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Abstract

Development of a computational model is reported, which focuses on aspects of individ-

uality in biological phenomena. Of particular interest are factors related to the immune

response to HIV infection and how these interact within a complex system leading to sig-

nificant variations in latency period. A multi-layered approach is chosen, with the most

crucial layer comprising a large-scale agent-based model lymph network. Agent-cell reci-

procity permits isolation of key features, e.g. cell mobility, viral mutation. Cell mobility,

in particular, is incorporated in an innovative way, due to parallel implementation which

permits realistic size of the lymph network. This implementation, using lymph nodes as

key structural units, also permits inclusion of localised effects, e.g. early infection in the

gastro-intestinal tract, which is increasingly reported as having a decisive impact on long-

term disease progression.

Additional layers of the model provide a foundation for investigation into the phenotypical-

level mechanisms of the immune response implemented in the main layer. The objective

here is to gain insight on how these mechanisms originate from a sub-layer of interactions,

(both genetic and epigenetic). Gene interactions are commonly studied through microar-

ray techniques and generate highly complex dependencies. A validation framework for

such analysis is proposed, and a model of infection-induced epigenetic changes, (within the

agent-based paradigm), is developed.
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Chapter 1

Introduction

1.1 HIV infection progression

Immunity in the human body is obtained through emerging properties of a very complex

system. It involves a multitude of cells and organs, with very specific functions and nu-

merous possible interactions. This complexity often hinders understanding of the range

and variety of immune responses. Large-scale effects are easily observed, and microscopic

studies give a better insight into the sequence of interactions, but links between these two

levels are difficult to establish, in particular if we are looking for a quantitative description.

The situation is pronounced with respect to HIV infection. Mechanisms by which an HIV

virion infects an immune cell, and its genetic material is incorporated into the host chro-

mosome, are known, as are processes leading to production and liberation of new virions.

Macroscopic progression from initial HIV infection to AIDS onset are equally well de-

scribed.

However, there are still millions of people living with HIV (UNAIDS, 2004), and the pro-

cess by which interactions between the immune system and HIV lead to such variability in

individual experience of infection has yet to be fully described. Development of a vaccine

is even further down the road (Garber et al., 2004), although recent therapeutic efforts have

led to better control of disease progression (Sterne et al., 2005).
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To facilitate analysis of this complex system, numerous in silico models have been devel-

oped, (see e.g. Celada and Seiden (1992)). Early efforts suffered from a relative lack of

biomedical data, and from limited computing resources then available. However, a number

of these efforts and of subsequent developments, (see e.g. Pandey et al. (2000); Bernaschi

and Castiglione (2001), were able to match some signatures of HIV, serving as a proof of

concept and ensuring continued interest and ongoing efforts in the field of computational

immunology.

Recent models are, of course, more refined (see e.g. Ruskin and Burns (2006)), employing

more sophisticated approaches and computer resources, and offering valuable insights into

specific aspects of the system, despite their limitations.

1.2 Mechanisms of phenotypical expression

A phenotype is any observable characteristic of an organism, such as biochemical proper-

ties, morphology, behaviour. Immune response to HIV infection is, therefore, a phenotyp-

ical event: it involves interactions between observable physical or biochemical character-

istics of the organism, i.e. immune organs1 and cells2, and the virus. Indications are that

individual variations in the length of the latency period may be attributed to cell-level char-

acteristics, such as cell mobility and viral mutation.

A complex system regulates how the complete set of genes of an organism, the genotype,

is expressed and results in these phenotypical characteristics. In the long term, a better

understanding of this system is needed for a more accurate analysis of the individual char-

acteristics, and their influence.

The all-genetic paradigm introduced in the early days of Genetics has been abandoned: the

phenotype is not a deterministic consequence of the genotype. The first amendment to this

was to consider environmental effects. Recent work has led to the inclusion of another
1This refers to all organs responsible for immunity, from producing cells, (main function of the thymus), to

staging immune response, (main function of the lymph nodes). These organs are detailed in Section 2.1.
2These include lymphocyte lineages, macrophages and other cells involved in the immune response, as

detailed in 2.1.
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parameter in the equation, epigenetic changes: modifications of the chromatin structure,

heritable and leading to altered gene expression. An introduction to this paradigm shift can

be found in Speybroeck (2000).

This aspect has, so far, been neglected in development of in silico biological models at all

levels. Accounting for this in a multi-layered model of the immune system offers great

potential. In the broader context of Computational Biology, this would be a decisive break-

through for a wide range of biological systems, from cancer initiation to neural develop-

ment.

1.3 Objectives and challenges

A model is typically selective, and cannot include all parameters and interactions. The

advent of large-scale, parallel computing, however, offers opportunity for increased re-

finement of biological models. In particular, a better understanding of the events behind

emergence of individuality is of special interest.

Further refinement can be obtained through a multi-layer approach: when a single model

can not include some parameters or interactions, a complementary model may be devel-

oped, which focuses on these specific features. The limited scope of this second model

ensures a more detailed representation of these. Results can then be integrated into the

main model. Such an approach is taken here.

The main layer considers the immune response to HIV at the phenotypical level. If the ba-

sics of the infection and of the immune response are now better understood, (see Chapter 2

for details), it is, nevertheless, still largely unclear how these cell-level events interact with

each other to lead to the HIV-characteristic disease progression.

Most previous modelling efforts, because of limited computing power or implicit modelling

choices, failed to integrate what can be considered a key element of the immune response:

cell mobility. Using a large-scale agent-based model, a key objective is to realistically ac-

count for this.
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Recent research, (see e.g. Mattapallil et al. (2005)), highlights another feature of the body-

wise progression of the disease: there are localised effects, such as those within the gastro-

intestinal tract, that require incorporation into computer-based models. The proposed ap-

proach, using lymph nodes as a key model element, permits inclusion of this layer of the

system.

Since phenotypical characteristics are the results of a complex system, interactions involved

can not be directly included in this large-scale agent-based model and a second layer is,

therefore, required. This layer is divided into two additional models which complement the

main model and focus, respectively, on genetic and epigenetic considerations.

The first one is developed to analyse microarrays. To better understand gene expression3,

microarray technologies are extensively used. Yet, there is no clear consensus on analysis

techniques. Here, through adaptation of optimization techniques to microarray biclustering,

and introduction of properties to assess associated weighting schemes, the objective is to

provide a better framework for elucidation of gene-level interactions. This improves the

value of the information obtained and will, in turn, permit refined parameterisation of the

main model.

The second model focuses on epigenetic mechanisms. Research on Epigenetics is very

active, but quantitative informative is still very sparse. Due to the complexity of the mecha-

nisms involved and their interactions, model development is essential to linking biological

and medical expertise. In that sense, the situation is similar to that of early HIV research,

which focused on phenomenological explanations. Current limitations in available epi-

genetic information implies that a level of refinement similar to that of the agent-based

approach used for the main layer is not a realistic target. What is needed first is, therefore,

a proof of concept for such models, and our objective is to provide this, in the context of

infection-induced epigenetic changes.
3Genes have specific functions. Even though each cell contains the whole genetic material, it only uses a

fraction of this. The others are silenced. These complex dynamics are time dependent and cell-type dependent,
and are referred to as gene expression.
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1.4 Organisation of the thesis

The remainder of this Thesis is arranged as follows. Chapter 2 introduces concepts of im-

munity and immune response, and details the cells and organs involved. This Chapter also

covers mechanisms linked with HIV infection, from virus structure to overall disease pro-

gression. This is intended to provide the reader with sufficient background to appreciate

the motivations and challenges of the proposed model and the levels or layers which are

required in its construction. Finally, this Chapter also provides a brief overview of existing

immune models. This permits identification of limitations that need to be addressed through

any new modelling approach.

Chapter 3 discusses the agent-based paradigm, associated challenges and relevant exam-

ples. It then introduces the approach taken, in particular detailing structure, behaviour and

interactions of all agent types together with simulation procedures.

Chapter 4 focuses on the structures implemented to account for lymph nodes and the lymph

network. Further background on phenomena involved is also provided, as are details on

implementation of cell mobility.

Chapter 5 presents parallelisation efforts. Several strategies are tested and optimised, and

scale-up is assessed through development of a performance simulator.

Chapter 6 details results obtained and evaluates success in addressing the limitations identi-

fied for existing models. It introduces a further model extension, the inclusion of localised

effects in the gastrointestinal tract, and presents some initial results for this.

Further layers are added to the modelling approach, and consider gene expression as an un-

derlying cause for phenotypical-level immune response. In particular, Chapter 7 focuses on

epigenetic changes and their influence on gene expression. A brief background to this new

research field is provided to introduce motivations and challenges. A model of infection-

induced epigenetic perturbation is presented and validated.4

Finally, Chapter 8 summarises of key developments and results, and outlines future work.

4In Appendix A, we focus on microarrays and their use in analysing gene expression. In the interests of
improving the quality of information feeding the central model layer, a novel weighting scheme for microarray
analysis is proposed and evaluated, and a parallel genetic algorithm for biclustering is implemented and tested.
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Chapter 2

Background and related work

2.1 Background on the immune system

2.1.1 Self and non-self: introducing immunity

Etymologically, immunity comes from Latin immunitas, from immunis: exempt from, (in),

performing services, (minus)1. It was first used in the medical sense of “protection from

disease” in the late 1870s (Harper, 2001).

In this particular context, immunity can be defined as a function of all mechanisms which

permit the body to recognise entities belonging to its system, (which consequently it tol-

erates), and those that do not, (which it fights). There are many layers of complexity and

response in the system, involving a number of entities and interactions. This poses a clear

challenge to computer-based modelling, (as outlined e.g. in Forrest and Hofmeyr (2001)).

In this Section, we introduce the cells and organs involved in the immune system.

2.1.2 Organs and cells of the immune system

Central lymphoid organs are the birth place of the immune system. There is where lym-

phopoiesis2 takes place. Lymphoblasts are formed in the bone marrow, by differentiation,
1minus, “service performed for the community, duty, work”.
2Lymphopoiesis: generation of lymphocytes. Details of cells and precursors can be found in the glossary.
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from precursor hemocytoblasts. These are immature cells, from which prolymphocytes,

direct precursors of lymphocytes, are derived. The last development step, from prolym-

phocyte to lymphocyte, can take place in two different locations, which will decide the final

role of the cells: the prolymphocytes maturing in the bone marrow itself become B lympho-

cytes, while those maturing in the thymus become T lymphocytes (Potmesil and Goldfeder,

1973).

Once matured, lymphocytes are released into the blood circulation and migrate to peripheral

lymphoid organs and tissues. These, primarily, are lymph nodes, but include also spleen and

MALT, (Mucosa-associated lymphoid tissue), (Wiedle et al., 2001). Their associated net-

work allows interactions between immune cells. While involved in cell renewal, (through

cell divisions initiated after antigen recognition during immune responses), the main func-

tion of lymph nodes is to amplify immune responses.

At the cell-level, four populations are particularly important:

• T lymphocytes are divided in two families. CD4 T cells, or helper T cells (Th),

coordinate the immune response. Two sub-types, Th1 and Th2, are in charge of

the cell-mediated and antibody-mediated responses, respectively. CD8 T cells, or

cytotoxic T cells (Tc) are “effector cells” of the cell-mediated response, (detailed

below).

• B lymphocytes are effector cells of the antibody-mediated response. Their response

can be initiated by activated CD4 cells, (often referred to as CD4+ cells), but, contrary

to CD8 cells, they can also directly recognise antigens. B lymphocytes display these

antigens at their surface, making them antigen presenting cells.

• Natural killer, (NK), cells can have a direct cytotoxic action on abnormal cells, e.g.

cancer cells or virus-infected cells. They form the major component of the innate

immune system.

• Antigen-presenting cells, (APC), are all cells that can present antigens at their surface

and which can, therefore, activate CD4 cells. These include B lymphocytes, but also
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dendritic cells, macrophages3, endothelium cells, (from the inner surface of blood

vessels), and epithelium cells, (from cavities and surfaces of structures throughout

the body, e.g. lungs, gastrointestinal tract, reproductive and urinary tracts).

Cells and associated functions can also be found in the glossary, for later reference.

2.1.3 Types of immune response

2.1.3.1 Innate immune response

When a foreign element is identified as a threat, it can be dealt with in two different

ways: i.e. immune response can be specific or non-specific. A non-specific, or innate,

response is based upon recognition of the pattern of the microbial surface components of

the pathogens4, rather than by a specific antigenic sequence (Levy, 1990). Innate response

does not confer long-lasting immunity to the host, i.e. there is no memory of previous re-

sponses.

Major functions of the vertebrate innate immune system include:

• Recruiting immune cells to infection sites. This is achieved using cytokines5.

• Identifying bacteria, activating cells and enhancing clearance of antibody complexes,

through complement cascade (Barnes and Weiss, 2003; Sacks et al., 2003).

• Initiating the adaptive immune system, through antigen presentation to cells regulat-

ing the immune response (Martin and Carrington, 2005).

2.1.3.2 Antigen-specific immune response

In contrast to the innate response, the specific, or adaptive, immune response is based on

the accurate recognition of foreign non-self antigens. As seen above, recognition involves
3Macrophages are a type of white blood cell that ingests foreign material. In that sense, they are involved

in the non-specific immune response. They are also involved in the specific immune response: they carry the
antigen on their surface and present it to a T cells.

4A pathogen is a biological agent which causes disease or illness to its host.
5Cytokines are a category of diverse signalling proteins and glycoproteins, which are essential to cellular

communication. Other categories of signalling proteins include hormones and neurotransmitters.
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innate response cells as intermediaries, and a weakened innate response may, therefore,

lead to a delay in initiation of antigen-specific response. This is, for instance, observed

for neonates6, leading to higher susceptibility to pulmonary bacterial and viral infections

(Garvy, 2003).

Antigen-specific response has two arms, namely cell-mediated and antibody-mediated re-

sponses. The latter, also known as the humoral response, features B lymphocytes as effector

cells, and mainly targets bacterial attacks. Humoral response is characterised by produc-

tion, by these cells, neutralizing antibodies, following activation by CD4+ T helper cells

through release of interleukin IL-4 (Howard and Paul, 1982).

Cell-mediated response is targeted more specifically at viral attacks and takes place in

lymph nodes. It is, therefore, the main focus of this work. Cell-mediated response involves,

(Kaufmann, 1999; Pathak and Palan, 2005):

• Activation of antigen-specific cytotoxic, (CD8), T lymphocytes, which induce apop-

tosis in body cells displaying epitopes7 of foreign antigen on their surface, (e.g. virus-

infected cells, or cancer cells displaying tumor antigens);

• Activation of macrophages and natural killer cells, which then destroy intracellular

pathogens;

• Secretion of a variety of cytokines that enhance function of other cells involved in

adaptive immune responses and innate immune responses. This is the role of CD4+

T helper cells.

Prevalent in the fight against HIV are CD8+ T cells. This particular response involves

three steps. Antigen Presenting Cells (APC) acquire foreign biological entities and start

presenting these antigens at their surface. These encounter CD4 lymphocytes which will

self-activate and multiply, if designed to recognise the given antigen. These, in turn, activate

specific CD8 cells, which will multiply and then target infected cells.
6A human infant less than four weeks old.
7An epitope is a protein site which is recognised by the immune system, (specifically by antibodies, B

cells, or T cells). For simplicity, an epitope can be considered as the 3D surface features of a molecule. These
“shapes” fit precisely and thus bind to specific antibodies. Epitopes are also known as antigenic determinants.
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2.2 Mechanisms linked with HIV infection

2.2.1 HIV is a retrovirus

HIV belongs to a very particular viral family, Retroviridae. Traditionally, in biological

processes, DNA is transcripted as RNA, which is then used as an intermediary for protein

production. This is known as the central dogma of molecular biology (Crick, 1970). The

defining feature of these retroviruses is that they use the opposite process: they possess an

RNA genome and replicate using a DNA intermediate, (called a provirus). This reverse

transcription is performed using an enzyme8, reverse transcriptase9, and a second enzyme

integrates the obtained DNA into the host’s genome10. These transfers of biological infor-

mation are shown in Figure 2.1.

Original classification of retroviruses is based on their pathogenicity and include oncoviruses11,

spumaviruses12 and lentiviruses13, which are characterised by the slow progression of the

infections they induce. HIV belongs to this sub-family.

2.2.2 Structure and genome

As with other retroviruses, HIV has two copies of its RNA genome. This genome con-

tains nine genes, with three of them, (gag, pol and env), characteristic of all retroviruses,

and containing information needed to make the structural proteins for new virus particles

(Lever, 2005). The other genes e.g. control transcription activation (tat), counteract the

antiretroviral defenses of the host cell (vif ), or enhance virus release (vpu) (Sierra et al.,
8Enzymes are molecules which increase the rates of chemical reactions. This is referred to as a catalytic

action.
9A reverse transcriptase is an enzyme which transcribes single-stranded RNA into double-stranded DNA.

This process is the reverse of the normal transcription, which corresponds to the synthesis of RNA from DNA.
These enzymes are also known as RNA-dependent DNA polymerases.

10The genome of any living organism is its whole hereditary information. It is encoded in the DNA or, for
some viruses such as HIV, the RNA.

11Oncoviruses are the largest sub-family of retroviruses. They can induce several types of tumours, e.g
carcinoma, lymphoma and leukemia. They have been isolated in humans as early as 1980s, (see e.g. Rho et al.
(1981)).

12Spumaviruses, also known as foamy viruses, are non-pathogens. They are mainly prevalent in non-human
primates, and were first described in the early 1950s. They are easily isolated, thanks to the characteristic
foam-like effect they induce (Delelis et al., 2004).

13Lentiviruses are cytopathogens and are responsible for slow-progression infections, hence their name.
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D N A R N A

P r o t e i n

Figure 2.1: Information flow in biological systems.
Plain lines represent general transfers, (occuring normally in most cells), and dotted lines represent
special transfers (known to occur, but only under specific conditions, e.g. some viruses or during in
vitro experiments). For retroviruses, transfer of information from RNA to DNA is occurring.

2005). This genome is enclosed by a conical capsid, which is surrounded by a matrix, in

turn surrounded by a viral envelope.

An important glycoprotein complex is embedded into this viral envelope. It is made of six

glycoprotein (gp) molecules, (three gp120 and three gp41), and enables virus attachment

and fusion with target cells (Chan et al., 1997). This complex clearly appears in Figure 2.2,

which shows the overall structure of the virus.

2.2.3 From cell infection to release of new virions

A complex sequence of mechanisms are involved, from the infection of an immune to the

release of new virions. This is summarised in Figure 2.3, (p.14). These mechanisms have

been studied in detail, (see e.g. Wyatt and Sodroski (1998)), so we focus, in what follows,

only on essential points.

The first step in infection of macrophages or CD4+ T cells is high-affinity attachment of the

CD4 binding domains of their surface glycoprotein gp120 to CD4 receptors. This is fol-

11



Figure 2.2: Structure of HIV virus (adapted from a public-domain image from the National
Institute of Health, USA)

lowed by interactions between chemokine14 binding domains of gp120 and the chemokine

receptors of the target cell. It must be noted that, even though the prime target for HIV

infection is CD4 cells, HIV can also infect dendritic cells using other specific receptors

such as DC-SIGN (Wyatt and Sodroski, 2001). This alternative route is believed to play an

important role in early stage of infection (Pohlmann et al., 2001). Even though the binding

process is different, subsequent steps in cell infection are similar.

The viral envelope and cell membrane are fused. This allows release of viral capsid into

the cell. Viral RNA and essential enzymes, e.g. reverse transcriptase, are then transferred

into the cell, and RNA is transcribed into double-strand DNA. Finally, This DNA material

is then integrated into the cell genome.

This reverse transcription is a fast process, (generation of 109 to 1010 virions every day), but

this high rate leads to many transcription errors, i.e. mutations, (approximately 3 × 10−5

per nucleotide base per cycle of replication), (Robertson et al., 1995). New variants are

created every day in any individual patient.
14Chemokines are a family of small cytokines. They induce directed chemotaxis, (innate movement), in

nearby cells, hence their name.
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It is evident, therefore, that HIV has a very high genetic variability. It is categorised by

two species, HIV-1 and HIV-2, where the latter is both less virulent and less transmittable

(Reeves and Doms, 2002), but the former is responsible for much of the global infection

and attracts most research effort. In the remainder of this Thesis, unless stated otherwise,

use of “HIV” refers to HIV-1.

Newly integrated viral DNA remains dormant. Active production of new virions only starts

in the presence of certain transcription factors. Ironically, these factors are upregulated

when cells are activated, (Nabel and Baltimore, 1987), so that virus production is increased,

and the infection progress catalysed, by the immune response resisting it.

Viral RNA is produced in small sections, which are then assembled (Wu and Marsh, 2003).

This leads to the production of large polyproteins, which are cleaved into smaller structural

proteins, which assemble near the cell inner membrane and form a bud, subsequently re-

leased from the cell (Cimarelli and Darlix, 2002). Maturation, (i.e. obtention of functional

proteins and enzymes), can take place either in the forming bud, or after the virion is re-

leased from the cell, (see e.g. Ohagen et al. (1997)). Once mature, a virion is then able to

infect a new cell.

2.2.4 Progression of infection

Macroscopic evolution of the disease is divided into three phases, starting with acute HIV

infection. This is characterised by rapid viral replication and high presence of virus in

the peripheral blood. This results in massive activation of CD8+ T cells, which target and

destroyed HIV-infected cells. The development of HIV-specific immune responses, and

“consumption” of available targets, by the virus, result, within a few weeks, in peak and

decline of the viral population (Derdeyn and Silvestri, 2005; and references therein). The

virus is not eliminated though, and has been widely disseminated, and seeded in lymphoid

organs, (because of high target cell concentration in those regions).

Once most original strains are eradicated, the importance of the mutation rate becomes

critical. It allows appearance of new strains, which have not been detected by the organ-
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Figure 2.3: Cycle of HIV infection

14



ism yet, and can therefore develop freely. As soon as a strain becomes too intrusive, its

detection probability increases and it is eradicated, but in the meantime, new strains have

again emerged. During this second phase, there are no visible symptoms. This is known,

(somewhat erroneously), as the latency period, and can last several years. The immune

system is heavily loaded, and a state of chronic, generalized immune activation develops.

This, added to the fact that destruction of a strain implies destruction of all cells it infected,

leads to T-cell depletion (Hazenberg et al., 2000).

Once CD4+ T cell count declines below a critical level, (typically defined to be between 200

and 400 cells/mm3, see e.g. MacDonell et al. (1990)), the cell-mediated immune response

can no longer be initiated, and a variety of opportunistic diseases occur, signatures of full-

blown AIDS, (acquired immunodeficiency syndrome), ultimately leading to the death of

the patient.

2.3 Mathematical and computational models: historical

2.3.1 A complex biological system

The immune system is both a complex and adaptive system. Not only does it involve vari-

ous cells and organs, and interactions between these, but its behaviour can also evolve over

time, changing and learning from experience, through memory of past immune responses.

Complex adaptive systems are encountered everywhere, including other biological systems

such as RNA folding (Ndifon, 2005), but also in social systems (Janssen and Ostrom, 2006),

ecosystems (Horwitz and Wilcox, 2005), manufacturing (McCarthy and Tan, 2000), and fi-

nancial analysis (Sharkasi et al., 2006; Thurner and Biely, 2007), among may others. Key

principles of complex adaptive systems are emergence and self-organisation.

Emergence refers to patterns of system evolution which arise from an abundance of simple,

low-level, interactions (Crutchfield, 1994). (In the context of the immune system, this is

particularly relevant, as the response is obtained from the multiplicity of cell interactions

throughout the body.)
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Self-organisation refers to increased complexity obtained without intervention from an out-

side source (Goertzel, 1992). (Again, this defines both the infection mechanisms of HIV

and the immune response to these.)

Given these properties, complex adaptive systems are often difficult to describe fully. In

particular, defining the contribution and importance of low-level unsupervised interactions

to the overall evolution process is far from trivial. Consequently, several models are pro-

posed in what follows. Concepts and approaches are detailed, with a particular focus on

immune models.

2.3.2 Bottom-up vs. top-down design

2.3.2.1 Concepts

Two categories of complex system modelling are discussed, top-down and bottom-up de-

signs (Bohringer and Rutherford, 2008).

The main concept of a top-down design is to break down a system into several compo-

nents, which are expected to be easier to manipulate and understand. The overall system

is formulated and specified, but without going into details of its parts. In an iterative pro-

cess, each component is then defined in more detail and, if necessary, split into lower-level

subsystems. This process, repeated until entire specification is obtained for base elements,

involves use of black boxes which facilitate model development, but may also hinder model

validation if they fail to elucidate elementary mechanisms of the system studied.

In a bottom-up approach, individual base components are detailed and designed, and then

linked together. These form more complex systems, which are again linked, in an iterative

process, and the top-level model increasingly emerges. This approach is, therefore, particu-

larly suited to complex adaptive systems, which in their structure already show emergence

and self-organisation.

The remainder of this Section considers several examples of these two approaches, grouped

in three families: mathematical, shape-space, and agent-based models.
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2.3.2.2 Mathematical models

In the context of HIV research, mathematical models were first introduced to study the epi-

demiological aspect of the infection, (i.e. spread in a human population).

This early focus was motivated by the need to understand dynamics of the infection and

population threat, but also by a lack of detailed biological information, which ruled out

models of pathogenesis. Although data even on spread of HIV were sparse, models were

developed, which focused on specific “at risk” groups, e.g. early work by Anderson (1988).

More accurate medical information and improved computing resources have now led to

considerably more advanced epidemiological models, e.g. Naresh et al. (2006).

In the context of this research, the mathematics of pathogenesis are directly relevant. Mod-

els using differential equations, (DE), to reproduce variations of cell counts and viral loads

appeared in the late 1990s, (see e.g. Perelson and Nelson (1999)) and are typical of top-

down designs. These have been refined for each count variation by detailing different DEs

to account for viral production, and drug therapies such as RT inhibitors or protease in-

hibitors. An equation describing the rate of change of infected CD4+ T cells (T ∗), for

instance, would have the following structure:

dT ∗(t)
dt

= (1− εrt)kT0Vi(t)− δT ∗(t) (2.1)

This corresponds to the virus infecting CD4+ cells at a constant rate k, less the currently

infected CD4+ cells, which die at constant rate δ.

These models, however, can not currently cover the whole infection progression, and each

focuses on either long-term, mid-term, or short-term variations.

2.3.2.3 Shape-space models

Immunological models based on the shape-space paradigm were first introduced as a means

to account for dynamics of antibody-antigen bindings (Perelson and Oster, 1979).

The main concept of this bottom-up approach is to represent each clonotype by N integer
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parameters and, therefore, to consider clonotypes as points in anN -dimensional Euclidiean

space. In that shape space, (space of clonotypes), two cells sharing the same clonotype

are located on the same point. Each cytotoxic lymphocyte clonotype c is surrounded by

a sphere of radius r. To any antigen a within this sphere is applied a clearance pressure

inversely proportional to the distance between a and c in the shape space.

Technical considerations such as adequate values for N are still subject to intense discus-

sion, which will not be detailed here, in order to avoid a digression which does not focus

primarly on models of interest. Several papers include models with N ∈ [1, 5], (see e.g.

Papa and Tsallis (1996)), while on rare occasions others imposeN ≥ 20, (see e.g. Carneiro

and Stewart (1994)), but no clear consensus emerges.

The most recent and interesting examples take the shape-space paradigm further. These

include considerations of real space, and formation of hybrid models (Burns and Ruskin,

2004; Ruskin and Burns, 2005; 2006). The focus is on emergent principles of CD8 cell

clonotype repertoire and its distribution and differentiation, with emphasis on systemic self-

organisation, (for which the shape space paradigm is particularly suited). Here, clonotypes

and viral epitopes are represented as nodes in a two-dimensional network space, and edges

between nodes again model the affinity and clearance pressure applied to the APC which

bears the target epitope. Hybridisation of shape space is obtained through use of a stochas-

tic model of the lymph system as stimulus to the network shape space model. Emergent

topology obtained from this model resulted in introduction of a theoretical network archi-

tecture for immune system shape space. It includes α and β nodes: the latter correspond to

CD8 cells that act only against the antigen, which stimulated its activation, while the former

represent those which also effect clearance pressure on subsequent APCs. The argument

outlined suggested that disruption (or suppression) of α nodes results in a signicantly de-

graded pathogen clearance, compared to β node disruption. This was proposed as a possible

cause of individual variations in the latency period.
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2.3.2.4 Cellular Automata and Agent-based models

The Cellular Automata, (CA), paradigm is another popular example of bottom-up model

design. Even though the concept was introduced in the 1940s, (through the work of Ulam

and von Neumann), the paradigm gained large popularity only in the 1970s, with the in-

troduction of a two-state, two-dimensional cellular automaton, Conway’s “Game of Life”

(Gardner, 1970). On a 2D grid, cells have eight neighbours, and two possible states, live or

dead. At each time step, cells are updating using simple defined rules, e.g. a live cell with

fewer than two live neighbours dies, while a live cell with more than three live neighbours

dies.

The popularity of this interpretation of the paradigm can be attributed to its obvious anal-

ogy with living systems, (e.g. rules which embody death by overcrowding or competition),

but also to this CA being a perfect and simple illustration of concepts of emergence and

self-organisation. Pattern evolution in this CA is well documented, with example entities

such as blocks, gliders and pulsars (Berlekamp et al., 2004).

More realistically, when including more than two possible states, Cellular Automata provide

a powerful modelling paradigm. Since the early efforts of e.g. Celada and Seiden (1992);

Seiden and Celada (1992), CA have been widely used to investigate immune events, and

several models in particular provide useful insights into some aspects of the immune re-

sponse to HIV infection.

CA-based immune models outlined the importance of viral mutation on dynamics of im-

mune cell population (Mannion et al., 2000; Pandey et al., 2000; Mannion et al., 2002;

Ruskin et al., 2002). A threshold value was identified, under which steady-state density of

immune cells is larger than that of the virus, (i.e. dominant to deficient phase transition).

These authors also provided one of the rare attempts to account for cell mobility and, sub-

sequently, variable viral load.

Another CA model focused on latency period and treatment solutions (Benyoussef et al.,

2003). Combining a mean field approximation method and CA simulations, these authors

reproduced the three-phase evolution of HIV infection and identified a threshold for treat-
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ment, (a combination of protease inhibitors and RT inhibitors), above which virus load de-

creases over time. They also indicated that such treatment would need to continue for years

even if viral load falls under detectable limits, (this is, we think, a direct consequence of

blood samples not being an accurate reflection of disease progression within lymph nodes).

The agent-based paradigm can be considered as an extension of the CA approach, but pre-

vious agent-based models of immune events have been limited in implementation. A brief

review follows.

An early example of such models, (Bernaschi and Castiglione, 2001; Castiglione et al.,

2004; Baldazzi et al., 2006), is, in strict terms, closer to a CA than to an agent-based model,

but the authors themselves use both terms, and it is more important to focus, here, on im-

plemented features rather than terminology. The authors main objective is development of

a simulator including features introduced in the Celada-Seiden model, (IMMSIM), but with

various refinements, particularly in terms of performance and fidelity to the real immune

system. Implemented entities include CD4 and CD8 T cells, B cells, macrophages and

dendritic cells. These interact, based on location in a 2D or 3D lattice, and according to an

affinity function that depends on values of bit strings representing their respective binding

sites, (e.g. lymphocyte receptors, or class I and II major histocompatibility complexes15).

Interactions lead to changes of internal state. The time step for these simulations is eight

hours. This approach successfully reproduced the three-phase disease progression.

Another successful attempt at reproducing typical HIV progression was recently proposed

(Zhang et al., 2005). Here, types of agents are limited to T cells and HIV virions, with the

objectives of simulating large populations, (hence the term “massively multi-agent”), and

improving detail on aspects such as immune memory and HIV sequence representation.

The former objective is achieved through introduction of a global memory repertory, which

is empty when simulation starts and which subsequently stores all HIV genomes that have
15There are two primary classes of major histocompatibility complex molecules, MHC class I and MHC class

II. MHC class I molecules are found on almost every nucleated cell of the body. They present antigen fragments
to cytotoxic T-cells and bind to the CD8 receptor on these cells. MHC class II molecules are found only on
antigen-presenting cells. They present antigen fragments to T-helper cells by binding to the CD4 receptor on
these cells. In humans, these MHC molecules are sometimes referred to as human leukocyte antigen (HLA)
molecules.
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been recognized and were targeted by immune responses. The latter objective is achieved

by introduction of finite-size binary arrays, which each represent a viral strain, a measure

of similarity between these arrays, (based on Hamming distance), and a “recognition prob-

ability” as a function of this similarity.

2.4 Limitations and proposed focus

2.4.1 General considerations

Models of HIV progression have been developed for the last twenty years, with some suc-

cesses reported, as detailed above. There are, however, a number of limitations that need be

addressed in order to improve realism with respect to the biological system modelled.

A major limitation of top-down models, especially mathematical ones, is that ability to deal

with subsystems small enough to be informative on the interactions involved is crucial in

the context of HIV progression. Immune response typically is bottom-up, and these models

may not, therefore, be the most suited to describe it.

The shape-space paradigm is very elegant, and hybrid models based on this provide new

insight into self-organisation of the immune response. It is, however, sometimes difficult

to explain observed emergent features in biological terms (Burns, 2005). This may be at-

tributed to the fact that such models, even though bottom-up, can rarely achieve sufficient

refinement of the individual base components. Extensions proposed to current models may

improve this situation (Burns, 2005).

CA and agent-based design seem well-suited to the nature of the biological system being

considered and recent biomedical studies, involving direct tracking of HIV viral genotypes

in local microenvironments, provide further validation for these approaches, (e.g. infected

cells releasing virions will only induce infection of local targets (Cheynier et al., 1994)). It

seems evident that local interactions and cell densities are more important to disease pro-

gression and experience than overall cell counts in the body (Grossman et al., 1998). As a

bottom-up approach, the agent-based paradigm offers the best prospects for detailed local
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solutions and has been adopted for the work of this Thesis.

2.4.2 Advancing the agent-based approach: limitations and improvements

Balance between diversity and population size

Inherent to any agent-based approach is choice of agent types, where several permit im-

proved tuning of the model to the observed system. It is particularly relevant in the context

of immune responses, as several lineages of cells are involved. However, there is a balance

to be achieved between the range of agent types and size of their populations, due to the

computational cost involved. This is important in the immune context, as overall behaviour

emerges from a very large number of interactions, (involving many cells). It is not clear

that sufficiently large cell populations have hitherto been modelled. The theoretical limit in

Bernaschi and Castiglione (2001) is not explicitly specified, but appears to be of the order

of two million, and it is debatable whether this is enough to account for HIV progression

and complex evolution through the whole body.

