9 research outputs found

    Contribution to the construction of fingerprinting and watermarking schemes to protect mobile agents and multimedia content

    Get PDF
    The main characteristic of fingerprinting codes is the need of high error-correction capacity due to the fact that they are designed to avoid collusion attacks which will damage many symbols from the codewords. Moreover, the use of fingerprinting schemes depends on the watermarking system that is used to embed the codeword into the content and how it honors the marking assumption. In this sense, even though fingerprinting codes were mainly used to protect multimedia content, using them on software protection systems seems an option to be considered. This thesis, studies how to use codes which have iterative-decoding algorithms, mainly turbo-codes, to solve the fingerprinting problem. Initially, it studies the effectiveness of current approaches based on concatenating tradicioanal fingerprinting schemes with convolutional codes and turbo-codes. It is shown that these kind of constructions ends up generating a high number of false positives. Even though this thesis contains some proposals to improve these schemes, the direct use of turbo-codes without using any concatenation with a fingerprinting code as inner code has also been considered. It is shown that the performance of turbo-codes using the appropiate constituent codes is a valid alternative for environments with hundreds of users and 2 or 3 traitors. As constituent codes, we have chosen low-rate convolutional codes with maximum free distance. As for how to use fingerprinting codes with watermarking schemes, we have studied the option of using watermarking systems based on informed coding and informed embedding. It has been discovered that, due to different encodings available for the same symbol, its applicability to embed fingerprints is very limited. On this sense, some modifications to these systems have been proposed in order to properly adapt them to fingerprinting applications. Moreover the behavior and impact over a video produced as a collusion of 2 users by the YouTube’s s ervice has been s tudied. We have also studied the optimal parameters for viable tracking of users who have used YouTube and conspired to redistribute copies generated by a collusion attack. Finally, we have studied how to implement fingerprinting schemes and software watermarking to fix the problem of malicious hosts on mobile agents platforms. In this regard, four different alternatives have been proposed to protect the agent depending on whether you want only detect the attack or avoid it in real time. Two of these proposals are focused on the protection of intrusion detection systems based on mobile agents. Moreover, each of these solutions has several implications in terms of infrastructure and complexity.Els codis fingerprinting es caracteritzen per proveir una alta capacitat correctora ja que han de fer front a atacs de confabulació que malmetran una part important dels símbols de la paraula codi. D'atra banda, la utilització de codis de fingerprinting en entorns reals està subjecta a que l'esquema de watermarking que gestiona la incrustació sigui respectuosa amb la marking assumption. De la mateixa manera, tot i que el fingerprinting neix de la protecció de contingut multimèdia, utilitzar-lo en la protecció de software comença a ser una aplicació a avaluar. En aquesta tesi s'ha estudiat com aplicar codis amb des codificació iterativa, concretament turbo-codis, al problema del rastreig de traïdors en el context del fingerprinting digital. Inicialment s'ha qüestionat l'eficàcia dels enfocaments actuals en la utilització de codis convolucionals i turbo-codis que plantegen concatenacions amb esquemes habituals de fingerprinting. S'ha demostrat que aquest tipus de concatenacions portaven, de forma implícita, a una elevada probabilitat d'inculpar un usuari innocent. Tot i que s'han proposat algunes millores sobre aquests esquemes , finalment s'ha plantejat l'ús de turbocodis directament, evitant així la concatenació amb altres esquemes de fingerprinting. S'ha demostrat que, si s'utilitzen els codis constituents apropiats, el rendiment del turbo-descodificador és suficient per a ser una alternativa aplicable en entorns amb varis centenars d'usuaris i 2 o 3 confabuladors . Com a codis constituents s'ha optat pels codis convolucionals de baix ràtio amb distància lliure màxima. Pel que fa a com utilitzar els codis de fingerprinting amb esquemes de watermarking, s'ha estudiat l'opció d'utilitzar sistemes de watermarking basats en la codificació i la incrustació informada. S'ha comprovat que, degut a la múltiple codificació del mateix símbol, la seva aplicabilitat per incrustar fingerprints és molt limitada. En aquest sentit s'ha plantejat algunes modificacions d'aquests sistemes per tal d'adaptar-los correctament a aplicacions de fingerprinting. D'altra banda s'ha avaluat el comportament i l'impacte que el servei de YouTube produeix sobre un vídeo amb un fingerprint incrustat. A més , s'ha estudiat els paràmetres òptims per a fer viable el rastreig d'usuaris que han confabulat i han utilitzat YouTube per a redistribuir la copia fruït de la seva confabulació. Finalment, s'ha estudiat com aplicar els esquemes de fingerprinting i watermarking de software per solucionar el problema de l'amfitrió maliciós en agents mòbils . En aquest sentit s'han proposat quatre alternatives diferents per a protegir l'agent en funció de si és vol només detectar l'atac o evitar-lo en temps real. Dues d'aquestes propostes es centren en la protecció de sistemes de detecció d'intrusions basats en agents mòbils. Cadascuna de les solucions té diverses implicacions a nivell d'infrastructura i de complexitat.Postprint (published version

