

ON LOWERING THE ERROR-FLOOR OF
SHORT-TO-MEDIUM BLOCK LENGTH IRREGULAR

LOW DENSITY PARITY-CHECK CODES

Umar-Faruk Abdu-Aguye

Ph.D.

October, 2017

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognize that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the author’s prior
consent.

Copyright © 2017 Umar-Faruk Abdu-Aguye

ON LOWERING THE ERROR-FLOOR OF
SHORT-TO-MEDIUM BLOCK LENGTH IRREGULAR

LOW DENSITY PARITY-CHECK CODES

by

UMAR-FARUK ABDU-AGUYE

A thesis submitted to Plymouth University

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communication and Electronic Engineering

School of Computing, Electronics and Mathematics

Faculty of Science and Engineering

Plymouth University

United Kingdom

October, 2017

On lowering the error-floor of short-to-medium block length
irregular low density parity-check codes

Umar-Faruk Abdu-Aguye

Abstract

Gallager proposed and developed low-density parity-check (LDPC) codes in the early 1960s. LDPC

codes were rediscovered in the early 1990s and shown to be capacity-approaching over the additive

white Gaussian noise (AWGN) channel. Subsequently, density evolution (DE) optimized symbol node

degree distributions were used to significantly improve the decoding performance of short-to-medium

length irregular LDPC codes. Currently, the short-to-medium length LDPC codes with the lowest

error-floor are DE optimized irregular LDPC codes constructed using progressive edge-growth (PEG)

algorithm modifications which are designed to increase the approximate cycle extrinsic message

degrees (ACE) in the LDPC code graphs constructed.

The aim of the present work is to find efficient means to improve on the error-floor performance

published for short-to-medium length irregular LDPC codes over AWGN channels in the literature. An

efficient algorithm for determining the girth and ACE distributions in short-to-medium length LDPC

code Tanner graphs has been proposed. A cyclic PEG (CPEG) algorithm which uses an edge

connections sequence that results in LDPC codes with improved girth and ACE distributions is

presented. LDPC codes with DE optimized/’good’ degree distributions which have larger minimum

distances and stopping distances than previously published for LDPC codes of similar length and rate

have been found. It is shown that increasing the minimum distance of LDPC codes lowers their

error-floor performance over AWGN channels; however, there are threshold minimum distances

values above which there is no further lowering of the error-floor performance. A minimum local girth

(edge skipping) (MLG (ES)) PEG algorithm is presented; the algorithm controls the minimum local

girth (global girth) connected in the Tanner graphs of LDPC codes constructed by forfeiting some

edge connections. A technique for constructing optimal low-correlated-edge density (OED) LDPC

codes based on modified DE optimized symbol node degree distributions and the MLG (ES) PEG

algorithm modification is presented. OED rate-½ (�, �) = (512, 256) LDPC codes have been shown

to have lower error-floor over the AWGN channel than previously published for LDPC codes of

similar length and rate. Similarly, consequent to an improved symbol node degree distribution, rate-½

(�, �) = (1024, 512) LDPC codes have been shown to have lower error-floor over the AWGN

channel than previously published for LDPC codes of similar length and rate.

An improved BP/SPA (IBP/SPA) decoder, obtained by making two simple modifications to the

standard BP/SPA decoder, has been shown to result in an unprecedented generalized improvement in

the performance of short-to-medium length irregular LDPC codes under iterative message-passing

decoding. The superiority of the Slepian-Wolf distributed source coding model over other distributed

source coding models based on LDPC codes has been shown.

i

Table of Contents

1 Introduction 1

1.1 Linear Codes: Basic Definitions and Notation . 6

1.1.1 Linear Codes 6

1.1.2 Code Rate 6

1.1.3 Hamming Weight 6

1.1.4 Hamming Distance 6

1.1.5 Minimum Distance 7

1.1.6 Parity-Check Matrix and Parity-Check Equation 7

1.1.7 Regular and Irregular Codes 7

1.1.8 Generator Matrix 8

1.1.9 Syndrome 8

1.2 Background to Error Correction Coding 8

1.3 Thesis Aim and Objectives 18

1.4 Thesis Organisation 19

2 LDPC codes, the progressive edge-growth (PEG) algorithm, and the

belief propagation or sum-product algorithm (BP/SPA) decoder 22

2.1 LDPC Codes 23

2.1.1 Vertex, Edge, Bipartite or Tanner Graph, Subgraphs, Adjacency

and Incidence, and Simple Graphs . 25

2.1.2 Path, Diameter, Cycle, Local Girth and Global Girth 27

2.1.3 Degree, Degree Sequence and Degree Distribution 28

2.2 LDPC Code Performance Curves 30

2.3 LDPC Code Constructions 32

2.3.1 Random LDPC Codes 32

2.3.2 Algebraic LDPC Codes . 40

ii

2.3.3 Non-Binary LDPC Codes 42

2.4 The Progressive Edge-Growth (PEG) Algorithm 42

2.4.1 The Standard Progressive Edge-Growth LDPC Code

Construction Algorithm 47

2.4.2 The Edge Connections Sequence of the Standard PEG Algorithm 54

2.4.3 The LDPC Matrix Configuration File 55

2.5 The Belief Propagation or Sum-Product Algorithm (BP/SPA)

Message-Passing Iterative Decoder . 56

2.5.1 Message Encoding . 60

2.5.2 The AWGN Channel . 66

2.5.3 Iterative Decoding . 71

2.6 Performance of the Implemented BP/SPA Decoder . 90

2.7 Determination of LDPC Code Minimum Weights: Minimum Distance

Weights ����, and Minimum Stopping Set Weights ���� 92

2.7.1 Stopping Sets and Minimum Stopping Set Weights ���� 92

2.7.2 Linear Code Minimum Distance ���� and Stopping Distance ����

Evaluation . 92

2.8 Summary . 93

3 Challenges to lowering the error-floor of short-to-medium length

LDPC Codes over AWGN channels, and Modified PEG algorithms 95

3.1 Introduction . . . 95

3.2 Challenges to Lowering the Error-floor of Short-to-Medium Length LDPC

 Codes over AWGN Channels . . . 95

 3.2.1 Girth Properties of LDPC Code Tanner Graph 96

 3.2.2 Regular vs. Irregular LDPC Codes . . . 97

 3.2.3 The Minimum Distance ���� of LDPC Codes . 98

 3.2.4 The Approximate Cycle Extrinsic Message Degree (ACE),

 and the Minimum Stopping Set Weight ���� of LDPC codes 99

 3.2.5 Trapping Sets . . . 101

3.3 Modified PEG Algorithms . . . 109

iii

 3.3.1 The Original/Standard PEG Algorithm 109

 3.3.2 An Improved PEG (IPEG) Construction of Irregular LDPC codes . . . 112

 3.3.3 A Modified PEG Construction for Irregular LDPC

Codes without Small Stopping Sets 114

 3.3.4 A Randomized PEG (RandPEG) Algorithm 117

 3.3.5 A Generalized ACE Constrained PEG Algorithm for

Irregular LDPC Codes 119

 3.3.6 A Decoder-Optimized PEG Algorithm Modification for

Irregular LDPC Codes . 122

 3.3.7 An Elementary Trapping Sets (ETS-) Constrained PEG Algorithm 124

 3.3.8 An Error Minimizing PEG Algorithm 127

3.4 Summary 128

4 Determining the girth and ACE of cycles in LDPC code Tanner graphs 129

4.1 Introduction . 129

4.2 Existing Algorithms for Determining Girth Properties and Counting

Cycles in LDPC Code Tanner Graphs 131

4.3 Existing Algorithms for Determining the ACE Spectrum in LDPC

 Code Tanner Graphs 131

4.4 An Efficient Algorithm for Determining the Local Girth and ACE

Distributions in Short-to-Medium Length LDPC Code Tanner Graphs 132

4.4.1 The Single-Edge Tree-Apex (SETA) Subgraph Expansion

 Technique for Finding Short Cycles in LDPC Code Tanner Graphs 132

4.4.2 Determining the ACE of Short Cycles Using SETA

 Subgraph Expansions 135

4.4.3 The SETA Subgraph Expansion Based Algorithm for Determining

 the Girth and ACE Distributions in LDPC Code Tanner Graphs 137

4.4.4 Evaluating the Performance of the Algorithm for Determining

 the Girth and ACE Distributions in LDPC Code Tanner Graphs 139

4.5 Summary 148

iv

5 A cyclic PEG (CPEG) algorithm & The minimum weight, girth, and

ACE distributions in irregular LDPC codes constructed using PEG

and CPEG algorithms 150

5.1 Introduction 150

5.2 The Cyclic Progressive Edge-Growth (CPEG) Algorithm 152

5.3 Minimum Codeword Weight and Minimum Stopping Set Weight

 Distributions in PEG, ACE PEG, CPEG, and ACE PEG Code Ensembles 155

5.4 The Effect of Minimum Distance ����on the Error-floor Performance

 of Short-to-Medium Length LDPC Codes over the AWGN Channel 160

5.5 Global Girth, Local Girth and Average ACE Distribution in PEG,

ACE PEG, CPEG, and ACE PEG Code Ensembles . 164

5.5.1 Global Girth Distributions . 164

5.5.2 Local Girth Distributions . 164

5.5.3 ACE Distributions 165

5.6 Summary 167

6 Lowering the error-floor of short-to-medium length LDPC codes:

Improved PEG algorithms and degree distributions 170

6.1 Introduction 170

6.2 The Minimum Local Girth (Edge Skipping) (MLG(ES)) PEG Algorithm

and Optimal low-correlated-Edge Density (OED) LDPC Codes 173

6.3 Performance of OED Codes . 175

 6.3.1 Performance of Rate-½ (�, �) = (512, 256) OED Codes 176

 6.3.2 Performance of Rate-½ (�, �) = (1024, 512) OED Codes 185

6.4 Performance and Features of LDPC Codes Constructed using the

 Generalized ACE Constrained PEG (G-ACE PEG) Algorithm 192

6.5 Irregular Rate-½ (�, �) = (504, 252) and (1008, 504) MacKay LDPC

 Codes and Symbol Node Degree Distributions . 197

6.6 Regular Rate-½ (�, �) = (504, 252) and (1008, 504) MacKay Codes

 versus Regular Rate-½ (�, �) = (512, 256) and (1024, 512) Standard

v

PEG Codes 202

6.7 The Error-floor Performance of Short-to-Medium Length Irregular LDPC

 Codes from Recent Modified PEG Algorithms . 205

6.8 Summary . 208

7 An improved BP/SPA decoder 210

 7.1 Introduction 210

7.2 A Modified BP/SPA Algorithm: Fixed Parity-Check Equation Sequence

(FPCES) versus Randomized Parity-Check Equation Sequence (RPCES) 210

7.3 An Improved BP/SPA Decoder: BP/SPA Decoding using a Randomized

 Parity-Check Equation Sequence and � Detected Decoding Failure Retrials

 (RPCES + �-DFR) . 221

7.4 Summary . 229

8 Modifying the BP/SPA decoder for Slepian-Wolf coding

8.1 Introduction 231

 8.2 Modifying the BP/SPA Decoder for Slepian-Wolf Coding of

Correlated Information Sources . 233

8.2.1 Modifying the BP/SPA Decoder for Syndrome Decoding of

 Correlated Information Sources over the AWGN Channel: A

 SW-like Decoding Model . 236

8.2.2 Modifying the BP/SPA Decoder for Slepian-Wolf Coding of

Correlated Information Sources over the BSC 240

8.3 Summary . 246

9 Conclusions 247

 9.1 Contributions to Knowledge . . . 247

 9.2 Conclusions and Recommendations for Future Work 249

Appendices 255

References 257

Publications 275

vi

List of Tables

Table Page

2.1 MAP decoding of an (�, �) = (3, 2) SPC code by codeword enumeration 71
2.2 MAP decoding by codeword enumeration . 76
2.3 Decoding iteration 0, equation 0 . 79
2.4 Decoding iteration 0, equation 1 . 81
2.5 Decoding iteration 0, equation 2 83
2.6 Decoding iteration 1, equation 0 83
2.7 Decoding iteration 1, equation 1 84
2.8 Decoding iteration 1, equation 2 84
2.9 Decoding iteration 2, equation 0 85
2.10 Decoding iteration 2, equation 1 85
2.11 Decoding iteration 2, equation 2 86
2.12 MAP decoding versus iterative decoding . 86
4.1 CPU running times using: SETA (girth only), SETA (girth + ACE), and
 the MPA and IMPA . 140
4.2 CPU running times for the three rate-½ LDPC code types and dimensions 142
4.3 Girth and ACE distributions in Type I, Type II, and Type III rate-½

 (512, 256) LDPC code graphs . 144
4.4 Girth and ACE distributions in Type I, Type II, and Type III rate-½

 (1024, 512) LDPC code graphs . . . 145
4.5 Girth and ACE distributions in Type I, Type II, and Type III rate-½

 (2048, 1024) LDPC code graphs 146
4.6 Local girth distributions of codes in ensembles of LDPC codes constructed
 using PEG, ACE PEG, and G-ACE PEG algorithms .. . 147
4.7 ACE distribution of codes in ensembles of LDPC codes constructed
 using PEG, ACE PEG, and G-ACE PEG algorithms .. . 148

5.1 Probability of error for 10 randomly selected DE optimized rate-½ (512, 256)
ACE PEG codes with ���� in the range 9 ≤ ���� ≤ 20 . 161

5.2 Local girth distributions in the four sub-ensembles of irregular rate-½

 (512, 256) PEG codes . 165
5.3 A summary of the ACE distributions in the four sub-ensembles of irregular

 rate-½ (512, 256) PEG codes . 166
6.1 Input and output degree distributions, maximum symbol node degrees ��(���),

global girths, edge densities (number of edges), and average ACEs of rate-½

(�, �) = (512, 256) and (576, 288) LDPC codes . 180
6.2 Symbol node degree distributions, maximum symbol node degrees ��(���),

global girths, edge densities (number of edges), and average ACEs of rate-½

(�, �) = (1024, 512) and (1056, 528) LDPC codes . 188
7.1 Decoding iteration 0, equation 2 . . . 213
7.2 Decoding iteration 0, equation 1 . . . 213

vii

Table Page

7.3 Decoding iteration 0, equation 0 . . . 214
7.4 Decoding iteration 1, equation 1 . . . 214
7.5 Decoding iteration 1, equation 2 . . . 215
7.6 Decoding iteration 1, equation 0 . . . 215
7.7 Decoding iteration 2, equation 2 . . . 216
7.8 Decoding iteration 2, equation 0 . . . 216
7.9 Decoding iteration 2, equation 1 . . . 217
7.10 MAP decoding, FPCES BP/SPA decoding, and BP/SPA decoding 217

7.11 Decoding error distributions for the lowest-error-floor rate-½ (�, �) = (512, 256)

OED ACE PEG code using the RPCES + �-DFR BP/SPA decoder with � = 10 and

100 . . . 227

7.12 Decoding error distributions for the lowest-error-floor rate-½ (�, �) = (1024, 512)

ACE PEG code using the RPCES + �-DFR BP/SPA decoder with � = 10 and 100. . 228

viii

List of Figures

Figure Page

1.1 The formal architecture of a communication system . 1
1.2 Bit errors in a received bit stream . 2

2.1 The parity-check matrix of a [25, 5, 8]� LDPC code . 24

2.2 The Tanner graph of a [25, 5, 8]� LDPC code 26
2.3 Typical FER performance of iteratively decodable codes over AWGN channels 31

2.4 An (�, , �) = (20, 3, 4) Gallager LDPC code matrix . 33

2.5 A length 20 (3, 4)-regular MacKay Neal LDPC code matrix 35

2.6 A 4-cycle in a length 12 (3, 4)-regular MacKay Neal LDPC code matrix 36
2.7 A length 20 rate-1 4⁄ repeat-accumulate code matrix . 37
2.8 Column splitting to eliminate a 4-cycle . 38
2.9 Row splitting to eliminate a 4-cycle . 38
2.10 Bit filling to avoid 4-cycles . 39

2.11 An irregular Tanner graph with symbol degree sequence "� = #2, 2, 2, 3, 3, 3$ 45

2.12 A subgraph expanded from symbol node �% to expansion depth & 46

2.13 The edge connections sequence of the standard PEG algorithm 54
2.14 An example of the contents of an LDPC matrix configuration file created for

an LDPC code constructed using the PEG algorithm . 55
2.15 (a) The contents of an LDPC matrix configuration file, and (b) the corresponding

 [20, 10, 4] LDPC code ' matrix . 59

2.16 The [20, 10, 4] row echelon LDPC code matrix '() . 60

2.17 The [20, 10, 4] reduced row echelon LDPC code matrix '(() 61

2.18 Submatrix * obtained from '(() - the [20, 10, 4] reduced row echelon LDPC code
matrix 62

2.19 Matrix *+ – the transpose of submatrix A . 63
2.20 The codeword generator matrix ,(() corresponding to matrix '(() 63
2.21 The codeword generator matrix , for LDPC code matrix ' 64

2.22 The ' matrix of an (�, �) = (6, 3) linear code . 75

2.23 The , matrix of an (�, �) = (6, 3) linear code . 75
2.24 An initialized probability matrix, '- . 78
2.25 Performance verification for the BP/SPA decoder implemented 91
4.1 A SETA subgraph expansion to find a short cycle of symbol node s, the path
 from edge (�%, .�/) to edge (.�0, �%) is a cycle, and the girth of this cycle 1234

5 = 6

because vertex .�0 is at depth & = 2 . 133

4.2 Evaluating the ACE of a cycle of girth 1 = 6 . 134
4.3 Check vertex ACE weight assignments during a SETA subgraph expansion to

find a short cycle of symbol �6 through edge (�6, .7) . 136
4.4 CPU running time in seconds (s) for determining the girth and ACE

Distributions in Type I, Type II, and Type III codes . 143

ix

Figure Page

5.1 The edge connections sequence of the CPEG algorithm 154
5.2 The edge connections sequence of the ModPEG algorithm 155
5.3 Minimum distance weight ���� distributions in ensembles of rate-½

 (512, 256) LDPC codes constructed using PEG, ACE PEG, CPEG,
and ACE CPEG algorithms 157

5.4 Minimum stopping set weight ���� distributions in ensembles of rate-½

 (512, 256) LDPC codes constructed using PEG, ACE PEG, CPEG,
and ACE CPEG algorithms 158

5.5 Minimum distance ���� vs. average error-floor performance of DE

optimized rate-½ (512, 256) ACE PEG codes
(Average FER for 10 codes at 89/;< = 4.00dB) . 162

5.6 FER curves for irregular rate-½ (512, 256) codes constructed using
 PEG, CPEG, ACE PEG, and ACE CPEG algorithms . 167

6.1 FER for five rate-½ (�, �) = (512, 256) standard PEG codes with increasing

edge densities, and the (512, 256) benchmark PEG code 181

6.2 FER for the rate-½ (�, �) = (512, 256) OED PEG and benchmark codes . . . 182

6.3 FER curves for, i) the (512, 256) benchmark code, ii) the (512, 256)

OED PEG code, iii) the (576, 288) WiMAX code, iv) the (512, 256)

ACE PEG code, and v) the (512, 256) OED ACE PEG code 183

6.4 FER curves for, i) the (�, �) = (1024, 512) benchmark code with

degree distribution @A(x), and an (�, �) = (1024, 512) standard PEG code
constructed with degree distribution @B(x) . 186

6.5 FER curves for the benchmark, standard PEG, and ACE PEG rate-½

(1024, 512) codes; and the WiMAX rate-½ (1056, 528) code 190

6.6 FER curves for rate-½ (�, �) = (1024, 512) codes, i) the benchmark
code with distribution @A(x), ii) the ACE PEG code with distribution @A(x),
and iii) the ACE PEG code with distribution @C(x) . 191

6.7 FER curves for rate-½ (�, �) = (512, 256) codes, i) the lowest-error-floor
G-ACE PEG code, and ii) the lowest-error-floor OED ACE PEG code 195

6.8 FER curves for rate-½ (�, �) = (1024, 512) codes, i) the lowest-error-floor
G-ACE PEG code, and ii) the lowest-error-floor ACE PEG code 196

6.9 FER curves for the rate-½ (504, 252) MacKay code, the rate-½

(512, 256) benchmark code, and the lowest-error-floor rate-½ (512, 256)
OED ACE PEG code 198

6.10 The rate-½ (512, 256) OED PEG, ACE PEG and OED ACE PEG

codes based on MacKay distribution DE(x) vs. the rate-½ (504, 252)

MacKay code, the (512, 256) benchmark code, and the

lowest-error-floor (512, 256) OED ACE PEG code . 199

6.11 FER curves for the rate-½ (1008, 504) MacKay code, the rate-½

 (1024, 512) benchmark code and the lowest-error-floor rate-½

(1024, 512) ACE PEG code . 201

x

Figure Page

6.12 FER for the regular rate-½ (504, 252) MacKay code, regular rate-½

(512, 256) standard PEG codes with �� = 3 and 4 respectively, and the

lowest-error-floor irregular rate-½ (512, 256) OED ACE PEG code 203

6.13 FER for the regular rate-½ (1008, 504) MacKay code, the regular rate-½

(1024, 512) standard PEG codes with �� = 3 and 4 respectively, and the

lowest-error-floor irregular rate-½ (1024, 512) ACE PEG code 204

7.1 FER curves for the lowest-error-floor rate-½ (�, �) = (512, 256) OED ACE PEG
code using: i) the standard BP/SPA decoder (FPCES BP/SPA decoder), and
ii) the RPCES BP/SPA decoder . 219

7.2 FER curves for the lowest-error-floor rate-½ (�, �) = (1024, 512) ACE PEG
code using: i) the standard BP/SPA decoder (FPCES BP/SPA decoder), and
ii) the RPCES BP/SPA decoder . 220

7.3 FER curves for the lowest-error-floor rate-½ (�, �) = (512, 256)
OED ACE PEG code using: i) the standard BP/SPA decoder
(FPCES BP/SPA decoder), ii) the RPCES BP/SPA decoder, iii) the
RPCES + 10-DFR BP/SPA decoder, and iv) the RPCES + 100-DFR BP/SPA
decoder 224

7.4 FER curves for the lowest-error-floor rate-½ (�, �) = (1024, 512)
ACE PEG code using: i) the standard BP/SPA decoder
(FPCES BP/SPA decoder), ii) the RPCES BP/SPA decoder, iii) the
RPCES + 10-DFR BP/SPA decoder, and iv) the RPCES + 100-DFR BP/SPA
decoder 226

8.1 Conventional BP/SPA decoder vs. the BP/SPA syndrome decoder
using an LDPC code 240

8.2 Distributed source coding using LDPC codes of length 1000 at
symmetric and asymmetric rates . 245

xi

List of Algorithms

Algorithm Page

2.1 The standard progressive edge-growth (PEG) algorithm 47
2.2 The standard progressive edge-growth (PEG) algorithm with

optional nongreedy subgraph expansion . 53
2.3 The BP/SPA message-passing iterative decoding algorithm for decoding

BPSK modulated LDPC codes received over AWGN channels 88
4.1 The algorithm for determining the girth and ACE distributions

in LDPC code Tanner graphs . 138
5.1 The cyclic progressive edge-growth (CPEG) algorithm 153
6.1 The minimum local girth (edge skipping) (MLG (ES)) progressive

edge-growth (PEG) algorithm . 173

xii

Glossary

ACE Approximate Cycle EMD

AWGN Additive White Gaussian Noise

BEC Binary Erasure Channel

BER Bit Error Rate

BCH Bose-Chaudhuri-Hocquenghem

BCJR Bahl Cocke Jelinek Raviv

BP Belief Propagation

BPSK Binary Phase-Shift Keying

BP/SPA Belief Propagation/Sum-Product Algorithm

B&B Branch and Bound

CCSDS Consultative Committee for Space Data Systems

CDMA Code Division Multiple Access

CPEG Cyclic PEG

CPU Central Processing Unit

DE Density Evolution

DO Decoder Optimized

DOIPEG Decoder Optimized IPEG

DOPEG Decoder Optimized PEG

DSC Difference-Set Cyclic

DVB Digital Video Broadcasting

ECC Error Correction Coding

EG Euclidean Geometry

EMD Extrinsic Message Degree

EMPEG Error Minimization PEG

ETS Elementary Trapping Set(s)

xiii

EVDO EVolution, Data Optimized

FER Frame Error Rate

FG Finite Geometry

FPCES Fixed Parity-Check Equation Sequence

G-ACE Generalized ACE

GB GigaBytes

GF Galois Field

GNU GNU is Not Unix!

GSM Global System for Mobile communication

HSPA High Speed Packet Access

IBP/SPA Improved BP/SPA

IEEE Institute of Electrical and Electronics Engineers

IMPA Improved Message-Passing Algorithm

IPEG Improved PEG

IRA Irregular Repeat Accumulate

LDPC Low-Density Parity-Check

LTE Long Term Evolution (4G)

MAP Maximum A Posteriori

ML Maximum-Likelihood

MLG (ES) PEG Minimum Local Girth (Edge Skipping) PEG

ModPEG Modified PEG

MPA Message-Passing Algorithm

MRL MoRe Likely

MSA Min-Sum Algorithm

�-DFR � detected Decoding Failure Retrials

NASA/ESA National Aeronautics and Space Administration/European Space Agency

NP Non-deterministic Polynomial-time

xiv

OSMLD One-Step Majority-Logic Decodable

OED Optimal low-correlated-Edge Density

PEG Progressive Edge-Growth

PG Projective Geometry

POTS Plain Old Telephone Service

QC Quasi-Cyclic

RA Repeat-Accumulate

RAM Random Access Memory

RandPEG Randomized PEG

RM Reed-Muller

RPCES Randomized Parity-Check Equation Sequence

RS Reed-Solomon

SISO Soft Input Soft Output

SNR Signal-to-Noise Ratio

SNR(dB) Signal-to-Noise Ratio in decibels

SOVA Soft-Output Viterbi Algorithm

SPA Sum-Product Algorithm

SPC Single Parity-Check

SW Slepian-Wolf

TCM Trellis Coded Modulation

UMTS Universal Mobile Telecommunications System (3G)

WiMAX Worldwide Interoperability for Microwave Access. IEEE 802.16x standards

Wi-Fi IEEE 802.11x standards

xv

Acknowledgements

It has been a privilege to have Dr. Marcel Adrian Ambroze as my director of studies. I would
like to thank him for his kind patience, support, guidance and encouragement during my
study. I would like to thank my second supervisor, Professor Martin Tomlinson, for his kind
advice, support, guidance and encouragement; working with him has been a rare privilege.

I am grateful to Dr. Mohammed Zaki Ahmed for his effort in support of the tripartite
agreement between Emerging Markets Telecommunications Services (EMTS) Nigeria
Limited (9mobile Nigeria); Ahmadu Bello University, Zaria, Nigeria; and Plymouth
University, UK; which created the opportunity for this PhD study.

I am forever indebted to Emerging Markets Telecommunications Services (EMTS) Nigeria
Limited (9mobile Nigeria) for the scholarship award. To my direct contacts at 9mobile
Nigeria, Mrs. Oyetola Oduyemi and Mrs. Rose Makinwa, I am sincerely grateful to you for
your responsive and reliable support. I am also grateful to the Ahmadu Bello University,
Zaria, Nigeria, for the award of the study fellowship. Both of these awards allowed me to
pursue my study in comfort.

I appreciate the sacrifices of Professor Muhammed Bashir Muazu and Professor Muhammad
Munzali Jibril for spearheading and nurturing the early days of the 9mobile
Telecommunications Engineering Postgraduate Program (9mobile-TEP).

To my colleagues in the Fixed & Mobile Communication Research Group (Muhammad
Bashir Abdulrazaq, Mohammed Dikko Almustapha and Saeed Anibaba Eleruja) and those in
the Signal Processing & Multimedia Communications Research Group (Dr. Ishaka Mkwawa,
Dr. Emmanuel Jammeh, Dr. Louis Anegekuh, Peng Zhao, Ali Al-Nuaimi, Shaymaa
Al-Juboori, Ali Alfayly, Salah Al-Hassan, Alcardo Alex Barakabitze, Amulya Karadi,
Ibraheem Mohammadamin, Achyut Parajuli, and Chimobi Stanley Eke), I am thankful for
your friendship, knowledge sharing and assistance.

To Professor Emmanuel C. Ifeachor, I appreciate your mentoring and the support you offered
during the 9mobile-TEP program documentary video coverage. To Carol Watson, my
Doctoral College Administrator, for your consistent support and patience.

To my friends Dr. Suleiman Garba, Mr. Yahaya Bello and Mr. Sunday Paul Onyabe, thank
you for always being there and your unending support and encouragement.

To my beloved wife, daughter and son - Munirat, Fareeda and Saleem, for their love, support
and company.

Lastly, but by no means least, to my parents, brothers and sisters, for their love, prayers and
support.

xvi

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been
registered for any other University award.

This study was fully financed with the aid of scholarship from Emerging Markets
Telecommunications Services (EMTS) Nigeria Limited (9mobile Nigeria) and a study
fellowship from the Ahmadu Bello University, Zaria, Kaduna State, Nigeria.

A programme of advanced study was undertaken, which included extensive reading of
literature relevant to the research project; development of software for error correction code
construction, analysis and performance simulations in the C programming language; writing
conference papers; and attendance of international conferences on communications.

The author has presented papers in the following peer-reviewed international conferences:

1. 9th International Symposium on Turbo Codes & Iterative Information Processing
(ISTC’ 2016), Brest, France, 5 - 9 September 2016;

2. 24th International Conference on Software, Telecommunications and Computer Networks
(SoftCOM 2016), Split, Croatia, 22 - 24 September 2016; and

3. 10th International Conference on Signal Processing and Communication Systems
(ICSPCS’ 2016), Surfers Paradise, Australia, 19 - 21 December 2016.

The author has co-authored a paper which has been presented at the following international
conference:

1. 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP 2017),
Montreal, Canada, 14 - 16 November 2017.

Word count of main body of thesis: 91,802

Signed: __________________________

Umar-Faruk Abdu-Aguye

Date: __________________________

xvii

This thesis is dedicated to my family

1

Chapter 1

Introduction

Information theory studies the quantification, processing, transmission, extraction and utilization of

information. The broad field of information theory has its origins in Claude Shannon’s 1948 paper

entitled ‘A Mathematical Theory of Communication’. The five major concepts in Shannon’s paper are

entropy and information content, channel capacity and the noisy-channel coding theorem, formal

architecture of communication systems, unification of all information media through digital

representation of messages over communication channels, and source coding or data compression. In

essence, Shannon’s paper laid the foundations of the digital age and he is often called the

‘father of the digital age’. Figure 1.1 shows the formal architecture of a communication system.

Figure 1.1: The formal architecture of a communication system [Aftab et al., 2001]

When messages are sent over a communication link it is essential that they are received with the

lowest possible probability of error. Errors are mainly as a result of the channel. Sources of error

SIGNAL
RECEIVED

SSIGNAL

MESSAGE MESSAGE

NOISE

SOURCE

INFORMATION

SOURCE
TRANSMITTER

 CHANNEL

RECIEVER DESTINATION +

2

abound in practical communication systems and include noise, interference, distortion and attenuation.

The probability of bit error, or bit error rate (BER), is defined as:

F8G = HI�J)(KL J�M)((K(�
+KMNO �I�J)(KL J�M� (1.1)

As an example, Figure 1.2. shows the value of the bits transmitted and received in a bit stream

transmitted over a communication channel.

Figure 1.2: Bit errors in a received bit stream

Out of a total of 50 bits transmitted and received, 3 bit errors occurred at the receiver. Substituting in

equation (1.1), the BER of the received bit stream is F8G = 0.06 = 6 × 10Q�.

For reliable transmission of information across noisy channels, information bits are often partitioned

into blocks of length � bits, and then encoded by appending redundant (parity) bits to each block.

Codes (codewords) of block length � bits are obtained when information blocks of length � bits are

encoded. Although the information bits in a code block are generally independent, the parity bits

should be dependent on all � information bits in the block. Code bits are comprised of either the

information and parity bits combined or only the parity bits. Code bits are transmitted over the

channel.

Equation (1.2) presents the formula for the code rate, G, which is defined as the ratio of the number of

information bits in each code block, � to the number of code bits, �.

G = R
� (1.2)

Transmitted bits :

 Received bits :

0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0

Bit errors Channel

3

The block error rate, or frame error rate (FER) is defined as:

S8G = HI�J)(KL JOKTR� U)TKU)U V�MW NM O)N�M K�) J�M)((K(
+KMNO �I�J)(KL JOKTR� U)TKU)U (1.3)

According to Shannon, “The fundamental problem of communication is that of reproducing at one

point, either exactly or approximately, a message selected at another point.” Therefore, the

fundamental challenge in communication engineering is finding the most efficient way(s) to attain the

minimum achievable error rates (FER and/or BER) over any given channel.

The most noteworthy result of Shannon’s paper is the channel capacity and noisy-channel coding

theorem; the concept that if efficiently coded information of block length � is transmitted through a

noisy communication channel at a rate equal to or below a limit called the channel capacity X, the

probability of decoding error would approach zero exponentially as � → ∞. This limit is also known

as the Shannon limit. The channel capacity of a communication channel represents the Shannon limit

in bits per second. Channel capacity is solely determined by the statistical model of the

communication channel, it is a theoretical benchmark that states what can be achieved and challenges

people to achieve it. The noisy-channel coding theorem gave rise to error correction codes and the

entire field of channel coding theory: the concept of introducing redundant digits in digital

representation to protect the information in transmitted messages against corruption. The channel

capacity C for the additive white Gaussian noise (AWGN) channel is presented in equation (1.4),

 X = [log� _1 + a
b

2c
Hd

e (1.4)

where [is the accessible bandwidth, and 8J ;K⁄ is the energy per bit to noise power spectral density

ratio. Equation (1.5) is obtained when equation (1.4) is solved for 8J ;K⁄ .

2c
Hd

= �f g⁄ Q E
a b⁄ (1.5)

4

Consider channels with unlimited bandwidths ([→ ∞) and/or bit rates reducing to zero (X → 0), in

these situations X [⁄ → 0. Equation (1.6) resolves equation (1.5) in the limit X [⁄ → 0, and gives

the Shannon limit for AWGN channels in terms of 8J ;K⁄ .

2c
Hd

= �f g⁄ QE
a b⁄ > lima b⁄ → k �

f g⁄ QE
a b⁄ = &�(2) = −1.6dB (1.6)

From equation (1.6), the ultimate Shannon limit on AWGN channels is 8J ;K⁄ = −1.6dB. Thus,

8J ;K⁄ must not be less than −1.6�F on AWGN channels. This implies that for 8J ;K⁄ ≥ −1.6�F

and any given bandwidth [, information can be transmitted on an AWGN channel with as few errors

as desirable if the block length � is sufficiently large, and the transmission rate is not more than the

value of X computed using equation (1.4) [Ambroze, 2000]. For any given modulation scheme in a

practical communication system, the absolute limit of 8J ;K = −1.6�F⁄ for the AWGN channel

should be achieved as the code rate G approaches zero. The 8J ;K⁄ limit for non-zero code rate

increases asymptotically with increasing code rate. [Dolinar et al., 1998]

From the noisy channel coding theorem, it is clear that in order to efficiently utilize communication

channels while maintaining low decoding error probabilities in data transmissions, communication

system implementations would generally require the use of long block lengths. Unfortunately, long

block lengths results in significant overhead in both encoders and decoders in terms of computational

time (delays) and equipment costs. A solution to this challenge was first proposed by Robert Gallager

[Gallager, 1962], he introduced the combination of a new class of parity-check codes, called

low-density parity-check (LDPC) codes, and a probabilistic message-passing decoding technique as a

solution which allowed the utilization of long block lengths prerequisite for low error probabilities

while maintaining low computational requirements and equipment costs.

Developments in coding theory have led to significant improvements in the efficiency and reliability

of communication systems. Error correction coding (ECC) in particular, has proven to be a very

powerful tool for reliable data transfer over a significant variety of channels. In many modern

communication systems, despite efficient coding and transmission at rates below channel capacity, the

5

use of longer block lengths than are desired is inevitable in order to achieve the required decoding

error probabilities. However, for many real-time processing applications long delays are not

acceptable. Thus the maximum acceptable delay in real time applications limits the length of codes

that can be used. [Sweeny, 1991].

The minimum acceptable (or recommended) decoding error probabilities for the different error

correction coding applications in modern digital communication systems depends on the nature of the

information being coded. For voice applications the acceptable BER is 10QB. For fibre optical

communication the typical BER is 10QA [Mouri, 2017]. Data communications have more stringent

requirements where 10QEB is often considered the minimum acceptable; the recommended BER for

10 Gigabit Ethernet is 10QEB [Chang, 1999]. As a consequence of the proliferation of

bandwidth-hungry applications such as video transport, data over IP, wireless base-station, and

medical applications, there is an increasing demand for higher data rates and even lower latency for

serial data communication. For example, the Open Base Station Architecture Initiative (OBSAI)

required a BER of less than 10QEn for their proposed wireless base-station networking standard

[Subbiah, 2008].

When data sent over a communication channel is encoded using short-to-medium block lengths,

higher signal-to-noise ratios (SNRs) (or 8J ;K⁄) are required in order to achieve the same error

probability as those for long codes at significantly less SNR. The error correction capability of codes

generally improves with code length. Improving the error correction capability of short-to-medium

length codes decoded using probabilistic decoding is the subject of a significant amount of current

research; such codes will significantly increase the overall efficiency of real-time communication

systems by decreasing coding and decoding complexity, and processing delays while maintaining

acceptable decoding error probabilities.

6

1.1 Linear Codes: Basic Definitions and Notation

1.1.1 Linear Codes

An o�, �, �pq linear code X is a �-dimensional vector subspace of rq�, where rq� is an

�-dimensional vector space over a finite field of s elements, rq. The codewords of linear

codes are the �-dimensional vector subset of rq� which have length of � symbols. Each

codeword is denoted by . = [.k, .E, R . . , .�QE]. The maximum possible number of

codewords in X is given by sR, i.e. |X| ≤ sR. The variable � is called the minimum (Hamming)

distance of the code (see Section 1.1.5). These codes are described as linear because a

codeword can be obtained from linear combinations of other codewords, and the sum of all

codewords in X is an all zeros vector. Mathematical operations such as addition and

multiplication are performed under the algebra of rq. Throughout this thesis, if the subscript s

is omitted from o�, �, �pq in the notation for X it should be understood as o�, �, �p�; that is,

it is a binary code, and o�, �, �p ≡ o�, �, �p�.

1.1.2 Code Rate

As in equation (1.2), the code rate G of an o�, �, �pq linear code X is given by the ratio �/�.

1.1.3 Hamming Weight

The Hamming weight or simply weight of any vector u ∈ rq�, where u = [uk, uE, ,u�QE],

is the number of non-zero elements in u. The Hamming weight is denoted by wxy(u), and can

be expressed as,

wxy(u) = |{u� ≠ 0 ∀ 0 ≤ | ≤ � − 1}| (1.7)

1.1.4 Hamming Distance

The Hamming distance between two vectors } and u, where }, u ∈ rq�, is the number of

coordinates in which } and u differ. The Hamming distance is denoted by �y~}, u�. The

Hamming distance between vectors } and u can be expressed as,

7

�y~}, u� = | { (}� − u�) ≠ 0 ∀ 0 ≤ | ≤ � − 1 } | (1.8)

or as,

�y~}, u� = wxy(} − u) (1.9)

1.1.5 Minimum Distance

The minimum distance of a code X, denoted by ���� (or just �), is the minimum Hamming

distance between an two distinct codewords of X. A code of minimum Hamming distance

���� can always detect x symbol errors whenever x < ����, and is capable of correcting all

0 ≤ � ≤ ⌊(���� − 1)/2⌋ symbol errors, where ⌊�⌋ is the largest integer that is at most �. The

minimum distance ���� of a code can be expressed as,

���� = �|�#�y~., .�� ∀ ., .� ∈ X$ (1.10)

As a result of the linearity of X, including the existence of all zeros codeword, ����

can also be expressed as,

���� = �|��wx'(.) ∀ . ∈ X� (1.11)

1.1.6 Parity-Check Matrix and Parity-Check Equation

The parity-check matrix ' of a code X is an (� − �) × � matrix. It contains � × � linearly

independent vectors of rq� so that .'+ = 0 for all codewords . ∈ X. Each row in the

parity-check matrix ' is a parity-check equation. ' may be expressed in a

reduced row echelon form so that the last � − � columns of ' form an (� − �) × (� − �)

identity matrix ��QR. Given ' in the reduced row echelon form and an arbitrary information

vector } ∈ rqR, the parity-check symbols of the corresponding codeword . ∈ X can be

obtained by taking the component-wise product of } and the first � columns of '.

1.1.7 Regular and Irregular Codes

Codes with parity-check matrices which have a fixed number of non-zero symbols in each

row, and a fixed number of non-zero symbols in each column are referred to as regular codes;

otherwise they are referred to as irregular codes.

8

1.1.8 Generator Matrix

The generator matrix , of an o�, �, �pq linear code X is a � × � matrix which contains �

linearly independent codewords of X. A codeword . ∈ X can be obtained by taking any linear

row combination of ,. The corresponding codeword . ∈ X for an arbitrary information vector

} ∈ rqR, is obtained using the generator matrix , as . = },. Similar to ', the matrix , may

be expressed in a reduced row echelon or systematic form by elementary row operations and,

if necessary, some column permutations. In the systematic form, the first � coordinates of , is

an identity matrix �R. In the systematic codeword . ∈ X for an arbitrary information vector

} ∈ rqR, which is obtained using . = }, with , in the systematic form, the first � symbols are

}, and the remaining � − � coordinates contain the parity-check symbols.

1.1.9 Syndrome

Given an arbitrary vector u ∈ rq�, the syndrome of u in a code whose parity-check matrix is '

is a vector � ∈ rq�QR defined by,

� = u'+ (1.12)

If the vector u is a codeword of code X with parity-check matrix ', i.e. u ∈ X, then � = 0.

Otherwise, at least one coordinate of � would have a non-zero value and vector � ≠ 0.

 [Tjhai, 2007]

1.2 Background to Error Correction Coding

In his ground breaking work [Shannon, 1948], Shannon gave an example of how 4 bits of information

(k = 4) can be encoded to a 7 bit codeword (n = 7). The coding scheme used in the example was due to

Richard Hamming. For this coding scheme, assuming the use of binary antipodal signalling in a

bandlimited AWGN channel, a plot of the probability of bit error �� against 8J ;K⁄ in decibels (�F)

results in �� = 1 × 10Qn at 8J ;K⁄ = 9.6�F. This result is approximately 8.9�F away from the

ultimate Shannon limit, and communications engineers and mathematicians enthusiastically took on

the challenge of designing code schemes which better approach their corresponding Shannon limit.

9

In 1950, Hamming eventually published the coding scheme he invented, which are now known as

Hamming codes [Hamming, 1950]. Hamming codes are a class of binary codes that are capable of

correcting any single bit error, they have parameters given by o�, �, �pq = o2� − 1, 2� − 1 − �, 3p�

for � > 2, where � is the minimum (Hamming) distance of the code, and q is the base (number of

elements in the finite field) of the code. The example given in Shannon’s 1948 paper is for � = 3; it

is a o7, 4, 3p� Hamming code. The o23, 12, 7p� binary Golay code was introduced by Marcel Golay

in 1949 [Golay, 1949]. In this code, 11 redundant bits are used to protect 12 bits of information, and

the code can correct up to 3 bit errors. The structure of the code is such that each of its 2EE syndromes

represents a unique error pattern for up to 3 bit errors in a codeword. Codes that have this property are

called perfect, lossless or close-packed codes. Hamming codes, the binary o23, 12, 7p� Golay code,

and the ternary o11, 6, 5pB Golay code are the only non-trivial perfect codes known to date.

With the limited computing technology of the 1950s it was quickly realized that in addition to finding

efficient coding schemes, the other major obstacle to approaching Shannon’s limit was implementing

the required decoding due to its complexity. The relatively simple matched filter decoder was one of

the best decoders available at the time. Nonetheless, the complexity of the matched filter decoder

required for codes that could hypothetically give good coding gain �T often proved prohibitive to

implement. As an example, while exhaustive decoding of very short codes such as the o7, 4, 3p�

Hamming code which has �T = 2.34�F was practicable, in contrast, the o23, 12, 7p� Golay code

which gives �T = 5.63�F had impractical decoding complexity. As a consequence of the increase in

decoding complexity required for codes with higher coding gain, significant effort was committed to

constructing codes with efficient decoder structures.

A simple, non optimum, method for decoding using the available technology in the 1950s is the

majority logic decoding which is based on majority voting. David Muller, introduced a class of binary

codes that can be decoded using majority logic [Muller, 1954], and Irving Reed invented an efficient

majority logic decoding algorithm that was suited to such codes [Reed, 1953]. Codes encoded and

decoded using these methods are called Reed-Muller (RM) codes. According to

10

Peterson and Weldon, Jr. [Peterson and Weldon, Jr., 1972], N. Mitani had earlier discovered the RM

error correction code method in 1951[Mitani, 1951]. RM codes have relatively poor error correcting

capabilities and the search for better codes with easy decoding continued unabated.

Decoders that do not utilize the reliability information of symbols received from the channel are

known as hard-decision decoders. The efficient decoders of the 1950s and 1960s were hard-decision

decoders, and decoding involved a procedure to quantize the received signals into a number of levels

which is equal to the field size of the code. For example, the received signals are quantized into two

levels by decoders for binary codes, and into three levels by decoders for ternary codes. Inevitably,

this quantization results in the loss of the reliability information of each symbol. It was realized that in

order to reduce the gap to Shannon’s limit, decoders that can use the symbol reliability information

were essential. Taking binary codes as an example, the typical gain achieved by eliminating binary

quantization and using the bit reliability information is as much as 2�F. Decoders that take symbol

reliability information into account are called soft-decision decoders. Soft-decision decoders are

typically more complex to implement than hard-decision decoders. In this period, the inability to

realize soft-decision decoding was attributed to its complexity and the limitations of the available

technology.

The invention of convolutional or recurrent codes by Peter Elias in 1954 marked a very important

milestone in error correction coding [Elias, 1954]. All the codes discussed up to this point are

categorized as block codes. In block codes, user messages are partitioned into blocks of length k

symbols, and then each of these blocks is translated to a longer block of length n symbols. The n

symbol long blocks are used for transmission over the channel. However, partitioning of user

messages is avoided with convolutional codes. The convolutional encoder maps a small fraction of the

user message of arbitrary length k' symbols into a block of arbitrary length n' for transmission over the

channel, where n' > k'. Unlike in block codes, the n' symbol long block in a convolutional code

depends not only on the current k' user message symbols but also on some of the previous user

message symbols. The constraint length of a convolutional code determines the number of previous

user message symbols that are involved in producing the next block for transmission. The parity

11

symbols in convolutional codes are obtained by a ‘convolution’ of the message symbols over the

encoder. This convolution is achieved via a sliding operation of a Boolean polynomial function to a

stream of the message symbols. The sliding nature of convolutional codes allow for relatively low

complexity soft-decision maximum-likelihood decoding based on time-invariant trellises.

In 1956, David Slepian’s pioneering work in algebraic coding theory laid an algebraic framework for

the subject of error correction coding [Slepian, 1956]. Prior to his work, the study of error-correction

codes was specific to the type of code. Slepian provided a generalization of error-correction coding

theory, and proposed a generalized decoding method based on the standard array. Slepian’s

generalized decoding method was only efficient for very short codes.

More than a decade before the introduction of trellis diagram representation of convolutional codes, a

suboptimal soft-decision decoder for convolutional codes was introduced by John Wozencraft in 1957;

this decoder is known as a sequential decoder [Wozencraft, 1957].

Following in the footsteps of Slepian, more communication engineers and mathematicians began to

associate error-correction coding with algebra, this led to many new discoveries. Two of the most

notable of these discoveries are Bose-Chaudhuri-Hocquenghem (BCH) codes, and Reed-Solomon

(RS) codes.

BCH codes were invented independently in 1959 by Alexis Hocquenghem [Hocquenghem, 1959], and

in 1960 by Raj Bose and D. Ray-Chaudhuri [Bose and Chaudhuri, 1960]. During the design of a BCH

code, there is a precise control over t - the number of symbol errors which can be corrected by the

code. BCH codes are t-error correcting linear block codes. BCH codes have very good mathematical

structure and form a subclass of codes called cyclic codes or cyclic error-correction codes.

Wesley Peterson was the first to reveal the cyclic nature of BCH codes, and explained the error

correction procedure for binary BCH codes [Peterson, 1960]. RS codes are non binary linear block

codes which were invented in 1960 by Irving Reed (the inventor of RM codes) and Gustave Solomon

[Reed and Solomon, 1960]. RS codes were discovered to be a special class of BCH codes, they have

the highest error correcting ability compared to any linear code of the same field and are considered to

12

be optimum. The discovery of a suitable decoding procedure for non binary BCH codes in 1961 is

attributed to D. Gorenstein and N. Zierler [Gorenstein and Zierler, 1961].

Robert Gallager invented low-density parity-check (LDPC) codes at the Massachusetts Institute of

Technology (MIT) in 1960 [Gallager, 1962]. LDPC codes are a class of capacity-approaching linear

block codes with sparse or low-density parity-check matrices; the parity-check matrices of binary

LDPC codes contain mostly 0’s and a comparatively small number of 1’s. Gallager proposed the

sum-product decoder, a relatively low complexity probabilistic (soft decision) message-passing

decoding technique that allows the use of the long code lengths prerequisite for low error probabilities

while maintaining low equipment costs and computational requirements. The potential of Gallager’s

LDPC codes for error correction was not fully realized, mainly due to the limited technology of the

time, and his invention was ignored for more than thirty years.

The performance of the sequential decoder was significantly improved by Roberto Fano in 1963.

[Fano, 1963]. However, the sequential decoder remained suboptimal and had limited performance.

An important milestone was marked by the invention of an efficient decoding algorithm for BCH

codes by Elwyn Berlekamp in 1966 [Berlekamp, 1966], this decoding algorithm was simplified and

extended to linear feedback shift registers by James Massey in 1969 [Massey, 1969]. Nonbinary RS

codes are also decodable using this decoding algorithm which is called the Berlekamp-Massey

algorithm. RS codes subsequently received a lot of practical interest due to the availability of efficient

decoding. The optimality of RS codes is defined symbol-wise, and each nonbinary symbol in an RS

code can be mapped to a binary equivalent. Consequently, RS codes were used in many practical

applications and are especially suited to applications that require burst error correction.