Lymph nodes modelling

Another essential aspect is that of spatial location of immune response elements. Most of

the immune response to HIV is taking place in the lymph nodes, as opposed to within circu-

lating blood, but no clear modelling approach has been explicitly described for this. There

are indications, in Baldazzi et al. (2006), that overall structure is recognised as important,

but implementation remains vague and no report of validation tests could be found at the

time of writing. Any novel agent-based approach needs to explicitly account for lymph

nodes and, specifically, the lymph network in order to gain insight on the importance of cell

mobility16. The proposed model is, therefore, organised as shown in Figure 2.4.
16Such compartmentalised approaches were also considered in the context of HIV epidemics, (see e.g. Ball

et al. (1997) who considered transmission through a network whose nodes are families, which are assigned
higher individual-to-individual transmission probabilities). The main difference, however, is that distant infec-
tion from a lymph node to another is not possible: physical contact between the cells is needed, and the force
of the infection can not be directed. Their results, therefore, are not directly relevant to our study.
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Figure 2.4: Overall structure of the lymph network model
The model is based on an explicit lymph node model. This key unit is used to locate the agents
and implement their interactions. Low-level biomedical information, (e.g. microscopic interactions
detailed above), are used to design both model levels. High-level information, (e.g. structure of the
lymph chains), is also used for the lymph network model. The overall model produces high-level
data, such as cell counts.

Temporal granularity

The proposed structure in Baldazzi et al. (2006), although non-specific, could provide a so-

lution basis, as it includes vessels between lymph nodes, but the long eight-hour time step

of the associated simulations seems unrealistic, especially in the context of a bottom-up de-

sign and need for detailed modelling of cell-level interactions. The temporal granularity is

not refined enough to account for cells passing through these vessels, (which occurs within

minutes), so that the context for inclusion does not add to realism of the model. Small time

steps are required, even though this adds to the overhead on code in order to increase com-

putational efficiency.

These two conditions, (explicit structure for the lymph network, and high granularity), per-

mit accurate implementation of cell mobility, which is an essential aspect of immune re-

sponse, as activation involves not only affinity between epitopes, but also physical contact.
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Immune memory, and antigen recognition

Memory of previous responses is also important, (see Zhang et al. (2005)), but the imple-

mentation here is slightly counter-intuitive, and features a centralised control. Memory at

cell-level is potentially more useful in light of the role of localised interactions.

A common feature of the most advanced models is incorporation of viral mutation. This is

core to viral model success but consideration of variable properties, (e.g. to account for less

stable strains, or for those with higher probability of successful infection), is also important

for sophisticated model development.

Finally, current implementations for antigen recognition are based on lock-and-key or on

naive distances, and response is binary: there is complete recognition, or no recognition at

all. This contradicts recent immunological understanding (Brehm et al., 2002), and requires

explicit improvement in any newly-proposed model.

Localised effects

Including all these new features requires extensive code optimization, and parallel imple-

mentation, and the costs are, additionally, a longer development process and additional

tests. The gains, however, are significant. The objective is a model which permits large-

scale simulations and inclusion of layered, localised, effects, such as those found recently

for the gastro-intestinal tract, (see Chapter 6), and which accounts for multiple facets of the

biological immune response.

2.5 Chapter summary

In this Chapter, an overview of essential entities and mechanisms, associated with immune

responses and HIV disease progression, was presented, together with a brief review of pre-

vious efforts to model this complex adaptive system.

In our view, the agent-based paradigm is most suited to describe the way in which complex

combination of cell-level interactions create individual variations in length of the latency
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period, but challenges linked with this approach have been highlighted. They include mod-

elling choices at all levels of implementation, from cell level, (i.e. decentralised immune

memory, refined antigen recognition) to organ level, (i.e. explicit lymph node implemen-

tation, inclusion of localised effects), and simulation strategies, (balance between agent

diversity and population sizes, refined temporal granularity).

Any new model will need to address these issues in order to gain further insight into the

biological system. The following Chapter describes how the local model structure can be

part of the solution to gaining key insight into the overall biological system behaviour.
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Chapter 3

Basis of the agent-based structure

3.1 Concept of agent-based models

3.1.1 Agents and agent-based formalism

An agent-based model is a model in which the key abstraction elements are agents with

both spatial and temporal positioning. The generally-accepted properties for an intelligent

agent, there being no unique definition, are given by Wooldridge and Jennings (1995):

• Autonomy: it can act without any intervention and has some control over its actions

and its internal state.

• Social behaviour: it can interact with other agents through a specific language.

• Reactivity: it can scan part of its environment and change its behaviour to take ad-

vantage of it.

• Proactivity: it not only reacts to its environment but also acts and takes initiatives, to

satisfy identified goals.

It is theoretically possible, though counter-intuitive, to design an agent-based approach and

implement it without explicit references to agent-like entities in the code. In practice, effi-

cient realisation of the agent-based paradigm requires both.
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Advantages of the approach include modelling efficiency, robustness, interoperability be-

tween existing systems, and reasonably intuitive solving of problems for which data, ex-

pertise and control are distributed Jennings et al. (1998). The approach is this particularly

useful in the context of Natural Sciences, as it permits reciprocity between agents and bi-

ological entities as well as between interactions of the real system and exchanges between

agents.

3.1.2 Agents, environment: coordination and challenges

Communication modes

Each agent has limited access only to information about the environment it evolves within,

and agent sociability, therefore, is a crucial aspect of abstraction. Agents can communicate

in several modes, as detailed in Chaib-Draa and Dignum (2002) and summarised, for con-

venience, in Table 3.1. Not all systems involve the complete set of communication modes,

but all modes used in a given system must be identified and explicitly managed.

Communication mode Definition
Representative Providing information on a state
Directive Commanding or asking the recipient to perform an action
Commissive Leading the agent to commit itself to performing an action
Expressive Defining a “psychological” state
Declarative Adding something to the environment
Permissive Granting permission for an action
Prohibitive Opposing an action

Table 3.1: Agents can communicate in several modes

Cooperation vs. competition

Excluding very rare exceptions, an agent always shares its environment with other agents.

It is, therefore, necessary to coordinate all actions of the multitude of agents. Of course,

coordination does not imply cooperation. Cooperation is unnecessary: an agent may op-

pose another in the sense that advantage may be taken to coordinate actions in response to
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a competitor’s decision. Reciprocity is also not implied as a decision, affecting e.g. move-

ment to a proximate location, need not be influenced by an agent already in that location.

In any coordination strategy, the size of the agent population is fundamental and, if every

agent can mutually interact, the number of interaction pairs increases quadratically with the

population size. If interaction can occur between several agents, the coordination overhead

increases exponentially and soon challenges available computing facilities (Durfee, 2001).

Even on recent, large-scale computing resource, developing a coordination strategy is there-

fore both essential and non-trivial, and avoidance of conflicts and blocks is often as much

as can be managed. As already noted, the main drawback of the agent-based approach is

the fact that it is resource-greedy; for this reason, parallelism is desirable, (Chapter 5).

Other challenges

Several challenges exist, (see e.g. Bond and Gasser (1988); Franklin and Graesser (1997);

Iglesias et al. (1997); Sycara (1998); Chaib-Draa et al. (2001)). In particular, formula-

tion, description and decomposition of problems are non-trivial. This is common to most

bottom-up approaches. Analysis is, similarly, not evident, and requires, where possible, the

elimination from the global system of chaotic or oscillatory behaviour.

Even on parallel implementations, resource allocation is challenging, especially when deal-

ing with a large agent population. In particular, when some resources are limited, sensible

allocation of these is required. For instance, a balance between a local treatment by a single

agent and a solution involving several agents, (and, therefore, communication), must be

achieved.

Finally, agent sociability is also non-trivial in most cases. Each agent must be able to rep-

resent its actions and reflect on them, but also to communicate on these with other agents.

This implies possible conflictual intents and divergent points of view, which must be man-

aged during the coordination of agents. Similarly, each local decision an agent takes has

global implications. Damaging interactions must be identified and deleted.
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3.1.3 Examples

Agent-based models implementing several agents are referred to as multi-agent systems.

These systems provide a generic framework for model development and have been widely

applied. A brief review follows.

One of the earliest, and most productive applications was air traffic scheduling. In the

model proposed, (Cammarata et al., 1983), each agent represents a flight and the objective

of each agent is to build a flight plan which maintains a minimum security distance with

neighbouring planes, but also satisfies a number of additional constraints such as minimiz-

ing fuel consumption. In cases of conflict, (e.g. of flight plans), one selected agent acts as a

central negotiator to determine new options for each agent. This agent is chosen based on

a set criteria such as best informed agent, or agent with smallest number of constraints. A

related problem, dealing with optimum service to the public under constraints, (e.g. mainte-

nance and crew requirements), was solved using an agent-based approach (Langerman and

Ehlers, 1997), with agents representing origin and destination airports, and interacting for

resources.

As an illustration of application in the public sector, GUARDIAN was developed to solve

structural issues in the context of an intensive care unit (Hayes-Roth et al., 1989). Here,

unit structure is based on information exchange between experts in their own field who col-

laborate with the common objective of deliver efficient patient care. GUARDIAN imple-

mentation is based on three types of agents; perception/action agents; organisation/decision

taking agents; high-level system control, (performed by a single agent).

In DVMT (Distributed Vehicle Monitoring Task), the paradigm is applied to a radically dif-

ferent field: agents are scattered over geographic areas, which they monitor (Durfee, 1998).

Over regular time steps, each agent detects the characteristic noise emitted by vehicles.

Based on this, it draws a description of vehicle movements throughout its allocated area.

Communication between agents is then used to increase reliability and prevent redundancy

of information in areas monitored by multiple agents. Communication is implemented us-

ing a blackboard.
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Agent-based programming can also be used to control robots (Mizoguchi et al., 1999). Ac-

tions require high refinement of communication, negotiation, collaboration, decision-taking

and execution, as robots interact both with each others and with humans.

Finally, while these examples are developed ab initio, there are several development envi-

ronments which can be used for agent-based models, such as Swarm (Minar et al., 1996),

Cougaar (Helsinger et al., 2004) or JAMES (Uhrmacher et al., 2000). The latter, for in-

stance, is a Java-based framework aimed at modelling and simulation, and permits creation

of mobile agents. These development solutions are not suitable in the context of this study,

which demands a very large agent population, with extensive optimization requirements at

every level of implementation.

From the few examples above, (the list is not intended to be exhaustive), it is evident that

the agent-based paradigm is a versatile approach. In the next Section, details are given on

applying this efficiently to immune modelling.

3.2 Model structure

3.2.1 Modelling approach

Object-oriented modelling techniques describe a system by identifying key object classes

in an application domain and by specifying their behaviour and their relations with other

classes. Essential details of a system are, therefore, traditionally reported using an object

model1, a dynamic model2, and a functional model3.

The proposed model of the immune system is implemented using C++, and could be de-

scribed using models of all three types. In the context of agent-based systems, a more effi-

cient specification technique operates on levels of abstraction (Kinny and Georgeff, 1996).

At the external level, the system is divided into agents, which are modelled as complex
1An object model gathers all details on objects within the system, describes their structure, their relations

and the operations they support.
2A dynamic model describes the states, transitions, events, actions, activities and interactions of the system

structures, which characterise system behaviour.
3A functional model describes data flow during system activity, both within and between components.
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objects characterised by their aim, their responsibilities, the services they provide, and their

interactions with the environment. At an internal level, required elements for each agent

type and structure are modelled.

For clarity and efficiency, the proposed model is detailed using this specification technique.

3.2.2 External structure

At the external level, two specifications are provided (Kinny and Georgeff, 1996). An agent

model describes hierarchical relations between abstract and concrete classes, and identifies

agent types involved in the system, their populations, and the dynamics of these. An in-

teraction model describes responsibilities of an agent type, services it provides, associated

interactions and control relations between agent types.

3.2.2.1 Agent model

Balance between agent diversity and agent population is essential, (Section 2.4.2). In order

to simulate populations large enough to account for immune response throughout a body,

reduced diversity is needed, at least in the first instance. As immune response to HIV is

predominantly cell-mediated, it can be modelled using three types of agents, (based on

agent-cell reciprocity): CD4, CD8 and APC. A fourth type of agent is needed for HIV

virions. The agents evolve in lymph nodes modelled as 2D matrices in which each element

is a 3D physical neighbourhood able to host several agents of all types. (For the lymph

network environment, see Chapter 4.)

Each agent type corresponds to a specific class in the C++ implementation, and inherits

from a common, abstract base class. This class contains attributes and functions needed

for management of ageing and of location within matrices. Being abstract, this class does

not correspond to any agent during simulations. For immune (CD4, CD8, APC) and viral

agents, the number in each matrix element is limited to 10 and 20, respectively, to ensure

realistic neighbourhood size for interactions. An element can, for instance, contain 8 CD4

agents, 7 CD8, 5 APC and 17 virions.
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At the start of a simulation, initial agent populations are specified in a parameterisation file.

Agent populations then dynamically evolve, following rules summarised in Table 3.2.

Variations Viral agents CD4 agents CD8 agents APC agents

Increases
Production Created in thymus, Created in thymus, New agent

by infected CD4 or produced by or produced by created
multiplicating agent multiplicating agent

Decreases
Agent ingested Infected agent End of immune Presenting

by APC, or destroyed, or response, or agent destroyed,
infecting CD4 end of life end of life or end of life

Table 3.2: Agent population dynamics

3.2.2.2 Interaction models

The reciprocity between agents biological entities, (cells and virions), mirrors real-system

interactions between the latter. These are summarised in Figure 3.1.

3.2.3 Internal structure

At the internal level, each agent class is described using three specification models of the

agent-based paradigm. Following the structure proposed in Kinny and Georgeff (1996),

the chosen approach is to use BDI models, (Belief-Desire-Intention), which describe infor-

mation possessed by the agent, together with its objectives and potential behaviour. These

“models”, therefore, guarantee an exhaustive description of essential properties of the agent.

The belief model describes the type of information the agent has access to, both in its envi-

ronment and its internal state. In particular, several states can be specified as initial states.

The desire model describes objectives of the agent, and events it can react to. Finally, the

intention model describes the behaviour of the agent, i.e. ways in which the agent can fulfil

its objectives or adapt to events it perceives.

These “models” will be used to describe each agent class: virions, CD4, CD8, and APC.
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Figure 3.1: Agent interactions.
Viral agents can move from one neighbourhood to the next, (providing there is sufficient space for
them, which is checked using a dedicated function). Upon arrival in a new neighbourhood, these
agents can perform a single operation only: infection of a CD4 agent. First step is the selection
of CD4 target. Possibility of infection is then assessed, (e.g. if CD4 agent is activated). Infection,
if it takes place, is implemented as transfer of viral genome information into the CD4 agent and
destruction of viral agent. CD4 agents incorporate mobility and can reach new neighbourhoods.
As for viral agents, this includes checking, through a dedicated function, that space is available.
Upon arrival and if already activated, the agent can activate a CD8 neighbour. Activation follows a
process similar to that of infection, detailed above. A possible target is selected, assessed, (in terms
of agents bearing “compatible” clonotypes), and then activated when this is possible. If a CD4 agent
is infected, it may produce a new viral agent. In the early stages after its own activation, an agent
also produces some additional CD4 agents, to enhance immune response. CD8 agent mobility
is implemented similarly. In its new neigbourhood, the agent produces new CD8 agents, (if it is
currently multiplicating), or targets infected CD4 and APC agents, (if it is activated). Some CD8
agents can enter a state representing memory cells. These agents, (with a greater life span and faster
reactivation), interact with all agent types in their neighbourhood, in order to monitor known viral
strains, and can be directly reactivated. Final agent type, APC, implements mobility and associated
functions needed to query the environment. APC agents interact with viral agents, in the sense that
they can ingest them to present viral strain information to other agents. They also interact with CD4
agents, which they can try to activate by presenting viral information. Success of activation is based
on affinity between viral epitope and CD4 clonotype.
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3.2.3.1 Belief-model specifications

Each agent has complete knowledge of its parameters and, therefore, of its internal state.

Knowledge on its environment is, however, limited and temporary. Information on the en-

vironment is, indeed, limited to presence of targets for interaction in the neighbourhood.

Agents have no memory of the evolution of their neighbourhood, as is the case with biolog-

ical entities of the real system.

All internal parameters are coded as integers, (or lists of). Age is involved in the internal

state of all agents. Other parameters are type-specific, and are given in Table 3.3.

Agent type Parameter Value stored Initial value
Virion Viral strain Strain ID Fixed value

CD4

Clonotype Clonotype ID Fixed value
Activation Responsible strain 0

Multiplication Expansion status 0
Infection Responsible strain 0
Memory Past activation status Fixed value

CD8

Clonotype Clonotype ID Fixed value
Activation Responsible strain 0

Multiplication Expansion status 0
Memory Past activation status Fixed value

APC Antigen list Strain IDs Empty list

Table 3.3: Agent parameters and initial internal state

3.2.3.2 Desire-model specifications

Viral agents. These agents have a single objective: infecting a CD4 agent. This objective is

permanent and is, therefore, also the initial objective. In the biological system, the objective

is then to produce new virions, (implemented directly within CD4 agents).

CD4 agents. As long as a CD4 agent is neither activated nor infected, its single objective is

to stay on “stand-by”, ready to initiate immune responses. This is the initial objective and,

since it does not correspond to any particular action, it can be limited to moving within the

environment. The objective of an activated agent is to activate CD8 agents, while that of an
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infected agent is to produce new viral agents. These two objectives can, of course, coexist.

The objective of a CD4 agent which assumes the task of maintaining memory is similar to

that of its initial state.

CD8 agents. As long as a CD8 agent remains non-activated, its single objective is simi-

lar to that of initial CD4 agents, and is implemented in the same way. The objective of a

memory CD8 agent is similar. The objective of an activated CD8 agent is to multiply, and

to eliminate target agents.

APC agents. An APC has two objectives: locating viral agents, and activating. The for-

mer is the initial state, and is similar to initial state of other immune agents. The latter can

treated as is proposed for CD4 agents activating CD8.

3.2.3.3 Intention-model specifications

Viral agents, (Figure 3.2a, p.37). The raison d’être of a viral agent is species survival.

This is reflected by the single objective: reproduce, i.e. infect. As infecting a CD4 agent

is a permanent objective, every aspect of agent behaviour is targeted towards fulfilling this.

Strategy is, therefore, simple, and is divided in three steps: the agent moves, inspects its

new environment and, if possible, infects an immune agent. This is repeated until infection

is successful or agent is destroyed.

CD4 agents, (Figure 3.2c). The initial objective being to explore the environment, be-

haviour is limited to agent movements. Once the agent is activated, each movement is

followed by multiplication, (for a few iterations after activation), and information gathering

on the environment, to determine whether there is a suitable target for activation. If such

a target exists, activation follows. If infected, a new virion may also be produced. The

behaviour of agent in “memory status” is again limited to agent movements.

CD8 agents, (Figure 3.2d). Initial and “memory” behaviour is similar to that of CD4 agents.

Once the agent is activated, each movement is followed by information gathering on the en-

vironment, to determine whether there is a suitable target for elimination. If such a target
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exists, it is eliminated.

APC agents, (Figure 3.2b). Behaviour of an APC agent has first divided in two steps:

the agent moves, and then gathers information on its environment, in order to locate viral

agents. Once it starts presenting details of such agents, it also looks for CD4 agents, in

order to activate them.

3.2.4 Agent implementation

A summary is proposed in Figure 3.3, (p.38), of the four specific classes and single ab-

stract class used for agent implementation. We introduced an early implementation of these

classes in Perrin et al. (2006a;b). Here, we give a detailed and updated presentation of the

attributes and methods. The former are used to implement an agent’s internal state, while

the latter are used for interactions, through several communication modes, (Section 3.1.2).

In this case, commissive, expressive and declarative modes are not used. The other modes

are required, and implemented.

3.2.4.1 Base class

Base class attributes are related to the management of agent location and age. Direct im-

plementation of the age would be ill-advised, as it would require updating age of all agents

at each iteration, even when this information is not immediately required. This can be quite

slow, especially as the number of agents increases.

A more suitable alternative is to save the number of the iteration at which the agent was cre-

ated. No repetitive update is required, and calculation of the difference between the current

iteration number and the “birth date” of the agent provides its age when needed.

3.2.4.2 Viral agent class

The viral agent class must manage viral strain information. Methods are, therefore, im-

plemented to access and update this information, (i.e. representative and directive modes).

Different viral strains mean different properties are needed for the associated viral agents:
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Figure 3.2: Intention specifications: behaviour of the four types of agents
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Figure 3.3: Agent implementation: class diagram

these are not recognised by same set of immune agents, may have distinct mutation rates,

etc. Explicitly implementing all these properties within each agent would make them too

“big”, in terms of memory usage, (which is to be avoided for large simulations). The solu-

tion here is to use a single integer, coding the viral strain. This identification can then be

used to access strain-specific properties, which are stored in a large array, (representing tens

of thousands of potential strains).

An interesting property, here, is the identification of which immune clonotypes recognise

each strain. As outlined, (Section 2.4.2), antigen recognition must be refined with respect

to lock-and-key concepts. Proposed here is that two list of clonotypes should be available.

The first list corresponds to clonotypes for which recognition is certain, (i.e. p = 1), and

the second accounts for those for which recognition is not perfect, (i.e. p < 1). An impor-

tant characteristic is that when an agent from the second list recognises the viral strain, the

associated clonotype moves from the second list into the first. This is critical to the realism

of the model, since it allows us to introduce some adaptability.

Infection of immune cells is implemented within CD4 agents. As this interaction involves

only these two classes, this is biologically equivalent, but it is more efficient, in terms of

computing performance.
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3.2.4.3 CD4 and CD8 agent classes

Commonalities. Class attributes are related to management of the class-specific parame-

ters that make up the internal state of these agents: agent clonotype, multiplication status,

activation status, memory status, (and infection status for CD4 agents). Methods are pro-

vided, to update or access information, as for viral agents.

The clonotype is coded as an integer, randomly valued when the agent is created. Activa-

tion status is also coded as an integer. This value, set initially to zero, is used to store the

identification integer representing the viral strain which led to agent activation. A positive

value corresponds to an agent activated to respond to HIV strains, while a negative one is

linked with another infection the immune system is currently responding to. This is crucial,

as not all immune cells are available for a given response: some are already involved in

other responses. It is also important, for CD4 agents, since infection requires that the cell

is activated, but the response it is involved in need not be targeted to HIV.

Multiplication status is an integer, initially set to zero. It is then incremented at each step of

the multiplication phase, until it reaches a limit and is set back to zero, signalling the end

of this phase. Memory status is also coded as an integer and initially set to zero. When an

agent starts assuming the role of a memory cell, it takes the value previously assigned for

activation status, and that activation status is then set back to zero.

CD4-specific attribute values. Infection status is coded as an integer, initially set to zero,

and storing HIV strain identification. Infection by multiple strains is possible in the real sys-

tem. This is not, however, considered in the proposed model, as each set of strain properties

may implicitly account for several strains in the real system, if these differ on properties

which are not explicitly considered here. A possible extension of the model may be to con-

sider multiple infections.

CD4-specific methods. Methods are implemented to account for modes related to infection

of a CD4 agent. These correspond to assessment of viral presence in the neighbourhood,

and transfer of viral content to the infected agent. Additional methods are also implemented

for these agents, to deal with activation of a CD8 agent. The process is similar that of in-
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fection of CD4 by a viral agent: presence of targets is assessed, and activation takes place

if possible.

Similarly, other methods account for production of virions by infected CD4 agents. Here,

the agent needs access both to the strain properties array and to its environment.

CD8-specific methods. Additional methods are also implemented for these agents, to ac-

count for elimination of infected agents. The process is similar that of previous interactions:

presence of targets is assessed, and elimination takes place where necessary.

3.2.4.4 APC agent class

The APC agent class attributes are related to the management of the single parameter that

makes up the internal state: the list of presented viral strains. Viral strains are coded using

their identification integer. The list is initially empty, and new integers are added as strains

are detected by the agent. Methods are provided to access and update this list.

Additional methods account for activation of CD4 agents. The process is similar that of

previous interactions: presence of targets is assessed, and activation takes place where pos-

sible.

3.2.5 Multi-agent simulations of implemented model

3.2.5.1 Description of a typical iteration

Because of the nature of the system being studied, stochastic events are included, and the

analysis of each configuration or set of parameters requires several simulation “runs”. A

key element for each of these is the update loop used to implement each iteration of the

model. The time step used for these iterations in the implemented model is based on those

mechanisms which have the fastest change, (e.g. production of a new virion by an infected

CD4 cells, which takes on average just under a minute). The update loop is detailed below.

Since all interactions take place within the physical space delimited by the matrix element,

the update sequence of the matrix is not significant: it is not necessary to randomly select

a different sequence at each time step. The focus here is, therefore, on updates at the agent
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level.

Note: An interesting property of this update procedure is that not all agents are updated at

each time step. This is to account for the fact, if all biological entities can move and interact

at any given time, they do not do so on a continuous basis, nor on a regular rhythm shared

by all. This pattern is implemented through uniform random selection, within a matrix ele-

ment, of agents that are updated at the current time step. Due to the finite size of the matrix

element, an agent will not spend an infinite time without being updated. Moreover, since

the first action when selecting an agent is to check its age, it also guarantees that no agent

will have an effect outside of its life span, even if not updated for some time. Finally, while

each agent type is responsible for a given type of interaction, all are also passively involved

in other interactions. For instance, CD4 agents coordinate CD8 activation explicitly, but are

also implicitly updated when they are involved in their own APC-controlled activation.

This random selection of agents involved is a significant advantage, as it is both biolog-

ically realistic and computationally efficient, (due to reduction of operations required for

each update iteration). An important consequence is that it allows larger agent populations

to be modelled, (a key objective).

Update of viral agents:

1. Movement. An agent is selected within the current matrix element, and moves to a

new matrix element.

2. Query. The agent gathers needed information on this new environment, i.e. number

of CD4 agents.

3. Infection. Providing there are such agents, one is randomly selected. (This accounts

for the fact that not all agents within that small space are considered to be in physical

contact with this viral agent). If this selected CD4 agent is a suitable target, (i.e.

activated and not previously infected), an infection process starts: value of attribute

“infected” of this agent is set to value of attribute “strain” of viral agent, (or to a
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related value if successful mutation occurs4), and the viral agent is then destroyed. If

no suitable target was accessible, nothing else happens.

Update of CD4 agents:

1. Memory. When an active CD4 agent reaches the end of its life span, it may become

a memory cell, which is implemented as follows: value of “memory” is then taken

from “activated” attribute, which is set back to zero.

2. Movement. The agent moves to a new matrix element. If it is not activated, nothing

else happens.

3. Query, (presence of CD8 agents if activated, presence of “reactivation agents” if non-

active memory cell).

4. Reactivation. If the CD4 agent is a non-active memory cell, it can be reactivated if it

locates infected agents or agents involved in immune responses, and recognises viral

strains associated to these. If the CD4 agent is not reactivated, the update stops here.

5. Expansion. If the CD4 agent is currently multiplying, a clone agent is produced, (the

only distinct parameter corresponding to age of the new agent). If the CD4 agent is

not infected, the update stops here.

6. CD8 activation. Providing there are CD8 agents, one is randomly selected and, if it

is not already activated, clonotypes are compared. If these are compatible, activation

occurs: value of attribute “activated” of CD4 is copied into the respective attribute of

selected CD8 agent.

7. Infection. A new virion may be created, based on properties stored in the strain array,

and accessed using value stored in “infected” attribute.

Update of CD8 agents:

1. Memory, (as for CD4 agents).
4If mutation is unsuccessful, infection fails, but the viral agent is still eliminated
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2. Movement. The agent moves to a new matrix element. If it is not activated, nothing

else happens.

3. Query, (presence of targets if activated, i.e. infected CD4 agents and presenting

APC agents, presence of “reactivation agents” if non-active memory cell). Possible

reactivation, (as for CD4 memory agents).

4. Reactivation, (as for CD4 agents).

5. Expansion, (as for CD4 agents).

6. Elimination. If targets are located, they are randomly selected and eliminated.

Update of APC agents:

1. Movement. The agent moves to a new matrix element. If it is not activated, nothing

else happens.

2. Query, (presence of viral agents, and presence of CD4 agents if already presenting

antigens).

3. Antigen acquisition. If viral targets are present, one is selected, its “strain” attribute

added to the list, and the agent destroyed.

4. CD4 activation. If the list is not empty and if there are potential CD4 targets for

activation, one is selected and activated, through a copy of a “presenting” integer

from the list into “activated” attribute of target.

3.2.5.2 Random number generation

Many aspects of a real-life system involve stochastic events, and, consequently, most meth-

ods and functions in our model have to include random number generation. Details on

stochastic aspects of the immune system are well-reported, (see e.g. Germain (2001)). Ex-

amples include the process by which new lymphocytes are created: a lymphocyte can only

recognize a specific set of antigens so that, to protect itself against any attack, the body
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has to generate thousands of “variations” between lymphocytes. This is implemented using

random numbers. Further, one of the most distinctive features of the virions is their high

mutation rate, which occurs randomly. Finally, there is no sensible way to deal with mobil-

ity unless we include stochasticity.

A full-scale model will involve millions of agents in very long simulations, with parallel

aspects involved. A reliable and efficient random number generator which can deal with

all these stochastic elements and features is essential. Many generators are, of course,

available, and good ones can also be designed explicitly (see e.g. Press et al. (2002)). A

top-quality parallel generator is needed, and our model can interface both with the Scalable

Parallel Random Number Generators library, (SPRNG), (Srinivasan et al., 2003) and with

the “Mersenne twister” generator (Matsumoto and Nishimura, 1998). These libraries in-

corporates recent, state-of-the-art developments in the mathematics and computer science

of parallel pseudorandom number generation. They both have an existing, active user base,

ensuring high standards. In particular, they allow the streams to be also absolutely repro-

duced, for computational verification, independent of the number of processors used in the

computation. High confidence in the statistical results, at a very low computing cost, is a

feature of this library usage.

3.3 Chapter summary

In this Chapter, detailed implementation of agent structure is presented. Four types of

agents are used, in order to fully describe cell-mediated response and HIV mechanisms,

while reducing agent diversity to a level which permits simulation of large populations. The

proposed implementation, therefore, provides a basis from which to address the limitations

outlined in Chapter 2.

Implementation of agent classes, as well as typical iteration of simulation, are detailed. This

outlines several features that were also presented as essential in that Chapter:

• Sensible granularity is obtained by using a time-step of fifty seconds, which ensure
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that no significant interaction is unaccounted for.

• Structure of CD4 and CD8 agents allows direct cell-level control of immune memory.

This is expected to be more realistic than a centralised implementation.

• Antigen recognition is refined to include adaptability: recognition is not binary, and

this essential feature is also expected to enhance model realism.

The following Chapter focuses on implementation of the lymph network and details how

this can address limitations outlined for previous models.
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Chapter 4

Building the lymph network

4.1 Structure of the lymph network

Objectives detailed in Chapter 2 include explicit implementation of lymph nodes and the

lymph network. In the next two Sections additional details on these structures and a further

demonstration of their essential role in achieving model realism, are provided.

4.1.1 Lymph nodes

Lymph nodes are key components of the lymphatic system, and are found throughout the

body. An important function of a lymph node is to act as a “filter” for foreign particles such

as viruses, by collecting antigens. Even more crucial, however, is that this “filtering” is used

to enhance immune response. A node’s structure is designed for this function, and is char-

acterised by high content of immune cells, which use these lymph nodes as meeting points

for large-scale responses that could not be mounted in a less favourable environments.

The normal size of lymph nodes ranges from a few millimeters to around 1-2 centimeters,

(see e.g. Tiguert et al. (1999)), but, as lymphocytes multiply during activation of the im-

mune response, nodes can become significantly enlarged during such periods.

The inner structures of a node, illustrated in Figure 4.1 (reproduced from Gray (1918)),

are associated with a predominant cell in each case: outer cortex is rich in B lymphocytes,
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while deep cortex and medullary cords predominantly host T lymphocytes, and medullary

sinuses can contain some immobile macrophages.

A node is connected with the “outside” through blood and lymph circulations.

Figure 4.1: Section of a lymph node, (reproduced from public-domain book (Gray, 1918))

4.1.2 Distribution and circulation

As key defense units, lymph nodes are distributed throughout the body. Humans have

around 500 lymph nodes, and lymphocytes constantly circulate through these lymph nodes.

To guarantee this cell circulation, connectivity is an essential property of the lymph net-

work: a cell newly produced in the thymus must be able to reach any lymph, and efficient

immune response implies interactions between nodes, (by means of cell exchanges).

The lymph network, however, is not equivalent to a complete graph: between any given

pair of nodes, there is a path, but not necessarily a direct connection. In contrast, the lymph

network is organised as a set of chains. These “clusters” of nodes can be found in the neck,

chest, abdomen, underarm, etc. For illustrative purposes, lymphatic chains of head and

neck, and of stomach, are shown in Figures 4.2 and 4.3, respectively, (reproduced from a

public-domain edition of Gray’s Anatomy, (Gray, 1918)).
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Figure 4.2: Lymph nodes of head and neck, (reproduced from Gray (1918))

The circulation of immune cells between nodes is not trivial. Cell migration is non-random

(Witherden et al., 1990), and is, in particular, type-dependent: CD4/CD8 ratio is always

higher in the recirculated compared to overall population, (and often more than twice as

important). Interestingly, however, transit kinetics are equivalent for both subsets of T

cells. Naive and memory cells also have different recirculation pathways (Mackay et al.,

1990).

Circulation is also tissue-specific, in the sense that T lymphocytes preferentially recirculate

back to the tissues they came from. This is controlled at the molecular-level through spe-

cific chemokines (Kunkel and Butcher, 2002).

As might be expected, circulation patterns are affected by immune response. In particular,

lymphocyte input and output is significantly increased in nodes where immune activation is

taking place (Cahill et al., 1976).
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Figure 4.3: Lymph nodes around stomach, (reproduced from Gray (1918))

4.2 Importance of lymph nodes and lymph network in the con-

text of HIV infection

Lymph nodes are essential units, since they host the most crucial part of immune response to

any infection. An immediate consequence of this is that any immune model, not explicitly

dealing with these nodes, is neglecting most of the immune response it is trying to account

for.

