k] == j+1)

 componentExist=true;

 }

 if (componentExist == false)

 {

 counter = 0;

 for (int k = 0; k < otherComponent.length; k++)

 {

 if (otherComponent[k] != 0)

 counter ++;

 }

 otherComponent[counter]= j+1;

 }

 }

 }

 chromosomeCounter=0;

 for (int k = 0; k < chromosome.length; k++)

 {

 if (chromosome[k] != 0)

 chromosomeCounter ++;

 }

 //generate random number and pick one component

 Random rn = new Random();

 counter = 0;

 for (int k = 0; k < otherComponent.length; k++)

199

 {

 if (otherComponent[k] != 0)

 counter ++;

 }

 chromosome[chromosomeCounter]=otherComponent[rn.nextInt(counter)];

 }

 otherComponent = new int[noComponents]; // empty an array

 }

 return chromosome; // return the chromosome generated

}

public static int[] chromosomeEvaluation (int[][] chromosomeMatrix, int[][] setupTime)

{

 int noGenerations = chromosomeMatrix.length;

 int noComponents = chromosomeMatrix[0].length;

 int[] F_Obj = new int [noGenerations];

 int component;

 int time=0;

 int assemblyTime =0;

 System.out.println(noComponents);

 System.out.println(noGenerations);

 for (int i=0; i<noGenerations;i++)

 {

 for (int j=0;j<noComponents;j++)

 {

 if (j==0)

 {

 component =chromosomeMatrix[i][j];

 assemblyTime = setupTime[component-1][component-1];

200

 }

 else

 {

 component = chromosomeMatrix[i][j];

 for(int k=0;k<=j;k++)

 {

 int tempComponent = chromosomeMatrix[i][k];

 time=time+setupTime[component-1][tempComponent-1];

 }

 assemblyTime =assemblyTime+time;

 time=0;

 }

 }

 F_Obj[i]= assemblyTime;

 }

 return F_Obj;

}

public static double[] chromosomeFitness (int[] F_Obj)

{

 int noGenerations = F_Obj.length;

 double Fitness[] = new double[noGenerations];

 for(int i=0;i<noGenerations;i++)

 {

 Fitness[i]=(1/(1+(double) F_Obj[i]));

 }

 return Fitness;

}

public static double[] chromosomeProbability (double[] Fitness)

201

{

 int noGenerations = Fitness.length;

 double Probability[] = new double[noGenerations];

 double sum =0;

 for(int i=0;i<noGenerations;i++)

 sum =sum+Fitness[i];

 for(int i=0;i<noGenerations;i++)

 {

 Probability[i]=Fitness[i]/sum;

 }

 return Probability;

}

public static double[] chromosomeCumulative (double[] Probability)

{

 int noGenerations = Probability.length;

 double Cumulative[] = new double[noGenerations];

 double sum =0;

 for(int i=0;i<noGenerations;i++)

 {

 for (int j=0;j<=i;j++)

 {

 sum =sum+Probability[j];

 }

 Cumulative[i]=sum;

 }

 return Cumulative;

}

public static double[] chromosomeRandomNumber (int[][] chromosome)

202

{

 int noGenerations = chromosome.length;

 double randomNumber[] = new double[noGenerations];

 for(int i=0;i<noGenerations;i++)

 {

 randomNumber[i]= Math.random(); //Generate random number between 0 and 1

 }

 return randomNumber;

}

public static int[][] NewCromosomeGeneration(int[][] chromosome,double[] Probability,

double[] randomNumber)

{

 int logs=0;

 int noGenerations = chromosome.length;

 int noComponents = chromosome[0].length;

 int[] tempMatrix = new int[noComponents];

 int[][] newChromosome = new int[noGenerations][noComponents];

 for (int i=0;i<noGenerations;i++)

 {

 for(int j=0;j<noGenerations;j++)

 {

 if (j==0 && logs ==0)

 {

 if (Probability[j] > randomNumber[i])

 {

 logs=1;

 for(int k=0;k<noComponents;k++)

203

 tempMatrix[k]=chromosome[j][k];

 }

 }

 else

 {

 if(j<noGenerations-1 && logs==0 && Probability[j] < randomNumber[i] &&

Probability[j+1] > randomNumber[i])

 {

 logs=1;

 for(int k=0;k<noComponents;k++)

 tempMatrix[k]=chromosome[j+1][k];

 }

 if(j<noGenerations-1 && logs==0 && Probability[j] > randomNumber[i])

 {

 logs=1;

 for(int k=0;k<noComponents;k++)

 tempMatrix[k]=chromosome[j][k];

 }

 if (logs==0 && j>noGenerations && Probability[j] > randomNumber[i])

 {

 logs=1;

 for(int k=0;k<noComponents;k++)

 tempMatrix[k]=chromosome[j][k];

 }

 }

 if (j==noGenerations)

 {

204

 if (logs==0)

 {

 Random rn = new Random();

 tempMatrix=chromosome[rn.nextInt(noGenerations)];

 }

 }

 }

 newChromosome[i]=tempMatrix;

 }

 return newChromosome;

}

public static int[][] chromosomeCrossover(int[][] chromosome,int percentage)