A new class of codes called concatenated codes was invented by David Forney, Jr. in 1966

[Forney, 1966]. In his coding scheme, two codes - a non binary outer code and a binary inner code,

were cascaded to form a longer and more powerful binary code. The arrangement used a RS

[255, 223, 33]�� outer code and a rate-½ convolutional code as the inner code. In general,

concatenation results in more powerful codes because the resultant longer codes have larger coding

gain �T. The decoding of concatenated codes is done in two stages: the inner code is decoded in the

13

first stage, and in the second stage the outer code is decoded to correct any residual errors from

decoding the inner code. The decoding complexity of a concatenated code is restricted to the decoding

complexity of its component codes.

Following the precedence of RM codes, the class of majority logic decodable codes was expanded to

include difference cycle set codes and finite geometry codes. Difference cycle set codes were

introduced in 1966 by E. Weldon, Jr. [Weldon, Jr., 1966].

The sequential decoder used for convolutional codes in the early 1960s was suboptimal. The Viterbi

algorithm, a maximum likelihood decoder for convolution codes, was invented by Andrew Viterbi in

1967 [Viterbi, 1967]. The Viterbi algorithm is a soft-decision decoder which returns a codeword

which, among all the likely transmitted codewords, has the highest possibility of being correct for the

given sequence received from the channel; the algorithm is optimal in terms of decoded codewords.

The inventor of concatenated codes, David Forney, Jr., improved the Viterbi algorithm in 1973 using

trellis diagrams [Forney, 1973]. The use of trellis diagram representations for convolutional codes

marked a significant milestone in error correction coding because it made efficient optimum

soft-decision decoding of convolutional codes possible.

With the availability of an optimum soft-decision decoder, convolutional codes decoded using the

improved Viterbi algorithm were soon used in practical applications, such as broadcasting of digital

audio and video, and mobile communications such as the global system for mobile communications

(GSM) and the code division multiple access (CDMA-IS95) [Costello, Jr. et al., 1998].

There are optimal soft-decision decoders in terms of symbol; for any given symbol coordinate in a

received sequence such decoders return a symbol value that has the highest probability of being

correct compared to the other possible symbol values. The class of optimal symbol-by-symbol

soft-decision decoders for convolutional codes include the BCJR algorithm introduced in 1974 by

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv [Bahl et al., 1974], and another algorithm introduced in

1976 by C. Hartmann and L. Rudolph [Hartmann and Rudolph, 1976]. The BCJR decoding algorithm

makes use of trellis diagram representations and is one of the first trellis-based optimum soft-decision

decoders applicable to block codes. However, optimum soft-decision decoding is only possible for

14

very short codes. A precursor to many of the suboptimum soft-decision decoders in existence today

are the work of Wagner [Silverman and Balser, 1954], D. Chase [Chase, 1972], and B. Dorsch

[Dorsch, 1974].

Mathematical generalizations of concatenated codes were provided by E. Blokh and V. Zyablov in

1974 [Blokh and Zyablov, 1974], and by V. Zinov’ev in 1976 [Zinov’ev, 1976]. Consequent to these

generalizations and other succeeding work, concatenated codes with high asymptotic coding gain are

now easily constructed.

In 1981, Michael Tanner proposed the use of bipartite graphs to state the constraints or equations used

to specify error correction codes, and linked the study of LDPC codes with graph theory

[Tanner, 1981]. Consequently, the term Tanner Graph is now indispensible in literature on LDPC

codes. Tanner graphs are used to represent LDPC code parity-check matrices, and are very useful for

describing the features, encoding, and decoding of LDPC codes.

A significant milestone in reducing the gap to the ultimate Shannon limit over the bandwidth limited

telephone channel was set when Gottfried Ungerboeck published a detailed exposition of his

trellis coded modulation (TCM) scheme in 1982 [Ungerboeck, 1982]. The TCM scheme combines

coding and M-ary modulation. Before TCM, it was believed that coding would only be efficient for

applications with high bandwidth availability, and would be inefficient for applications such as data

transmission over plain old telephone service (POTS) lines which are limited to bandwidth of around

4 kilobits per second (kbits/s) only. The theoretical ultimate Shannon limit for POTS lines was

approximately 35 kbits/s. The modem standard before the introduction of TCM typically achieved data

rate of 9.6 kbits/s half-duplex, however with TCM data rate as high as 33.6 kbit/s full-duplex were

attained under the V.34 modem standard.

In 1987, the Consultative Committee on Space Data Systems (CCSDS) adopted the concatenation

scheme by David Forney, Jr. [Forney, 1966] as the NASA/ESA telemetry standard

[Costello, Jr. et al., 1998]. The adopted scheme was decoded using the Viterbi algorithm. In 1988, the

belief propagation (BP), a message-passing algorithm for performing inference on graphical models,

was invented by Judea Pearl [Pearl, 1988]. Although the BP algorithm was formulated on the concept

15

of trees, it was soon shown to be a useful approximation on general graphs. When adopted to LDPC

code Tanner graphs, the BP algorithm is identical to Gallager’s sum-product algorithm and has

demonstrated empirical success as a suboptimal soft-decision decoder.

Prompted by the observed benefits of soft input information, soft output in the context of decoding

was researched and J. Hagenauer and P. Hoeher introduced the soft-output Viterbi algorithm (SOVA)

in 1989 [Hagenauer and Hoeher, 1989]. Subsequently, soft output was used with the BCJR algorithm

in ‘separable symbol-by-symbol maximum a posteriori (MAP) ‘filters’ ’ for decoding

multidimensional codes, product, and concatenated codes [Lodge et al., 1992] [Lodge et al., 1993].

Unlike convolutional codes which are represented by trellises which are invariant over time, block

codes are generally represented by time-variant trellises, this constrains the development of efficient

trellis based, optimum soft-decision decoders for block codes. The 1990s witnessed a large volume of

research dedicated to the trellis complexity of block codes.

The gap to Shannon’s limit remained significant in spite of the numerous achievements between 1948

and the early 1990s. The discovery of parallel-concatenated convolutional codes or Turbo codes in

1993 by C. Berrou, A. Glavieux, and P. Thatimajshima [Berrou et al., 1993] was a major breakthrough

which significantly reduced the gap to the ultimate Shannon limit. The turbo code presented by

Berrou et al. was made up of two convolutional codes separated by a pseudorandom interleaver, the

overall code had a rate of 1 3� . At a block length of 65536 bits and a code rate of ½ (achieved by

puncturing), a bit error probability of 1 × 10Qn was attained at 8J ;K⁄ = 0.7�F. This represents a

real coding gain �T of 8.9�F above unencoded binary antipodal signalling. The Shannon limit for a

binary modulation with a rate of ½ is �) = 0 (some authors take �) = 1 × 10Qn as a reference) at

8J ;K⁄ = 0�F. Therefore, the performance of the turbo code by Berrou et al. narrowed the gap to the

ultimate Shannon limit to 0.7�F at a bit error probability of 1 × 10Qn. Two optimum soft decision

decoders, which use the BCJR algorithm, are used for decoding the constituent convolutional codes of

turbo codes. In the decoding procedure, each decoder produces extrinsic information (soft-output)

which it sends to the other decoder and vice-versa, in an iterative manner. The exceptional

16

performance of turbo codes is attributed to the way it is decoded. However, a notable issue on turbo

codes is the manifestation of performance flooring at low error probability.

Advancements made in iterative decoding and computational technology led to the rediscovery of

Gallager’s LDPC codes in 1996, more than three decades after its invention. LDPC codes were

rediscovered independently by David MacKay and Radford Neal [MacKay and Neal, 1996], and by

Niclas Wiberg [Wiberg, 1996]. Another major breakthrough in error correction coding was set in 1996

by MacKay and Neal when they demonstrated that besides turbo codes, Gallager’s LDPC codes are

also capacity-approaching in the AWGN channel. Similar to the convolutional decoders used for turbo

codes, Gallager’s sum-product decoder is a type of iterative decoder which can be regarded as a bank

of BCJR decoders for o�, � − 1, 2p� single parity-check codes. In the sum-product decoding

procedure, each of the BCJR decoders produces extrinsic information which is processed and then

exploited in the next iteration. The original LDPC codes proposed by Gallager were regular codes.

A class of low complexity encoding LDPC codes known as repeat-accumulate (RA) codes was

invented by D. Divsalar, H. Jin, and R. McEliece in 1998 [Divsalar et al., 1998]. Irregular

repeat-accumulate (IRA) codes, an extension to RA codes, were introduced in 2000 by H. Jin,

A. Khandekar, and R. McEliece [Jin et al., 2000]. Array LDPC codes were introduced by J. L. Fan in

2000 [Fan, 2000].

In 2001, a very important contribution to LDPC code construction was made by M. Luby,

M. Shokrollahi, M. Mizenmacher, and D. Spielman [Luby et al., 2001]. They showed that the

performance of LDPC codes can be significantly improved by incorporating some degree of

irregularity in the construction of their parity-check matrices. In the same year, work to design

optimized parity-check matrix irregularities, or degree distributions, which lead to good coding

performance by LDPC codes of different length and rate was carried out by T. Richardson, R. Urbanke

and M. Shokrollahi [Richardson and Urbanke, 2001], [Richardson et al., 2001]. The degree

distribution optimization method they employed is known as density evolution (DE). Using density

evolution, S. Chung, D. Forney, Jr., T. Richardson and R. Urbanke presented an irregular binary

17

LDPC code at a block length of 107 which attained a distance of only 0.04�F from the ultimate

Shannon limit at a bit error probability of 1 × 10Q� [Chung et al., 2001].

Turbo codes and LDPC codes have dominated modern research in error correction coding as a result

of their capacity-approaching performances. Turbo codes and LDPC codes have currently been

adopted in many industry standards, and there are various hardware encoders and decoders for these

codes. There is a notable preference for LDPC over turbo codes. Initially, this might have been as a

result of the fact that implementing LDPC codes was more economical because while Berrou’s patent

on turbo codes did not expire until August 29, 2013; Gallager’s patent on LDPC codes had expired

long before its rediscovery. Furthermore, due to recent advances in LDPC codes, they surpass turbo

codes in terms of error-floor and performance in higher code rate range, which leaves turbo codes

more suitable for lower code rates only [‘Low-density parity-check code’, 2017]. Finally, the bank of

BCJR decoders for the single parity-check codes can be parallelized in decoders for long LDPC codes.

Implementation complexity has continued to be a major factor which influences the deployment of

LDPC codes. In spite of superior performance, the encoding complexity of irregular LDPC codes

makes them unattractive, and LDPC codes which have more regularity in their structure are favoured

for deployment. Some types of LDPC codes which have structures that are more attractive for

deployment are quasi-cyclic LDPC codes, RA codes, and IRA codes. The encoder for quasi-cyclic

LDPC codes can be easily implemented using linear feedback shift registers.

Turbo codes have been deployed in 3G and 4G mobile communications such as universal mobile

telecommunications system (UMTS), CDMA2000, HSPA, EV-DO and LTE; digital video

broadcasting interaction channel, such as (DVB-RCS) and (DVB-RCS2); deep space communication

such as the Mars Reconnaissance Orbiter; and in the IEEE 802.16 (WiMAX) wireless metropolitan

area network standard [Costello and Forney, 2007], [‘Turbo code’, 2017]. LDPC codes have also been

deployed in many contemporary communication standards as well as various data storage applications.

The IRA code introduced by [Jin et al. 2000] outperformed selected turbo codes and was adopted as

the error-correcting codes for the second version of digital video broadcasting standards (DVB-S2).

Other communication standards which have adopted LDPC codes include the IEEE 802.3an

18

(Ethernet); IEEE 802.16e (WiMAX) standard for microwave communications; IEEE 802.11n-2009

(WiFi); and 2nd generation digital video broadcast standards such as DVB-S2, DVB-T2, DVB-C2

[‘Low-density parity-check code’, 2017].

Notable research in the area of suboptimal binary soft-decision decoding from the early 1990s to date

include work by [Han et al., 1993], [Fossorier and Lin, 1995], [Gazelle and Snyders, 1997],

[Valembois and Fossorier, 2004], and [Tomlinson et al., 2007]. Similarly, major contributions in the

area of subpotimal non binary soft-decision decoding were made by [Sudan, 1997],

[Guruswami and Sudan, 1998], and [Koetter and Vardy, 2003].

1.3 Thesis Aim and Objectives

The aim of this thesis is to study and contribute to the knowledge of the construction and decoding of

short-to-medium length irregular LDPC codes for low error-floor performance over AWGN channels.

Techniques to lower the error-floor of short-to-medium length LDPC codes using improved PEG

algorithms and BP/SPA decoders will be researched. The primary objective of this thesis is to find

efficient means to improve the error-floor performance published for short-to-medium length irregular

LDPC codes in the literature. The second objective is to design and implement efficient methods to

analyse short-to-medium length LDPC code matrices and Tanner graphs in order to evaluate

parameters in them such as their symbol node degree distributions, check node degree distributions,

global girth, local girths, and the connectivity of cycles. It is understood that the girth and degree of

connectivity of cycles in LDPC code Tanner graphs have a significant impact on their error-floor

performance. The third objective is to determine and study the distribution of some of the key

parameters in LDPC code ensembles constructed with the same degree distribution using different

PEG algorithm modifications. A study of how the distribution of these parameters vary from one PEG

algorithm modification to the other, and a comparison of the error-floor performance of codes from the

different ensembles will serve to verify/refute the premise behind each PEG algorithm modification.

The aspect of the research regarding short-to-medium length LDPC code design and construction will

be carried out through a review of the PEG algorithms in the literature, identifying the parameters

19

required for optimum error-floor performance, experimentation with different degree distributions, and

PEG algorithm modifications. The aspect of the research regarding improved decoding of

short-to-medium length LDPC codes will be carried out via a thorough study of the decoding process

of the BP/SPA decoder with a view to finding modifications which can improve the decoding

performance. Modified BP/SPA decoders will be implemented and tested in decoding performance

simulation experiments. It is hoped that by increasing the performance gap between irregular LDPC

codes and their more regularly structured counterparts, and further advancements in computing

technology, short-to-medium length irregular LDPC codes will become attractive for deployment in

communication system standards of the near future.

1.4 Thesis Organisation

This thesis is organised into eight chapters including this introductory chapter.

Chapter 2 introduces LDPC codes and Tanner graphs, and describes their basic features and

properties. The different types of LDPC codes and LDPC code construction techniques are discussed.

A description of the standard/original PEG algorithm by [Hu et al., 2001] for constructing LDPC

codes of arbitrary length and rate is given, and its implementation in this research is fully described.

Using a simplified explanation of the iterative decoding processes in the standard BP/SPA decoder,

the algorithm for the standard BP/SPA decoder implemented for this research is fully described. The

standard BP/SPA decoder was used to simulate the decoding performance of most of the LDPC codes

analysed in this thesis. The algorithm for determining the codeword weight ���� and stopping set

weight ���� spectra in short-to-medium block length LDPC code matrices in [Rosnes et al., 2012] is

introduced and briefly described. The minimum weights of the short-to-medium length LDPC codes

analysed in this research were determined using this algorithm.

Chapter 3 discusses challenges to lowering the error-floor of short-to-medium length LDPC codes

under iterative message-passing decoding. Some of the most noteworthy PEG algorithm modifications

in the literature which were designed to lower the error-floor of the short-to-medium length LDPC

codes constructed are examined. The modified PEG algorithms investigated are briefly explained, the

20

reported LDPC code performance results obtained are analysed, and the drawbacks of some of the

modified PEG algorithms are highlighted.

Chapter 4 presents an efficient algorithm for determining the girth and ACE distributions in LDPC

code Tanner graphs. The algorithm is relatively easy to implement and finds all the short cycles

through symbol nodes in Tanner graphs using a type of subgraph expansion which is similar to that of

the standard PEG algorithm. The algorithm for determining the girth and ACE distributions in LDPC

code Tanner graphs is shown to have a lower complexity than those of similar algorithms in the

literature. Additionally, the algorithm is shown to be faster than existing algorithms for counting

cycles in LDPC codes when applied to irregular short-to-medium length LDPC codes. The algorithm

for determining the girth and ACE distributions in LDPC code Tanner graphs is used to verify the

improved girth and ACE distributions in short-to-medium length LDPC codes constructed by the

modified PEG algorithms in [Xiao and Banihashemi, 2004] and [Vukobratović and Šenk, 2008].

Chapter 5 presents a cyclic PEG (CPEG) algorithm which constructs short-to-medium length LDPC

codes with improved girth and ACE distributions. The CPEG algorithm constructs LDPC codes using

an edge connections sequence which is different from that of the original PEG algorithm. The ����

and ���� distributions, in four (4) ensembles of 6000 DE optimized irregular rate-½ (�, �) =

(512, 256) LDPC codes each are compared; these four code ensembles are constructed using

different types of PEG algorithms. Many rate-½ (�, �) = (512, 256) irregular LDPC codes with

DE optimized/‘good’ degree distributions which have higher ���� and ���� than have been published

for similar LDPC codes are found in the four code ensembles. Based on the DE optimized rate-½

(�, �) = (512, 256) LDPC codes, the generalized effect of LDPC code minimum distance ���� on

their error-floor performance over the AWGN channel is investigated. Given their improved girth and

ACE distributions, the performance of LDPC codes constructed by CPEG algorithms are compared to

the performance of codes constructed by conventional PEG algorithms.

Chapter 6 presents a minimum local girth (edge skipping) (MLG (ES)) PEG algorithm which controls

the minimum local girth of cycles connected during the construction of LDPC code Tanner graphs.

21

The MLG (ES) PEG algorithm controls the global girth of codes it constructs by skipping all edge

connections which would have resulted in undesired local girths. The concept of optimal

low-correlated-edge density (OED) codes is introduced. An irregular rate-½ (�, �) = (512, 256)

OED code is shown to have lower error-floor than the lowest error-floor published for LDPC codes of

identical rate and length. Similarly, consequent to an improved symbol node degree distribution, an

irregular rate-½ (�, �) = (1024, 512) LDPC code is shown to have lower error-floor than the lowest

error-floor published for LDPC codes of identical rate and length. Random irregular rate-½ (�, �) =

(512, 256) and (1024, 512) PEG constructed LDPC codes are shown to significantly outperform the

structured rate-½ (�, �) = (576, 288) and (1056, 528) IEEE 802.16E (WiMAX) LDPC codes in the

error-floor region.

Chapter 7 describes modifications made to the standard BP/SPA decoder in order to implement

distributed source coding of two correlated sources for asymmetric Slepian-Wolf (SW) coding using

binary LDPC codes. A BP/SPA syndrome decoder which implements a SW-like decoder is

implemented. Compared to the conventional BP/SPA decoder, the BP/SPA syndrome decoder is

shown to achieve a very good compression with no apparent loss in performance. Similarly, the

modifications made to the standard BP/SPA decoder in order to implement SW coding of two binary

correlated information sources over the BSC (a SW BSC decoder) is described. Using a rate-½

(�, �) = (1000, 500) LDPC code, the SW coding model is shown to outperform other distributed

source coding models in literature which utilized LDPC codes of identical length and rate. An

improved BP/SPA (IBP/SPA) decoder is presented. Two novel modifications to the standard BP/SPA

decoder are shown to result in unprecedented performance improvements to BP/SPA decoding of

short-to-medium length LDPC codes over the AWGN channel. The modified BP/SP algorithm in the

IBP/SPA decoder breaks trapping sets in LDPC codes.

In Chapter 8, the contributions to knowledge made by the thesis are summarized, the thesis is

concluded, and recommendations for future work are presented.

22

Chapter 2

LDPC codes, the progressive edge-growth (PEG) algorithm,

and the belief propagation or sum-product algorithm

(BP/SPA) decoder

Following the rediscovery of LDPC codes in the mid 1990s, a lot of research effort has been dedicated

to improving the construction of efficient LDPC codes and decoding algorithms. Currently, the most

popular methods for constructing efficient short-to-medium length LDPC codes are based on the PEG

algorithm introduced in [Hu et al., 2001]. Similarly, the most efficient practicable decoders for

decoding LDPC codes received over AWGN channels are based on the suboptimal BP/SPA decoder.

This chapter provides an introduction to LDPC codes and Tanner graphs, and describes LDPC code

features and properties. Following an introduction to the three LDPC code performance curve regions,

the different types of LDPC codes and LDPC code construction techniques are discussed. This is

followed by a detailed description of the standard PEG algorithm which was implemented in this

research. All modified PEG algorithms are based on and incorporate the basic aspects of the described

standard PEG algorithm. A simple explanation of the iterative decoding processes in the standard

BP/SPA decoder which was used to simulate the decoding performance of most of the LDPC codes

analysed in this research is given in this chapter. Finally, the algorithm for determining the codeword

weight and stopping set weight spectra in short-to-medium block length LDPC code matrices

23

proposed in [Rosnes et al., 2012] is introduced. This algorithm was used to determine the minimum

weight metrics in all the short-to-medium length LDPC codes analysed in this research.

2.1 LDPC Codes

LDPC codes are linear block codes with a relatively small number of non-zero entries in their

parity-check matrices '. The dimension of a parity-check matrix ' is � × �; where � is the number

of rows in the parity-check matrix, or the number of parity-check equations; and � is the number of

columns in the parity-check matrix, or the variable/symbol length of the code described by the matrix.

Figure 2.1 Shows the parity-check matrix ' of an irregular LDPC code with o�, �, �pq= o25, 5, 8p�.

The code rate (�/�) is 1/5, and the number of rows (� = � − �) is 20. Therefore, it is a 20 × 25

matrix. Apart from the requirement that ' be sparse or of low-density, LDPC codes are not any

different to other block codes. The sparseness of ' results in a decoding complexity and a minimum

distance which increase linearly with code length. LDPC codes are designed by constructing a sparse

parity-check matrix first and then deriving a generator matrix for the code afterwards.

24

Figure 2.1: The parity-check matrix of a o25, 5, 8p� LDPC code

Classical linear block codes are generally decoded using maximum likelihood (ML)-like decoding

algorithms, consequently they are usually short and designed algebraically to minimize decoding

complexity. However, LDPC codes are generally decoded iteratively using a graphical representation

of their parity-check matrix and for this reason are designed with a focus on the properties of '

[Johnson, 2006].

LDPC codes are iteratively decoded using the sum-product decoder [Gallager, 1963] or equivalently

the belief propagation decoder [Pearl, 1988]. Due to their similarities, these two algorithms are

collectively referred to as the belief propagation / sum-product algorithm (BP/SPA) decoder. Many

researchers have shown that under BP/SPA decoding, long block length LDPC codes perform close to

the channel capacity, e.g. [Chung et al., 2001]. The theory of LDPC codes is closely affiliated to the

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24

 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0

 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 c19

c18

c17

c16

c15

c14

c8

c9

c11

c10

c12

c13

c7

c5

c4

c3

c2

c1

c6

c0

= H

25

branch of mathematics known as graph theory. As a result of work done by Tanner [Tanner, 1981],

LDPC codes are often represented in graphical form by bipartite or Tanner graphs. Similar to the rows

and columns in LDPC code parity-check matrices, the Tanner graph of LDPC codes consist of two

sets of vertices: � vertices for the codeword symbols (called symbol nodes) and � vertices for the

parity-check equations (called check nodes). An edge joins a symbol node to a check node if the

symbol is included in the corresponding parity-check equation. Therefore, the number of edges in a

Tanner graph is equal to the number of non-zero elements in the parity-check matrix. The following

are some basic definitions and notations on graph theory and LDPC codes, some of which were

adopted from [Tjhai, 2007].

2.1.1 Vertex, Edge, Bipartite or Tanner Graph, Subgraphs, Adjacency and Incidence,

and Simple Graphs

A graph is made up of an ordered set of vertices and edges, and is denoted by ,(�, 8).

• Vertex: A vertex represents a unique node in a graph. A node is basic unit used to build

graphs and other data structures. The set �(,) is made up of all the vertices in graph

,(�, 8). Therefore, if u is a vertex of ,(�, 8) then u ∈ �(,). The number of vertices in

�(,) is denoted as |�(,)|. In an LDPC code Tanner graph there is a distinct symbol vertex

for each of the � symbols, and a distinct parity-check vertex for each of the � parity-check

equations. By convention, a symbol vertex in an LDPC code graph (which is a bipartite

graph) is drawn as a round node (○/●), and a parity-check vertex (or simply check vertex)

is drawn as a square node (□/■).

• Edge: An edge (}, u) is a direct connection between two vertices in graph ,(�, 8), where

} ∈ �(,) and u ∈ �(,). An edge in a graph is usually drawn as a line connecting

vertices } and u in the graph. The set of edges in ,(�, 8) is denoted by 8(,). Set 8(,)

contains pairs of elements of �(,), i.e. 8(,) = �~}, u� where }, u ∈ �(,)�.

26

• Bipartite or Tanner Graph: In a bipartite or Tanner graph ,(�, 8) there are two disjoint

sets of vertices, ��(,) and �T(,), such that �(,) = ��(,) ∪ �T(,). In an LDPC code

Tanner graph, ��(,) is the set of symbol node vertices, and �T(,) is the set of parity-check

node vertices. The edges in LDPC code Tanner graphs are made up exclusively of

connections between one vertex in ��(,) and another vertex in �T(,), so that edge

(.�, �%) ∈ 8(,), where .� ∈ �T(,) and �% ∈ ��(,) for some integers | and .

Figure 2.2 shows the Tanner graph ,(�, 8) for the o�, �, �pq = o25, 5, 8p� LDPC code

whose parity-check matrix is shown in Figure 2.1. Each line drawn between the two sets of

vertices is an edge which represents a ‘1’ in the parity-check matrix.

Figure 2.2: The Tanner graph of a o25, 5, 8p� LDPC code

The parity-check matrix ' of a full row rank LDPC code (i.e. when ' is devoid of linearly

dependent parity-check equations) consists of |�T(,)| = � − � rows and |��(,)| = �

columns. Similarly, the Tanner graph of the code consists of |�T(,)| = � − � distinct

check vertices and |��(,)| = � distinct symbol vertices. Let ��(,) = ��k, �E, , ��QE�

and �T(,) = �.k, .E, , .�QRQE�, it can be observed from Figure 2.1 and Figure 2.2

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

s

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24

27

that for each edge ~.�, �%� ∈ 8(,), the element in the |-th row and -th column of the

matrix � is non-zero, i.e. '�,% ≠ 0 for 0 ≤ | ≤ � − � − 1 and 0 ≤ ≤ � − 1.

• Subgraph: A subgraph ,’ = (�’, 8’) of Tanner graph ,(�, 8) is an interconnected subset

of G, so that for every edge e ∈ E’ both of the vertices of e lie in the set �’.

• Adjacency and Incidence: If }, u ∈ �(,) and ~}, u� ∈ 8(,), then vertices } and u are

adjacent or neighbouring vertices of ,(�, 8). Similarly, for any ~}, u� ∈ 8(,) vertex }

and vertex u are said to be incident with edge ~}, u�. As an example, in the bipartite graph

of Figure 2.2, the check vertex .k and the symbol vertex ��C are adjacent vertices. Vertex

.k and vertex ��C are incident with edge ~.k, ��C�.

• Simple Graphs: A graph is simple if: i) it does not have any self-loop, i.e. an edge which

joins a vertex to itself, ii) no unique pair of vertices have more than one edge between

them, and iii) the graph is made up of nondirected edges exclusively. In a simple graph any

two distinct vertices � and � are said to be adjacent if (�, �) is an edge, and the neighbours

of vertex � is the set of all its adjacent vertices. LDPC code Tanner graphs are simple

graphs.

2.1.2 Path, Diameter, Cycle, Local Girth and Global Girth

• Path: A path is a sequence of edges which connect distinct vertices. If }, � ∈ �(,), a path

between vertices } and � is a sequence of edges that connect distinct vertices which start at

vertex } and end at vertex �. The length of a path between vertex } and vertex � is equal to

the number of edges in that particular path between } and �, and the distance �~}, ��

between vertex } and vertex � is defined as the length of the shortest path joining them.

Every edge ~}, u� ∈ 8(,) in a graph ,(�, 8) represents a path of length one (1) between

vertex } and vertex u. As an example, a path between symbol vertex �EB and check vertex

.EC in the graph of Figure 2.2 is: �EB→ .EE→ �E�→ .EC. Therefore, vertices �EB and .EC are

indirectly connected through this path, or .EC is reached by �EB and vice versa. The length

of this path is 3.

28

• Diameter: The diameter of a graph is defined as the maximum distance between distinct

vertex pairs.

• Cycle: A cycle in a graph ,(�, 8) is a closed path formed by edges which start and end at

the same vertex in the graph; each vertex in a cycle is traversed only once. The length of a

cycle is equal to the number of edges it contains. In a bipartite graph, half of the vertices in

each cycle belong to set ��(,) and the other half belong to set �T(,). As an example, the

edges of a cycle in the bipartite graph of Figure 2.2 are highlighted in red. This cycle can

be described as: �EB→ .k→ ��C→ .EC→ �E�→ .EE→�EB. A count of the number of edges

in the cycle, i.e. the red lines in Figure 2.2, shows that this cycle has a girth of 6.

• Local Girth: The local girth at a vertex u ∈ �(,) is the length of the shortest cycle which

passes through u.

• Global Girth: The global girth (or just girth) of a graph ,(�, 8) is the length of the

shortest cycle in the entire graph. In other words, the girth of a graph ,(�, 8) is the length

of its shortest local girth.

2.1.3 Degree, Degree Sequence and Degree Distribution

• Degree: The degree of any vertex } ∈ �(,) is equal to the number of edges that are

directly connected to vertex }. As an example, if the edges directly connected to vertex }

in G(V, E) are (}, �E), (}, ��), (}, �B), (}, �C), (}, �n) ∈ 8(,), where

�E, ��, �B �C, �n ∈ �(,) and �� ≠ �%, ∀ | ≠ , then the degree of vertex } is 5. All the

symbol vertices �%, ∀ 0 ≤ ≤ 24, in the bipartite graph in Figure 2.2 have degrees of 3; i.e.

��4 = 3 for all 0 ≤ ≤ 24. However, while check vertices .�, .A, .EE, .En, .E7 have

degrees of 3, i.e. �T� = 3 for | = 6, 9, 11, 15 & 17, all the remaining check vertices have

degrees of 4, i.e. �T�� = 4 for 0 ≤ �|� ≠ |� ≤ 19.

• Degree Sequence: In an irregular LDPC code Tanner graph, the symbol degree sequence

is denoted by "� = #��� , ��/ , … … … , ����/$, where ��4 is the degree of symbol node �%,

0 ≤ ≤ � − 1. Irregular LDPC codes are usually constructed with their symbol degree

29

sequences specified in the nondecreasing order, so that ��� ≤ ��/ ∙ ∙ ∙ ∙ ≤ ����/ . Similarly,

the check degree sequence of an irregular LDPC code is denoted by

"T = #�T� , �T/ , … … … , �T��/$, where �T� is the degree of check node .�, 0 ≤ | ≤ � − 1.

The symbol degree sequence for the code shown in Figure 2.1 and Figure 2.2 is given as

"� = #3, 3, . . , 3$ and the check node degree is

"T = �4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4�.

• Degree Distribution: The symbol degree distribution in an irregular LDPC code Tanner

graph ,(�, 8) is often expressed using a polynomial �(�) = ∑ ����U3���
� � , where �� is the

fraction of symbol vertices of degree |, ����� is the highest symbol degree in ,~�, 8�, and

∑ �� = 1U3���
� � . Similarly, the check degree distribution is given by Φ(�) = ∑ Φ���U¢���

� � ,

where Φ� is the fraction of check vertices of degree |, �T��� is the highest check degree in

,(�, 8), and ∑ Φ� = 1U¢���
� � . [Hu et al., 2005]

To obtain the symbol degree distribution of the code in Figure 2.1 and Figure 2.2 we

observe that all the symbol nodes have a degree 3, consequently the fraction of symbol

vertices which have degree 3 is calculated as �/� = 1.00. Therefore, the symbol degree

distribution of this code is simply: �(�) = 1.00�B.

Similarly, the check degree distribution is determined from the degree sequence for the

code as follows. We observe that the check degrees in the code are 3 and 4, the fraction of

check vertices which have degree 3 is 5/� = 5/20 = 0.25 and the fraction of check

vertices which have degree 4 is 15/� = 15/20 = 0.75. Therefore, the check degree

distribution of this code is: Φ(�) = 0.25�B + 0.75�C.

We note that �(�) and Φ(�) are known as vertex-oriented degree sequences. An

alternative representation of degree sequences for irregular LDPC codes is known as

edge-oriented degree sequences, which consider the fraction of edges that are connected to

vertices of different degrees. In this thesis, only vertex-oriented degree sequences are

considered.

30

2.2 LDPC Code Performance Curves

By convention, the performance curve of an LDPC code and other iteratively decodable codes is

demarcated into three distinct regions. These regions are the erroneous region, the waterfall region and

the error-floor region. The performance of a typical LDPC code is shown in Figure 2.3. The figure

shows a plot of frame error rate (FER) against 8J ;K⁄ .

In the ‘erroneous region’, which occurs at low 8J ;K⁄ , the iterative decoder is unable to correctly

decode almost all of the transmitted codewords.

The ‘waterfall region’ describes the region of the performance curve where the error rate of the

iterative decoder decreases rapidly with increasing 8J ;K⁄ . The 8J ;K⁄ value at which the waterfall

region commences is known as the convergence threshold. The convergence threshold is defined as

the 89/;< value from which the coded system becomes more efficient than the non-coded

transmission system. As can be seen in Figure 2.3, the slope of the performance curve to the left of the

convergence threshold is notably less than the slope of the performance curve to the right of the

convergence threshold.

As the signal power is increased further, the rate of decrease in error rate with increasing 8J ;K⁄

diminishes and the slope of the error rate curve starts to reduce. This reduction in the slope of the error

rate curve at relatively high 8J ;K⁄ introduces a so-called ‘error-floor’ in the FER curve; this is the

‘error-floor region’ of the performance curve of LDPC codes. As can be observed from Figure 2.3, the

description of this region of the performance curve as an error-floor is a misnomer because the slope

of the curve in this region continues to be significantly greater than zero. That is, the error rate curve

does not flatten sufficiently enough to be described as a floor. However, in keeping with the

convention, this region of the performance curve is described as the error-floor region in the rest of

this thesis.

31

Figure 2.3: Typical FER performance of iteratively decodable codes over AWGN channels [Tjhai, 2007]

Two additional error rate curves, the offset sphere packing lower bound and the probability of error

based on the union bound argument [Proakis, 2001], have also been included in Figure 2.3. The sphere

packing lower bound represents the performance of an ideal coding system for identical code length

and rate; the performance to the left of this lower bound is unattainable, and the performance to the

right of this lower bound may be achieved by some coding and decoding schemes.

The union bound curve is an upper bound on the practical error rate of the code; the existence and

quantification of this upper bound are mainly due to the presence of low Hamming weight codewords

and the number of these low weight codewords, respectively. Generally, the larger the minimum

Hamming weight (or distance) of a code, the lower the union bound curve. For iteratively decodable

codes with poor (low value) minimum Hamming distances, the intersection between the union bound

curve and the offset sphere packing lower bound curve occurs at relatively low 8J ;K⁄ [Proakis, 2001].

Iteratively decodable code

Union bound

Error-floor region Waterfall region

Erro-

neous

region

Iteratively decodable code
Union bound

Offset sphere

packing lower bound

32

As shown for the typical LDPC code performance curve in Figure 2.3, it is expected that even when

using an ideal soft-decision decoder, such as the maximum likelihood (ML) decoder, the performance

of a coding system would follow the curvature (albeit displaced to the right) of the sphere packing

lower bound at the lower values of 8J ;K⁄ in the waterfall region. However, at higher values of

8J ;K⁄ , an error-floor would appear in the performance curve as a result of the limitations of decoding

the minimum weight codewords. In Figure 2.3, it can be seen that there is a significant gap between

the union bound and the error-floor of a typical LDPC code under iterative decoding. This behaviour

is accepted as part and parcel of iteratively decoded codes and is usually attributed to the limitations of

the iterative decoder. Apart from the minimum Hamming distance, there are many other causes of

error which prevent iterative decoders from reaching the union bound. [Tjhai, 2007]

2.3 LDPC Code Constructions

There are two broad categories of LDPC codes based on their construction technique: random LDPC

codes and algebraic LDPC codes. Codes constructed using either of these techniques can be further

subcategorized as regular or irregular, depending on the structure of the parity-check matrix; or as

binary or non-binary, depending on s - the field size of the elements in the parity-check matrix rq.

2.3.1 Random LDPC Codes

LDPC codes are often constructed pseudo-randomly. Consequently, discussions often center around

sets (or ensembles) of codes with certain parameters, e.g. a certain construction method or/and a

certain degree distribution, rather than about a particular parity-check matrix with those parameters.

The concentration theorem says that the properties of randomly chosen codes from a code ensemble,

concentrates around the ensemble average. For long codes, there is a high probability that a randomly

chosen parity-check matrix would result in a good code; for very long codes this is guaranteed by the

concentration theorem. The following are common random constructions of LDPC codes.

33

Gallager’s construction

The LDPC codes introduced by Gallager in 1962 [Gallager, 1962] were random binary LDPC codes.

Gallager denoted the parity-check matrices of his LDPC codes as (�, , �), where � is the block length

or number of columns in the matrix, is number of 1’s per column, and � is the number of 1’s per

row. The short notation (, �) is often used for these codes and other regular codes, so that they are

described as (, �)-regular. Note that the definitions for variables j and k used here apply only to this

description of Gallager’s LDPC codes and should not be confused with their definitions elsewhere in

this thesis. The code-rate of a Gallager (, �) code is given by: G = 1 −
�� .

An example of a low-density code matrix from [Gallager, 1962] is shown in Figure 2.4. Using

Gallager’s notation, this is an (�, , �) = (20, 3, 4) LDPC code with = 3, and � = 4. Using the

standard notation for linear codes, this is an o�, �, �pq= o20, 5, 4p� code, where � in this notation is

the number of information bits in each codeword block.

Figure 2.4: An (�, , �) = (20, 3, 4) Gallager LDPC code matrix

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19

 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

c14

c8

c9

c11

c10

c12

c13

c7

c5

c4

c3

c2

c1

c6

c0

= H

 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

34

The original LDPC codes introduced by Gallager are regular codes because in the parity-check matrix

of an (�, , �) Gallager code there is always a fixed number of non-zeros per column and per row, i.e.

 and � respectively. In the Gallager construction, the matrix in Figure 2.4 is divided into

submatrices and each of these submatrices contains a single ‘1’ in each column. The horizontal lines

drawn in the matrix shown in Figure 2.4 are used to demarcate its = 3 submatrices. The first

submatrix contains all its 1’s in the descending order, such that row .� contains 1’s in columns

��R to �(�£E)RQE, for 0 ≤ | ≤ �. The remaining − 1 submatrices are merely column permutations of

the first submatrix. An ensemble of (�, , �) Gallager codes is defined as the ensemble resulting from

random permutation of the columns of the bottom − 1 submatrices of a matrix such as that in

Figure 2.4, with equal probability assigned to each permutation. Using this method, there is a high

probability that some rows in the matrices constructed will be linearly dependent. The presence of

linearly dependent parity-check equations in the parity-check matrix of a code simply means that the

code specified by the parity-check matrix has a slightly higher information rate than indicated by the

number of rows in the parity-check matrix constructed. A smaller number of linearly independent

parity-check equations implies a smaller number of parity-check bits and a higher number of

information bits per codeword; this translates to a higher code rate. This construction method is not

efficiently scalable, and the performance of short block length Gallager codes is poor relative to those

for turbo codes and other algebraic codes for the same code rate and length.

MacKay and Neal construction

A random construction method for LDPC codes was proposed in [MacKay and Neal, 1995]. In the

proposed method, the columns of the parity-check matrix ' are added one column at a time from left

to right. The number of non-zero elements in each column and each row of ', i.e. the column and row

weight, is pre-determined by the symbol and check degree distributions, respectively. During code

construction, the placement of the non-zero entries in each column is chosen randomly from those

rows which do not have the full number of non-zero entries. At any point during the construction, if

there are rows with more non-zero positions unfilled than there are columns remaining to be added,

35

the check degree distributions for ' will not be as prescribed. In order to correct this, the process may

be restarted or backtracked by several columns. Figure 2.5 shows a length 20 (3, 4)-regular

Mackay Neal LDPC code matrix. Using the standard notation for linear codes, this code is similar to

the Gallager code in Figure 2.4 and is also a o20, 5, 4p� code.

Figure 2.5: A length 20 (3, 4)-regular MacKay Neal LDPC code matrix

When adding the column for symbol �E6, i.e. the 19th column which is shown in bold font, the unfilled

rows were the 5th, 8th, 9th, 10th, 12th and 13th (.C, .7, .6, .A, .EE and .E�) out of which the 5th, 9th and

13th (.C, .6, and .E�) were randomly chosen.

Cycles of length 4, called 4-cycles, can be avoided in LDPC codes constructed using

MacKay and Neal method by ensuring that the non-zero elements in the new column being added do

not overlap in two or more places with the non-zero elements in any of the previous columns. As an

example, if a 4-cycle free graph was required for the length 12 (3, 4)-regular Mackay Neal LDPC code

parity-check matrix shown in Figure 2.6, the fourth column (for symbol node �B) would have been

modified because it causes a 4-cycle with the second column (for symbol node �E) column in H. The

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19

 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0

 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

c14

c8

c9

c11

c10

c12

c13

c7

c5

c4

c3

c2

c1

c6

c0

= H

 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

36

non-zero elements which result in the 4-cycle of interest are shown in bold; there are several more

4-cycles in this code matrix. It may be observed that the creation of 4-cycles was avoided in the code

matrix in Figure 2.5.

Figure 2.6: A 4-cycle in a length 12 (3, 4)-regular MacKay Neal LDPC code matrix

Repeat-accumulate code construction

Another class of pseudo-randomly constructed LDPC codes are the repeat-accumulate (RA) codes

which were introduced in [Divsalar et al., 1998]. Parity-check matrices of RA codes have columns of

weight two (2) which are arranged in a step pattern for the last � columns of ' (Recall: For an

o�, �, �pq linear code, � = � − �). This pattern makes RA codes systematic codes and allows them

to be easily encoded. Figure 2.7 shows a length 20 rate-1 4� repeat-accumulate code matrix, the first

five columns of the matrix correspond to the message bits. The first parity-bit, i.e symbol �n, which is

in the sixth column of ', is encoded as �n = �k, the second parity-bit is encoded as �� = �n ⊕ �k, the

next as �7 = �� ⊕ �E, and so on. This forms a pattern, such that each parity-bit can be computed one

after the other using only the message bits and the one previously calculated parity-bit.

[Johnson, 2006]

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

 1 0 0 0 0 1 0 1 0 1 0 0

 1 0 0 1 1 0 0 0 0 0 1 0
 0 1 0 1 0 0 1 0 1 0 0 0
 0 0 1 0 0 1 0 0 0 0 1 1

 0 0 1 0 0 0 1 1 0 0 0 1

 0 1 0 1 0 0 0 0 1 0 1 0
 1 0 0 0 1 0 1 0 0 1 0 0

 0 1 0 0 0 1 0 1 0 1 0 0

 0 0 1 0 1 0 0 0 1 0 0 1 c8

c7

c5

c4

c3

c2

c1

c6

c0

= H

37

Figure 2.7: A length 20 rate-1/4 repeat-accumulate code matrix

Irregular repeat-accumulate (IRA) codes were introduced by [Jin et al., 2000] and are a generalization

of the ideas behind RA codes. Like RA codes, IRA codes have a simple linear-time encoding

algorithm. IRA codes have good performance, but generally perform better on binary erasure channels

(BEC) than on AWGN channels.

The code construction methods discussed above are mainly focussed on the parity-check matrices.

Following the rediscovery of LDPC codes in 1996, and based on the work by Tanner [Tanner, 1981],

research on graph based encoding and decoding of LDPC codes were carried out by many researchers

and significant successes were recorded. Some of these research include work by

[Wiberg et al., 1995], [Sipser and Spielman, 1996], [McEliece et al., 1998],

[Kschischang and Frey, 1998], [Köetter and Vardy, 1998], [Kschischang et al., 2001],

[Calderbank et al., 1999], [Weiss, 2000], [Hu et al. 2001] and [Hu et al. 2005]. Common graph based

LDPC code constructions are as follows.

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19

 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

c14

c8

c9

c11

c10

c12

c13

c7

c5

c4

c3

c2

c1

c6

c0

= H

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

38

Column splitting and row splitting

Short cycles and other undesirable configurations in the Tanner graph of LDPC codes can be

removed by splitting a column or row in the parity-check matrix in half. In column splitting a

column in H is replaced by two columns which share the non-zero entries of the original

column between them. As a result of the extra column due to a column split, a new code with

length one greater than the original code is produced; the new matrix is also more sparse than

the original matrix. Figure 2.8 shows a column splitting operation used to remove a 4-cycle.

Figure 2.8: Column splitting to eliminate a 4-cycle

Similarly, in row splitting a row in ' is replaced by two rows which share the non-zero

entities of the original row between them. As a result of the extra row due to a row split, a

new code with one more parity-check equation than the original code is produced; the new

check matrix is also more sparse than the original. Figure 2.9 shows a row splitting operation

used to remove a 4-cycle.

Figure 2.9: Row splitting to eliminate a 4-cycle

s0 s1 s2 s3 s0 s1 s2 s3

c0 c1 c3 c0 c1 c2 c3

c0 c1 c2 c0 c1 c2

s0 s1 s2 s4 s0 s1 s2 s3 s4

39

Bit filling and the progressive edge-growth (PEG) Tanner graphs

The bit filling method for constructing LDPC codes was introduced in

[Campello et al., 2001]. In bit filling, symbol nodes are connected into a Tanner graph one at

a time and the edges connecting the new symbol nodes to the graph are carefully selected to

avoid cycles of girth 1. In an irregular code, for each new symbol node �% (0 ≤ ≤ � − 1),

��4 check nodes are selected to join �% by an edge, where ��4 is the degree of symbol node �%

as obtained from the degree sequence for the code "� = #��� , ��/ , … … … , ����/$. Similarly, in a

regular code with a column weight of wT, i.e. a fixed number of 1’s per column, wT check

nodes are selected to join each new symbol node �% by an edge.

Figure 2.10: Bit filling to avoid 4-cycles

In order to satisfy the restriction on the girth 1 of a code, the set of eligible check nodes for

connecting new edges at each stage of the code construction are those that are at distances

1 2 3 1 3 2

1 2 3

1 2 3

c6 c5 c4 c3 c2 c1 c0 c6 c5 c4 c3 c2 c1 c0

c6 c5 c4 c3 c2 c1 c0 c6 c5 c4 c3 c2 c1 c0

s3 s2 s1 s0 s2 s1 s0

 s1 s0 s0

40

more than or equal to 1/2 from all the check nodes already connected to �%. Figure 2.10

illustrates the bit filling process to avoid cycles of length 4.

The progressive edge-growth (PEG) Tanner graph construction was introduced by

[Hu et al., 2001]. The PEG construction is similar to bit filling and edges are connected into

graph one at a time progressively, but instead of satisfying a specific girth restriction 1, each

new edge of �%, i.e. the current symbol node being added to the graph, is simply connected in

a way which maximizes the local girth at symbol �%. PEG Tanner graph constructions are used

extensively in this thesis and a detailed description of the original/standard PEG algorithm is

given in Section 2.4.

2.3.2 Algebraic LDPC Codes

Algebraically constructed LDPC codes generally have a regular structure in their parity-check

matrices. The following are some advantages of algebraically constructed LDPC codes over their

randomly constructed counterparts.

i. The presence of regular structures in the parity-check matrices of algebraic LDPC codes

allow for simple encoding schemes which make them attractive for deployment in practical

systems. An algebraic code such as a cyclic or quasi-cyclic LDPC code can be completely

described by a polynomial and message encoding may be easily achieved using a

linear-feedback shift-register circuit which requires minimum memory. In contrast, prior to

encoding messages using a code with a randomly constructed parity-check matrix, Gaussian

elimination and other matrix operations have to be carried out on the parity-check matrix in

order to obtain a codeword generator matrix, and the entire generator matrix has to be stored

in memory.

41

ii. Important LDPC code parameters such as girth and minimum distance can be easily

determined and, when this is not feasible, lower- and upper-bounds which are more accurate

than those for random codes may be mathematically derived.

iii. In general, algebraic LDPC codes have larger minimum distances than those for their

randomly constructed counterparts. Consequently, when decoded using non iterative

decoding schemes, algebraic LDPC codes are less likely to have early error-floor.

iv. Algebraically constructed cyclic LDPC codes have � low weight parity-check equations,

whereas, equivalent randomly constructed LDPC codes have � = � − � parity-check

equations. Therefore, cyclic LDPC codes have � extra parity-check equations for iterations in

the iterative decoder and this invariably leads to superior performance [Tjhai et al., 2006].

Algebraically constructed codes like the difference-set cyclic (DSC) codes [Weldon, Jr., 1966] and

one-step majority-logic decodable (OSMLD) codes [Lin and Costello, Jr, 2004] were shown to have

significantly improved performance under iterative decoding compared to the majority-logic decoding

which they were conventionally decoded with [Lucas et al., 2000]. These codes have sparse

parity-check matrices and were subsequently reclassified as algebraic LDPC codes. A noteworthy

work on LDPC code construction, before they were formally rediscovered in 1996, was by

[Margulis, 1982] which is an explicit algebraic approach based on Ramanujan graphs.

Some cyclic code constructions which are suitable for iterative decoding include: binary cyclic LDPC

codes derived from cyclotomic cosets, which is based on work by [MacWilliams and Sloan, 1997] on

Mattson-Solomon polynomials, idempotents and cyclotomic cosets; Mattson-Solomon domain

construction of binary cyclic LDPC codes, in which binary cyclic LDPC codes are obtained by

working in the Mattson-Solomon domain instead of deriving them from cyclotomic cosets; and a

non-binary extension of the cyclotomic coset based LDPC codes. [Tjhai, 2007]

Finite geometry (FG) codes are a class of algebraic LDPC codes which are based on Euclidean and

projective geometries. FG constructions are known to produce LDPC codes which have relatively

good minimum distances, contain no small trapping sets with sizes smaller than its minimum distance,

42

and have Tanner graphs which do not contain 4-cycles. Consequently, their error-floor performance

are primarily determined by their minimum distance properties. FG LDPC codes constructed using

high code rates and very long block lengths have performance that are very near Shannon limit under

iterative decoding, these codes are discussed in detail in [Kou et al., 2001]. Another class of algebraic

LDPC codes are those constructed using combinatorial techniques, see [Johnson, 2003],

[Johnson and Weller, 2001], [Johnson and Weller, 2002], and [Vasic and Milenkovic, 2004].