This remains true, of course, in the context of HIV infection, and in many respects, the

lymph system is even more crucial in this particular context. In recalling that HIV repli-

cation cycle is based on infection of CD4 cells, lymph nodes are precisely where most of

these immune cells migrate to. Recirculation of course implies that some also are found in

blood vessels, for instance, but at any given time the majority of CD4 is located still within

lymph nodes. A model without explicit lymph node implementation fails, realistically, to

account both for the immune response and for the infection this response is targeting.

Moreover, dynamics of cell mobility are known to be altered by HIV infection (Douek et al.,
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2003). This is a direct consequence of generalised immune activation, which is known to

affect cell recirculation. In particular, an inversion of the CD4/CD8 ratio is observed in

peripheral blood, due to diverging population dynamics for these cell types: CD8+ cells

undergoing rapid expansion through immune activation are not subject to viral infection.

This has led to reports that decline in peripheral blood CD4+ cells overestimates actual

cell loss in lymphoid tissue (Rosok et al., 1996). However, more recent evidence suggests

that, on the contrary, total-body depletion is underestimated by peripheral blood cell counts

(Douek et al., 2003). Whether these counts under- or overestimate actual effects is (almost)

irrelevant. More crucial is the fact demonstrated that these counts are not an accurate mea-

sure of fitness of the immune system, and that an explicit model is required.

HIV infection also affects node structure, (through chronic activation and cell depletion,

see e.g. Biberfeld et al. (1985)), and cell dynamics, (through altered balance between naive

and memory cell (Roederer et al., 1995), and increased pressure on thymic output Douek

et al. (1998)). An explicit implementation of the lymph nodes can permit inclusion of this

structural distortion.

4.3 Node structure and implementation

The proposed model provides a solution to explicit implementation by using lymph node as

the key abstraction element for the “world” in which agents evolve. Details are provided in

this Section.

4.3.1 Matrix-based representation and associated neighbourhood

In order to efficiently account for cell interactions and corresponding physical contact, accu-

rate localisation of agents within the lymph node is required, implying division into smaller

subunits. A standard approach to spatial representation requirements is to use a 2D or 3D

matrix, and to consider either a Von Neumann neighbourhood, or Moore neighbourhood,

(Figure 4.4).
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Figure 4.4: Von Neumann (left) and Moore (right) neighbourhoods

Division into subunits is not trivial however, and the standard approach does not appear

particularly suited for multi-agent systems involving several types of agent. In our new

model, each matrix element has to be able to contain at least one agent of each type. If it

can contain no more than one, limitations related to size of the matrix and of the modelled

entities are an issue. In the former case, modelling a million viral agents requires at least

a 1000x1000 matrix; in the latter, not all biological entities involved have a similar size. It

is, therefore, unrealistic to assume that a matrix element should contain the same number

of viral agents, (small entities), and APC agents, (significantly larger cells).

More usefully, matrix elements can be considered to be “physical”, containing several

agents of each type, with a limit based on size of modelled entity. This implies that all

cell interactions will take place within this physical neighbourhood, and considering sur-

rounding matrix elements is not necessary. In our model, lymph nodes are, therefore, im-

plemented as 2D matrices where each element represents a physical, 3D, neighbourhood.

4.3.2 Memory allocation and agent localisation

A naive implementation of agents within the matrix representation of a lymph node would

allow for arrays of agents within each element. Each array would store agents of a given

type and localisation of agents would, therefore, be trivial, with agent movement between

elements involving simple deletion from one array and addition to another.
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Memory allocation for agents also offers an intuitive solution: memory could be dynami-

cally allocated whenever an agent is created, and freed when one is destroyed.

Both these solutions would be suitable for a small-scale system, but would not be efficient

for a large model such as the one studied here. In the first place, memory allocation is one

of the slowest operations on a computer, and would be intensively solicited here. At each

iteration, a large number of agents are created or destroyed, (Table 3.2, p.32). Successions

of dynamic allocations and deallocations would be used and would, therefore, significantly

hinder efficient computation. Moreover, as immune response is initiated, agent count will

sharply increase, and may reach values close to theoretical limits of the model. The main

advantage of dynamic allocation, (i.e. using only as much memory as is needed at any time

point), would not apply in such a simulation.

Consequently, our implementation is based on static memory allocation. Large arrays of

agents, (one for each agent type), are allocated when simulation starts, and store the max-

imum number of agents which can be present in the whole matrix at the same time. Each

matrix element then only stores integers, used as offsets, to locate agents currently held in

these arrays.

4.4 Cell mobility and validation of the lymph node model

4.4.1 The importance of cell mobility

Cell mobility is often neglected in existing models, in part, due to lack of explicit implemen-

tation of lymph nodes. Nevertheless, consideration of mobility is essential, especially for a

bottom-up approach, as accurate accounting for low-level mechanisms is the aim. The main

focus is on cell-level interactions, with results based on cell-dependent information. For in-

stance, (see Chapter 2), affinity between immune clonotype and viral epitope determines

efficiency of immune response, and physicochemical binding between viral glycoprotein

gp120 and CD4 receptors of lymphocyte is a first step in cell infection.

Some models try to account for physical contact in these interactions by probability state-
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ments on proximity of cells, but there is no biological basis for such a function to be used,

and it seems unlikely that a single constant probability would be valid throughout the body.

The agent-based paradigm offers the opportunity to fully account for cell mobility, both

within and between lymph nodes.

4.4.2 Intra-node mobility

Implementation

Intra-node mobility refers to agent movements within each matrix. Overall movement is

based on flow, created by the fact that agents enter the node on one side, and exit on the

other. The required distribution of agents and time spent in each node is stochastically gov-

erned.

Using the implementation and memory allocation strategy detailed in Section 4.3, updates

of agent localisation are easily managed: (i) creation of an agent requires initialising its

internal state and saving the offset, to access this state, in the matrix element; (ii) deletion

of an agent involves deletion of this offset; a new agent can subsequently be created in this

space; (iii) movement from a one matrix element to the next requires transferring the offset

value to the destination element.

Validation

Intra-node mobility is validated using a “covering test”. Generic agents are created, (i.e.

biological interactions are not taken into account here), and are randomly scattered over a

matrix. These movements are then monitored over a number of iterations, to assess whether

all matrix elements are indeed accessible. Tests were performed with a single agent in a

50x50 matrix, and with ten agents in a 200x200 matrix, and results are shown in Table 4.1.

Even with limited iterations (50,000, as opposed to several millions for a full-scale sim-

ulation) and few agents, covering is very satisfactory and supports adequate modelling of

intra-node mobility. Interestingly, this model feature is implemented at a very low comput-
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ing cost, since agent movement only involves alteration of two integer values. It does not,

therefore, limit other modelling objectives such as efforts towards simulation of large agent

populations.

Matrix size Visited elements Maximum Minimum Average Std. deviation
50x50 2500 (100%) 103 3 39.94 15.45
200x200 39795 (99.49%) 108 0 24.98 15.14

Table 4.1: Covering tests on intra-node mobility

4.4.3 Validation of cell-level mechanisms in the lymph node model

The lymph node structure is fully implemented, and populated with agents which incorpo-

rate mobility features. The immediate objective is to validate this structure, before subse-

quent validation of the lymph network model, which uses this node model as key abstraction

unit, (Figure 2.4, p.23).

The first stage is to guarantee a high temporal granularity, which is essential to model real-

ism (Section 2.4.2). A time step of just under a minute has, therefore, been chosen for this

lymph node model, which addresses the limitations of the long time-step models and allows

accurate simulation of cell-level mechanisms. Tests to validate these basic interactions are

presented here.

The difficulty is that there is no simple criterion, such as a convergence rule, since the

system is continuously evolving. The only solution here is to run a significant number

of simulations, acquire sufficient clinical data (e.g. Buseyne and Riviere (2001); Murali-

Krishna et al. (1999); Oxenius et al. (2001)), and isolate similar patterns in both sets: this

motivates the following tests.

A first consideration is to validate the activation of the effector cells of the cell-mediated

response, i.e. CD8 lymphocytes. In the biological system, we highlighted three steps:

1. CD8 cells are activated by CD4 cells to target a specific antigen;

2. newly-activated CD8 cells multiply themselves and “attack” suitable targets;
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3. once the response is over, a portion of the created cells become memory cells, while

the others are destroyed.

To assess how the lymph node model deals with the biological system requirements, a par-

ticular configuration is simulated with no viral agents, but a set of artificially activated CD4

cells. These agents activate their CD8 counterparts, which rapidly multiply themselves.

Once the response is seen as over, (no further targets), most excess CD8 cells are destroyed

while a few are kept as memory cells. Observed patterns are satisfactory, (see Figure 4.5).

Next, consideration is given to the three steps leading to activation of CD8 cells in the

cell-mediated response:

1. APCs detect foreign entities and start presenting specific antigens on their surface;

2. given CD4 lymphocytes recognize these antigens and activate themselves;

3. these cells activate CD8 lymphocytes, which then behave as previously described.

To assess the lymph node model in this case, “passive” viral agents are simulated: these

move within the node and can be recognized as foreign entities, but do not show any HIV-

specific behaviour. This generates results, which are focused on the response itself. In

Figure 4.6 (p.57), the chain of activation is reproduced. The delay between each activation

step is due to the mobility condition: cells need physical contact to interact.

The last validation step for local interactions is the HIV-specific behaviour that viral agents

have to reproduce. HIV virions use activated CD4 lymphocytes as hosts. Once a cell is

infected, it starts producing new virions, while its life expectancy is greatly reduced, even

without the consideration that it may be destroyed by activated CD8 lymphocytes.

This specific behaviour was highlighted in a famous experiment conducted by a research

group led by Montagnier, (Barre-Sinoussi et al., 1983). It was thought at the time that the

first human retrovirus discovered, HTLV-1 (Human T cell leukemia virus), was responsible

for AIDS. HTLV-1 is known to make T cells capable of indefinite growth and division. A

set of CD4 T lymphocytes was introduced to biosamples from a patient suffering from early
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symptoms of AIDS. Some retrotranscriptase activity was detected, but soon disappeared. A

new set of lymphocytes was introduced into the culture: activity was again observed ini-

tially, then disappeared. The virus responsible for AIDS cannot, therefore, be HTLV-1, as

the former “kills” CD4 cells.

The lymph node model must reproduce this expansion strategy and its success has been as-

sessed through a simulation involving only virions and CD4 agents, and featuring a massive

input of “fresh” CD4 agents at some stage. As can be seen, (Figure 4.7), for the new set

of lymphocytes introduced after 750 iterations, a decline in CD4 is again observed and the

test suggests that the model satisfactorily reproduces in vitro behaviour. Visualisation1 of

expansion strategy is shown in Figure 4.8, (p.58).
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Figure 4.5: Activation and multiplication of CD8 lymphocytes

1Visualisation was only available for early single-node tests, (see Section 8.2 for details).
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Figure 4.8: Graphical representation. Infected CD4 agents, (black dots), are producing new
viral agents, (dark grey dots).
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4.4.4 Inter-node mobility

Concept

Cell movements also involve inter-node mobility. This refers to agents leaving a lymph

node entirely and entering another one. As far as node structure itself is concerned, this

requires addition of entry and exit points to the matrix, for agent arrivals and departures.

When an agent reaches the exit at the far corner of the matrix, it is added to a transfer list,

and then removed from the node. At the end of the iteration, lists are shared and agents

transferred to their new locations.

Structure

It is important to account for lymph network structure: this, (as mentioned earlier), is similar

to a directed connected graph, but is not complete. It implies that the final destination of an

agent leaving a node can theoretically be any node, but its immediate destination is limited

to a small subset of nodes.

Final destination

Selection of final destination is random, but not based on a uniform distribution. Lym-

phocyte recirculation features preferential recirculation back to tissues of immune cell ori-

gin. To account for this, each lymphocyte agent leaving a node has a 0.5 probability to

be assigned this node as its final destination, ensuring circulation through the whole lymph

chain corresponding to this node. To respect the higher lymph node to overall population

CD4/CD8 ratio in departing agents, a function is also added to guarantee that not all CD8

agents evolving in the neighbourhood of the exit point are selected for departure.

Immediate destination

Selection of immediate destination is based on the lymph network structure modelled. The

number of lymph nodes modelled during a given simulation may vary, for instance de-
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Figure 4.9: Principal algorithm for lymph network generation

pending on available computing resources. What is needed here, therefore, is an automated

technique to generate a network of nodes reproducing the lymphatic chain structures for any

number of nodes. A generation method has been developed, implemented and tested, and

the principal algorithm is shown in Figure 4.9. It is based on creation of several lymphatic

chains, which are linked together by a “main-chain” to ensure connectivity of resulting

structure. An example of a generated network is shown in Figure 4.10.

Inter-node mobility, of course, implies simulations with a significant number of nodes, and

this implies increased computing load. A parallel implementation, (detailed in the next

Chapter), is employed to address this final requirement. The results of inter-node mobility,

in conjunction with parallelisation features, are detailed in Chapter 6.

4.5 Chapter summary

In this Chapter, it was demonstrated that an explicit implementation of lymph nodes and

associated network is both necessary and achievable. It is necessary, due to the organisation

of the immune system, where lymph nodes are key defense units which host most of the

immune response to HIV. Furthermore, HIV uses immune cells as hosts to replicate and
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proliferate, and it is in lymph nodes that the highest concentration of these is found.

The generic nature of the agent-based paradigm allows agents to evolve in any user-defined

environment, and an implementation is proposed here, which explicitly implements lymph

nodes and lymph network structure, and accounts for cell mobility, both within lymph nodes

and between them. As such, it addresses an essential feature, (Section 2.4.2).

Intra-node mobility was obtained at very low computing cost, for which the implementation

does not limit modelling of large agent populations, while tests on different matrix sizes

have shown that behaviour is satisfactory. Inter-node mobility was implemented by adding

entry and exit points to matrices, and probability functions to determine the final destination

of circulating agents. The immediate step on the path to that lymph node is obtained through

introduction of an algorithm generating lymph network structure.

Four of the six limitations identified, (Section 2.4.2), have been addressed satisfactorily. An

efficient parallel implementation of the lymph network is also required to fully account for

inter-node mobility and large-scale, biologically-meaningful simulations. Details on this

are given in the next Chapter.
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Chapter 5

Parallel Implementation

5.1 Rationale for a parallel implementation

5.1.1 Achieving realism: one is not enough

Since most of the immune response to HIV infection takes place within lymph nodes, these

key organs were chosen as the basis for the agent-based model.

Mechanisms for ensuring physical contact with respect to immune interactions generated a

discussion on mobility, and the chosen implementation was detailed in the previous Chap-

ter. Cell mobility within each node can be examined with a single-node simulation, as

movements are local. Mobility between nodes, however, implies that nodes must be con-

nected via a network.

Another motivation of this work, identified in Chapter 1, is to look into localised effects

such as early infection in the gastro-intestinal tract. This again requires the implementation

of an additional layer, or network, that changes local node properties, (Chapter 6). In or-

der to create these subnetworks, i.e. areas with distinct behavioural patterns, there is, thus,

a need for a lymph network large enough to accommodate both “normal” and “localised”

nodes.

The approximately five hundred nodes mimicking those of the human body can not be han-

dled on a single-processor computer, because of limitations in both available memory, (it is
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not possible to allocate a large number of nodes), and computing power, (it would take too

long to simulate all nodes). The only solution is to consider a parallel implementation of

the lymph network.

5.1.2 Parallel nature of the problem

When considering the parallel nature of a problem, classification is built on three categories,

(see e.g. Gropp et al. (1999b) for details):

• Embarrassingly parallel problems, which can be broken down into subparts, each

completely independent of the others. As a consequence, no communication is re-

quired, except to split up the problem during initialisation and to combine the final

results at the end. In such cases, linear speedup can be expected from a parallel

implementation. A well-known example is Monte-Carlo simulations.

• Regular and synchronous problems, in which the same instruction set, (regular algo-

rithm), is applied to all data with synchronous, or loosely synchronous, communica-

tions, with each processor finishing its task at the same time. These usually require

local, (neighbour to neighbour), and collective communication, the latter being used

to combine final results. As long as the ratio of computation to communication is

large, parallel implementations for these problems provide almost linear speedup for

local communication, (and is slightly less efficient for non-local communication).

Examples include Fast Fourier transforms (synchronous), matrix vector products and

sorting (loosely synchronous).

• Irregular and/or asynchronous problems, characterised by irregular algorithms which

cannot be implemented efficiently except with message passing and high communi-

cation overhead. In such cases, communication is usually asynchronous and requires

careful coding and load balancing. Dynamic repartitioning of data between proces-

sors is often required. Speedup is, therefore, difficult to predict, but should not be

expected to be linear, or even close to. Any moving boundary simulation typically
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falls into this category.

The model proposed here uses the lymph network as the “world” in which agents evolve.

As there is no direct interaction between cells located in separate lymph nodes, (Chapter 4),

cell-level interactions require physical proximity. The consequence is that, apart from cell

transfer, each node is independent of the others. A node influences its neighbours solely

through cells exiting their current location and reaching the next node.

Local interactions have been implemented by a regular algorithm, (detailed in Chapters 3

and 4). Since node size is constant, there is little variation in the agent counts of the various

nodes, and we can expect local iterations to finish around the same time. Our problem is

thus regular and loosely synchronous, and the model is suited for a parallel implementation.

5.2 Challenges and implementation choices

5.2.1 Parallelisation: Divide et impera

The main principle of program parallelisation can be found in the famous Latin proverb

Divide et impera, “Divide and conquer”. Identification of possible “divisions” within the

program is essential. In some programs, a set of instructions is repeated several times, with

each iteration independent of the others. Monte-Carlo simulations are a typical example

here. In such cases, several iterations can run at the same time, using a time parallelisation.

This technique can not be applied to the lymph network model however: each iteration i

uses the final state of the agents after iteration i − 1, so that two iterations can not run at

the same time. Yet, as highlighted in the previous section, the problem does have a parallel

nature, in the sense that each node is largely independent of the others.

We can, therefore, use a spatial parallelisation, based on a reciprocity between the lymph

nodes and the computer nodes of a cluster. Each lymph node of the model is assigned to

a computer node of the parallel architecture, and communication network is designed to

mimic cell mobility along the lymph network.
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5.2.2 Expected difficulties

Spatial parallelisation has previously been investigated, e.g. in the context of Monte-Carlo

simulations, for HIV infection (Hecquet et al., 2007), with the main disadvantage in that

case being the communication overload. The parallelisation strategy, detailed above, guar-

antees that communication is kept to a minimum. Indeed communication between computer

nodes is only used to represent actual cell exchanges; we do not add any communication

overhead due to the parallelisation itself, apart form initial problem splitting and final re-

sults gathering.

This is an important point: as communication is often seen as the bottle-neck of any parallel

implementation. This is usually a consequence of the hardware architecture, where physi-

cal data transfer is significantly slower than computing operations. As shown in Equation

5.1, data transfer time depends on data size, of course, but also includes a fixed network

latency1.

TransferT ime = Latency +DataSize/Bandwidth (5.1)

Over the last decade, efforts on parallel hardware architectures have led to a reduction of

the network latency, which is now generally less than 100 µs (Mamidala et al., 2006), and

sometimes advertised to be as low as 1.5 µs (PathscaleTM, 2005). This needs to be put in

context with current computing speeds, where recent configurations reach hundreds of ter-

aFLOPS2, i.e. in that context, a millisecond represents a million basic operations. Clearly,

therefore, no unnecessary communication should take place if avoidable. The choice out-

lined, (Chapter 4), is to use a single list for agent transfer, (rather than as many lists as agent

types).

For biological models, a balance must be found between minimal communication and need

for realistic exchange of information, and this concern motivates much of the remainder of

this chapter. Firstly, in what follows, we introduce the communications protocol used for
1Network latency corresponds to the time delay between initiation of the communication and actual start of

data transfer.
2FLOPS: FLoating Operations Per Second.
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implementation.

5.2.3 Implementing: MPI

In brief, MPI3 is a communications protocol used for parallel implementation of programs.

MPI provides support for point-to-point and collective communications, enquiry routines

to query the execution environment, as well as constants and data-types (Gropp et al.,

1999b;a).

MPI is a low-level library, which provides an interface to C, C++ and Fortran 90. MPI

is, therefore, a language-independent protocol. Portability was a priority during its de-

velopment, and MPI is platform-independent. This is decisive in the context of the study

presented here, as the model is executed on various parallel platforms.

This, along with high performance and scalability, made MPI the de facto standard and

most current distributed-memory computers offer MPI implementations. MPI is taught and

used widely, which, together with the availability of open-source implementations and the

large body of programs that require MPI, (including both Research models and commercial

products), guarantees long-term legacy of MPI and sustainability of our model.

5.3 Communication strategies

5.3.1 Types of data transfer

MPI supports communication types:

• Point-to-point communication. Data is sent from one node to another. Default com-

munications are blocking: the send call blocks until the send buffer can be reclaimed.

This implies that after the send, the sender can safely over-write the contents of a

variable used for communication. The situation is similar on the receiving end: the
3MPI, or Message-Passing Interface, “is a message-passing application programmer interface, together with

protocol and semantic specifications for how its features must behave in any implementation”, which “includes
point-to-point message passing and collective (global) operations, all scoped to a user-specified group of pro-
cesses” Gropp et al. (1996).
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receive function blocks until the receive buffer actually contains the contents of the

message. If needed, MPI also supports non-blocking communications, which allow

possible overlap of message transmission with computation, or of multiple message

transmissions.

• Collective communication. This is used when information located on one cluster

node must be shared with all the others, or when information scattered over the nodes

must be gathered on one of them. A single instruction, called by all involved nodes,

replaces a loop of point-to-point transmissions.

In the next subsection, naive implementations using these two types of data transfer are

tested, in order to estimate the communication influence on simulation time.

5.3.2 Naive data transfer

5.3.2.1 What data is sent

As noted, spatial parallelisation based on lymph network structure means that communica-

tion is only required when agents are going from one node to another. In Chapter 4, we

detailed the lymph node implementation. In particular, we highlighted that inter-node mo-

bility is implemented through use of lists of “migrating” agents. During iterations of the

parallel model, these lists are the only information that need be exchanged between cluster

nodes. A communication strategy is, therefore, the decision basis for the frequency and the

method of list transfer.

5.3.2.2 Point-to-point transmissions

A first strategy is to use point-to-point communication only, and to exchange data at the

end of each iteration. From here on, we will refer to this strategy as “strategy 1”, and

improvements to this strategy will be referred as “1.x”, (with x ∈ [1,9]).

Strategy 1 implies point-to-point communications between each pair of nodes. First, each

node must create n − 1 sublists (with n the number of nodes); each sublist contains the
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agents going from the current node to a given other. Exchange of lists between the nodes

involved can then take place. This can be implemented using the algorithm presented in

Figure 5.1, and requires n(n− 1) list transfers.

Figure 5.1: Principal algorithm for strategy 1

For MPI, each list transfer requires two communications, with one parameter of the MPI

communication routines the size of the transmission. It means that, to send a list containing

m values, we must first send m in a one-integer message, and then send the list. Strategy 1,

therefore, leads to 2n(n− 1) point-to-point communications.

5.3.2.3 Collective transmissions

Another strategy is to exclusively use collective communications. In the following, we refer

to this as “strategy 2”, and use the same naming convention as above for future improve-

ments.

Here, each node will send the whole list to all the others. The first step is, therefore, the

communication process, as presented in Figure 5.2. It represents n collective list transfers,

i.e. 2n actual MPI collective communications. The next step is performed locally by each

node: searching in all the received lists for the agents which are entering the node.

Figure 5.2: Principal algorithm for strategy 2
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5.3.2.4 Communication is indeed a bottle-neck

Strategies 1 and 2 were tested on a local cluster, for small configurations, (i.e. 4, 10, and

16 nodes), and short simulations. The results were discussed in Perrin et al. (2006c), and

are here displayed in Table 5.1. The first remark is that communication is, indeed, a bottle-

neck. Tested strategies are of course naive, and connectivity on the cluster is known not to

be very recent, but these first results still highlight the need for an efficient communication

strategy.

It is also important to note that local iteration time is largely constant and independent of

communication strategies. This is a confirmation of the parallel nature of the problem.

Strategy 2 performs very poorly. This is due to the fact that, with this approach, destination

nodes receive more data than they actually need, since they receive information about all

the agents which left their host node, irrespective of their destination. There is a reduction

in the number of communication steps4, (n, compared to n(n− 1) with strategy 1), but this

is obtained at too heavy a price: excessive data transfer eliminates strategy 2 as a viable

solution.

Performances obtained from strategy 1 are more encouraging. They still highlight the need

for further improvements, but communication overhead is more reasonable. A first solution

is to consider the frequency at which lists are shared between nodes. More efficient com-

munication implies sending non-empty lists. Obviously, the longer the interval between list

transfers, the bigger this list gets, and the likelihood of sending an empty list decreases. In

Table 5.2, computation times are shown for 20,000 iterations, when communication is per-

formed at the end of every iteration or every other time-step. The program appears slightly

faster when we communicate data less often. However the gain is not significant for very

low agent count: in this case, few agents are scattered in the lymph node and are less

likely to reach the exit point, even over several time-steps. The improvement is highest for

medium agent count: for a high count, it is likely that at least one agent will reach the exit

point during each iteration, and iterations leading to an empty list are, therefore, less com-
4and, therefore, also in the number of actual MPI communications
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mon, but do occur. We observe an improvement when sending only at every other iteration;

this pattern is confirmed if we wait three, four, or five iterations before sending the lists.

There are, however, two limitations. The first is a memory concern, since an ever bigger list

is resource-consuming. More importantly, there are biological considerations involved. A

time-step is equivalent to fifty seconds, and the number of iterations must therefore be kept

close to the actual time estimated for a cell to commute from one node to another. Separat-

ing the communication phases by more than five iterations is thus less realistic and should

be avoided. Further improvements on the communication protocol are, therefore, required.

Cluster configuration 4 nodes 10 nodes 16 nodes

Strategy 1
Local iterations (s) 69 71 68
Communication (s) 57 206 324

Strategy 2
Local iterations (s) 67 65 63
Communication (s) 62 377 1239

Table 5.1: Naive strategies tested on small configurations

Communication frequency Every iteration Every other iteration
Low agent count 377 s -1.48%
Medium agent count 982 s -34.9%
High agent count 2187 s -10.8%

Table 5.2: Influence of the list transfer frequency on communication time

5.3.3 Improving data transfer

In addition to eliminating solutions based on collective communication, early tests also

provided a basis for improving strategy 1. In fact, direct transfer between every couple of

nodes would on several occasions, due to MPI constraints detailed above, lead to sending

information about an empty list, thus slowing the program down. For this approach to be

efficient, we need a node to act as the intermediary between these pairs of nodes, with all

the nodes sending their list to this one. On that node, the agents are sorted according to their
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destination, and, to every node, a list is sent, containing only the agents which are relevant

(strategy 1.1). This reduces the number of communication steps to 2(n − 1). The main

drawback for this improved communication protocol is that a node can only receive from

(or send to) one other node at a time. It implies that in the meantime, the others are idle.

Dedicating one node, (called node 0 hereafter), on the cluster solely to this role of inter-

mediary ensures it is always ready to send and receive, rather than engaged in an iteration,

and should reduce this shortcoming (strategy 1.2, see Figure 5.4a, p.74), though it will not

eliminate it entirely.

Even if node 0 is available and immediately receives the list from node i, that node will be

idle while waiting for list i of all agents migrating to node i, as this list can only be prepared

once all incoming transmissions have been completed on node 0. Inclusion of an iteration

between the sending of the first list, (agents leaving a node) and the reception of the second

list, (agents arriving at that same node), prevents “computing nodes” from being idle, and

gives time for node 0 to finish receiving every list and sorting the agents (strategy 1.3).

As the number of nodes increases, so does the time that a given node has to wait before

being able to send/receive. An alternative is to create more “intermediary nodes”, and sub-

networks. For instance, on a 16-node cluster, we could have four groups, each formed with

three “computing nodes” to deal with modelling and one node only used for communica-

tion. The first three would run an iteration, send their list, compute another iteration, and

receive the new list. The other one receives the lists, shares information with other similar

nodes, and sends the new lists. With this configuration, any node finds a maximum of three

nodes in the queue at the time it joins, and the program is expected to be faster as a result

(strategy 1.4, see Figure 5.4b, p.74).

To determine agent destination, the strategies, detailed so far, rely on a local function con-

trolling inter-node cell mobility, (Chapter 4). The lymph network is not a “dense” network.

Using terminology from graph theory, (see e.g. Diestel (2005)), it can be described as a di-

rected finite graph which includes cycles, but is not a complete graph: if two lymph nodes

are randomly chosen, it is likely that there will be no direct connections between them
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(incomplete), even though there is always a path from one to the other (connected), (see

Figure 5.3). These properties can be used to implement the lymph network. A communi-

cation network can be created explicitly, rather than only by a function as described above;

communication can then be physically limited to this network (strategy 3). Without causing

any biological issues, we can also impose the requirement that nodes have either two (one

incoming and one outgoing) or three connections (two incoming and one outgoing, or vice

versa). This would imply that for any given node, at any stage of the simulation, there is a

maximum of two nodes in front of the queue.

A further improvement is to design this network to satisfy two-colouring, (strategy 3.1, see

Figure 5.4c), thus decreasing the communication load: during odd iterations, black nodes

send data and white ones receive it, and vice versa during even iterations.

Figure 5.3: Complete graph with six nodes (left); directed and connected graph (right)

5.4 Validation

5.4.1 Final results on small clusters

All advanced strategies were tested on the same local cluster. In Table 5.3 (p.75), the results

for 20,000 iterations and 16 nodes are shown. More advanced versions of the first strategy

provide improved performance, with the notable exception of strategy 1.4. Tested on 16

nodes, it is faster than other implementations of strategy 1. We must mention, however, that
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(a) Strategy 1.2 (b) Strategy 1.4

(c) Strategy 3.1

Figure 5.4: Communication strategies

this configuration means that only 12 nodes are used for actual biological simulation, while

the other 4 nodes focus solely on data transfer. A fair comparison with other strategies must

take this into account and look at results on smaller node counts for these. In that case,

strategy 1.4 does not show any particular improvement, and was not, therefore, included

in Table 5.3. Strategy 1.3, on the other hand, demonstrated useful performance and is a

candidate for large-scale implementation.

Another promising candidate is the new strategy, in particular in its 3.1 coloured version.

It shows significant improvements compared to any other communication protocol. The
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fact that all 16 nodes are used for biological simulation is further encouragement: that is

this strategy combines efficient communication and better resource usage. This can be ex-

plained by the number of communication steps; since each node has a maximum of three

connexions, the number of transfers is of the order of 3n/2, for a cluster of n nodes, (com-

pared to n(n− 1) for strategy 1). Strategy 1.1. offers a count of the same order, (2(n− 1)),

but a greater idle time is observed. Indeed, with strategy 3.1, idle time for each node is

reduced, as it is communicating with a small subset of nodes and, therefore, is less likely to

wait for one already involved in another communication.

Communication strategy Relative communication time
1 2.68

1.1 1.00
1.2 0.97
1.3 0.92
1.4 N/A
3 0.89

3.1 0.76

Table 5.3: Communication times for advanced strategies, compared to baseline strategy 1.1

5.4.2 Scaling-up

5.4.2.1 The need for a performance simulator

A model size of hundreds of nodes should lead to enhanced realism, but large clusters to

handle this are a limited resource, and an optimal communication strategy is vital. This also

implies that it is preferable to determine the optimal strategy before using these clusters. In

other words, small clusters can be used for development, but larger clusters should be kept

for actual biological simulations.

An interesting property of MPI is its very good scalability, so that an implementation val-

idated on a small configuration has every chance of working on larger ones. This is still

not enough in this case, however. What is required is an accurate estimate of communi-

cation time associated with each strategy, to satisfactorily assess which is the best one for
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this particular model. As we saw with naive implementations 1 and 2, a communication

strategy may have a critical model size above which performance is significantly reduced.

This size was small for strategy 2, (which is only efficient on very small networks), but

more advanced strategies may have a high critical point.

We considered that the best answer to this dilemma, (defining the best strategy without

excessive physical testing), was to develop a performance simulator.

5.4.2.2 Evaluation of the strategies

The performance simulator, developed, has six parameters:

• Communication algorithm. This corresponds to the communication strategy currently

tested, i.e. which node is sending to which node, type of communication, and time of

the transmission.

• Node size. This is the size of the matrix modelling the lymph node.

• Agent count. Each node is initialised with a particular number of agents. This number

is kept up-to-date throughout the performance simulation by taking into account the

agents that are sent or received. For simplicity, population variations due to other

biological variations, (e.g. production of virions by infected immune agents), are

neglected in this context.

• Length of local iteration. This is a function of the node size and agent count.

• Network latency. This is a property of the hardware architecture under virtual evalu-

ation.

• Bandwidth, or rate of data transfer. Another property of the simulated cluster.

• Length of data transfer. Transfer is obtained, (Equation 5.1, p.66), where data size is

a probabilistic function of agent count.
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This performance simulator was implemented, and validated using the results obtained on

the local cluster, and strategies were then repeatedly tested. Of main interest here were

performance measures, such as the average total execution time and communication time.

Maximal values were also monitored, in case a particular configuration proved able to block

a communication strategy or lead to abnormal performance. As shown in Table 5.4, tests

focused on strategies 1.3 and 3.1, as these proved the most promising versions of the two

types of communications. Again, as found for small configurations, strategy 3.1 performs

best.

These results are consistent with expectations based on the configuration of communication

steps. Strategy 1.3 leads to n(n− 1) communication steps, and strategy 3.1 to the order of

3n/2, but the distribution of these data transmissions is very different. Strategy 1.3 puts an

increasing load on node 0 as the number of nodes increases, while strategy 3.1 conserves

the limit of three connections per node. Since the latter does not correspond to an increase

in the size of transferred data, evolution of communication time is more satisfactory.

Importantly, this strategy was designed with biological realism in mind, in the sense that

there is no unnecessary communication between nodes that are not connected in the lymph

network structure. Increased efficiency of communications is not, therefore, balanced by

any inaccuracy introduced into the model. As a consequence, this is the strategy we have

chosen for large-scale model implementation.