    On Lowering the Error Floor of Short-to-Medium Block Length Irregular Low Density Parity Check Codes

    Get PDF
    Edited version embargoed until 22.03.2019 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 22.03.2018 by SE, Doctoral CollegeGallager proposed and developed low density parity check (LDPC) codes in the early 1960s. LDPC codes were rediscovered in the early 1990s and shown to be capacity approaching over the additive white Gaussian noise (AWGN) channel. Subsequently, density evolution (DE) optimized symbol node degree distributions were used to significantly improve the decoding performance of short to medium length irregular LDPC codes. Currently, the short to medium length LDPC codes with the lowest error floor are DE optimized irregular LDPC codes constructed using progressive edge growth (PEG) algorithm modifications which are designed to increase the approximate cycle extrinsic message degrees (ACE) in the LDPC code graphs constructed. The aim of the present work is to find efficient means to improve on the error floor performance published for short to medium length irregular LDPC codes over AWGN channels in the literature. An efficient algorithm for determining the girth and ACE distributions in short to medium length LDPC code Tanner graphs has been proposed. A cyclic PEG (CPEG) algorithm which uses an edge connections sequence that results in LDPC codes with improved girth and ACE distributions is presented. LDPC codes with DE optimized/’good’ degree distributions which have larger minimum distances and stopping distances than previously published for LDPC codes of similar length and rate have been found. It is shown that increasing the minimum distance of LDPC codes lowers their error floor performance over AWGN channels; however, there are threshold minimum distances values above which there is no further lowering of the error floor performance. A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm is presented; the algorithm controls the minimum local girth (global girth) connected in the Tanner graphs of LDPC codes constructed by forfeiting some edge connections. A technique for constructing optimal low correlated edge density (OED) LDPC codes based on modified DE optimized symbol node degree distributions and the MLG (ES) PEG algorithm modification is presented. OED rate-½ (n, k)=(512, 256) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. Similarly, consequent to an improved symbol node degree distribution, rate ½ (n, k)=(1024, 512) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. An improved BP/SPA (IBP/SPA) decoder, obtained by making two simple modifications to the standard BP/SPA decoder, has been shown to result in an unprecedented generalized improvement in the performance of short to medium length irregular LDPC codes under iterative message passing decoding. The superiority of the Slepian Wolf distributed source coding model over other distributed source coding models based on LDPC codes has been shown