As a result of the simplicity of encoding and decoding algebraically constructed LDPC codes, they

were adopted in several industry standards [Costello and Forney, 2007].

2.3.3 Non-Binary LDPC Codes

The parity-check matrix of every LDPC code is defined on a finite-field of s elements rq, most LDPC

codes are implemented in the binary domain r�, i.e. with s = 2, and symbols values are either 0 or 1.

However, LDPC codes may be easily extended so that symbols take values from finite-field r��.

Work in this area was spearheaded in [Davey and MacKay, 1998]. Based on the parity-check matrix '

of an LDPC code over r�, an LDPC code over r�� with � ≥ 2 is constructed by simply substituting

all the 1’s in ' with the non-zero elements of r��, either randomly or in a structured fashion.

Non-binary LDPC codes have better convergence performance under iterative decoding, and

[Davey and MacKay, 1998] and [Hu et al., 2005] showed that the performance of LDPC codes can be

improved by operating beyond the binary domain. The improved performance is attributed to an

improvement in the girth or/and local girth distribution in the Tanner graph in the non-binary

arrangement.

2.4 The Progressive Edge-Growth (PEG) Algorithm

The standard progressive edge growth (PEG) algorithm is a general, non-algebraic, method of using

graph expansion to construct LDPC code Tanner graphs with large girths. The algorithm was first

proposed by Hu, X.-Y., Eleftheriou, E. and Arnold D. M. in 2001 [Hu et al., 2001]. In a PEG Tanner

graph construction, edges between symbol nodes and check nodes are connected into the graph one

43

after the other, i.e. progressively, until the graph is complete. The PEG algorithm uses graph

expansions to select and place edges in a Tanner graph in a manner which ensures that each

consecutive edge placed has the smallest possible impact on the girth of the graph. LDPC codes

constructed using the PEG principle have good girth and minimum distance properties. In their

pioneering work, Hu et al. used simulations to show that the PEG algorithm is a powerful tool for

generating short-block-length LDPC codes which performed significantly better than randomly

constructed codes of equivalent length and code rate.

There are two key features of the PEG algorithm compared with other constructions, the first is its

simplicity or low-complexity; it can easily be used to construct regular and irregular LDPC codes

within the short-block-length to long-block-length range with good girth and minimum distance

properties. The computational complexity and storage requirement of the PEG algorithm are

significantly less than those for Gallager’s explicit construction. The second, and equally important,

key feature of the PEG algorithm is its flexibility; using density-evolution (DE) optimized degree

sequence [Richardson and Urbanke, 2001] , [Richardson et al., 2001], the PEG algorithm successfully

generates good LDPC codes at any code rate [Hu et al., 2005]. More importantly, the PEG algorithm

lends itself to easy modifications to enhance one or more of the features of the LDPC codes

constructed in a bid to improve coding performance, or simply to tailor a feature of the code to some

requirements. For example, the PEG algorithm can be easily modified to generate linear-time

encodable codes, and by another slight modification, LDPC codes which are strictly regular can be

produced. Researchers into LDPC codes have modified the PEG algorithm with many different criteria

for check node selection when establishing edges for the symbols node being connected into the graph

during construction. As an example, H. Xiao and A. H. Banihashemi took advantage of the flexibility

of the PEG algorithm and the approximate cycle extrinsic (ACE) message degree criterion was

implemented in the PEG algorithm to improve the interconnectivity of cycles in the Tanner graph of

the LDPC codes [Xiao and Banihashemi, 2004]. Consequently, the gap to capacity of short length

LDPC codes in the error-floor region was reduced significantly.

44

For consistency and uniformity, we adopt the same definitions and notations as in [Hu et al., 2001]

[Hu et al., 2005] to describe the standard PEG algorithm for constructing an LDPC code matrices '

with � rows and � columns. Some of the definitions and notations which follow have been given

previously in this thesis and are reiterated.

The dimensions of a parity-check matrix ' is � × �, where � is the number of parity-check

equations, and � is the number of symbols or block length of the code described by the matrix. A

bipartite/Tanner graph with m parity-check vertices and � symbol vertices can be created using ' as

the incidence matrix for the two sets of vertices. It therefore follows that a unique parity-check matrix

corresponds to a unique Tanner graph and vice versa. Consequently, the terms bipartite graph, Tanner

graph, parity-check matrix, LDPC code, or just codes are frequently used interchangeably.

A Tanner graph, by convention, is denoted as ,(�, 8), where � is the set of parity-check and symbol

nodes, so that � = �� ∪ �T where �� = ��%} for all 0 ≤ ≤ � − 1, is the set of symbol nodes, and

�T = �.�� for all 0 ≤ | ≤ � − 1, is the set of parity-check nodes. 8 is the set of edges or connections

between parity-check nodes and symbol nodes in the graph. Therefore, 8 ⊆ �� × �T, with edge

(.�, �%) ∈ 8 if and only if ℎ�,% ≠ 0, where ℎ�,% is an entry of ' at the |-th row and the -th column, for

all 0 ≤ | ≤ � − 1 and 0 ≤ ≤ � − 1. The set of edges 8 can be partitioned in terms of �� as

8 = 8�� ∪ 8�/ ∪ . . . ∪ 8���/, with the entire edges incident on symbol node �§ contained in 8�4. The

(� + 1)-th edge incident on �% is denoted as 8¨%
R , for all 0 ≤ � ≤ �� – 1 where ��4 is the degree of

symbol node �%.

Ensembles of LDPC code Tanner graphs are often characterized using their symbol node degree

distributions only. The symbol-node degree distribution of an LDPC code is defined as

�(x) = ∑ ���ªU3���
� � , where �� is the fraction of symbol-nodes connected to exactly | check nodes;

����� is the largest symbol node degree in the degree sequence "� = #��� , ��/ , … … … , ����/$; and

∑ �� = 1U3���
� � , i.e. the sum of all the fractions ��, for all 2 ≤ | ≤ ���«� , in the symbol node degree

45

distribution is unity. Figure 2.11 shows an irregular Tanner graph with symbol node degree sequence

"� = #2, 2, 2, 3, 3, 3$ which has a uniform (regular) parity-check degree of 5, i.e., "T = �5, 5, 5�.

Figure 2.11: An irregular Tanner graph with symbol degree sequence "� = #2, 2, 2, 3, 3, 3$

The girth at symbol vertex �% is denoted by 1�4, it is the length of the shortest cycle that passes through

�%; and the girth of a Tanner graph, denoted by 1, is the length of the shortest cycle in the entire graph.

The girth at a symbol vertex �% is referred to as a local girth, and the girth of the entire Tanner graph is

referred to as the global girth of the graph or simply as the girth of the graph. Therefore, it follows

that 1 = �|� ¬1�4, 0 ≤ ≤ � − 1.

¬;�4
O is the set of neighbouring parity-check nodes of symbol node �% within a subgraph expansion

depth of &; it is the set consisting of all the parity-check nodes reached by a subgraph expanded from

�% within a depth of &. The complementary set of ;�4
O is Ṅ�4

O , which is defined as �T ∕ ;�4
O , so that the set

of check nodes �T = ;�4
O ∪ Ṅ�4

O . The set ¬Ṅ¨4
O represents the set of parity-check nodes which cannot

be reached within a subgraph expansion depth & of �%. Figure 2.12 illustrates the concept of a subgraph

expansion, expansion depths, and neighbours.

S0

C0

check nodes

C1 C2

S1 S2 S3 S4 S5

Symbol nodes

46

Figure 2.12: A subgraph expanded from symbol node �% to expansion depth &

A subgraph expanded from symbol node �% is obtained by unravelling the bipartite graph in an

adjacency or neighbour relationship basis. Starting from symbol node sj, all the edges incident on it

are identified; let these edges be (�%, .�/), (�%, .�°), . . . , (�%, .�±34
). Then all the other edges incident on

vertices .�/, .�°, . . . , .�±34
, excluding (�%, .�/), (�%, .�°), . . . , (�%, .�±34

), are identified. This graph

unravelling procedure continues up to a depth of & under the current graph setting, where either i) the

cardinality of ;̈ 4
O stops increasing but is less than �, or ii) Ṅ¨4

O ≠ Ø but Ṅ¨4
O£E = Ø. During subgraph

expansions, duplicate vertices frequently occur at the same expansion depth. For any given

parity-check node .�, its neighbourhood within depth &, that is, ;a�
O and its complement Ṅa�

O can be

similarly defined.

Expansion

depth 0

Expansion

depth 1

Expansion

depth ²

³´

µ¶· µ¶¸ µ¶¹³´

47

2.4.1 The Standard Progressive Edge-Growth (PEG) LDPC Code Construction

Algorithm

The standard PEG algorithm is a good but suboptimum algorithm for constructing LDPC code Tanner

graphs with large girths. It is suboptimum because constructing a graph with the largest possible girth

is a very difficult combinatorial problem. In the standard PEG algorithm, the local girth of each

symbol node �%, 0 ≤ ≤ � − 1, is made as large as possible before a new edge is added to it. By

maximizing each local girth before the placement of a new edge in the graph, it aims to produce

Tanner graphs with good global girth properties. In other words, the impact of connecting a new edge

to the graph on the global girth is made to be as small as possible by maximizing the local girth of the

symbol node �% before a new edge is attached to it. The standard greedy PEG algorithm is summarized

in Algorithm 2.1 [Hu et al., 2001].

Algorithm 2.1: The standard progressive edge-growth (PEG) algorithm

for = 0 to � − 1 do
begin
for � = 0 to ��4 − 1 do

begin
if � = 0

8�4
k← edge ~.� , � �, where 8�4

k is the first edge incident to �%,

and .� is selected from the check nodes with the lowest check node

degree under the current graph setting 8�� ∪ 8�/ ∪ . . . ∪ 8�(4�/).
else

expand a subgraph from symbol node �% up to depth & under the
current graph setting such that the cardinality of ;�4

O stops increasing

but is less than �, or Ṅ�4
O ≠ Ø but Ṅ�4

O£E = Ø, then 8�4
R ← edge ~.� , � �,

where 8�4
R is the (� + 1)-th edge incident to �% and .� is a check node

selected from the lowest degree check nodes in the set Ṅ�4
O .

end
end

The standard PEG algorithm for LDPC code construction was implemented in this work using the

GNU/Linux based C programming language. The output of the PEG algorithm for LDPC code

construction is an LDPC matrix configuration file. In our implementation, the PEG algorithm is very

48

versatile and can construct codes with a very wide range of block lengths, parity lengths, and code

rates. Two different approaches to providing the PEG algorithm with parameters of the codes to be

constructed were used: the manual input and the automated input. In the manual input version, the

algorithm provides input prompts for user-entry of not only the parameters to be used during a code

construction but also other parameters which are only required to put the LDPC matrix configuration

file in the proper format for subsequent use by our BP/SPA decoder implementation. The following

input parameters are universal to all PEG algorithm implementations in this research: code length �;

intended parity length �, recall that � = � − � (where � is the information/message length); the

signal-to-noise ratio in decibels (SNR(dB)); the maximum number of decoding iterations; the symbol

node degree distribution; the candidate parity-check node selection method; and the subgraph

expansion type, i.e. greedy or nongreedy. If nongreedy subgraph expansion is selected when using the

manual input version of the PEG algorithm, an additional input prompt to specify the desired

maximum subgraph expansion depth, &�Nº, is provided.

The code length � and parity length � determine the dimensions of the LDPC parity-check matrix to

be constructed by the PEG algorithm, and determine the lower and upper bounds of many other

parameters of the code that will be constructed. Variables � and � also reflect the code rate intended

by design, which is given by rate, G = �Q�
� . Since � = � − �, the code rate G can be verified by

substituting for �, so that G = ~�Q(�QR)�
� ⟹ G = R

� as given in equation (1.2) . The design rate is only

achieved if there are no linearly dependent parity-check equations in the rows of the LDPC code

matrix which is eventually constructed. In this thesis, we work exclusively with rate-½ (i.e. G = ½)

codes with code lengths of not more than 2048 (� ≤ 2048), i.e. short-to-medium block lengths.

The specification of a SNR in decibels (SNR(dB)), and a maximum number of decoding iterations as

inputs to our implementation of the PEG algorithm are required solely for the purpose of inserting the

information in the header of the LDPC matrix configuration file so that it would be in the correct

format for subsequent use by our BP/SPA decoder implementation. It is not required for code

construction by the PEG algorithm.

49

The symbol node degree distribution is one of the most important set of variables in the design of good

LDPC codes; it distinguishes regular LDPC codes from irregular LDPC codes. The best short block

length LDPC codes available today are irregular codes constructed using DE optimized symbol node

degree sequences. A symbol node degree sequence, "�, is a sequence of numbers which represent the

number of times each symbol node �% ∀ 0 ≤ ≤ � − 1, is evaluated in distinct parity-check

equations. As an example, for a regular short-block-length code of length � = 10, the degree sequence

can be expressed as say "� = �2, 2, 2, 2, 2, 2, 2, 2, 2, 2�, or simply as (�� = 2) regular. Similarly,

for an irregular short-block length code with length � = 20, the degree sequence can be expressed as

say "� = �2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5�, in which case a simpler

expression can be obtained by pairing symbol node degrees with their frequency of repetition. In other

words, "� = �2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5� can be more compactly written

as "� = �(2 × 7), (3 × 7), (4 × 4), (5 × 2)�, i.e. (symbol node degree (times) frequency) pairs. This

shorthand method can also be used for specifying the symbol node degree sequence for regular codes,

the shorthand for the regular degree sequence in our example, i.e. "� = �2, 2, 2, 2, 2, 2, 2, 2, 2, 2�,

would be written as "� = �(2 × 10)�. When the manual input version of the PEG algorithm provides

input prompts for user-entry of the symbol node degree distribution, a shorthand method which uses

(symbol node degree (space) frequency) pairs is used for entering the symbol node degree sequence

for regular and irregular codes. Each (symbol node degree (space) frequency) pair is entered in a

separate entry prompt line. Whenever necessary, the symbol node degree sequence entered is

rearranged in the nondecreasing order, and the edge connection sequence in the standard PEG

algorithm is always implemented using symbol node degree sequences in the nondecreasing order.

During code construction by the standard PEG algorithm, whenever there are multiple candidate

parity-check nodes to choose from to connect a new edge for symbol node �%, a choice is made from

amongst the candidate parity-check nodes which have the lowest number of edges (symbol vertices)

already connected to them under the current state of the Tanner graph, i.e. the lowest degree candidate

check nodes. This parity-check node selection strategy results in Tanner graphs which have

50

parity-check node degree distributions that are as regular as possible while preserving the efficiency

and versatility of the PEG algorithm. The check node degree distribution is rarely specified as an input

parameter for the PEG algorithm and the strategy of establishing edges with the candidate parity-check

nodes with the lowest degrees is usually sufficient to keep the check node degree distributions as

uniform as possible without compromising code performance by enforcing specific check node degree

distributions. As an example, compromises to code performance usually results when significantly

irregular parity-check node degree distribution are enforced. This follows from strong evidence that a

concentrated parity-check node degree sequence is optimum [Bazzi et al., 2004], [Shokrollahi, 1999].

At most stages of LDPC code constructions using the PEG algorithm, despite the aforementioned

strategy to connect new edges of symbol nodes only to the candidate check nodes with the lowest

degree under the current state of the graph, a multiple choice of candidate check nodes still remain

because more than one of the candidate check nodes in Ṅ�4
O have the same lowest degree. In this

situation, [Hu et al., 2001] proposed two main approaches to solving the problem of selecting one out

of these multiple lowest degree candidate parity-check nodes. In the first approach one of these

parity-check nodes is selected randomly. In the second approach the parity-check nodes are selected

according to their position in the order .k, .E, .��QE. They proposed for instance, arranging the

candidate parity-check nodes according to their subscripts in ascending order and then always

selecting the first one, that is a lowest index first approach.

In all our PEG algorithm implementations, three options are available for selecting one from a

multiple choice of lowest degree candidate parity-check nodes; the random approach, the lowest index

first approach, and our proposed flip-flop approach. The flip-flop approach is similar to the

lowest index first approach; the candidate parity-check nodes are also arranged according to their

subscripts in ascending order .k, .E, .��QE. However, an alternating sequence, that is

lowest index, highest index, lowest index, . , . , is used to select a check node from a choice of multiple

candidate check nodes for connecting each subsequent new edge into the Tanner graph under

construction; hence the name flip-flop. The lowest index first and flip-flop approaches are of interest

51

because of their deterministic nature. The manual input version of our PEG algorithm provides an

user-entry input prompt for the selection of one of these three multiple choice candidate parity-check

node selection methods.

The random approach produces better codes, evidence of this can be found in [Hu et al., 2005]. This

fact was also corroborated by results of extensive simulation experiments carried out in the early

stages of this research. Consequently, unless otherwise specified, the random approach to selecting

one out of a multiple choice of candidate parity-check nodes after all other PEG constraints have been

satisfied has been adopted throughout this research. In order to facilitate the random selection of a

candidate parity-check node, a random number generator function in the C programming language

called ½«�2 by [Teukolsky et al., 1992] was utilized in all PEG algorithm implementations in this

research. The ½«�2 function returns a uniform random deviate between 0.0 and 1.0 (exclusive of the

endpoint values) every time the function is called. The authors give assurance that, within the limits of

its floating-point precision, ½«�2 provides perfectly random numbers. Given a fixed set of input code

construction parameters to the PEG algorithm, completely different LDPC codes are constructed by

simply changing the random number seed which is required to initialize the ½«�2 function. The

random number seed is an arbitrary integer �≥ 1� which is used to initiate the random number

generation process in ½«�2. Ensembles of LDPC codes constructed using the different

versions/modification to the PEG algorithm in this thesis, and fixed sets of code construction

parameters, will be obtained by simply using different random number seeds to construct the

constituent codes. In this research, we use the sequence of the set of natural numbers, i.e.

1, 2, 3, 4, 5, . . . , F , as the random number seeds for constructing a code ensemble of cardinality F.

The final input parameter which is common to all implementations of the PEG algorithm in this thesis

is the subgraph expansion type. The version of the PEG algorithm implemented by [Hu et al., 2001],

where the algorithm was first proposed, uses a greedy subgraph expansion. In a greedy expansion, the

depth of subgraph expansions from symbol node �% ∀ 0 ≤ ≤ � − 1, is unrestricted and each graph

expansion proceeds as deeply as possible. Therefore, at the later stages of graph construction, the

52

subgraph construction proceeds until Ṅ�4
O ≠ Ø but Ṅ�4

O£E = Ø, where & is the depth of subgraph

expansion. However, Hu et al. proposed a nongreedy version where & is limited to a certain value,

&�Nº, which they envisaged would achieve a strictly concentrated parity-check node sequence and

would probably also reduce the diameter of the graph resulting in fewer decoding iterations being

required. It is generally understood that, all other parameters being equal, the higher the girth

and/or diameter of an LDPC code, the larger the number of decoding iterations required to attain a

given performance (probability of decoding error) under iterative decoding algorithms.

The choice of greedy or nongreedy subgraph expansion is a built-in option in our implementation of

the PEG algorithm. In the manual input version of the algorithm, an input prompt is provided for

selecting one of the two subgraph expansion versions: greedy version, or nongreedy version. If the

nongreedy version is selected, another input prompt is provided so that the maximum subgraph

expansion depth &�Nº, to be used by the PEG algorithm can be specified. The PEG algorithm which

includes the option of nongreedy subgraph expansion is summarized in Algorithm 2.2.

53

Algorithm 2.2: The standard progressive edge-growth (PEG) algorithm with optional nongreedy

subgraph expansion

for = 0 to � − 1 do
begin
for � = 0 to ��4 − 1 do

begin
if � = 0

8�4
k ← edge ~.� , � �, where 8�4

k is the first edge incident to �%,

and .� is selected from the check nodes with the lowest check node

degree under the current graph setting 8�� ∪ 8�/ ∪ . . . ∪ 8�(4�/).

else
if nongreedy (with maximum subgraph expansion depth given as &�Nº)

expand a subgraph from symbol node �% up to depth & (where & ≤ &�Nº)
under the current graph setting such that the cardinality of ;�4

O stops

increasing but is less than �, Ṅ�4
O ≠ Ø but Ṅ�4

O£E = Ø, or N�4
O = N�4

O���

then 8�4
R ← edge ~.� , � �, where 8�4

R is the (� + 1)-th edge incident to

�%, and .� is a check node selected from the lowest degree check nodes
in the set Ṅ�4

O .

 else greedy (without a maximum subgraph expansion depth)
expand a subgraph from symbol node �% up to depth & under the current
graph setting such that the cardinality of N�4

O stops increasing but is less

than �, or Ṅ�4
O ≠ Ø but Ṅ�4

O£E = Ø, then 8�4
R← edge ~.� , � �, where 8�4

R is

the (� + 1)-th edge incident to �%, and .� is a check node selected from
the lowest degree check nodes in the set Ṅ�4

O .
end

end

When all necessary code construction parameters, and other parameters required to format LDPC code

configuration files for subsequent use by our BP/SPA decoder, have been provided to a PEG

algorithm, an LDPC code matrix is constructed in line with the constraints of the specific PEG

algorithm version. The C programming language code for the standard PEG algorithm implemented in

this research is available in the Appendices (See Appendix A).

In order to construct ensembles of LDPC codes, all the different PEG algorithm

versions/modifications implemented in this research work have an automated version. In automated

versions, the code construction parameters and the other parameters required to format LDPC code

configuration files for use by the BP/SPA decoder are provided within the lines of the C program code

54

and then Bash (Unix shell) commands are used to run the PEG algorithm program as many times as

required using different random number seeds to initiate the ½«�2 function. The ½«�2 function

generates the random numbers used for the pseudorandom process of choosing a parity-check node

from multiple candidate check nodes during code constructions. This way, ensembles of codes are

automatically generated and each LDPC matrix configuration file constructed is uniquely identified by

being saved with the random number seed used for its construction as part of its filename.

2.4.2 The Edge Connections Sequence of the Standard PEG Algorithm

Figure 2.13 shows the standard PEG algorithm edge connections sequence, i.e. the sequence in which

edges are connected into a Tanner graph, during the construction of a code with degree sequence

"� = �2, 2, 2, 2, 3, 3, 5, 5, 7, 7�. A ‘1’ in the figure represents the connection of an edge in the

graph; in other words, it is a ℎ�,% = 1 assignment in the parity-check matrix ', where 0 ≤ | ≤ � − 1

and 0 ≤ ≤ � − 1.

Figure 2.13: The edge connections sequence of the standard PEG algorithm

 DS = { 2 2 2 2 3 3 5 5 7 7 }

 Start

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

 Stop

55

2.4.3 The LDPC Matrix Configuration File

The output of the PEG algorithm is a text file which we refer to as an LDPC matrix configuration file.

An example of the contents of an LDPC matrix configuration file constructed using PEG algorithms is

shown in Figure 2.14. The first row of the LDPC matrix configuration file contains the following

parameters of the error correction code represented by the parity check matrix: The ‘.<��_&��1xℎ’,

which is the total number of symbols in each block of the encoded message; the ‘À«½|x�_&��1xℎ’,

which is the number of parity-check symbols (number of linearly independent parity-check equations)

in each block of the encoded message; and the ‘½<w�’, which is the total number of parity-check

equations in the configuration file. In addition, the ‘SNR’, i.e. the signal-to-noise ratio in decibels

(SNR(dB)) at the receiver, and the ‘|x�½«x|<��’, i.e. the maximum number of decoding iterations to be

executed by the BP/SPA decoder, are also specified in the first row of the LDPC matrix configuration

file.

code_length=512,parity_length=256,rows=256,SNR=4.00dB,iterations=100
35 219 243 357 445 461 490 506 -1 ← parity-check equation 0
3 226 305 386 409 458 480 507 -1 ← parity-check equation 1
87 172 252 348 412 469 480 508 -1
35 200 235 360 402 470 478 509 -1
81 187 312 319 432 470 489 503 -1
116 175 279 362 446 464 476 507 -1
127 143 255 373 426 461 492 507 -1
65 200 302 359 435 466 480 505 -1
93 206 307 383 413 471 477 501 -1
0 170 289 382 401 462 477 499 -1
38 153 293 376 446 460 476 500 -1
5 203 240 337 396 467 493 509 -1
100 167 298 355 405 473 490 505 -1
34 163 248 391 434 463 485 502 -1
48 169 301 334 417 467 485 497 -1
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
23 217 274 380 425 459 479 494 -1
92 219 247 368 425 469 477 498 -1
95 202 271 344 397 463 477 511 -1
37 181 252 377 435 471 486 496 -1
104 170 309 377 423 462 485 504 -1 ← parity-check equation 255

Note: symbol nodes are numbered from 0 to 511

Figure 2.14: An example of the contents of an LDPC matrix configuration file created for an

LDPC code constructed using the PEG algorithm

56

The remaining set of rows of text in the LDPC matrix configuration file make up a shorthand

representation of the LDPC code matrix constructed. These set of rows have a cardinality of ‘½<w�’,

where ½<w� = �, as specified in the first line of the configuration file, and each of these rows

represents a distinct parity-check equation .�, for 0 ≤ | ≤ � − 1. Each column of a parity check

matrix represents a distinct symbol node �%, for 0 ≤ ≤ � − 1, where is the index number of the

column or symbol node in the parity-check matrix. In the shorthand LDPC code matrix representation,

the row corresponding to check equation .k lists the indices of only the set of symbol nodes evaluated

by .k, and so on. In other words, each row .� , 0 ≤ | ≤ � − 1, contains only the set of ’s for which

'�,% = 1, 0 ≤ ≤ � − 1. The configuration file is formatted to be used directly by the BP/SPA

decoder for code performance simulations implemented in this research.

2.5 The Belief Propagation or Sum-Product Algorithm (BP/SPA)

Message-Passing Iterative Decoder

The standard belief propagation or sum-product algorithm (BP/SPA) decoder for simulating the

performance of LDPC codes over the AWGN channel was implemented in the C programming

language on the GNU/Linux UBUNTU® operating system platform. The C programming language

code for the standard BP/SPA decoder implemented in this research is available in the Appendices

(See Appendix B). The message-passing BP/SP iterative decoding algorithm was implemented as part

of a larger program which reads an LDPC matrix configuration file, validates the integrity of the

parity-check matrix ' read from the file, and then carries out all the necessary pre-processing of the

' matrix before simulating its error correction performance. For simplicity, the entire program is

referred to as the BP/SPA decoder and binary codes are assumed in the descriptions that follow.

The program generates random binary messages using the ½«�2 random number generator function

obtained from [Teukolsky et al., 1992]; messages are encoded using a codeword generator matrix ,

that is derived from the parity-check matrix ' obtained from the LDPC matrix configuration file; the

transmission of codeword bits using binary phase-shift keying (BPSK) modulation are simulated; and

the reception of each encoded vector over an AWGN channel at a specified SNR(dB) is simulated.

57

Based on the received vectors, the a posteriori probabilities of the received bits are calculated and then

used in the BP/SPA decoder for error correction. Using the Monte Carlo method, the probability of

decoding error of LDPC codes at different SNR(dB)s at a specified maximum number of decoding

iterations are determined. The BP/SPA decoder was used to carry out performance simulations on

almost all the LDPC code matrices which were investigated in this research except for those in

Chapter 7 which were decoded using improved BP/SPA decoders. The following is a detailed

description of the operation of the BP/SPA decoder software used in this research to simulate the

performance of short-to-medium length LDPC codes over the AWGN channel.

The BP/SPA decoder needs an LDPC matrix configuration file in order to carry out its function. The

BP/SPA decoder starts its operation by reading the contents of an LDPC matrix configuration file into

memory. The contents of a sample LDPC matrix configuration file used by the BP/SPA decoder are

shown in Figure 2.14. The first line of the configuration file contains important information about the

LDPC matrix which the BP/SPA decoder requires in order to:

i) determine the dimensions of the parity check matrix ' in the file in order to read the file

contents correctly; these are the variables called .<��_&��1xℎ, À«½|x�_&��1xℎ and ½<w�, and

ii) determine the SNR(dB) at which to simulate signal reception over the AWGN channel, and

the maximum number of decoding iterations to execute; these are the variables called Á;G

and |x�½«x|<�� respectively.

Ideally, the parity length and the number of rows � of parity-check equations in a parity-check matrix

would be identical, i.e. À«½|x�_&��1xℎ = ½<w�, (�). However, sometimes there are one or more

linearly dependent parity-check equations so that there are fewer linearly independent parity-check

equations than there are rows � of parity-check equations in the LDPC matrix configuration file

À«½|x�_&��1xℎ ≤ ½<w�, (�). This situation is searched for and detected by the BP/SPA decoder as

the program attempts to obtain the codeword generator matrix , for a parity-check matrix in memory.

The presence of linearly dependent parity-check equations in the parity-check matrix of a code simply

means that the code described by the parity-check matrix has a slightly higher information rate than

58

indicated by the number of rows in the parity-check matrix. A smaller number of linearly independent

parity-check equations implies a smaller number of parity-check bits and a higher number of

information bits per codeword; this translates to a higher code rate.

All the subsequent rows after the first row in an LDPC matrix configuration file describe parity-check

equations; these rows are assigned virtual numbers serially down the file, from parity-check equation 0

to parity-check equation (� − 1) in sequence. The indices of all the symbol nodes which are involved

in each parity-check equation are listed in the corresponding row of parity-check equations which also

correspond to rows of the parity-check matrix. Here, symbol nodes �% for all 0 ≤ ≤ � − 1 are

represented by their indices and the ’s of all symbol nodes from �k to ��QE, which are involved in

parity-check equation .� for all 0 ≤ | ≤ � − 1 are listed in the corresponding rows of the LDPC

matrix configuration file. The indices of the symbol nodes evaluated in each parity-check equation are

listed with one or two ‘space’ characters placed between them. The index numbers in each

parity-check equation row indicate the positions of the 1’s in the corresponding row of the binary

parity check matrix. The ‘-1’ placed at the end of each parity check equation row is used to terminate

the parity-check equation after all the symbol nodes which it evaluates have been completely listed.

Before the parity check matrix in the configuration file is read into memory, a zero matrix with

number of rows equal to the variable ‘rows’ and number of columns equal to the variable

‘code_length’ as specified in the first line of the configuration file is created. Thereafter, the positions

of the 1’s in each line of the LDPC code matrix to be read into memory are determined from the

contents of corresponding lines of parity-check equations in the configuration file, and the bit values at

corresponding positions in the originally all zero matrix in memory are changed from 0 to 1.

Figure 2.15 (a) shows the contents of an LDPC matrix configuration file, and Figure 2.15 (b) is the

[20, 10, 4] LDPC code matrix derived from it.

59

Figure 2.15: (a) The contents of an LDPC matrix configuration file, and (b) the

corresponding [20, 10, 4] LDPC code ' matrix

When a ‘-1’ is encountered while the indices of the symbol nodes involved in a parity-check equation

are being read from the rows of the LDPC matrix configuration file, it is interpreted to mean that all

symbol nodes involved in that parity-check equation have been completely listed. The program reads

the contents of all the lines in the configuration file in this manner until it reaches the ‘-1’ in the row

where the number of parity-check equations read is equal to the number of ½<w� as specified in the

first line of the configuration file. At that juncture, it is assumed that the complete LDPC code matrix

has been read into memory, and any other text written thereafter in the LDPC matrix configuration file

is ignored.

After an LDPC code matrix ' has been successfully created in memory from a configuration file, the

' matrix in memory is checked to ensure that it does not have redundant rows or columns. A

redundant row in a ' matrix is a row with less than two symbol nodes. A valid parity-check equation

must have at least two elements, i.e. at least one parity-check bit and one information bit. Similarly, a

redundant column in a ' matrix is an all-zero column or a column without a single ‘1’ bit. A symbol

must be either an information bit or a parity-check bit, it cannot be neither. If redundant row(s) or

column(s) are found in the ' matrix read from an LDPC matrix configuration file, an error message

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19

 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

v v
 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1

 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1

 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0

 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0

 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1

c8

c9

c7

c5

c4

c3

c2

c1

c6

c0

code_length=20,parity_length=10,rows=10,SNR=4.00,iterations=100

0 5 11 18 -1

0 9 12 15 -1

1 8 10 16 19 -1

4 7 15 16 -1

3 7 12 17 19 -1

3 6 14 16 18 -1

4 8 11 17 -1

2 6 10 17 -1

1 9 13 14 -1

2 5 13 15 19 -1

(a) (b)

= H

60

which specifies the redundant row or column number(s) is displayed and the execution of the BP/SPA

decoder program is terminated.

2.5.1 Message Encoding

In the absence of errors in the configuration file, the BP/SPA decoder program proceeds to obtain a

codeword generator matrix , for the LDPC code parity-check matrix ' in memory. The well

established Gaussian elimination procedure is performed on a copy of the ' matrix in memory to

obtain its row echelon form '(); it is often necessary to perform column swapping operations to

derive the row echelon form of a ' matrix. Figure 2.16 shows matrix '(), the row echelon form of the

LDPC code matrix in Figure 2.15(b), columns 0 and 19 were swapped during the Gaussian elimination

process.

Figure 2.16: The [20, 10, 4] row echelon LDPC code matrix, '()

Subsequently, using additional Gaussian elimination, the row echelon ' matrix is converted to the

reduced row echelon form in which the parity-check bits are expressed as explicit sums (modulo-2) of

information bits. It is at this juncture that it can be easily determined if there are linearly dependent

parity-check equations in the original parity-check matrix read from the configuration file. The

presence of linearly dependent parity-check equations in a ' matrix is clearly indicated by the

presence of one or more all-zero rows in the reduced row echelon form of the ' matrix. The number

of linearly dependent rows is determined by the number of all-zero rows. If one or more linearly

 s19 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s0

 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1

v v
 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0

 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1

 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0

 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1

 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1

 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1

 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1

 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1

 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1

c8

c9

c7

c5

c4

c3

c2

c1

c6

c0

= '()

61

dependent parity-check equations are detected and the À«½|x�_&��1xℎ which is specified in the first

line of the LDPC matrix configuration file is different from the actual number of linearly independent

check equations in the parity-check matrix of the code, an error message is displayed to indicate the

presence and exact number of linearly dependent rows and the program terminates. In such cases, the

LDPC matrix configuration file must be edited so that the À«½|x�_&��1xℎ specified in the first line

reflects the actual parity length of the parity-check matrix; the actual parity length is obtained as the

difference between the total number of parity-check equations (i.e. ½<w�) and the number of linearly

dependent parity-check equations in the ' matrix. The actual parity length of a ' matrix is known as

its ‘rank’, and it is the required value of � whenever equation � = � − � is to be used. As explained

previously, whenever the actual parity length is less than the number of rows in the ' matrix as a

result of the presence of linearly dependent parity-check equations, it simply implies that the LDPC

code has a code rate which is slightly higher than intended during the code design. Figure 2.17 shows

matrix '((), the reduced row echelon form of the LDPC code matrix in Figure 2.16. There are no

all-zero rows in Figure 2.17. Therefore, there are no linearly dependent parity-check equations in the

' matrix. The ' matrix is of full rank.

Figure 2.17: The [20, 10, 4] reduced row echelon LDPC code matrix, '(()

After ensuring that the value of À«½|x�_&��1xℎ in the LDPC matrix configuration file is correct, and

the ' matrix has been expressed in the reduced row echelon form which is devoid of all-zero rows,

 s19 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s0

 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

v v
 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0

 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0

 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0

 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1

c8

c9

c7

c5

c4

c3

c2

c1

c6

c0

= '(()

62

some elementary matrix algebra techniques are applied on the ' matrix to arrive at a codeword

generator matrix , for the code. The reduced row echelon H matrix is compared to the following

matrix format:

' = [*|��QR], (2.1)

where * is an (� − �) × � matrix; and ��QR is an (� − �) × (� − �) identity matrix, i.e. an identity

matrix of order (� − �). Figure 2.18 shows the submatrix of '((), the reduced row echelon ' matrix,

which corresponds to * in equation (2.1).

The , matrix for a code whose ' matrix is in the reduced row echelon form can be easily obtained as:

, = [�R|*+], (2.2)

where , is a � × � matrix; *+ is the transpose of * and is consequently a � × (� − �) matrix; and �R

is an identity matrix of order k.

Figure 2.18: Submatrix * obtained from '(() - the [20, 10, 4] reduced row echelon matrix

Submatrix * of the reduced row echelon parity-check matrix '(() is extracted and a matrix transpose

operation is carried out on it to obtain matrix *+. Figure 2.19 shows matrix *+ which was obtained by

transposing the * submatrix of '(() shown in Figure 2.18.

 1 0 1 0 1 0 1 1 0 0

 1 0 0 0 0 0 0 1 1 0
 0 0 0 1 1 0 0 0 0 0
 1 1 0 0 0 1 1 0 1 0

 1 0 0 0 0 1 1 0 1 1

 0 1 1 0 0 0 1 0 1 0
 0 1 1 0 1 0 1 1 1 0

 1 0 0 0 1 0 0 1 0 0

 1 1 1 1 1 1 1 1 0 1

 0 1 1 1 1 0 1 0 1 1

= *

63

Figure 2.19: Matrix *+ - the transpose of submatrix *

Subsequently, an identity matrix �R is generated and the two matrices are merged to form codeword

generator matrix , = [�R|*+]. It is important to note that if column swapping operations were carried

out during the Gaussian elimination to obtain a ' matrix in the reduced row echelon form, the

G matrix subsequently obtained generates the codewords for the reduced row echelon ' matrix and

not the codewords for the original ' matrix read from the configuration file. Figure 2.20 shows ,((),

the , matrix obtained for '(() - the reduced row echelon ' matrix.

Figure 2.20: The codeword generator matrix ,(() corresponding to matrix '(()

1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1

 s19 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s0

c8

c9

c7

c5

c4

c3

c2

c1

c6

c0

= ,(()

 1 1 0 1 1 0 0 1 1 0

 0 0 0 1 0 1 1 0 1 1
 1 0 0 0 0 1 1 0 1 1
 0 0 1 0 0 0 0 0 1 1

 1 0 1 0 0 0 1 1 1 1

 0 0 0 1 1 0 0 0 1 0
 1 0 0 1 1 1 1 0 1 1

 1 1 0 0 0 0 1 1 1 0

 0 1 0 1 1 1 1 0 0 1

 0 0 0 0 1 0 0 0 1 1

= *+

64

If column swapping operations were carried out to obtain '((), the resulting codeword generator

matrix ,(() can be converted to , in order to generate codewords for the original parity-check matrix

in memory, i.e. ', by unswapping all swapped columns in the reverse sequence in which the columns

were originally swapped. In our example, only columns 0 and 19 were swapped during Gaussian

elimination to obtain '(), consequently to obtain , from ,(() these two columns must be unswapped.

Figure 2.21 shows the final codeword generator matrix , for the original parity matrix ' which was

read into memory from the LDPC matrix configuration file. The codeword generator matrix

processing can be done offline, and subsequently just the , and ' matrices provided to the encoder

and decoder respectively.

Figure 2.21: The codeword generator matrix , for LDPC code matrix '

The row space of , is orthogonal to ', thus the following relationship holds true for corresponding

pairs of , and ':

,'+ = 0 (2.3)

A message vector is conventionally denoted by matrix Â = [}k }E }� }RQE], where the vector

Â consists of the � message bits. A code with � message bits has a maximum of 2R codewords. These

codewords are a subset of the 2� possible binary vectors of length �. The codeword µ corresponding

to any binary message Â can be obtained using matrix multiplication,

µ = Â, (2.4)

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0

1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19

c8

c9

c7

c5

c4

c3

c2

c1

c6

c0

= ,

65

In this encoding approach, unlike the parent ' matrices, the , matrices derived are generally not of

low density, this may be observed by comparing the matrices in Figure 2.15(b) and Figure 2.21.

Consequently, the matrix multiplication at the encoder will have a complexity in the region of ��

operations; the encoder can become prohibitively complex for LDPC codes with very large �. The use

of structured parity-check matrices can reduce this implementation complexity significantly

[Johnson, 2006].

A message vector for the 10 × 20 ,-matrix in Figure 2.21, which has information bit length � = 10,

may be denoted as,

Â = [}k }E }� }B }C }n }� }7 }6 }A].

A � bit long random message vector can be easily generated using the ½«�2 function as follows.

Recall that the ½«�2 function returns a uniform random deviate between 0.0 and 1.0 (exclusive of the

endpoint values) every time the function is called. The value of each bit of a message, from bit }k to

bit }RQE, can be randomly determined using a separate call to the ½«�2 function. Denote the value of

the deviate returned by the u-th call to the ½«�2 function as �Ã, where u is an arbitrary integer which

increases by one (1) for every call to ½«�2 (u = 0 at the start of program execution). To randomly

assign a binary value to a message bit, say bit }k, a call is made to ½«�2 which in turn returns a value

�Ã, if 0.0 < �Ã < 0.5 then assign bit }k = 0, else if 0.5 ≤ �Ã < 1.0 assign bit }k = 1. This process is

repeated � times to obtain random message Â = [}k }E }� }RQE]. Codewords are obtained

using matrix multiplications µ = Â,, and are denoted by µ = [.k .E .� �QE],

Codeword vectors for the 10 × 20 ,-matrix in Figure 2.21, which has codeword length � = 20, may

be denoted as,

µ = [.k .E .� .B .C .n .� .7 .6 .A .Ek .EE .E� .EB .EC .En .E� .E7 .E6 .EA].

66

2.5.2 The AWGN Channel

The BP/SPA decoder simulates the reception of signals transmitted using binary phase-shift keying

(BPSK) modulation over an AWGN channel. The analogue amplitudes of transmitted symbol bits are

assigned as follows: bit 0 = −1.0�, and bit 1 = +1.0�. As an example, we assume a twelve (12) bit

long codeword µ, where

µ = [0 1 1 0 0 1 1 0 0 0 0 1],

the transmitted BPSK modulated vector Ä will be represented by,

Ä = [−1.0 + 1.0 + 1.0 − 1.0 − 1.0 + 1.0 + 1.0 − 1.0 − 1.0 − 1.0 − 1.0 + 1.0]

Each random variable received over the AWGN channel can be defined as:

½% = x% + ;%, where 0 ≤ ≤ � − 1 (2.5)

where x% is a constant signal of ±1.0� which represents a transmitted bit, and ;% is a random variable

which represents the channel noise signal added at the instant of transmission. AWGN vectors ;,

where ; = #;%$ for all , have an expected value (or mean) of zero. Using this model, the linear

signal-to-noise ratio Á;G can be expressed as:

Á;G = M°

Æ° (2.6)

where x� is the mean squared value of the signal power, and Ç� is the variance of the noise ; on the

channel. In the AWGN channel, noise power is equivalent to noise variance Ç� because the noise on

the channel has zero mean. The linear SNR may be expressed in decibels (dB) as:

Á;G(�F) = 10 logEk Á;G (2.7)

Conversely, the linear SNR can be obtained from its decibel value using:

Á;G = 10
ÈÉÊ(±Ë)

/� (2.8)

67

The signal-to-noise ratio in decibels (SNR(dB)) at which decoding performance simulation is to be

carried out by the BP/SPA iterative decoder on an LDPC code matrix is specified in the first line of

the LDPC matrix configuration file.

With the amplitudes of the transmitted signals given as x = ±1.0�, the signal power is x� = 1,

therefore:

Á;G = E
Æ° (2.9)

and by making Ç the subject of the formular,

Ç = E
√¨HÍ (2.10)

The channel noise standard deviation, Ç, is used to regulate the effect (amplitude) of AWGN in the

channel on the received signal in proportion to the SNR at which decoding of received codeword

signals are to be simulated. All transmitted messages/codewords have the same messages energies.

In order to correctly simulate the effects of AWGN at a given SNR on the sequence of bits transmitted

over the AWGN channel using BPSK modulation, the BP/SPA decoder utilizes a function in C

programming language called 1«���u in addition to the ½«�2 function which is used in the PEG

algorithm. The 1«���u and ½«�2 functions were both obtained from [Teukolsky et al., 1992]; the use

of the ½«�2 function has been explained in Section 2.4.1. The 1«���u function returns a normally

distributed (Gaussian) random deviate with zero mean and unit variance. The 1«���u function

implemented in the BP/SPA decoder uses the ½«�2 function as a source of uniform deviates for its

operation. Calls to the 1«���u function are used to simulate the effects of AWGN noise on BPSK

modulated signals because the random deviates it returns have a Gaussian distribution with zero mean

and unit variance. It is important to note that the original 1«���u function in [Teukolsky et al., 1992]

uses the ‘½«�1’ function as the source of uniform random deviates, however the 1«���u function

implemented in this research uses the ½«�2 function instead because it has a significantly longer

68

period than ½«�1, and far greater than 100 million random numbers will be generated in the course of

arriving at statistically accurate decoding error probabilities.

The deviates returned using successive calls to the 1«���u function are used to generate discrete

AWGN vectors in proportion to the desired SNR of the received codeword signals. A sequence of �

AWGN vectors {;k, ;E, . . . ;�QE� can be represented as ;% where 0 ≤ ≤ � − 1.

Î = [;k ;E ;� ;�QE]

Each noise vector ;% is obtained by making a call to the 1«���u function and multiplying the value of

the deviate returned by Ç - the standard deviation of the noise at the given SNR, so that,

;% = 1��uÃ × Ç (2.11)

where 1��uÃ is the value of the random deviate returned from the u-th call to the 1«���u function.

Recall that calls to the 1«���u function returns normally (Gaussian) distributed random deviates with

zero mean and unit variance.

For example, by using twelve (12) successive calls to the 1«���u function and then multiplying each

deviate returned by Ç for an arbitrary SNR(dB), the following noise vectors (rounded off to one

decimal place for simplicity) were obtained:

Î = [−0.4 − 1.1 + 0.3 − 0.1 + 0.4 + 0.2 + 0.1 + 0.8 − 0.4 + 0.2 − 0.2 + 0.3]

For transmissions over AWGN channels, each transmitted bit vector x% and its corresponding received

bit vector ½% in a codeword are related as described by equation (2.5). That is, ½% = x% + ;%, where

0 ≤ ≤ � − 1. Therefore, an AWGN channel noise vector ;% is added to each transmitted bit vector x%

before it is received as ½%. Recall that,

Ä = [−1.0 + 1.0 + 1.0 − 1.0 − 1.0 + 1.0 + 1.0 − 1.0 − 1.0 − 1.0 − 1.0 + 1.0].

When BPSK modulated codeword vector Ä is transmitted, AWGN noise vector string Î is added to it

so that Ï = Ä + Î. This addition is carried out in the component-by-component basis to obtain the

received vector Ï as:

Ï = [−1.4 − 0.1 + 1.3 − 1.1 − 0.6 + 1.2 + 1.1 − 0.2 − 1.4 − 0.8 − 1.2 + 1.3]

69

It can be observed that the magnitude of the AWGN noise in the second code bit position of Î

(i.e. ;E) was sufficient to change the phase (polarity) of the corresponding received vector compared

to that of the transmitted vector. The received bit in the second bit position ½E = xE + ;E, where

xE = +1.0 and ;E = −1.1. Therefore, the received bit vector ½E = −0.1 while the transmitted bit

vector xE = +1.0. This change in polarity due to channel noise results in a symbol error if a hard

decision is made on this received symbol vector.

On the AWGN channel, the probability of a received bit ½� being a 1 or a 0 is given by,

À�
J = �(.� = 9|½�) = «�

�_Ð��Ñce
°

°Ò° (2.12)

where | is the position of the received bit in a received codeword vector ½ = [½k, ½E, . . , ½¶, . . , ½�QE]

corresponding to transmitted codeword vector . = [.k, .E, . . , .¶, . . , .�QE], and 0 ≤ | ≤ � − 1; 9 is

the bit value, 9 = 0, 1; « is an arbitrary constant; uJ = ±1.0, such that uk = −1.0 and uE = +1.0;

and Á;G = 1 Ç�⁄ .

The following choice is made when evaluating the probabilities of received code bit vectors. One may

choose to determine either,

i) Àk, the probability that each received bit vector is a 0, or

ii) ÀE, the probability that each received bit vector is a 1.

Any one of the two alternatives may be freely chosen as they both result in identical information.

The probability that each received bit vector is a 1, i.e. ÀE, was used in the BP/SPA decoder

implemented in this research. ÀE is derived using,

À�
EK = Ó�

/

Ó�
�£Ó�

/ (2.13)

70

9 = 0 and 9 = 1 can be substituted in equation (2.12), to obtain

À�
k = «�

�~Ð�Ô/.��°

°Ò° (2.14)

 and

À�
E = «�

�~Ð��/.��°

°Ò° (2.15)

respectively. Therefore, substituting for À�
k and À�

E in equation (2.13),

À�
EK = N)

�~Ð��/.��°

°Ò°

N)
�~Ð�Ô/.��°

°Ò° £N)
�~Ð��/.��°

°Ò°

 (2.16)

Equation (2.16) can be further simplified to obtain,

À�
EK = E

E£)
�°Ð�

Ò°
 (2.17)

Based on the received vector Ï in our example, i.e.,

Ï = [−1.4 − 0.1 + 1.3 − 1.1 − 0.6 + 1.2 + 1.1 − 0.2 − 1.4 − 0.8 − 1.2 + 1.3],

the probabilities that each of these received vectors are equal to bit 1 can be calculated using equation

(2.17). Assuming that Á;G = 1 Ç�⁄ = 1.239 (equal to Á;G(�F) = 0.931), the probabilities that the

received vectors of Ï are equal to bit 1 are as follows,

� = [0.03 0.44 0.96 0.06 0.18 0.95 0.94 0.38 0.03 0.12 0.05 0.96]

These codeword bit probabilities are the required inputs from the channel to the iterative soft input

soft output (SISO) BP/SPA decoding algorithm.

71

2.5.3 Iterative Decoding

In this section, the maximum a posteriori (MAP) decoding of a single parity check (SPC) code using

codeword enumeration and Gallager (dual) decoding are discussed in order to establish some vital

precepts to BP/SPA iterative decoding. For simplicity, we focus on the � = 2, � = 3 even parity SPC

code; the discussion is similar for SPC codes of any length of �. The set of codewords for the chosen

code are �[.k.E.�]� = �000, 011, 101, 110�.