Cluster configuration 16 nodes 32 nodes 64 nodes 128 nodes 256 nodes
Strategy 1.3 1.00 1.39 1.96 2.81 4.02
Strategy 3.1 0.83 0.89 0.96 1.05 1.17

Table 5.4: Performance evaluation on large clusters for strategies 1.3 and 3.1

5.5 Chapter summary

In this Chapter, it was demonstrated that a parallel implementation is both necessary and

achievable. It is necessary, because of the size and complexity of the biological system to
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be dealt with. Immune responses involve millions of cells, which are travelling through

hundreds of lymph nodes. An accurate model of these complex interactions requires an

important number of nodes and agents. This can not be implemented on a single computer

long-term.

It is possible, however, because of the parallel nature of the biological system itself: apart

from influence achieved through mobility of cells, lymph nodes act as independent defense

units. This allows for efficient spatial parallelisation, by allocating each lymph node to each

processor of a cluster-based configuration.

Even though such an implementation limits communication, designing an efficient com-

munication strategy remains crucial, as highlighted through earlier tests with naive ones.

Advanced strategies were, therefore, created, implemented with MPI, and tested on small

cluster configurations.

Sensible use of computing resources also suggested the development of a performance sim-

ulator, used to evaluate communication strategies on larger configurations while saving

these resources for actual biological simulations.

These tests allowed identification of one strategy, based on a mimic of the lymph network,

as the best communication protocol for the immune system model.

This Chapter concludes, therefore, having built and tested an efficient parallel implementa-

tion of the lymph network, which is now suitable for large-scale, biologically-meaningful

simulations. These are discussed in the next Chapter.
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Chapter 6

Validation of the main model layer,

and further improvements

6.1 Summary of current model

In Chapter 2, we detailed several existing immune models, identified the agent-based paradigm

as promising, in the context of modelling immune response to HIV, and outlined limitations

of current similar approaches, demonstrating a need for a new implementation.

Aspects of this model and implementation were detailed through Chapters 3 and 4, while

selected features to exploit large computing resources, and the development of parallel so-

lutions were discussed in the previous Chapter.

Challenges outlined as needing to be addressed, (Section 2.4.2), include overall modelling

choices, (i.e. balance between agent diversity and agent population, explicit modelling of

lymph nodes and reasonable granularity), as well as considerations of refined implementa-

tion, (e.g. cell-level implementation of immune memory, more refined antigen recognition).

Basic cell-level mechanisms have been validated, (Section 4.4.3), and the remaining tasks

are to validate the other features implemented so far and, finally, to look at the inclusion of

localised effects in the overall model.
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6.2 Validation and results of the lymph network model

6.2.1 Computing efficiency of the lymph network model

Optimisation of the communication strategy was considered in Chapter 5, and permits sim-

ulations of large agent populations on configurations including several lymph nodes. Com-

munication optimisation was performed on a cluster based on an outdated network hard-

ware, which over-emphasised the importance of MPI data exchanges as a potential bottle-

neck. This allowed a better isolation of the communication component of the computing

process and, in turn, the development of a very efficient protocol for data transfer between

lymph nodes.

The focus here is on model performance when it is run on a more sophisticated and more

recent cluster. Tests are performed on a 56-node cluster. Each “cluster node” has a dual-

processor, and each processor has four cores. The cluster therefore offers 448 “computing

cores” at 2.66 GHz, and modelling hundreds of lymph nodes is a reasonable target, (and

would be on a scale similar to that of the whole immune system).

MPI allows specification of how many processes will be run on each “cluster node”, (these

are then scattered over cores of this node). For the lymph network model, one process is

one lymph node. Of particular interest, therefore, is the evolution of the computation time:

• as a function of the number of agents at the start and the number of lymph nodes.

• as a function of the number of lymph nodes and the number of processes per “cluster

node”.

Table 6.1 displays the relative computation time as a function of the number of agents at

the start, (a.p.n), and the number of lymph nodes, (l.n.), for simulations using eight pro-

cesses per cluster node, (p.p.n.). Optimisation of local iteration allows simulation of very

large populations of agents at a relatively low computing cost. Significant increases in agent

count only generate moderate overheads in terms of computation time. This is very impor-

tant, as immune response and viral spread both lead to variations of specific agent counts.
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Table 6.2 displays the relative computation time as a function of the number of lymph nodes

and the number of processes per cluster node, for simulations starting with 150,000 agents

per node. As expected from performance simulations, optimisation of the communication

strategy allows simulation of a large lymph network, of size similar to that of real system.

This is crucial to model realism, as was confirmed by tests on cell mobility and its effects

on immune activation and on viral propagation throughout an organism.

Implementation efforts, therefore, provide the opportunity for simulations reaching the

scale of the immune system1, both in terms of involved populations and “geographical”

entities throughout the body. This is a significant increase in scale compared to existing

models, and permits a more detailed representation of the immune system.

8 l.n. 16 l.n. 32 l.n. 64 l.n. 128 l.n. 256 l.n.
∼30,000 a.p.n 1.00 1.04 1.08 1.12 1.16 1.21
∼150,000 a.p.n 1.08 1.10 1.12 1.16 1.24 1.29
∼300,000 a.p.n 1.21 1.22 1.23 1.24 1.27 1.31
∼600,000 a.p.n 1.58 1.58 1.59 1.60 1.64 1.78
∼1,500,000 a.p.n 1.89 1.90 1.92 1.93 2.11 2.11

Table 6.1: Model efficiency: relative computation time for several configurations of lymph
nodes (l.n.) and agents per node at initialisation (a.p.n.)

8 l.n. 16 l.n. 32 l.n. 64 l.n. 128 l.n. 256 l.n. 512 l.n.
1 p.p.n 1.00 1.06 1.14 N/A N/A N/A N/A
2 p.p.n 1.08 1.09 1.10 1.14 N/A N/A N/A
4 p.p.n 1.25 1.26 1.27 1.28 1.30 N/A N/A
8 p.p.n 1.68 1.71 1.75 1.81 1.94 2.00 N/A
16 p.p.n N/A 3.47 3.52 3.54 3.57 3.58 4.04

Table 6.2: Model efficiency: relative computation time for several configurations of lymph
nodes (l.n.) and processes per “cluster node” (p.p.n.)

1Using all 448 cores of the cluster available for testing, and allocating two lymph nodes to each, simulations
involving more than one billion immune agents were successfully run.
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6.2.2 Validating the biological features of the lymph network model

In validating a model of the lymph nodes and associated network, it is not possible to use

cell counts seen in typical graphical representations of the three-phase disease progression,

as these refer to peripheral blood. Moreover, cell counts from blood samples are known not

to be an accurate measure of actual disease progression, as recirculating cell populations

are significantly different from the overall cell populations. This means that a model, based

on matching variations in peripheral blood cell counts, would, in fact, be unlikely to give

a good representation of the overall immune response and disease progression through the

lymph network. This approach is, however, common in existing models, which do not

explicitly deal with lymph nodes, (see e.g. Castiglione et al. (2004)), and limits comparisons

with our lymph network model.

Validation of our model must, therefore, be based on known signatures of HIV infection,

(such as mutations and massive loss of memory cells), and evaluation of relevant model

properties based on clinical data relevant to the lymph node context.

6.2.3 Balance between agent diversity and agent population

Abundance and diversity of cells are crucial to the efficiency of the immune response. The

evolutionary argument is that, given the complexity and “cost” of maintaining such popu-

lations, this structure would not have been largely conserved between all vertebrates if it

was not essential. More details on this “biological arms race” between invading organisms,

(viruses, bacteria, fungi), and the host immune defenses can be found in the specialised

literature, (e.g. Kasahara et al. (2004); Murphy et al. (2007)).

As complexity of a system increases, selection of the parameters and mechanisms to rep-

resent becomes less trivial. In the context of immune response, relatively simple cell-level

interactions lead to considerable complexity of outcome for the system as a whole. Emer-

gence of tissue-level and, even more crucially, body-level patterns are, nevertheless, clearly

dependent on size of cell populations, as demonstrated e.g. by HIV progression: the whole

immune system collapses once cell counts, (especially CD4 cells), decrease below critical
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levels. Model realism therefore requires large agent populations and careful selection of

parameters, given that accounting for every immune cell of every lineage is not a realistic

target, even with current computing resources.

The lymph node model, therefore, implements three essential cell types, as well as viral

agents, (Chapter 3). In the first instance, it guarantees enough diversity to account for most

immune and viral mechanisms, and also permits simulation of large populations. The cur-

rent model can, in fact, simulate up to two million agents per lymph node.

The parallel implementation of the lymph network model permits large-scale simulations,

(Chapter 5). These simulations involve approximately 500 to 1000 lymph nodes, for a total

population more than one billion agents. An adequate balance between agent diversity and

large agent population is, therefore, obtained.

6.2.4 Explicit modelling of lymph nodes, and inter-node mobility

The lymph node model incorporates two levels of cell mobility. Intra-node mobility is

crucial to physical contact between cells, and was validated, (Chapter 4). The chosen im-

plementation for inter-node mobility was detailed, and the parallel structure for the lymph

network model permits validation on large sets of lymph nodes.

Of particular interest in this context is to look at viral spread through the lymph network.

Simulations are run on the 32-node lymph network shown in Figure 4.10, (p.61). In Table

6.3, (p.85), shown, for each node, is the iteration range of the first appearance of HIV, and

the corresponding time since infection, with a precision of 10 iterations, (i.e. less than nine

minutes), for the first simulated hundred minutes, and of 300 iterations, (i.e. less than five

hours), subsequently. Due to cell mobility and the associated spread through the network,

there are important variations of the time of infection for each individual node, from one

simulation to another. Complete infection of the network, however, is always obtained af-

ter about a month, with a standard deviation of less than three days2. These results are in

accordance with known patterns of viral spread through body. Information propagation in
2Average and standard deviation are obtained performing twenty simulations.

83



terms of immune activations follows a similar pattern, as could be expected.

The importance of cell mobility in the early stages of infection is clearly apparent, both

from the delay of viral spread through the lymph network and the propagation of activated

immune agents which initiate a body-wise response. Reproducing the progression pro-

vides an additional insight into the early stages of infection, and is a significant advance

from previous models. In these models, even when the node and network structures are

acknowledged as being essential, (see e.g. Baldazzi et al. (2006)), the implementation and

the temporal granularity does not permit investigation on the node-to-node progression if

the infection. This is, nevertheless, important, and may provide a basis for new treatments.

The contribution of our model is, in that context, significant.

6.2.5 Immune memory

Transformation into memory cells is achieved by copying the agent activation state into the

memory state, and restoring the former to initial state, (i.e. 0). Reactivation can then be

obtained by physical contact with any viral or infected agent related to previous activation.

Reactivated agents regain previous behaviour, but multiplication is faster, (Chapter 3).

To highlight the significance of this feature, tests are performed on a small, 16-node,

lymph network, with a high viral load, (to obtain faster spread than that for Table 6.3),

and with/without immune memory. A short infection is initiated, which is performed on

a system including naive agents only, (i.e. there is no memory), and on a system which

is initialised with 50% of agents created with memory of a previous infection, (for which

the strain corresponding to that infection is randomly chosen). Results shown in Table 6.4,

(p.87), represent the immune response to infection in both configurations during the first

week after infection, in terms of time to detection of the infection and number of immune

cells activated by HIV-related antigens and involved in the response in the twenty-four

hours following this detection. The results shown correspond to two simulations initiated

with the same seed for the random number generator, and the differences between the two

are, therefore, a direct consequence of the inclusion of immune memory. These can be
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First local infection Time since infection Average Standard dev.
Node 0 [27,600; 27,900] 16 days 11.9 days 6.1 days
Node 1 [31,200; 31,500] 18 days 13.2 days 6.2 days
Node 2 Origin of infection 0 minute 0 minute 0 minute
Node 3 [300; 600] 6 hours 64 hours 52 hours
Node 4 [2,700; 3000] 40 hours 96 hours 62 hours
Node 5 [16,500; 16,800] 10 days 7.7 days 4.7 days
Node 6 [18,300; 18,600] 11 days 11.2 days 7.0 days
Node 7 [23,100; 23,400] 13 days 10.4 days 6.4 days
Node 8 [34,800; 35,100] 20 days 4.3 days 5.1 days
Node 9 [37,500; 37,800] 22 days 5.9 days 5.0 days
Node 10 [39,600; 39,900] 23 days 15.1 days 8.3 days
Node 11 [44,400; 44,700] 26 days 16.4 days 8.1 days
Node 12 [46,800; 47,100] 27 days 17.9 days 7.9 days
Node 13 [49,200; 49,500] 28 days 18.7 days 7.8 days
Node 14 [57,300; 57,600] 33 days 22.6 days 9.6 days
Node 15 [49,800; 50,100] 29 days 24.2 days 11.4 days
Node 16 [44,400; 44,700] 26 days 24.9 days 10.2 days
Node 17 [46,500; 46,800] 27 days 25.7 days 9.9 days
Node 18 [49,800; 50,100] 29 days 27.4 days 13.5 days
Node 19 [51,300; 51, 600] 30 days 26.8 days 12.8 days
Node 20 [52,800; 53,100] 31 days 27.9 days 12.4 days
Node 21 [54,300; 54,600] 32 days 29.1 days 11.9 days
Node 22 [51,300; 51, 600] 30 days 29.3 days 12.4 days
Node 23 [31,200; 31,500] 18 days 16.9 days 8.9 days
Node 24 [32,400; 32,700] 19 days 17.6 days 7.6 days
Node 25 [35,100; 35,400] 20 days 18.9 days 7.7 days
Node 26 [36,600; 36,900] 21 days 20.1 days 7.7 days
Node 27 [39,900; 40,200] 23 days 21.4 days 7.6 days
Node 28 [43,500; 43,800] 25 days 22.7 days 7.5 days
Node 29 [46,500; 46,800] 27 days 16.1 days 7.2 days
Node 30 [49,800; 50,100] 29 days 17.4 days 7.3 days
Node 31 [50,100; 50,400] 29 days 26.1 days 8.2 days

Table 6.3: Inter-node mobility: influence on viral spread.
The delay between the initiation of the infection in the body and the first local infection in a lymph
node is given, for a typical simulation, as a range, (for iterations), and as its equivalent in “real time”.
We also give the average time, and standard deviation.
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observed, both in terms of rapidity and efficiency of immune response, when memory is

taken into account. Another consequence is that, due to faster and more important activa-

tion, more potential targets are available for HIV infection and, as a result, viral infection

also spreads faster and further during the first week. Here, only HIV-related patterns are

reported, but the process is similar for other infections, with impact of immune memory

on viral spread clearly crucial. As for previous tests reported in Table 6.3, variability can

be observed, for a given node, from one simulation to another, but the overall pattern is

conserved, and the inclusion of immune memory does not significantly alter the variability

detailed in this earlier Table.

This is consistent with known mechanisms and offers satisfactory validation of this feature.

The loss of memory cells is also observed in other models, such as Zhang et al. (2005).

Our model, however, is a more accurate reflection of the effects of this loss. In Zhang et al.

(2005), the immune memory is centrally controlled and, even though memory cells are sim-

ilarly eliminated, the memory of past infections can not be lost. In our model each memory

cell incorporates its small fraction of the overall memory, and the elimination of immune

cells leads to a loss of memory: repeated infections are each treated as an initial infection,

and the response becomes less efficient as the simulation progresses, which is a factor in

the appearance of opportunistic diseases (Mathe et al., 1996).

6.2.6 Refined antigen recognition

In the lymph node model, antigen recognition is implemented so as to allow adaptability.

This is obtained by using two lists to account for affinity between viral strains and immune

clonotypes, (Chapter 3). Using a single list can be equivalent to distances commonly used

in other models, (e.g. Hamming distance3). Addition of a second leads to more refined

modelling, and inclusion of adaptability.

To demonstrate the significance of this second list, an experimental design similar to that for

the immune memory tests is used: on a 16-node lymph network, simulations are performed
3The Hamming distance between two strings of equal length is the minimum number of substitutions re-

quired to change one into the other.
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No immune memory With memory
First activation HIV-activated First activation HIV-activated

after local infection population after local infection population
Node 0 no activation 0% infection first < 0.01%
Node 1 no activation 0% infection first < 0.01%
Node 2 ∼1 min. 13.05% ∼1 min. 21.72%
Node 3 ∼25 min. 1.05% ∼5 min. 2.47%
Node 4 < 4 h. 0.11% ∼10 min. 0.41%
Node 5 infection first < 0.01% infection first 0.09%
Node 6 no activation 0% infection first 0.13%
Node 7 no activation 0% no activation 0.24%
Node 8 no activation 0% no activation 0.08%
Node 9 no activation 0% no activation < 0.01%
Node 10 no activation 0% no activation 0%
Node 11 no activation 0% no activation 0%
Node 12 no activation 0% infection first 0.03%
Node 13 no activation 0% no activation < 0.01%
Node 14 infection first < 0.01% infection first 0.11%
Node 15 no activation 0% no activation 0.10%

Table 6.4: Immune memory: effects on rapidity and efficiency of response.
For both configurations we report, for the first week of infection, the delay in the spread of the
immune response, (in “real time”). If the infection is reaching a node first, the response in that node
may be a consequence of the infection, (i.e. local initiation of a new immune response), rather than
due to the spread of the original immune response, and this is reported accordingly. When there
is an immune response in a node, we also report the proportion of cells involved in this response,
twenty-four hours after the start of the local response, (in “real time”).

with and without second list. This is done for the first two weeks of infection, and, (as for

memory tests), with a high viral load in order to obtain a faster spread than that reported in

Table 6.3. Results are shown in Table 6.5.

As for Table 6.4, the results correspond to two simulations initiated with the same seed,

to highlight the effect of the change of configuration. Clearly, adaptability leads to a more

efficient immune response: viral infection was recognised more quickly in the node of ori-

gin, (node 2), and was better contained, as can seen from the increased activation delay

in node 3, reached next. Adaptability also has a significant impact once the virus starts

spreading from one lymph node to the next, and overall activation through the whole net-

work is achieved faster. This influence is, however, a “double-edged sword”, as increased
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activation implies more infection targets. The damaging influence of chronic cell activation

is a well-known component of overall dysregulation of the immune system associated with

HIV infection (Brenchley et al., 2006; Munier and Kelleher, 2007; Tesselaar et al., 2002).

The viral spread described in Table 6.3 is obtained from the complete model, which in-

cludes adaptability. The corresponding considerations on variability therefore also apply to

the right column in Table 6.5. Using a single list, we observe a reduction of the standard

deviation, (reduced by a third), which is a consequence of the limited immune activation.

Using a single list Including adaptability
Node 0 no activation ∼12 days
Node 1 no activation no activation
Node 2 ∼6 min. ∼2 min.
Node 3 ∼22 min. ∼6 h.
Node 4 ∼21 h. ∼12 h.
Node 5 ∼10 days ∼29 h.
Node 6 ∼9 days ∼21 h.
Node 7 ∼10 days ∼12 days
Node 8 ∼10 days ∼37 h.
Node 9 ∼12 days ∼12 days
Node 10 no activation ∼13 days
Node 11 no activation ∼13 days
Node 12 ∼11 days ∼12 days
Node 13 no activation ∼13 days
Node 14 no activation ∼13 days
Node 15 no activation ∼13 days

Table 6.5: Refined antigen recognition: effects on time of occurrence of first activations.
We report the delay in local initiation of the immune response, in the first two weeks after
infection. If during this period there is no HIV-related immune activity in a given lymph
node, this is also indicated.

6.2.7 Long-term disease progression

As detailed in Sections 4.2 and 6.2.2, disease progression within each lymph node is sig-

nificantly different from the well-known plots depicting the three-phase evolution of the

disease, using blood samples. From these plots, even though the cell levels are not directly

relevant to our study, the time scales are very useful, and can be used for validation.
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Indeed, variations on blood samples, (shown in Figure 6.1, p.91), are the visible sign that

interactions are taking place within lymph nodes. Sharp phase transitions in those samples

indicate a change of regime in the lymph nodes.

To analyse our model, we focus on three of these critical points in disease progression: the

peak and end of the initial acute phase, and the end of the latency period, which corresponds

to AIDS onset.

The peak of acute infection corresponds, in the blood sample, to the point when viral

load starts decreasing and the CD4 count increases. This is generally observed after six

weeks. For our lymph node model, we consider this point reached when infection has

spread through the whole lymph network and three quarters4 of the nodes have a similar

direction of change in cell counts.

The acute phase ends when, in the blood samples, viral load is back to low levels, and CD4

count starts decreasing again, (more very slowly). This typically occurs after approximately

nine weeks. The main difference, in our context, is that viral load persists in lymph node, so

we consider this point reach when, for three quarters of the node, the virion count is below

10% of its peak value and CD8 count is decreasing, (which is a sign that the viral load is not

high enough to initiate a large-scale immune response in the corresponding lymph node).

The end of the latency period is characterised, from blood samples, by a significant in-

crease of viral load and a CD4 count decreasing well below 300 cells/mm3. Clinically, it

corresponds to the onset of AIDS and the appearance of opportunistic diseases, which the

immune system can no longer handle. Consequently, in our model, it corresponds to a sharp

increase in viral load which is not followed by an increase of the CD8 count, (which would

have signaled an immune response, even a weak one).

The results of our long-term simulations, based on these three points, are shown in Table

6.6, (p.91). The three phases are reproduced, and realistic orders are obtained for each

time span, in particular the latency period. The length of the acute phase is slightly over-
4This is an arbitrary value, used to highlight the fact that we require a general trend. It should be noted,

however, that variability between the nodes is, at this stage, more limited than in the very early stages of
infection. Using other thresholds, (e.g. 2/3 or 4/5), does not significantly alter the results.
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estimated. This may be due to recirculation dynamics or proportions of activated cells at

the start of the run, which may need to be refined.

With respect to the length of the latency period, it is important to note that, while we obtain

realistic values, (in terms of both average latency length and high variability between in-

dividual progressions), the model is not able to simulate long-term nonprogressors5. Such

individuals are very rare, (less than 1% of patients), and it is not fully understood why they

do not progress to AIDS. From the model results, it would seem the cause is related to an

aspect not parametrised in our approach.

The model also reproduces some cases of early progression to AIDS, (as short as five years),

but these do not qualify as rapid progressors6. Again, this may suggest for the cause for

rapid progression is outside of what is taken into account in our current model.

Some parameters have an interesting impact on the length of the latency period. Increasing

the mutation rate or the viral production of infected cells leads to sooner onset of AIDS, (as

more viral strains are able to simultaneously target the immune system), while an increased

list of immune clonotypes recognising each viral strain leads to a longer latency period, (un-

realistically large lists would even lead to elimination of the virus, which is not surprising).

The former is consistent with the current understanding of the infection dynamics, and the

latter should be considered in the light of ongoing efforts to develop a vaccine to HIV.

In the context of possible future inclusion of medical treatment in our model, it is also im-

portant to note that our model gives a more detailed resolution on disease spread throughout

the infection progression, compared to existing models. This is a consequence of our ef-

forts on the early stages of the infection. The long-term progression is, in fact, a “sum”

of successive short-term spreads: when a mutation occurs, the new strain contaminate the

whole network and, once detected, is responsible for the initiation of an immune response.

This process is similar to the initial infection. The magnitude and time scale of the response
5Long-term nonprogressors are individuals who have been living with HIV for over 10 years (there is no

agreed time span, but authors generally use 10 to 12 years as a threshold), have stable CD4+ counts of 600
or more cells per cubic millimeter of blood, show no sign of HIV-related diseases, and have not received any
antiretroviral therapy.

6Rapid progressors are individuals who progress to AIDS within four years of HIV infection.
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are different, (because the immune is already active, and may also be weakened), but the

mechanisms involved, (such as cell mobility), are accurately handled by our model.

The end points we obtain are not different from previous models or clinical data, (which is

not surprising, and is reassuring, since we are dealing with the same biological system), but

the increased resolution of the simulation offers greater prospects for treatment inclusion,

(see Sections 6.4.3 and 8.2).

Figure 6.1: Standard three-phase disease progression, (reproduced from Zorzenon dos San-
tos and Coutinho (2001)).

Average [Standard deviation] Clinical data
Peak in acute phase 6.7 weeks [1.2] ∼6 weeks
End of acute phase 9.4 weeks [1.6] ∼9 weeks
End of latency period 8.0 years [3.7] 6-12 years

Table 6.6: Long-term disease progression. Comparison between clinical data, (not includ-
ing rapid progressors and long-term nonprogressors), and time points obtained from the
model.

6.3 Local and vital: early infection of the gastro-intestinal tract

Tests, detailed above, highlight the importance of cell mobility and explicit lymph node im-

plementation, particularly for features of early infection. Viral spread from one lymph node

to the next is not trivial, (with a crucial factor the internal state of agents within one node,

characterised for instance by a higher proportion of activated CD4 cells when the spread of
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viral infection is faster). This leads to formation of localised patterns.

When considering the whole immune system, a given area may exhibit very distinct pat-

terns: this includes the gastrointestinal tract, (illustrated in Figure 6.2, p.93). Of major

importance is the role of this tract in terms of immune population: it harbours the majority

of the body’s lymphocytes, where for instance blood only accounts for a few percent of

these (Mehandru et al., 2005a).

Even more importantly, these cells are in close proximity to the external environment and

are, therefore, constantly exposed to countless antigens, (food, microbes, etc.). This results

in two crucial properties: more than 90% of these lymphocytes have a memory phenotype,

and proportion of activated cells is significantly higher (Mehandru et al., 2005b; Schiefer-

decker et al., 1992). Another property, (high prevalence of CD4 cells expressing CCR5

receptor), is thought to be important, but quantification seems problematic, and apparent

expression of CCR5 does not correlate with infection (Mattapallil et al., 2005).

These factors mean that there is, typically, a massive infection in the tract even in the early

stages of HIV infection, and the response in that area is, therefore, also very active. Re-

cently published experimental results show:

• A very rapid and very significant decline in CD4+ counts, exceeding 25% after four

weeks of infection (Guadalupe et al., 2003).

• Significant levels of infection and destruction observed even within days of infection

for memory CD4+ cells (Mattapallil et al., 2005).

• An increased cell proliferation in response to infection. The cell proliferation marker

was found on 80% of intestinal CD4+ cells four weeks after infection, as opposed to

less than 10% in healthy patients (Guadalupe et al., 2003).

Due to this local but substantial depletion of immune cells, the overall cell population is

also severely reduced, and this imposes significant pressure on the immune system in terms

of memory pool maintenance (Brenchley et al., 2004). It also damages lymphoid tissue

architecture, and this hinders the ability to support normal lymphocyte homeostasis and
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Figure 6.2: Some lymph nodes of the GI tract, (reproduced from Gray (1918))

antigen presentation.

Early infection in the gastrointestinal tract has, therefore, become an essential of research

against HIV. Exact implications of GI tract infection remain largely unclear, but some in-

teresting progress is being made. At the molecular level, it has been shown that preferential

targeting of gut-associated CD4+ cells may be due to interactions between viral glycopro-

tein gp120 and integrin α4β7, which is specific to these cells, as it is required for migration

through lymph nodes to lamina propria7 of the gut-associated lymphoid tissue (GALT)

(Sattentau, 2008).

At a higher level, restoration of cell populations after the acute phase is also under investi-
7The lamina propria mucosae, (“the mucosa’s own special layer”, in Latin), is a thin layer of tissue which,

together with the epithelium, constitutes the mucosa. It is often referred to as lamina propria.
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gation. Observations highlight a delayed and incomplete restoration of cell populations in

chronically infected patients, even for those receiving highly active antiretroviral therapy,

(HAART), for more than five years (Guadalupe et al., 2003). This standard therapy leads

to restoration of cell levels in peripheral blood, but not in the tissue considered. A similar

therapy, however, if initiated during primary infection, is effective in restoring cell popula-

tions. In this case, restoration is a consequence of cell recirculation and increased homing

from the periphery of the tract, rather than local cell proliferation.

The extension of the current lymph network model aims to address the following questions:

• Is early infection in the gastrointestinal tract a good indicator of long-term progres-

sion throughout body?

• What is the effect of gastrointestinal tract infection on overall disease progression?

• Would efficient treatment of early gastrointestinal tract infection have a significantly

beneficial effect on overall disease progression?

The remainder of this Chapter will detail early attempts to account for gastrointestinal tract

infection and related effects.

6.4 Current implementation and future work

6.4.1 Accounting for localised properties

In an agent-based model, entities update their internal state based on interactions with other

agents, but also with the environment itself. It is, therefore, possible to create compartmen-

tal properties which will locally alter agent behaviour.

Explicit implementation of the lymph nodes is crucial in the lymph network model. Since

each node is modelled separately, it is possible to select a subset of them and add additional

properties for agents in those nodes. For instance, a higher probability of activation by some

foreign antigen, not related to HIV, can be specified.

Not all components of gut-associated lymphoid tissue are, in the strict sense, lymph nodes.
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These also involve tonsils, Peyer’s patches, or diffusely distributed lymphoid cells in the

lamina propria. For most, however, function and structure is very similar to lymph nodes,

and generic matrix structure used for node implementation can, therefore, also be used for

these components.

Thus implementation of the gastrointestinal tract is obtained through selection of a long

lymph chain in the lymph network structure and alteration of local properties:

• Selected nodes are initialised with agent populations reflecting known cell properties,

e.g. 90% of memory cells, most of them active.

• Agent counts in these nodes are initialised to high values, so that these account for

half of the overall agent population.

• The probability, for a non-active CD4 or CD8 agent, to be activated by a foreign

antigen not related to HIV is increased, so as to maintain overall levels mentioned

above.

• The input of “fresh” cells in those nodes is similarly altered.

6.4.2 Early results

To assess the proposed model extension, tests are first performed on a 24-node lymph net-

work for which 10 lymph nodes are used to account for the gastrointestinal tract. These are

indicated in Figure 6.3.

To estimate the influence of gastrointestinal tract infection on the overall disease progres-

sion, simulations are performed with and without local specification for nodes associated

with the GI tract, (using, as previously, the same seed for random number generation). As

shown in Table 6.7, (p.97), significant differences appear between the two “runs”, and are

due to GI tract inclusion8. In the simulation with no GI tract, as expected from previous

results, the virus spreads rapidly through one lymph chain, but two weeks are not enough to
8As for previous tests on inclusion of new features, these two simulations are initialised with the same

“seed”, ensuring the differences are not due to stochastic variability.
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obtain complete infection. In the second simulation, however, once the GI tract is infected,

the virus finds large amounts of potential targets, and viral spread is enhanced. After two

weeks, most of the network is infected. Another difference is in the proportion of infected

cells: ten days after local infection, twice as many cells are infected in node 11 during the

second simulation, amounting to 70% of overall node cell count. This value is in agreement

with biological studies, which found peak infection occured at day 10-11, with a subsequent

loss of 60 to 80% of memory cells (Mattapallil et al., 2005).

GI tract inclusion clearly affects the overall viral spread, but does not appear to alter the

variability reported in Table 6.3. This is due to the fact that this variability is a consequence

of inter-node cell mobility, which is not altered by this new model feature.

Similar patterns are observed for simulations on larger networks. Thus the proposed model

successfully implements gastrointestinal tract properties. Since such an attempt has not

been previously reported, and given the importance of the tract in early disease progression,

this is a useful complement to existing models.

It is also important to consider the effects of this new model feature on long-term progres-

sion, as reported in Table 6.8, (p.99). Including the GI tract reduces the acute phase, which

is expected for the short-term simulations. The model results are now realistically reproduc-

ing observed time scales. The variability of this phase is not significantly altered, and the

small difference is consistent with the current knowledge on the influence of the GI tract:

because of the reaction of the tract to the infection, the overall peak is in part determined by

the time the infection reaches the tract, (with a local peak ten days after local infection, as

detailed above), which increases variability compared to a “uniform” network. Conversely,

since cell depletion is increased in the GI tract, the acute phase is locally shorter, and often

ends before the overall acute phase, therefore slightly reducing the overall variability of the

latter.

With respect to the length of the latency period, obtained values are slightly lower than

clinical results, but the difference is not significant. Overall, GI tract inclusion therefore

improves the model behaviour. This is confirmed by looking at ratio between the peak of
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acute phase, (t), and the end of the latency period, (T ). The ratio between these two time

points, (which are the easiest to observe and quantify), is just under 70, (∼ 69.6). In the

initial model, we obtained T/t = 62.3 while, with the GI tract included, T/t = 66.7.

Refining this early GI tract implementation will probably further improve model realism,

(and, therefore, this ratio). Our understanding of the model is also that the function used

to simulate the input of new cells may now be the limiting factor, and that explicit thymus

implementation may significantly enhance the model realism.

Standard network Including GI tract
Node 0 ∼ 6 days ∼ 4 days
Node 1 ∼ 7 days ∼ 6 days
Node 2 origin of infection origin of infection
Node 3 ∼ 6 min. ∼ 2 h.
Node 4 ∼ 10 h. ∼ 17 h.
Node 5 ∼ 42 h. ∼ 29 h.
Node 6 ∼ 3 days ∼ 46 h.
Node 7 ∼ 5 days ∼ 4 days
Node 8 ∼ 5 days ∼ 3 days
Node 9 ∼ 6 days ∼ 5 days
Node 10 ∼ 7 days ∼ 6 days
Node 11 ∼ 10 h. ∼ 8 h.
Node 12 ∼ 17 h. ∼ 29 h.
Node 13 no infection ∼ 5 days
Node 14 no infection ∼ 7 days
Node 15 ∼ 6 days ∼ 5 days
Node 16 ∼ 7 days ∼ 6 days
Node 17 no infection ∼ 10 days
Node 18 no infection ∼ 11 days
Node 19 no infection ∼ 12 days
Node 20 no infection no infection
Node 21 no infection ∼ 12 days
Node 22 no infection ∼ 8 days
Node 23 ∼ 8 days ∼ 7 days

Table 6.7: Gastrointestinal tract: effects on disease progression during first two weeks of
infection (time of first local infection)
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Figure 6.3: Lymph network used for tests on GI tract, represented by grey nodes
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Standard network Including GI tract
Peak in acute phase 6.7 weeks [1.2] 6.1 weeks [1.4]
End of acute phase 9.4 weeks [1.6] 8.9 weeks [1.4]
End of latency period 8.0 years [3.7] 7.8 years [3.7]

Table 6.8: Long-term disease progression. Comparison between clinical data, (not includ-
ing rapid progressors and long-term nonprogressors), and time points obtained from the
model.

6.4.3 Future work

Initial tests on the gastrointestinal tract extension are very promising and confirm explicit

lymph node implementation a useful basis for model development. Further simulations will

provide valuable insight into importance of the gastrointestinal tract on overall disease pro-

gression.