    Trellis Decoding And Applications For Quantum Error Correction

    Get PDF
    Compact, graphical representations of error-correcting codes called trellises are a crucial tool in classical coding theory, establishing both theoretical properties and performance metrics for practical use. The idea was extended to quantum error-correcting codes by Ollivier and Tillich in 2005. Here, we use their foundation to establish a practical decoder able to compute the maximum-likely error for any stabilizer code over a finite field of prime dimension. We define a canonical form for the stabilizer group and use it to classify the internal structure of the graph. Similarities and differences between the classical and quantum theories are discussed throughout. Numerical results are presented which match or outperform current state-of-the-art decoding techniques. New construction techniques for large trellises are developed and practical implementations discussed. We then define a dual trellis and use algebraic graph theory to solve the maximum-likely coset problem for any stabilizer code over a finite field of prime dimension at minimum added cost. Classical trellis theory makes occasional theoretical use of a graph product called the trellis product. We establish the relationship between the trellis product and the standard graph products and use it to provide a closed form expression for the resulting graph, allowing it to be used in practice. We explore its properties and classify all idempotents. The special structure of the trellis allows us to present a factorization procedure for the product, which is much simpler than that of the standard products. Finally, we turn to an algorithmic study of the trellis and explore what coding-theoretic information can be extracted assuming no other information about the code is available. In the process, we present a state-of-the-art algorithm for computing the minimum distance for any stabilizer code over a finite field of prime dimension. We also define a new weight enumerator for stabilizer codes over F_2 incorporating the phases of each stabilizer and provide a trellis-based algorithm to compute it.Ph.D

    Learning From Almost No Data

    Get PDF
    The tremendous recent growth in the fields of artificial intelligence and machine learning has largely been tied to the availability of big data and massive amounts of compute. The increasingly popular approach of training large neural networks on large datasets has provided great returns, but it leaves behind the multitude of researchers, companies, and practitioners who do not have access to sufficient funding, compute power, or volume of data. This thesis aims to rectify this growing imbalance by probing the limits of what machine learning and deep learning methods can achieve with small data. What knowledge does a dataset contain? At the highest level, a dataset is just a collection of samples: images, text, etc. Yet somehow, when we train models on these datasets, they are able to find patterns, make inferences, detect similarities, and otherwise generalize to samples that they have previously never seen. This suggests that datasets may contain some kind of intrinsic knowledge about the systems or distributions from which they are sampled. Moreover, it appears that this knowledge is somehow distributed and duplicated across the samples; we intuitively expect that removing an image from a large training set will have virtually no impact on the final model performance. We develop a framework to explain efficient generalization around three principles: information sharing, information repackaging, and information injection. We use this framework to propose `less than one'-shot learning, an extreme form of few-shot learning where a learner must recognize N classes from M < N training examples. To achieve this extreme level of efficiency, we develop new framework-consistent methods and theory for lost data restoration, for dataset size reduction, and for few-shot learning with deep neural networks and other popular machine learning models

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Part I:

    Get PDF

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    K-State undergraduate catalog, 1992-1994

    Get PDF
    Course catalogs were published under the following titles: Catalogue of the officers and students of the Kansas State Agricultural College, with a brief history of the institution, 1st (1863/4); Annual catalogue of the officers and students of the Kansas State Agricultural College for, 2nd (1864/5)-4th (1868/9); Catalogue of the officers and students of the Kansas State Agricultural College for the year, 1869-1871/2; Hand-book of the Kansas State Agricultural College, Manhattan, Kansas, 1873/4; Biennial catalogue of the Kansas State Agricultural College, Manhattan, Kansas, calendar years, 1875/77; Catalogue of the State Agricultural College of Kansas, 1877/80-1896/97; Annual catalogue of the officers, students and graduates of the Kansas State Agricultural College, Manhattan, 35th (1897/98)-46th (1908/09); Catalogue, 47th (1909/10)-67th (1929/30); Complete catalogue number, 68th (1930/31)-81st (1943/1944); Catalogue, 1945/1946-1948/1949?; General catalogue, 1949/1950?-1958/1960; General catalog, 1960/1962-1990/1992. Course catalogs then split into undergraduate and graduate catalogs respectively: K-State undergraduate catalog, 1992/1994- ; K-State graduate catalog, 1993/1995-Citation: Kansas State University. (1992). K-State undergraduate catalog, 1992-1994. Manhattan, KS: Kansas State University.Call number: LD2668.A11711 K7
    corecore