Codeword enumeration

Assuming the ½� values have been received, their probabilities are computed using equation (2.12), i.e.,

À�
J = �(.� = 9|½�) = «�

Q~(�QÃc�°

�Æ°

where | is the bit position and 9 is the bit value, | = 0, 1, 2 and 9 = 0, 1. The probability of each

codeword is calculated as shown in Table 2.1.

Table 2.1: MAP decoding of an (�, �) = (3, 2) SPC code by codeword enumeration

.k .E .� �(µ|Ï)

0 0 0

0 1 1

1 0 1

1 1 0

Àk
kÀE

kÀ�
k

Àk
kÀEEÀ�E

ÀkEÀE
kÀ�E

ÀkEÀEEÀ�
k

To determine the probability of output bit .� being 9, the probabilities of all the codewords for which

.� = 9 are summed. Therefore, the output probability of bit .E being 1 is,

ÀE
E K = Àk

kÀEEÀ�E + ÀkEÀEEÀ�
k = ÀEE(Àk

kÀ�E + ÀkEÀ�
k)

⟹ ÀE
E K = ÀEE(Àk

kÀ�E + ÀkEÀ�
k) (2.18)

72

The quantity

ÀE
E � = ÀEE (2.19)

is known as intrinsic information and was known before decoding the SPC code, and the quantity

ÀE
E) = Àk

kÀ�E + ÀkEÀ�
k, (2.20)

which was produced by decoding the SPC code, is known as extrinsic information.

Similarly, the output probability of .E being 0 is,

ÀE
k K = Àk

kÀE
kÀ�

k + ÀkEÀE
kÀ�E = ÀE

k(Àk
kÀ�

k + ÀkEÀ�E)

⟹ ÀE
k K = ÀE

k(Àk
kÀ�

k + ÀkEÀ�E) (2.21)

where the intrinsic information is,

ÀE
k � = ÀE

k, (2.22)

and the extrinsic information is,

ÀE
k) = Àk

kÀ�
k + ÀkEÀ�E. (2.23)

Generally, it can be observed that À�
k) (the extrinsic information for output bit | to be 0) is the sum of

all products of the other bit probabilities for which the sum of bits is even, and

À�
E) (the extrinsic information for output bit | to be 1) is the sum of all products of the other bit

probabilities for which the sum of bits is odd.

Gallager (dual) decoding

To determine the output probabilities for bit | = 1, as an example, Gallager observed that if we

calculate the following products,

(Àk
k + ÀkE)(À�

k + À�E) = 1 = Àk
kÀ�

k + Àk
kÀ�E + ÀkEÀ�

k + ÀkEÀ�E (2.24)

(Àk
k − ÀkE)(À�

k − À�E) = (1 − 2ÀkE)(1 − 2À�E) = Àk
kÀ�

k − Àk
kÀ�E − ÀkEÀ�

k + ÀkEÀ�E (2.25)

73

and we add equation (2.24) and equation (2.25) we obtain twice the sum of all ‘even’ terms, which is

equivalent to 2ÀE
k). Similarly, if we subtract equation (2.25) from equation (2.24) we obtain twice the

sum of all ‘odd’ terms, which is equivalent to 2ÀE
E). Therefore, we obtain the following equations for

ÀE
k) and ÀE

E) respectively,

ÀE
k) = E£~EQ�Ó�/�~EQ�Ó°/�

� = Àk
kÀ�

k + ÀkEÀ�E (2.26)

ÀE
E) = EQ~EQ�Ó�/�~EQ�Ó°/�

� = Àk
kÀ�E + ÀkEÀ�

k (2.27)

Similarly, for bit | = 2,

À�
k) = E£~EQ�Ó�/�~EQ�Ó//�

� (2.28)

À�
E) = EQ~EQ�Ó�/�~EQ�Ó//�

� (2.29)

In general for any bit |,

À�
k) = E£∏ _EQ�Ó4

/e4Ö�
� (2.30)

À�
E) = EQ∏ _EQ�Ó4

/e4Ö�
� (2.31)

If the probability of a bit being a 0 is mostly required, the notation of equation (2.30) can be simplified

by denoting À% = À%
E = 1 − À%

k, to obtain,

À�
k) = E£∏ ~EQ�Ó4�4Ö�

� (2.32)

and À%
k = 1 − À%.

However, the probability of a bit being a 1 is mostly used in the BP/SPA decoder implemented in this

research, the notation of equation (2.31) is simplified by denoting À% = À%
E = 1 − À%

k, to obtain,

À�
E) = EQ∏ ~EQ�Ó4�4Ö�

� (2.33)

and À%
k = 1 − À%.

74

The general algorithm for iterative decoding

The iterative decoding of linear codes introduced by Gallager is based on the ' matrix of the code

[Gallager, 1962]. Any ' matrix is composed of at least � = � − � parity check equations, and each of

these parity-check equations can be separately decoded using one of the SPC algorithms. The general

algorithm is as follows.

1. Receive the channel values [½�] where 0 ≤ | ≤ � − 1 for a transmitted codeword, and

calculate the channel probabilities for each code bit to be a 1/0, À�
U where | = 0, . . . , � − 1

and � = 0, 1.

2. Decode the first parity-check equation using the channel values, this produces extrinsic

probabilities (additional information) for the bits involved in the first parity-check equation.

3. Starting from the second parity-equation, cycle through all the equations in the following

way: Using the channel values and any other extrinsic information produced by previous

equations except the current one, decode the current equation. Update the bit probabilities

for the current equation.

Note: Whenever there are several pieces of information about a bit, for example

ÀN, ÀJ and ÀT - the probabilities that the bit is a 1 coming from the channel and extrinsic

output from other equations, they are combined by multiplying the probabilities that the bit is

a 1 together. This hides an assumption of independence of the probabilities, which is valid

for the first iterations. To combine ÀN and ÀJ we use the function,

×(ÀN , ÀJ) = ÀNÀJ
ÀNÀJ + (1 − ÀN)(1 − ÀJ)

(2.34)

where the numerator is the probability multiplication and the denominator is a normalization

factor. In order to combine more than two probabilities, say ÀN, ÀJ and ÀT, we can apply

equation (2.34) repeatedly, ×(×(ÀN , ÀJ), ÀT).

75

4. Output the probabilities of each bit À�
E K/À�

k K. These contain all the information available

from the channel and equations at this time, combined using equation (2.34).

An exemplification of iterative decoding

Consider a (�, �) = (6, 3) linear code with the following ' matrix,

Figure 2.22: The ' matrix of an (�, �) = (6, 3) linear code

Iterative decoding will be illustrated using this code and, since both � and � − � are small, we are also

able to perform MAP decoding. Consequently, we compare the output of iterative decoding with the

output of optimal MAP decoding carried out on a set of received channel values. The H matrix of the

code is systematic and the information bits make up the first three bits of codewords.

The generator matrix for this code can be easily derived as,

Figure 2.23: The , matrix for the (�, �) = (6, 3) linear code

Consider the BPSK modulated transmission of a message 9 = [9k 9E 9�] = [1 1 1] over the AWGN

channel using this code. This message is encoded using matrix multiplication µ = Ø, = [111000].

The following are the details of the transmission and reception of the message.

Information: 111

Codeword: 111000 ⟹ Transmitted codeword = [111000] (0 info error)

Channel: [+1.0,+1.0,+1.0,-1.0,-1.0,-1.0] ⟹ BPSK modulated codeword

Received: [-0.7,+1.6,+0.4,-1.1,-1.1,-0.4] ⟹ Received codeword = [011000] (1. info error)

Probabilities: [0.15, 0.98, 0.74, 0.05, 0.05, 0.26] (using equation (2.17) at Á;G = 1 Ç�⁄ = 1.239

 which is equivalent to Á;G(�F) = 0.931)

 1 0 0 0 1 1

 0 1 0 1 0 1
 0 0 1 1 1 0

= ,

 0 1 1 1 0 0

 1 0 1 0 1 0
 1 1 0 0 0 1

= '

76

Table 2.2 shows MAP decoding by codeword enumeration for the received codebit vectors using,

a) the probabilities that each of the received codeword bits is a 1 (i.e. À%
E for all 0 ≤ ≤ � − 1)

which are calculated using equation (2.17) (with Á;G = 1 Ç�⁄ = 1.239 ≡ Á;G(�F) =

0.931), and

b) the probabilities that each of the received codeword bits is a 0 (i.e. À%
k for all 0 ≤ ≤ � − 1,

which are obtained as À%
k = 1 − À%

E).

The probabilities that each of the received codebits is a 1, calculated using equation (2.17), are given

as follows (rounded off to 2 decimal places).

P(1) = [À%
E for all 0 ≤ ≤ � − 1] ≡ [ÀkE, ÀEE, À�E, ÀBE, ÀCE, Àn

E] = [0.15, 0.98, 0.74, 0.05, 0.05, 0.26]

Accordingly, the probabilities that each of the received bits is a 0 are obtained using À%
k = 1 − À%

E, and

are given as follows,

P(0) = [(1 − À%
E) for all 0 ≤ ≤ � − 1] ≡ [Àk

k, ÀE
k, À�

k, ÀB
k, ÀC

k, Àn
k] = [0.85, 0.02, 0.26, 0.95, 0.95, 0.74]

These two sets of probability values, i.e. P(1) and P(0), are used to calculate the probabilities in the

‘Probability’ column of Table 2.2. The last six columns in the table are used for the decoding of the

three information bits 9k, 9E, and 9�. That is, two columns are used to determine the output probability

for each of the three information bits. For example, columns ‘ÀkE’ and ‘Àk
k’ of Table 2.2 are used to

determine the output probability of information bit 9k as follows.

i) In the ‘ÀkE’ column, in order to determine the probability of output bit 9k being 1, the

probabilities (from the ‘Probability’ column) of all the codewords for which 9k = 1 are

summed, and

ii) in the ‘Àk
k’ column, in order to determine the probability of output bit 9k being 0, the

probabilities (from the ‘Probability’ column) of all the codewords for which 9k = 0 are

summed.

77

As shown in the ‘Output probability calculation’ row of Table 2.2, the output probability that decoded

information bit is a 1, i.e. À%
KE, is determined using,

À%
KE = Ó�/

Ó4
/£Ó4

� where 0 ≤ ≤ � − 1 (2.35)

Similarly, the output probability that decoded information bit is a 0, i.e. À%

Kk, may be determined

using,

À%
Kk = Ó4

�

Ó4
/£Ó4

� where 0 ≤ ≤ � − 1 (2.36)

Note that, À%
Kk = 1 − À%

KE.

Table 2.2: MAP decoding by codeword enumeration [Ambroze, 2014]

Codeword Probability Àk
E Àk

k ÀE
E ÀE

k À�
E À�

k
000000 Àk

kÀE
kÀ�

kÀB
kÀC

kÀn
k = 0.00295 0.00295 0.00295 0.00295

100011 Àk
EÀE

kÀ�
kÀB

kÀC
EÀn

E = 0.00001 0.00001 0.00001 0.00001
010101 Àk

kÀE
EÀ�

kÀB
EÀC

kÀn
E = 0.00267 0.00267 0.00267 0.00267

110110 Àk
EÀE

EÀ�
kÀB

EÀC
EÀn

k = 0.00007 0.00007 0.00007 0.00007
001110 Àk

kÀE
kÀ�

EÀB
EÀC

EÀn
k = 0.00002 0.00002 0.00002 0.00002

101101 Àk
EÀE

kÀ�
EÀB

EÀC
kÀn

E = 0.00003 0.00003 0.00003 0.00003
011011 Àk

kÀE
EÀ�

EÀB
kÀC

EÀn
E = 0.00761 0.00761 0.00761 0.00761

111000 Àk
EÀE

EÀ�
EÀB

kÀC
kÀn

k = 0.07265 0.07265 0.07265 0.07265

Summed probabilities 0.07276 0.01326 0.08301 0.00301 0.08031 0.00571

Output probability calculation Àk
KE = Àk

E

Àk
E + Àk

k = 0.85 ÀE
kE = ÀE

E

ÀE
E + ÀE

k = 0.96 À�
KE = À�

E

À�
E + À�

k = 0.93

Decoder output [Àk
KE ÀE

KE À�
KE]

0.85

0.96

0.93

Decoded information [9k 9E 9�]

1

1

1

It can be seen from the results of the MAP decoding by codeword enumeration in Table 2.2 that the

MAP decoder correctly decoded the received codeword from the channel, i.e. [011000] (which

contains 1 information bit error), to the transmitted codeword, i.e. [111000], in spite of the error

caused by the channel.

78

Iterative decoding works on probabilities in a ' matrix. A probability matrix '- is created by

duplicating the ' matrix and then replacing all the 1’s in the duplicate H matrix with probability

values of exactly 0.50, which represents an indeterminate state of the final output. The 0’s in '-, as

inherited from duplicated H matrix, are not used in the decoding process. Figure 2.24 shows '- the

initialized probability matrix for the ' matrix in Figure 2.22 which the BP/SPA decoder will work on.

Figure 2.24: An initialized probability matrix '-

Gallager’s iterative decoding process is exemplified in Table 2.3 to Table 2.11. In order to explain the

decoding process, the paths from the information which serve as the iterative decoder’s inputs to the

decoding results, i.e. value of decoded information bits 9k, 9E, and 9�, have been highlighted in

Table 2.3 and Table 2.4. The function in equation (2.34), i.e. ×(ÀN , ÀJ) = Ó�Óc
Ó�Óc£(EQÓ�)(EQÓc), is used to

combine and normalize probabilities. In order to combine more than two probabilities, say

ÀN, ÀJ and ÀT, ×() is applied repeatedly, ×(×(ÀN , ÀJ), ÀT). The function in equation (2.33), i.e.

À�
) = EQ∏ ~EQ�Ó4�4Ö�

� , is used to calculate the output extrinsic information.

 _ 0.50 0.50 0.50 _ _

 0.50 _ 0.50 _ 0.50 _
 0.50 0.50 _ _ _ 0.50

= '-

 p0 p1 p2 p3 p4 p5

79

Table 2.3: Decoding iteration 0, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.50 (?) 0.50 (?) 0.50 (?)

equation 1 0.50 0.50 0.50

equation 2 0.50 0.50 0.50

Decoding iteration 0, equation 0
Input probabilities to SPC decoder:
 ÀE = 0.98 = ×(0.98,0.50) À� = 0.74 = ×(0.74,0.50) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.71 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.93 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.26

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:

Àk = 0.15 = ×(0.15,0.50,0.50) ÀE = 0.99 = ×(0.98,0.71,0.50) À� = 0.97 = ×(0.74,0.93,0.50)

Decoded data: 9k = 0 (because Àk < 0.50), 9E = 1 (because ÀE > 0.50), 9� = 1 (because À� > 0.50)
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 2.3 illustrates the decoding of the first equation (equation 0) in the first decoding iteration

(decoding iteration 0). Similar to the MAP decoding by codeword enumeration in Table 2.2, the

iterative decoder works with the probabilities that each of the received codebits is a 1, which are

calculated using equation (2.17) at Á;G = 1 Ç�⁄ = 1.239 ≡ Á;G(�F) = 0.931. These probabilities

are given as follows (rounded off to 2 decimal places).

[Àk, ÀE, À�, ÀB, ÀC, Àn] = [0.15, 0.98, 0.74, 0.05, 0.05, 0.26]

This is the information contained in the ‘From channel’ row of the ‘Currently known’ section of

Table 2.3. Additionally, the last three rows in the ‘Currently known’ section contain the probability

matrix '- which was created by replacing all the 1’s in the H matrix with probability values of exactly

0.50, which represents an unknown state of the final output. These last three rows in the

80

‘Currently known’ section of Table 2.3 are called ‘equation 0’, ‘equation 1’, and ‘equation 2’,

respectively. That is, the ‘Currently known’ section consists of the calculated channel probabilities, i.e.

the ‘From channel’ row, and bit probabilities in the parity-check equations, i.e. the ‘equation 0’,

‘equation 1’, and ‘equation 2’ rows.

The decoding procedure illustrated in Table 2.3 is for decoding iteration 0, equation 0. It is the first

decoding iteration and the first parity-check equation to be decoded. Therefore, only the channel

values are available; there is no extrinsic information. It can be seen that the ‘equation 0’ row contains

the probabilities of codeword bits 9E, 9�, and 9B, which are ÀE, À�, and ÀB, respectively. Each of these

probabilities are contained in the columns of corresponding name in the table, i.e. columns ‘ÀE’, ‘À�’,

and ‘ÀB’ respectively. At the start of the decoding, all the probabilities in the ‘equation’ rows of the

‘Currently known’ section are equal to 0.5.

As shown by the arrows drawn from columns ‘ÀE’, ‘À�’, and ‘ÀB’ of the ‘Currently known’ section to

the ‘Input probabilities to SPC decoder’ section of Table 2.3, the input probabilities to the SPC

decoder ÀE, À�, and ÀB are obtained by combining the probabilities in columns ‘ÀE’, ‘À�’, and ‘ÀB’ of

the ‘Currently known’ section using equation (2.34); however, the bit probabilities contained in the

‘equation 0’ row are excluded from these probability combinations. That is, the values of À% in the

‘Input probabilities to SPC decoder’ section are obtained by using equation (2.34) to combine the bit

probabilities in the column ‘À%’ of the ‘Currently known’ section of the table, except the bit

probabilities values in the row of the equation being decoded.

As shown by the arrows drawn from the ‘Input probabilities to SPC decoder’ section to the

‘Output extrinsic information’ section of Table 2.3, the probabilities obtained in the

‘Input probabilities to SPC decoder’ section are used to calculate the output extrinsic information

using equation (2.33). Subsequently, the output extrinsic information, i.e. ÀE, À�, and ÀB, are used:

i) to update probabilities ÀE, À�, and ÀB of equation 0 in the probability matrix '- for all

further decoding operations, and

ii) determine the current decoder output.

81

 In our exemplification of Gallager’s iterative decoding process in Table 2.3 to Table 2.11, the

‘Current iterative decoder output’ probabilities are only determined for the information bits,

i.e. 9k, 9E, and 9� which have bit probabilities Àk, ÀE, and À�, respectively. Probabilities Àk, ÀE, and À�

represent the probabilities that information bits 9k, 9E, and 9� respectively are equal to 1.

As shown in Table 2.3, the ‘Current decoder output’ probability À%, where 0 ≤ ≤ 2, is determined by

combining:

i) probability À% in the ‘From channel’ row of the ‘Currently known’ section,

ii) the available probabilities in the ‘equation’ rows of column ‘À%’ of the ‘Currently known’

section except that in the row of the equation being decoded (if applicable), and

iii) the newly calculated output extrinsic information of À% (if applicable).

Table 2.4: Decoding iteration 0, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.71 0.93 0.26

equation 1 0.50 (?) 0.50 (?) 0.50 (?)

equation 2 0.50 0.50 0.50

Decoding iteration 0, equation 1
Input probabilities to SPC decoder:
 Àk = 0.15 = ×(0.15,0.50) À� = 0.97 = ×(0.74,0.93) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.92 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.18 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.82

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:

Àk = 0.67 = ×(0.15,0.92,0.50) ÀE = 0.99 = ×(0.98,0.71,0.50) À� = 0.88 = ×(0.74,0.93,0.18)

Decoded data: 9k = 1 (because Àk > 0.50), 9E = 1 (because ÀE > 0.50), 9� = 1 (because À� > 0.50)
Transmitted Data: 9k = 1 9E = 1 9� = 1

82

Table 2.4 illustrates the decoding of the second equation (equation 1) in the first decoding iteration

(decoding iteration 0), which is the next step in the iterative decoding process. Similar to Table 2.3,

the path from the information which serve as the iterative decoder input to the decoding results,

i.e. value of decoded information bits 9k, 9E, and 9�, have been highlighted in Table 2.4.

It can be observed that the output extrinsic information produced in Table 2.3 have been used to

update bit probabilities ÀE, À�, and ÀB in ‘equation 0’ row of the ‘Currently known’ section of

Table 2.4. The decoding in Table 2.4 takes place in an identical manner to that in Table 2.3. However,

for the decoding in Table 2.4, the decoder uses the channel values and the output extrinsic information

produced by decoding equation 0.

Generally, after decoding the first equation, the decoder uses the channel values and any other

extrinsic information produced by previous equations except the current one. A decoding iteration is

complete after the output extrinsic information for the last equation in 'Ó has been determined. The

first decoding iteration, i.e. decoding iteration 0, ends at Table 2.5

Further decoding iterations are executed by repeating this process of determining the output extrinsic

information for all the parity-check equations again in a cyclic manner . Only three decoding iterations

are used in our decoding exemplification. Table 2.6 to Table 2.8 show the second decoding iteration

(decoding iteration 1), and Table 2.9 to Table 2.11 show the third decoding (decoding iteration 2).

83

Table 2.5: Decoding iteration 0, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.71 0.93 0.26

equation 1 0.92 0.18 0.82

equation 2 0.50 0.50 0.50

Decoding iteration 0, equation 2
Input probabilities to SPC decoder:
 Àk = 0.66 = ×(0.15,0.92) ÀE = 0.99 = ×(0.98,0.71) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.73 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.57 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.34

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.85 = ×(0.15,0.92,0.73) ÀE = 0.99 = ×(0.98,0.71,0.57) À� = 0.88 = ×(0.74,0.93,0.18)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 2.6: Decoding iteration 1, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.71 0.93 0.26

equation 1 0.92 0.18 0.82

equation 2 0.73 0.57 0.34

Decoding iteration 1, equation 0
Input probabilities to SPC decoder:
 ÀE = 0.98 = ×(0.98,0.57) À� = 0.38 = ×(0.74,0.18) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.39 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.93 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.61

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.85 = ×(0.15,0.92,0.73) ÀE = 0.97 = ×(0.98,0.39,0.57) À� = 0.88 = ×(0.74,0.93,0.18)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

84

Table 2.7: Decoding iteration 1, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.39 0.93 0.61

equation 1 0.92 0.18 0.82

equation 2 0.73 0.57 0.34

Decoding iteration 1, equation 1
Input probabilities to SPC decoder:
 Àk = 0.32 = ×(0.15,0.73) À� = 0.97 = ×(0.74,0.93) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

 Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.92 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.33 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.66

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.85 = ×(0.15,0.92,0.73) ÀE = 0.97 = ×(0.98,0.39,0.57) À� = 0.94 = ×(0.74,0.93,0.33)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 2.8: Decoding iteration 1, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.39 0.93 0.61

equation 1 0.92 0.33 0.66

equation 2 0.73 0.57 0.34

Decoding iteration 1, equation 2
Input probabilities to SPC decoder:
 Àk = 0.66 = ×(0.15,0.92) ÀE = 0.96 = ×(0.98,0.39) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.72 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.57 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.35

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.72) ÀE = 0.97 = ×(0.98,0.39,0.57) À� = 0.94 = ×(0.74,0.93,0.33)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

85

Table 2.9: Decoding iteration 2, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.39 0.93 0.61

equation 1 0.92 0.33 0.66

equation 2 0.72 0.57 0.35

Decoding iteration 2, equation 0
Input probabilities to SPC decoder:
 ÀE = 0.98 = ×(0.98,0.57) À� = 0.57 = ×(0.74,0.33) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.56 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.93 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.43

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.72) ÀE = 0.98 = ×(0.98,0.56,0.57) À� = 0.94 = ×(0.74,0.93,0.33)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 2.10: Decoding iteration 2, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.56 0.93 0.43

equation 1 0.92 0.33 0.66

equation 2 0.72 0.57 0.35

Decoding iteration 2, equation 1

Input probabilities to SPC decoder:
 Àk = 0.31 = ×(0.15,0.72) À� = 0.97 = ×(0.74,0.93) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

 Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.92 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.32 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.67

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.72) ÀE = 0.98 = ×(0.98,0.56,0.57) À� = 0.94 = ×(0.74,0.93,0.32)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

86

Table 2.11: Decoding iteration 2, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.56 0.93 0.43
equation 1 0.92 0.32 0.67

equation 2 0.72 0.57 0.35

Decoding iteration 2, equation 2
Input probabilities to SPC decoder:
 Àk = 0.66 = ×(0.15,0.92) ÀE = 0.98 = ×(0.98,0.56) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.73 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.57 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.34

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74

Final iterative decoder output:
Àk = 0.85 = ×(0.15,0.92,0.73) ÀE = 0.98 = ×(0.98,0.56,0.57) À� = 0.94 = ×(0.74,0.93,0.32)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 2.12 is used to compare the decoding results obtained using the MAP decoder and the iterative

decoder.

Table 2.12: MAP decoding versus iterative decoding

Decoder Type

Decoder Output
[Àk ÀE À�]

Decoded information
 [9k 9E 9�]

Information

errors

Source

MAP decoder

[0.85 0.96 0.93]

 [1 1 1]

0

Table 2.2

Iterative decoder

[0.85 0.98 0.94]

 [1 1 1]

0

Table 2.11

87

It can be seen from the results in Table 2.12 that the iterative decoder has a similar performance to the

MAP decoder, and both decoders correctly decoded the received information from the channel to the

transmitted codeword despite the error caused by the channel.

For more powerful codes where both � and � − � are large, MAP decoding complexity is of the order

of �|�(2R , 2�QR). However, iterative decoding is significantly less complex with a complexity

proportional to (� − �) × �� where �� is the number of iterations performed [Ambroze, 2014].

Generally, long codes where �, �, and � − � are large also have large girths 1. Consequently, these

long codes need to be decoded using larger values of ��. This is due to the fact that the minimum ��

required to attain a basic level of decoding convergence under iterative message-passing algorithms is

equal to the girth of the code 1, i.e. �|�(��) = 1. However, researchers commonly set �� ≥ 101 in

order to obtain the best iterative decoding performance.

Algorithm 2.3 summarises the BP/SP decoding algorithm which was implemented in this research for

decoding BPSK modulated LDPC codes received over the AWGN channel at different SNRs. Using

the Monte Carlo method, the coding performance of most of the LDPC codes investigated in this

thesis were determined using this decoder. Algorithm 2.3 describes only the auxiliary processes

surrounding the BP/SP algorithm and excludes the preliminary aspects of the larger BP/SPA program

which must be executed before actual decoding commences. That is, Algorithm 2.3 excludes the

LDPC matrix configuration file read operation, and the processes leading up to the derivation of the

, matrix - all of which can be done offline.

An improved BP/SP algorithm is proposed and discussed in Chapter 7.

88

Algorithm 2.3: The BP/SPA message-passing iterative decoding algorithm for decoding BPSK

modulated LDPC codes received over AWGN channels

9&<.��½½<½� = 0, 9|x�½½<½� = 0, ��|��½½<½� = 0
for x.<��w<½�� = 1 to �«�. �< <× .<��w<½�� |� �|�}&«x|<� do
begin

• generate a length � random message Â = [}k }E }� }RQE] using the values of ¹Ü, i.e.
the random deviates returned by the ÏÝ�¸ function, to determine the value of each bit in Â.
For example, if |¹Ü|≥ 0.5, }k = 1, if |¹Ü£·| < 0.5, }E = 0, and so on up to }R.

• using µ = Â,, determine the corresponding � bit long codeword µ = [.k .E .� �QE].
• convert each bit of codeword µ to the equivalent vector to be transmitted using 9|x 0 = −1.0

and 9|x 1 = +1.0, this simulates BPSK modulation to obtain the set of transmitted vectors Ä,
where Ä = [x0 x1 x2 x�−1] and, depending on the binary value of .%, x% = ±1.0 for all

0 ≤ ≤ � − 1.
• generate AWGN vectors ; = [;k ;E ;�. . . . ;�QE] to distort the transmitted vectors Ä in

each bit position using Î´ = ÞÎ × ßÝ³¹àÜÜ, for 0 ≤ ≤ �– 1. Recall: a new function call is

made to the ßÝ³¹àÜ function for each .
• add the transmitted vector Ä to noise vector Î to obtain the received vector

Ï = o½k, ½E, ½� ½�QEp where ½% = x% + ;% for 0 ≤ ≤ � − 1.

• calculate the probabilities of the received bits ½% (probabilities that each bits is a 1) to obtain

the code bit probabilities � = [Àk, ÀE , À�, , À�QE] where 0.00 ≤ À% ≤ 1.00 for all

0 ≤ ≤ � − 1.
• create probability matrix '-, from the original ' matrix in the configuration file such that

9|x 0 → ‘ − ’ and 9|x 1 → 0.50.
�½½<½ = 0

for |x�½«x|<�� = 1 to �«�. |x�½«x|<�� do

begin
execute BP/SPA decoding, as exemplified in Table 2.3 to Table 2.11, using probability
matrix '- and the code bit probabilities � which were calculated from the received values.

end
• convert the decoded bit probabilities, i.e. � = [Àk, ÀE, À�, , À�QE], obtained after the final

iteration into bits, using if À% ≥ 0.5 then .%
� = 1, else .%

� = 0, for all 0 ≤ ≤ � − 1;
the decoded codeword µ� = [.k

� .E
� .�

� �QE
�] is thus obtained

• compare the bits of the decoded output µ� to those in the transmitted codeword µ,
if all corresponding bits are identical, i.e. µ´

� = µ´ for all 0 ≤ ≤ � − 1, then �½½<½ = 0, and
if there are � differences, where � > 0, then �½½<½ = 1

• calculate the syndrome of the decoded output using � = .�'+
• if �½½<½ = 1, then block�½½<½� = 9&<.��½½<½� + 1 and 9|x�½½<½� = 9|x�½½<½� + �
• if �½½<½ = 1 and syndrome � = 0, then ��|��½½<½� = ��|��½½<½� + 1
• calculate and display the error rates, �)� at a specified x.<��w<½�� intervals.

interim FER, �)�L = 9&<.��½½<½�/x.<��w<½��
interim BER, �)�J = 9|x�½½<½�/(x.<��w<½�� × �)

end
output: S8G �)L = 9&<.��½½<½� / �«�. �< <× .<��w<½�� |� �|�}&«x|<�
output: F8G �)J = 9|x�½½<½� / (�«�. �< <× .<��w<½�� |� �|�}&«x|<� × �)
output: ��|��½½<½�

Although the BP/SPA decoding algorithm implemented has the facility for error probabilities in terms

of both FER and BER, in this thesis we focus mainly on the FER of LDPC codes. In order to minimize

89

decoding simulation times, the decoded codeword after each iteration µ� = [.k� .E� .�� �QE�] is

compared to the transmitted codeword µ = [.k .E .� �QE], and whenever they are identical

the decoding iteration cycle is terminated, and then the next random message is generated for

reception over the simulated AWGN channel. This saves time by preventing the maximum

number of decoding iterations from being executed whenever not necessary.

As a result of the minimum distance of codes, there are ���� decoding errors where the information

received from the channel is decoded to a codeword which is different from the transmitted codeword,

���� decoding errors results in errors (codewords) which have zero syndrome. ���� decoding errors

often occur when the channel distorts the transmitted codeword in such a manner that the received

signals are more likely (MRL) to have been produced by the codeword which it is eventually decoded

to (known as the MRL codeword). In other words, the Euclidean distance between the received

codeword and the transmitted codeword is greater than the Euclidean distance between the received

codeword and the MRL codeword which it is eventually decoded to [Papagiannis et al., 2004]. As a

result of the zero syndrome characteristic associated with this type of error events, they are classified

as undetectable errors at receivers. Conversely, decoding errors which do not result in valid

codewords, and hence do not have zero syndromes, are classified as detectable errors. Decoding error

probabilities are determined using the total number of decoding errors which is the sum of detectable

and undetectable errors.

In Algorithm 2.3, the variable ��|��½½<½� is a counter for the total number of undetectable errors

which occur during a performance simulation, and the algorithm displays the total number of

undetectable errors at the end of the simulation. The Hamming distance between the transmitted

codeword and the decoded codeword for each undetectable error is also determined and displayed by

the BP/SPA decoder. This facility helps to distinguish between ���� decoding errors and other causes

of decoding failures, e.g. trapping sets (see Section 3.2.5). In fact, this output can be used as an

indirect method to determine the ���� of a code because the Hamming distances between the

transmitted codeword and the decoded codeword is never less than the ���� of the code.

90

2.6 Performance of the Implemented BP/SPA Iterative Decoder

Unless otherwise specified, the following rules are applied to all LDPC code performance simulations

and comparisons carried out using the BP/SPA decoder implemented in this research: -

• The maximum number of decoding iterations is 100.

• For statistically accurate decoding error probabilities, a minimum of 100 frame errors are

captured before the probability of decoding error (FER) at any 89/;< is determined.

• Identical noise patterns are used to compare two or more codes plotted in the same graph. This

is done by: using identical random number seeds for codeword and noise generation,

simulating the decoding of an identical number of codewords for each code, and determining

the probability of decoding error (FER) only after attempting to decode all the codewords.

• Whenever it is easy to capture a minimum of 100 decoding errors, i.e. in the waterfall region,

a minimum and maximum of 1,000,000 and 10,000,000 codewords, respectively, are

processed for results.

• Where it is difficult to capture the required minimum of 100 decoding errors, i.e. in the

error-floor region, the minimum and maximum number of codewords processed for results

varies according to the length and efficiency of the code. A minimum of 100 × 1 �)�

codewords are processed for the FER results at the 89/;< of simulation, where �) is the

probability of frame error at the 89/;< obtained at the end of the simulation. The required

number of codewords for the performance simulation is estimated at the beginning of the

simulation and adjusted (increased) as necessary until a minimum of 100 decoding errors are

captured at any given 89/;< for each codes being compared.

The performance of the BP/SPA decoder implemented in this research was verified by using it to

determine the performance of LDPC codes whose performances have been previously determined

using a BP/SPA decoder in another research and comparing the results. The LDPC codes used for the

verification are: an [�, �, �] = [512, 256, 14] code, which is a rate-½ code with minimum distance

���� = 14; and an [�, �, �] = [1024, 512, 16] code, which is a rate-½ code with minimum distance

91

���� = 16. These codes were constructed using the PEG algorithm in the PhD research work carried

out in [Tjhai, 2007]. They are used as benchmark codes; results obtained from their decoding

performance simulations using the BP/SPA decoder implemented in this research are used as the

benchmark of good performance for comparison to other LDPC codes of similar length and rate.

Using these two benchmark codes, Figure 2.25 shows a comparison of the decoding performance

simulation results reported in [Tjhai, 2007] (called [Tjhai, 2007]) and the simulation results obtained

using the BP/SPA decoder implemented in this research (called [Decoder]).

Figure 2.25: Performance verification for the BP/SPA decoder implemented

The results of the [�, �, �] = [1024, 512, 16] LDPC code performance simulations obtained using

our BP/SPA decoder are very similar to the results reported for the same code in [Tjhai, 2007], with

the reported performance being marginally better. However, the performance simuation results for the

[�, �, �] = [512, 256, 14] code obtained using our BP/SPA decoder is notably better in the waterfall

92

region and worse in the error-floor region compared to the results reported for the same code in

[Tjhai, 2007]. These dissimilarities may be attributed to precision differences between the decoder

implementations and/or the different noise patterns encountered.

2.7 Determination of LDPC Code Minimum Weights: Minimum Distance

Weights ¹á¶�, and Minimum Stopping Set Weights, ³á¶�

The performance of LDPC codes under iterative message-passing decoding is dominated by graphical

structures within the Tanner graphs of the codes on which these decoding algorithms rely for their

operation. Over the binary erasure channel (BEC), at low erasure probabilities, the performance of

LDPC codes are dominated by error-prone graphical structures called stopping sets, which were

introduced in [Di et al, 2002]. Over the AWGN channel at high SNRs, the performance of LDPC

codes are dominated by code minimum distances ����, and error-prone graphical structures within

codes called trapping sets (see Section 3.2.5).

2.7.1 Stopping Sets and Minimum Stopping Set Weights ³á¶�

• Stopping Sets: A stopping set S is a subset of the set of symbol nodes ��, such that all the

neighbours of the symbol nodes in S are connected to S at least twice. The size or weight of a

stopping set � is defined as the cardinality of S, i.e. |S|.

• Minimum Stopping Set Weights ³á¶� (Stopping Distances): The minimum stopping set

weight, or stopping distance, ���� of a code is the minimum weight (cardinality or size) of a

nonempty stopping set of the code.

2.7.2 Linear Code Minimum Distance ¹á¶� and Stopping Distance ³á¶� Evaluation

The problem of determining the ���� of binary linear codes was hypothesized to be NP-hard by

[Berlekamp et al., 1978]. Two decades later, this hypothesis was affirmed by [Vardy, 1997]. Similarly,

[Krishnan and Shankar, 2006], and other researchers have shown that determining the ���� of an

arbitrary Tanner graph is an NP-hard problem. Various algorithms to approximate the ���� and ����

93

of fixed LDPC code matrices have resulted from the inherent intractability of the problem. Some of

these algorithms can be found in [Hu et al., 2004], [Hirotomo et al., 2005], [Hu and Eleftheriou, 2006],

[Richter, 2006], [Krishnan and Shankar, 2007], [Declercq and Fossorier, 2008], and

[Hirotomo et al., 2008].

In spite of the fact that exhausting all low-weight error-prone patterns is NP-hard, algorithms for

determining the minimum weight spectra for short-to-medium block length LDPC code matrices exist.

Notable examples include algorithms proposed by [Wang et al., 2006], [Wang et al., 2009],

[Rosnes and Ytrehus, 2009], [Rosnes et al., 2012], and [Rosnes et al., 2014].

One of the most efficient algorithm for determining the minimum weight spectra for short-to-medium

block length linear LDPC code matrices is the algorithm proposed by [Rosnes et al., 2012]. This

algorithm, which is an improvement to the algorithm by [Rosnes and Ytrehus, 2009], implements a

complete branch-and-bound (B&B) tree search [Land and Doig, 1960] in a short-to-medium length

LDPC code graphs to determine the initial part of the codeword weight spectrum and stopping set

weight spectrum up to a specified target â (where â ≤ 32). The minimum distance ���� and stopping

set minimum weight ���� of a code are extracted from the weight spectra found during a B&B tree

search. All the LDPC code ���� and ���� values determined in this research were carried out using

the algorithm proposed by [Rosnes et al., 2012], which we shall refer to as the LDPC code

weight evaluation algorithm in the rest of this thesis.

2.8 Summary

• LDPC codes and Tanner graphs have been introduced, and the basic features and properties of

LDPC codes have been described in detail. The different types of LDPC codes and LDPC code

construction techniques have been discussed.

• A detailed description of the standard/original PEG algorithm for constructing LDPC codes of

arbitrary length and rate has been given. The standard PEG algorithm which was implemented in

this research has been fully described. All modified PEG algorithms are based on and incorporate

the basic aspects of the standard/original PEG algorithm as described in this chapter.

94

• The format of the contents of LDPC matrix configuration files created by the different PEG

algorithms investigated in the research has been described in detail. LDPC matrix configuration

files contain the LDPC code parity-check matrices constructed by PEG algorithms. The simulated

decoding performance of the LDPC matrices in these configuration files are subsequently

determined using iterative message-passing BP/SPA decoders.

• A detailed and simplified explanation of the iterative decoding processes in the standard BP/SPA

decoder has been given. The algorithm of the standard BP/SPA decoder which was implemented

for this research has been fully described. The standard BP/SPA decoder was used to simulate the

decoding performance of most of the LDPC codes analysed in this research. An improved

BP/SPA decoder will be introduced and used for code performance simulations in Chapter 7.

• The NP-hard problem of determining the minimum weights, i.e. ���� and ����, of LDPC codes

has been highlighted, and the algorithm for determining the codeword weight and stopping set

weight spectra in short-to-medium block length LDPC code matrices proposed by Rosnes et al.

has been introduced and briefly described. The minimum weights of the short-to-medium length

LDPC codes analysed in this research were determined using the LDPC code weight evaluation

algorithm described in [Rosnes et al., 2012].

95

Chapter 3

Challenges to lowering the error-floor of short-to-medium
length LDPC codes over AWGN channels, and modified PEG
algorithms

Following the independent rediscovery of Gallager’s LDPC codes by [MacKay and Neal, 1996], and

also by [Wiberg, 1996], extensive research into reducing the gap to capacity of LDPC codes has been

ongoing. Challenges encountered in the diverse effort to lower the error-floor of LDPC codes have

been extensively expatiated in the literature.

3.1 Introduction

In this chapter we highlight and discuss the many challenges to lowering the error-floor of

short-to-medium length LDPC codes under iterative message-passing decoding. Additionally, out of

the diverse effort to overcome the identified challenges through improved LDPC code constructions,

we discuss, examine and review some notable PEG algorithm modifications that were aimed at

lowering the error-floor of the short-to-medium length LDPC codes constructed.

3.2 Challenges to Lowering the Error-Floor of Short-to-Medium Length

LDPC Codes over AWGN Channels

In this section the features of LDPC codes which have been identified in literature to affect the

performance of short-to-medium length LDPC codes in the error-floor region are discussed, with

96

special focus on the AWGN channel and decoding using iterative message passing algorithms.

Information theory has established that one of the primary determinants of the performance of a code

is its length. This applies to any type of code, code rate and girth. Unfortunately, the use of long codes

comes with significant computational overhead which inevitably results in longer delays. While many

applications have a maximum acceptable delay which limits the length of codes that can be used, e.g.

voice communications, other applications have a minimum acceptable error rate, e.g. data storage.

Relatively short delays are incurred when short-to-medium length LDPC codes are used, and

successfully lowering their error-floor performance would make them efficient enough for deployment

to many low-delay and low-error-rate applications.

3.2.1 Girth Properties of LDPC Code Tanner Graph

In their rediscovery of Gallager’s LDPC codes, MacKay and Neal used code construction methods

which ensured that 4-cycles were not present in the Tanner graphs of the regular LDPC codes they

experimented upon. This undoubtedly allowed the potentials of LDPC codes, which Gallager had

invented about three decades earlier, to be revealed. It was soon apparent from empirical performance

results that the performance of their regular LDPC codes were almost as close to the Shannon limit as

that of Turbo codes [MacKay and Neal, 1996].

On the one hand, there is ample proof that linear block codes like LDPC codes which have cycle-free

Tanner graphs have poor decoding performance not only under iterative message-passing decoding

schemes but also under maximum likelihood decoding [Etzion et al., 1999]. On the other hand, the

presence of cycles in the graph of LDPC codes causes symbol nodes to become interdependent

(or correlated) after a small number of decoding iterations, which significantly reduces decoding

efficiency under iterative message-passing algorithms. In his study of capacity-approaching LDPC

codes, Sason showed that cycles are necessary in the Tanner graph of such codes [Sason, 2009].

Extensive research in the search for good LDPC codes have shown that the performance of an LDPC

code depends not only on the length of the shortest cycle in the graph, i.e. the girth of the graph, but

also on the number of shortest cycles, recent examples of such research include

97

[Mao and Banihashemi, 2001] and [Venkiah et al., 2008]. This implies that to identify the features of

capacity-approaching LDPC codes it is important to look into their local girth distribution in addition

to their global girths.

3.2.2 Regular vs. Irregular LDPC Codes

The original LDPC codes, as first proposed by Gallager, were regular codes. Similarly, using regular

LDPC codes, MacKay and Neal showed that the performance of LDPC codes were almost as close to

the Shannon limit as that of Turbo codes [MacKay and Neal, 1996]. However, Luby et al. made a very

important contribution to LDPC code construction in 2001 when they showed that the performance of

LDPC codes can be significantly improved by incorporating some degree of irregularity in the

construction of their parity-check matrices [Luby et al., 2001]. In the same year,

Richardson et al. proposed a method to arrive at optimized parity-check matrix irregularities in terms

of symbol node degree distributions, which lead to good decoding performance of LDPC codes of

different length and rate [Richardson and Urbanke, 2001], [Richardson et al., 2001]. The degree

distribution optimization method they employed is known as density evolution (DE). DE determines

the performance threshold for infinitely long LDPC codes under the assumption that their bipartite

graphs are tree-like. However, the Tanner graphs of practicable finite-length LDPC codes without

singly connected symbol nodes unavoidably have cycles and hence are not tree-like [Tian et al., 2004].

The presence of cycles in bipartite graphs compromises the optimality of BP/SPA decoding because

cycles result in a situation where neighbours of a node are not conditionally independent in general,

consequently graph separation (see [Pearl, 1988]) is imprecise. [Tian et al., 2003]

Randomly constructed rate-½ irregular LDPC codes with block lengths in the order of 10C were found

to approach their DE threshold within 0.8�F [Richardson et al., 2001], these codes outperformed their

regular counterparts by approximately 0.6�F [MacKay, 1999]. An irregular binary LDPC code, which

had a DE optimized symbol node degree distribution and a block length of 107, was shown to attain a

distance of only 0.04�F from the ultimate Shannon limit at a bit error probability of 1 × 10Q�

[Chung et al., 2001]. Extensive research carried out to date show that irregular LDPC codes with good

98

degree distributions perform significantly better than regular LDPC codes of identical length and rate.

These performance differences can be seen in both structured and randomly constructed LDPC codes.

3.2.3 The Minimum Distance ¹á¶� of LDPC Codes

Generally, there appears to be an inverse relationship between the minimum distance ���� properties

of the different types of LDPC codes and their iterative decoding convergence over the AWGN

channel. Regular LDPC codes generally have larger ���� than irregular LDPC codes of the same

length and rate but do not perform as well. Similarly, irregular LDPC codes with relatively large ����

usually have ‘bad’ degree distributions and have poor performance compared to irregular LDPC codes

constructed with ‘good’ degree distributions. The best performing short-to-medium length LDPC

codes known to date are random (unstructured) irregular LDPC codes which have DE optimized or

‘good’ symbol node degree distributions.

The minimum distances ���� of LDPC codes in an ensemble whose constituent codes are

differentiated only by the random number seeds used in their construction usually spans a wide range

of values. We use an ensemble of six thousand (6000) rate-½ (�, �) = (512, 256) LDPC codes as an

example. All the codes in the ensemble were constructed using DE optimized symbol node degree

distribution @E(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14 in the standard PEG

algorithm. The value of the minimum distance ���� of the codes in this ensemble ranged from 7 to 19.

Simulation experiments show that there is a generalized improvement in the iterative message-passing

decoding performance of these codes over the AWGN channel as the ���� increases from the lowest

value of 7. However, beyond a certain ���� value (in this case, for ���� > 14) there is no observable

generalized improvement in decoding performance with increasing ����. In other words, it cannot be

said for the ensemble of LDPC codes in our example that codes with ���� = 19 generally perform

better than codes with ���� = 14 etc. Therefore, while high ���� values are desirable to minimize

undetectable decoding errors, beyond some values of ���� other causes of decoding errors dominate

the performance LDPC codes. This is particularly true in the error-floor region.

99

3.2.4 The Approximate Cycle Extrinsic Message Degree (ACE), and the Minimum

Stopping Set Weight, ³á¶� of LDPC Codes

Arguably, following the adoption of DE optimized degree distributions, the most remarkable

improvements to short-to-medium length irregular LDPC code error-floor performance were brought

about by modifications made to LDPC code construction algorithms in order to increase the

approximate cycle extrinsic message degree (ACE) in the Tanner graph of the codes constructed.

Tian et al. introduced a metric called extrinsic message degree (EMD) in their work to lower the

error-floor of irregular LDPC codes [Tian et al., 2003]. Their ultimate goal was to attain a minimum

stopping set size in LDPC code graphs, however the algorithm they realized did not explicitly remove

small stopping sets. Focusing on the EMD of symbol node sets instead, they proposed a technique to

suppress small stopping sets by ensuring that cycles have enough neighbours that produce useful

message flows. An extrinsic check node of a symbol node set is a check node that is singly connected

to that set of symbol nodes. The extrinsic message degree (EMD) of a symbol node set is the number

of extrinsic check nodes of the set. Therefore, from the definition of stopping sets (see Section 2.7.1):

i) the EMD of a stopping set is zero and, ii) a symbol node set with a large EMD will require a

significant number of additional symbol nodes to become a stopping set, i.e. for ‘closure’.

Tian et al. proposed a conditioning algorithm to ensure that all cycles less than a given length have

EMDs greater than a given value. Statistically, the technique increased the size of the smallest

stopping set ���� in LDPC codes. Consider a generic cycle in the Tanner graph of an LDPC code, if

there are no symbol nodes in this cycle that share common check nodes outside of this cycle, i.e. the

cycle contains no subcycles, then the EMD of this cycle is ∑ (�� − 2)� , where �� is the degree of the

|-th symbol node in this cycle, and the summation is taken over all the symbol nodes in the cycle. If

the cycle contains subcycles, the EMD is reduced through check node sharing. In order to simplify the

EMD metric, the effects of check node sharing is considered to be negligible and the

approximate EMD of a cycle was defined.

100

The approximate cycle EMD (ACE) of a cycle in a Tanner graph is ∑ (�� − 2)� , where �� is the degree

of the |-th symbol node in this cycle, and the summation is taken over all the symbol nodes in the

cycle. In a cycle, the ACE of symbol node �% is (��4 − 2), where 0 ≤ ≤ � − 1, and the ACE of any

check node is 0. Note that while ACE is defined with respect to symbol nodes in a given cycle, EMD

is defined with respect to any symbol node set. Additionally, given a set of symbol nodes in a cycle,

ACE is an upper bound on the EMD of these symbol nodes. [Tian et al., 2003] [Tian et al., 2004]

Xiao and Banihashemi proposed a PEG algorithm modification for constructing short-to-medium

length LDPC codes with significantly lower error-floors. The proposed PEG algorithm modification,

based on the ideas in [Tian et al., 2003] and [Tian et al., 2004], increases the ACE of cycles in the

Tanner graph of LDPC codes in order to increase Tanner graph cycle connectivity

[Xiao and Banihashemi, 2004]. From simulation experiments, it is clear that modifying the PEG

algorithm to increase the ACE in the Tanner graph of short-to-medium length LDPC codes results in

codes with significantly improved performance at high SNR region without any trade-off in the low

SNR performance. The improved error-floors of these codes are primarily attributed to the Tanner

graph ACE improvements. However, unlike in [Tian et al., 2003] and [Tian et al., 2004] where the

improved code performance was additionally attributed to improved stopping sets, the improved code

performance in [Xiao and Banihashemi, 2004] was additionally attributed to improved trapping sets

(see Section 3.2.5). Therefore, it may be deduced that there is a direct relationship between the

minimum stopping set size ���� and the size of the smallest trapping sets in LDPC codes.