In particular, further tests will be aimed at clarifying whether early infection in the GI tract

can be seen as a prototype of overall infection patterns over the whole course of disease

progression. To this end, it is necessary to look more closely at some signatures of HIV

infection, and in particular viral mutation. Latency is characterised by an increasing num-

ber of viral strains, each maintaining a relatively small population: when one becomes too

prominent, probability of successful recognition by the immune system increases, and it is

soon eradicated.

A future focus will also be on assessing suitability of early treatment in the gastrointestinal

tract as a way to better contain disease progression. Early indications are that this could be

an interesting prospect for drug development (Guadalupe et al., 2003), but in silico investi-

gation could provide further understanding of dynamics of cell population restoration. To

this end, accurate modelling of treatment is required, so that different intervention frame-

works can be evaluated.

This extension, (treatment modelling), requires detailed consideration. Could it be included

as additional constraints on agent behaviour, or does it demand implementation of a new

agent type? Drug dissolution and interactions between drug, immune system and virus are
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non-trivial. Expertise in modelling these phenomena, however, exists within our research

group: results from drug dissolution simulations, (see e.g. Barat et al. (2006a;b)), may, in

the medium term, be adapted to account for diffusion of anti-viral treatment over the lymph

network, and models of bacteria-antibiotics interactions, (see e.g. Walshe (2006)), could

provide an interesting basis for analysis of virus-drug complexes.

6.5 Chapter summary

In this Chapter, modelling choices, detailed earlier, were successfully combined to facilitate

emergence of known macroscopic signatures of HIV infection.

Cell mobility, in particular, results in a realistic representation of the viral spread through the

lymph network. This is a consequence of detailed implementation of this particular feature,

with significant efforts to improve local update optimisation and overall communication

strategy.

These efforts permit simulation of hundreds of lymph nodes and more than a billion agents.

This is a scale similar to that of the real immune system, and provides a useful insight into

how observed patterns emerge from very precise local interactions.

All limitations identified in existing models have now been addressed:

• The balance between agent diversity and agent population is adequate, since simu-

lations can involve a very large number of agents, (cell population several hundred

times larger than in existing models), from types which are sufficient for the obtention

of known immune and viral characteristics.

• Explicit modelling of lymph nodes has been implemented and validated, and proves

a very important feature.

• A reasonable granularity, to account for cell-level interactions and movements, is

guaranteed, as code optimisation allows time step of one minute.

• Cell-level implementation of immune memory is successful, and observed results are
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in agreement with biomedical studies.

• More refined antigen recognition provides adaptability to the immune system, and

effects on overall behaviour have been successfully assessed.

• The inclusion of localised effects is under way, and early results confirm the suitabil-

ity of the lymph network model for such an objective.

This Chapter concludes, therefore, with a large-scale agent-based model which significantly

advances the field of immune modelling. This model is based on a bottom-up approach and,

as a consequence, further improvements will the result of a refined agent implementation.

The next Chapter will, therefore, introduce methods to further improve model realism: to

better understand the immune system, it is crucial to consider how this system is obtained.

This requires additional layers to the current overall model, at the genetic and epigenetic

levels.
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Chapter 7

Beyond genotype: epigenetic

modelling

7.1 Phenotypical immune response as a consequence of gene ex-

pression

7.1.1 Motivations

In previous Chapters, we saw how, using a bottom-up approach, based on cell-level inter-

actions and using a large-scale implementation of the lymph network, it is possible to gain

a better insight into the dynamics of disease progression. If agent implementation can be

refined, overall model realism will be enhanced.

By definition, the immune system is a phenotypical system: we have considered and imple-

mented “visible” cell characteristics. A better understanding of the development of these

would, in turn, improve the accuracy of the modelled interactions and, therefore, of the

overall immune system model behaviour.

In this context, it is useful to look at another layer of the immune system, and study how

the immune responses patterns are obtained. In particular, how do various gene expression

patterns result in different phenotypical expression? In other words, what are the mecha-

102



nisms for acquisition of phenotypical characteristics?

To analyse gene expression and function, microarray experiments are commonly used, and

specific datasets dedicated to the immune system are appearing, (even though they are not

currently available for humans). To permit analysis of such datasets, we developed a bi-

clustering technique, (see Appendix A for details).

However, as will be detailed next, the phenotype is not a deterministic consequence of the

genotype, and is controlled by epigenetic mechanisms. A further layer is, therefore, added

to the model, to permit a more detailed investigation into these changes, both in the context

of the main model layer and for other biological systems, (e.g. cancer initiation). The con-

nection between the model layers is shown in Figure 7.1, (p.104).

In this Chapter, we introduce our objectives for this layer and present the current status of

research on Epigenetics, before detailing a model of infection-induced epigenetic changes.

7.1.2 Gene expression is controlled by epigenetic changes

Early advances in Genetics led to the all-genetic paradigm: the phenotype is a deterministic

consequence of the genotype. Obvious counter-examples were outlined and this was later

amended and expressed using P = G + E, encompassing the notion that the visible char-

acteristics of a living organism (i.e. the phenotype, P ) combine hereditary genetic (i.e. the

genotype, G) and environmental factors (E).

However, this formula fails to explain cell differentiation from a zygote, and why, for high

heritability diseases such as schizophrenia, differences between monozygotic twins can be

seen. Furthermore, identification of environmental factors, (e.g. smoking Mucha et al.

(2006) and air quality Spurny (1996) for lung cancer), is relatively rare.

Early work Waddington (1949), and more recently over the last decade, (see e.g. Bird

(2002); Wilkins (2005), has emphasised that genotype expression can be altered with-

out changing DNA sequence itself, and tagged this phenomenon as Epigenetics: P =

G+ E + EpiG.
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Figure 7.1: Epigenetic modelling as an additional layer of the overall model.
Low-level biomedical information, (e.g. genetic and epigenetic background) is used as an input
to this layer. The results from the model are obtained at a low level, (i.e. epigenetic status, gene
expression), and at a high-level, (e.g. effects of these mechanisms on disease development). They are
useful in every research field where epigenetic changes are involved, including immune modelling,
as they can be used for instance to refine the agent implementation in the lymph node model.

104



Epigenetic mechanisms involve heritable alterations in chromatin structure, (e.g. DNA

methylation and histone acetylation, detailed in Section 7.2), amongst other epigenetic

“signatures”. In turn these regulate gene expression, but do not involve changes in DNA

sequence. These “stable alterations” arise during development and cell proliferation and

persist through cell division. While information within the genetic material is not changed,

instructions for its assembly and interpretation may be.

7.1.3 Objectives

Similarly to the immune system, epigenetic mechanisms form a very complex biological

system, and the objective here is to propose early models of such phenomena. Results

obtained, in the long term, from these models can then be used to refine the lymph node

model, as well as to better describe systems such cancer initiation or neural development.

Bioinformatics methods have been applied to Epigenetics, for instance to predict methy-

lation status of a given DNA sequence (Das et al., 2006), but Computational Biology has

yet to contribute in a significant way. In particular, no previous modelling work was found

to exist on epigenetic changes, and this Chapter provides a stepping stone towards a large-

scale project, (which we recently detailed (Perrin et al., 2008)). An analogy can be drawn

with early modelling work on the immune response to HIV. Research on Epigenetics is in

a position similar to that of research on HIV over a decade ago: the basics of the infection

were understood, but lab testing was difficult, and in vivo testing implied evident ethical is-

sues, which meant that quantitative data were sparse. Models developed at that stage were

able to match some signatures of disease progression, (as outlined in Chapter 2), and were,

therefore, used as a proof of concept for computational immunology. Ongoing refinement

of proposed approaches has led to recent models, including that which has been proposed

in this Thesis.

From collaboration discussions with the National Cancer Center (Tokyo, Japan), the chosen

focus for an early model is aberrant DNA methylation induced by H. Pylori infection.
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7.2 Epigenetic changes, interactions and perturbations

7.2.1 Chromatin structures

Chromosomes, which store all genomic information, are formed by a complex combination,

called chromatin, of DNA and proteins. The major proteins involved are histones. Nine hi-

stones combine to form a nucleosome, shown in Figure 7.2. The characteristic structure of

a nucleosome is that of four pairs of histones forming a core around which about 146 base

pairs of DNA are wrapped. This is maintained in place by a linker histone, H1, and repeats

over the chromatin every 200 base pairs. The remaining 50 base pairs of this repeating unit

consist of “linker DNA”.

This structure is crucial in gene expression: when a gene needs be expressed, several pro-

teins must interact with it and nucleosome are, therefore, far apart, to facilitate access. In

contrast, condensation of chromatin structure leads to gene silencing. Several epigenetic

changes on histone structures participate in the control of these dynamics.

The link between nucleosome positioning and epigenetic changes is two-directional, and

the positioning influences DNA methylation. Linker DNA is very susceptible to methy-

lation changes, while core DNA is very difficult to methylate. As an additional complica-

tion, nucleosome positioning dynamically evolves, and is both DNA-dependent and energy-

dependent. Changes in DNA methylation can also lead to nucleosome repositioning. Until

recently, dynamics of these position changes in vivo were poorly understood, but new bi-

ological techniques are now being developed and offer promising results, (see e.g. Davey

et al. (2003); Fatemi et al. (2005); Pennings et al. (2005); Segal et al. (2006)).

7.2.2 DNA methylation

DNA methylation corresponds to addition of a methyl group to a DNA strand. In humans,

only 1% of DNA bases undergo DNA methylation. In differentiated cells, DNA methy-

lation is typically limited to CpG dinucleotides1. Non-CpG methylation can be found in
1CpG: a cytosine followed by a guanine in the DNA sequence.
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Figure 7.2: Schematic representation of a nucleosome, (adapted from Brenner (2005))

embryonic stem cells (Dodge et al., 2002).

Of particular interest are CpG islands. These correspond to areas with higher proportion of

CpG, and are formally defined as follows (Gardiner-Garden and Frommer, 1987):

• Length of the considered region is at least 200 base pairs.

• GC percentage is greater than 50%, (i.e. more than half of amino-acids are cytosine

or guanine).

• Observed/expected CpG ratio that is greater than 60%.

In humans, these islands are found in or near to 70% of gene promoters (Saxonov et al.,

2006). While most CpG are methylated over the genome, these regions have a very distinct

pattern: methylation of a CpG island corresponds to silencing of the associated gene.

Aberrant changes in CpG island methylation are, therefore, linked with abnormal gene

expression.
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7.2.3 Histone modifications

Histone modifications correspond to the addition, (or removal), of a functional group,

(methyl, acetyl, etc.), to specific amino acids of histone proteins. As detailed above, these

proteins form a nucleosome core, around which DNA strands wrap. For each nucleosome,

nine histones are required: two of each class H2A, H2B, H3 and H4, and one H1.

Modifications can occur on tails of histones H3 and H4, and in the core of H2A and H3.

Some amino-acids can undergo several successive modifications. Lysine 79 of histone H3

can, for instance, be mono-, di-, or trimethylated (Barski et al., 2007).

Role of changes is modification-specific. For instance, trimethylation of H3K92 is associ-

ated with gene silencing (Barski et al., 2007), while acetylation of the same amino acid is

linked with gene activation (Koch et al., 2007). It is also molecule-specific, as effects of

trimethylation of H3K9 and H3K4 have opposite consequences on gene expression (Barski

et al., 2007; Koch et al., 2007).

7.2.4 Interactions

While other epigenetic mechanisms exist, such as perturbations by siRNA, (small interfer-

ing RNA3), and piRNA, (Piwi-interacting RNA), they will not be detailed here. Lack of

detailed information on these is even more limiting than for DNA methylation or histone

modifications, and they can not, therefore, be an immediate target for model development.

Those two mechanisms are, however, sufficient to explore the behaviour of epigenetic sys-

tems. A complex interaction exists between DNA methylation and histone modifications,

and epigenetic changes have different dynamics and stability. For instance, histone deacety-

lation is considered very rapid, while histone methylation is slow and DNA methylation

very stable. Each modification is due to a specific family of enzymes4. These will not be

detailed here, but it is important to note that such enzymes are part of larger complexes,
2H3K9: Lysine 9 of histone H3.
3Also known as short interfering RNA, or silencing RNA.
4e.g. DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b are controlling DNA methylation in mammals.
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which lead to chain reactions. For instance, MeCP25 binds to methylated DNA and then

forms a complex with HDAC6, leading to histone modifications, (including methylation,

through later recruitment of another complex involving Polycomb-group proteins). This is

crucial during cell division. DNA methylation is, indeed, the only epigenetic change di-

rectly conserved during cell division, but through recruited MeCP2-HDAC complex and

further interactions, histone modifications are restored.

DNA methylation can, therefore, be seen as the “lock” of gene silencing, (since it leads to

recruitment of complexes reinforcing unstable histone modifications), but also as its “mem-

ory”, (since its conservation during cell division ensures restoration of associated changes)7.

There are, in addition to this, complex interactions within histone-related mechanisms.

These are collectively known as the histone code (Gilmore and Washburn, 2007; Jenuwein

and Allis, 2001; Strahl and Allis, 2000). An exhaustive list of all these interactions will

not be provided here but, for instance, phosphorylation of serine H3S10 facilitate acety-

lation of H3K14 and inhibits methylation of H3K9, in turn enhancing gene transcription,

while simultaneous acetylation of H4K5, H4K8, H4K12 and H4K16 inhibits methylation

of arginine H4R3.

7.2.5 Perturbation of epigenetic patterns

Epigenetic mechanisms are involved in normal cell differentiation. All cells of an organism

have, indeed, the same genomic information, and epigenetic changes are part of the process

which switches genes on or off and leads to cell differentiation. Interactions between epi-

genetic changes in the early stages of development are, therefore, a crucial topic for stem

cell research, (see e.g. Nimura et al. (2001)).

If epigenetic patterns are involved in normal gene silencing as part of cell differentiation,

aberrant changes can also lead to abnormal silencing or transcription.

Alterations in DNA methylation, imprinting and chromatin structure are common in cancer
5MeCP2: methyl CpG binding protein 2.
6HDAC: histone deacetylase.
7This representation was proposed by Prof. Shoji Tajima when I visited his Laboratory of Epigenetics, at

the Institute for Protein Research (Osaka University, Japan).
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and links to epigenetic changes have been established in several cases, e.g. in Wilm’s tu-

mour (Rainier et al., 1993) and colon cancer (Liou et al., 2007), both of which involve Loss

of Imprinting, (LOI, silencing specific genes on a parent lineage). In the latter, apparently

predating the tumours, LOI occurs in surrounding tissue - i.e. an environmental or “field

effect”. Motivation for this type of research is that, if information is accessible, this may

yeld pre-critical information on tumour formation.

Epigenetic mechanisms are also studied in other medical fields because of association with

obesity (Cooney et al., 2002), abnormal neural development (Kubota, 2008), mood disor-

ders such as stress vulnerability and bipolar disorder (McGowan and Kato, 2008), or risk of

heart failure (Mano, 2008).

Common to this research is costly and time-consuming lab testing. Ethical issues also arise

(study of epigenetically induced differentiation of stem cells being an obvious example).

Another limitation is that, while successful in investigating specific phenomena, they so far

fail to explain system-wide complex interactions. This can be explained both by overall

system complexity and by technical constraints leading most research groups to focus on

one epigenetic change in one given context.

This need for integration of these partial results is crucial to understanding the overall bio-

logical system, and computer-based modelling, (increasingly used as a complement to lab

testing in other fields, see e.g. Dove (2006)), can provide useful framework to address such

need.

7.3 Immune response and epigenetic changes

7.3.1 Epigenetics in the immune system

Agent-based models and other bottom-up approaches are often used to examine individu-

ality in a system. In the lymph network model implemented, individuality of response is

obtained through the implementation of local rules. At the epigenetic level, another layer

of individuality can be observed: cells, through differentiation, have individual profiles.
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Epigenetic changes are involved in differentiation of CD4 cells. Naive CD4 T cells de-

velop into either type Th1 or type Th2 CD4 cells that predominantly secrete IFN-γ or IL-4,

respectively. The former are mainly interacting with macrophages and cytotoxic CD8+ T

cells, promoting cell-mediated response. The latter interact with B lymphocytes and pro-

mote humoral response. This differentiation is obtained by the expression of one cytokine

gene and the permanent silencing of the other, controlled using epigenetic mechanisms. Re-

cent research, which focuses on isolating environmentally induced epigenetic change that

occurs during Th1/Th2 cell development, could explain how certain Th1/Th2-associated

conditions develop (Sanders, 2006). The authors hypothesize that diet, ageing, or use of

certain drugs could lead to changes responsible for shift in Th1/Th2 profile which would,

in turn, affect disease susceptibility and resistance.

In a recent article (Chang and Aune, 2007), the authors also considered those two lineages,

and focused on the locus encoding interferon-γ (Ifng locus). In particular, they explored his-

tone modifications. Methylation of H3K9 across the locus was found to be rapidly induced

during differentiation, and to be conserved in Th1 cells. On the contrary, for Th2 cells,

methylation is limited to H3K27. With much of the immune experience dependent on ini-

tial priming (Ruskin and Burns, 2006), it is evident that understanding epigenetic changes

can provide further information on initial system status and differentiation of immune cells.

7.3.2 HIV-related epigenetic changes

Epigenetic patterns, related to HIV infection, are also under consideration. There is a grow-

ing argument that highly active antiretroviral therapy is not a viable solution to stop disease

progression, as multi-drug resistant HIV (MDR-HIV) strains have appeared (Little et al.,

2002). Alternative therapies are currently being sought, and epigenetic inhibitors such as

peptide nucleic acids (PNA), which targets transcription of specific regions of viral mRNA,

are considered to be good prospects (Sei, 2005).

Research is also focusing on methylation patterns. Methylation of specific regions of viral

genetic material has been shown to be associated with inhibition of transcription (Bednarik
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et al., 1987; Schulze-Forster et al., 1990), which implies, potentially, an important role in

viral latency. Recent studies have confirmed this, showing that CpG sites in the 5’ long ter-

minal repeat (LTR8) are selectively hypermethylated, and that TNF-α-induced reactivation

is associated with demethylation of the 5’ LTR (Ishida et al., 2006). In vivo experiments

are, however, limited by low copy numbers of HIV provirus, which prevent direct analysis

of CpG methylation.

Further studies are, therefore, required to fully understand involved mechanisms, but epige-

netic “treatment” is a promising long-term project. This, of course, implies a better compre-

hension of multiple epigenetic interactions, and in silico models would certainly advance

this.

7.4 An example of infection-induced epigenetic perturbation

7.4.1 Context of the study

As a proof of concept for computational models of epigenetic changes, a study on infection-

induced epigenetic perturbations is presented here. The model and target medical condition

are the result of initial discussions on collaboration with Toshikazu Ushijima9 and his team.

Their main objective is to better understand epigenetic changes in the context of cancer

initiation, and to apply this to improve prevention, early-stage diagnostics and treatment.

The motivation is that epigenetic alterations in non-disease tissues can be used as markers

for disease risk and past exposure to some disease-inducing factors. In particular, current

focus in on detection of aberrant DNA methylation in non-cancerous gastric mucosae, as

the presence of such patterns can be used as a marker for both the risk of gastric cancers and

past exposure to Helicobacter pylori. A detailed presentation in the context of this study is

available in Nakajima et al. (2008). For convenience, main points are summarised here.
8LTRs are characteristic of viral genetic material. They flank functional genes, and their main function is to

mediate integration of the retroviral DNA into host chromosome. The five prime, (5’), end refers to the end of
the DNA, (or RNA), strand that has the fifth carbon in the sugar-ring of the (deoxy)ribose at its terminus, (as
opposed to the 3’ end, which is terminating at the hydroxyl (-OH) group of the third carbon in the sugar-ring,
and is also known as the tail end.

9Carcinogenesis Division, National Cancer Center Research Institute, Tokyo, Japan.
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In cancer development, aberrant DNA methylation is involved at two levels:

• Overall hypomethylation, which affects repetitive DNA sequences and causes both

chromosomal instability, (and, therefore, tumours (Gaudet et al., 2003)), and aberrant

expression of normally methylated genes (Smet et al., 1999).

• Regional hypermethylation, most of which affects CpG islands and causes, (if these

islands are located in gene promotion region), transcriptional silencing of down-

stream gene. In the context of cancer, methylation affecting tumour suppressor genes

is well documented, (see e.g. Jones (2002); Baylin and Ohm (2006)). This is some-

times referred to as driver methylation, because of causal involvement in carcinogen-

esis, (as opposed to passanger methylation, which refers to genes whose methylation

is a consequence of cancer development, and therefore requires careful analysis of

newly detected genes (Ushijima, 2005)).

In the context of gastric cancers, gene inactivation, (e.g. for tumour suppressor gene p16), is

more frequently a consequence of aberrant promoter methylation than of defaults of the ge-

netic level (Ushijima and Sasako, 2004), but Ushijima and his team also observed that low

levels of aberrant methylation occur in non-cancerous mucosae of cancer patients (Kaneda

et al., 2002). This was tested against tissues from healthy individuals, and it was found that

methylation levels for these patients were 5.4 to 303-fold higher in H. pylori-positive indi-

viduals than H. pylori-negative individuals (Maekita et al., 2006). This is a very significant

finding, since H. pylori is known to be a major risk factor for gastric cancers.

It was also highlighted that part of this hypermethylation is temporary and will decrease

after eradication of infection. This is not due active demethylation, but to cell turnover. The

structure of the gastric crypt, (one stem cell, multiple progenitor cells and many differenti-

ated cells, as shown in Figure 7.3), is the cause for this two-part methylation, where:

• Permanent component is due to methylation of stem cells. Since methylation is con-

served during cell division, progenitor and differentiated cells obtained from aber-

rantly methylated stem cell will exhibit identical abnormal patterns.
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• Temporary component is due to methylated in progenitor and differentiated cells

which, if stem cell of the crypt is not methylated, will disappear because of cell

turnover and creation of new, unmethylated, cells.

Gaining a better insight into these methylation dynamics during infection, (summarised in

Figure 7.4a, p.115), and in the long term, (Figure 7.4b), is the objective of the prototype

model we have developed, detailed in the following.

D i f f e r e n t i a t e d  c e l l s

P r o g e n i t o r  c e l l s

S t e m  c e l l

Figure 7.3: Structure of a gastric crypt, with one stem cell, a few progenitor cells and
approximately one hundred differentiated cells on each side

7.4.2 Implementation

To investigate the dynamics of infection-induced aberrant methylation in the crypt, we im-

plement an object-oriented model of the entities involved. The structure of this crypt model

is shown in Figure 7.5, (p.117). Key attributes in the model are the infection status of the

crypt, its size, the methylation status of each cell, and the overall methylation level in the

crypt.

A sample, which mimics in silico the samples obtained in vivo during NCC experiments,
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(a) During H. Pylori infection, cells can be methylated, with different probabil-
ities depending on their type. Methylation status is conserved through cell
division, (from stem to progenitor cell, and from progenitor to differentiated
cell).

(b) After eradication, only crypts were the stem cell was methylated conserve
aberrant methylation, (which is propagated through the whole crypt, during
cell divisions).

Figure 7.4: Methylation dynamics in gastric crypts.
Colour represents cell type, (black for stem cells, grey for progenitor cells, white for differentiated
cells), and aberrant methylation is shown with a cross inside the cell.
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is implemented as an array of crypts. Each crypt is initialised with one stem cell, six pro-

genitor cells, and one hundred differentiated cells on each “wall” on the crypt. No cell is

aberrantly methylated.

At each time step, (i.e. every minute of “real time”), each crypt is updated, as follows. First,

cells at the top of both “walls” are checked, and removed if they are too old. When there is

no infection, their life span is approximately three days. During an infection, it is reduced

to almost two and a half days.

Then, we update the bottom of the crypt. A new cell may be created on each side, with a

probability p, which is set to approximately 2.3 × 10−3 in normal conditions. During an

infection, p is increased, and ranges from 7.0× 10−3 to 2.6× 10−2, as shown in Table 7.1.

We then update progenitor cells, which can only produce a limited number of differentiated

cells before being replaced by a new progenitor cell.

Finally, we update the methylation status of the progenitor and stem cells. They have methy-

lation probabilities α and β, respectively. The proposed values for α and β are discussed

next.

Size increase Observed frequency Corresponding range for p
(estimation provided by T. Ushijima)

2-3 times 30% [7.0× 10−3, 1.0× 10−2]
4-5 times 30% [1.0× 10−2, 1.7× 10−2]
6-7 times 20% [1.7× 10−2, 2.3× 10−2]
8-10 times 20% [2.3× 10−2, 2.6× 10−2]

Table 7.1: Crypt size during infection: range of possible sizes, and corresponding values
for the probability p to produce a new cell during the crypt update.

7.4.3 Results

The hypothesis from NCC is that, in normal conditions, stem cell methylation is not possible

and that, during H. Pylori infection, the probability to methylate these remains significantly

lower than that of progenitor cells. As a consequence, the model is built with α = 2×10−7

and β = 0 under normal conditions, and α = 6× 10−5 and β = 3× 10−8 during infection.
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Figure 7.5: Crypt implementation: class diagram

A sample of one hundred crypts is created, and several simulations are performed. Infection,

in simulations where it is included, starts at week 5, (i.e. day 35). When H. Pylori eradica-

tion is scheduled, this takes place at week 55, (i.e. day 385). This mimics the experimental

conditions of the in vivo results provided. The results obtained from these simulations are

shown in Figure 7.6 for the crypt size, and Figure 7.7 for the methylation levels, (p.119).

It is technically difficult to count cells in the crypt once it has expanded, and quantitative

comparison with simulated crypts is, therefore, limited. However, the in silico results are,

qualitatively, in accordance with the known influence of H. Pylori infection on the crypt.

The crypt size initially drops because of the quicker removal of cells near the end of the

crypt, but this is rapidly more than compensated by the increased production of cells, and
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the crypt expands. The range of sizes successfully reproduces the estimation provided. Af-

ter eradication, the crypt size starts decreasing after an 18-hour delay, and initially drops

below the original size. The normal regime is restored after approximately four days.

The proposed values for α and β confirm the validity of the NCC hypothesis. The probabil-

ity exists to have infection-induced methylation of progenitor cells 2000-fold greater than

that of stem cells, resulting in the two-part methylation. The values for these probabilities

in the simulations give ranges for the methylation level in all conditions, (i.e. infection or

not, eradication or not), which closely reproduce the in vivo results10 provided.

The model implemented confirms, therefore, both the hypothesis formulated, (since we

were able to reproduce it), and the need for in silico epigenetic models, (since, in confirm-

ing the hypothesis, we provided additional information which was not accessible during the

physical experiments, i.e. quantitative values for the methylation susceptibilities).
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(a) H. Pylori infection reduces the life span of crypt
cells, resulting in initial drop in crypt size, but
also induces an increased production, which
leads to a significant increase of crypt size.
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(b) After eradication, the cells produced in excess
are rapidly removed. This results in a crypt size
temporarily below normal levels, but this is re-
stored to normal size within days.

Figure 7.6: Simulated crypt size dynamics on a sample of 100 crypts.
Plain and dashed lines correspond to average crypt size, while dot-dash lines correspond to minimal
and maximal crypt sizes.

7.4.4 Applications

The model developed is a useful complement to in vivo experiments and provides the dy-

namics of infection-induced aberrant methylation. This is crucial to a better understanding
10Confidential results unpublished yet, at the time of writing. A manuscript is in preparation.
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Figure 7.7: Simulated methylation level on a sample of 100 crypts.
Without infection, methylation is almost absent. H. Pylori infection leads to progenitor cell methy-
lation, which results in rapid fluctuations of the methylation level, since these cells have a finite life
span and are replaced with unmethylated cells, (unless the stem cell is methylated). The infection
also leads, with a smaller probability, to stem cell methylation, which results in permanent and com-
plete methylation of the corresponding crypt, (and therefore a sharp increase of the methylation level
of the sample).

of the initiation of gastric cancers.

Methylation levels were observed to be significantly higher in cases of gastric cancer than

in healthy volunteers (Maekita et al., 2006), and significantly higher in patients with mul-

tiple gastric cancers than in those with a single gastric cancer (Nakajima et al., 2006a).

Since patients with multiple cancers are considered to have a higher risk of gastric cancers

(Nakajima et al., 2006b), these results demonstrate the potential of methylation levels in

non-cancerous gastric mucosae to act as a biomarker for gastric cancer risk.

This is likely to be generalised to other types of cancer: aberrant DNA methylation in non-

cancerous tissues was also identified e.g. in the colon (Issa et al., 1994), the liver (Kondo

et al., 2000), and the stomach (Waki et al., 2002). In silico models can facilitate a quantita-

tive methylation analysis and investigate the influence of potential inducing factors.

Our epigenetic model layer is, therefore, a valuable tool by itself, but is also promising

in the context of the main immune model. Epigenetic mechanisms are involved both in

normal differentiation of immune cells and in HIV-induced perturbations, (Section 7.3).
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Providing data similar to that obtained from NCC for gastric cancers becomes available in

the immune context, our model can be applied to these perturbations. The results provided,

instead of indicating potential biomarkers as above, would then be used to refine the agent

implementation in the lymph node model.

7.5 Chapter summary

In this Chapter, it was demonstrated that it is possible to develop computer-based models

of epigenetic changes, and that these models can be a useful complement to physical exper-

iments, both in vivo and in vitro. Here, the model implemented can be used on its own, or

as an additional layer to the immune model detailed in earlier Chapters.

The results from the simulations performed confirm the hypothesis formulated at NCC that

H. Pylori infection induces aberrant DNA methylation in progenitor and stem cells of gas-

tric crypts. We were also able to provide estimations for the methylation susceptibility of

these cells, and to detail the crypt dynamics during infection, which are difficult to physi-

cally monitor.

Progress on epigenetic perturbations in the context of HIV infection will, in the long term,

permit the application of this model to HIV-induced aberrant changes, which will enable a

refined implementation of the agents in the lymph node model.

Finally, this epigenetic model, being the first to successfully reproduce epigenetic events in

silico, can be used as a proof of concept for further development of more ambitious models,

which would incorporate several epigenetic changes and the complex interactions between

them.
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Chapter 8

Summary and future research

8.1 Summary

The review in Chapter 2 clearly indicates limitations inherent in immune system modelling:

as a complex system, a full description by a single model has proven elusive to date, despite

some useful insights gained. Commonly, each new model or extension seeks to address

known limitations of existing implementations and to provide additional explanation on

components of the overall system. In what has been presented here, we have sought to

highlight the layers that obtain in building a model for a biological system, where these

are characterised by multiple dependencies. Our focus is still improvement of the immune

system model with specific entities, but we have also considered exploratory investigations

on the layers that sit below this, in particular in our effort to tie in genetic and epigenetic

influence. Three layers of complexity are tackled, and for each, limitations are identified

and addressed.

The main layer still focuses, at the phenotypical level, on immune response to HIV. To

better link known microscopic interactions to observed patterns of disease progression, the

use of the agent-based paradigm is advocated and, in that context, several limitations are

identified, and addressed.

Four types of agents are modelled which, we believe, fully account for cell-mediated re-
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sponse and HIV mechanisms, while this reduces agent diversity to a level which permits

simulation of large populations. A short time step, (fifty seconds), is proposed, to guar-

antee sensible granularity, which ensure that no significant interaction is unaccounted for.

Immune memory is implemented at the cell-level, in accordance with principles associated

with bottom-up programming. Antigen recognition is also improved, and refined to include

adaptability: recognition is not binary.

Further integration at this main layer is provided by linking key activity of lymph nodes in a

lymph network. This is crucial, in that it allows modelling of cell mobility both within nodes

and between them. This implementation requires, (and permits), parallelisation in order to

simulate large network sizes. Details of the implementation are given and where several

strategies are presented, tested, and optimised. In particular, a communication strategy,

based on a mimic of the lymph network, is identified as the best communication protocol

for proposed model.

This has permitted tests on large-scale simulations, as reported in Chapter 6. Known macro-

scopic signatures of HIV are successfully reproduced. Cell mobility, in particular, leads to

accurate representation of viral spread through the lymph network, with a rapid spread

within the initial lymph chain, and a slower progression throughout the body. An extension

to include localised effects in the gastrointestinal tract is proposed, and details of this new

extension are presented and tested.

Additional layers are considered in further chapters and in Appendix A, namely the iden-

tification through expression of genes involved in system functionality. Considerations for

extracting such information from microarrays are discussed and a new weighting scheme

is introduced, and successfully validated using an innovative assessment framework. This

scheme is then used in a parallel genetic algorithm which successfully identified co-regulated

genes. These results can be applied to all types of microarray datasets and can, in particular,

feed into the main layer to refine agent implementation in the lymph node model.

Finally, the sub-genetic model layer is considered, and in silico modelling for Epigenetics

is presented. Several challenges persist at this level, including overall lack of quantitative
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data, but the proposed model of infection-induced aberrant DNA methylation, (target to H.

Pylori), is an interesting proof of concept and very promising in terms of future research

directions.

8.2 Future research

While the overall multi-layer model addresses significant limitations of existing approaches,

it is not exempt from further problems itself. These will be the focus of future research, and

are detailed here, for the main layer, (i.e. the lymph network model).

Our first extension would be to consider possible multiple infections of each CD4 cell: a

cell can, indeed, be infected by several viral strains. In terms of our model implementation,

this should not require important changes. In the current version, CD4 agents can only be

infected once. This action is stored using a single integer representing viral strain, but this

is easily changed to a list of integers, (as can be found for APC agents and their list of pre-

sented antigens). This should not dramatically change model behaviour, but will introduce

further variability in disease experience.

In the extension for the lymph network model proposed for inclusion of the gastrointestinal

tract, it was explained that not all tissues are lymph nodes. In a first attempt, the generic

lymph node implementation was sufficient, but further work may consider refinement of

this. For instance, additional tissue may be implemented using smaller matrices and/or dif-

ferent connectivity between these. This will involve further review of the literature in what

is a fairly new development, to guarantee optimal implementation.

Cell mobility, as shown in this model, is crucial to both viral spread and immune activation,

and has been somewhat intermittently included in previous models. Our current imple-

mentation gave an interesting insight into how this affect the overall system, and further

refinement is likely be very useful. A few models dealing exclusively with cell recircu-

lation have been proposed (Farooqi and Mohler, 1989; Srikusalanukul et al., 2000; Stekel

et al., 1997). Direct integration of these features into our current model is not possible, as
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the approaches implemented are very distinct. The results reported, however, can provide a

basis for refined local mobility rules.