{

 int noGenerations = chromosome.length;

 int noComponents = chromosome[0].length;

 int[] firstChromosome =new int[noComponents];

 int[] secondChromosome =new int[noComponents];

 int[] tempChromosome =new int[noComponents];

 int counter=0,logs=0,exist =0;

 int cP=(int)(noGenerations *((double)percentage/(double)100));

 int[][] crossover =new int[cP][noComponents];

 for (int i=0;i<cP;i++)

 {

 Random rn = new Random();

 firstChromosome=chromosome[rn.nextInt(noGenerations)];

 secondChromosome=chromosome[rn.nextInt(noGenerations)];

205

 for(int j=0;j<noComponents;j++)

 {

 if (j==0)

 {

 if (rn.nextInt(2)==1)

 {

 tempChromosome[0]= firstChromosome[j];

 }

 else

 {

 tempChromosome[0]= secondChromosome[j];

 }

 }

 else

 {

 if (rn.nextInt(2)==1)

 {

 for(int k=0;k<noComponents;k++)

 {

 exist =0;

 logs=0;

 if(logs==0)

 {

 for(int x=0; x<tempChromosome.length; x++)

 {

 if (tempChromosome[x]== firstChromosome[k])

 exist=1;

206

 }

 if (exist != 1)

 {

 counter=0;

 for (int y=0; y<tempChromosome.length; y++)

 {

 if (tempChromosome[y] != 0)

 {

 counter ++;

 }

 }

 tempChromosome[counter]= firstChromosome[k];

 logs=1;

 }

 }

 }

 }

 else

 {

 for(int k=0;k<noComponents;k++)

 {

 exist=0;

 logs=0;

 if(logs==0)

 {

 for(int x=0; x<tempChromosome.length; x++)

 {

207

 if (tempChromosome[x] == secondChromosome[k])

 exist=1;

 }

 if (exist != 1)

 {

 counter=0;

 for (int y=0; y<tempChromosome.length; y++)

 {

 if (tempChromosome[y] != 0)

 {

 counter =counter+1;

 }

 }

 tempChromosome[counter]= secondChromosome[k];

 logs=1;

 }

 }

 }

 }

 }

 logs=0;

 }

 crossover[i]=tempChromosome;

 tempChromosome =new int[noComponents];

 firstChromosome = new int[noComponents];

 secondChromosome = new int[noComponents];

 exist=0;

 logs=0;

208

 counter=0;

 }

 return crossover;

}

public static int[][] chromosomeMutation(int[][] chromosome,int percentage,int[][]

priorityMatrix)

{

 int noGenerations = chromosome.length;

 int noComponents = chromosome[0].length;

 int[] firstChromosome =new int[noComponents];

 int[] secondChromosome =new int[noComponents];

 int[][] tempChromosome =new int[noGenerations][noComponents];

 int sum1=0,log1=0,log2=0,counter=0, element1=0,element2=0,sum=0,value1=0,value2=0;

 int cP=(int)(noGenerations *((double)percentage/(double)100));

 int[][] mutation =new int[cP][noComponents];

 for (int i=0;i<cP;i++)

 {

 Random rn = new Random();

 firstChromosome=chromosome[rn.nextInt(noGenerations)];

 secondChromosome=chromosome[rn.nextInt(noGenerations)];

 while(log1==0)

 {

 value1=rn.nextInt(noComponents);

 element1=firstChromosome[value1];

 for(int j=0;j<noComponents;j++)

 {

209

 sum=sum+priorityMatrix[element1-1][j];

 }

 if (sum==0)

 log1=1;

 }

 sum=0;

 while(log2==0)

 {

 value2=rn.nextInt(noComponents);

 element2=secondChromosome[value2];

 for(int j=0;j<noComponents;j++)

 {

 sum=sum+priorityMatrix[element2-1][j];

 }

 if (sum==0)

 log2=1;

 }

 firstChromosome[value1]=element2;

 secondChromosome[value2]=element1;

 for(int j=0;j<mutation.length;j++)

 {

 for(int k=0;k<mutation[0].length;k++)

 {

 sum1=sum1 +mutation[j][k];

 }

 if (sum1!=0)

 counter++;

 }

210

 tempChromosome[counter]=firstChromosome;

 tempChromosome[counter+1]=secondChromosome;

 counter=0;

 sum=0;

 }

 mutation=tempChromosome;

 return mutation;

}

public static int[][] chromosomeNewGeneration(int[][] chromosome,int[][] mutation, int[][]

crossover)

{

 int noGenerations = chromosome.length;

 int noComponents = chromosome[0].length;

 int[][] newGenerationChromosome =new int[noGenerations][noComponents];

 int count=0,count1=0,sum1=0,sum2=0;

 for(int i=0;i<mutation.length;i++)

 {

 for(int k=0;k<mutation[0].length;k++)

 {

 sum1=sum1 +mutation[i][k];

 }

 if (sum1!=0)

 count++;

 }

 for (int i=0;i<count;i++)

 {

 newGenerationChromosome[i]=mutation[i];

 }

211

for(int k=0;k<(noGenerations);k++)

 {

 Random rn = new Random();

 newGenerationChromosome[k]=chromosome[rn.nextInt(noGenerations)];

 }

 return newGenerationChromosome;

}

}

212