Vukobratović and Šenk proposed a Generalized ACE constrained PEG algorithm, a modified PEG

algorithm for constructing LDPC code graphs with considerably improved ACE properties compared

to what is obtainable using the improved PEG (IPEG) construction by Xiao and Banihashemi. The

main objective was to achieve even further improvements in the error-floor performance of

short-to-medium length irregular LDPC codes. The work explored the possibility of further increases

to LDPC code stopping set sizes by conditioning cycles with respect to their ACE properties. The

simulation results presented showed improvements of the proposed algorithm, in terms of average and

101

best elements performance, over the standard PEG and IPEG algorithms

[Vukobratović and Šenk, 2008].

3.2.5 Trapping Sets

Margulis proposed the Cayley graph construction of regular Gallager (LDPC) codes of rate-½ and

parameters (, �) = (3, 6) [Margulis, 1982], the performance of these codes was first investigated by

Rosenthal and Vontobel [Rosenthal and Vontobel, 2000]. MacKay and Postol attributed the early

error-foor of the length � = 2640, girth 1 = 8, Margulis code, which appears at a FER of about

1 × 10Q�, to what they called near-codewords and not low-weight codewords. A (w, u)

near-codeword of a code with parity-check matrix ' is defined as a vector � with weight w whose

syndrome, i.e. �(�) = �'+, has a weight of u. Near-codewords with small u and relatively small w

tend to be error states from which the standard BP/SPA decoding algorithm cannot break out. A small

w relates to a reasonably probable error pattern, and a small u implies that only a few parity-check

equations are affected by these error patterns. Typically, a (w, u) near-codeword has u check nodes

that are connected to the bits in the word only once [MacKay and Postol, 2003].

In the continued effort to characterize failures of iterative decoding schemes over AWGN channels,

particularly in the error-floor region, Richardson introduced the notion of trapping sets and proposed a

computational technique that allows for the prediction of code error-floors in regions which are

beyond the reach of simulation [Richardson, 2003]. Richardson extended the concept of

near-codewords and redefined these error causing states into the more generalized term - trapping sets.

Richardson defined trapping sets as sets of symbol nodes, which usually consist of a relatively small

number of symbol nodes, such that the induced subgraph has only a small number of odd degree check

nodes. Under iterative decoding, a decoding is defined as successful if all the bits of a codeword are

eventually correct. Given an input �, the failure set ã(�) is defined to be the set of bits that are not

eventually correct. Therefore, decoding is successful on � if and only if ã(�) = ∅. If ã(�) ≠ ∅, then

ã(�) is a trapping set. ã is said to be an («, 9) trapping set if it has « symbol nodes and 9 odd degree

check node neighbours in the subgraph induced by ã.

102

Graphs with the smallest (dominant) trapping sets, e.g. (3, 1) trapping sets, have the worst

performance in the error-floor region. These relatively small trapping sets give rise to failure events

that dominate the error-floor performance of LDPC codes under iterative message-passing decoding.

However, the size of a trapping set is not linearly related to decoding failure rate as it is not the only

relevant parameter. Given two trapping sets («, 9) and («�, 9), with « > «� and fixed 9, it sometimes

happens that («, 9) trapping sets fail at a higher rate than («�, 9) trapping sets. It is feasible to discover,

enumerate and evaluate the trapping sets involved in the error-floor, i.e. dominant trapping sets,

because their structures are relatively small and their cardinality is not too large.

In practice, trapping sets are identified under simulation in the following way. A large fixed maximum

number of decoding iterations (say 100) is performed unless the decoder converges to a codeword

earlier. If it has not converged to a codeword after the fixed maximum number of iterations, the

trapping set is identified as the union of all symbol nodes which have not been decoded to the correct

bit value. Take the decoding of a codeword of length � = 512 code as an example, where the symbol

nodes of this code �% have indices within the range 0 ≤ ≤ 511. If the five (5) symbol nodes with

index numbers 0, 37, 117, 499, and 506 have not been decoded to the correct bit value after the 100th

decoding iteration, then this is a trapping set ãE = #�k, �B7, �EE7, �CAA, �nk�$. This trapping set

contains five (5) symbol nodes, therefore « = |ãE| = 5. If the subgraph induced by ãE has only

one degree 1 check node, i.e. 9 = 1, we describe ãEas a (5, 1) trapping set.

We formally define trapping sets and some of its more harmful subclasses, and then briefly explain the

processes through which a soft decision message-passing iterative decoder becomes trapped as

follows. Let , be the Tanner graph of a binary LDPC code X given by the null space of an � × �

parity-check matrix H over GF(2). The following definitions apply for 0 ≤ « ≤ � and 0 ≤ 9 ≤ �:

a) An («, 9) trapping set is a set ã of « symbol nodes in , which induces a subgraph of ,,

denoted by ,(ã), with exactly 9 odd degree check nodes and an arbitrary number of even

degree check nodes.

103

b) An («, 9) trapping set is an elementary trapping set if all the check nodes in the induced

subgraph ,(ã) have degree 1 or degree 2, and there are exactly 9 degree 1 check nodes.

c) An («, 9) trapping set is a small trapping set if « ≤ √� and
J
N ≤ 4.

d) An («, 9) trapping set is an absorbing set if every symbol node in the trapping set is

connected in ,(ã) to fewer check nodes of odd degree than check nodes of even degree.

Furthermore, if every symbol node not in the trapping set is connected to fewer check nodes of

odd degree in ,(ã) than other check nodes, i.e. check nodes not in ,(ã) or in ,(ã) but of

even degree, then the trapping set is a fully absorbing set.

On the AWGN channel, error patterns with a small number of symbol errors occur with higher

probability than error patterns with large number of symbol errors. As a consequence, the most

harmful («, 9) trapping sets in message-passing decoding algorithms are usually those with small

values of « and 9. The results of simulations carried out in [MacKay and Postol, 2003] and

[Richardson, 2003], and other extensive studies carried out since then show that the trapping sets that

result in high decoding failure rates and contribute significantly to high error-floors are those with

small « values and small
J
N ratios (especially for

J
N ≤ 1). The notions of elementary trapping sets and

small trapping sets capture these conclusions. In general, trapping sets with relatively large 9

compared to « result in relatively small decoding failure rates and have little contribution to

error-floor.

For the binary symmetric channel (BSC), the notion of absorbing sets arises from the fact that if the

channel causes errors in the symbol nodes corresponding to an absorbing set, then a Gallager type-B

decoder [Gallager, 1962] or a one-step majority-logic decoder [Lin and Costello, Jr., 2004] will fail.

Similarly, for soft-decision iterative decoding such as the BP/SPA over the AWGN channel, if most of

the soft messages become saturated then the decoder will behave like a Gallager type-B decoder and

will fail. To avoid numerical overflow due to probability saturation, which occasionally happens in

isolated error events in the error-floor region, the magnitude of the soft messages (e.g. extrinsic

104

probabilities) are usually limited to within some finite values of saturation [Ambroze et al., 2000],

[Butler and Siegel, 2012].

To understand trapping sets, let us assume that in the transmission of a codeword in X, an error pattern

� which results in « errors at the locations of the « symbol nodes of an («, 9) trapping set occurs. As a

result of this error pattern there will be 9 parity-check failures. Under iterative decoding, another

iteration must be carried out to correct the failed parity-check equations. Iterative decoding algorithms,

such as the BP/SPA and the min-sum algorithm (MSA), are very susceptible to trapping sets of a code

because they work locally in a manner similar to distributed-processing; each check node has a local

processor unit to process the messages received from the symbol nodes connected to it and each

symbol node has a local processor unit to process the messages received from the check nodes

connected to it. It is expected that these local processor units, through message exchanges and

iterations, collect sufficient information to make a globally optimum decision of the transmitted code

bits.

In the course of each decoding iteration, a check node is referred to as a satisfied check node if it

satisfies its corresponding check-sum constraint (i.e. the sum of the variable node bits in its

corresponding parity-check equation is equal to zero), otherwise, it is referred to as an unsatisfied

check node. In the process of decoding, the decoder undergoes state transitions, from one state to

another, until all the check nodes satisfy their corresponding check-sum constraints or a predetermined

maximum number of decoding iterations is attained. The s-th state of an iterative decoder is

represented by the hard-decision of decoded sequence obtained at the end of the s-th iteration. During

a decoding iteration, the messages from the satisfied check nodes try to reinforce the current decoder

state, while the messages from the unsatisfied check nodes try to change some of the bit decisions to

satisfy their check-sum constraints. If errors affect the « symbol nodes of an (a, b) trapping set ã, the

9 odd-degree check nodes which are each connected an odd number of symbol nodes in ã, will not be

satisfied while all the other check nodes will be satisfied. In such situations, the decoder will

successfully correct the errors in ã if the messages from the unsatisfied check nodes connected to the

105

symbol nodes in ã are strong enough to overcome the messages coming from the satisfied check

nodes. However, this is often not the case if the value of 9 is small. Consequently, the decoder might

not converge to a valid codeword even if more decoding iterations are performed, and the decoder is

said to be trapped. This non-convergence of decoding gives rise to the phenomenon of the error-floor.

Additionally, as decoding iterations increase and all parity-check equations are satisfied for a

codeword, the positions of the non-zero bits in the codeword form an («, 0) trapping set, where « is

the codeword weight. If an error pattern determined by these bit positions occurs, the decoder

converges to an incorrect codeword which results in an undetected error. In such cases, the decoder is

permanently trapped and cannot decode to the correct codeword. [Diao et al., 2013]

Following the introduction of the concept of trapping sets, a considerable amount of research has been

dedicated to identifying, enumerating, and minimizing the effects of trapping sets on the error-floor

performance of LDPC codes. Some of the more notable work on trapping sets, especially those which

focus on short-to-medium length LDPC code performance improvements, will be briefly discussed in

the following.

Many algorithms have been proposed for identifying and enumerating the trapping sets present in

Tanner graphs of codes. Vasić et al. derived a systematic method to identify the most relevant trapping

sets for decoding over the BSC in the error-floor region. They adopted a notion called the

critical number as an indicator of the harmfulness of a trapping set so that the smaller the critical

number the more harmful a trapping set. Trapping sets were classified and organized in a database

known as the trapping set ontology on the basis of the relations between the topological structures. By

exploiting the parent-child relationships between different subgraphs, the trapping set ontology can be

used to simplify the enumeration of trapping set classes. The trapping set ontology is also useful for

error-floor estimation, and in code construction where the harmful structures can be avoided while

constructing the Tanner graph of codes [Vasić et al., 2009]. Using a geometric approach, Diao et al.

analyzed the general trapping set structure of finite geometry (FG)-LDPC codes, which includes

Euclidean geometry (EG)-LDPC codes and projective geometry (PG)-LDPC codes. In their approach,

106

the trapping sets in the Tanner graph of a FG-LDPC are represented by sub-geometries of the

particular geometry on which the code is constructed. The size and configuration of a trapping set of a

given size can be determined using this geometric approach. Diao et al. showed that the Tanner graph

of a FG-LDPC code with a minimum distance of ���� contains no small («, 9) trapping sets with

« < (���� − 3). Given that the ���� of FG-LDPC codes are relatively large, they inherently do not

have small trapping sets. Consequently, FG-LDPC codes generally have lower error-floors than

similar regular codes, and this is further enhanced by the row-redundancy of their parity-check

matrices [Diao et al., 2013]. Many other trapping set enumeration algorithms have been proposed in

literature, recent examples are the algorithms in [Kyung and Wang, 2000], [Wang et al., 2009],

[Abu-Surra et al., 2010], [Zhang and Siegel, 2011], [Hashemi and Banihashemi, 2015] and

[Hashemi and Banihashemi, 2016]. In a recent work on trapping set enumeration, a branch-and-bound

(B&B) algorithm for exhaustively enumerating the elementary trapping sets (ETSs) in an arbitrary

Tanner graph was proposed. For a given Tanner graph , and a positive integer u, a linear

programming based B&B procedure was formulated for the NP-hard problem of finding the minimum

w for which there exists an (w, u)-ETS in ,. The proposed algorithm does not require the Tanner

graphs it analyses to be of particular forms (e.g., symbol node regular), unlike most trapping set

enumeration algorithms proposed before it [Falsafain and Mousavi, 2016].

The discovery of trapping sets has also spurred research to improve the error-floor performance of

LDPC codes by modifying the various code construction algorithms to pre-empt and avoid creating

small trapping sets in LDPC code Tanner graphs during code construction. In the pioneering work by

Xiao and Banihashemi entiled Improved PEG (IPEG) construction of Irregular LDPC codes, which

lowered the error-floor of PEG constructed LDPC codes by improving their ACE, the authors asserted

that the increase in connectivity of the cycles in the graph improves not only the minimum distances

���� of the codes constructed but also their trapping sets. In the error-floor, ���� contributes to

undetected errors, while trapping sets are responsible for detected errors. These assertions were

supported by a comparison of the minimum distances and trapping sets of the irregular

107

(�, �) = (1008, 504) rate-½ standard PEG and IPEG codes whose decoding simulation performance

curves were presented. While the PEG code had a minimum distance of ���� = 12, the IPEG code

had an improved minimum distance of ���� = 15. Similarly, the smallest («, 9) trapping set found in

the PEG code was a (6, 1) trapping set, whereas the smallest trapping set found in the IPEG code was

a (15, 1) trapping set. [Xiao and Banihashemi, 2004]. The error-floor performance improvements as a

result of improved cycle connectivity in irregular LDPC codes constructed using the IPEG

construction compared to the standard PEG algorithm are undisputable. However, it is important to

note that the minimum distance and trapping set improvements realised by the IPEG construction are

collateral gains. The modifications made to the standard PEG algorithm to obtain the IPEG algorithm

were made solely to increase the connectivity of cycles in the LDPC code Tanner graphs constructed;

the algorithm modification was not a directly attempt to increase the minimum distances or the

minimum size of the trapping sets of the LDPC codes constructed.

To obtain LDPC codes with low error-floors over the binary symmetric channel (BSC), Nguyen et al.

proposed a method to construct LDPC codes without certain small trapping sets in their Tanner

graphs. The trapping sets which were to be avoided during code constructions were selected from the

trapping set ontology for the Gallager A/B decoder based on their relative harmfulness for a given

decoding algorithm. However, only symbol node regular codes with (�� = 3) were evaluated in the

work [Nguyen et al., 2012].

Similarly, to improve the error-floor performance of PEG constructed LDPC codes over the AWGN

channel, Khazraie et al. modified the original PEG algorithm by equipping it with a subalgorithm

which, before connecting each edge in an under-construction Tanner graph, identifies the candidate

check nodes which will lead to dominant elementary trapping sets (ETSs), and then avoids connecting

such edges to prevent the creation of dominant ETS’s. Unlike other algorithms to prevent the creation

of small trapping sets during code construction, which are restricted to symbol node regular codes, the

proposed algorithm is among the first ones which are applicable to both regular and irregular symbol

node degree distributions [Khazraie et al., 2012]. Following the work by Khazraie et al., a universal

108

algorithm for finding the dominant trapping sets in an arbitrary LDPC code graph was proposed by

Karimi and Banihashemi. The proposed universal algorithm was observed to be approximately two

orders of magnitude faster than previously existing dominant trapping set search algorithms. The

algorithm was used to estimate the error-floor of regular and irregular LDPC codes. The proposed

algorithm may be modified to find other graphical objects such as Zyablov-Pinsker trapping sets,

which dominate LDPC code error-floor performance across different channels and different iterative

decoding schemes, and absorbing sets. It may also be used in LDPC code construction algorithms to

design codes with low error-floors [Karimi and Banihashemi, 2012(a)].

In a recent work, Kang et al. proposed a technique for breaking trapping sets during the iterative

message-passing decoding of LDPC codes in an effort to improve the performance of LDPC codes in

the error-floor region. The proposed technique for breaking trapping sets, called collaborative

decoding, uses two different decoding modes: a) a main decoding mode that executes message passing

based on an LDPC code’s original parity-check matrix as usual, and b) a sub-decoding mode that

executes message passing on a modified parity-check matrix derived by removing a portion of the

check nodes in the factor graph representation of the LDPC code. Whenever necessary, the

collaborative LDPC decoding scheme switches intelligently between the two decoding modes. The

changes made to obtain the modified parity-check matrix from the original parity-check matrix are

meant to promote the passing of correct information into erroneous symbol nodes in trapping sets.

Collaborative LDPC decoding approach is applicable to both regular and irregular codes, and does not

require prior knowledge of the trapping sets in the code. Although the proposed collaborative LDPC

decoding scheme had better performance than decoding using a single decoder, it required a higher

number of decoding iterations. However, compared to existing backtracking methods

[Kang et al., 2011] the collaborative decoding scheme required significantly less iterations to achieve

significant error-floor reduction [Kang et al., 2016].

109

3.3 Modified PEG Algorithms

In this section, a review of literature on the original PEG algorithm and some noteworthy PEG

algorithm modifications aimed at improving the performance of the LDPC codes constructed is

undertaken. Special attention is given to recent literature on improving the error-floor performance of

short-to-medium length LDPC codes which have their construction based on the PEG principle. The

review focuses on the objectives of the different PEG algorithm modifications and examines the

consequent properties of the parity-check matrices/Tanner graphs constructed in relation to the

reported code performance. The properties and parameters of LDPC codes and Tanner graphs that are

of primary interest include their: symbol node degree distributions, global girths, local girth

distributions, minimum distances ����, minimum stopping set weights ����, and trapping sets.

3.3.1 The Original/Standard PEG Algorithm

In their pioneering paper on the PEG algorithm for LDPC code construction, Hu et al. proposed the

PEG algorithm and used it to construct a rate-½ (�, �) = (504, 252), symbol node regular (�� = 3)

code and compared its performance to that of the following two codes [Hu et al., 2001]:

i) a MacKay code with similar parameters; rate-½ (�, �) = (504, 252), regular with

�� = 3 and �T = 6, and

ii) a 4-cycle free randomly constructed code; rate-½ (�, �) = (504, 252), symbol node

regular with �� = 3.

The girth histograms for the three codes revealed that all the codes were 4-cycle free; the PEG Tanner

graph had a global girth of 8 (three of its symbol nodes had local girths of 10) while the MacKay

graph and the random graph both had global girths of 6 (with local girths of 6 or 8 only). At a

maximum of 80 decoding iterations, the BER and FER rates of the PEG code were significantly lower

than those for the MacKay code and the random code in the error-floor region. The MacKay code in

turn performed significantly better than the random code in the error-floor region. In the waterfall

region, the performance of the PEG code and MacKay code were very similar and both performed

110

significantly better than the random code. It was hypothesized that the degraded performance of the

random code in both the waterfall and error-floor regions, despite having the same global girth as the

MacKay code, was likely due to its lower girth histogram which had the highest percentage of

symbol-nodes with local girths of only 6, and hence the lowest percentage of symbol nodes with local

girths of 8.

Similar results were obtained for 4-cycle free rate-½ (�, �) = (1008, 504) regular codes; the

performance of a PEG code, a MacKay code and a random code with these parameters were

compared. The PEG code had a global girth of 8 (with local girths of 8 or 10 only) and the MacKay

and random graphs both had global girths of 6 (with local girths of 6, 8, and 10). Similar to the case of

the (504, 252) codes, although both the MacKay code and the random codes had global girths of 6,

their girth histograms reveal that the random code had a higher percentage of local girths of 6

compared to the MacKay code. Consequently, the random code had the worst decoding performance.

It was suggested that not only the girth but also the local girth distribution dominates the performance

of iterative decoding. Indeed, the local girth distribution has been used as a heuristic tool for selecting

good codes from random graphs for short block lengths [Mao and Banihashemi, 2001].

Finally, Hu et al. presented performance simulations for three irregular codes based on the arbitrary

symbol node degree distribution: �(�) = 0.5�� + 0.2�B + 0.2�C + 0.075�n + 0.025�7. The three

graphs evaluated were: a PEG Tanner graph with the zigzag pattern, a PEG graph without the zigzag

pattern, and an irregular repeat-accumulate (IRA) random graph. Simulation results showed that both

PEG codes (with and without the zigzag pattern) had almost identical BER and FER performances,

and they both performed significantly better than the random IRA code. It was asserted that, with an

appropriately optimized degree sequence, the performance of irregular PEG codes could be much

better.

In a follow up to their pioneering paper on the PEG algorithm [Hu et al., 2005], irregular LDPC codes

were constructed with DE optimized symbol node degree distributions using the PEG algorithm. The

performance of five (5) DE optimized rate-½ (�, �) = (504, 252) codes which have maximum

111

symbol node degrees - ��(åæç) of 4, 7, 11, 15 and 30 were investigated. The performance of these

PEG codes were compared to those of five (5) 4-cycle free irregular random graphs that had the same

symbol node degree distributions which varied only in terms of their maximum symbol node degrees,

i.e. ��(åæç) of 4, 7, 11, 15 and 30. The PEG codes performed significantly better than the randomly

constructed codes, especially in the high-SNR region. It was observed that the PEG code with

��(åæç) = 15 had the best performance. Subsequently, it was concluded that even at short block

lengths, using DE optimized degree distributions in the PEG algorithm resulted in better LDPC codes.

The performance of irregular PEG LDPC code Tanner graphs with a linear-time-encoding property,

i.e. an LDPC code whose parity-check matrix is forced into an upper triangular form, was also

investigated in the work. The BERs and FERs of an irregular PEG code, an irregular PEG code with

its parity-check matrix in the upper triangular form, and a regular MacKay code were compared. Here,

the three codes compared were rate-½ (�, �) = (1008, 504) codes, and both of the irregular PEG

codes were constructed using DE optimized symbol node degree distribution: �(�) = 0.23802�� +

0.20997�B + 0.03492�C + 0.12015�n + 0.01587�7 + 0.00480�EC + 0.37627�En. It was observed

that both of the irregular PEG codes had nearly identical performance, and they significantly

outperformed the regular MacKay code. Consequently, it was suggested that linear-time encoding can

be achieved with the PEG construction without noticeable performance degradation.

The reason that the optimized symbol-node-degree distribution with a maximum symbol-node degree

��(åæç) of 15 was observed to achieve the best performance may be explained as follows: The codes

with symbol-node-degree distributions with ��(åæç) < 15, i.e. those with ��(åæç) of 4, 7, and 11,

although most likely to be 4-cycle free and have good girths, would have had insufficient edge

densities for the message passing decoding algorithm to perform optimally. Conversely, it is very

likely that the code with symbol-node-degree distribution with ��(åæç) = 30 had a significant number

of 4-cycles as a result of an excessive edge density, and this implies that its symbol nodes had high

correlation which results in poor decoding performance by BP/SPA message passing algorithms. The

112

code with ��(åæç) = 15 was likely to be 4-cycle free (or almost) and had the best edge density, and

consequently had the best overall decoding performance compared to the others.

3.3.2 An Improved PEG (IPEG) Construction of Irregular LPDC Codes

An improved construction method for irregular LDPC codes using the PEG algorithm was proposed

by Xiao and Banihashemi in 2004. This was achieved by a simple modification to the PEG algorithm

which maximizes the degree of connectivity of each new cycle created during a graph construction to

the rest of the Tanner graph. The rationale behind having a high degree of connectivity of cycles in

Tanner graphs is that such cycles will receive a large amount of extrinsic information from the rest of

the graph and consequently would not impose as much harm on iteration convergence as they would if

they were more isolated [Xiao and Banihashemi, 2004].

We adopt the same definitions and notations used for the standard PEG algorithm in [Hu et al., 2001]

to describe the improved PEG Construction (IPEG) algorithm by Xiao and Banihashemi. Recall that

in PEG Tanner graph construction, symbol nodes are connected into graphs according to their degrees

in the nondecreasing order, the degree of a symbol node �% is denoted as ��4, {;�4
O } describes the set of

all check nodes reached by a subgraph expanded from �% within depth &, and {Ṅ�4
O } describes the

complementary set respectively. Recall also that it is often the case that when a new edge of �%, i.e. 8�4
R

(0 ≤ � ≤ ��4 − 1), is to be connected into a graph, multiple candidate check-nodes are frequently

available to choose from. The PEG algorithm modification focused on situations where � ≥ 1 and

Ṅ�4
O ≠ Ø but Ṅ�4

O£E = Ø, where for each of the lowest degree candidate check-node in Ṅ�4
O , the

establishment of a new edge in the graph creates new cycles of length (2& + 2). Let ʘ�4
R denote the set

of candidate check-nodes for connecting the (�+1)-th edge of symbol node �%. In this modification, the

check node whose associated cycles will have the highest degree of connectivity to the rest of the

graph is selected.

The approximate cycle extrinsic message degree (ACE) is used as a measure of the connectivity of a

cycle to the rest of a Tanner graph. The ACE is evaluated using ∑ (�� − 2)� ; the summation is taken

113

over all symbol nodes in the cycle, and �� is the degree of the |-th symbol-node. The ACE is a count

of the number of edges by which a cycle in a graph is connected to the rest of the Tanner graph

through its symbol nodes. A high degree of interconnectivity for the new cycles is enforced by

selecting the candidate check-node in ʘ¨%
R that maximizes the minimum ACE for the new cycles. In

the event that more than one check-node in ʘ¨%
R results in the maximum value of the minimum ACE

for the new cycles, a check node is randomly selected from amongst them.

The performance of two pairs of irregular rate-½ PEG constructed LDPC codes were compared in the

work. All the codes compared were constructed using a DE optimized degree distribution with

��(�Nº) = 15 given by: �(�) = 0.23802�� + 0.20997�B + 0.03492�C + 0.12015�n +

0.01587�7 + 0.00480�EC + 0.37627�En. Two of these codes were (�, �) = (504, 252) and the

other two were (�, �) = (1008, 504) codes. For each pair of codes, with lengths � = 504 and

� = 1008 respectively, one code was constructed using the standard PEG and the other one using the

IPEG construction. Code performance analysis was carried out using BP/SPA decoding of BPSK

modulated signals over an AWGN channel. The maximum number of decoding iterations was 80,

simulations were run until at least 100 codewords were erroneously decoded and the same noise

vectors were used for each pair of equal length codes.

From the simulation results which were presented in BER and FER curves for the four codes, it was

observed that at high SNR, the improved PEG construction codes significantly outperformed standard

PEG codes of identical length. However, at lower SNR the decoding performances of pairs of codes

from the two PEG algorithms were very similar.

In their analysis of the lower error-floor of the IPEG construction compared to the standard PEG

construction for the pair of codes with (�, �) = (1008, 504), the following observations were made:

the standard PEG code had ���� = 12 and the modified PEG code had an improved minimum

distance of ���� = 15, and the standard PEG code had a minimum trapping set weight of 6 and the

modified PEG code had an improved minimum trapping set weight of 15. Similar improvements in

and trapping sets were observed in the pair of codes with (�, �) = (504, 252). On the basis of these

114

observations it was concluded that the IPEG construction algorithm improved both the minimum

distances and the trapping sets of the LDPC codes it constructs. The smaller percentage of undetected

errors for the IPEG code compared to the standard PEG code (10% and 36% respectively) was

attributed to the higher ���� of the former. The IPEG algorithm constructs LDPC codes with higher

degrees of cycle connectivity in their Tanner graphs than the standard PEG algorithm. From the

simulation results, it was clear that the IPEG algorithm enhances the performance of PEG LDPC codes

at high SNR region without any trade-off in the low SNR performance.

3.3.3 A Modified PEG Construction for Irregular LPDC Codes Without Small Stopping Sets

Richter and Hof worked on an irregular LDPC code construction method based on the PEG algorithm

to design codes without small stopping sets [Richter and Hof, 2006]. The PEG algorithm was modified

in such a way that during Tanner graph construction, whenever there exists a choice of multiple

candidate check-nodes to connect an edge of symbol node �%, the algorithm identifies and avoids

connections which could lead to small stopping sets and chooses others. It was also proffered that this

PEG modification, i.e. prevention of small stopping sets, also led to the construction of LDPC codes

with higher minimum distances because all codewords with small Hamming weights are caused by

small size stopping sets.

In the standard PEG algorithm, whenever a multiple choice exist to connect a variable node with a

check-node, the choice is made either on the basis of its index (usually the candidate check-node with

the smallest index) or a check-node is chosen randomly. The PEG algorithm modifications proposed

by Richter and Hof are effected just before this final check-node selection stage such that additional

sub-algorithm(s) is/are inserted to evaluate the options and then choose a candidate check node which

prevents a connection that could lead to a small stopping set. In this PEG modification, a random

selection of a candidate check-node for connecting an edge of �% is made only if a multiple choice of

candidate check nodes still exist after the small stopping set(s) prevention stage.

Using the same notations and definitions for the PEG algorithm in [Hu et al., 2001] and

[Hu et al., 2005], we note the following:

115

i) The PEG algorithm modifications made are only applicable when the number of degree-2

symbol nodes is smaller than �.

ii) The small stopping set prevention algorithm uses check node distance metric �T(|,), which

is the distance between check nodes .� and .%, in its evaluation of the check-nodes that could

result in small stopping set and marks such candidate check nodes as not selectable.

iii) An important input to the modified algorithm is the value of the desired minimum stopping

set weight �̂ which serves as a target for the algorithm to work with.

iv) If all the check-nodes in the set Ṅ�4
O are marked as not selectable, a check-node from the set

Ṅ�4
OQE that is not likely to lead to a small stopping set is chosen.

In code performance evaluation, LDPC codes constructed by the modified PEG algorithm are

compared to those constructed using the standard PEG algorithm by Hu et al., and also with codes

constructed using the improved PEG (IPEG) construction algorithm (for improved ACE) of

[Xiao and Banihashemi, 2004]. Fifty (50) rate-½ (�, �) = (1000, 500) codes with degree

distribution �(�) = 0.283�� + 0.281�B + 0.436�A were generated for each of the three algorithms.

The different stopping set weights, the cardinality of stopping sets of each weight, and the average

minimum distances for the code ensemble constructed using each algorithm were tabulated. The

tabulated results suggest that the ensemble of codes generated by the IPEG construction algorithm had

higher minimum stopping set weights than codes in the standard PEG algorithm ensemble. However,

the code ensemble constructed by the modified PEG algorithm had the highest minimum stopping set

weights and significantly outperformed the others algorithms in this regard. The average minimum

distances of the code ensembles followed a similar trend. The codes with the best combination of

minimum distance ���� and minimum stopping set weights ���� from both the standard PEG

algorithm ensemble and the IPEG construction algorithm ensemble were given as ���� = ���� = 15

in both cases. For the modified PEG algorithm the best minimum distance parameter combination was

���� = ���� = 18.

116

Performance simulations over an AWGN channel were carried out using the shuffled belief

propagation decoder by [Zhang and Fossorier, 2005]. Decoding simulations were carried out using the

linear approximation detailed in [Richter et al., 2005], and a maximum of 500 decoding iterations. A

plot of the FER vs. 8J/;k was presented for four codes selected from the code ensembles constructed

as follows: the two codes which had the lowest and highest ���� values in the code ensemble

constructed using the standard PEG algorithm, and the two codes which had the lowest and highest

���� values in the code ensemble constructed using the modified PEG algorithm. All four codes had

similar performances in the low SNR region. However, in the high SNR region, the results presented

shows that both of the codes constructed using the modified PEG algorithm performed better that both

of the codes constructed using the standard PEG algorithm. Similar results were obtained for coding

over the binary erasure channel (BEC) using an efficient erasure decoding algorithm which is detailed

in [Luby et al., 2001].

Similar results were also presented for ensembles of fifty (50) rate-¾ codes constructed with

parameters (�, �) = (2000, 500) and a degree distribution given by: �(�) = 0.1245�� +

0.4460�B + 0.4078�EE + 0.0213�E�. The improved performances of the LDPC codes constructed

using the modified PEG algorithm were generally attributed to their improved minimum stopping set

weight ���� properties.

Unfortunately, there is no evidence in the work that any of the symbol node degree distributions used

for code constructions are DE optimized degree distributions. No mention is made of the girth

properties of the codes constructed using either of the two PEG algorithms which were compared in

simulations. The performance of codes constructed using the proposed modified PEG algorithm were

not compared to the performance of codes constructed using the IPEG construction algorithm in

[Xiao and Banihashemi, 2004] which have significantly improved ACEs.

It is debatable that the modified algorithm constructed codes with good girth properties (zero to very

low fractions of 4-cycle symbol nodes) because the algorithm permits a reduction of the maximum

subgraph expansion depth attained in order to select a candidate check node from the set Ṅ�4
OQE if all the

117

check nodes in the set Ṅ�4
O are marked as not selectable because they are likely to lead to a small

stopping set if chosen. Permitting subgraph expansion depth & reductions and selecting candidate

check nodes from set Ṅ�4
OQE inevitably results in reduced girths in the Tanner graphs constructed.

3.3.4 A Randomized PEG (RandPEG) Algorithm

The PEG algorithm was modified by Venkiah et al. in order to improve the girth properties of the

resulting Tanner graphs in terms of increasing the global girth 1 achievable by the algorithm and/or

minimizing the multiplicity of the cycles of girth 1 [Venkiah et al., 2008]. The modified PEG

algorithm by Venkiah et al. was called the RandPEG. In their work, only regular (�Ã , �T) graphs were

considered in order to compare the results to known bounds for regular graphs. Here �Ã refers to the

uniform degree of the symbol nodes (or variable nodes) and �T refers to the uniform degree of the

check nodes in a regular Tanner graph. Denote ; as the length of an LDPC code, for a given regular

graph setting represented by the triple parameters (�Ã , �T , 1), ;ë
(UÑ, U¢) denotes a lower bound on ;

such that a (�Ã , �T) graph of girth 1 exists.

The two main differences between the RandPEG and the standard PEG algorithm are: a different

method of subgraph expansion, and the introduction of an objective function which is used for edge

selection. The overall objective is to attain a given target girth 1M after all edges have been connected

into a Tanner graph. During code construction, whenever it becomes impossible to establish an edge

without decreasing the target girth 1M, the algorithm sees it as a failure and restarts the construction

from the beginning. This procedure is executed a very large number of times and the best codes are

stored. In the RandPEG, subgraph expansion is nongreedy and the maximum subgraph expansion

depth is limited to a chosen value &�Nº. Following the diameter argument, a justification based on the

target girth 1M, the maximum subgraph expansion depth used was given as & = (1M-2)/2. It was

further proffered that using such a nongreedy approach reduced the probability of construction failure,

i.e. the inability of the algorithm to construct graphs with girth 1 ≥ 1M.

118

In the general case when the graph size ; is sufficiently large such that a regular (�Ã , �T) graph of

girth 1 may exist, i.e. ; ≥ ;ë
(UÑ, U¢), the objective function is used to discriminate amongst and

choose the best candidate(s) in order to attain the target girth by minimizing the number of created

cycles. After a subgraph expansion up to a maximal depth of &�Nº is carried out, the objective function

discriminates amongst the set of candidate check-nodes in the set Ṅ¨%
O�Nº using the following sequence:

i) If candidates are found at depth &�Nº, mark all candidates not at &�Nº as unusable.

ii) For each available candidate .%, evaluate �9X�.&��%; the number of new cycles that will

result from selecting .%. Mark all candidates that have �9X�.&��% > �|�%(�9X�.&��%) as

unusable.

iii) Calculate the lowest degree of the remaining candidates �T���, mark all the candidates that

currently have degree �T > �T��� as unusable.

iv) If there is more than one eligible candidate check node at this point, choose one

randomly.

Further refinements for the subgraph expansion were applied whenever, for a given target girth 1M, the

length N of the code is such that ;ë
(UÑ, U¢) < ; < ;ë£�

(UÑ, U¢) and the diameter argument failed to hold.

Using the combination of i) a 1«À variable such that the maximal depth &�Nº = (1M + 1«À-2)/2, ii)

adjustments of the 1«À values as necessary and, iii) the objective function, the multiplicity of the

target girth 1M in the graph was minimized. A typical value used for the 1«À variable is 2.

The RandPEG algorithm was used to construct binary and non-binary ultra-sparse graphs (�Ã = 2)

within a wide range of �T with notably improved girth properties compared to the standard PEG

algorithm. For the binary codes constructed, the belief propagation (BP) decoder was used for code

performance simulations. Codes were simulated over the binary symmetric channel (BSC) and the

FERs were calculated based on 100 frames in error. For the binary LDPC code analysis, the RandPEG

algorithm was used to construct regular (�Ã = 3, �T = 6) LDPC codes of two (2) lengths ; = 504

and ; = 1008. The performance of the ; = 504 RandPEG code was compared to that of two other

119

regular codes with identical parameters; one constructed with the standard PEG algorithm and the

other is a code optimized by MacKay. Similarly, the performance of the ; = 1008 RandPEG code

was compared to that of two other regular codes with identical parameters; one constructed with the

standard PEG algorithm and the other a code optimized by MacKay. All the graphs simulated and

plotted had a girth of 8. However, in both cases, the RandPEG codes were reported to have

significantly smaller fractions of cycles of length 8 than the corresponding code constructed by the

standard PEG algorithm. These differences were attributed to the effectiveness of the objective

function. From the simulation results, it appeared that the girth multiplicity minimization of the

RandPEG codes improved the performance of such codes in the error-floor region.

While it was emphasized that the limitation of the study to regular graphs is not a limitation of the

RandPEG algorithm itself, it remains unverified that there would be any improvements in the girth

properties of the resultant codes if the modified PEG algorithm were applied to construct irregular

graphs using optimized symbol-node degree distributions. It can be observed from the graphical plots

that the performance difference between the RandPEG codes and the standard PEG codes were not

significant.

3.3.5 A Generalized ACE Constrained PEG Algorithm for Irregular LDPC Codes

Vukobratović and Šenk proposed a generalization of the PEG algorithm in order to construct LDPC

code graphs with considerably improved approximate cycle extrinsic message degree (ACE)

properties [Vukobratović and Šenk, 2008]. This modified PEG algorithm is known as the generalized

ACE constrained PEG algorithm. The objective of the modification is to substantially increase the

ACE properties, i.e. the degree of connectivity of the new cycles created during the PEG construction

to the rest of the Tanner graph, compared to what is obtainable by the improved PEG (IPEG)

construction algorithm of [Xiao and Banihashemi, 2004]. The main target of the work was to achieve

further improvements to the error-floor performance of irregular PEG LDPC codes. Noting that cycles

are always present in subgraphs induced from stopping sets; the work is an extension of previous work

by Xiao and Banihashemi and explores the possibilities of further increases to LDPC code stopping set

sizes by conditioning cycles with respect to their ACE properties. In effect, the generalized ACE

120

constrained PEG algorithm constructs LDPC codes with extremal (as large as possible) ACE spectrum

components. The main modifications made to the standard PEG algorithm in the work comprised of

two independent procedures which were applied sequentially for establishing a new edge in the Tanner

graph; the Check Node Shortest Path Discovery and the Check Node Selection procedures. We adopt

the definitions and notations introduced in [Hu et al., 2001] to describe these two procedures.

The Check Nodes Shortest Paths Discovery procedure used the subgraph expansion procedure of the

standard PEG algorithm to create a list of all the shortest paths and their corresponding ACE metric

between the root symbol-node, �% and every candidate check node .�. Consider the procedure for

connecting the �-th edge 8�4
R of symbol node �%, where � > 0 and the Tanner graph is connected under

the current code construction setting. Recall from [Hu et al., 2001] that ;�4
O is the set of neighbouring

check-nodes of �% within depth &. The set X�4
O is used to denote the set of check nodes within the

shortest path distance of (2& + 1) edges from �%, so that X�4
O = ;�4

O \;�4
OQE. Subsequently, for each check

node . ∈ X�4
O , the set of all distinct shortest paths from �% to .� are identified as the set ��4,T�

O . Finally,

for each shortest paths in ��4,T�
O , the ACE metric is calculated. Recall that the maximization of the ACE

of the newly created shortest cycles is the objective of the modification to the PEG algorithm.

In the Check Node Selection procedure, which immediately follows the Check Nodes Shortest Paths

Discovery procedure, the candidate check nodes are classified and one is selected based on predefined

selection criteria. These selection criteria are arranged in a sequence of decreasing priority. If more

than one check node survives any selection criterion, the next criterion in the hierarchy is applied on

the surviving check nodes only. If after the last (lowest priority) selection criterion multiple check

nodes survive, one out of this last set of survivors is chosen randomly. It was noted that both the

standard PEG algorithm and the IPEG construction algorithm enforce the selection of the minimum

degree (check node degree) survivors early. This has the advantage of creating code graphs with

concentrated check node distributions which, they proffered, consequently optimizes the waterfall

performance. In order to increase the values of the ACE spectrum components, a different sequence of

check node selection criteria were proposed. Given the sets X�4
O , ��4,T�

O , and the path ACE metrics for all

121

& ≤ &�Nº, the sequence of selection criteria used in the Check Node Selection procedure of the

generalized ACE constrained PEG algorithm (arranged in decreasing priority) is as follows:

i) Select check node from the set . ∈ X�4
O��� ,

ii) Select the survivor(s) with the largest minimum path ACE metric,

iii) Select the survivor(s) with the smallest number of minimum ACE shortest paths,

iv) Select the survivor(s) with the smallest total number of shortest paths,

v) Select the minimum degree survivor(s), and

vi) Select one survivor randomly if multiple check-nodes survive after selection criterion ‘v’.

Performance simulations for short-to-medium length rate-½ LDPC codes which were constructed

using the standard PEG [Hu et al., 2001], the IPEG construction [Xiao and Banihashemi, 2004], and

the generalized ACE constrained PEG algorithms were carried out. All the codes compared were

constructed using the DE optimized symbol node degree distributions used in

[Xiao and Banihashemi, 2004] and [Hu et al., 2005]. Out of 100 codes constructed using each of the

three algorithms, the best 10 codes from each ensemble were isolated based on the values of their ACE

spectra. Subsequently, the best BER performance by a code constructed using each of the three PEG

algorithms for block lengths of � = 504 and � = 1008 were presented. The BER values were

estimated in Monte Carlo simulations using: BPSK transmission over the AWGN channel, the belief

propagation (BP) iterative decoder, and a maximum number of decoding iterations of 100. In the

results presented, a lower error-floor is observed for the generalized ACE constrained PEG algorithm

codes compared to the IPEG construction algorithm codes. The IPEG algorithm was shown to have a

better error-floor performance than the standard PEG algorithm code. In other words, the results

presented showed that as the ACE spectrum properties increased from the standard PEG algorithm to

the IPEG construction algorithm, and peaked with the generalized ACE constrained PEG algorithm,

the error-floor performance of corresponding LDPC codes also improved.

The performance differences between the generalized ACE constrained PEG algorithm codes and the

IPEG construction algorithm codes, as observed from the graphical plots, are not significant. Given

122

that only the best performing codes selected from ensembles of only 100 codes were reported, it is not

improbable that choosing the best codes from a larger ensemble of codes constructed using these two

algorithms would blur the reported performance differences.

3.3.6 A Decoder-Optimized PEG Algorithm Modification for Irregular LDPC Codes

Healy and de Lamare proposed a PEG algorithm modification to enhance the construction of

short-to-medium block length irregular LDPC codes [Healy and de Lamare, 2012]. The modification

is a supplement to existing PEG code construction constraints (or criteria), and is used to discriminate

and select a check node from a multiple choice of candidate check nodes when establishing new edges

in the Tanner graph under construction. The supplementary criterion is meant to enhance the choice of

a check-node using the sum-product algorithm (SPA) in a decoder-based optimization of the final

choice of a check-node. In the proposed decoder optimised (DO) PEG code construction algorithm,

under the current graph settings, the SPA decoding performances of the code when temporary edges

are established between the current symbol node �% and each of the candidate check-nodes are

compared and the check-node which results in the best performance is selected. The combination of

the SPA decoding algorithm and the PEG algorithm in the DOPEG algorithm significantly increased

the complexity of the code construction. Decoder optimization (DO) was applied to the standard PEG

algorithm by [Hu et al., 2001] and the improved PEG (IPEG) construction algorithm by

[Xiao and Banihashemi, 2004], and the resultant algorithms were called the DOPEG and DOIPEG

algorithms respectively.

In the following discussion we adopt the definitions and notations in [Hu et al., 2001] and

[Xiao and Banihashemi, 2004]. It was observed that the standard PEG algorithm is very frequently

faced with a set of equivalent lowest degree candidate check-nodes in the set Ṅ�4
O from which it must

make a choice of a single check node. Similarly, for the IPEG algorithm, after the ACE metrics of the

check-nodes from the set of lowest degree candidate check-nodes in Ṅ�4
O , i.e. from the set ʘ�4

R , are

evaluated, it often happens that a further subset (more than one) of these check nodes would have the

same best ACE metric from which the final choice of a single check node must be made. Whenever

123

these situations are encountered in both the PEG and IPEG algorithms, the final check node selection

is made randomly from amongst the sets of candidates check node that have equivalent properties. The

decoder based optimization implemented in the DOPEG and DOIPEG algorithms were designed to

find the candidate from each of these sets which result in the best decoding performance. It was argued

that the candidate check node which produces an intermediate code with the best decoding

performance is the choice with results in the best graph connectivity, and that the final Tanner graph

constructed using DO operations will have improved structure.

Simulations were carried out on rate-½ irregular codes that were constructed using a modified

optimized degree distribution of: �(�) = 0.30013�� + 0.28395�B + 0.41592�6. BPSK modulation

over the AWGN channel, and log-domain SPA decoding algorithm were used. The maximum number

of decoding iterations was 50, and at least 100 block errors were gathered per point in the graph. The

decoding performance of codes of length � = 250 which were constructed using PEG, DOPEG, IPEG

and DOIPEG algorithms were compared. The decoder optimized (DO) stage in the DOPEG and

DOIPEG were operated with identical AWGN vectors applied to the all-zero codeword at each SNR in

the specified range. In the results presented, the DOPEG code was shown to have a better performance

than the PEG constructed code. The IPEG algorithm codes performed better than both the PEG and

DOPEG codes, and the best performance in the error-floor region was achieved by the DOIPEG code.

The difference in performance between IPEG and DOIPEG was however not significant over the

plotted range of 3.0�F to 4.5�F. It was observed that the DOPEG and DOIPEG algorithms had very

long construction times compared to the PEG and IPEG algorithms respectively. The construction

times for DOIPEG codes were considerably less than those for DOPEG codes of equivalent length,

this is consequent to the fact that the decoder optimization stage of DOIPEG operates on smaller sets

of candidate check-nodes.

From the results presented for code lengths over a range of 250 to 2000, we observe that while the

difference in code performance between the PEG and the DOPEG appear significant, the improved

performance of DOIPEG over IPEG appears to be marginal. It can be observed from the results and

conclusions that beyond a block length of approximately 2000, the performance improvements of

124

decoder optimised codes over the corresponding base codes will reduce in line with the concentration

theorem. There is no indication of the girth and minimum distance properties of the Tanner graphs

compared in the work. In order to ensure that there are no cycles composed of only degree-2 symbol

nodes, as discussed in [Richardson et al., 2001], the chosen DE optimized symbol node degree

distribution was modified so that the number of weight-2 symbol nodes was smaller than the number

of check nodes, and hence the degree distribution used was suboptimal.

3.3.7 An Elementary Trapping Sets (ETS-) Constrained PEG Algorithm

Khazraie et al. modified the PEG algorithm in an attempt to improve the error-floor performance of

regular and irregular LDPC codes by avoiding the creation of dominant elementary trapping sets

(ETS’s) in code Tanner graphs. This proposed algorithm modification is called the elementary

trapping set’s (ETS-) constrained PEG [Khazraie et al., 2012].

We adopt the definitions and notations used by Khazraie et al. in the following review. Let Տ denote a

trapping set in a code with Tanner graph ,. A trapping set Տ is described as an ‘(«, 9) trapping set’ if

Տ has a size |Տ| of «, and the induced subgraph ,(Տ) of Տ in the Tanner graph of the code contains 9

unsatisfied check nodes. An elementary trapping set is an («, 9) trapping set for which every check

node in G(Տ) has a degree of either 1or 2. It is generally understood that elementary trapping sets are

the most harmful, and that among any set of ETS’s, those with the smaller values of « and 9 are more

harmful. Dominant trapping sets refer to elementary trapping sets with smaller values of « and 9. In

addition the depth-d ETS spectrum of a Tanner graph G is defined as the d-tuple (îE, , îU), where

îN, for 1 ≤ « ≤ �, is the minimum value of 9 for all («, 9) elementary trapping sets ETS’s in G.

The aim of the PEG algorithm modification was to prevent the creation of dominant elementary

trapping sets in LDPC codes and achieve ETS spectrums with components as large as possible. The

spectrum of elementary trapping sets was considered to be a direct measure of error-floor

performance, and a search algorithm to find the dominant elementary trapping sets (ETS’s) in an

under-construction Tanner graph was incorporated into the PEG algorithm. In order to avoid creating

dominant ETS’s, at each step of the PEG algorithm, check nodes which do not result in the creation of

125

dominant ETS’s are identified and chosen from the set of candidate check nodes which are available

for connecting an edge of symbol node �%.

Simulation results for regular and irregular LDPC codes constructed using the ETS-constrained PEG

algorithm were presented in the work. Simulations were carried out for BPSK modulation over the

AWGN channel, log-likelihood ratio domain BP/SPA decoding was used, and the maximum number

of decoding iterations was 50. Simulation results plotted for each point on the error rate curves in the

literature were recorded after 100 block (frame) errors were gathered.

The results for an irregular rate-½ ~�, �� = (1008, 504) ETS-constrained PEG code was presented.

This code was constructed with optimum parameter input to the algorithm and had DE optimized

degree distribution �E(�) = 0.25105�� + 0.30938�B + 0.00104�C + 0.43853�A. The performance

of this ETS-constrained PEG code was compared to that of two other codes with the same rate, block

length and symbol node degree distribution which were constructed using the standard PEG algorithm

[Hu et al., 2001] and the generalized ACE constrained PEG algorithm [Vukobratović and Šenk, 2008]

respectively. It was reported that all three codes had a global girth of 6, however there was a

significant variation in their ETS distribution. The generalized ACE constrained PEG algorithm code

had a better ETS distribution (a lower number of the smaller ETS’s with small values of 9) than the

standard PEG algorithm code, and the ETS-constrained PEG algorithm code had an even better ETS

distribution (a smaller number of dominant («, 9) ETS’s) than in the generalized ACE constrained

PEG algorithm code. In the simulation results plotted for the three codes, the ETS-constrained PEG

code was shown to perform better than the two other codes, particularly in the error-floor region.

Additionally, the generalized ACE constrained PEG algorithm code was shown to perform better than

the standard PEG code in the error-floor region. The performances of all three codes were shown to be

nearly identical in the water-fall region.