Another extension would be to explicitly implement thymus operation. In the current ver-

sion, input of new cells from the thymus is dealt with on a node to node basis, taking into

account pressure added by local cell depletion. This is acceptable for the input itself, but

neglects possible infection of the thymus itself. Data appears to be relatively sparse for this

very local aspect, but some interesting work exists (McCune, 1997). Successful implemen-

tation of the gastrointestinal tract is a cause for optimism with regard to the model ability

to account for this other localised effect. Further GI extensions detailed above will give

further experience as to which architecture is best suited for the thymus implementation,

(e.g. in terms of matrix size).

Adding a new type of agent, to account for drug intervention is likely to be very useful.

Large-scale simulations may, indeed, give interesting details on when and where treatment

should be targeted. This was detailed for the gastrointestinal tract, but is also true with

respect to the thymus, and to the overall system. This adds significant complexity, but

expertise within the research group can provide insight on techniques to facilitate imple-

mentation.

Finally, another extension would be to consider redevelopment of graphical output. As

shown in Figure 4.8, (p.58), such a feature was available in early stages of model develop-

ment, for single-node simulations. Visualisation, however, is non-trivial. In the lymph node

model, each matrix element can contain dozens of agents. There is no immediate way to

graphically represent an element in which are found two activated CD8 agents, three CD4

agents, one of which is infected, and four APCs! Initial graphical output was not satisfac-

tory, and not adapted to large-scale parallel simulations involving hundreds of lymph nodes.

Visualisation can, however, be useful, particularly in terms of dissemination if information

to non-Computer Science experts and is certainly worth detailed investigation. Two levels

seem indicated. At the lymph node level, initial output may be adapted and would pro-

vide an interesting way to demonstrate the impact of cell mobility. At the network level,
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a representation of viral spread, e.g. in terms of viral concentration in each lymph node

at a given time point, would help to demonstrate growth stages and key targets as well as

network vulnerability. This is already under consideration, as we recently outlined (Perrin

and Burns, 2008).

8.3 Final remarks

Model layers developed in this Thesis each represent a significant advance to modelling as-

pects of host response to adverse changes, in that they either address significant limitations

of existing models, or provide first attempts in new and promising areas.

Agent-based immune models have now been taken to a new scale, which can account for

more than a billion cells and account for crucial phenomena such as cell mobility, as well

as localised effects such as early infection in the gastrointestinal tract and, potentially, the

thymus.

The contribution to microarray biclustering methods, (Appendix A), is a formalised ap-

proach, in that there is a clear and objective framework on which to assess weighting

schemes of gene-condition networks, which have been shown to be important in deter-

mining gene involvement in specific conditions. Parallel genetic algorithms also provide a

powerful way to make the most of these schemes, including the one proposed here.

Epigenetic modelling is still, of course, at a very early stage, but the initial model is a signif-

icant first step towards a better understanding of involved phenomena. Attempts to integrate

several layers in human system-based modelling also represent a significant development,

and this Thesis, we contend, provides an important contribution to the Computational Biol-

ogy field.
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Appendix A

Beyond phenotype: understanding

gene expression

A.1 Objectives

The mechanisms leading to the development of the phenotype form a biological system at

least as complex as the immune response itself studied in the main body of this Thesis,

and the objective of this Chapter is not to provide a definitive description and model for

this system. Rather, it is to propose tools for a more efficient analysis, (and indicate how

these can be built in the main model). The results obtained from this enhanced analysis can

indeed, in the future, lead to a better understanding of gene function in the emergence of

immune responses. This would form an additional layer to the current main model, leading

to refined agent implementation. Here, a layer does not mean using these results directly

during the simulation, but rather refers to a layer of knowledge used during model develop-

ment. Gene function analysis in the context of the immune system is a novel area, (see e.g.

(Sarson et al., 2007)), but is very promising.

The link between these two layers is shown in Figure A.1, (p.129), but a better understand-

ing of gene function can of course be applied to several areas, and is not limited to HIV

modelling. Common techniques used to study gene expression include microarrays and
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related analysis techniques. Here, we chose biclustering to extract valuable information

from microarray datasets. This new layer therefore uses low-level information, (levels of

expression of thousands of genes), and produces refined data at the same modelling level,

(identification of genes with similar expression pattern). This classification of genes is use-

ful for all fields of biology, (immunology or otherwise). In the particular context of our

immune system model, such analysis, performed on microarrays specifically dealing with

immune cell lineages, can be used to refine the lymph node model, through a more detailed

implementation at the agent level.

Analysis methods for gene expression microarrays, even though widely used, often lack

formal validation and evaluation, either as a whole, (as outlined in Turner et al. (2005)), or

even of their main components. In particular, these techniques rely heavily on weighting

schemes which, given their importance, are surprisingly rarely analysed. This is also true

for algorithms underpinning the analysis, yet most are said to perform “reasonably”. This

presents difficulties in terms of meaningful evaluation and attempted improvements. Some

basic questions include:

• Is this technique efficient thanks to a well-designed weighting scheme? If this is the

case, then this scheme is portable, and efforts should focus on improving the analysis

algorithm.

• Is the analysis technique relying on a robust and efficient analysis algorithm? In that

case, the focus should be on improving the weighting scheme.

In some cases, both components of the analysis may represent considerable advances for

the field. It is also true that not all techniques work equally well under all circumstances.

However, a poor technique overall could still have, as one of its components, an interesting

weighting scheme or analysis algorithm.

A crucial objective of this Chapter is, therefore, to introduce evaluation of both analysis

components. A new weighting scheme and parallel genetic algorithm for biclustering are

presented and evaluated.
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Figure A.1: Biclustering as an additional layer of the overall model.
Low-level biomedical information, (i.e. level of expression of thousands of genes) is used as an
input to this layer. The results from the analysis, (identification of genes with similar expression
pattern), can be used directly by biologists, or can be used in the lymph node model to refine the
agent implementation and, in turn, enhance the realism of the immune system model. A biclustering
technique requires two components: a weighting scheme and an analysis algorithm. Here, a genetic
algorithm is chosen for the analysis.
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A.2 Gene expression microarrays

A.2.1 Measuring expression levels of genes

Microarray technologies are used for large-scale transcriptional profiling, through measure-

ment of expression levels of thousands of genes at the same time. The motivation here is

that by understanding gene expression, further insight will be gained into cell function and

cell pathology (Valafar, 2002).

Expression-intensity values, (based on fluorescent techniques), are recorded for multiple

microarray experiments carried out under several conditions, (e.g. environmental, biolog-

ical phases, different biological tissues). The data obtained is often presented as a real-

valued matrix: a row contains the expression pattern of one gene over all the conditions,

while a column represents the pattern of expression of all genes for one condition. Each

matrix element Xij is, therefore, the measured expression of a gene i under condition j.

Analysis is needed, to extract meaningful information, from the large datasets, about the

system being studied. Given the amount of data produced, this is not trivial.

A.2.2 Microarray biclustering

Several techniques have been developed over the years to analyse gene expression microar-

rays, (see e.g. Stolovitzky (2003) for a general review), and several of these are variations

of the concept of clustering. The objective here is to group genes, based on their expression

under multiple conditions (or over different time-points) or, conversely, to group conditions

according to expression of several genes (Raychaudhuri et al., 2001; Slonim, 2002).

Biclustering was introduced, by Cheng and Church (2000), as the simultaneous cluster-

ing of both genes and conditions. The authors identify three advantages over traditional

clustering:

• Biclustering is better at selecting genes and conditions with more coherent measure-

ment and dropping those representing noise.

• Grouping of genes through biclustering is based on similarity in the context of the
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subset of conditions. Biclustering, therefore, discovers both grouping and context, a

result more advanced than that obtained from successive clustering of rows and then

columns separately.

• Biclustering allows genes and conditions to be part of multiple biclusters, i.e. be iden-

tified by more than one functional category. This is reflective of actual functionality

of genes.

These authors also considered the NP-hardness of the problem, later shown to be NP-

complete (Peeters, 2003).

Several categories of biclustering algorithms coexist, and vary as to type of biclusters

achieved. While some look for biclusters with constant values on rows and/or columns,

(see e.g. Busygin et al. (2002)), it was highlighted, in a recent survery (Madeira and

Oliveira, 2004), that more advanced, improved algorithms locate biclusters with coherent

values (Wang et al., 2002) or coherent evolution (Liu and Wang, 2003). This latter category

is very interesting, since biclusters in this case are formed irrespective of the exact expres-

sion values, but rather by looking at evidence that a group of genes show similar expression

patterns, (up-regulated, or down-regulated), over a number of conditions. A widely-used

algorithm from this category is SAMBA1 (Tanay et al., 2002).

However, it is difficult to comprehensively evaluate existing tools when parts of the analy-

sis technique are not validated individually. The remainder of this Chapter will, therefore,

focus on development and analysis of the elements of a biclustering algorithm built on a

new weighting scheme and parallel genetic algorithm.

A.2.3 Problem formulation

The first of the proposed technique is to consider data from the gene expression matrix as bi-

partite graph. Two sets of nodes represent genes and experimental conditions, respectively.

Edges are limited to connecting these two sets, hence the bipartite structure. It is a complete
1SAMBA: Statistical-Algorithmic Method for Bicluster Analysis.
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bipartite graph (or biclique), since there is an edge linking any pair of gene-condition. An

example of a complete bipartite graph is displayed in Figure A.2.

Weights are then assigned to edges, based on expression data stored in the matrix, so that

Figure A.2: A complete bipartite graph with partitions of size 2 and 3

gene-condition pairs identified as “interesting” are given negative weights. In this context, a

bicluster is a subgraph which conserves the biclique structure. In other words, the proposed

algorithm will look for bicliques with minimum total weight.

Since the search domain is a complete bipartite graph, the biclique structure can be de-

scribed as follows (and is summarised in Equation A.1:

• An edge can not be included in the biclique if the associated gene is not included.

• An edge can not be included in the biclique if the associated condition is not included.

• If a gene and a condition are included in the biclique, then the edge linking them

together is also included.

The biclustering problem is, therefore, mathematically defined by Equation A.2. This prob-

lem being NP-hard, the mathematical formulation can not be used as is for large microar-
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rays, and a meta-heuristic method is implemented.



xij ≤ yi (edge not in the bicluster if gene not included)

xij ≤ yj (edge not in the bicluster if condition not included)

xij ≥ yi + yj − 1 (edge in the bicluster if both are included)

xij ∈ {0, 1} (xij is a boolean variable)

yi, yj ∈ {0, 1} (yi and yj are boolean variables)

(A.1)

Minimise
∑
i,j

cijxij (A.2)
conditions (A.1)

xij , yi, yj ∈ {0, 1}

cij ∈ R

A.3 Weighting schemes for microarrays

A.3.1 Importance of weighting schemes in analysis techniques

As highlighted in Section A.1, weighting schemes are a crucial element of microarray anal-

ysis techniques. All biclusters found by a particular technique are of course dependent on

the weights used to evaluate them. Different weights, all else being equal, provide different

results and interpretation of gene expression patterns.

A review of existing methods leads to the observation that there are almost as many weight-

ing schemes as there are analysis techniques, since most new techniques incorporate a new

weighting scheme, or a variant of an existing one.

Yet, these schemes are rarely explicitly validated, and results are often restricted to the

overall method. It is difficult to estimate whether this is a cause, or a consequence, of the

abundance of schemes, and it may appear that a new scheme is the last thing that is needed.
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Nevertheless, in the remainder of this Section, a new weighting scheme is introduced. This

scheme is technique-independent, which seems the best way to break the current “one tech-

nique - one scheme” rule for microarray analysis. This scheme is evaluated through a set

of criteria and, later in the Chapter, we use it ourselves as a key part of the biclustering

algorithm.

A.3.2 Development of a new weighting scheme

The underpinning motivation of the distribution-based scheme proposed here is that it is

difficult, if not impossible, to give an absolute characterisation of an interesting, and bi-

ologically significant, gene-condition couple. An absolute expression level, on its own,

means very little. On the other hand, the study of the expression level of a given couple

relatively to that of other related couples could give an interesting insight. A biologically

meaningful couple is one where we can highlight a significant effect of the condition.

It implies an expression level differing notably from the average expression pattern ob-

served for this gene over all the conditions. It also implies some deviation from the effect

this condition has on the whole set of genes: if a certain condition leads to over-expression

of virtually all the genes, it might not be very interesting to consider its effect on one of

these many genes.

In this approach, the microarray is considered as a matrix containing only positive values:

the expression levels. Some microarray datasets are only made available after they are trans-

formed into log space, (a result of the normalisation process), thus leading to some negative

values for low expression levels. For such cases, the first step is to transform the data back

from log space, to deal exclusively with positive values.

Actual expression levels are then replaced by expression ratios, obtained by dividing the

expression level of one gene under one condition by the average expression level of this

gene over all the conditions. For a given gene, we therefore obtain a series of positive val-

ues, of average unity, with values below unity when the gene is under-expressed under a

certain condition, and greater than unity for a gene over-expressed under the condition.
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The next step is used to account for the second aspect detailed above. For a given condition,

we want to differentiate between the genes that have a specific behavior and those that react

to the condition as most other genes do. This is achieved using a geometric series to create

categories with a small width for values close to unity, and increasing as ratios are further

from this value. Such series are used because of the skewness of the data: many genes show

very little response to a given condition and therefore having an expression ratio close to

unity. Two series are used: one for ratios greater than 1, and the other for ratios smaller

than unity. The common ratioR for each geometric series is calculated using Equation A.3,

where categories is the number of categories needed, and Min and Max are, respectively,

the smallest and the greatest value of the partial set considered for the series. For the [1;∞)

part of the dataset, Min = 1, and the category boundaries are, therefore, 1, R, R2, etc.,

with R ≥ 1. For the [0; 1] part of the dataset, Max = 1, and the category boundaries are,

therefore, 1, R, R2, etc., with R ≤ 1. For this part of the dataset, there can be a problem if

Min = 0, since R cannot be calculated on such cases. To prevent this from happening, we

only consider values different from 0 to compute Min.

R =
(
Max

Min

)1/categories

(A.3)

Once the categories have been created and populated, weights are given to the gene-condition

couples, depending on the size of the category they belong to. As most optimization tech-

niques are traditionally used to minimize a given objective function, we want to have neg-

ative weights for “interesting” couples, and positive ones for the others. The easiest way to

obtain size-dependent weights following this rule is to subtract the average population of a

category from the population of the category the couple belongs to: “small” categories get

negative weights, while the bigger ones get positive values. To avoid unnecessarily large

weights as the number of genes in a dataset increases, weights are then normalised using

this number of genes.
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A.3.3 Validation and analysis

A.3.3.1 Introducing an assessment procedure

As explained before, it is crucial that weighting schemes are validated on their own before

being used in a biclustering algorithm. An assessment procedure is needed. Discussions

with Gráinne Kerr2, (see e.g. Kerr et al. (2008) for previous experience on microarrays

analysis), resulted in the five properties proposed below:

• Discrimination. Is the discrimination between “good” and “bad” gene-condition cou-

ples significant enough? Is the weighting scheme introducing false positives or false

negatives in terms of interesting couples?

• Robustness. Is the scheme’s response to noise and missing values reasonable?

• Configurability and parameter influence. How flexible is the scheme, and how does

this flexibility influence discrimination and robustness?

• Reusability. Is the proposed scheme effectively technique-independent?

• Biological meaning. If the weights can be interpreted biologically, discrimination

and reusability are increased, and validation is made easier.

A.3.3.2 Analysis of the proposed weighting scheme

The proposed scheme has some flexibility, through choice of the number of categories, k.

The influence of that parameter will be assessed through examination of the robustness and

discrimination achieved. The scheme is also technique-independent, since it was designed

without any particular subsequent analysis algorithm in mind. The only restriction here is

that microarrays are considered as bipartite graphs, but this representation is common in

current biclustering techniques, and does not limit the reusability of the scheme.

Biological meaning of the weights is a direct consequence of the weighting process: the

lower the weight, the more significantly the expression level of the gene deviates from that
2PhD Student. School of Computing, DCU, Ireland.
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observed for the majority of genes.

Several techniques exist to reduce noise or deal with missing values from microarray exper-

iments, (see e.g. Adjeroh et al. (2006); Verboven et al. (2007)). The objective here is not to

review techniques used to deal with them, but to evaluate how the scheme reacts to residual

noise and missing values. With this in mind, only low perturbations should be expected,

and the scheme is tested for perturbation levels up to 10%.

The influence of noise is summarised in Table A.1, for tests on the Gefitinib Treated Ka-

sumi Cell Line Dataset3. Similar results are obtained for two other datasets: the Yeast Cell

Cycle4 and the Lymphoma dataset5. Influence on the weights is reasonable for low noise

perturbation. “Stable” weights are those for which the variation is smaller than the noise

added to the dataset. It is an interesting indicator, because of the nature of the scheme:

when a gene-condition couple falls into a new category due to added noise, this changes

the weights for all couples in the new category as well as all those in the previous one.

Using this value may, therefore, give more insight into the scheme robustness, than us-

ing only the average absolute variation of the weights. Here, it confirms the behaviour is

satisfactory for expected levels of noise perturbation. The evolution of that proportion of

stable weights when the number of categories changes is displayed in Figure A.3a (p.140).

Clearly, as the number of categories increases, the width of each category decreases, and

gene-condition couples are more likely to change categories, leading to a smaller proportion

of stable weights. However, the average absolute variations are almost unchanged, (Figure

A.3b, p.140), so the effect of a larger number of categories on the weights assigned is rela-

tively small.

The influence of missing values is summarised in Table A.2, for the same dataset. Again,

the patterns obtained with the other datasets are similar. With respect to missing values, the

scheme is far less robust than in response to noise. Notably, the sign of the weights is not
3avalaible from the MIT Broad Institute website, http://www.broad.mit.edu/cgi-bin/

cancer/datasets.cgi.
4available from R.W. Davis’ website at Stanford, http://genomics.stanford.edu/yeast_

cell_cycle/cellcycle.html.
5available from the Lymphoma/Leukemia Molecular Profiling Project Gateway, http://llmpp.nih.

gov/lymphoma/
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Noise level 0% 1.5% 2.5% 5% 10%
Average absolute variation 0% 4.26% 6.47% 11.8% 21.6%
Proportion of “stable” weights 100% 84.2% 86.4% 86.5% 82.0%

Table A.1: Influence of noise (for 20 categories)

lost: a positive weight does not become negative, (except for cases when more than half

the values for a given gene are missing, but in those cases, it would almost certainly be ex-

cluded from the dataset before the scheme is applied). Biological significance is, therefore,

conserved. What is partially lost is the degree of over-expression, (or under-expression),

rather than the knowledge that this change of expression occurs. The evolution of the influ-

ence of missing values depending on the number of categories is displayed in Figure A.3c

(p.140) for the average absolute variation, and in Figure A.3b for the proportion of stable

weights.

As noted previously, a range of techniques dealing with missing values are not considered

here, but an extended evaluation of the scheme must account for these. Indeed, the re-

sults displayed correspond to untreated data, expected to create large perturbations in the

weights: for these missing values, an expression ratio of unity is artificially created, (a very

simple, conservative, and certainly very poor, correction technique). Future work might

reasonably include tests of the effect of the various correction techniques on the scheme

robustness.

Proportion of missing values 0% 1.5% 2.5% 5% 10%
Average absolute variation 0% 23.7% 38.5% 74.2% 141%
Proportion of “stable” weights 100% 35.28% 35.7% 32.6% 30.1%

Table A.2: Influence of missing values (for 20 categories)

The last series of tests consider the discrimination between gene-condition couples and

examines performance in terms of biological meaning. By construction, there is no “dam-

aging” false-positive or false-negative, at least in theory. In practice, these may occur for

weights very close to zero, (either positive or negative, depending on the number of cate-
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gories), but would not have a significant impact on biclustering. This, because these weights

are so close to zero, and correspond to “neutral” gene-condition couples. Not all gene-

condition couples with negative weight have to be included in any bicluster, of course, but

a significant change in expression patterns can not lead to a positive weight, while negative

weights are only obtained where there is a significant change. Since absolute, (positive vs.

negative), discrimination is guaranteed, the focus here is to assess relative discrimination,

i.e. the distribution of weight values. Results on the influence, of the number of categories,

on this discrimination are displayed in Table A.3. A first observation is that discrimina-

tion is good with, on average, just under 25,000 negative weights (out of 222,830). This

is consistent with the biological context: most genes are not specifically reacting to any

given condition. This value varies between 23,170 and 28,392, with a standard deviation

of 1,682. Discrimination is, therefore, very satisfactory for any number of categories in

the range tested. Weights obtained with fewer categories appear more refined, (except for

10 categories, which seems to indicate that going lower would be ill-advised). Given that

this range also corresponds to improved robustness, using k = 12 to 16 categories is rec-

ommended. This recommendation also applies to the other datasets, for which the results

obtained are similar.

Weights ≤-4 [-4;-3] [-3;-2] [-2;-1] [-1;0] [0;1] [1;2] [2;3] ≥ 3
10 categ. 5035 5630 4838 6230 6659 7327 4237 1772 181102
12 categ. 739 6241 5788 8217 5075 9371 6070 6010 175319
14 categ. 0 3210 7330 7603 7474 9197 7979 7957 172080
16 categ. 0 615 7823 8076 10137 6684 9168 11244 169083
18 categ. 0 0 6489 9283 7866 10708 7696 14108 166680
20 categ. 0 0 4318 9392 10350 10597 8686 11288 168199
22 categ. 0 0 2239 9834 11621 10975 11912 8494 167755
24 categ. 0 0 666 10747 12161 13237 8018 12875 165126
26 categ. 0 0 0 10806 13369 11863 10451 14696 161645
28 categ. 0 0 0 9369 13801 14670 11029 15410 158551
30 categ. 0 0 0 8266 15102 14362 13409 14972 156719

Table A.3: Influence of the number of categories on discrimination: distribution of weight
values
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Figure A.3: Evaluation of the robustness of the weighting scheme: influence of noise and
missing values

A.4 Biclustering through parallel genetic algorithms

A.4.1 Genetic algorithms and their application to microarrays

A genetic algorithm is an optimisation technique that was loosely inspired by mutations in

nature and how these lead to biological evolution through survival of the fittest elements

only (Holland, 1975).

The first step is to organise coordinates of points in the problem space as a sequence, in-

spired by gene sequences. A population of sequences is created and a search for optimal so-

lutions with respect to a fitness function is accomplished by mutating the sequences, hence

allowing transformation to new coordinates in the problem space. Each new sequence is

evaluated, to determine whether it represents a new optimum. Other techniques have been

added to mutations to create new sequences, as will be detailed when presenting the imple-

140



mented algorithm.

Genetic algorithms have been extensively used in the context of biological applications,

such as DNA fragment assembly (Cedeno and Vemuri, 1993; Fickett and Cinkosky, 1993;

Parsons et al., 1995), multiple molecular sequence alignment (Zhang and Wong, 1997) and

phylogenetic analysis of proteins (Hill et al., 2005).

For microarray biclustering in particular, there have also been some attempts at developing

genetic algorithms (Chakraborty and Maka, 2005; Mitra and Banka, 2006), but assessment

of these implementations is limited, (Section A.1).

Moreover, a well-known limitation of genetic algorithms is that a large population of se-

quences is required (Goldberg and Deb, 1991; Jackson and Norgard, 2008). A solution is to

consider parallel implementations, and to the best of our knowledge none has been devel-

oped for biclustering. The objective of this Section is, therefore, to introduce and validate

a parallel genetic algorithm for biclustering of gene expression data from microarrays.

A.4.2 Parallel genetic algorithms

The parallel nature of genetic algorithms has been considered from the start and several

early implementations have been proposed (Grefenstette, 1981). Since then, different ap-

proaches have emerged. As proposed by Cantu-Paz (1995), we can categorize these as

follows:

• Global parallelisation. Evaluation of solutions and genetic evolution of the population

are explicitly parallelised, and each solution has a chance to combine with any other.

• Coarse grained parallelisation. Population of solutions is divided into subpopulations,

and these are isolated from each. To deal with these, this implementation introduces

a migration operator. Two types of implementation coexist in this category. In the is-

land model individuals can migrate to any other subpopulations, while in the stepping

stone model, migration is limited to neighbouring ones.

• Fine grained parallelisation. Subpopulations are very small, ideally only one solution
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is run on each processor. This, of course, requires a massively parallel computing

architecture.

• Hybrid parallelisation. The three previous strategies can be combined.

The most popular strategy is to use coarse grained parallelisation, (see e.g. Levine (1994);

Pereira and Lapa (2003)), and several implementation challenges have been reported (Cantu-

Paz, 1995; Katayama et al., 2003). These include:

• Topology. Connectivity of subpopulations affects convergence. Balance is required

between isolation, which allows development of new solutions, and efficient mixing,

which leads to propagation of good solutions.

• Migration rate and frequency. Again, balance is required between sharing too many

solutions, or too often, and not having a sufficient mixing, which would lead to inde-

pendent runs of genetic algorithms on small populations, producing poor results.

• Size of subpopulations. Larger samples mean better results, but also imply longer

computation time.

• Effectiveness of genetic operators.

With these in mind, the following algorithm has been implemented and tested.

A.4.3 Algorithm development

A.4.3.1 Parallel structure

The proposed architecture is coarse-grained parallelisation based on the stepping stone

model. For migrations, each subpopulation is sorted according to the total weight of the

encoded bicluster, and a bidirectional ring is used: solutions travelling clockwise are se-

lected from the “rich area”, (which contains the best solutions of the subpopulations, i.e.

solutions with lowest total weights), while solutions travelling anti-clockwise are selected

from the “poor area”, (which contains the solutions with the highest total weights). “Rich”
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and “poor” areas of a subpopulation are defined using threshold values for the total weight

of the encoded bicluster. This topology is detailed in Figures A.4 and A.5.

This parallel structure has six specific parameters:

• Number of subpopulations, s1, and size of each, s2.

• “Rich” area threshold, r. If a bicluster weighs less than r, (we are minimising), it is

considered a “rich” solution.

• “Poor” area threshold, p. If a bicluster total weight is greater than p, it is considered

a “poor” solution.

• Number of local iterations between two migration steps, n.

• Number of migrants sent in each direction at each migration step, m.

Figure A.4: Coarse-grained, stepping stone structure.
Here, four subpopulations are connected through a bidirectional ring. Selected solutions are
sent clockwise if they correspond to biclusters with a low total weight, and anti-clockwise
if they correspond to biclusters with a high total weight
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Figure A.5: Parallel topology.
Before a migration step, each subpopulation is sorted. Then, m solutions are selected from the
most promising ones, (i.e. those ranked below threshold r), and are sent clockwise. Similarly, m
solutions are selected from the least promising ones, (i.e. those ranked above threshold p), and are
sent anti-clockwise. Finally, new solutions are received: m good solutions arrive clockwise, and m
poor solutions arrive anti-clockwise.

A.4.3.2 Local genetic algorithm

Based on this parallel structure, the local genetic algorithm is developed, in collaboration

with Christophe Duhamel6, (who has previous experience on genetic algorithms, see e.g.

Potvin et al. (1996)).

Encoding the solution

The first step is to consider solution encoding as “genes”. Even though more advanced en-

codings are sometimes proposed (Chen et al., 2006), the traditional approach, chosen here,

is to encode solutions as genes using binary variables. Given the objective function defined

in Equation A.2, a naive solution would be to used edge presence in the solution bicluster

as a Boolean variable. The obvious limitation in this case is the length of the resulting

array: with 20,000 genes and 10 conditions in the dataset, (which is not unusual, as the

validation of the weighting scheme highlighted), 200,000 boolean variables are needed for

each solution! A second approach would be to have an array encoding presence of genes

and conditions in the solution bicluster. An important observation in this case is the relative
6Lecturer. Laboratoire d’Informatique et de Modélisation des Systèmes, ISIMA, France.
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length for each part of the resulting array: there are often thousands of gene in a microarray

dataset, while finding a hundred or more conditions is very rare. The consequence is that

evolution operators will, statistically, mostly concern parts of the array corresponding to

genes, rather than conditions. Interestingly, explicitly encoding genes is not even necessary.

Indeed, once a subset of conditions is chosen, interesting biclusters only involve genes for

which the total weight over the selected conditions is negative. It is, therefore, possible to

perform biclustering while explicitly encoding only a small part of the bicluster.

Evolution operators

Evolution operators are used to increase the population of solutions, by introducing new so-

lutions obtained through small variations of existing ones. Since earliest implementations,

a characteristic operator is mutation. A solution is randomly chosen, and one of its boolean

variables is altered. This is summarised in Figure A.6a. A more drastic operator, based on

mutation, is also implemented in the proposed algorithm: the uniform mutation. A solu-

tion s is randomly chosen, and a boolean array u, of same length, is also created. A new

solution is then obtained by conserving the value of a boolean variable s[i] where u[i] is

equal to 1, and altering it otherwise, as shown in Figure A.6b. This operator induces more

diversity than traditional mutation, but can also degrade a good solution. It is, therefore,

recommended not to use it as frequently as the first one.

Another consequence of the bio-inspired nature of the algorithm is the use of crossover op-

erators, which are loosely based on the biological phenomenon occurring during meiosis.

Here, two existing solutions are chosen. These can be selected a uniform probability or it

can imposed, for instance, that one of them must belong the best 10% solutions. This sec-

ond approach is taken here, to ensure further “investigation” of promising solutions. Once

the two solutions are chosen, a cutting point is selected in the solution array, using a uniform

probability, and the solutions exchange the variables located after that point, as shown in

Figure A.6c. A variant exists where two cutting points are chosen, and solutions exchange

variables located between those two points, as detailed in Figure A.6d.

Selection
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(a) Mutation operator: a single boolean
variable is selected and altered

1 1 0 1 1 0 0

0 1 0 1 0 1 0
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(b) Uniform mutation operator: several
boolean variables may be altered
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(c) One-point crossover: two solutions ex-
change a section of their boolean array
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0 1

1 0 0

0 0

1 0

0 0 1

(d) Two-point crossover: two solutions ex-
change a section of their boolean array

Figure A.6: Evolution operators for the “expansion” phase of the algorithm

A typical iteration of a genetic algorithm includes the creation of new solutions, (i.e. the

“expansion phase”), followed by the evaluation of population and selection of solutions that

will be conserved for the next iteration, the remainder being eliminated, (i.e. the “selection

phase”). Traditionally, between these two phases, it is necessary to consider “repair” func-

tions, which will restore validity of the new solutions created through evolution operations.

Here, because of the chosen encoding, any array is a valid solution, and such functions are

not required.

The final step is, therefore, to consider the “selection phase” of the algorithm. Here, sev-

eral approaches can be taken. In a first one, deterministic selection is used: if the initial

population was n, then the n best solutions in the expanded population are kept, and the
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other eliminated. The main advantage here is that, once the population is sorted, this type

of selection has a very low computing cost. Diversity, however, may be damaged. The

alternative approach is to consider “tournaments” between solutions, with the winner kept

and the loser eliminated. In this case, selection is obtained as follows: while solutions still

need to be removed, two elements within the current population are selected, and the one

with the best fitness value is chosen to be conserved with a probability p. This probability

is used to adjust the selection pressure: p = 1 is equivalent to the deterministic selection

described above, while p = 0.5 would correspond to a uniform selection which would not

take fitness into account.

Here, a hybrid approach is taken: the population is sorted, the n/2 best solutions are con-

served, while the others are involved in ‘tournaments” until we obtain a population of size

9n/10. Population size is then restored to n by introducing newly created solutions. Each

of these solutions is created as follows: (i) for each condition j, we count kj , the number of

times it appears in theN current solutions7; (ii) we generate random numbers rj , uniformly

in [0, N ]; (iii) condition j is included in the new solution if and only if rj > kj . This

improves the diversity in the overall population.

A.4.4 Validation of the genetic algorithm

A.4.4.1 Objectives and framework

The proposed genetic algorithm is implemented, and tested on a cluster architecture. The

objective of these tests is to determine whether, given a specific set of weights, the algorithm

can isolate useful biclusters. The results of these tests are detailed here.

To do this, it is, of course, necessary to extract these biclusters from the set. Mathematically,

it is possible, for a microarray dataset with m conditions, to find the best bicluster using k

conditions. Doing this, for all possible values of k ∈ [0,m], will extract these biclusters.

The main limitation here is, of course, the number of potential biclusters. In a microarray

withm conditions, there are 2m possible subsets of conditions, and the computation time of
7with N ∈ [9n/10, n].
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this exact method is, therefore, proportional to this value. With 10 conditions, this method

takes approximately half-a-second. This gives a computation time of the order of 2m−11

seconds. This corresponds to just over a minute with 17 conditions, four and a half hours

with 25 conditions, and already several thousand years with 50 conditions. This method is

obviously not practical, but for small microarrays, it offers the means to assess the genetic

algorithm.

A.4.4.2 Performance on small microarray datasets

Validation of the genetic algorithm is, therefore, performed on the two microarray datasets

used for assessment of the weighting scheme. Table A.4 shows results obtained from the

enumeration method and from the genetic algorithm, for those two datasets. On the KCL

dataset, the genetic algorithm performs very well, and even a single run of the local imple-

mentation with a population of size equal to the number of conditions, (here, n = k = 10),

finds the best solution. On the YCC dataset, however, the same local implementation is

more limited and some solutions it provides are quite far from the optimum. The parallel

implementation, (with local parameters unchanged and sixteen islands), still provides opti-

mal solutions. To further demonstrate the interest of this parallel implementation, severals

runs of each implementation are performed. Results are shown in Table A.5. The local

implementation finds each optimal solution in at least 10% of all runs, but just under half

of them are identified every time. The parallel implementation, with a similar computation

time, finds the best solutions every time.

A.4.4.3 Performance on large microarray datasets

For larger datasets, the exact method for extraction of the best biclusters can not be used,

and the results from the genetic algorithm can not be compared to known optimal solutions.

The alternative is to use a heuristic to identify “good” biclusters. Complexity is often non-

linear, and such techniques may not be practical for a regular use, but on a single large

dataset, they provide a basis by which to evaluate the performance of the genetic algorithm
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Kasumi Cell Line Yeast Cell Cycle
Enumeration G.A. P.G.A. Enumeration G.A. P.G.A.