Similarly, the results for a regular rate-½ (�, �) = (504, 252) ETS-constrained PEG code which was

constructed with optimum parameter input to the algorithm and a uniform symbol-node degree 3

(�� = 3) was presented. Similar to the irregular code, the performance of this code was compared to

126

that of two other codes with the same rate and block length which were constructed by the standard

PEG algorithm and the generalized ACE constrained PEG algorithm. However, it should be noted that

the constraints in the generalized ACE constrained PEG algorithm is only effective if used to construct

irregular codes. In this case, as reported, although all three codes had a global girth of 8, there was a

significant variation in their ETS distribution. In a trend which is similar to that for the irregular codes,

the ETS-constrained PEG code had a superior ETS distribution than both the standard PEG code and

the generalized ACE constrained PEG code. In the simulation results plotted for these three codes the

ETS-constrained PEG code was shown to perform better than the other two LDPC codes, particularly

in the error-floor region. The generalized ACE constrained PEG code was also shown to perform

better than the standard PEG code in the error-floor region. The performances of these three regular

codes in the waterfall region were even more similar than was the case for the irregular codes.

Finally, similar results as obtained for the two cases above were observed for two rate-½ irregular

ETS-constrained PEG codes with (�, �) of (1008, 504) and (2016, 1008) when their ETS

distributions and simulation performances were compared with those of codes constructed using the

genaralized ACE constrained PEG algorithm and the standard PEG algorithms. Both of the

ETS-constrained PEG algorithm codes were constructed using a DE optimized symbol-node degree

distribution given by ��(�) = 0.23802�� + 0.20997�B + 0.03492�C + 0.12015�n + 0.01587�7 +

0.00480�EB + 0.37627�EC. The improved error-floor performances observed for both irregular and

regular codes constructed using the ETS-constrained PEG algorithm were attributed to their superior

ETS distributions.

At all stages of code construction, the search algorithm used for finding dominant trapping sets is

restricted to searching only for dominant ETS’s which contain the symbol-node that is being

connected into the Tanner graph at that stage of execution of the PEG algorithm. This restriction

potentially allows trapping sets which do not include this particular symbol-node but have resulted due

to the changing graph interconnectivity to go undetected. The ETS-constrained PEG algorithm does

not directly attempt to improve the girth and minimum distance properties of the codes constructed.

127

The girth and minimum distance properties of ETS-constrained PEG codes are incidental to the

symbol node degree distributions used and the greedy subgraph expansion of the PEG algorithm.

3.3.8 An Error Minimizing PEG Algorithm

Sharon and Litsyn proposed an approach to constructing Tanner graphs which yields LDPC codes

with minimized block error probability over binary erasure channels (BEC) [Sharon and Litsyn, 2008].

The method was extended to easy implementations of LDPC codes based on lifted graphs. The

modification was called the error minimization PEG algorithm (EMPEG). The proposed algorithm is

based on the greedy PEG algorithm. Combinatorial structures in Tanner graphs which were named

minimal cycle sets were used to determine the expected block error probability of codes transmitted

over the BEC. In the EMPEG algorithm, the edges in a graph are selected such that their contribution

to the expected block error probability is minimized. Monte Carlo simulations were carried out on two

irregular LDPC codes based on lifted graphs with lifting factor ï = 24 over the BEC and AWGN

channels. Belief propagation (BP) decoding with a maximum of 50 decoding iterations was used, and

at least 50 block errors were counted for each simulated point presented in the graphical plots. The two

codes simulated were selected from the ensemble which have symbol node and check node degree

distributions, �(�) = 264�� + 192�B + 120�� and Φ(�) = 192�� + 96�7, respectively.

These two codes were:-

i) An [� = 576, � = 288, ï = 24] optimized code used in the IEEE802.16e standard, and

ii) An [� = 576, � = 288, ï = 24] code generated using the proposed EMPEG algorithm for

lifted graphs.

The performance of the EMPEG code was shown to be better than that of the IEEE802.16e code,

particularly in the error-floor region for both BEC and AWGN channels. The simulation results

suggest that the EMPEG algorithm can generate high performance codes based on lifted graphs.

Results presented for code performance simulations over the BEC showed that an EMPEG code had

better error-floor performance than the standard PEG code despite the fact that the EMPEG graph

contained many 4-cycles but the PEG code did not contain any. Based on these observations it was

128

asserted that the common belief that 4-cycles are harmful and should be removed from the Tanner

graph of the code is not always true.

3.4 Summary

• The challenges to lowering the error-floor of short-to-medium length LDPC codes under iterative

message-passing decoding have been discussed. These include the following properties of LDPC

codes: girth, symbol node degree distributions, minimum distance weights ����, minimum

stopping set weights ����, the ACE of cycles in Tanner graphs, and trapping sets.

• Some of the most noteworthy PEG algorithm modifications in recent literature which were

designed to lower the error-floor of the short-to-medium length LDPC codes constructed have

been examined. The modified PEG algorithms discussed have been briefly explained, the

reported LDPC code performance results obtained have been analysed, and the drawbacks of

some of these PEG algorithm modifications have been highlighted.

• In the opinion of the author, of all the notable modified PEG algorithms reviewed in this chapter,

the most promising PEG algorithm modifications for improving the error-floor performance of

short-to-medium length irregular LDPC codes over the AWGN channel are the ‘improved PEG

(IPEG) construction’ [Xiao and Banihashemi, 2004], and the ‘generalized ACE constrained PEG

(G-ACE PEG) algorithm’ [Vukobratović and Šenk, 2008]. Both of these algorithms are designed

to maximize the ACE of cycles in the Tanner graph of the codes constructed. A comparison of the

error-floor performance of rate-½ (512, 256) and (1024, 512) irregular LDPC codes constructed

using the IPEG and G-ACE PEG algorithms (presented later in Chapter 6) to those published for

similar LDPC codes constructed using the other modified PEG algorithms shows that the IPEG

construction and the G-ACE PEG algorithm result in LDPC codes with the lowest error-floor.

129

Chapter 4

Determining the girth and ACE of cycles in LDPC code
Tanner graphs

This chapter presents an efficient algorithm for determining the local girth and ACE distributions in

short-to-medium length LDPC code Tanner graphs. The performance of the proposed algorithm was

verified by using it to determine the local girth and ACE distributions in short-to-medium length

LDPC code Tanner graphs with different global girth, local girth distribution and ACE properties

which are constructed using different PEG algorithms and a wide range of symbol node degree

distributions. The algorithm for determining the local girth and ACE distributions in short-to-medium

length LDPC code Tanner graphs was crucial to obtaining the research results published in

[Abdu-Aguye et al., 2016(b)] and [Abdu-Aguye et al., 2016(c)]. Parts of this chapter appear in the

following conference proceeding: Abdu-Aguye, U. F., Ambroze, M. A., & Tomlinson, M.

(2016, December). An efficient algorithm for determining the girth and ACE distributions in LDPC

code Tanner graphs. In Signal Processing and Communication Systems (ICSPCS), 2016 10th

International Conference on (pp. 1-7). IEEE.

4.1 Introduction

The presence of cycles in the Tanner graphs of low-density parity-check (LDPC) codes have a

significant impact on their performance under iterative message-passing decoding algorithms such as

the belief propagation or sum-product algorithm (BP/SPA). It is generally understood that BP/SPA

130

decoders work better if the girth of an LDPC code is more than 4, i.e. in the absence of 4-cycles. Even

as Gallager invented LDPC codes, the LDPC code construction techniques he proposed involved

procedures to avoid 4-cycles [Gallager, 1962]. Discussions on the harmful effects of 4-cycles on the

performance of LDPC codes abound in literature; some early literature on this include

[MacKay and Neal, 1996] and [Wiberg, 1996], and some of the more recent literature on this include

[Campello et al., 2001], [Johnson and Weller, 2001] [Fan, 2001] and [Kim et al., 2004]. In fact, there

is evidence that the performance of an LDPC code depends not only on its global girth, i.e. the length

of the shortest cycle in the graph, but also on the number of shortest cycles

[Mao and Banihashemi, 2001], [Venkiah et al., 2008]. Therefore, the performance of a

short-to-medium length LDPC code also depends on the local girth distribution in its Tanner graph.

Under iterative message-passing decoding algorithms, the presence of short cycles cause the edges

(and symbol nodes) involved in the cycles to become correlated after a few decoding iterations which

significantly reduces decoding efficiency [Zhang and Schlegel, 2011]. Conversely, empirical evidence

shows that cycle-free codes, or codes with very large girths, have poor decoding performance not only

under iterative decoding schemes but also under maximum likelihood (ML) decoding

[Etzion et al., 1999]. It is therefore clear that cycles are necessary in the bipartite (Tanner) graphs of

capacity-approaching LDPC codes [Sason, 2009]. Accordingly, in order to identify the features of

good practical-length LDPC codes, it is imperative to determine not only their global girths but also

their local girth distributions.

The ACE of cycles in LDPC code graphs is another important parameter which significantly affects

the error-floor performance of short-to-medium length LDPC codes. The ACE metric was introduced

in [Tian et al., 2003], [Tian et al., 2004]. Xiao and Banihashemi modified the standard progressive

edge-growth (PEG) algorithm [Hu et al., 2001] to construct LDPC codes with improved ACE

[Xiao and Banihashemi, 2004]. Subsequently, algorithms which further improved the ACE in the

LDPC codes constructed were proposed in [Vukobratović and Šenk, 2008] and

[Vukobratović and Šenk, 2009]. Generally, improved ACE in LDPC codes results in lower

error-floors without sacrificing the performance in the waterfall region.

131

4.2 Existing Algorithms for Determining Girth Properties and Counting

Cycles in LDPC Code Tanner Graphs

Many algorithms have been proposed for analyzing LDPC code Tanner graphs in order to determine

local girths 1�4, global girths 1, and enumerating cycles in bipartite graphs of girth 1. Some of these

algorithms can be found in [Halford and Chugg, 2004], [Lee et al., 2005], [Fan and Xiao, 2006] and

[Karimi and Banihashemi, 2012(b)].

Some noteworthy algorithms for determining the girth properties or enumerating the cycles in LDPC

code Tanner graphs which have been recently published include:

i) an algorithm for counting cycles of length 1, 1 + 2, and 1 + 4 [Halford and Chugg, 2006],

ii) an efficient message-passing algorithm for counting short cycles of length

1, 1 + 2, . . . , 21 – 2 [Karimi and Banihashemi, 2013], and

iii) an improved message-passing algorithm for counting short cycles, which reduces the

complexity and computing time of the algorithm proposed in ii) by a factor of two

[Li et al., 2015].

These algorithms employ indirect approaches to finding the cycles in bipartite graphs and

consequently have significant complexities.

4.3 Existing Algorithms for Determining the ACE Spectra in LDPC Code

Tanner Graphs

Although numerous studies have utilized the ACE metric to improve the design of LDPC codes for

better performance in the error-floor region, there are only a few algorithms dedicated to enumerating

and quantifying the ACE parameters in LDPC code graphs. The most noteworthy of such algorithms

was developed in [Vukobratović et al., 2007]. Unfortunately, similar to all other published literature

on cycle connectivity, the simple notion of the ACE spectrum in an LDPC code graphs is expressed

here using complex notation and conceptualizations.

132

4.4 An Efficient Algorithm for Determining the Local Girth and ACE

Distributions in Short-to-Medium Length LDPC Code Tanner Graphs

We propose a simple and efficient algorithm for determining the local girth and ACE distributions in

short-to-medium length LDPC code Tanner graphs. The proposed algorithm is based on a subgraph

expansion technique which is a slight modification of the subgraph expansion used in the standard

PEG algorithm [Hu et al., 2001], [Hu et al., 2005]. We refer to the modified subgraph expansion

technique as the single-edge tree-apex (SETA) subgraph expansion. SETA subgraph expansions are

used to find short cycles in code graphs. We propose that the ACE of cycles in a graph should be

evaluated with respect to symbol nodes in the graph. Consequently, the ACE spectrum in a graph can

be represented by a local ACE distribution, and the degree of connectivity of the entire network of

cycles in a graph can be concisely represented by an average ACE metric.

4.4.1 The Single-Edge Tree-Apex (SETA) Subgraph Expansion Technique for Finding

Short Cycles in LDPC Code Graphs

The subgraph expansion technique used in the standard PEG algorithm is described in Section 2.4 and

illustrated in Figure 2.12. We propose a modification to the PEG algorithm subgraph expansion

technique in order to find all the short cycles that pass through a symbol node in an LDPC code

Tanner graph. The SETA subgraph expansion proceeds as follows. Firstly, all the edges attached to

symbol node �%, i.e. 8�4
R , 0 ≤ � ≤ ��4 − 1, are identified. As an example, in Figure 2.12 the edges of �%

are (�%, .�/), (�%, .�°), . . . , (�%, .�±34
). In a SETA subgraph expansion, subgraphs are expanded from

only one of these edges at a time, this is illustrated in Figure 4.1. Let the first edge 8�4
R be (�%, .�/), then

at expansion depth 0, only vertices �% and .�/ would be involved in the subgraph expansion. At all

other expansion depths, i.e. l ≥ 1, the subgraph expansion proceeds in the usual way; at expansion

depth l = 1, all the edges incident on vertex .�/ excluding (�%, .�/), i.e. (�N/, .�/),

(�J/, .�/), . . . , (�ð/, .�/), where «E, 9E, . . . �E ≠ j, are identified, then all the other edges incident on

vertices �N/, �J/, . . . �ð/ excluding (�N/, .�/), (�J/, .�/), . . . (�ð/, .�/), are identified. This unravelling

133

procedure continues until another edge of �%, i.e. (�%, .�°), (�%, .�Ù), . . . , or (�%, .�±34
), is reached. At this

stage, a short cycle through symbol node �%, which passes through edge (�%, .�/), has been found. The

girth of this cycle is calculated using 1234
5 = (2& + 2), where l is the expansion depth that the check

vertex to which the other vertex of symbol node �% was found to be attached. Note that the other vertex

of �% is found at depth (l+1) just as the subgraph expansion proceeds to identify the symbol nodes

involved at that level. To avoid an infinite loop in the algorithm in the unlikely event that ��4 > 1 and

unconnected edges of �% exist in a Tanner graph, a maximum subgraph expansion depth lmax is set.

During a SETA subgraph expansion from an edge of �%, where ��4 > 2, duplicate vertices of �% may be

found at different subgraph expansion depths.

Figure 4.1: A SETA subgraph expansion to find a short cycle of symbol node �%, the path
 from edge (�%, .�/) to edge (.�0, �%) is a cycle, and the girth of this cycle 1234

5 = 6

because vertex .�0 is at depth & = 2

expansion

depth l=0

expansion

depth l=1

expansion

depth l=2

�%

.�/

�ð/ �N/ �J/

�%

.�0

expansion

depth l=3

8�4
R

134

In the SETA subgraph expansion technique, a subgraph is expanded from each of the edges of �%,

i.e. 8¨4
R , ∀ (0 ≤ � ≤ ��4- 1). The girth of the shortest cycle through 8¨4

R , a distinct edge of symbol node

�%, depends on the subgraph expansion depth l at which the check vertex of another edge of �% is found

in a SETA subgraph expansion from 8¨4
R . This is calculated as 1234

5 = (2& + 2). When the girth of all the

short cycles through sj have been determined, i.e. {1234
� , . . . , 1

234
±34�/}, the shortest girth value in the

set is chosen as the local girth at symbol node �%, which is denoted as 1�4. Therefore, it follows that

1�4 = min{1234
� , . . . , 1

234
±34�/}.

The ACE of a cycle is obtained by counting the number of edges through which the cycle is connected

to the rest of the graph via its symbol nodes. This is calculated using ACE = ∑ ~�� - 2�� , where �� is

the degree of the i-th symbol node in the cycle and the summation is taken over all the symbol nodes

in the cycle.

Figure 4.2: Evaluating the ACE of a cycle of girth 1 = 6

Figure 4.2 illustrates the evaluation of the ACE of a short cycle of girth 1 = 6. The degrees of the three

symbol nodes in this cycle �k, �E, and �� are ��� = 2, ��/ = 4, and ��° = 5, respectively. All the edges

of these symbol nodes are shown in the figure; the edges involved in the cycle are shown using

continuous line segments, and the edges connected to the rest of the graph are shown using dashed line

�k

��

�E

.E .�

.B

135

segments. The ACE of this cycle, represented by the number of dashed lines, is 5. Both edges of

symbol node �k are involved in the cycle, hence it has no external check node(s) to contribute extrinsic

information to the set of symbol nodes in the cycle. Alternatively using the equation,

ACE = ∑ ~�� - 2�� , the ACE of this cycle is easily calculated as ((���- 2) + (��/- 2) + (��°- 2)) = 5.

Each and every cycle in a Tanner graph has a girth and an ACE metric. Therefore, we propose that

parameters similar to those used for Tanner graph girth descriptions can be adopted for ACE

descriptions. For example, the entire spectrum of cycle ACE values in a Tanner graph may be

represented with respect to symbol nodes in the graph using a local ACE distribution. Accordingly, we

introduce and define the following ACE parameters for LDPC code graphs:

i) the ‘local ACE at a symbol node �%’ or a ‘symbol node ACE’, denoted by *X8�4, which is

the minimum ACE of the short cycles that pass through symbol node �% in a graph,

ii) the ‘modal symbol node ACE’ in a graph, which is the ‘symbol node ACE’ value which

appears most often in the graph,

iii) the ‘average ACE’ of a graph, which is the sum of the � symbol node ACEs in the graph

divided by �, where � is the number of symbol nodes in the graph, and

iv) the ‘ensemble average ACE’ of an ensemble of codes, which is the sum of the

average ACE of all the codes in the ensemble divided by the number of codes in the

ensemble.

The average ACE of an LDPC code is a concise single-valued representation of the degree of

connectivity of the entire network of cycles its Tanner graph.

4.4.2 Determining the ACE of Short Cycles using SETA Subgraph Expansions

In addition to determining the girth of the short cycles found in a Tanner graph, SETA subgraph

expansions can be easily augmented to determine the ACE of cycles. The ACE of each cycle found

during a SETA subgraph expansion can be evaluated as follows. Starting from the check vertex which

makes an edge with symbol vertex �% at the apex of a tree, i.e. at expansion depth 0, all the check

136

vertices encountered during a SETA subgraph expansion are assigned ACE weights which represents

the ACE of the cycle that would be detected if another vertex of �% is found (at the next expansion

depth) to be attached to the check vertex. This is illustrated in Figure 4.3, where at expansion depth 3,

another vertex of �6 has been found to be attached to check vertex .C at depth 2. The detection of this

edge occurred when the subgraph expansion proceeded to expansion depth 3. That is, in the process of

identifying the symbol node vertices at depth 3 that are attached to the check vertices at depth 2,

another vertex of �6 was found. In this case, the ACE of the cycle found is equal to the ACE weight

assigned to check vertex .C.

Figure 4.3: Check vertex ACE weight assignments during a SETA subgraph expansion to

find a short cycle of symbol �6 through edge (�6, .7)

expansion

depth 0

expansion

depth 1

expansion

depth 2

�6

.7

�EE

�6

.C

3

���= 5

(���- 2)

((��//- 2) + (���- 2))

.� 9 9

��//= 8

.n 5

�C ��0= 4

((��0- 2) + (���- 2))

.E

12

�� ��ñ= 5 ((��ñ- 2) + (��//- 2) + (���- 2))

6 .B

((��Ù- 2) + (��0- 2) + (���- 2))

��Ù= 3

�B

expansion

depth 3

137

ACE weight assignments to check vertices at each expansion depth during a SETA subgraph

expansion are cumulative and take into cognizance all the symbol vertices preceding each check

vertex in the subgraph expansion. The ACE of the short cycle through the (k+1)-th edge of symbol

node �% is denoted as *X8234
5 . The local ACE at symbol node �%, denoted as *X8�4 , is the minimum

ACE of all the short cycles that pass through �%. This is expressed mathematically, as

*X8�4= min{ *X8234
� , *X8234

/ , . . . , *X8
234

±34�/}. Therefore, *X8�4 can only be determined after a

SETA subgraph expansion has been carried out from all the ��4 edges of �% in the graph.

Figure 4.3 shows check vertex ACE weight assignments made during a SETA subgraph expansion to

determine the ACE of the shortest cycle through the (k+1)-th edge of symbol node �6, i.e. *X823�
5 .

The (k+1)-th edge illustrated in Figure 4.3 is edge (�6, .7). At subgraph expansion depth 3, another

vertex of symbol node �6 was found to be attached to check vertex .C at expansion depth 2.

Substituting this expansion depth & = 2 in the equation 1234
5 = (2& + 2), the girth of this cycle is

123�
5 = ~(2 × 2) + 2� = 6. Therefore, the girth of the shortest cycle of symbol node �6 which passes

through edge (�6, .7) is 6, and the ACE of cycle �6-.7-�EE-.�-��-.C-�6 is 12, which is the ACE weight

assigned to .C during the SETA subgraph expansion from edge (�6, .7).

During SETA subgraph expansions, duplicate check vertices frequently occur at the same expansion

depth. Consequently, ACE weight assignments made to each duplicate must be uniquely tracked.

4.4.3 The SETA Subgraph Expansion Based Algorithm for Determining the Girth and

ACE Distributions in LDPC Code Tanner Graphs

In terms of computational load, the proposed algorithm for determining the local girth and ACE

distributions in LDPC code Tanner graphs, which is based on SETA subgraph expansions, is very

similar to the standard PEG LDPC code construction algorithm. Consequently, based on complexity

estimations for the standard PEG algorithm in [Hu et al., 2005], the worst case computational

complexity of the proposed algorithm is ò(��). Therefore, the complexity of the proposed algorithm

is considerably less than the complexity of the algorithms in [Halford and Chugg, 2006],

138

[Karimi and Banihashemi, 2013], and [Li et al., 2015]. The proposed algorithm for determining the

local girth and ACE distributions in LDPC code Tanner graphs is summarized in Algorithm 4.1.

Algorithm 4.1: The algorithm for determining the girth and ACE distributions in

 LDPC code Tanner graphs

for = 0 to � − 1 do
begin
for � = 0 to ��4- 1 do

begin
if ��4 > 1

 execute a SETA subgraph expansion from the (� + 1)-th edge of �%, 8�4
R , up to depth

(& + 1) where another vertex of �% is found attached to a check vertex at depth & (i.e.
another edge of �% is found), or up to the maximum subgraph expansion depth &�Nº.
if (another vertex of �% is found)

calculate the girth of the short cycle of �% through edge 8�4
R using 1234

5 = (2& + 2)

else
assign an arbitrarily large value for the girth (i.e. an infinite girth), and an ACE
of 0; this indicates that no short cycle of �% through edge 8�4

R has been found.

e.g. 1234
5 = 1000, and *X8234

5 = 0. (Either &�Nº is too small or the edges of �%

have no connecting path.)
 starting from the single check vertex at depth 0, use *X8 = ∑ ~�� - 2�� and the

symbol node degrees of all the symbol vertices in the path leading to each check
vertex to assign an ACE weight to every check vertex encountered during the SETA
subgraph expansion.
if (another vertex of �% is found)

*X8234
5 , the ACE of the short cycle of �% through edge 8�4

R , is the ACE weight

assigned to the check vertex at depth l which makes an edge with symbol vertex
�% found at depth (& + 1).

(Note that and are executed concurrently. That is, for speed and efficiency,
the girth and ACE of the first short cycle found in each SETA subgraph

expansion are determined concurrently.)

else
��4 = 1, there are no local cycles through �% because it has only one edge 8�4

k . Assign an

arbitrarily large value for the girth (i.e. an infinite girth), and an ACE of 0.
e.g. 1234

� = 1000, and *X8234
� = 0.

end
determine 1�4 = min{1234

� , . . . , 1
234

±34�/}

determine *X8�4= min{ *X8234
� , *X8234

/ , . . . , *X8
234

±34�/}

end

determine the local girth and local ACE distributions in the Tanner graph from the set of local girth
and local ACE values, {1�4� and {*X8�4}, respectively, where 0 ≤ ≤ �-1.

139

In our implementation, &�Nº was set at 6 because most practical capacity-approaching

short-to-medium length LDPC codes do not contain symbol nodes with local girths of up to 14;

however, &�Nº can be easily adjusted for different types of codes. The algorithm was augmented to

provide other statistics of girth and ACE distributions, including the average girth ((∑ 1�4
�QE
%ók) / n), and

the average ACE ((∑ *X8�4
�QE
%ók) / n) of graphs. A two dimensional array was used to assign ACE

weights to all the check vertices encountered during each SETA graph expansion. One dimension of

the array caters for the number of check nodes in the graph m, and the other dimension caters for ACE

weights assignments for duplicate check vertices which are frequently encountered in subgraph

expansions. Duplicate check vertices are reached through different paths in a graph expansion and are

very likely to have different ACE weight assignments. All lower level (higher depth) check vertices

attached through duplicated check vertices must inherit the cumulative ACE weight corresponding to

its unique path in the subgraph expansion.

The algorithm for determining the local girth and ACE distributions in LDPC code Tanner graphs can

be made significantly faster in Tanner graphs which have symbol nodes with degree 2 by using a

single SETA subgraph expansion to determine the girth and ACE of the shortest cycle through them.

This is because SETA subgraph expansions start and end at two different vertices of the same symbol

node and, for degree 2 symbol nodes, SETA expansions from either edge to the other results in

identical shortest cycle girth and ACE values. The C programming language code for the SETA

subgraph expansion based algorithm for determining the local girth and ACE distributions in LDPC

code Tanner graphs is available in the Appendices (See Appendix C).

4.4.4 Evaluating the Performance of the Algorithm for Determining the Girth and

ACE Distributions in LDPC Code Tanner Graphs

The SETA subgraph expansion based algorithm for determining the girth and ACE distributions in

LDPC code graphs was implemented using the C programming language running in the UBUNTU®

Linux operating system on a 3.4GHz CPU machine with 16 GB RAM. In Table 4.1, the CPU running

times required for determining the girth and ACE distributions in short length LDPC codes using the

140

proposed algorithm were compared to the CPU running times of the MPA and IMPA in Table II of

[Li et al., 2015]. The MPA and IMPA were implemented using the MATLAB 2013a software in a

3.4GHz CPU machine with 8 GB RAM. Code I is an irregular LDPC code with maximum symbol

node degree of 15 and a maximum check node degree of 9. Code II is a (3, 8)-regular LDPC code.

Code I and Code II were obtained from [MacKay, 2002], where they are called PEGirReg504x1008

and PEGReg504x1008 respectively, and were also analyzed in [Li et al., 2015]. CPU running time

evaluations were carried out using two versions of the SETA based algorithm: the SETA (girth only)

version which determines local girth distributions only, and the SETA (girth + ACE) version which

determines local girth and ACE distributions concurrently.

Table 4.1: CPU running times using: SETA (girth only), SETA (girth + ACE),

and the MPA and IMPA

CPU time in seconds (s)

Code I

Code II

SETA (girth only)

 17.86

104.02

SETA (girth + ACE)

 18.10

106.47

MPA

471.97

139.14

IMPA

217.34

 70.17

As can be seen from Table 4.1, for Code I both of the SETA subgraph expansion based algorithms

took significantly shorter time to determine the girth and ACE distributions than it took the MPA and

IMPA algorithms to count the short cycles in the code. However, for Code II, while the SETA based

algorithms took a shorter time than the MPA algorithm, the IMPA algorithm required a shorter time

than both SETA based algorithms. SETA based algorithms are significantly faster than the MPA and

IMPA when applied to short length irregular LDPC codes. However, the IMPA is slightly faster than

SETA based algorithms when applied to short length regular LDPC codes.

The SETA subgraph expansion based algorithm for determining the girth and ACE distributions in

LDPC code Tanner graphs was applied to three groups of short-to-medium length rate-½ LDPC codes.

These groups of codes are refered to as Type I, Type II, and Type III codes. The performance of the

algorithm for each code type were evaluated using three code dimensions; (�, �) = (512, 256),

141

(1024, 512), and (2048, 1024), respectively. Recall: in a dimension (�, �) LDPC code, � is the

code length and k is the number of information bits.

Type I codes were constructed using DE optimized symbol node degree distributions in the standard

PEG algorithm. The (512, 256) Type I code was constructed with degree distribution:

@E(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14,

and the (1024, 512) and (2048, 1024) Type I codes were constructed with degree distribution:

@�(x) = 0.47461x
2 + 0.27930x

3 + 0.03418x
4 + 0.10840x

5 + 0.10352x
15.

To obtain Type II codes, the maximum symbol node degree ��(�Nº) in the degree distributions of

Type I codes of corresponding dimensions were increased, and the resultant degree distributions were

used to construct codes with graphs of identical girth but significantly higher edge densities than the

Type I codes. During construction, the girth of Type II codes were maintained identical to

corresponding Type I code girths by discarding all edge connections which would have resulted in

reduced girth, Type II codes were constructed using the MLG (ES) PEG algorithm (see Section 6.2).

The (512, 256), (1024, 512), and (2048, 1024) Type II codes have the following degree

distributions:

@B(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.00195x
13 + 0.015625x

14 + 0.01172x
15 +

 0.07422x
16,

@C(x) = 0.47461x

2 + 0.27930x
3 + 0.03418x

4 + 0.10840x
5 + 0.01172x

19 + 0.01074x
20 + 0.08105x

21, and

@n(x) = 0.47461x

2 + 0.27930x
3 + 0.03418x

4 + 0.10840x
5 + 0.00049x

24 + 0.00244x
25 + 0.00195x

26 +

 0.09863x
27, respectively.

Type III codes were constructed to be as symbol node regular as possible while maintaining global

girths 1 = 8. The (512, 256) Type III code was constructed with regular degree sequence �¨ = 3,

using the standard PEG algorithm; the (1024, 512) Type III code was constructed with regular degree

142

sequence �¨ = 4, using the standard PEG algorithm; and the (2048, 1024) Type III code was

constructed using regular degree sequence �¨ = 5 as input to the MLG (ES) PEG algorithm which

discards some edge connections during the code construction in order to enforce a global girth 1 = 8.

The Type III code constructed had degree distribution: @�(x) = 0.01318x
4 + 0.98682x

5. The

MLG (ES) PEG algorithm is described in Section 6.2.

Table 4.2: CPU running times for the three rate-½ LDPC code types and dimensions

Code dimension

(�, �)

Code type

Global girth (1)

Number
of edges

CPU time (s) for
girth and ACE

evaluation

(512, 256)
Type I 6 2041 4.05
Type II 6 2122 5.01
Type III 8 1536 3.78

(1024, 512)

Type I 6 4115 18.95
Type II 6 4716 41.48
Type III 8 4096 108.00

(2048, 1024)

Type I 6 8230 199.10
Type II 6 10757 416.39
Type III 8 10213 3156.30

Table 4.2 shows the global girths, number of edges, and the corresponding CPU running times

in seconds required by the SETA based algorithm to determine the girth and ACE

distributions in the three rate-½ LDPC code types and dimensions. Figure 4.4 shows a plot of

CPU running times against code length n for Type I, II, and III codes, as presented in

Table 4.2. For the three code lengths analyzed, the proposed algorithm required longer CPU

running times to analyze Type II codes compared to corresponding Type I codes. Despite

having identical girths, Type II codes have higher edge densities than corresponding Type I

codes. Consequently, the algorithm requires not only a larger number of SETA subgraph

expansions but also more memory per subgraph expansion to analyze Type II codes compared

to Type I codes.

143

Generally, Type III codes require longer CPU running time than corresponding Type I and

Type II codes; the (512, 256) Type III code is an exception because it has a significantly

lower edge density than the other two (512, 256) codes.

Figure 4.4: CPU running time in seconds (s) for determining the girth and ACE distributions

in Type I, Type II, and Type III codes

The (1024, 512) Type III code has a lower density than the corresponding Type I and Type II codes,

and the (2048, 1024) Type III code has a lower density than the corresponding Type II code. Despite

having relatively lower densities, these two Type III codes took significantly longer time for their local

girth and ACE distribution determination than corresponding Type I and Type II codes. This is

144

because Type III codes have global girths 1 = 8 (In fact, 100% of their local girths are equal to 8), and

each SETA subgraph expansion proceeds to lower depths and has even more memory requirement

than for Type II codes. This is because during subgraph expansions there is an exponential increase in

the number of elements to be stored in memory (symbol node and check node vertices) as the graph

expansion depth increases. Table 4.2 and Figure 4.4 highlight the effects of code lengths, densities,

and girths on the CPU running time of the algorithm.

Table 4.3, Table 4.4, and Table 4.5 provide detailed results obtained when the proposed algorithm was

used to determine the girth and ACE distributions in the Type I, Type II, and Type III code graphs of

dimension (512, 256), (1024, 512), and (2048, 1024), respectively. From the results in these

tables, it can be seen that the irregular Type I and Type II codes have superior ACE parameters than

the regular (or near regular) Type III codes. In addition, as a result of higher symbol node degrees in

their degree distributions, Type II codes have higher ACE parameters than corresponding Type I

codes.

Table 4.3: Girth and ACE distributions in Type I, Type II, and Type III
rate-½ (512, 256) LDPC code graphs

Code
dimension

(�, �)

Code type

Girth distribution

Average
local girth

ACE distribution

Average
ACE

Local
girth

(1�4)

Percent of
symbol
nodes

*X8�4

Percent of
symbol
nodes

(512, 256)

Type I

6

100.000

6.000

12
13
14
15
16
24

5.273
59.961
25.195

7.812
0.391
1.367

13.518

Type II

6

100.000

6.000

12
13
14
15
16
17
25
26

3.516
14.648
27.930
41.016
10.938

1.562
0.195
0.195

14.504

Type III

8

100.000

8.000

4

100.000

4.000

145

Table 4.4: Girth and ACE distributions in Type I, Type II, and Type III

rate-½ (1024, 512) LDPC code graphs

Code
dimension

(�, �)

Code type

Girth distribution

Average
local girth

ACE distribution

Average
ACE Local

girth
(1�4)

Percent of
symbol
Nodes

*X8�4

Percent of
symbol
nodes

(1024, 512)

Type I

6

99.512

6.010

7
13
14
15
16
17
18
26
27

0.098
9.082

33.496
13.281
21.484

5.273
0.195

16.113
0.977

16.691

8

0.488

Type II

6

100.000

6.000

17
18
19
20
21
22
23
25
35
36
37

1.953
9.180

28.906
37.500
12.891

7.227
0.098
0.098
0.098
1.465
0.586

20.099

Type III

8

100.000

8.000

8

100.000

8.000

146

Table 4.5: Girth and ACE distributions in Type I, Type II, and Type III
rate-½ (2048, 1024) LDPC code graphs

Code
dimension

(n, k)

Code type

Girth distribution

Average
local girth

ACE distribution

Average
ACE Local

girth
(1�4)

Percent of
symbol
nodes

*X8�4

Percent of
symbol
nodes

(2048, 1024)

Type I

6

90.137

6.197

1
3
4
5
6
7
8
9

11
13
14
15
16
17
18
19
26
27
28
29

0.040
0.049
0.195
0.391
0.146
0.244
0.049
0.098
0.049
3.516

23.828
12.109
16.699

9.521
1.025
0.244

24.121
7.031
0.146
0.488

18.557

8

9.863

Type II

6

100.000

6.000

22
23
24
25
26
27
28
29
47
48
49
50

0.146
0.781
2.051

15.771
44.434
12.646
17.871

1.025
0.293
1.514
0.635
2.832

27.507

Type III
8

100.000

8.000

10
11
12

2.344
85.010
12.646

11.103

147

Finally, the SETA subgraph expansion based algorithm for determining the girth and ACE

distributions in LDPC code graphs was used to compare the girth and ACE distributions in ensembles

of LDPC codes constructed using the following three PEG algorithms,

i) PEG, i.e. the standard PEG algorithm [Hu et al., 2001], [Hu et al., 2005],

ii) ACE PEG, i.e. the improved PEG (IPEG) construction for higher ACE in LDPC
 code Tanner graphs [Xiao and Banihashemi, 2004], and

iii) G-ACE PEG, i.e. the generalized ACE constrained PEG algorithm
[Vukobratović and Šenk, 2008].

The C programming language codes for the ACE PEG algorithm, and the G-ACE PEG algorithm

which were implemented in this research are available in the Appendices (See Appendix D and

Appendix E, respectively).

An ensemble of 200 irregular rate-½ (512, 256) LDPC codes were constructed using the PEG,

ACE PEG, and G-ACE PEG algorithms; therefore, a total of 600 codes were analyzed. For a fair

comparison of the girth and ACE properties of codes constructed by these three PEG algorithms, all

the codes in the three code ensembles were constructed with the same DE optimized symbol node

degree distribution: @E(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14. Table 4.6

summarizes the results obtained from an analysis of the local girth distributions of codes in the three

code ensembles.

Table 4.6: Local girth distribution of codes in ensembles of LDPC codes constructed
using standard PEG, ACE PEG, and G-ACE PEG algorithms

Algorithm

No of codes in
ensemble

No of codes with
100% of local

girths = 6

No of codes which
contain local girths

of 8

Percentage of codes
which contain local

girths of 8

PEG

200

193

 7

 3.5%

ACE PEG

200

167

 33

16.5%

G-ACE PEG

200

 28

172

86.0%

148

In Table 4.6, the code ensemble constructed using the G-ACE PEG algorithm has a significantly

higher percentage of codes which contain local girths of 8 than the code ensemble constructed using

the ACE PEG algorithm. Similarly, the code ensemble constructed using the ACE PEG algorithm has

a significantly higher percentage of codes which contain local girths of 8 than the code ensemble

constructed using the standard PEG algorithm. Table 4.7 summarizes the results obtained from an

analysis of the ACE distributions of codes in the three code ensembles.

Table 4.7: ACE distributions of codes in ensembles of LDPC codes constructed
using PEG, ACE PEG, and G-ACE PEG algorithms

As can be seen in Table 4.7, all the ACE parameters of the code ensemble constructed using the

G-ACE PEG algorithm are higher than the ACE parameters of the code ensemble constructed using

the ACE PEG algorithm. Similarly, all the ACE parameters of the code ensemble constructed using

the ACE PEG algorithm are higher than the ACE parameters of the code ensemble constructed using

the standard PEG algorithm. These results are in line with the premise of the work in

[Xiao and Banihashemi, 2004] and [Vukobratović and Šenk, 2008].

4.5 Summary

• An efficient algorithm for determining the girth and ACE distributions in LDPC code Tanner

graphs has been presented. The algorithm is relatively easy to implement and finds all the short

cycles through symbol nodes in Tanner graphs using SETA subgraph expansions.

• With a worst case computational complexity of ò(��), the complexity of the algorithm for

determining the girth and ACE distributions in LDPC code Tanner graphs is considerably less

Algorithm

Lowest average
ACE of code in

ensemble

Highest average
ACE of code in

ensemble

Ensemble average
ACE

PEG

13.334

13.707

13.534

ACE PEG

15.152

16.164

15.702

G-ACE PEG

17.109

17.773

17.449

149

than the complexity of the algorithms in [Halford and Chugg, 2006],

[Karimi and Banihashemi, 2013], and [Li et al., 2015].

• Using a local ACE distribution, a technique for evaluating the entire spectrum of cycle ACE

values in Tanner graphs with respect to the symbol nodes in the graph has been proposed. The

following ACE parameters for LDPC code graphs have been introduced and defined: i) the

‘local ACE at a symbol node �%’ or a ‘symbol node ACE’, ii) the ‘modal symbol node ACE’ of a

Tanner graph, iii) the ‘average ACE’ of a graph, and iv) the ‘ensemble average ACE’ of an

ensemble of codes.

• The importance of having a concise single-valued representation of the degree of connectivity of

the entire network of cycles in the Tanner graph of an LDPC code, i.e. the ‘average ACE’ of an

LDPC code, has been underscored.

• The algorithm for determining the girth and ACE distributions in LDPC code Tanner graphs has

been shown to be faster than existing algorithms for counting cycles in LDPC codes when applied

to irregular short-to-medium length LDPC codes.

• The impact of code length, Tanner graph density, and local girth distributions on the CPU running

time of the algorithm for determining the girth and ACE distributions in LDPC code Tanner

graphs has been explained.

• The algorithm for determining the girth and ACE distributions in LDPC code Tanner graphs was

used to compare the girth and ACE distributions in three (3) ensembles of irregular rate-½

(�, �) = (512, 256) LDPC codes (all with identical symbol node degree distributions) which

were constructed using the PEG, ACE PEG, and G-ACE PEG algorithms respectively. The

results show that G-ACE PEG codes have higher girth and ACE metrics than ACE PEG codes,

and ACE PEG codes have higher girth and ACE metrics than standard PEG codes. These result

are in line with the premise of work by [Xiao and Banihashemi, 2004] and

[Vukobratović and Šenk, 2008].

150

Chapter 5

A cyclic PEG (CPEG) algorithm & The minimum weight,
girth, and ACE distributions in irregular LDPC codes
constructed using PEG and CPEG algorithms

Parts of this chapter appear in the proceedings of the following conference: Abdu-Aguye, U. F.,

Ambroze, M. A., & Tomlinson, M. (2016, September). Improved minimum weight, girth, and ACE

distributions in ensembles of short block length irregular LDPC codes constructed using PEG and

cyclic PEG (CPEG) algorithms. In Turbo Codes and Iterative Information Processing (ISTC), 2016

9th International Symposium on (pp. 186-190). IEEE.

5.1 Introduction

The minimum distance ���� of a code is the weight of the lowest weight non-zero codeword of the

code. The stopping distance ���� of a code is the minimum weight (or size) of a nonempty stopping

set of the code. Extensive research has shown that ���� and ���� have significant bearing on the

cardinality of decoding errors under iterative message passing algorithms. In additive white Gaussian

noise (AWGN) channels, the two main causes of errors in the error-floor region are low weight

codewords (low ����) which cause undetected errors, and trapping sets which cause detected errors.

In binary erasure channels (BEC), the two main causes of errors in the error-floor region are low

weight codewords which cause undetected errors, and low weight stopping sets (low ����) which

cause detected errors. Consequently, codes which have high values of these minimum weight

parameters are preferred.

151

In this chapter, a novel PEG algorithm which uses an alternative edge establishment sequence to

construct LDPC codes is proposed. The proposed algorithm is called the cyclic PEG (CPEG)

algorithm. The CPEG algorithm constructs LDPC codes using an edge connections sequence which is

different from the edge connections sequence in the original PEG algorithm in [Hu et al., 2001]. The

LDPC code weight evaluation algorithm of [Rosnes et al., 2012] is used to determine the minimum

weight distributions, i.e. ���� and ���� distributions, in ensembles of irregular rate-½ LDPC codes of

dimension (�, �) = (512, 256). Code minimum weight distributions are used to compare ensembles

of LDPC codes constructed using standard PEG and CPEG algorithms. The effect of improving the

ACE metrics of code graphs on the minimum weight distributions in ensembles of codes constructed

using the standard PEG algorithm and the CPEG algorithm are investigated. The ACE of codes

constructed using the standard PEG construct and the CPEG construct were improved by

implementing the PEG algorithm modification for improving the ACE in LDPC code graphs proposed

by [Xiao and Banihashemi, 2004] in both PEG algorithms. Additionally, the algorithm for determining

local girth and ACE distributions in short-to-medium length LDPC code Tanner graphs proposed in

[Abdu-Aguye et al., 2016(a)] was used to compare global girths, local girth distributions, and local

ACE distributions of codes from the different PEG algorithm ensembles. Among the aims of these

investigations is to find codes with higher ���� and ���� than published for similar length irregular

LDPC codes which are constructed with ‘good’ degree distributions, like those reported in

[Rosnes et al., 2012]. The impact of ���� on the performance of DE optimized irregular rate-½

(�, �) = (512, 256) LDPC codes is investigated. Finally, the simulated decoding performances of

CPEG and standard PEG codes, with and without improved ACE metrics, are compared.

152

5.2 The Cyclic Progressive Edge-Growth (CPEG) Algorithm

It is necessary to briefly describe some important features of LDPC code construction using the

original/standard PEG algorithm before the discussion on the proposed CPEG algorithm is presented.

In the standard PEG algorithm, during a Tanner graph construction, the local girth at each symbol

node �%, ∀ �0 ≤ ≤ �-1�, is made as large as possible before a new edge is added to the graph. This

results in graphs with large girths. LDPC code Tanner graphs are constructed using predetermined

symbol node degree sequences "� = #��� , ��/ , … … … , ����/$, where ��4 is the degree of symbol node

�%. For irregular codes, the symbol node degrees are ordered and connected into LDPC code

parity-check matrices/Tanner graphs in the nondecreasing order, i.e. ��� ≤ ��/ ∙ ∙ ∙ ∙ ≤ ����/.

In the standard PEG algorithm, edge connections into a Tanner graph under construction takes place in

the following sequence. Firstly, all ��� edges of symbol node �k are connected into the graph, then all

the ��/ edges of symbol node �E are connected into the graph, and then all the ��° edges of �� are

connected into the graph, and so on. The code construction terminates when all the ����/ edges of

symbol node ��QE, i.e. from the 1st to the (����/)th
 edge of ��QE serially, have been connected into the

graph. The edge connections sequence of the standard PEG algorithm can be described as

symbol node serial. Figure 2.13 shows the edge connections sequence of the standard PEG algorithm

when constructing a code with symbol node degree sequence "¨/ = {2, 2, 2, 2, 3, 3, 5, 5, 7, 7}.

A PEG algorithm that implements an alternative edge connections sequence to the standard PEG

algorithm is proposed and investigated. The proposed cyclic PEG (CPEG) algorithm for constructing

LDPC codes with � symbol nodes and � check nodes is summarized in Algorithm 5.1.

In the CPEG algorithm, edge connections into a Tanner graph under construction proceeds in the

following sequence. Firstly, the first of the ��� edges incident to symbol node �k is connected into the

graph, and then the first of the ��/ edges incident to �E is connected into the graph, and then the first of

the ��° edges incident to �� is connected into the graph and so on, up to the last symbol node ��QE.

After all the first edges incident to each of the symbol nodes in the graph have been connected, the

153

algorithm returns to the lowest index symbol node �% with symbol degree ��4 ≥ 2 and connects the

second of the ��4 edges incident to symbol node �% into the graph, then the second of the ��4Ô/ edges

incident to symbol node �%£E is connected into the graph and so on, up to symbol node ��QE. CPEG

code construction terminates when the (����/)th edge of symbol node ��QE has been connected into the

graph. The CPEG algorithm edge connections sequence can be described as symbol node cyclic.

Algorithm 5.1: The cyclic progressive edge-growth (CPEG) algorithm

for .�.&�� = 0 x< (����� − 1) do

begin
� = .�.&��
 for = 0 to (�-1) do

begin
if � ≤ (��4-1)

if � = 0
8�4

k ← edge (.�, �%), where 8�4
k is the first edge incident to �%, and .� is selected

from the check nodes with the lowest check node degree under the current

graph setting 8�� ∪ 8�/ ∪ . . . ∪ 8�(4�/).
else

expand a subgraph from symbol node �% up to depth & under the current graph
setting such that the cardinality of ;�4

O stops increasing but is less than �, or

Ṅ�4
O ≠ ∅ but Ṅ�4

O£E = ∅, then 8�4
R ← edge (.�, �%), where 8�4

R is the (� + 1)-th
edge incident to �% and .� is a check node selected from the lowest degree

check nodes in the set Ṅ�4
O

.
end

end

In the CPEG algorithm, the highest symbol node degree ����� in the degree distribution "� of the

code under construction determines the number of edge connections cycles (see the variable called

‘.�.&��’ in Algorithm 5.1) which must be executed to complete a code construction. In each cycle,

edges are connected only for symbol nodes with an incomplete number of edges under the current

state of the graph. In cycle �, this is the set of symbol nodes for which � ≤ (��4-1). Figure 5.1

illustrates the edge connections sequences for the CPEG algorithms when constructing a code with

symbol node degree sequence "¨/ = {2, 2, 2, 2, 3, 3, 5, 5, 7, 7}. There are seven edge connections

154

cycles in the CPEG algorithm edge connections sequence shown in Figure 5.1 because the highest

symbol node degree ����� in symbol node degree sequence "¨/ is seven (7).

Figure 5.1: The edge connections sequence of the CPEG algorithm

The edge connections sequence of the CPEG algorithm is similar to that of the ‘ModPEG’ algorithm

of [Sy et al., 2011]. The edge connections sequence of the ModPEG algorithm is described using

degree distribution "¨/ as follows. Let {ÁU} denote the set of symbol nodes of degree �, where

1 ≤ � ≤ ����� . There are four sets of equal degree symbol nodes in "¨/, i.e. {Á�}, {ÁB}, {Án}, and

{Á7}. Where {Á�} = {�k, �E, ��, �B}, {ÁB} = {�C, �n}, {Án} = {��, �7}, and {Á7} = {�6, �A}. Starting

from {Á�}, 2 edge connections cycles are executed to connect the 2 edges for each symbol node in the

set (the first cycle for the 1st edges, and the second cycle for the 2nd edges). Similarly, 3 cycles are

executed to connect the 3 edges for each symbol node in {ÁB}, and so on. The ModPEG code

construction terminates after the 7 cycles required to connect all the edges of {Á7} are executed.

Figure 5.2 illustrates the edge connections sequence of the ModPEG algorithms of [Sy et al., 2011].

DS = { 2 2 2 2 3 3 5 5 7 7 }

 Start 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

 Stop

155

It is clear from a comparison of the edge connections sequences illustrated in Figure 5.1 and

Figure 5.2 that the ModPEG and the CPEG algorithms are different.

Figure 5.2: The edge connections sequence of the ModPEG algorithm

5.3 Minimum Codeword Weight and Minimum Stopping Set Weight

Distributions in PEG, ACE PEG, CPEG, and ACE CPEG Code

Ensembles

In this section, we compare the minimum weight distributions, i.e. ���� and ���� distributions, in four

ensembles of LDPC codes which all have the same density evolution (DE) optimized symbol node

degree distribution but are constructed using different PEG algorithms. Two of these code ensembles

were constructed using the standard PEG alogithm and CPEG algorithm, respectively. The other two

code ensembles were constructed using the algorithms derived when the PEG algorithm modification

for improving the ACE in LDPC code graphs proposed by [Xiao and Banihashemi, 2004] was

implemented in both the standard PEG algorithm and CPEG algorithm, these are the

DS = { 2 2 2 2 3 3 5 5 7 7 }

 Start 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

 Stop

156

ACE PEG algorithm and the ACE CPEG algorithm, respectively. The C programming language code

for the CPEG algorithm and the ACE CPEG algorithm for LDPC code construction are available in

the Appendices (See Appendix F and Appendix G, respectively).

An LDPC code ensemble was constructed using each of the following PEG algorithms.

i) PEG, i.e. the standard PEG algorithm,

ii) ACE PEG, i.e. the standard PEG algorithm modified for improved ACE in codes,

iii) CPEG, i.e. the cyclic PEG algorithm, and

iv) ACE CPEG, i.e. the CPEG algorithm modified for improved ACE in codes.

The four code ensembles were made up of irregular rate-½ codes of dimension (�, �) = (512, 256),

where � is the code length and � is the information length. All codes in the four code ensembles were

constructed using the following density evolution (DE) optimized symbol node degree distribution:

�ô(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14. This degree distribution was

obtained from [Tjhai, 2007]. A random candidate check node selection, as adopted in [Hu et al., 2001]

and [Hu et al., 2005], was used to construct all codes in the four code ensembles. The only code design

parameter which differentiates one code from another within an ensemble is the random number seed

used for its construction. Each code ensemble comprised of 6000 LDPC code matrices.

The LDPC code weight evaluation algorithm was used to determine the minimum weight distributions

for codes in each of the four code ensembles. The minimum weights in the rate-½ (512, 256) LDPC

code ensembles were compared to the highest minimum weights obtained for the rate-½ (576, 288)

IEEE 802.16E (WiMAX) LDPC code published in [Rosnes et al, 2012], which are ���� = 16 and

���� = 15. These minimum weights were obtained using the alternative construction for the WiMAX

code (see [Rosnes et al, 2012] for details).

Figure 5.3 shows the minimum distance ���� weight distributions in LDPC code ensembles

constructed using PEG, ACE PEG, CPEG, and ACE CPEG algorithms. It can be seen that a

157

significant fraction of codes in each ensemble have minimum distances greater than or equal to that of

the WiMAX code, i.e. ���� ≥ 16. PEG algorithms that use the edge connections sequence of the

standard PEG algorithm produced significantly higher fractions of codes with improved ���� than

corresponding CPEG algorithms. PEG and ACE CPEG algorithms have similar ���� distributions.

The ACE PEG algorithm constructed the code ensemble with the highest fraction of high ���� codes.

Codes with ���� = 20 were found in the ACE PEG code ensemble.

Figure 5.3: Minimum distance weight ���� distributions in ensembles of rate-½ (512, 256) LDPC

codes constructed using PEG, ACE PEG, CPEG, and ACE CPEG algorithms

Figure 5.4 shows the minimum stopping set ���� weight distributions in the four LDPC code

ensembles. A significant fraction of codes in each ensemble were found to have minimum stopping set

weights greater than or equal to that of the WiMAX code, i.e. ���� ≥ 15. PEG algorithms produced

158

significantly higher fractions of codes with improved ���� than corresponding CPEG algorithms. PEG

and ACE CPEG code ensembles have very similar ���� distributions. Clearly, the ACE PEG

algorithm constructed the code ensemble with the highest fraction of high ���� codes. Codes with

���� = 20 were found in the ACE PEG code ensemble.

Figure 5.4: Minimum stopping set weight ���� distributions in ensembles of rate-½, (512, 256)

LDPC codes constructed using PEG, ACE PEG, CPEG, and ACE CPEG algorithms

Although codes with higher minimum weights than the WiMAX code, i.e. with ���� > 16 and

���� > 15, were found in all four code ensembles, the ACE PEG algorithm constructed the LDPC

code ensemble with the largest fraction of high minimum weight codes.

159

For the same code rate and dimensions (�, �), higher minimum weights, i.e. ���� and ����, than

those found in the four DE optimized LDPC code ensembles can be easily found in regular LDPC

codes and irregular LDPC codes with ‘bad’ degree distributions. Unfortunately, regular codes and

irregular codes with these ‘bad’ degree distributions have poor decoding performance compared to

irregular codes with ‘good’/DE optimized degree distributions.

As an example, the highest ���� and ���� for a code in the ensemble of rate-½ (�, �) = (1000, 500)

LDPC codes in [Richter and Hof, 2006] had ���� = ���� = 18. All the codes in the ensemble had

unoptimized degree distribution �Íy(�) = 0.283�� + 0.281�B + 0.436�A. Consequently, it was

necessary to use the shuffled belief propagation decoder [Zhang and Fossorier, 2005], a maximum of

500 iterations, and the ‘linear approximation’ method in [Richter et al., 2005] in order to attain the

reported decoding performance.

As another example, the DE optimized degree distribution used to construct the four LDPC code

ensembles investigated for ���� and ���� distributions, i.e.,

�ô(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14

was modified so that all symbol nodes with degrees of 2 were converted to symbol nodes with degrees

of 3. Consequently, the following ‘bad’/unoptimized symbol node degree distribution was obtained,

��(x) = 0.74805x
3 + 0.09961x

4 + 0.04883x
5 + 0.10352x

14

When degree distribution ��(x) was used to construct an ensemble of rate-½ (�, �) = (512, 256)

LDPC codes using the ACE PEG algorithm, most of the codes had ���� > 24 and ���� > 24.

However, simulation experiment results show that the error-floor for rate-½ (�, �) = (512, 256)

ACE PEG codes with symbol node degree distribution ��(x) were significantly higher than the

error-floor for rate-½ (512, 256) ACE PEG codes with symbol node degree distribution �ô(x). The

results of performance simulation at 4.00�F and a maximum of 100 decoding iterations showed that

�)(õË) = 2.55 × 10Q7, i.e. the average probability of error for 10 randomly selected ACE PEG codes

with ‘bad’/unoptimized degree distribution ��(x) is 2.55 × 10Q7, and �)(õö) = 8.35 × 10Q6, i.e. the

average probability of error for 10 randomly selected ACE PEG codes with DE optimized degree

160

distribution �ô(x) was 8.35 × 10Q6. Therefore, �)(õË) ~ 3�)(õö). In order to minimize the effect of the

���� and ���� of the simulated codes on the values of �)(õË) and �)(õö), all the codes used in these

simulation experiments had ���� ≥ 14 and ���� ≥ 14.

5.4 The Effect of Minimum Distance ¹á¶� on the Error-Floor

Performance of Short-to-Medium Length LDPC Codes over the

AWGN Channel

In this section, the result of simulation experiments to observe the generalized effect of minimum

distances ���� on the error-floor performance of DE optimized rate-½ (�, �) = (512, 256) LDPC

codes over the AWGN channel is presented. All the codes investigated in this section were constructed

using the ACE PEG algorithm with DE optimized symbol node degree distribution �ô(x) = 0.34961x
2

+ 0.39844x
3 + 0.09961x

4 + 0.04883x
5 + 0.10352x

14. Code performance simulations were carried out

using the standard BP/SPA message passing iterative decoder which was implemented as described in

Section 2.5. Decoding was carried out using the standard BP/SPA decoder for BPSK modulated LDPC

codes over the AWGN channel. Error-floor performance results were obtained using a maximum of

100 decoding iterations at 89/;< of 4.00dB only. At 4.00dB the decoding performance curves for the

ACE PEG algorithm constructed rate-½ (512, 256) codes over the AWGN channel is in the

error-floor region. Although the entire error-floor performance of these LDPC codes cannot be

completely characterized at one 89/;< value, the singular 89/;< value of 4.00dB was chosen for

these experiments because extensive simulations carried out in this research have shown that these

LDPC codes maintain their performance hierarchies across the entire range of 89/;< values which

were utilized in the error-floor region.

It can be seen from Figure 5.3 that the rate-½ (�, �) = (512, 256) LDPC codes in the ensemble of

6000 ACE PEG codes with degree distribution �ô(x) have minimum distances ���� in the range of 9

to 20. For each of the minimum distances in this range, i.e. 9 ≤ ���� ≤ 20, ten (10) LDPC codes

were randomly selected from the ACE PEG code ensemble. That is, ten codes with ���� = 9, ten

codes with ���� = 10, ten codes with ���� = 11, . . , and ten codes with ���� = 20 were randomly

161

selected. However, it was ensured that the minimum stopping set weight, ���� of each of the ten

randomly selected codes for each ���� was at least 16, i.e. ���� ≥ 15 for each code. This restriction

on the ���� values of the selected codes was made in an attempt to minimize the influence of stopping

sets on the results of the subsequent experiments which are intended to investigate only the effect of

the ���� of short-to-medium length LDPC codes on their BP/SPA decoding performance.

The FER performance of the ten (10) LDPC codes selected for each ���� in the range 9 ≤ ���� ≤ 20

were determined using the standard BP/SPA decoder at 89/;< = 4.00dB. Table 5.1 shows the

performance simulations results obtained for the 120 randomly selected ACE PEG codes with ���� in

the range of 9 ≤ ���� ≤ 20, and ���� ≥ 16.

Table 5.1: Probabilty of error for 10 randomly selected DE optimized rate-½ (512, 256) ACE PEG
codes with ���� in the range 9 ≤ ���� ≤ 20

Probability of decoding error, �), at 89/;< = 4.00dB
(× ·øQù)

����

Code 1

Code 2

Code 3

Code 4

Code 5

Code 6

Code 7

Code 8

Code 9

Code 10

Average

9

18.007

16.627

18.375

16.896

17.810

17.385

17.932

16.701

17.568

16.779

17.408

10

7.155

6.945

7.573

7.558

7.372

6.930

7.330

6.757

7.413

7.268

7.231

11

2.174

2.235

2.194

2.352

2.192

2.281

2.316

2.448

2.315

2.463

2.297

12

1.548

1.542

1.615

1.485

1.433

1.538

1.520

1.389

1.563

1.687

1.532

13

1.229

1.324

1.204

1.228

1.184

1.216

1.180

1.255

1.183

1.307

1.231

14

0.667

0.693

0.723

0.730

0.657

0.704

0.724

0.685

0.575

0.732

0.689

15

0.789

0.820

0.769

0.785

0.755

0.736

0.822

0.749

0.798

0.827

0.785

16

0.663

0.748

0.697

0.723

0.642

0.617

0.686

0.758

0.615

0.621

0.677

17

0.814

0.734

0.636

0.750

0.615

0.628

0.807

0.781

0.692

0.713

0.717

18

0.725

0.704

0.594

0.657

0.723

0.732

0.670

0.693

0.724

0.678

0.690

19

0.723

0.627

0.664

0.720

0.728

0.697

0.647

0.680

0.714

0.730

0.693

20

0.614

0.803

0.636

0.680

0.734

0.672

0.713

0.740

0.628

0.810

0.703

From these average probabilities of decoding error shown in Table 5.1, �) at 89/;< = 4.00dB, it can

be observed that as the minimum distance of the rate-½ (�, �) = (512, 256) ACE PEG codes

162

increases from ���� = 9 to ���� = 14, there is a significant lowering of the average error-floor

performance of these LDPC codes. Figure 5.5 shows a plot of the minimum distance ���� of

ACE PEG codes against the average probability of decoding error at 89/;< = 4.00dB.

Figure 5.5: Minimum distance ���� vs. average error-floor performance of DE optimized rate-½

(512, 256) ACE PEG codes (Average FER for 10 codes at 89/;< = 4.00dB)

It can be observed from Table 5.1 and Figure 5.5 that there is a generalized improvement in the

error-floor performance of DE optimized rate-½ (512, 256) ACE PEG codes as the ���� of these

codes increases from ���� = 9 to ���� = 14. However, as the ���� of these codes increases beyond

���� = 14, i.e. within the range 15 ≤ ���� ≤ 20, there is no observable generalized improvement in

the error-floor performance consequent to increasing ����. Most of the codes selected and analysed in

the range 15 ≤ ���� ≤ 20 had stopping distances ���� which were either equal to or larger that the

code minimum distances ����. That is, in order to minimize the effect of ���� on the decoding

performance results obtained for codes within the range 15 ≤ ���� ≤ 20, wherever possible the codes

163

analysed were selected such that ���� ≥ ����.

These results suggest that there are threshold ���� values for LDPC codes used over AWGN channels

such that deploying LDPC codes with ���� above these threshold values have little or no effect on

improving the error-floor performance under BP/SPA message-passing iterative decoding. Therefore,

it may be concluded that beyond certain threshold ���� values, higher values of ���� in

short-to-medium length LDPC codes will not necessarily result in a generalized lower error-floor

performance over AWGN channels. Given a fixed code rate, these threshold ���� values will depend

on the degree distributions and length of the LDPC codes under consideration.

A decoding error which is as a result of the minimum distance of a code, or a ���� decoding error,

occurs when a transmitted codeword is decoded into another codeword of the code such that the

Hamming distance between the two codewords is equal to the ���� of the code. These ���� decoding

errors occur when the channel noise distortion causes the Euclidean distance between the received

codeword vector and the decoded codeword to be less than the Euclidean distance between the

received codeword vector and the transmitted codeword. It was observed, from the simulation results

obtained for the DE optimized rate-½ (512, 256) ACE PEG codes, that for codes with ���� ≥ 14 the

fraction of decoding errors which are due to ���� decoding errors are very low compared to the

fraction decoding errors which are due to ���� decoding errors for codes with ���� ≤ 14. In fact,

while ���� decoding errors occasionally occured in codes with ���� = 14, the decoding performance

of almost all the ACE PEG codes with 15 ≤ ���� ≤ 20 were determined without a single ����

decoding error being encountered. Consequently, for rate-½ (512, 256) ACE PEG codes constructed

with DE optimized degree distribution �ô(x) the threshold ���� = 14, and other causes of decoding

failures apart from ���� decoding errors dominate the error-floor performance of the codes with ����

values in the range 15 ≤ ���� ≤ 20.

164

5.5 Global Girth, Local Girth and Average ACE Distribution in PEG,

ACE PEG, CPEG and ACE CPEG Code Ensembles

In this section, the SETA subgraph expansion based algorithm for determining the girth and ACE

distributions in LDPC code Tanner graphs [Abdu-Aguye et al., 2016(a)] was used to compare the

global girths, local girth distributions, and ACE distributions in sub-ensembles of the irregular rate-½

(512, 256) LDPC code ensembles constructed using the PEG, ACE PEG, CPEG, and ACE CPEG

algorithms. The first 200 codes from each of the four code ensembles (i.e. constructed using random

number seeds 1 to 200) were chosen for these comparisons. Consequently, a total of 800 codes from

the four code ensembles to be compared were analysed.

5.5.1 Global Girth Distributions

As a consequence of using the same DE optimized degree sequence to construct the codes in the four

ensembles, all of the 800 codes analyzed had global girth 1 = 6. None of the 200 codes selected from

each of the four code ensembles had a symbol node with a local girth 1�4 of less than 6. That is, for the

800 codes analyzed, 1�4 ≥ 6, ∀ {0 ≤ j ≤ n - 1}.

5.5.2 Local Girth Distributions

Table 5.2 is a summary of the local girth distributions in the chosen sub-ensembles of the PEG,

ACE PEG, CPEG, and ACE CPEG code ensembles. In most codes constructed using the four PEG

algorithms, 100% of the symbol nodes in their graphs had local girths of 6. The remaining codes

constructed had slightly improved girths with at least one symbol node in their code graph having a

local girth of 8. The CPEG code ensemble had slightly higher local girth properties than the PEG code

ensemble. However, the ACE PEG and ACE CPEG code ensembles had significantly higher local

girth properties than PEG and CPEG code ensembles. Of the four code ensembles, the ACE CPEG

ensemble had the largest local girth distribution with 44.0% of its codes containing symbol nodes with

local girths of 8. Out of a total of 144 code graphs with local girths of 8, it was observed that the

number of symbol nodes which had local girths of 8 did not exceed 2 in PEG, ACE PEG and CPEG

code ensembles. However, the number of symbol nodes which had local girths of 8 improved to a

range of 1 to 4 in the ACE CPEG code ensemble.

165

Table 5.2: Local girth distributions in the four sub-ensembles of irregular rate-½
(512, 256) PEG codes

Algorithm

No of codes
in ensemble

No of codes
with 100%

of local
girths = 6

No of codes
which

contain local
girths of 8

Percentage
of codes

with local
girths of 8

PEG

200

193

7

3.5%

CPEG

200

184

16

8.0%

ACE PEG

200

167

33

16.5%

ACE CPEG

200

112

88

44.0%

Total

800

656

144

18.0%

It is clear from these results that the edge connections sequence of CPEG algorithms results in code

ensembles with higher girth properties than those of code ensembles constructed using the edge

connections sequence of standard PEG algorithms.

It can be observed that the CPEG and ACE CPEG code ensembles have higher local girth distributions

than the PEG and ACE PEG code ensembles respectively. The ACE CPEG code ensemble had the

highest local girth distribution.

5.5.3 ACE Distributions

Table 5.3 is a summary of the result of ACE distribution analysis carried out on the four code

sub-ensembles. The CPEG code ensemble has a higher ensemble average ACE than the PEG code

ensemble, and the ACE CPEG code ensemble has a higher ensemble average ACE than the ACE PEG

code ensemble. The ACE CPEG algorithm has the highest ensemble average ACE. This shows that the

edge connections sequence of CPEG algorithms results in code ensembles with higher ACEs than

standard PEG algorithms.

In the edge connections sequence of the CPEG algorithm, edges of high degree symbol nodes are

connected into the graph in each code construction cycle, but in the edge connections sequence of the

standard PEG algorithm, edges of high degree symbol nodes are connected into the graph only at the

final stages of graph construction. The edge connections sequence of the CPEG algorithm results in an

166

early and uniform involvement of high degree symbol nodes at the early stages of graph constructions.

This generally results in code graphs with higher ACE parameters.

Table 5.3: A summary of the ACE distributions in the four sub-ensembles of irregular rate-½
(512, 256) PEG codes

Algorithm

Lowest
average
ACE of
code in

ensemble

Highest
average
ACE of
code in

ensemble

Modal
symbol

node ACE |
Percentage of

ensemble

Ensemble
average

ACE

PEG

13.334

13.707

13
14

99.5%
 0.5%

13.534

CPEG

13.299

13.904

13

100%

13.623

ACE PEG

15.152

16.164

14
15

96.0%
 4.0%

15.702

ACE CPEG

15.736

16.705

14
15

98.5%
 1.5%

16.103

Figure 5.6 shows frame error rate (FER) simulation curves for the best codes found in the PEG,

ACE PEG, CPEG, and ACE CPEG code sub-ensembles. These simulations were carried out for binary

phase-shift keying (BPSK) modulation over the AWGN channel. Codes were decoded using the

standard BP/SPA decoder at a maximum of 100 iterations.

167

Figure 5.6: FER curves for irregular rate-½ (512, 256) codes constructed using

PEG, CPEG, ACE PEG, and ACE CPEG algorithms

It can be seen in Figure 5.6 that the best PEG code found has a significantly lower error-floor than the

best CPEG code. Similarly, the ACE PEG code slightly outperforms the ACE CPEG code in the

error-floor region. As expected, ACE PEG and ACE CPEG codes have lower error-floor than PEG

and CPEG codes. Despite constructing code ensembles with higher girth and ACE distributions, the

use of CPEG algorithms did not result in LDPC codes with lower error-floor than achieved by LDPC

codes constructed using the standard PEG algorithm edge connections sequence shown in Figure 2.13.

5.6 Summary

• In a bid to improve the ACE in short-to-medium length LDPC codes, a cyclic PEG (CPEG)

algorithm has been presented. The CPEG algorithm constructs LDPC codes using an edge

connections sequence which is different from that of the original PEG algorithm.

168

• The minimum weigth distributions, i.e. ���� and ���� distributions, in four (4) ensembles of

6000 irregular rate-½ (�, �) = (512, 256) LDPC codes each were compared. These code

ensembles were constructed using the PEG, ACE PEG, CPEG, and ACE CPEG algorithms

respectively. All of the 24000 codes in the four code ensembles were constructed using the same

DE optimized degree distribution: �ô(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 +

0.10352x
14. Rate-½ (�, �) = (512, 256) irregular LDPC codes with

DE optimized/‘good’ degree distributions which have higher ���� and ���� than have been

published for similar LDPC codes were found in the four code ensembles.

• Rate-½ (512, 256) irregular LDPC codes with higher ���� and ���� than published for the

rate-½ (576, 288) IEEE 802.16E (WiMAX) LDPC code in [Rosnes et al, 2012], i.e. ���� = 16

and ���� = 15, were found in the PEG, ACE PEG, CPEG, and ACE CPEG code ensembles.

• Comparisons of the minimum weight distributions in the PEG, ACE PEG, CPEG, and

ACE CPEG code ensembles reveals that the codes in the ACE PEG ensemble had the highest

���� and ���� distributions. Some DE optimized rate-½ (�, �) = (512, 256) LDPC codes with

���� = 20, and others with ���� = 20 were found in the ACE PEG code ensemble.

• Based on the DE optimized rate-½ (�, �) = (512, 256) LDPC codes in the ACE PEG code

ensemble, the generalized effect of LDPC code minimum distance ���� on their error-floor

performance over the AWGN channel have been investigated. The codes in the ACE PEG code

ensemble have ���� in the range 9 ≤ ���� ≤ 20. Results show that while there is a generalized

improvement in the error-floor performance of the ACE PEG codes as ���� increases from

���� = 9 to ���� = 14, above ���� = 14, i.e. within the range 15 ≤ ���� ≤ 20, there is no

observable generalized improvement in the error-floor performance consequent to increasing the

value of ����. There appears to be threshold values for the ���� of LDPC codes above which

further increments to ���� do not result in lower error-floor over AWGN channels.

169

• The global girths, girth distributions, and ACE distributions in four (4) ensembles of irregular

rate-½ (�, �) = (512, 256) LDPC codes have been compared. The four code ensembles of 200

codes each were selected from the larger PEG, ACE PEG, CPEG, and ACE CPEG code

ensembles. Results show that the ACE CPEG algorithm constructed the code ensemble with the

highest local girth and ACE distributions. However, simulation results show that despite

improved girth and ACE distributions, CPEG and ACE CPEG codes do not improve on the

error-floor performance achievable by PEG and ACE PEG codes respectively.

170

Chapter 6

Lowering the error-floor of short-to-medium length LDPC
codes: Improved PEG algorithms and degree distributions

This chapter discusses the construction and search for irregular rate-½ (�, �) = (512, 256) and

(1024, 512) LDPC codes with the lowest-error-floor performance over the AWGN channel under

standard BP/SPA decoding. The primary focus of the chapter is on the construction of

short-to-medium length LDPC codes with the lowest possible error-floor using improved PEG

algorithms and symbol node degree distributions.

Parts of this chapter appear in the proceedings of the following conference: Abdu-Aguye, U. F.,

Ambroze, M. A., & Tomlinson, M. (2016, September). Lowering the error floor of short-to-medium

length LDPC codes using optimal low-correlated-edge density (OED) PEG Tanner graphs. In

Software, Telecommunications and Computer Networks (SoftCOM), 2016 24th International

Conference on (pp. 1-5). IEEE.

6.1 Introduction

Cycles are necessary in the Tanner graph of capacity-approaching LDPC codes. However, under

iterative message-passing decoding algorithms such as the BP/SPA, the presence of cycles cause edges

(and the corresponding symbol nodes) to become correlated (i.e. interdependent) after a few iterations.

High edge correlations significantly reduces the decoding efficiency of iterative message-passing

decoding algorithms. The shorter a cycle the higher the correlation of its member symbols.

Consequently, 4-cycles are generally undesirable in linear code graphs. Most of the good symbol node

171

degree distributions used for constructing irregular LDPC codes, such as those optimized through DE,

avoid constructing graphs with local girths of 4, and others avoid local girths of 4 and 6. When used in

the PEG algorithm to construct LDPC codes, DE optimized degree distributions typically result in

Tanner graphs with edge densities which are below the highest densities achievable in codes of

identical length, rate, and girth. That is, at the desired global girth, LDPC codes with DE optimized

degree distributions typically have submaximal Tanner graph edge densities.

A modification to the PEG algorithm in order to control the girth of LDPC code Tanner graphs

constructed is proposed. Using the proposed modified PEG algorithm, the edge densities in

short-to-medium length irregular LDPC code graphs can be increased without increasing the

correlation between edges in graphs by creating cycles of undesirably short girth. A DE optimized

symbol node degree distribution used for constructing short-to-medium length LDPC codes is further

optimized (slightly altered) while maintaining the maximum edge correlation (minimum local girths)

that exists in graphs constructed using the unaltered DE optimized distributions. As a result of

improved Tanner graph edge densities and symbol node degree distributions, rate-½ (�, �) =

(512, 256) and (1024, 512) LDPC codes with lower error-floor than published for LDPC codes of

identical length and rate have been found. Based on slight modifications to one of the best known DE

optimized degree distributions for short-to-medium length irregular rate-½ LDPC codes, when the

proposed technique for obtaining denser LDPC codes is implemented in addition to the improved PEG

(IPEG) construction of [Xiao and Banihashemi, 2004], the error-floor of the rate-½ (�, �) =

(512, 256) LDPC codes constructed are generally lower than the error-floor of LDPC codes

constructed using the unmodified DE optimized degree distribution and the IPEG construction.

Investigations into the performance of rate-½ (�, �) = (512, 256) and (1024, 512) LDPC codes

constructed using the generalized ACE constrained PEG (G-ACE PEG) algorithm of

[Vukobratović and Šenk, 2008] are undertaken. Experiments are carried out in an attempt to improve

the performance of G-ACE PEG codes through further Tanner graph edge density optimizations.

172

The performance of regular and irregular rate-½ (�, �) = (504, 252) and (1008, 504) MacKay

codes are compared to the rate-½ (�, �) = (512, 256) and (1024, 512) benchmark and

lowest-error-floor codes found in the research, respectively. The performance of the regular and

irregular rate-½ (�, �) = (512, 256) and (1024, 512) LDPC codes with the best performances

found in the course of this research are presented and discussed.

Finally, the error-floor performance of the lowest-error-floor irregular LDPC codes found are

compared to those of LDPC codes obtained using other PEG algorithm modifications for lowering the

error-floor of short-to-medium length irregular LDPC codes which have been published in the

literature. These comparisons are made only with rate-½ LDPC codes that have similar (�, �)

dimensions to those investigated in this research.

173

6.2 The Minimum Local Girth (Edge Skipping) (MLG (ES)) PEG

Algorithm and Optimal low-correlated-Edge Density (OED) LDPC

Codes

The PEG algorithm was modified in order to control the minimum local girth that can be connected in

the LDPC codes constructed. The proposed modified PEG algorithm is summarized in Algorithm 6.1.

Algorithm 6.1: The minimum local girth (edge skipping) (MLG (ES))

progressive edge-growth (PEG) algorithm

&ë(���) = � (for a minimum local girth 1(åªú) = (2� + 2))

.½�«x�_.�.&�� = 0

for = 0 to �– 1 do
begin
if (cycles creation stage has been reached) (see)

.½�«x�_.�.&�� = 1
for � = 0 to ��4 − 1 do

begin
if (� = 0)

8¨4
k ← edge (.�, �%), where 8¨4

k is the first edge incident to �%, and .� is selected from the

check nodes with the lowest check node degree under the current graph setting

8�� ∪ 8�/ ∪ . . . ∪ 8�(4�/).

else
��|À = 0
expand a subgraph from symbol node �% up to depth l under the current graph setting such

that the cardinality of ;̈ 4
O stops increasing but is less than m, or Ṅ¨4

O ≠ Ø but Ṅ¨4
O£E = Ø.

if ((& < &ë(���)) and (.½�«x�_.�.&�� = 1))

��|À = 1
if (��|À = 0)

8¨4
R ← edge (.�, �%), where 8¨4

R is the (� + 1)-th edge incident to �% and .� is a

check node selected from the lowest degree check nodes in the set Ṅ¨4
O .

end
end

 this is determined based on the length �, rate, and symbol node degree distribution of the

code under construction. Based on the DE degree distribution used in this section, the cycle
creation stage is reached when = � 2⁄ .

During graph constructions, all edge connections which would result in undesired local girths in the

graph are skipped, i.e. forfeited. At many stages during a Tanner graph construction, establishing an

174

additional edge 8¨4
R (� ≠ 0) of symbol node �% on any of the candidate check nodes at a subgraph

expansion depth of &, results in the creation of new cycles of length (2& + 2) in the graph. In order to

avoid connecting undesired local girths during an LDPC code construction, the two variables named

.½�«x�_.�.&�� and &ë(���) in Algorithm 6.1 control the decision of whether to skip or allow the

connection of the 2nd, 3rd, . , . , (��4)-th edges (i.e. 8¨4
R ∀ 1 ≤ � ≤ ��4– 1) of symbol node �% at

subgraph expansion depth &. At the beginning of a Tanner graph construction, when no cycles are

being connected, the value of variable .½�«x�_.�.&�� is 0. This prevents the algorithm from

monitoring the depth of subgraph expansion & at which new edges are being connected, because at this

stage of the graph construction subgraph expansion depths are non existent (& = 0) or very shallow

(& = 1 <½ 2) and cycles are not yet being created. However, shortly before the graph construction

stage where cycle creation commences, the variable .½�«x�_.�.&�� is assigned a value of 1 in order to

prevent the about-to-be connected cycles from having girths which are less than the desired minimum

local girth of the final Tanner graph. It was empirically determined, for the DE optimized degree

distribution chosen for the investigations in the following sections, that the cycle creation stage

commences shortly after half of the symbol nodes of the code have been connected into the graph, i.e.

when > � 2⁄ . The variable &ë(���) is set at the beginning of code construction as the minimum

subgraph expansion depth at which creation of cycles are allowed. It determines the target minimum

girth 1(���) of the code to be constructed; the minimum girth 1(���) = (2&ë(���) + 2). Therefore,

4-cycles are prevented if &ë(���) = 2, 4-cycles and 6-cycles are prevented if &ë(���) = 3, etc.

The C programming language code for the MLG (ES) PEG algorithm for LDPC code construction is

available in the Appendices (See Appendix H).

DE optimized degree distributions are used in standard PEG algorithms to construct ensembles of

codes with predetermined minimum girths 1(���). Graphs of codes constructed with almost all DE

optimized distributions have 1(���) > 4, and consequently, all their edges have low correlation.

However, these codes attain the desired girth and correlation properties at submaximal edge densities.

In order to optimize the densities of short LDPC codes that were originally constructed using a DE

175

optimized degree distribution while maintaining the predetermined girth 1(���), the maximum symbol

node degree in the distribution ����� is increased to extents that when the resultant degree

distributions are used in the minimum local girth (edge skipping) (MLG (ES)) PEG algorithm

(with 1(���) set to the predetermined girth), edge connections are skipped during code constructions.

More than one value of increased ����� may result in denser LDPC codes. However, excessive �����

increments decrease Tanner graph densities, increase the non-uniformity of check node degrees, and

worsen decoding performance. The value of ����� which results in the ensemble of denser LDPC

codes with the best improved error-floor, i.e. the optimal value of �����, can be subsequently

determined via decoding performance simulations. LDPC codes constructed using the MLG (ES) PEG

algorithm and the modified DE optimized degree distribution with the optimal value of ����� as the

input degree distribution are referred to as optimal low-correlated-edge density (OED) PEG codes.

6.3 Performance of OED Codes

The performance of the following five (5) types of irregular binary LDPC codes are compared in this

section:

i) The benchmark codes and other LDPC codes constructed using the original/standard PEG
algorithm of [Hu et al., 2001],

ii) OED PEG codes constructed using the proposed MLG (ES) PEG algorithm,

iii) ACE PEG codes constructed using the improved PEG (IPEG) construction of
[Xiao and Banihashemi, 2004],

iv) OED ACE PEG codes, constructed using a combination of the PEG algorithms in ii) and
iii), and

v) IEEE 802.16E (WiMAX) LDPC codes.

Only rate-½ LDPC codes with (�, �) = (512, 256) and (1024, 512) which were constructed using

the different PEG algorithms are considered in the following comparisons. The performance of an

irregular rate-½ (�, �) = (512, 256) PEG code, and an irregular rate-½ (�, �) = (1024, 512) PEG

code are used as benchmarks of good error-floor performance. These codes were obtained from the

176

PhD work by C. J. Tjhai and have arguably the lowest error-floor performance previously published

for irregular rate-½ LDPC codes of similar/identical length over the AWGN channel using standard

BP/SPA iterative decoding [Tjhai, 2007].

The LDPC code weight evaluation algorithm by [Rosnes et al., 2012] was used to determine the

stopping distance ����, and the minimum codeword weight ���� of all codes simulated. Additionally,

the SETA subgraph expansion based algorithm for determining the girth and ACE distributions in

LDPC code Tanner graphs [Abdu-Aguye et al., 2016(a)] was used to determine the girths, ACE

spectra, and average ACE of all the LDPC codes simulated.

Groups of PEG codes constructed on the same base-graph were investigated. Codes constructed on

the same base-graph have identical length and rate, and are constructed using the same random

number seed. The only difference between codes constructed on the same base graph is the ����� of

the symbol node degree distributions used in their construction. Consequently, codes constructed on

the same base-graph differ only at the last stages of graph construction; they have identical ���� and

���� but have different edge densities.

Results are presented for Monte Carlo simulations using binary phase-shift keying (BPSK)

modulation over the AWGN channel. Codes were decoded using the standard BP/SPA algorithm at a

maximum of 100 iterations. Identical noise patterns were used for each set of points at the same

8J/;K on the error rate curves. The same numbers of blocks (frames) were used for all codes at each

8J/;K ratio simulated.

6.3.1 Performance of Rate-½ (�, û) = (ü·¸, ¸üý) OED Codes

The investigations here are based on the DE optimized degree distribution of the (512, 256)

benchmark code which is: @B(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14. The

benchmark code has ���� = 14 and ���� = 16. Using degree distribution @B(x), all codes constructed

by the standard PEG algorithm have a girth of 6. That is, for degree distribution @B(x) the

predetermined minimum local girth 1(åªú) = 6. Consequently, when codes are constructed using

177

modifications to degree distribution @B(x) as the input to the MLG (ES) PEG algorithm, the value of

variable &ë(���) is set at 2 in order to maintain 1(åªú) = 6 irrespective of the value of ����� . The

following degree distributions were used to construct (�, �) = (512, 256) Tanner graphs of different

edge densities:

@E(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
12

@�(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
13

@B(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
14

@C(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
15

@n(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
16

In order to determine OED PEG codes based on degree distribution @B(x), only the maximum symbol

node degrees ����� , which was originally 14, was varied while the random number seed used for code

constructions remained the same. This ensures that, for the same random number seed, the early graph

construction stages are identical for all codes constructed using degree distributions @E(x) to @n(x).

That is, the sequence of edge connections for the unaltered parts of degree distributions @E(x) to @n(x),

i.e. 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5, are identical.

Identical Tanner graphs were obtained from both the standard PEG algorithm and the MLG (ES) PEG

algorithm (with 1(åªú) = 6) when degree distributions @E(x), @�(x), @B(x), and @C(x) with ����� of

12, 13, 14 and 15, respectively, were applied to construct codes using the same random number seed.

That is, no edges were skipped during code construction by the MLG (ES) PEG algorithm. All these

codes had global girth 1 = 6 with 100% of local their girths 1�4 = 6 for all 0 ≤ ≤ 512, and all these

codes had identical minimum weight metrics, i.e. ���� = 19 and ���� = 16. However, when degree

distribution @n(x) (with ����� = 16) was used, different codes were obtained from the two PEG

algorithms. When @n(x) was used in the standard PEG algorithm, the graph constructed had global

girth 1 = 4 (88.87% of the symbol nodes had 1�4 = 6 and the remaining 11.13% had 1�4 = 4). In

contrast, when @n(x) was used in the MLG (ES) PEG algorithm (with 1(���) = 6), edge connections

which would have resulted in 4-cycles were skipped and the graph constructed had a girth of 6

178

(100% of the symbol nodes had 1�4 = 6). Because these two codes were constructed on the same base

graph as the @E(x), @�(x), @B(x), and @C(x) codes, they also had minimum weight metrics ���� = 19

and ���� = 16.

Due to skipped edge connections when degree distribution @n(x) was used in the MLG (ES) PEG

algorithm (as the input degree distribution), the degree distribution of the Tanner graph constructed

(the output degree distribution) was different from the input degree distribution to the algorithm. The

degree distribution of the constructed graph, i.e. the output degree distribution, depends on the number

of edge connections skipped and the random number seed used during code construction. For the

selected random number seed, a total of 25 edges from symbol nodes with degree ����� = 16 in @n(x)

were skipped. The output degree distribution is given by,

@�(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.00195x
13 + 0.01563x

14 +

0.01172x
15 + 0.07422x

16.

Comparing output degree distribution @�(x) to the input degree distribution @n(x), it can be seen that

there is a reduced fraction of symbol nodes of degree 16, and symbol nodes with degrees of 13, 14,

and 15 appeared in @�(x). These observed differences between the two degree distributions are due to

skipped edge connections.

The effects of implementing the PEG algorithm modification by [Xiao and Banihashemi, 2004] to

improve the ACE in standard PEG codes with DE optimized degree distributions and the OED PEG

codes which are subsequently derived from them were investigated. An ensemble of 100 rate-½

(512, 256) ACE PEG codes with DE optimized degree distribution @B(x) was constructed

(see Appendix D for the C programming language code for the ACE PEG algorithm implemented in

this research). Within this ensemble, the ACE PEG code with the lowest-error-floor and the random

number seed used in its construction was identified. The PEG algorithm modification by Xiao and

Banihashemi for improved ACE (IPEG/ACE PEG) was implemented in the MLG (ES) PEG algorithm

in order to construct OED ACE PEG codes. The C programming language code for the combined

ACE PEG and MLG (ES) PEG algorithms used for constructing OED ACE PEG codes is available in

179

the Appendices (See Appendix I). Using degree distribution @n(x) and the random number seed used

to construct the ACE PEG code with the lowest-error-floor performance as input to the MLG (ES)

PEG algorithm, an OED ACE PEG code with the following symbol node degree distribution was

constructed.

@7(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.00391x
13 + 0.01563x

14 +

0.00977x
15 + 0.07422x

16

The ACE PEG code and the OED ACE PEG code subsequently derived using the same random

number seed were constructed on the same base graph and have ���� = ���� = 18.

Table 6.1 shows: a) the symbol node degree distributions used as input to respective LDPC code

construction algorithms (input degree distribution), b) the degree distributions of the constructed

codes (output degree distribution), c) code densities in terms of the number of edges, E, d) the

maximum symbol node degrees ����� in codes, e) the global girth, and f) the average ACE of the

following rate-½ (�, �) = (512, 256) and (576, 288) LDPC codes which were compared in decoding

performance simulations.

i) the (�, �) = (512, 256) standard PEG codes constructed using degree distributions
@E(x) to @n(x), including the benchmark code with degree distribution @B(x),

ii) the (�, �) = (512, 256) OED PEG code with degree distribution @�(x),

iii) the (�, �) = (512, 256) ACE PEG code with degree distribution @B(x),

iv) the (�, �) = (512, 256) OED ACE PEG code with degree distribution @7(x), and

v) an (�, �) = (576, 288) IEEE 802.16E (WiMAX) code with degree distribution:
@6(x) = 0.45833x

2 + 0.33333x
3 + 0.20833x

6.

From Table 6.1, the three densest codes, i.e. the codes with the highest number of edges E, are those

with output degree distributions @n(x), @�(x) and @7(x), which all have ����� = 16. The densest

codes with girths of 6 are those with degree distribution @�(x) (the OED PEG code) and degree

distribution @7(x) (the OED ACE PEG code).

180

The standard PEG code with 2147 edges is denser than the OED PEG and the OED ACE PEG codes

with 2122 and 2120 edges respectively. In contrast, the OED PEG code and the OED ACE PEG codes

have girths of 6, which is higher than the girth of 4 for the standard PEG code. Consequently, edges in

the OED PEG and OED ACE PEG codes graph have lower correlation than edges in the standard PEG

code graph with degree distribution @n(x). Although degree distribution @n(x) was the input degree

distribution to the respective PEG algorithms used for constructing these three codes, there is a

difference in edge density between them as a result of edge connections which were skipped in order

to avoid creating 4-cycles in the OED PEG and the OED ACE PEG codes.

Table 6.1: Input and output degree distributions, maximum symbol node degrees ��(���), global girths,
edge densities (number of edges), and average ACEs of rate-½

(�, �) = (512, 256) and (576, 288) LDPC codes

Input
degree

distribution
(Design)

Output
degree

distribution
(Actual Code)

Maximum
symbol node

degree
(��(���))

Global
girth (1)

Number
of edges

(E)

Average
ACE

rate-½ (�, �) = (512, 256) standard PEG codes
@E(x) þ·(x) 12 6 1935 11.701
@�(x) þ¸(x) 13 6 1998 12.719
@B(x) þ�(x) 14 6 2041 13.518
@C(x) þ�(x) 15 6 2094 14.398
@n(x) þü(x) 16 4 2147 15.307

rate-½ (�, �) = (512, 256) benchmark PEG code
@B(x) þ�(x) 14 6 2041 13.607

rate-½ (�, �) = (512, 256) OED PEG code
@n(x) þý(x) 16 6 2122 14.504

rate-½ (�, �) = (512, 256) ACE PEG code
@B(x) þ�(x) 14 6 2041 15.846

rate-½ (�, �) = (512, 256) OED ACE PEG code
@n(x) þù(x) 16 6 2120 15.701

rate-½ (�, �) = (576, 288) IEEE 802.16E (WiMAX) code
@6(x) þ�(x) 6 6 1824 5.708

Figure 6.1 shows the FER performance simulations results for the five codes constructed using degree

distributions @E(x) to @n(x) in the standard PEG algorithm. These codes were constructed on the same

base-graph and differ only in the value of ����� in their degree distributions; ����� was varied from

12 to 16. In Figure 6.1, the performance of these five standard PEG codes are compared to that of the

benchmark code of identical dimension, i.e. rate-½ (�, �) = (512, 256).

181

Figure 6.1: FER for five rate-½ (�, �) = (512, 256) standard PEG codes with increasing edge

densities, and the (512, 256) benchmark PEG code

Despite their edge density differences, all five standard PEG codes in Figure 6.1 had similar

performance and none of them performed better than the benchmark code.

Figure 6.2 shows the FER performance simulation results for the following two irregular rate-½

(�, �) = (512, 256) LDPC codes:

i) the OED PEG code with degree distribution @�(x), constructed using @n(x) as input to the
MLG (ES) PEG algorithm, and

ii) the benchmark code.

182

Figure 6.2: FER for the rate-½ (�, �) = (512, 256) OED PEG and benchmark codes

The OED PEG code outperformed the benchmark code in the error-floor region with approximately

half the FER at an 8J/;K of 4.0 dB. Extensive performance simulations carried out on rate-½

(�, �) = (512, 256) codes show that OED PEG codes have consistently lower error-floors than

corresponding DE optimized standard PEG codes constructed on the same base graph. This is

significant because, similar to the improved PEG (IPEG) construction [Xiao and Banihashemi, 2004],

it offers an original technique that may be used to improve the performance of LDPC codes

constructed using the PEG algorithm and DE optimized symbol node degree distributions.

183

Figure 6.3 shows the FER simulation results for the following five irregular rate-½ LDPC codes:

i) the (�, �) = (512, 256) benchmark code,

ii) the (�, �) = (512, 256) OED PEG code with degree distribution @�(x),

iii) the (�, �) = (512, 256) ACE PEG code with the same degree distribution as the
benchmark code in i), i.e. @B(x),

iv) the (�, �) = (512, 256) OED ACE PEG code with degree distribution @7(x), and

v) the (�, �) = (576, 288) IEEE 802.16E WiMAX code with distribution @6(x), ���� = 13
and ���� = 18.

Figure 6.3: FER curves for, i) the (512, 256) benchmark code, ii) the (512, 256) OED PEG code,

iii) the (576, 288) WiMAX code, iv) the (512, 256) ACE PEG code, and

v) the (512, 256) OED ACE PEG code

It can be seen from Figure 6.3 that all the PEG constructed LDPC codes have lower error-floor than

the IEEE 802.16E (WiMAX) code. The relatively poor performance of the WiMAX code may be

attributed to the fact that it has the degree distribution with the smallest ����� , the lowest edge density

184

(number of edges, E), and the lowest average ACE of all the codes compared; these metrics are shown

in Table 6.1. It is interesting to note that the simulated performance of the rate-½ (576, 288) WiMAX

code in Figure 6.3 is identical to that of the best WiMAX code of the same rate and length published in

[Bocharova et al., 2016].

The OED PEG, ACE PEG, and OED ACE PEG codes all outperformed the benchmark code in the

error-floor region. As a result of the improved ACE in their Tanner graphs, the ACE PEG and

OED ACE PEG codes have lower error-floor than the OED PEG code. However, the OED ACE PEG

code had the best performance in the error-floor region. Extensive performance simulations carried out

on rate-½ (�, �) = (512, 256) codes show that most OED ACE PEG codes have lower error-floor

than corresponding DE optimized ACE PEG codes constructed on the same base graph. A similar

observation was made for OED PEG codes compared to DE optimized standard PEG codes

constructed on the same base graph. The LDPC matrix configuration file for the rate-½ (�, �) =

(512, 256) OED ACE PEG code with the lowest error-floor, as presented in Figure 6.3, is available

in the Appendices (See Appendix J).

When the technique used to realise OED codes is applied, the following consistent observations were

made using the LDPC code weight evaluation algorithm, and the SETA subgraph expansion based

algorithm for determining the girth and ACE distributions in LDPC code Tanner graphs:

i) OED ACE PEG codes and DE optimized ACE PEG codes constructed on the same base

graph have identical ���� and ����. Similarly, OED PEG codes and DE optimized

standard PEG codes constructed on the same base graph have identical ���� and ����.

ii) An OED ACE PEG code has an identical local girth distribution, a significantly increased

range of local ACE values, and slightly smaller average ACE compared to the DE

optimized ACE PEG code constructed on the same base graph. Similarly, an OED PEG

code has an identical local girth distribution, a significantly increased range of local ACE

values, and slightly reduced average ACE compared to the DE optimized standard PEG

code constructed on the same base graph.

185

Observations of decoding failure events indicates that the improved error-floor performance of OED

codes are due to a slight reduction in the number of small trapping sets. Higher Tanner graph edge

densities and increased local ACE distributions are likely to be responsible for the reduction in the

number of harmful trapping sets in OED PEG and OED ACE PEG codes.

6.3.2 Performance of Rate-½ (�, û) = (·ø¸�, ü·¸) OED Codes

The rate-½ (�, �) = (1024, 512) benchmark code was constructed using DE optimized degree

distribution @A(x) = 0.47461x
2 + 0.27930x

3 + 0.03418x
4 + 0.10840x

5 + 0.10352x
15. This code has

���� = 16 and ���� = 20. The predetermined girth 1(���) of codes constructed using @A(x) is 6.

Attempts to derive (�, �) = (1024, 512) OED PEG codes with improved error-floors based on

modifications to degree distribution @A(x) were unsuccessful. In experiments to find alternative degree

distributions, it was discovered that using DE optimized degree distribution @B(x), which was used to

construct the (�, �) = (512, 256) benchmark code, to construct rate-½ (�, �) = (1024, 512) LDPC

codes in the standard PEG algorithm result in codes with error-floors which are very similar to that of

the rate-½ (�, �) = (1024, 512) benchmark code. However, with degree distribution @B(x) there is a

trade-off in the low SNR performance, and code performance in waterfall region becomes worse.

Figure 6.4 shows the FER performance simulation results obtained in this comparison.

186

Figure 6.4: FER curves for, i) the (�, �) = (1024, 512) benchmark code with degree distribution

@A(x), and an (�, �) = (1024, 512) standard PEG code constructed
with degree distribution @B(x)

As a result of the error-floor performance of rate-½ (�, �) = (1024, 512) standard PEG codes

constructed with DE optimized degree distribution @B(x), as exemplified in Figure 6.4, subsequent

investigations carried out to improve the error-floor performance of rate-½ (�, �) = (1024, 512)

LDPC codes using the OED PEG codes derivation technique are based on DE optimized degree

distribution @B(x). In order to construct rate-½ (�, �) = (1024, 512) OED PEG codes based on

@B(x), a minimum ����� of 20 is required for edge connections to be skipped when using the

MLG (ES) PEG algorithm (with g(min) = 6). The resultant codes had higher error-floor than the

benchmark code. That is, all attempts to derive (�, �) = (1024, 512) OED PEG codes with

improved error-floors based on modifications to degree distribution @B(x) were also unsuccessful.

187

However, codes constructed with degree distributions obtained when @B(x) is modified so that

����� = 16 to 19 in either the standard PEG algorithm or the MLG (ES) PEG algorithm

(with g(min) = 6) had lower error-floor than the benchmark code. These codes maintained the

predetermined girth of degree distribution @B(x) without edge connections being skipped during their

construction using the MLG (ES) PEG algorithm, and therefore cannot technically be described as

OED PEG codes . The code with the lowest error-floor found within this range had ����� = 19, with

degree distribution: @Ek(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
19.

Investigations to compare the performance of the rate-½ (�, �) = (1024, 512) benchmark code to

the performance of LDPC codes of the same length and rate which are constructed using the improved

PEG construction (IPEG) by [Xiao and Banihashemi, 2004] were undertaken. Three ensembles of 100

rate-½ (�, �) = (1024, 512) ACE PEG codes each were constructed using degree distributions

@C(x), @n(x) and DE optimized degree distribution @B(x). Performance simulation results show that

ACE PEG codes from all three code ensembles significantly outperform both the benchmark code and

the improved standard PEG code with degree distribution @Ek(x) in the error-floor region. The

ACE PEG code with the lowest error-floor found had degree distribution @C(x).

Similar to the case for OED PEG codes, in order to construct rate-½ (�, �) = (1024, 512)

OED ACE PEG codes based on DE optimized degree distribution @B(x), a minimum ����� of 20 is

required for edge connections to be skipped when using a combination of the IPEG construction

algorithm [Xiao and Banihashemi, 2004] and the MLG (ES) PEG algorithm (with g(min) = 6).

Performance simulation results show that the resultant rate-½ (�, �) = (1024, 512) OED ACE PEG

codes have lower error-floor than the rate-½ (�, �) = (1024, 512) benchmark code. However, within

the range of results obtained, OED ACE PEG codes did not perform any better than ACE PEG codes

constructed on the same base graph. That is, results show that OED ACE PEG code have either

identical or worse performance than ACE PEG codes constructed on the same base graph.