1 condition -671,040 0% 0% -428,719 0% 0%
2 conditions -570,228 0% 0% -286,690 0% 0%
3 conditions -431,639 0% 0% -191,437 0% 0%
4 conditions -321,680 0% 0% -150,401 0% 0%
5 conditions -239,359 0% 0% -137,360 26% 0%
6 conditions -187,814 0% 0% -111,790 26% 0%
7 conditions -141,700 0% 0% -89,911 10% 0%
8 conditions -109,993 0% 0% -76,047 < 1% 0%
9 conditions -85,512 0% 0% -74,763 9% 0%
10 conditions -65,373 0% 0% -77,856 20% 0%
11 conditions N/A N/A N/A -77,651 15% 0%
12 conditions N/A N/A N/A -73,878 43% 0%
13 conditions N/A N/A N/A -68,084 39% 0%
14 conditions N/A N/A N/A -43,350 0% 0%
15 conditions N/A N/A N/A -27,093 0% 0%
16 conditions N/A N/A N/A -12,432 0% 0%
17 conditions N/A N/A N/A -7,665 0% 0%

Table A.4: Validation of the genetic algorithm on small microarray datasets.
Optimal values obtained by enumeration, and gap between these and values obtained by the local
genetic algorithm, (G.A.), and the parallel genetic algorithm (P.G.A.).

on large datasets. Here, we use the Lymphoma dataset, which contains 96 conditions.

The heuristic used for these tests has two components: (i) a promotion operator which,

given a current solution with k active conditions, finds the best non-active condition to add

to the bicluster and obtain a solution with k+ 1 conditions; (ii) a demotion operator which,

given a current solution with k active conditions, finds the active condition to remove from

the bicluster with the best effect and obtain a solution with k − 1 conditions. Recursively

using these two operators, starting with the “empty” solution and “complete” solution re-

spectively, we obtain useful biclusters of all possible sizes.

The profile obtained is compared with the profile generated by a single run of the parallel

genetic algorithm in Figure A.7, (p.151). The algorithm performs very well: for most bi-

cluster sizes, (especially over 40 conditions), it finds a solution with an overall weight sim-

ilar to that of the solution obtained from the heuristic method. However, there are regions
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Local G.A. Parallel G.A.
Gap St. dev. Optimal Gap St. dev. Optimal

1 condition 0% 0 100% 0% 0 100%
2 conditions 0% 0 100% 0% 0 100%
3 conditions 0% 0 100% 0% 0 100%
4 conditions 0.1% 0.4 95% 0% 0 100%
5 conditions 18.0% 11.2 25% 0% 0 100%
6 conditions 19.7% 9.5 15% 0% 0 100%
7 conditions 6.8% 5.2 35% 0% 0 100%
8 conditions 0.8% 0.9 30% 0% 0 100%
9 conditions 5.7% 5.0 40% 0% 0 100%
10 conditions 15.4% 6.4 10% 0% 0 100%
11 conditions 12.1% 9.9 35% 0% 0 100%
12 conditions 30.6% 18.9 25% 0% 0 100%
13 conditions 25.3% 19.1 35% 0% 0 100%
14 conditions 0% 0 100% 0% 0 100%
15 conditions 0% 0 100% 0% 0 100%
16 conditions 0% 0 100% 0% 0 100%
17 conditions 0% 0 100% 0% 0 100%

Table A.5: Local vs. parallel genetic algorithm.
Average gap to optimal solution, standard deviation and frequency at which optimal solutions are
found. (Results shown for the Yeast Cell Cycle dataset)

where the solutions obtained are poor, (15-35 conditions), and regions where the solutions

obtained are better than that of the heuristic method, (8-12 conditions). It must be noted

that this profile corresponds to a single run of the algorithm: while the heuristic method

always finds the same profile, variations may occur for the genetic algorithm, especially in

regions where the algorithm does not reach local optimal solutions.

To improve the overall performance of the algorithm, a fifth evolution operator is added.

An existing solution is randomly selected, and a local search performed: we add a con-

dition and remove an active one, (to maintain the bicluster size), as long as the solution

can be improved. For small microarray dataset, this operator does not improve the over-

all performance, as the parallel algorithm was already identifying the optimal solution for

each bicluster size. For large datasets, the profile obtained is shown in Figure A.8. The

overall performance is significantly improved, and the algorithm outperforms the previous
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implementation over the whole search domain. It also compares very well with the heuris-

tic method over the whole search domain, obtaining better solutions for small sizes, (0-12

conditions), and similar solutions elsewhere. Another interesting result is that the profile

obtained is largely conserved over multiple runs: 71 biclusters, (out of 96), are obtained

at each run and, among the remainder, 18 have a standard deviation smaller than 10% of

the average solution obtained. The latter ones correspond to non-optimal low-energy solu-

tions in which the algorithm gets “trapped”. Overall, these results suggest that most of the

solutions identified are optimal for their respective bicluster size.
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Figure A.7: Solution profile on the Lymphoma dataset.
A single run of the parallel genetic algorithm outperforms the heuristic method used to extract
biclusters in some regions, but is less efficient in others.

A.5 Analysis of the overall biclustering technique

A.5.1 Biological significance of the results obtained

We have implemented a biclustering technique consisting of two components which have

been assessed and are producing useful results: a weighting scheme, (Section A.3), and a
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Figure A.8: New solution profile on the Lymphoma dataset.
A single run of the “hybrid” algorithm significantly outperforms the “standard” parallel genetic
algorithm overall, and the heuristic method in a specific region , (low bicluster sizes), and obtains
results similar to that of this method elsewhere.

parallel genetic algorithm, (Section A.4).

The final step in assessing the biclustering technique is to analyse the biclusters obtained

using the overall method. This analysis is performed on the three datasets already used in

this Chapter. These datasets have been previously analysed, and this provides a description

of function for most of the genes present.

In the Yeast Cell Cycle dataset, the 13-condition bicluster with the smallest overall weight

contains two subsets of genes with related functions. The first is related to mitochondrial8

activity. It contains genes responsible for:

• activation of a mitochondrial acyl carrier protein.

• an ATP-dependent helicase9.

• a mitochondrial specificity factor which interacts with mitochondrial core polymerase
8Mitochondria are membrane-enclosed specialized subunits found in most eukaryotic cells. They produce

adenosine triphosphate, (ATP), which the cells use as a source of chemical energy.
9Helicases are enzymes which separate two complementary nucleic acid strands.
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Rpo41p.

• a subunit of a complex involved in the mitochondrial respiratory chain.

The second subset contains two genes, encoding a protein specifically required for au-

tophagy, and a protein that is a component of autophagosomes10. Of the last two genes, one

corresponds to a protein of unknown function. The other corresponds to a DNA replication

initiation factor. This may be related to helicase activity and to the first subset described.

Next, we consider a 90-condition bicluster obtained from the Lymphoma dataset. A first

subset in this bicluster clearly corresponds to immune activity, and contains genes encoding

chemokines, interferon11-inducible proteins, T cell transcription factors, and carboxypep-

tidase12 M. It has been observed that this enzyme is expressed on mature T cells, mainly

after activation (de Saint-Vis et al., 1995). Several other genes found in this bicluster have

been linked to cancer development, and may be grouped into one subset: phosphatidic acid

phosphatase13 type 2B (Benenson et al., 2004), c-Fos14 (Prusty and Das, 2005; Shen et al.,

2008), and cathepsin B (Yan and Sloane, 2003). The remaining genes have unknown func-

tions.

The results obtained from the Kasumi Cell Line dataset may appear less convincing: with

all conditions, the bicluster found contains 88 genes. With fewer conditions, the solutions

obtained are even larger. This is not due to the genetic algorithm, since the same solutions

are obtained with the exact enumeration method. This is not a consequence of poor weights

either, since interesting subsets appear in the biclusters. For instance, in the 88-gene biclus-

ter, we identify all occurences of the human 18S ribosomal RNA gene, which is present in

the dataset four times, (full sequence, bases 1-646, bases 647-1292, and bases 1293-1938).

We also identify nine proteins which belong to the same family, (associated with brain
10Autophagosomes are vesicles which store structures the cell targeted for destruction through autophagy, (a

cellular degradation pathway for the removal of damaged, or superfluous, proteins and cell subunits).
11Interferons are cytokines. They are produced by the cells of the immune system in response to viruses,

parasites or tumor cells.
12Carboxypeptidases are enzymes which hydrolyzes the carboxy-terminal, (C-terminal), end of a peptide

bond. They have diverse functions, (e.g. catabolism, protein maturation).
13This encoded protein is a membrane glycoprotein localized at the cell plasma membrane.
14This gene is part of the AP-1 transcription factor, which upregulates a wide range of genes.
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cells), and nine others which are associated with modifications of the p53 pathway. The

identification of these three meaningful subsets confirms the validity of our approach, and

the unusual size of the biclusters obtained is almost certainly a consequence of the config-

uration of this particular dataset, (more than 20,000 genes, but only ten conditions), which

limits discrimination between the genes.

A.5.2 Applications

The analysis technique developed provides useful biclusters on all datasets tested. Such

results can be used to better understand gene expression. Several microarray datasets have,

for instance, been used to elucidate aspects of cancer initiation, (see e.g. Somasundaram

et al. (2002)), identify genes involved in arthritis (Fujikado et al., 2006), or investigate neu-

rological disorders (Greenberg, 2001).

As outlined in Figure A.1, (p.129), these results can also be used to refine the lymph node

model, and in particular the agent implementation. Recently, microarrays have been de-

veloped specifically for the immune context. These include using a microarray to monitor

gene expression in the chicken immune system (Sarson et al., 2007), and analysis of bovine

macrophage cells (Jensen et al., 2006). Providing such techniques can be transferred to

produce microarrays for the human immune system, the biclustering technique developed

and tested in the Chapter would permit extraction of useful immune-specific genetic infor-

mation which can, in turn, be used to refine the agent implementation in the lymph node

model.

Very recently, Shendure (2008) questioned the future of microarray technologies, following

promising reports on next-generation sequencing applications (Cloonan et al., 2008; Mor-

tazavi et al., 2008). These techniques are, indeed, an interesting prospect, but we do not

think it diminishes the potential of the tools developed here. Irrelevant of the technique

employed to obtain them, large datasets always require analysis in order to extract useful

information. The technique presented in this Chapter is versatile, and can be adapted to

other types of data.

154



In particular microarray-based techniques are developed for DNA methylation profiling,

(see e.g. Schumacher et al. (2006)). This type of data is suitable for analysis based on

techniques similar to that developed here, and would be useful for the refinement of the

main model layer, as methylation and other epigenetic changes are involved in the immune

system. These changes are detailed in Chapter 7.

A.6 Chapter summary

In this Chapter, we introduced a new layer to the immune system model. The motivation for

this layer, which investigates gene expression, is that the immune interactions implemented

in the lymph node model are, in part, controlled by underlying genes. To simultaneously

investigate the expression patterns of multiple genes under several conditions, microarrays

datasets are produced, and analysed using techniques such as biclustering. Here, we pro-

posed a new approach to biclustering, which incorporates a novel weighting scheme and a

parallel genetic algorithm. Both components are individually evaluated, and their combina-

tion is shown to provide biologically meaningful sets of genes.

The method implemented is a useful addition to the main model layer as well as a pow-

erful tool which can be applied to other systems where microarrays are also used, such as

identification of genes involved in cancer.
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Appendix B

Selected articles

B.1 ERCIM News 64

Perrin, D. (2006). Agent-Based Modelling of Viral Infection. ERCIM News, 64:50–51.

This article is a first introduction to the objectives and challenges of the immune system

model, and gives an early outline of the modelling process.
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B.2 LNCS 3980

Perrin, D., Ruskin, H. J., Burns, J. and Crane, M. (2006). An agent-based approach to im-

mune modelling. Lecture Notes in Computer Science, 3980:612–621.

In this article, we introduce the overall challenges of immune system modelling, and pre-

sente the agent-based lymph node model. We also give a first outline of the lymph network

model, and of the requirements for a parallel implementation.
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re
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ra
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m
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e
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en
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6
1
8

D
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P
er

ri
n

et
a
l.

lo
ng

si
m

ul
at

io
ns

.T
he

re
fo

re
,t

he
ge

ne
ra

to
r
al
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ha

s
to
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ve

ry
effi

ci
en

t.
A

s
pa

ra
l-

le
la

sp
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ts
ar

e
in

vo
lv

ed
,i

t
w

ou
ld

al
so

be
a

pl
us
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r

th
e

ge
ne

ra
to

r
to

in
cl

ud
e

su
ch

fe
at

ur
es

.
T

he
re

ar
e

m
an

y
ge

ne
ra

to
rs

av
ai

la
bl

e,
an

d
go

od
on

es
ca

n
al

so
be

de
-

si
gn

ed
ex

pl
ic

it
el

y
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ee
e.

g.
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4]
).

H
ow

ev
er

,d
ue

to
ou

r
m

od
el

re
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ir
em

en
ts

,w
ha

t
is

ne
ed

ed
he

re
is

a
to

p-
qu

al
it
y

pa
ra

lle
lg

en
er

at
or

,a
nd

w
e

ch
os

e
to

us
e

th
e

Sc
al

ab
le

P
ar

al
le

lR
an

do
m

N
um

be
r

G
en

er
at

or
s

lib
ra

ry
(S

P
R

N
G

)
[1

5]
.
T

hi
s

lib
ra

ry
in

co
r-

po
ra

te
s

re
ce

nt
,s

ta
te

-o
f-
th

e-
ar

t,
de

ve
lo

pm
en
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in
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e

m
at

he
m

at
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s
an

d
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m
pu

te
r
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e

of
pa

ra
lle
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se

ud
or

an
do

m
nu

m
be

r
ge

ne
ra

ti
on

.I
t

an
effi

ci
en

t
lib

ra
ry

w
it

h
an

ex
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ti
ng

,
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ti
ve

,
us

er
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se
,
en

su
ri

ng
hi

gh
st

an
da

rd
s.

It
al

lo
w

s
th

e
st

re
am

s
to

be
al

so
ab

so
lu

te
ly

re
pr

od
uc

ed
,f

or
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m
pu

ta
ti
on

al
ve

ri
fic

at
io

n,
in

de
pe

nd
en

t
of

th
e

nu
m

be
r

of
pr

oc
es

so
rs

us
ed

in
th

e
co

m
pu

ta
ti
on

an
d

of
th

e
lo

ad
in

g
pr

od
uc

ed
by

sh
ar

in
g

of
th

e
pa

ra
lle

lc
om

pu
te

r.
U

si
ng

it
,
w

e
ca

n
be

co
nfi

de
nt

w
e

w
ill

pr
od

uc
e

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
re

su
lt

s
at

a
ve

ry
lo

w
co

m
pu

ti
ng

co
st

.

4
In

te
ra

ct
io

n
s

B
e
tw

e
e
n

th
e

L
y
m

p
h
a
ti

c
N

o
d
e
s

4.
1

S
h
ar

in
g

K
n
ow

le
d
ge

an
d

T
ra

n
sf

er
ri

n
g

A
ge

n
ts

T
he

im
m

un
e

sy
st

em
is

or
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ni
se

d
so

th
at

ev
er

y
ly

m
ph

at
ic

no
de

is
a

sm
al

ld
ef

en
ce

un
it

in
w

hi
ch

th
e

im
m

un
e

re
sp

on
se

is
ta

ki
ng

pl
ac

e.
T

he
re

is
no

ne
ed

fo
r

th
e

re
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on
se

to
ta

ke
pl

ac
e

in
ev

er
y

no
de

,
w

hi
ch

is
w

hy
w

e
bu

ilt
ou

r
m

od
el
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a

ne
tw

or
k

of
in

de
pe

nd
en

t
m

at
ri

ce
s
(p

ut
ti

ng
th

e
em

ph
as

is
on

th
e

lo
ca

lm
od

el
of

th
e

no
de

).
T

he
on

ly
ph

ys
ic

al
ex

ch
an

ge
be

tw
ee

n
ly

m
ph

at
ic

no
de

s
ha

pp
en

s
th

ro
ug

h
th

e
re

ci
rc

ul
at

io
n

an
d

th
e

m
ob

ili
ty

of
ce

lls
w

hi
ch

go
fr

om
on

e
no

de
to

an
ot

he
r.

E
ac

h
no

de
in

th
e

m
od

el
th

er
ef

or
e

ne
ed

s
an

en
tr

y
po

in
t

an
d

an
ex

it
po

in
t.

If
,

w
he

n
m

ov
in

g
in

si
de

th
e

no
de

,
an

ag
en

t
re

ac
he

s
th

e
ex

it
po

in
t,

it
is

re
m

ov
ed

fr
om

th
e

no
de

an
d

pu
t

in
to

a
tr

an
sf

er
lis

t.
T

he
lis

t
is

de
al

t
w

it
h

at
th

e
en

d
of

th
e

it
er

at
io

n.
In

th
e

m
ea

nt
im

e,
ot

he
r

ag
en

ts
m

ov
e,

in
te

ra
ct

io
ns

ta
ke

pl
ac

e,
as

ti
m

e
pa

ss
es

.T
hi

s
ac

co
un

ts
fo

r
th

e
ti
m

e
it

ta
ke

s
th

e
ag

en
t
in

re
al

-l
ife

to
co

m
m

ut
e

be
tw

ee
n

tw
o

no
de

s.
T

he
w

ay
in

w
hi

ch
ag

en
ts

ar
e

tr
an

sf
er

re
d

be
tw

ee
n

th
e

no
de

s
m

im
ic

s
th

e
tr

an
sf

er
be

tw
ee

n
m

at
ri

x
el

em
en

ts
:w

e
co

ns
id

er
on

ly
at

tr
ib

ut
es

,r
at

he
r

th
an

th
e

ag
en

t
it
se

lf.
T

hu
s,

an
en

tr
y

in
th

e
tr

an
sf

er
lis

t
co

nt
ai

ns
th

e
ty

pe
of

th
e

ag
en

t,
it

s
at

tr
ib

ut
es

,a
nd

it
s

de
st

in
at

io
n.

A
t

th
e

en
d

of
th

e
it

er
at

io
n,

al
ll

is
ts

ar
e

pu
t

to
ge

th
er

an
d

th
e

m
ov

in
g

ag
en

ts
ar

e
tr

an
sf

er
re

d
to

th
e

en
tr

y
po

in
t

of
th

ei
r

de
st

in
at

io
n

no
de

.
T

he
ot

he
r
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pe

ct
of

th
e
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m

m
un

ic
at

io
n
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ee
n

ou
r

no
de

s
is
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he
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to
ou

r
im
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em

en
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ti
on
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Si
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e

w
e
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de
d

no
t

to
pu

t
al

l
th

e
st

ra
in

pr
op

er
ti

es
in
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ch
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en
t,

w
e

ne
ed

a
w

ay
to
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de
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em
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m

ew
he

re
an

d
m

ak
e

th
em

av
ai

la
bl

e
to

al
lt

he
ag

en
ts

,w
he

re
ve

r
th

ey
ar

e
in

th
e

m
od

el
.
T

he
se

ar
e

im
po

rt
an

t
pr

op
er

ti
es

,
an

d
m

us
t

no
t

be
ne

gl
ec

te
d.

Fo
r

in
st

an
ce

w
e

ne
ed

to
kn

ow
,f

or
ea

ch
st

ra
in

,w
hi

ch
ly

m
ph

oc
yt

es
w

ill
re

co
gn

is
e

it
fo

r
su

re
an

d
w

hi
ch

ly
m

ph
oc

yt
es

m
ig

ht
re

co
gn

is
e

it
.

O
ne

ch
ar

ac
te

ri
st

ic
is

th
at

w
he

n
a

ly
m

ph
oc

yt
e

fr
om

th
e

se
co

nd
ca

te
go

ry
re

co
gn

is
e

th
e

st
ra

in
,i

t
m

ov
es

fr
om

th
e

se
co

nd
in

to
th

e
fir

st
.T

hi
s

is
cr

it
ic

al
to

th
e

re
al

is
m

of
th

e
m

od
el

,
si

nc
e

it
al

lo
w

s
us

to
in

tr
od

uc
e

so
m

e
ad

ap
ta

bi
lit

y
an

d
em

er
ge

nt
be

ha
vi

ou
r.

O
ne

an
sw

er
co

ul
d

ha
ve

be
en

to
cr

ea
te

a
lin

ke
d

lis
t

co
nt

ai
ni

ng
th

e
st

ra
in

s
ac

ti
ve

in
th

e
cu

rr
en

t
si

m
ul

at
io

n.
T

he
ob

vi
ou

s
ad

va
nt

ag
e

is
to

lim
it

th
e

A
n

A
g
en

t-
B

a
se

d
A

p
p
ro

a
ch

to
Im

m
u
n
e

M
o
d
el

li
n
g

6
1
9

si
ze

al
lo

ca
te

d
to

th
e

st
ra

in
s
to

w
ha

t
is

ac
tu

al
ly

ne
ed

ed
.H

ow
ev

er
,i

t
ha

s
on

e
m

aj
or

dr
aw

ba
ck

w
hi

ch
m

ak
es

it
po

in
tl

es
s

in
ou

r
ca

se
,
na

m
el

y
th

at
th

e
hi

gh
m

ut
at

io
n

ra
te

m
ea

ns
a

la
rg

e
nu

m
be

r
of

st
ra

in
s,

in
cr

ea
si

ng
as

th
e

si
m

ul
at

io
n

co
nt

in
ue

s.
T

he
bi

gg
er

th
e

lis
t,

th
e

lo
ng

er
it

w
ill

ta
ke

to
ge

t
th

e
pr

op
er

ti
es

fo
r

a
pa

rt
ic

ul
ar

st
ra

in
an

d
si

nc
e

th
is

lis
t
ha

s
to

be
ac

ce
ss

ed
th

ou
sa

nd
s
of

ti
m

es
in

ev
er

y
it

er
at

io
n,

th
is

pr
oc

es
s

w
ou

ld
sl

ow
th

e
w

ho
le

pr
og

ra
m

do
w

n.
W

e
th

er
ef

or
e

de
ci
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d

to
ha

ve
an
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ra

y
of

st
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in
s.

T
hi

s
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ra
y
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e
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.e
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of

th
ou

sa
nd

s
of

st
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in
s)

an
d

re
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en
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te
nt
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l
st

ra
in

s
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r
th

e
si

m
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at
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n
to
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im

pl
em

en
te

d.
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on
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ng
th
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a

st
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in
in
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e
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ra

y
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n
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un

t
fo

r
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ou

s
st

ra
in

s
in

re
al

lif
e
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ft

he
y
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ffe

r
on

pr
op

er
ti

es
w

e
do

no
t
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de

ex
pl

ic
it
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y)

,
w

e
ar

e
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nfi
de

nt
th

is
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ou
ld

gi
ve
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en

ou
gh

di
ve

rs
it
y.
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P
ar
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ti
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ff
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W
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n
th

e
pr

og
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m
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nn
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g
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e,
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hu
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re
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-
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s
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n
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a
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m
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co
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t
a
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m
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s.

M
at

ch
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g
th
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m
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e
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d

m
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,
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t
ev
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w
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w
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en
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m
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m
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t
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t
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x
m
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n
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io
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e
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r
a

10
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r
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n.

R
un
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ng
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a
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ra

m
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a
si
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m

-
pu

te
r

w
ou

ld
ta

ke
m

on
th
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an

d
no

t
ev

en
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ve
en
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gh

m
em

or
y

m
ig

ht
be
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ai
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bl

e
to

in
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liz

e
al

l
th

e
m
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s.

If
w

e
al
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th

e
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w

e
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n
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ve

ra
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im
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at
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to
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lly
as

se
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th
e
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pa

ra
m

et
er
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e
m

ut
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n

ra
te
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pa

ra
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h
m
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m
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e
se
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e.
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ch

w
e
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p
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m
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e
im

m
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e
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,
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e

se
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e
th
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m
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at
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no
de

w
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m
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d
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a
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nt
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m
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te

r
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o
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d
no
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)
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a
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r.

A
s

th
e
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m

ph
at
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no
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s
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e

m
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y
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de

pe
nd

en
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r,
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e
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w
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to
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ad
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e
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e
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ra
lle

l
op
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on

.
M
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eo

ve
r,
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l
m
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y
kn

ow
n
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n
on

a
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ng
le
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m

pu
te

r
so
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pr

ox
im

at
e
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at

io
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or

m
an
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s
ar

e
kn

ow
n

al
so
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hi

s
ty

pe
of
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at
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lp
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lis

at
io

n
ha

s
be

en
st
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ie

d
in
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fo
r

M
on
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-C

ar
lo

si
m
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at

io
ns

.T
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m
ai

n
di
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dv

an
ta

ge
in

th
at

st
ud

y
is

th
e

co
m

m
un

ic
at

io
n
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er

lo
ad

.
H

er
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m
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t
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e
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m

m
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n
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ng
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e
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e
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r
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e
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en
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de
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r.
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e

lis
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l
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d
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e

M
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-P
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si
ng

In
te
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e
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P
I)

[1
7,

18
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un
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r
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t
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ra
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n
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e
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ra
y
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e
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m
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t
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ha
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ra
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ra
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n.
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e
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r
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,
ha
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ng
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ra
y
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ke

d
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y
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a
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m
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l
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ra
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n
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e
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in
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at
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n,
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r
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l
th

e
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ra
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ng

M
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B.3 ERCIM News 72

Perrin, D., Ruskin, H. J., Crane, M., and Walshe, R. (2008). Epigenetic modelling. ERCIM

News, 72:46.

This article introduces to a non-specialist audience, (mathematicians and computer scien-

tists), the field of Epigenetics, and presents our overall research project. The model pre-

sented in this Thesis is a proof of concept for this long-term study.
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Early advances in genetics led to the all-
genetic paradigm: phenotype (an organ-
ism's characteristics/behaviour) is deter-
mined by genotype (its genetic make-
up). This was later amended and
expressed by the well-known formula 
P = G + E, encompassing the notion that
the visible characteristics of a living
organism (the phenotype, P) is a combi-
nation of hereditary genetic factors (the
genotype, G) and environmental factors
(E). However, this method fails to
explain why in diseases such as schizo-
phrenia we still observe differences
between identical twins. Furthermore,
the identification of environmental fac-
tors (such as smoking and air quality for
lung cancer) is relatively rare. The for-
mula also fails to explain cell differenti-
ation from a single fertilized cell.

In the wake of early work by Wadding-
ton, more recent results have empha-
sized that the expression of the genotype
can be altered without any change in the
DNA sequence. This phenomenon has
been tagged as epigenetics. To form the
chromosome, DNA strands roll over
nucleosomes, which are a cluster of nine
proteins (histones), as detailed in Fig-
ure 1. Epigenetic mechanisms involve
inherited alterations in these two struc-
tures, eg through attachment of a func-
tional group to the amino acids (methyl,
acetyl and phosphate). These 'stable
alterations' arise during development
and cell proliferation and persist
through cell division. While information
within the genetic material is not
changed, instructions for its assembly
and interpretation may be. Modelling
this new paradigm, P = G + E + EpiG, is
the object of our study. 

To our knowledge, no previous efforts
have sought to model directly the mech-
anisms that affect epigenetic changes.
Biological research on epigenetic phe-
nomena is ongoing, but while some very
promising articles are being published,
most still contain only qualitative
descriptions of epigenetic changes. This
is not ideal when trying to develop com-
puter-based models, but it is also not

unusual. Over a decade ago the basics of
HIV infection were understood, but
quantitative data were sparse. Yet as
early as 1992, differential equation
models were proposed, while cell-medi-
ated micro-models date from the 1990s.
As more data have become available,
these models have improved in sophisti-
cation, incorporating features such as
shape-space formalism and massively
multi-agent, parallel systems.

As a first step, we propose a micro-
scopic model for chromatin structures.
From the current biological results, it
clearly appears that each unit (eg his-
tone, DNA strand or amino acid) has a
distinct role in epigenetic changes, and
this role can alter depending on the type
or location of the unit (eg which partic-
ular amino acid, what part of the DNA
strand etc). For efficiency, this is best
modelled using an object-oriented
approach and a C++ implementation.
The main objective of this early model
is to provide a description and hierarchy
for epigenetic changes at the cell level,
as well as an investigation into the
dynamics and time scales of the
changes. These results will then be used
to 'feed into' other models. Already in
development are approaches such as
agent-based modelling of cell differen-

tiation and complex recurrent networks
of cancer initiation by epigenetic
changes.

Another early model uses Probabilistic
Bayesian Networks. These represent a
set of variables and their probabilistic
dependencies and are constructed as
directed acyclic graphs, for which
nodes represent variables and arcs
encode conditional dependencies
between the variables. The variables
can be of any type, ie a measured
parameter, a latent variable or even a
hypothesis. These networks can be used
for inference, parameter estimation and
refinement, and structure learning. This
approach has been successfully used in
medicine (eg breast cancer diagnosis)
and biology (eg protein structure pre-
diction), and epigenetic mechanisms
appear amenable to such techniques.

Though still in its infancy, the project is
gaining momentum and early work on
the different approaches looks very
promising. Active involvement from
biologists and medical researchers is
currently being sought in order to
secure access to data and guarantee
model realism (as highlighted by a pres-
entation at the International Agency for
Research on Cancer in early December
2007). Previous modelling experience
from the group promises sensible inte-
gration of the various approaches and
efficient implementations. Several pub-
lications and presentations are expected
in the coming year, all of which will
appear on the group's Web site (link
below).

Links:
http://www.computing.dcu.ie/~dperrin/
http://www.computing.dcu.ie/~msc/pub
lications.shtml

Please contact:
Dimitri Perrin
School of Computing, Dublin City
University, Ireland
Tel: +353 1 700 8449
E-mail:
dimitri.perrin@computing.dcu.ie

EEppiiggeenneettiicc  MMooddeelllliinngg
by Dimitri Perrin, Heather J. Ruskin, Martin Crane and Ray Walshe

The field of epigenetics looks at changes in the chromosomal structure that affect gene
expression without altering DNA sequence. A large-scale modelling project to better understand
these mechanisms is gaining momentum.

Figure 1: A nucleosome, the fundamental
subunit of the chromosome (adapted from 
C. Brenner, PhD thesis, Université Libre de
Bruxelles, 2005).
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Perrin, D., and Burns, J. (2008). Large-scale immune models and visualization. ERCIM

News, 74:33–34.

This article summarises the development of our large-scale lymph network model, and in-

troduces the current collaborative efforts to develop visualisation tools for such simula-

tions.

166



ER
CI

M
 N

EW
S

74
Ju

ly
 2

00
8

33

re
so

ur
ce

 p
ro

vi
si

on
 st

ra
te

gi
es

, a
t n

at
io

na
l

an
d 

in
te

rn
at

io
na

l 
le

ve
ls

, 
to

 a
llo

ca
te

ap
pr

op
ria

te
ly

 s
ca

le
d 

re
so

ur
ce

s 
to

 p
ro

j-
ec

ts
 w

he
n 

th
ey

 a
re

 f
un

de
d.

  
Su

ch
 p

ro
j-

ec
ts

 o
fte

n 
re

qu
ire

 a
cc

es
s t

o 
a 

w
id

e 
ra

ng
e

of
 re

so
ur

ce
s a

s p
ar

t o
f a

 sc
ie

nt
ifi

c 
w

or
k-

flo
w

, 
fo

r 
ex

am
pl

e 
th

e 
hi

gh
-e

nd
m

ac
hi

ne
s 

pr
ov

id
ed

 b
y 

D
EI

SA
(D

is
tri

b-
ut

ed
 E

ur
op

ea
n 

In
fr

as
tru

ct
ur

e 
fo

r S
up

er
-

co
m

pu
tin

g 
A

pp
lic

at
io

ns
) 

or
 t

he
 T

er
a-

G
rid

, 
al

on
g 

w
ith

 s
m

al
le

r 
cl

us
te

rs
 p

ro
-

vi
de

d 
by

 th
e 

U
K

 N
at

io
na

l G
rid

 S
er

vi
ce

.

Th
e 

G
EN

IU
S 

pr
oj

ec
t 

w
ill

 b
e 

co
m

pl
et

e
in

 D
ec

em
be

r 
20

09
, 

at
 w

hi
ch

 t
im

e 
a

un
iq

ue
 t

es
t 

ca
se

 f
or

 t
he

 u
se

 o
f 

pa
tie

nt
-

sp
ec

ifi
c 

si
m

ul
at

io
n 

an
d 

hi
gh

-p
er

fo
rm

-
an

ce
 c

om
pu

tin
g 

re
so

ur
ce

s 
to

 p
la

n 
su

rg
i-

ca
l 

in
te

rv
en

tio
n 

w
ill

 b
e 

av
ai

la
bl

e.
  

A
s

de
sc

rib
ed

, 
ho

w
ev

er
, 

m
an

y 
ch

al
le

ng
es

re
m

ai
n 

to
 b

e 
re

so
lv

ed
 b

ef
or

e 
su

pe
rc

om
-

pu
tin

g 
at

 w
or

k 
be

co
m

es
 th

e 
pr

em
is

e 
of

th
e 

m
ed

ic
al

 d
oc

to
r. 

L
in

ks
:

G
EN

IU
S 

pr
oj

ec
t W

ik
i: 

ht
tp

://
w

ik
i.r

ea
li-

ty
gr

id
.o

rg
/w

ik
i/G

EN
IU

S 
V

PH
 In

iti
at

iv
e 

an
d 

V
PH

 N
oE

:
ht

tp
://

w
w

w
.b

io
m

ed
to

w
n.

or
g/

bi
om

ed
_t

o
w

n/
vp

hn
M

PI
C

H
-G

2:
 h

ttp
://

w
w

w
3.

ni
u.

ed
u/

m
pi

/
(th

er
e 

is
 n

o 
M

PI
g 

lin
k 

at
 th

e 
m

om
en

t)
SP

R
U

C
E:

 h
ttp

://
sp

ru
ce

.te
ra

gr
id

.o
rg

U
rg

en
t C

om
pu

tin
g,

 C
TW

at
ch

:
ht

tp
://

w
w

w
.c

tw
at

ch
.o

rg
/q

ua
rte

rly
/a

rc
hi

v
es

/m
ar

ch
-2

00
8

Pl
ea

se
 c

on
ta

ct
:

Pe
te

r C
ov

en
ey

C
en

tre
 fo

r C
om

pu
ta

tio
na

l S
ci

en
ce

, 
D

ep
ar

tm
en

t o
f C

he
m

is
try

, U
ni

ve
rs

ity
C

ol
le

ge
 L

on
do

n,
 U

K
 

Te
l: 

+4
4 

20
 7

67
9 

45
60

E-
m

ai
l: 

p.
v.

co
ve

ne
y@

uc
l.a

c.
uk

Fi
gu

re
 2

:  
W

or
kf

lo
w 

di
ag

ra
m

 o
f G

EN
IU

S 
cl

in
ic

al
 ‘s

ce
na

rio
’.

La
rg

e-
Sc

al
e 

Im
m

un
e 

M
od

el
s 

an
d 

Vi
su

al
iz

at
io

n
by

 D
im

itr
i P

er
rin

 a
nd

 J
oh

n 
Bu

rn
s

La
rg

e-
sc

al
e 

co
m

pu
tin

g 
ar

ch
ite

ct
ur

es
 a

llo
w

 d
et

ai
le

d 
m

od
el

lin
g 

of
 c

om
pl

ex
 s

ys
te

m
s.

 H
er

e 
w

e 
pr

es
en

t
ap

pl
ic

at
io

ns
 in

 th
e 

fie
ld

 o
f c

om
pu

ta
tio

na
l b

io
lo

gy
.

In
 s

ili
co

 s
im

ul
at

io
n 

m
et

ho
ds

 –
 s

im
ul

a-
tio

ns
 w

ith
in

 c
om

pu
te

r 
so

ftw
ar

e 
– 

ha
ve

be
co

m
e 

in
di

sp
en

sa
bl

e 
to

ol
s i

n 
th

e 
de

ve
l-

op
m

en
t 

of
 e

xp
en

si
ve

 n
ew

 t
ec

hn
ol

og
y,

fr
om

 a
irc

ra
ft 

m
an

uf
ac

tu
re

 t
o 

nu
cl

ea
r

po
w

er
 s

ta
tio

n 
de

ve
lo

pm
en

t. 
Fo

r v
ar

io
us

re
as

on
s h

ow
ev

er
,m

od
el

lin
g 

an
d 

si
m

ul
a-

tio
n 

te
ch

ni
qu

es
 h

av
e 

on
ly

 v
er

y 
sl

ow
ly

be
en

 a
do

pt
ed

 b
y 

th
e 

bi
ol

og
ic

al
 re

se
ar

ch
co

m
m

un
ity

.

B
io

lo
gi

ca
l 

sy
st

em
s 

ar
e 

ty
pi

ca
lly

 c
om

-
pl

ex
 a

nd
 a

da
pt

iv
e.

 G
iv

en
 t

he
 d

yn
am

ic
na

tu
re

 o
f 

th
es

e 
ph

en
om

en
a,

 i
t 

is
 n

on
-

tri
vi

al
 

to
 

pr
ov

id
e 

a 
co

m
pr

eh
en

si
ve

de
sc

rip
tio

n 
of

 s
uc

h 
sy

st
em

s 
an

d,
 in

 p
ar

-
tic

ul
ar

, 
to

 d
ef

in
e 

th
e 

im
po

rta
nc

e 
an

d

co
nt

rib
ut

io
n 

of
 l

ow
-le

ve
l 

un
su

pe
rv

is
ed

in
te

ra
ct

io
ns

 t
o 

th
e 

ov
er

al
l 

ev
ol

ut
io

n
pr

oc
es

s.
 A

n 
ag

en
t-b

as
ed

 a
pp

ro
ac

h 
is

pr
es

en
te

d 
he

re
.

Th
e 

im
m

un
e 

re
sp

on
se

, 
in

 p
ar

tic
ul

ar
,

co
ns

is
ts

 o
f 

re
la

tiv
el

y 
si

m
pl

e 
ce

ll-
le

ve
l

in
te

ra
ct

io
ns

, 
bu

t 
is

 c
ap

ab
le

 o
f 

hi
gh

ly
di

ve
rs

e 
an

d 
in

di
vi

du
al

 b
eh

av
io

ur
, 

w
ith

ou
tc

om
es

 t
ha

t 
ar

e 
se

lf-
ev

id
en

tly
 m

or
e

th
an

 th
e 

su
m

 o
f t

he
ir 

pa
rts

. I
n 

w
ha

t f
ol

-
lo

w
s, 

a 
on

e-
to

-o
ne

 r
ec

ip
ro

ci
ty

 b
et

w
ee

n
au

to
no

m
ou

s 
ag

en
ts

 a
nd

 im
m

un
e 

ce
lls

 is
pr

op
os

ed
. T

he
 e

m
er

ge
nc

e 
of

 ti
ss

ue
-le

ve
l

an
d 

bo
dy

-le
ve

l 
pa

tte
rn

s 
is

 
cl

ea
rly

de
pe

nd
en

t 
on

 t
he

 r
el

at
iv

e 
si

ze
s 

of
 c

el
l

po
pu

la
tio

ns
 

an
d 

th
e 

ba
la

nc
e 

th
es

e

ac
hi

ev
e.

 T
hi

s i
s d

em
on

st
ra

te
d,

 fo
r e

xa
m

-
pl

e,
 b

y 
th

e 
co

ur
se

 o
f 

H
IV

pr
og

re
ss

io
n,

w
he

re
 t

he
 w

ho
le

 i
m

m
un

e 
sy

st
em

 c
ol

-
la

ps
es

 
on

ce
 

im
m

un
e 

ce
ll 

co
un

ts
de

cr
ea

se
 b

el
ow

 c
rit

ic
al

 le
ve

ls
. 

H
ig

h 
te

m
po

ra
l 

gr
an

ul
ar

ity
 i

s 
ne

ce
ss

ar
y

to
 re

al
is

tic
al

ly
 a

cc
ou

nt
 fo

r c
el

l m
ob

ili
ty

an
d 

in
te

ra
ct

io
ns

. W
ith

 c
ur

re
nt

 c
om

pu
t-

in
g 

re
so

ur
ce

s,
 t

hi
s 

pr
ev

en
ts

 m
od

el
s

ac
co

un
tin

g 
fo

r 
ev

er
y 

im
m

un
e 

ce
ll 

of
ev

er
y 

ty
pe

 o
ve

r t
he

 w
ho

le
 b

od
y.

 A
co

m
-

pr
om

is
e 

be
tw

ee
n 

ag
en

t 
di

ve
rs

ity
 a

nd
ag

en
t 

po
pu

la
tio

n 
si

ze
 

is
 

th
er

ef
or

e
re

qu
ire

d.
 W

e 
ha

ve
 im

pl
em

en
te

d 
a 

fle
xi

-
bl

e 
m

od
el

, 
w

hi
ch

 c
ur

re
nt

ly
 i

nc
lu

de
s

vi
ra

l a
ge

nt
s 

an
d 

an
 a

ge
nt

 ty
pe

 f
or

 e
ac

h

ER
CI

M
 N

EW
S

74
Ju

ly
 2

00
8 

 
34

Sp
ec

ia
l T

he
m

e:
 S

up
er

co
m

pu
tin

g 
at

 W
or

k 
 

en
tit

y 
of

 t
he

 c
el

l-m
ed

ia
te

d 
re

sp
on

se
.

Th
is

 g
ua

ra
nt

ee
s 

en
ou

gh
 d

iv
er

si
ty

 t
o

ac
co

un
t f

or
 p

rin
ci

pa
l i

m
m

un
e 

an
d 

vi
ra

l
m

ec
ha

ni
sm

s, 
w

hi
le

 p
er

m
itt

in
g 

th
e 

si
m

u-
la

tio
n 

of
 la

rg
e 

po
pu

la
tio

ns
. 

In
 th

is
 w

ay
, c

el
l m

ob
ili

ty
 c

an
 b

e 
ex

am
-

in
ed

. 
A

ge
nt

s 
ar

e 
ex

pl
ic

itl
y 

lo
ca

te
d 

in
st

ru
ct

ur
es

 
m

od
el

lin
g 

ly
m

ph
 

no
de

s.
A

ge
nt

 m
ov

em
en

t 
w

ith
in

 t
he

se
 l

ea
ds

 t
o

th
e 

oc
cu

rr
en

ce
 o

f c
el

l-l
ev

el
 in

te
ra

ct
io

ns
,

an
d 

th
ei

r 
pa

ss
ag

e 
fr

om
 o

ne
 n

od
e 

to
an

ot
he

r. 
Th

us
, 

ly
m

ph
at

ic
 c

ha
in

 s
tru

c-
tu

re
s 

al
lo

w
 fo

r t
he

 s
pr

ea
d 

of
 v

ira
l i

nf
ec

-
tio

n 
an

d 
co

nn
ec

te
d 

im
m

un
e 

re
sp

on
se

.
Th

e 
m

od
el

 s
uc

ce
ss

fu
lly

 a
cc

ou
nt

s 
fo

r
ra

pi
d 

sp
re

ad
in

g 
th

ro
ug

ho
ut

 t
he

 i
ni

tia
l

ly
m

ph
 c

ha
in

 (
ie

 w
ith

in
 h

ou
rs

), 
an

d
sl

ow
er

 p
ro

gr
es

si
on

 t
hr

ou
gh

 t
he

 w
ho

le
bo

dy
 (

w
ee

ks
 b

ei
ng

 n
ec

es
sa

ry
 t

o 
ob

ta
in

in
fe

ct
io

n 
of

 a
ll 

no
de

s)
. 

U
si

ng
 p

ar
al

le
l 

im
pl

em
en

ta
tio

n 
on

 a
la

rg
e 

cl
us

te
r 

co
m

pu
te

r, 
si

m
ul

at
io

ns
 c

an
m

od
el

 u
p 

to
 a

 th
ou

sa
nd

 ly
m

ph
 n

od
es

 fo
r

a
to

ta
l o

f 
m

or
e 

th
an

 o
ne

 b
ill

io
n 

ag
en

ts
.

Th
is

 p
er

m
its

 a
cc

ur
at

e 
m

od
el

lin
g 

of
 t

he
im

m
un

e 
re

sp
on

se
 t

o 
in

fe
ct

io
ns

, 
an

d
in

cl
us

io
n 

of
 l

oc
al

iz
ed

 e
ff

ec
ts

 s
uc

h 
as

H
IV

ea
rly

 in
fe

ct
io

n 
w

ith
in

 th
e 

ga
st

ro
in

-
te

st
in

al
 t

ra
ct

, 
w

ho
se

 i
m

po
rta

nc
e 

w
as

re
ce

nt
ly

 h
ig

hl
ig

ht
ed

. 
Eq

ui
va

le
nt

 l
ar

ge
-

sc
al

e 
fr

am
ew

or
ks

 a
re

 a
ls

o 
ap

pl
ic

ab
le

 to
ot

he
r 

co
m

pl
ex

 s
ys

te
m

s,
 b

io
lo

gi
ca

l 
or

ot
he

rw
is

e.
 I

n 
pa

rti
cu

la
r, 

in
 s

ili
co

 t
ec

h-
ni

qu
es

 h
av

e 
en

or
m

ou
s 

po
te

nt
ia

l t
o 

co
n-

tri
bu

te
 to

 th
e 

qu
al

ity
 a

nd
 c

os
t-e

ffe
ct

iv
e-

ne
ss

 o
f t

he
 d

ru
g 

de
ve

lo
pm

en
t p

ro
ce

ss
.

V
is

ua
liz

at
io

n 
of

 t
he

 r
es

ul
ts

 f
ro

m
 s

uc
h

si
m

ul
at

io
ns

 i
s 

no
n-

tri
vi

al
. 

In
 w

ha
t 

fo
l-

lo
w

s, 
w

e 
pr

es
en

t s
om

e 
in

iti
al

 r
es

ul
ts

 in
th

e 
vi

su
al

iz
at

io
n 

of
 i

m
m

un
e 

re
sp

on
se

s
th

at
 a

llo
w

s t
he

 u
se

r t
o 

pa
ra

m
et

er
iz

e 
th

ei
r

in
 s

ili
co

 e
xp

er
im

en
ts

 i
n 

or
de

r 
to

 s
tu

dy
th

e 
m

ax
im

um
 

in
fe

ct
io

n 
cl

ea
ra

nc
e

dy
na

m
ic

s. 
Th

e 
to

ol
 a

ls
o 

pr
ov

es
 to

 b
e 

a
us

ef
ul

 a
id

 in
 th

e 
cl

as
sr

oo
m

 f
or

 s
tu

de
nt

s
in

 th
ei

r e
ar

ly
 u

nd
er

gr
ad

ua
te

 tr
ai

ni
ng

.

C
ol

la
bo

ra
tio

n 
be

tw
ee

n 
IT

T
D

ub
lin

 a
nd

D
ub

lin
 C

ity
 U

ni
ve

rs
ity

 h
as

 l
ed

 t
o 

th
e

de
ve

lo
pm

en
t 

of
 

no
ve

l 
vi

su
al

iz
at

io
n

te
ch

ni
qu

es
 t

o 
st

ud
y 

ce
llu

la
r 

in
te

ra
ct

io
n

fr
om

 b
ot

h 
th

e 
la

rg
e-

sc
al

e 
sp

at
ia

l 
an

d
te

m
po

ra
l 

pe
rs

pe
ct

iv
es

. 
V

is
ua

liz
at

io
n 

of
pr

oc
es

se
s 

of
fe

rs
 th

e 
re

se
ar

ch
er

 th
e 

ab
il-

ity
 to

 s
pe

ed
 u

p,
 s

lo
w

 d
ow

n 
an

d 
hy

po
th

-
es

iz
e 

va
rio

us
 p

ar
am

et
er

s. 
V

is
ua

liz
at

io
n

ai
ds

 u
nd

er
st

an
di

ng
 a

s 
w

e 
re

ly
 o

n 
vi

su
al

pe
rc

ep
tio

n 
to

 m
ak

e 
cr

uc
ia

l 
de

ci
si

on
s.

Fo
r e

xa
m

pl
e,

 w
ith

 o
ur

 in
iti

al
 m

od
el

, w
e

ca
n 

vi
su

al
iz

e 
th

e 
dy

na
m

ic
s 

of
 a

n 
id

ea
l-

iz
ed

 ly
m

ph
at

ic
 c

om
pa

rtm
en

t, 
w

ith
 A

PC
an

d 
C

D
8 

ce
lls

.

W
e

ca
n 

pa
ra

m
et

er
iz

e 
m

an
y 

as
pe

ct
s, 

su
ch

as
 i

ni
tia

l 
ce

ll 
le

ve
ls,

 r
at

es
 o

f 
ch

an
ge

 i
n

th
e 

lif
e 

cy
cl

e,
 f

re
qu

en
cy

 o
f 

in
fe

ct
io

n
ev

en
ts

 a
nd

 m
an

y 
ot

he
rs

. 
So

m
e 

vi
ra

l
pa

th
og

en
s 

ar
e 

ca
pa

bl
e 

of
 p

er
sis

te
nt

 r
e-

in
fe

ct
io

n 
in

 t
ha

t, 
al

th
ou

gh
 p

op
ul

at
io

n
le

ve
ls 

of
 i

nf
ec

te
d 

an
tig

en
 p

re
se

nt
at

io
n

ce
lls

 m
ay

 d
ec

lin
e 

in
 r

es
po

ns
e 

to
 c

le
ar

-
an

ce
 

pr
es

su
re

 
by

 
a 

sp
ec

ifi
c 

C
D

8
re

sp
on

se
, 

ov
er

 t
im

e 
th

e 
nu

m
be

r 
of

in
fe

ct
ed

 c
el

ls 
ris

es
 to

 c
hr

on
ic

 a
nd

 s
om

e-
tim

es
 a

cu
te

 l
ev

el
s. 

Ex
am

pl
es

 o
f 

su
ch

vi
ru

se
s a

re
 H

IV
, H

um
an

 T
-ly

m
ph

ot
ro

pi
c

vi
ru

s (
H

TL
V

) h
ep

at
iti

s C
 (H

C
V

), 
he

pa
ti-

tis
 B

, 
cy

to
m

eg
al

ov
iru

s 
C

M
V,

 E
ps

te
in

-
B

ar
r v

iru
s (

EB
V

) a
nd

 ru
be

lla
.

Fr
om

 th
e 

fig
ur

e 
w

e 
se

e 
th

at
 a

s 
th

e 
pr

i-
m

ar
y 

re
sp

on
se

 c
on

tin
ue

s, 
th

e 
ef

fe
ct

or
ce

lls
 n

ow
 b

eg
in

 th
ei

r e
xi

t f
ro

m
 th

e 
ly

m
-

ph
at

ic
 c

om
pa

rtm
en

t, 
af

te
r 

w
hi

ch
 t

he
y

w
ill

 b
e 

ca
rr

ie
d 

th
ro

ug
h 

th
e 

bl
oo

d 
sy

s-
te

m
 a

nd
 w

ill
 m

ig
ra

te
 to

w
ar

ds
 th

e 
si

te
 o

f
th

e 
in

iti
al

 in
fe

ct
io

n 
(if

 o
ne

 e
xi

st
s)

. 

W
e

ha
ve

 d
ev

el
op

ed
 a

 'f
ro

nt
 e

nd
' v

is
ua

l-
iz

at
io

n 
co

m
po

ne
nt

 t
o 

al
lo

w
 s

tu
de

nt
s

an
d 

le
ct

ur
er

s i
n 

th
e 

cl
as

sr
oo

m
 a

nd
 la

b 
to

ex
pe

rim
en

t 
w

ith
 a

 v
ar

ie
ty

 o
f 

pa
ra

m
e-

te
rs

. W
e 

ar
e 

st
ro

ng
ly

 m
ot

iv
at

ed
 in

 th
is

re
se

ar
ch

 b
y 

th
e 

fin
di

ng
s 

of
 a

 re
ce

nt
 E

U
re

po
rt 

in
di

ca
tin

g 
th

at
 in

si
lic

o 
m

od
el

lin
g

an
d 

si
m

ul
at

io
n 

of
 b

io
lo

gi
ca

l 
pr

oc
es

se
s

is
 a

 k
ey

 re
qu

ire
m

en
t i

n 
th

e 
de

ve
lo

pm
en

t
of

 c
os

t-e
ffe

ct
iv

e 
an

d 
tim

el
y 

ne
w

 d
is

ea
se

th
er

ap
ie

s.

L
in

k:
ht

tp
://

sc
i-s

ym
.c

om
pu

tin
g.

dc
u.

ie

Pl
ea

se
 c

on
ta

ct
: 

D
im

itr
i P

er
rin

D
ub

lin
 C

ity
 U

ni
ve

rs
ity

Te
l: 

+3
53

 1
 7

00
 8

44
9

E-
m

ai
l: 

dp
er

rin
@

co
m

pu
tin

g.
dc

u.
ie

Jo
hn

 B
ur

ns
In

st
itu

te
 o

f T
ec

hn
ol

og
y 

Ta
lla

gh
t, 

Ir
el

an
d

Te
l: 

+3
53

 1
 4

04
 2

76
6

E-
m

ai
l: 

jo
hn

.b
ur

ns
@

itt
du

bl
in

.ie

Fi
gu

re
 1

: 
Id

ea
lis

ed
 ly

m
ph

at
ic

 sp
ac

e.

167



Appendix C

Abstracts

C.1 CGCS ’06

Perrin, D., Ruskin, H. J., and Crane, M. (2006). HIV Modelling – Parallel Implementa-

tion Strategies. Third International Conference on Cluster and Grid Computing Systems

(CGCS’06), Venice, Italy.

Abtract:

We report on the development of a model to understand why the range of experience with

respect to HIV infection is so diverse, especially with respect to the latency period. To in-

vestigate this, an agent-based approach is used to extract highlevel behaviour which cannot

be described analytically from the set of interaction rules at the cellular level. A network

of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-

agent systems requires major computational effort. However, parallelisation methods are a

natural consequence and advantage of the multi-agent approach and, using the MPI library,

are here implemented, tested and optimized. Our current focus is on the various imple-

mentations of the data transfer across the network. Three communications strategies are

proposed and tested, showing that the most efficient approach is communication based on

the natural lymph-network connectivity.
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Keywords: HIV, Immune modelling, MPI, Parallelisation.

C.2 ICMS ’06

Perrin, D., Ruskin, H. J., and Crane, M. (2006). An agent-based approach to immune

modelling, Priming individual response. Third International Conference on Modeling and

Simulation (ICMS’06), Cairo, Egypt.

Abtract:

This study focuses on examining why the range of experience with respect to HIV infection

is so diverse, especially in regard to the latency period. An agent-based approach in mod-

elling the infection is used to extract high-level behaviour which cannot be obtained analyt-

ically from the set of interaction rules at the cellular level. A prototype model encompasses

local variation in baseline properties, contributing to the individual disease experience, and

is included in a network which mimics the chain of lymph nodes. The model also accounts

for stochastic events such as viral mutations. The size and complexity of the model require

major computational effort and parallelisation methods are used.

Keywords: HIV, Immune modelling, Agent-based system, Individual response.

C.3 ICCM 2007

Perrin, D., Duhamel, C., Ruskin, H. J., and Crane, M. (2007). Microarray biclustering:

mathematical model and metaheuristic alternatives. International Conference on Computa-

tional Methods (ICCM2007), Hiroshima, Japan.

Abtract:

DNA microarrays are extensively used as a means to obtain expression levels of several

genes under a set of conditions, see e.g. [1]. Typically, thousands of genes are considered

under tens of conditions. Biclustering is then applied to extract a subset of genes and a
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subset of conditions for which it is possible to identify common behaviour [2]. Here, we

transform the biclustering into a graph optimisation problem: the microarray is represented

as a bipartite graph in which we look for relevant subgraphs. We propose a mathematical

formulation for this problem. For the optimisation to give meaningful results, we also intro-

duce a new weighting function, aimed at isolating relevant gene-condition couples. These

weights are based on a categorization of the expression ratio. An exact enumerative method

is developed and tested on medium-sized arrays (i.e. less than ten conditions) and returns

the best solution within a few seconds. Metaheuristics are also implemented, for bigger

datasets. Results are again very satisfying and the computation time remains sensible.

Keywords: DNA microarray, biclustering, mathematical formulation, metaheuristics.

References:

[1] F. Oana, T. Homma, H. Takeda, A. Matsuzawa, S. Akahane, M. Isaji, M. Akahane: DNA

microarray analysis of white adipose tissue from obese (fa/fa) Zucker rats treated with a 3-

adrenoceptor agonist, KTO-7924, Pharmacological Research, Vol.52, pp.395-400, 2005.

[2] H. Turner, T. Bailey, W. Krzanowski: Improved biclustering of microarray data demon-

strated through systematic performance tests, Computational Statistics and Data Analysis,

Vol.48, pp. 235-254, 2005.

C.4 ICG 2008

Perrin, D., and Ruskin, H. J. (2008). The case for epigenetic modelling (poster). XX Inter-

national Congress of Genetics, Berlin, Germany.

Abtract:

Objectives. Advances in Genetics incorporate the all-genetic paradigm through the notion

that phenotype (P ) of an organism is a combination of its genotype (G) and environmen-

tal factors (E), i.e. P = G + E. More recent work has emphasised ”stable alterations”

of the chromatin, arising during development and cell proliferation, and persisting through
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cell division. While information within the genetic material remains unchanged, instruc-

tions for its assembly and interpretation may be modified. Modelling this new paradigm,

P = G+ E + EpiG, is the object of our study.

Methods. To our knowledge, no previous efforts have sought to model directly epige-

netic mechanisms. Research on epigenetic phenomena is ongoing, but while promising

advances are being reported, most still contain only qualitative descriptions of epigenetic

changes. This is not ideal when trying to develop computer-based models, but is also not

unusual. A similar situation in the early 1990s necessitated phenomenological development

of computer-based models of HIV infection. As more data have become available, these

models have improved in sophistication, incorporating new features, and are now a valuable

tool for ongoing biological research. Here, we present a development framework based on

this experience. Models implemented include microscopic representations and high-level

network-based approaches.

Results. Current status of the approaches offers a intuitive and comprehensive represen-

tation of epigenetic mechanisms. Efforts at the microscopic level are targeted towards es-

tablishing a hierarchy of epigenetic changes, while network-based approaches provide the

basis for better development of biomarkers for early detection of cancer.

Conclusion. Though still in its infancy, the project is gaining momentum and early work

on the different approaches is encouraging. This establishes a new field, computer-based

epigenetic modelling, which is expected to provide valuable insight on key biological ques-

tions.
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Appendix D

Source Code

The accompanying CD contains commented source code for the three model layers. This

code was tested on several platforms. Apart from the MPI library, it does not require instal-

lation of extra software.

Unless stated otherwise, all files are written by Dimitri Perrin.

D.1 Agent-based lymph network model

All files required for the main model layer are located in the “HIV” folder. For random

number generation, we provide an interface with Mersenne Twister, and this generator is

included in the folder, (“mersenne-twister.h”).

This is to avoid requirements for SPRNG installation.

D.2 Microarray biclustering

D.2.1 Weighting scheme

All files required for weights generation are available in the “Weights” folder, in “Microar-

ray”. As an exemple, we also provide a dataset ready to use, (“MIT.txt”), and the corre-

sponding weights obtained (“weights-MIT.txt”).
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In this folder, the file “main.c” is the only one directly referring to the work implemented in

this Thesis. The other files exclusively deal with data storage, through a previously existing

matrix structure implemented by Nicolas Aunai. They are only provided here because they

are required to compile and run the algorithm.

D.2.2 Parallel genetic algorithm

All files required for weights generation are located in the “GA” folder, in “Microarray”.

In this folder, the files “genetic.c” and “main.c” are the only ones directly referring to the

work implemented in this Thesis. Other files were developed by Christophe Duhamel,

remain his property, and are only provided here because they are required to compile and

run the genetic algorithm.

As an exemple, we also provide a set of weights, (“DATA/weights-MIT.txt”). With the

makefile is provided, compile with “make release”.

D.3 Epigenetic model

All files required for the epigenetic model are available in the “Crypt model” folder.
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Glossary

Adaptive immune response: In contrast to the innate response, the specific, or adap-

tive, immune response is based on the accurate recognition of foreign non-self antigens.

Antigen-specific response has two arms, namely cell-mediated and antibody-mediated re-

sponses. The latter, also known as the humoral response, features B lymphocytes as effector

cells, and mainly targets bacterial attacks. Humoral response is characterised by produc-

tion, by these cells, neutralizing antibodies, following activation by CD4+ T helper cells

through release of interleukin IL-4. Cell-mediated response is targeted more specifically at

viral attacks and takes place in lymph nodes.

Agent: an intelligent agent is a modelling object with specific properties which include

autonomy, social behaviour, reactivity, and proactivity.

Agent-based model: a model in which the key abstraction elements are agents. When

using several agents, such a model is often called a multi-agent system.

AIDS: Acquired ImmunoDeficiency Syndrome. Collection of symptoms and infections

resulting from the specific damage to the immune system caused by the human immunode-

ficiency virus. This is the last phase of HIV infection progression.

Antigenic determinant: see epitope.

Autophagosomes: vesicles which store structures the cell has targeted for destruction

through autophagy, (a cellular degradation pathway for the removal of damaged, or super-

fluous, proteins and cell subunits).



Biclustering: simultaneous clustering of both genes and conditions.

Carboxypeptidases: enzymes which hydrolyzes the carboxy-terminal, (C-terminal),

end of a peptide bond. They have diverse functions, (e.g. catabolism, protein maturation).

Chemokines: family of small cytokines. They induce directed chemotaxis, (innate

movement), in nearby cells, hence their name.

Chromosomes: complex combination, called chromatin, of DNA and proteins, which

store all genomic information. Major proteins involved are histones. Nine histones combine

to form a nucleosome. The characteristic structure of a nucleosome is that of four pairs of

histones forming a core around which about 146 base pairs of DNA is wrapped. This is

maintained in place by a linker histone, H1, and repeats over the chromatin every 200 base

pairs. The remaining 50 base pair of this repeating unit consists of “linker DNA”.

Clustering: grouping of genes, based on their expression under multiple conditions (or

over different time-points) or, conversely, grouping of conditions according to expression

of several genes.

CpG dinucleotide: a cytosine followed by a guanine in the DNA sequence.

CpG islands: areas with higher proportion of CpG, and formally defined as follows: (i)

Length of the considered region is at least 200 base pairs; (ii) GC percentage is greater than

50%, (i.e. more than half of amino-acids are cytosine or guanine); (iii) Observed/expected

CpG ratio that is greater than 60%. In humans, these islands are found in or near to 70% of

gene promoters.
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Cytokines: a category of diverse signalling proteins and glycoproteins, which are es-

sential to cellular communication. Other categories of signalling proteins include hormones

and neurotransmitters.

DNA methylation: addition of a methyl group to a DNA strand. In humans, only

1% of DNA bases undergo DNA methylation. In differentiated cells, DNA methylation is

typically limited to CpG dinucleotides. Non-CpG methylation can be found in embryonic

stem cells. Of particular interest are CpG islands. While most CpG are methylated over

the genome, these regions have a very distinct pattern: methylation of a CpG island cor-

responds to silencing of the associated gene. Aberrant changes in CpG island methylation

are, therefore, linked with abnormal gene expression.

DNA methyltransferases: enzymes controlling DNA methylation, (e.g. Dnmt1, Dnmt3a

and Dnmt3b in mammals).

Dynamic model: conceptual model which describes the states, transitions, events, ac-

tions, activities and interactions of the system structures, which characterise system be-

haviour.

Enzymes: molecules which increase the rates of chemical reactions. This is referred to

as a catalytic action.

Epigenetics: study of the heritable changes in gene function that may occur without a

change in the DNA sequence. These changes include, for instance, DNA methylation and

histone modifications.

Epitope: a protein site which is recognised by the immune system, (specifically by an-

tibodies, B cells, or T cells). For simplicity, an epitope can be considered as a 3D surface
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features of a molecule. These “shapes” fit precisely and thus bind to specific antibodies.

Epitopes are also known as antigenic determinant.

FLOPS: FLoating Operations Per Second.

Foamy viruses: see spumaviruses.

Functional model: conceptual model which describes data flow during system activity,

both within and between components.

Gene: basic biological unit of heredity, composed of DNA, (or RNA, for some viruses).

They are responsible for the encoding of all biological functions. The total set of genes in

an organism is known as its genome.

Gene expression: genes have specific functions. Even though each cell contains the

whole genetic material, it only uses a fraction of this. The others are silenced. These

complex dynamics are time dependent and cell-type dependent, and are referred to as gene

expression.

Genome: the genome of any living organism is its whole hereditary information. It is

encoded in the DNA or, for some viruses such as HIV, the RNA.

Hamming distance: for two strings of equal length, minimum number of substitutions

required to change one into the other.

Hemocytoblasts: precursors of lymphoblasts.
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Histones: see chromosomes.

Histone modification: epigenetic change characterised by the addition, (or removal),

of a functional group, (methyl, acetyl, etc.), to specific amino acids of histone proteins.

Modifications can occur on tails of histones H3 and H4, and in the core of H2A and H3.

Some amino-acids can undergo several successive modifications. Lysine 79 of histone H3

can, for instance, be mono-, di-, or trimethylated. The role of the changes is modification-

specific and molecule-specific.

HIV: Human Immunodeficiency Virus. Retrovirus targeting immune cells and using

them as hosts. This results in massive depletion of immune cell populations. Infection pro-

gression is typically divided in three phases, ending with AIDS.

Innate immune response: a non-specific, or innate, response is based upon recogni-

tion of the pattern of the microbial surface components of the pathogens, rather than by a

specific antigenic sequence. Innate response does not confer long-lasting immunity to the

host, i.e. there is no memory of previous responses.

Lamina propria mucosae: “the mucosa’s own special layer”, in Latin. A thin layer of

tissue which, together with the epithelium, constitutes the mucosa. It is often referred to as

lamina propria.

Lentiviruses: cytopathogens, responsible for slow-progression infections, (hence their

name).

Long-term nonprogressors: individuals who have been living with HIV for over 10

years (there is no agreed time span, but authors generally use 10 to 12 years as a threshold),

have stable CD4+ counts of 600 or more cells per cubic millimeter of blood, show no sign
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of HIV-related diseases, and have not received any antiretroviral therapy.

LTR: long terminal repeat are characteristic of viral genetic material. They ank func-

tional genes, and their main function is to mediate integration of the retroviral DNA into

host chromosome. The ve prime, (5), end refers to the end of the DNA, (or RNA), strand

that has the fth carbon in the sugar-ring of the (deoxy)ribose at its terminus, (as opposed

to the 3 end, which is terminating at the hydroxyl (-OH) group of the third carbon in the

sugar-ring, and is also known as the tail end.

Lymphoblasts: immature immune cells, formed in the bone marrow, by differentiation,

from precursor hemocytoblasts. These are immature cells, from which prolymphocytes, di-

rect precursors of lymphocytes, are derived.

Lymphopoiesis: generation of lymphocytes. Details of cells and precursors can be

found in the glossary.

Macrophages: a type of white blood cell that ingests foreign material. In that sense,

they are involved in the non-specific immune response. They are also involved in the spe-

cific immune response: they carry the antigen on their surface and present it to T cells.

Microarray: technology used for large-scale transcriptional profiling, through mea-

surement of expression levels of thousands of genes at the same time and under several

experimental conditions, (or different time points).

Mitochondria: membrane-enclosed specialized subunits found in most eukaryotic cells.

They produce adenosine triphosphate, (ATP), which the cells use as a source of chemical

energy.
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MPI: Message-Passing Interface, a communications protocol used for parallel imple-

mentation of programs. MPI provides support for point-to-point and collective commu-

nications, inquiry routines to query the execution environment, as well as constants and

data-types.

Multi-agent system: see agent-based model.

Neonate: a human infant less than four weeks old.

Non-specific immune response: see innate immune response.

Nucleosomes: see chromosomes.

Object model: conceptual model which gathers all details on objects within the sys-

tem, describes their structure, their relations and the operations they support.

Oncoviruses: the largest sub-family of retroviruses. They can induce several types of

tumours, e.g carcinoma, lymphoma and leukemia. They have been isolated in humans as

soon as early 1980s.

Pathogen: a biological agent which causes disease or illness to its host.

Prolymphocyte: immature immune cells, obtained from lymphoblasts. The last devel-

opment step in lymphopoiesis, from prolymphocyte to lymphocyte, can take place in two

different locations, which will decide the final role of the cells: the prolymphocytes matur-

ing in the bone marrow itself become B lymphocytes, while those maturing in the thymus

become T lymphocytes.
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Rapid progressors: individuals who progress to AIDS within four years of HIV infec-

tion.

Reverse transcriptase: enzyme which transcribes single-stranded RNA into double-

stranded DNA. This process is the reverse of the normal transcription, which corresponds

to the synthesis of RNA from DNA. These enzymes are also known as RNA-dependent

DNA polymerases.

RNA-dependent DNA polymerase: see reverse transcriptase.

Specific immune response: see adaptive immune response.

Spumaviruses: non-pathogens viruses, also known as foamy viruses. They are mainly

prevalent in non-human primates, and were first described in the early 1950s. They are

easily isolated, thanks to the characteristic foam-like effect they induce.
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