Additionally, increasing ����� from 14 in DE optimized degree distribution @B(x) to 20 in order to

188

obtain OED PEG and OED ACE PEG codes results in significantly higher Tanner graph edge

densities which also significantly increases decoding times using BP/SPA decoding algorithms.

Table 6.2 shows: a) the symbol node degree distributions, b) code densities in terms of the number of

edges, E, c) the maximum symbol node degrees ����� of codes, d) the global girth, and e) the average

ACE of the following rate-½ (�, �) = (1024, 512) and (1056, 528) LDPC codes compared using

decoding performance simulations.

i) an (�, �) = (1024, 512) standard PEG code with degree distribution @B(x),

ii) the (�, �) = (1024, 512) benchmark code with degree distribution @A(x),

iii) the (�, �) = (1024, 512) standard PEG code with improved degree distribution @Ek(x),

iv) the (�, �) = (1024, 512) ACE PEG code with degree distribution @C(x), and

v) an (�, �) = (1056, 528) IEEE 802.16E (WiMAX) code with degree distribution:
@6(x) = 0.45833x

2 + 0.33333x
3 + 0.20833x

6.

Table 6.2: Symbol node degree distributions, maximum symbol node degrees ��(���), global girths,

edge densities (number of edges), and average ACEs of rate-½ (�, �) = (1024, 512)
and (1056, 528) LDPC codes

Symbol
node degree
distribution

Maximum
symbol node

degree
(��(���))

Global
girth (1)

Number
of edges

(E)

Average
ACE

rate-½ (�, �) = (1024, 512) standard PEG code
@B(x) 14 6 4082 15.779

rate-½ (�, �) = (1024, 512) benchmark PEG code
@A(x) 15 6 4115 16.963

rate-½ (�, �) = (1024, 512) improved standard PEG code
@Ek(x) 19 6 4612 19.218

rate-½ (�, �) = (1024, 512) ACE PEG code
@C(x) 15 6 4188 23.072
@A(x) 15 6 4115 23.813

rate-½ (�, �) = (1056, 528) IEEE 802.16E (WiMAX) code
@6(x) 6 6 3344 6.125

189

Figure 6.5 shows the performance simulation results for the following irregular rate-½ LDPC codes:

i) the (�, �) = (1024, 512) benchmark code with degree distribution @A(x), which has

���� = 16 and ���� = 20,

ii) the (�, �) = (1024, 512) standard PEG code constructed using improved degree

distribution @Ek(x), which has ���� = 22 and ���� = 23,

iii) the (�, �) = (1024, 512) ACE PEG code constructed by the IPEG algorithm using

degree distribution @C(x), which has ���� = 22 and ���� = 22, and

iv) an (�, �) = (1056, 528) WiMAX code constructed using degree distribution

@6(x) = 0.45833x
2 + 0.33333x

3 + 0.20833x
6, which has ���� = 21 and ���� = 19.

The error-floor performance of the rate-½ (�, �) = (1056, 528) IEEE 802.16E WiMAX code was

significantly worse than those for all the rate-½ (�, �) = (1024, 512) PEG codes. The ACE PEG

code with degree distribution @C(x) had the best performance in the error-floor region. The relatively

poor performance of the WiMAX code is attributed to the fact that it has the degree distribution with

the smallest ����� , the lowest edge density (number of edges, E), and the lowest average ACE of all

the codes compared, as shown in Table 6.2. Therefore, for rate-½ (�, �) = (1024, 512) LDPC codes

constructed with degree distribution @C(x), the ACE PEG codes have superior error-floor performance

compared to OED ACE PEG codes.

190

Figure 6.5: FER curves for the benchmark, standard PEG, and ACE PEG rate-½ (1024, 512) codes;

and the WiMAX rate-½ (1056, 528) code

Figure 6.6 compares the performance of the rate-½ (�, �) = (1024, 512) benchmark code with

degree distribution @A(x) to the performance of the lowest-error-floor rate-½ (�, �) = (1024, 512)

ACE PEG codes which were constructed with,

i) degree distribution @A(x) (the same degree distribution as the benchmark code) which has

���� = 14 and ���� = 19; and

ii) degree distribution @C(x), which was obtained by increasing ����� in DE optimized

degree distribution @B(x) from 14 to 15, which has ���� = 22 and ���� = 22.

It may be recalled that degree distribution @B(x) was selected over @A(x) for investigations to find

rate-½ (�, �) = (1024, 512) OED codes with lower error-floor. The choice of @B(x) over @A(x) was

due to observations made about the error-floor performances of LDPC codes constructed using these

191

two degree distributions. As exemplified in Figure 6.4, it is often the case for irregular LDPC codes

that degree distributions which result in superior performance in the waterfall region result in inferior

performance in the error-floor region, and degree distributions which result in superior performance in

the error-floor region result in inferior performance in the waterfall region.

Figure 6.6: FER curves for rate-½ (�, �) = (1024, 512) codes, i) the benchmark code with
distribution @A(x), ii) the ACE PEG code with distribution @A(x), and iii) the

ACE PEG code with distribution @C(x)

The FER decoding performance results for the rate-½ (�, �) = (1024, 512) codes in Figure 6.6 serve

as a further justification of the choice of degree distribution @B(x) over @A(x). The performance of the

two lowest-error-floor codes with degree distribution @A(x), i.e. the benchmark code and the

ACE PEG code, are very similar; the ACE PEG code performs only slightly better that the benchmark

code in the error-floor region. This is in spite of the fact that the ACE PEG code has a significantly

192

improved average ACE at 23.813 compared to the benchmark code which has an average ACE of

16.963, as shown in Table 6.2. However, as exemplified in Figure 6.3, the lowest-error-floor

ACE PEG code with degree distribution @B(x) has a significantly improved error-floor performance

compared to the performance of the standard PEG code (the Benchmark code) with the same degree

distribution. Therefore, it may be inferred that the extent to which the error-floor of short-to-medium

length LDPC codes can be lowered through Tanner graph ACE improvements depends on the symbol

node degree distributions being used.

The proposed OED code derivation technique is not suitable for constructing irregular rate-½ codes

with dimensions higher than (�, �) = (1024, 512). At these code lengths, in order for edge

connections to be skipped by the MLG (ES) PEG algorithm, the ����� in DE optimized degree

distributions must be increased to such extents that the edge densities of codes constructed result in

significantly longer decoding times without commensurate improvement in decoding performance.

6.4 Performance and Features of LDPC Codes Constructed using the

Generalized ACE Constrained PEG (G-ACE PEG) Algorithm

Ensembles of rate-½ (�, �) = (512, 256) and (1024, 512) LDPC codes were constructed using the

generalized ACE constrained PEG (G-ACE PEG) algorithm proposed by

[Vukobratović and Šenk, 2008]. The G-ACE PEG algorithm constructs LDPC codes with very good

girth and extremal ACE properties. The ���� and ���� distributions in ensembles of G-ACE PEG

codes are very similar to those of ACE PEG codes as presented in Figure 5.3 and Figure 5.4,

respectively. A comparison of the girth and ACE metrics in ensembles of rate-½ (�, �) = (512, 256)

G-ACE PEG codes to those of standard PEG codes [Hu et al., 2001] and ACE PEG

[Xiao and Banihashemi, 2004] are discussed in Section 4.4.4 and summarized in Table 4.6 and

Table 4.7, respectively. It is clear that G-ACE PEG codes have superior girth and ACE metric

compared to LDPC codes constructed using the other PEG algorithms.

In order to increase the values of the ACE spectrum components, the sequence of check node selection

criteria implemented by the G-ACE PEG algorithm, as outlined in Section 3.3.5, gives a low priority

193

to selecting lowest degree check nodes among the candidate check nodes for connecting edges during

Tanner graph construction. Consequently, G-ACE PEG codes parity-check matrices are not as

check-node regular as LDPC codes constructed using other PEG algorithms.

As an example, the check node degree distributions for five randomly selected rate-½ (�, �) =

(512, 256) ACE PEG codes constructed using DE optimized symbol node degree distribution @B(x)

are as follows,

�E(�) = 0.07031x
7 + 0.88672x

8 + 0.04297x
9

 ��(�) = 0.05469x
7 + 0.91797x

8 + 0.02734x
9

 �B(�) = 0.06520x
7 + 0.90234x

8 + 0.03516x
9

 �C(�) = 0.06641x
7 + 0.89453x

8 + 0.03906x
9

 �n(�) = 0.05469x
7 + 0.91797x

8 + 0.02734x
9

In contrast, the check node degree distributions for five randomly selected rate-½ (�, �) =

(512, 256) G-ACE PEG codes constructed using the same DE optimized symbol node degree

distribution @B(x) are as follows,

��(�) = 0.28125x
7 + 0.49219x

8 + 0.19922x
9 + 0.02734x

10
 �7(�) = 0.27344x

7 + 0.50000x
8 + 0.20703x

9 + 0.01953x
10

 �6(�) = 0.25391x
7 + 0.53906x

8 + 0.19141x
9 + 0.01172x

10 + 0.00391x
11

 �A(�) = 0.26563x
7 + 0.51953x

8 + 0.19141x
9 + 0.02344x

10
 �Ek(�) = 0.25000x

7 + 0.55079x
8 + 0.17578x

9 + 0.02344x
10

Similarly, the check node degree distributions for five randomly selected rate-½ (�, �) =

(1024, 512) ACE PEG codes constructed using symbol node degree distribution @C(x) were found to

be identical as follows,

�EE(�) = 0.82031x
8 + 0.17969x

9
 �E�(�) = 0.82031x

8 + 0.17969x
9

 �EB(�) = 0.82031x
8 + 0.17969x

9
 �EC(�) = 0.82031x

8 + 0.17969x
9

 �En(�) = 0.82031x
8 + 0.17969x

9

194

In contrast, the check node degree distributions for five randomly selected rate-½ (�, �) =

(1024, 512) G-ACE PEG codes constructed using the same symbol node degree distribution @C(x)

are as follows,

�E�(�) = 0.12695x
7 + 0.61133x

8 + 0.21875x
9 + 0.04102x

10 + 0.00195x
11

 �E7(�) = 0.13477x
7 + 0.58008x

8 + 0.25586x
9 + 0.02930x

10
 �E6(�) = 0.14453x

7 + 0.56250x
8 + 0.26172x

9 + 0.03125x
10

 �EA(�) = 0.16797x
7 + 0.52539x

8 + 0.26563x
9 + 0.04102x

10
 ��k(�) = 0.14258x

7 + 0.57422x
8 + 0.24414x

9 + 0.03906x
10

It can be seen from these check-node degree distributions that rate-½ (�, �) = (512, 256) and

(1024, 512) ACE PEG codes have concentrated check node degrees. The (512, 256) ACE PEG

codes have check node degrees of only 7, 8 and 9 with more than 88% of the check nodes having a

degree of 8, and the (1024, 512) ACE PEG codes have identical symbol node degree distributions

with symbol node degrees of only 8 and 9 with approximately 82% of the check nodes having the

check node degree of 8. In contrast, rate-½ (�, �) = (512, 256) and (1024, 512) G-ACE PEG codes

have a wider spread in the values of the check node degrees. The (512, 256) G-ACE PEG codes have

check node degrees of 7, 8, 9, 10 and 11 with only approximately 50% of the check nodes having the

concentrated check node degree of 8. Similarly, the (1024, 512) G-ACE PEG codes have check

node degrees of 7, 8, 9, 10 and 11 with only approximately 52% to 61% of the check nodes having the

concentrated check node degree of 8.

Extensive simulation experiments on rate-½ (�, �) = (512, 256) and (1024, 512) G-ACE PEG

codes show that they have very similar performance to ACE PEG codes. However, the rate-½

(512, 256) and (1024, 512) G-ACE PEG codes with the lowest error-floor found within the range of

codes simulated did not perform as well as the lowest-error-floor rate-½ (512, 256) OED ACE PEG

found in Section 6.3.1 and the lowest-error-floor rate-½ (1024, 512) ACE PEG codes found in

Section 6.3.2, respectively. That is, within the wide range of code performance simulation experiments

carried out in this research, the lowest-error-floor rate-½ (�, �) = (512, 256) codes found were not

195

G-ACE PEG codes but were OED ACE PEG codes, and the lowest-error-floor rate-½ (�, �) =

(1024, 512) codes found were not G-ACE PEG codes but were ACE PEG codes.

Figure 6.7 shows the FER simulation results for the following rate-½ (�, �) = (512, 256) codes:

i) the lowest-error-floor G-ACE PEG code found, which has DE optimized degree

distribution @B(x), ���� = 13, ���� = 18, and

ii) the lowest-error-floor OED ACE PEG code found, which has output degree distribution

@7(x), and ���� = ���� = 18.

Figure 6.7: FER curves for rate-½ (�, �) = (512, 256) codes, i) the lowest-error-floor G-ACE PEG

code, and ii) the lowest-error-floor OED ACE PEG code

The relative performances of the lowest-error-floor rate-½ (�, �) = (512, 256) G-ACE PEG code,

and the lowest-error-floor rate-½ (�, �) = (512, 256) OED ACE PEG code are shown in Figure 6.7.

196

Figure 6.8 shows the FER simulation results for the following rate-½ (�, �) = (1024, 512) codes:

i) the lowest-error-floor G-ACE PEG code found, which has degree distribution @C(x), with

���� = 13, ���� = 18, and

ii) the lowest-error-flooor ACE PEG code found, which also has degree distribution @C(x),

but with ���� = ���� = 22.

Figure 6.8: FER curves for rate-½ (�, �) = (1024, 512) codes, i) the lowest-error-floor G-ACE PEG

code, and ii) the lowest-error-floor ACE PEG code

The relative performances of the lowest-error-floor rate-½ (�, �) = (1024, 512) G-ACE PEG code,

and the lowest-error-floor rate-½ (�, �) = (1024, 512) ACE PEG code are shown in Figure 6.8.

Although G-ACE PEG codes and ACE PEG codes have very similar ���� and ���� distributions,

G-ACE PEG codes have girth and ACE properties which are superior to those of ACE PEG codes.

197

The distributed check node degrees in G-ACE PEG codes matrices may explain why they do not have

significantly lower error-floor than ACE PEG codes in spite of the fact that they have superior girth

and ACE properties. It may be inferred that the widely distributed check node degrees of G-ACE PEG

codes compared to the more concentrated check node degrees of ACE PEG codes impacts negatively

on the error-floor performance of G-ACE PEG codes. This follows from strong evidence that a

concentrated parity-check node degree sequence is optimum [Bazzi et al., 2004], [Shokrollahi, 1999].

Experiments were carried out in an attempt to lower the error-floor of short-to-medium length LDPC

codes by constructing OED codes which,

i) use a combination of the G-ACE PEG algorithm and the MLG (ES) PEG algorithm, and

ii) are based on modifications to DE optimized degree distributions of the benchmark codes, i.e.

@B(x) and @A(x).

The rate-½ (�, �) = (512, 256) and (1024, 512) OED G-ACE PEG codes constructed in these

experiments had even more widely distributed check node degrees and performed consistently worse

than codes constructed using the DE optimized degree distributions in the G-ACE PEG algorithm.

6.5 Irregular Rate-½ (�, û) = (üø�, ¸ü¸) and (·øø�, üø�) MacKay

LDPC Codes and Symbol Node Degree Distributions

The performance of regular and irregular rate-½ (�, �) = (504, 252) and (1024, 512) LDPC codes

obtained from [MacKay, 2002], which are often used as reference point codes or benchmarks codes of

good LDPC code performance, were simulated. The regular and irregular rate-½ (504, 252) codes

obtained from [MacKay, 2002] are called PEGReg252x504 and PEGirReg252x504, respectively.

Similarly, the regular and irregular rate-½ (1008, 504) codes are called PEGReg504x1008 and

PEGirReg504x1008, respectively.

Irregular code PEGirReg252x504 has symbol node degree distribution, DE(x) = 0.47817x
2 + 0.27976x

3

+ 0.03571x
4 + 0.09722x

5 + 0.00794x
7 + 0.00198x

14 + 0.09921x
15, and irregular code

PEGirReg504x1008 has a similar symbol node degree distribution, D�(x) = 0.47718x
2 + 0.28075x

3 +

0.03472x
4 + 0.09722x

5 + 0.00893x
7 + 0.00099x

14 + 0.10020x
15. Both of the regular codes,

198

PEGReg252x504 and PEGReg504x1008, have regular symbol node degree (�� = 3). These codes are

not perfectly regular in check node degrees.

In Figure 6.9, the performance of the rate-½ (504, 252) MacKay code, PEGirReg252x504, is

compared to those of the rate-½ (512, 256) benchmark and lowest-error-floor OED ACE PEG codes.

Figure 6.9: FER curves for the rate-½ (504, 252) MacKay code, the rate-½ (512, 256) benchmark

code, and the lowest-error-floor rate-½ (512, 256) OED ACE PEG code

From the results plotted in Figure 6.9, the rate-½ (504, 252) MacKay code performs notably better

than the rate-½ (512, 256) benchmark code in both the waterfall and error-floor regions. The

MacKay code also performs better than the OED ACE PEG code in the waterfall region. However, the

OED ACE PEG code significantly outperforms the other two codes in the error-floor.

As a result of the superior performance of the MacKay code compared to the benchmark code, as

shown in Figure 6.9, experiments to determine the performance of rate-½ (�, �) = (512, 256)

199

OED PEG, ACE PEG and OED ACE PEG codes which are constructed based on the degree

distribution of the rate-½ (504, 252) MacKay code, i.e. DE(x), were carried out.

Figure 6.10 compares the lowest error-floor performance found for rate-½ (512, 256) OED PEG,

ACE PEG and OED ACE PEG codes with constructions based on degree distribution DE(x) to the

rate-½ (504, 252) MacKay code - PEGirReg252x504, the rate-½ (512, 256) benchmark code

(@B(x)), and lowest-error-floor rate-½ (512, 256) OED ACE PEG code (@7(x)).

Figure 6.10: The rate-½ (512, 256) OED PEG, ACE PEG and OED ACE PEG codes based on

MacKay distribution DE(x) vs. the rate-½ (504, 252) MacKay code, the (512, 256)

benchmark code, and the lowest-error-floor (512, 256) OED ACE PEG code

The rate-½ (512, 256) OED PEG code based on the rate-½ (504, 252) MacKay code degree

distribution DE(x) has output degree distribution DB(x), DB(x) = 0.47852x
2 + 0.27930x

3

200

+ 0.03516x
4 + 0.09766x

5 + 0.00781x
7 + 0.00195x

13 + 0.00781x
14 + 0.02148x

15 + 0.07031x
16; the �����

of DE(x) was increased from 15 to 16. The rate-½ (512, 256) ACE PEG code based on degree

distribution DE(x) has an unchanged degree distribution DE(x), but more edge connections due to the

increased code length, and the rate-½ (512, 256) OED ACE PEG code based on degree distribution

DE(x) has output degree distribution DC(x), DC(x) = 0.47852x
2 + 0.27930x

3 + 0.03516x
4 + 0.09766x

5 +

0.00781x
7 + 0.01953x

14 + 0.015625x
15 + 0.06641x

16; the ����� of DE(x) was increased from 15 to 16.

As shown in Figure 6.10, rate-½ (512, 256) OED PEG, ACE PEG and OED ACE PEG codes

constructed based on the rate-½ (504, 252) MacKay code degree distribution DE(x) have improved

performance in the waterfall region and perform better than both the rate-½ (512, 256) benchmark

code (@B(x)) and the lowest-error-floor rate-½ (512, 256) OED ACE PEG code (@7(x)) in this region.

As a result of improved ACE, the rate-½ (512, 256) ACE PEG and OED ACE PEG codes with

degree distributions DE(x) and DC(x) respectively, performed better than the rate-½ (504, 252)

MacKay code in the error-floor region. The rate-½ (512, 256) OED PEG code with degree

distribution DB(x) had a very similar error-floor performance as the benchmark code and performed

worse than the rate-½ (504, 252) MacKay code in this region. However, none of the rate-½

(512, 256) OED PEG, ACE PEG and OED ACE PEG codes constructed based on DE(x) had an

error-floor as low as the lowest-error-floor rate-½ (512, 256) OED ACE PEG code (@7(x))

constructed based on the benchmark code degree distribution @B(x). The gap in the error-floor

performance of the rate-½ (512, 256) OED ACE PEG code (@7(x)) compared to the other codes in

Figure 6.10 is significant. Therefore, attempts to improve on the best known error-floor performance

for rate-½ (512, 256) LDPC codes by adopting the degree distribution of the rate-½ (504, 252)

MacKay code were unsuccessful.

201

In Figure 6.11, the performance of the rate-½ (1008, 504) MacKay code, PEGirReg504x1008, is

compared to those of the rate-½ (1024, 512) benchmark and lowest-error-floor ACE PEG codes.

Figure 6.11: FER curves for the rate-½ (1008, 504) MacKay code, the rate-½ (1024, 512)

benchmark code and the lowest-error-floor rate-½ (1024, 512) ACE PEG code

As shown in Figure 6.11, the rate-½ (1024, 512) benchmark and ACE PEG codes perform better than

the rate-½ (1008, 504) MacKay code in the error-floor region. Although, the ACE PEG code

significantly outperforms both the MacKay and benchmark codes in the error-floor region, it has the

worst performance in the waterfall region. The MacKay and benchmark codes have very similar

performance in the waterfall region.

When the degree distribution of the rate-½ (1008, 504) MacKay, i.e. D�(x), was used to construct

rate-½ (1024, 512) ACE PEG codes, the resultant codes had slightly lower error-floor than the rate-½

(1024, 512) benchmark code. However, within the range of decoding performance experiments

202

carried out, none of the ACE PEG codes constructed using the MacKay code degree distribution D�(x)

performed as well as lowest-error-floor ACE PEG code with degree distribution @C(x).

6.6 Regular Rate-½ (�, û) = (üø�, ¸ü¸) and (·øø�, üø�) MacKay

Codes versus Regular Rate-½ (�, û) = (ü·¸, ¸üý) and (·ø¸�, ü·¸)

Standard PEG Codes

In this section we investigate the performance of the regular rate-½ (�, �) = (504, 252) and

(1008, 504) MacKay codes called PEGReg252x504 and PEGReg504x1008, respectively

[MacKay, 2002]. Both of these regular codes have regular symbol node degree �� = 3 and are not

perfectly regular in check node degrees. Four ensembles of 10 regular rate-½ codes each were

constructed using the standard PEG algorithm [Hu et al., 2001]; an ensemble of (�, �) = (512, 256)

codes with �� = 3, an ensemble of (512, 256) codes with �� = 4, an ensemble of (1024, 504) codes

with �� = 3, and an ensemble of (1024, 504) codes with �� = 4. Four codes were randomly selected,

one from each of these four code ensembles, and their decoding performances were simulated. Similar

to the MacKay codes, these regular standard PEG codes are not perfectly regular in check node

degrees. The superior performance of the lowest-error-floor irregular rate-½ (512, 256) and

(1024, 504) codes over i) their regular counterparts, and ii) the regular rate-½ (504, 252) and

(1008, 504) MacKay codes are graphically illustrated.

The Monte Carlo simulation results presented in this section are for BPSK modulation over the

AWGN channel. Codes were decoded using the standard BP/SPA decoder at a maximum of 100

decoding iterations. Identical noise patterns were used for each set of points at the same 8J/;K on the

error rate curves. The same numbers of blocks (frames) were used for all codes at each 8J/;K ratio

simulated.

203

In Figure 6.12, the performance of the regular rate-½ (�, �) = (504, 252) MacKay code is compared

to that of the two randomly selected regular rate-½ (�, �) = (512, 256) standard PEG codes with

symbol node degrees �� = 3 and 4 respectively, and the lowest-error-floor irregular rate-½ (�, �) =

(512, 256) OED ACE PEG code.

Figure 6.12: FER for the regular rate-½ (504, 252) MacKay code, regular rate-½ (512, 256)

standard PEG codes with �� = 3 and 4 respectively, and the lowest-error-floor

irregular rate-½ (512, 256) OED ACE PEG code

Among the regular codes in Figure 6.12, the regular rate-½ (504, 252) MacKay code has the best

performance in both the waterfall and error-floor regions. The regular rate-½ (512, 256) standard

PEG code with �� = 3 has an almost identical performance to the MacKay code; the performance of

the MacKay code surpasses the standard PEG code only for 8J/;k > 3.50�F. Although the regular

rate-½ (512, 256) standard PEG code with �� = 4 has the worst general performance, its

performance in the error-floor region improves dramatically at 8J/;k > 3.50�F so that at 8J/;k =

204

4.00�F and beyond it has the lowest error-floor of all the regular codes. Compared to the regular

codes, the irregular rate-½ (512, 256) OED ACE PEG code with degree distribution @7(x)

significantly outperforms all the regular codes in both the waterfall and error-floor regions. At

8J/;k > 3.00�F, the OED ACE PEG code has less than a tenth of the error rate of the best regular

codes of similar length and rate.

In Figure 6.13, the performance of the regular rate-½ (�, �) = (1008, 504) MacKay code is

compared to that of the two randomly selected regular rate-½ (�, �) = (1024, 512) standard PEG

codes with symbol node degrees �� = 3 and 4 respectively, and the lowest-error-floor irregular rate-½

 (�, �) = (1024, 512) ACE PEG code.

Figure 6.13: FER for the regular rate-½ (1008, 504) MacKay code, the regular rate-½ (1024, 512)

standard PEG codes with �� = 3 and 4 respectively, and the lowest-error-floor irregular

rate-½ (1024, 512) ACE PEG code

205

Among the regular codes in Figure 6.13, the regular rate-½ (�, �) = (1024, 512) standard PEG code

with �� = 3 has the best performance in both the waterfall and error-floor regions. This standard PEG

code has an almost identical performance as the rate-½ (�, �) = (1008, 504) MacKay code; the

slightly better performance of the standard PEG code is attributed to its larger (�, �) dimensions

compared to the MacKay code. Although the regular rate-½ (1024, 512) standard PEG code with

�� = 4 has the worst general performance, its performance in the error-floor region improves

dramatically at 8J/;k > 3.00�F so that at 8J/;k = 3.50�F and beyond it has the lowest error-floor

of all the regular codes. Compared to the regular codes, the irregular rate-½ (1024, 512) ACE PEG

code with degree distribution @C(x) significantly outperforms all the regular codes in both the waterfall

and error-floor regions. At 8J/;k ≥ 2.00�F, the ACE PEG code has less than a tenth of the error rate

of the best regular codes of similar length and rate.

The LDPC matrix configuration file for the rate-½ (�, �) = (1024, 512) ACE PEG code with the

lowest error-floor, as presented in Figure 6.5, Figure 6.6, Figure 6.8, Figure 6.11, and Figure 6.13, is

available in the Appendices (See Appendix K).

6.7 The Error-Floor Performance of Short-to-Medium Length Irregular

LDPC Codes from Recent Modified PEG Algorithms

In this section, the performance of the rate-½ (�, �) = (512, 256) and (1024, 512) irregular LDPC

codes with the lowest error-floor found in this research are compared to those of LDPC codes obtained

from other recently proposed modifications to the PEG algorithm aimed at lowering the error-floor of

the short-to-medium length LDPC codes constructed. Comparisons are only feasible and fair if the

published performance results for respective PEG algorithm modifications are in FER for,

i) BP/SPA decoding over AWGN channels using a similar maximum number of decoding

iterations as in this research, that is ~ 100 , and

ii) rate-½ LDPC codes which have similar (�, �) dimensions as those investigated in this

research.

206

• The Error-Floor Performance of standard PEG codes: In their pioneering work on the PEG

algorithm, Hu et al. presented BER and FER performance results for only regular LDPC codes

[Hu et al., 2001]. However, in their follow-up work of 2005, performance simulation results were

presented for rate-½ (504, 252) and (1008, 504) irregular LDPC codes with DE optimized

degree distributions (see Fig. 6 and Fig. 7 of [Hu et al., 2005]). In the waterfall region, for 8J/;K ≤

2.25�F, the best rate-½ (504, 252) PEG code (see Fig. 6 of [Hu et al., 2005]) and the rate-½

(512, 256) OED ACE PEG code with degree distribution @7(x) found in this research have similar

performances. However, as the error-floor region is approached, i.e. for 8J/;K ≥ 2.50�F, the

rate-½ (512, 256) OED ACE PEG code significantly outperforms the best rate-½ (504, 252)

PEG code in Fig. 6 of [Hu et al., 2005]. Similarly, in the waterfall region, i.e. 8J/;K ≤ 2.00�F,

the rate-½ (1008, 504) irregular PEG and upper triangular irregular PEG codes (see Fig. 7 of

[Hu et al., 2005]) slightly outperform the rate-½ (1024, 512) ACE PEG code with degree

distribution @C(x) found in this research. However, as the error-floor region is approached, i.e. for

8J/;K ≥ 2.25�F, our rate-½ (1024, 512) ACE PEG code significantly outperforms the rate-½

(1008, 504) irregular PEG and upper triangular irregular PEG codes in Fig. 7 of [Hu et al., 2005].

• The Error-Floor Performance of IPEG codes: Xiao and Banihashemi provided BER and FER

performance results for rate-½ (�, �) = (504, 252) and (1008, 504) LDPC codes obtained using

the improved PEG (IPEG) construction (see Fig. 1 of [Xiao and Banihashemi, 2004]). At 8J/;K =

2.00�F, the rate-½ (504, 252) ACE PEG (or IPEG) code (see the 2nd to the highest MER (- - -)

curve in Fig. 1 of [Xiao and Banihashemi, 2004]), and the rate-½ (512, 256) OED ACE PEG code

with degree distribution @7(x) found in this research have identical performance. However, as the

error-floor region is approached, i.e. 8J/;K ≥ 2.50�F, the rate-½ (512, 256) OED ACE PEG

code outperforms the rate-½ (504, 252) ACE PEG code in Fig. 1 of

[Xiao and Banihashemi, 2004]. Similarly, in the waterfall region, at 8J/;K = 2.00�F, the rate-½

(1008, 504) ACE PEG code (see the lowest MER (- - -) curve in Fig. 1 of

207

[Xiao and Banihashemi, 2004]) and the rate-½ (1024, 512) ACE PEG code with degree

distribution @C(x) found in this research have identical performance. However, as the error-floor

region is approached, i.e. for 8J/;K ≥ 2.50�F, the rate-½ (1024, 512) ACE PEG code

significantly outperforms the rate-½ (1008, 504) ACE PEG code in Fig. 1 of

[Xiao and Banihashemi, 2004]. Improved degree distributions, in addition to a higher code

dimension (�, �) and a higher maximum number of decoding iterations (100 versus 80), are

responsible for the superior error-floor performance of the LDPC codes constructed in this research

compared to Xiao and Banihashemi’s IPEG (or ACE PEG) codes.

• The Error-Floor Performance of Modified PEG codes: Richter and Hof provided the FER

performance result for a rate-½ (�, �) = (1000, 500) LDPC code obtained using their modified

PEG algorithm (see Fig. 11 of [Richter and Hof, 2006]). The performance of their modified PEG

code is only slightly better than that of the rate-½ (1024, 512) ACE PEG code with degree

distribution @C(x) found in this research. This is in spite of the fact that the code performance

simulation presented in the work was carried out using the shuffled BP decoder of

[Zhang and Fossorier, 2005] with a maximum of 500 decoding iterations, and the linear

approximation explained in [Richter et al., 2005]. A significantly improved BP/SPA decoder which

does not require as many iterations will be introduced in Chapter 7 of this thesis.

• The Error-Floor Performance of EMPEG codes: Sharon and Litsyn gave the FER performance

result for a rate-½ (�, �) = (576, 288) LDPC code obtained using their error minimization PEG

(EMPEG) algorithm (see Fig. 9 of [Sharon and Litsyn, 2008]). The rate-½ (512, 256) OED ACE

PEG code with degree distribution @7(x) found in this research slightly outperforms the rate-½

(�, �) = (576, 288) EMPEG code in both the waterfall and error-floor regions. This is in spite of

the larger dimensions of the EMPEG code.

• The Error-Floor Performance of ETS-constrained PEG codes: Khazraie et al. provided the

FER performance results for a rate-½ (�, �) = (1008, 504) irregular LDPC code with a DE

208

optimized degree distribution which was constructed using the proposed elementary trapping set

(ETS) constrained PEG algorithm (ETS-constrained PEG) (see Fig. 1 of [Khazraie et al., 2012]). A

comparison of the performance results for the rate-½ (1008, 504) ETS-constrained PEG code and

the rate-½ (1024, 512) ACE PEG code with degree distribution @C(x) in this research shows that

the ACE PEG code has a superior performance in both the waterfall and error-floor regions. The

performance gap is more significant in the error-floor region; the ACE PEG code only slightly

outperforms the ETS-constrained PEG code in the waterfall region. It is pertinent to note that while

the ETS-constrained PEG code performance results were obtained using a maximum of 50

decoding iterations, the ACE PEG code performance results were obtained using a maximum of

100 decoding iterations. However, the differences in the maximum number of decoding iterations

used is not likely to be sufficient to fully account for the superior error-floor of the ACE PEG code

compared to the ETS-constrained code.

6.8 Summary

• A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm which controls the minimum

local girths connected during the construction of LDPC code Tanner graphs has been presented.

The MLG (ES) PEG algorithm controls the global girth of the codes it constructs by skipping all

edge connections which would have resulted in undesired local girths.

• The concept of optimal low-correlated-edge density (OED) codes has been introduced.

• Simulation results show that irregular rate-½ (�, �) = (512, 256) OED ACE PEG codes have

lower error-floor than the lowest error-floor published for LDPC codes of identical rate and

length constructed using the improved PEG (IPEG) construction [Xiao and Banihashemi, 2004],

and the generalized ACE constrained PEG (G-ACE PEG) algorithm

[Vukobratović and Šenk, 2008].

• Consequent to an improved symbol node degree distribution, irregular rate-½ (�, �) =

(1024, 512) ACE PEG codes which have lower error-floors than published for LDPC codes of

209

identical rate and length have been found.

• Random rate-½ (�, �) = (512, 256) and (1024, 512) PEG constructed LDPC codes have been

shown to significantly outperform structured rate-½ (�, �) = (576, 288) and (1056, 528)

IEEE 802.16E (WiMAX) LDPC codes respectively in the error-floor region.

• As a result of the prioritization used in the candidate check node selection criteria of the

G-ACE PEG algorithm, the LDPC codes constructed are not as check node regular as ACE PEG

codes. Therefore, G-ACE PEG codes have more distributed check node degrees. Although

G-ACE PEG codes and ACE PEG codes have very similar ���� and ���� distributions,

G-ACE PEG codes have girth and ACE properties which are superior to those of ACE PEG

codes. Nevertheless, G-ACE PEG codes do not have lower error-floor than ACE PEG codes. The

widely distributed check node degrees of G-ACE PEG codes appears to have a negative impact

on their error-floor performance.

• Irregular rate-½ (�, �) = (512, 256) and (1024, 512) OED ACE PEG and ACE PEG codes

significantly outperform irregular rate-½ (�, �) = (504, 252) and (1008, 504) MacKay codes

respectively. The adoption of MacKay code degree distributions do not result in irregular rate-½

(�, �) = (512, 256) and (1024, 512) LDPC codes with lower error-floors than already

obtained. Regular rate-½ (�, �) = (512, 256) and (1024, 512) codes with similar or better

performance than regular rate-½ (�, �) = (504, 252) and (1008, 504) MacKay codes

respectively have been found.

210

Chapter 7

An improved BP/SPA (IBP/SPA) decoder

7.1 Introduction

Two novel modifications to the standard iterative message-passing BP/SPA decoder which result in an

unprecedented improvement to BP/SPA decoding performance are described in this chapter. Using

these simple modifications to the BP/SPA decoding algorithm, irregular LDPC code performance in

both the waterfall and error-floor regions are significantly improved. Results of performance

simulations carried out using the proposed improved BP/SPA (IBP/SPA) decoder show a generalized

improvement in the decoding performance of short-to-medium length LDPC codes. The modifications

made to the conventional BP/SPA decoding process to obtain the IBP/SPA decoder results in an

efficient and effective technique for breaking trapping sets in LDPC codes. To the best of the author’s

knowledge, the generalized improvement in the decoding performance of short-to-medium length

LDPC codes achieved using the proposed IBP/SPA decoder are significantly better than all the

performance improvements published for other modified BP/SPA decoders in the literature.

7.2 A Modified BP/SP Algorithm: Fixed Parity-Check Equation

Sequence (FPCES) versus Randomized Parity-Check Equation

Sequence (RPCES)

This section describes a modification to the iterative message-passing BP/SP algorithm used for

decoding in standard BP/SPA decoders which results in not only faster decoding convergence but also

a generalized improvement of the performance of short-to-medium length LDPC codes over AWGN

211

channels. The standard BP/SPA decoder was implemented as described in Section 2.5 and, used to

obtain the LDPC code decoding performance simulations results presented in all the previous chapters

of this thesis.

In each decoding iteration, the BP/SP algorithm cycles through the equations in the probability matrix

'- in a fixed sequence. The equation sequence most commonly used in each decoding iteration is the

nondecreasing serial numbers sequence. That is, in each iteration the decoding takes place using the

following parity-check equation sequence,

�s}«x|<� 0, �s}«x|<� 1, �s}«x|<� 2, �s}«x|<� 3, �s}«x|<� 4, , �s}«x|<� �

This is exemplified in Table 2.3 - Table 2.11 where the decoding in each of the three decoding

iterations executed, i.e. iteration 0, iteration 1, and iteration 2, were carried out using a fixed equation

sequence, i.e. equation 0, equation 1, and then equation 2, as follows,

Table 2.30 "�.<�|�1 |x�½«x|<� 0, �s}«x|<� ø
Table 2.40 "�., �|�1 , x�½«, |<� 0, �s}«x|<� ·
Table 2.50 "�., �|�1 , x�½«, |<� 0, �s}«x|<� ¸
Table 2.60 "�.<�|�1 |x�½«x|<� 1, �s}«x|<� ø
Table 2.70 "�., �|�1 , x�½«, |<� 1, �s}«x|<� ·
Table 2.80 "�., �|�1 , x�½«, |<� 1, �s}«x|<� ¸
Table 2.90 "�.<�|�1 |x�½«x|<� 2, �s}«x|<� ø
Table 2.10 "�., �|�1 , x�½«, |<� 2, �s}«x|<� ·
Table 2.11 "�., �|�1 , x�½«, |<� 2, �s}«x|<� ¸

The same equation sequence, i.e. �s}«x|<� 0 → �s}«x|<� 1 → �s}«x|<� 2, is used for each

decoding iteration. The standard BP/SPA decoder uses a fixed parity-check equation sequence

(FPCES). Consequently, the BP/SP algorithm in the standard BP/SPA decoder is described as a

FPCES BP/SP algorithm, and the standard BP/SPA decoder will also be referred to as the

FPCES BP/SPA decoder in the rest of this chapter.

An experiment to discover the effects of using a random parity-check equation sequence in the

decoding iterations of the BP/SP algorithm was carried out. The decoding exemplification in

Table 7.1 - Table 7.9 was applied in the same circumstance as that in Table 2.3 - Table 2.11. However,

a random equation sequence was used in the decoding iterations of Table 7.1 - Table 7.9. The

212

following random equation sequence was used in the randomized parity-check equation sequence

(RPCES) BP/SP algorithm exemplified in Table 7.1 to Table 7.9.

Table 7.10 "�.<�|�1 |x�½«x|<� 0, �s}«x|<� ¸
Table 7.20 "�., �|�1 , x�½«, |<� 0, �s}«x|<� ·
Table 7.30 "�., �|�1 , x�½«, |<� 0, �s}«x|<� ø
Table 7.40 "�.<�|�1 |x�½«x|<� 1, �s}«x|<� ·
Table 7.50 "�., �|�1 , x�½«, |<� 1, �s}«x|<� ¸
Table 7.60 "�., �|�1 , x�½«, |<� 1, �s}«x|<� ø
Table 7.70 "�.<�|�1 |x�½«x|<� 2, �s}«x|<� ¸
Table 7.80 "�., �|�1 , x�½«, |<� 2, �s}«x|<� ø
Table 7.91 "�., �|�1 , x�½«, |<� 2, �s}«x|<� ·

In order to observe the effect of using random equation sequences in the decoding iterations of the

proposed RPCES BP/SPA decoder, the same (�, �) = (6, 3) linear code ' matrix, information

codeword, received codeword vector, and received bit probabilities used in the FPCES BP/SP

algorithm exemplification in Table 2.3 - Table 2.11 of Section 2.5 were used in the decoding

exemplification of Table 7.1 - Table 7.9. The inputs used for both decoding algorithms are as follows,

Information: 111

Codeword: 111000 ⟹ Transmitted codeword = [111000] (0 info error)

Channel: [+1.0,+1.0,+1.0,-1.0,-1.0,-1.0] ⟹ BPSK modulated codeword

Received: [-0.7,+1.6,+0.4,-1.1,-1.1,-0.4] ⟹ Received codeword = [011000] (1 info error)

Probabilities: [0.15, 0.98, 0.74, 0.05, 0.05, 0.26] (using equation (2.17) at Á;G = 1 Ç�⁄ = 1.239

 which is equivalent to Á;G(�F) = 0.931)

213

Table 7.1: Decoding iteration 0, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.50 0.50 0.50

equation 1 0.50 0.50 0.50

equation 2 0.50 0.50 0.50

Decoding iteration 0, equation 2
Input probabilities to SPC decoder:
 Àk = 0.15 = ×(0.15,0.50) ÀE = 0.98 = ×(0.98,0.50) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.73 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.33 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.84

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.32 = ×(0.15,0.50,0.73) ÀE = 0.96 = ×(0.98,0.50,0.33) À� = 0.74 = ×(0.74,0.50,0.50)
Decoded data: 9k = 0 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 7.2: Decoding iteration 0, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.50 0.50 0.50

equation 1 0.50 0.50 0.50

equation 2 0.73 0.33 0.84

Decoding iteration 0, equation 1
Input probabilities to SPC decoder:
 Àk = 0.32 = ×(0.15,0.73) À� = 0.74 = ×(0.74,0.50) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

 Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.72 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.34 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.59

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.55 = ×(0.15,0.72,0.73) ÀE = 0.96 = ×(0.98,0.50,0.33) À� = 0.59 = ×(0.74,0.50,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

214

Table 7.3: Decoding iteration 0, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.50 0.50 0.50

equation 1 0.72 0.34 0.59

equation 2 0.73 0.33 0.84

Decoding iteration 0, equation 0
Input probabilities to SPC decoder:
 ÀE = 0.96 = ×(0.98,0.33) À� = 0.59 = ×(0.74,0.34) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.58 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.91 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.42

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.55 = ×(0.15,0.72,0.73) ÀE = 0.97 = ×(0.98,0.58,0.33) À� = 0.94 = ×(0.74,0.91,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 7.4: Decoding iteration 1, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.91 0.42

equation 1 0.72 0.34 0.59

equation 2 0.73 0.33 0.84

Decoding iteration 1, equation 1
Input probabilities to SPC decoder:
 Àk = 0.32 = ×(0.15,0.73) À� = 0.97 = ×(0.74,0.91) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

 Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.92 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.34 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.67

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.73) ÀE = 0.97 = ×(0.98,0.58,0.33) À� = 0.94 = ×(0.74,0.91,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

215

Table 7.5: Decoding iteration 1, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.91 0.42

equation 1 0.92 0.34 0.67

equation 2 0.73 0.33 0.84

Decoding iteration 1, equation 2
Input probabilities to SPC decoder:
 Àk = 0.67 = ×(0.15,0.92) ÀE = 0.99 = ×(0.98,0.58) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.73 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.58 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.33

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.73) ÀE = 0.99 = ×(0.98,0.58,0.58) À� = 0.94 = ×(0.74,0.91,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 7.6: Decoding iteration 1, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.91 0.42

equation 1 0.92 0.34 0.67

equation 2 0.73 0.58 0.33

Decoding iteration 1, equation 0
Input probabilities to SPC decoder:
 ÀE = 0.99 = ×(0.98,0.58) À� = 0.59 = ×(0.74,0.34) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.58 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.94 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.41

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.73) ÀE = 0.99 = ×(0.98,0.58,0.58) À� = 0.96 = ×(0.74,0.94,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

216

Table 7.7: Decoding iteration 2, equation 2

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.94 0.41

equation 1 0.92 0.34 0.67

equation 2 0.73 0.58 0.33

Decoding iteration 2, equation 2
Input probabilities to SPC decoder:
 Àk = 0.67 = ×(0.15,0.92) ÀE = 0.99 = ×(0.98,0.58) Àn = 0.26 = ×(0.26)
Output extrinsic information:

 Àk = EQ(EQ�Ó/)(EQ�ÓÛ)
� = 0.73 ÀE = EQ(EQ�Ó�)(EQ�ÓÛ)

� = 0.58 Àn = EQ(EQ�Ó�)(EQ�Ó/)
� = 0.33

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.73) ÀE = 0.99 = ×(0.98,0.58,0.58) À� = 0.96 = ×(0.74,0.94,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 7.8: Decoding iteration 2, equation 0

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.94 0.41

equation 1 0.92 0.34 0.67

equation 2 0.73 0.58 0.33

Decoding iteration 2, equation 0

Input probabilities to SPC decoder:
 ÀE = 0.99 = ×(0.98,0.58) À� = 0.59 = ×(0.74,0.34) ÀB = 0.05 = ×(0.05)
Output extrinsic information:

 ÀE = EQ(EQ�Ó°)(EQ�ÓÙ)
� = 0.58 À� = EQ(EQ�Ó/)(EQ�ÓÙ)

� = 0.94 ÀB = EQ(EQ�Ó/)(EQ�Ó°)
� = 0.41

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Current iterative decoder output:
Àk = 0.84 = ×(0.15,0.92,0.73) ÀE = 0.99 = ×(0.98,0.58,0.58) À� = 0.96 = ×(0.74,0.94,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

217

Table 7.9: Decoding iteration 2, equation 1

Currently known:
 Àk ÀE À� ÀB ÀC Àn

From channel 0.15 0.98 0.74 0.05 0.05 0.26

equation 0 0.58 0.94 0.41
equation 1 0.92 0.34 0.67

equation 2 0.73 0.58 0.33

Decoding iteration 2, equation 1
Input probabilities to SPC decoder:
 Àk = 0.32 = ×(0.15,0.73) À� = 0.98 = ×(0.74,0.94) ÀC = 0.05 = ×(0.05)
Output extrinsic information:

 Àk = EQ(EQ�Ó°)(EQ�Ó0)
� = 0.93 À� = EQ(EQ�Ó�)(EQ�Ó0)

� = 0.34 ÀC = EQ(EQ�Ó�)(EQ�Ó°)
� = 0.67

Received probabilities (iterative decoder input):
Àk = 0.15 ÀE = 0.98 À� = 0.74
Final iterative decoder output:
Àk = 0.86 = ×(0.15,0.93,0.73) ÀE = 0.99 = ×(0.98,0.58,0.58) À� = 0.96 = ×(0.74,0.94,0.34)
Decoded data: 9k = 1 9E = 1 9� = 1
Transmitted Data: 9k = 1 9E = 1 9� = 1

Table 7.10: MAP decoding, FPCES BP/SPA decoding, and RPCES BP/SPA decoding

Decoder Type

Decoder Output
[Àk ÀE À�]

Decoded information
 [9k 9E 9�]

Information

errors

Source

MAP decoder

[0.85 0.96 0.93]

 [1 1 1]

0

Table 2.2

Iterative FPCES
BP/SPA decoder

[0.85 0.98 0.94]

 [1 1 1]

0

Table 2.11

Iterative RPCES
BP/SPA decoder

[0.86 0.99 0.96]

 [1 1 1]

0

Table 7.9

From the final decoding results presented in Table 7.10, it can be seen that the three decoders correctly

decoded the received information from the channel to the transmitted codeword despite the error

caused by the channel, and both iterative decoders have similar performance to the MAP decoder.

However, within the three decoding iterations, the RPCES BP/SPA decoder resulted in more saturated

output probabilities than the FPCES BP/SPA decoder.

218

The RPCES BP/SPA decoder was implemented by making a slight modification to the previously

implemented standard BP/SPA decoder described in Section 2.5, which is an FPCES BP/SPA decoder.

The C programming language code for the RPCES BP/SPA decoder implemented is available in the

Appendices (See Appendix N).

Recall, the random number generator function in the C programming language called ½«�2 which was

utilized in all the PEG algorithms and the FPCES BP/SPA decoder implemented in this thesis

[Teukolsky et al., 1992]. The ½«�2 function returns a uniform random deviate between 0.0 and 1.0

(exclusive of the endpoint values) every time the function is called.

A duplicate ½«�2 function was added to the FPCES BP/SPA decoder and used to randomize the

parity-check equation sequence during each decoding iteration executed by the BP/SP algorithm; this

slight modification converts a FPCES BP/SPA decoder to a RPCES BP/SPA decoder. The ½«�2

function was duplicated so that the sequence of random deviates produced by the first ½«�2 function

which is used for random message and noise pattern generation is not altered. The two ½«�2 function

implemented in the RPCES BP/SPA decoder had no variables in common and ran independently of

each other. This ensures that when comparing the performance of an LDPC code using the

FPCES BP/SPA decoder and the proposed RPCES BP/SPA decoder, identical messages and noise

patterns are encountered by the two decoding algorithms.

The proposed RPCES BP/SPA decoder was used to decode the following lowest-error-floor rate-½

(�, �) = (512, 256) and ~�, �� = (1024, 512) LDPC codes which were found in this research

(see Chapter 6):

i) the rate-½ (512, 256) OED ACE PEG code which has degree distribution @7(x) =

0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.00391x
13 + 0.01563x

14 + 0.00977x
15 +

0.07422x
16, and

ii) the rate-½ (1024, 512) ACE PEG code with degree distribution

@C(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 + 0.10352x
15.

219

All performance results presented in this section were obtained using a maximum of 100 decoding

iterations. Identical noise patterns were used for each set of points at the same 8J/;K on the error rate

curves, and the same numbers of blocks (frames) were used for all codes at each 8J/;K ratio

simulated.

Figure 7.1 shows the performance of the rate-½ (�, �) = (512, 256) OED ACE PEG code when

decoded using the standard BP/SPA decoder (FPCES BP/SPA decoder) and the proposed

RPCES BP/SPA decoder.

Figure 7.1: FER curves for the lowest-error-floor rate-½ (�, �) = (512, 256) OED ACE PEG code

using: i) the standard BP/SPA decoder (FPCES BP/SPA decoder), and

ii) the RPCES BP/SPA decoder

It can be seen from Figure 7.1 that using the RPCES BP/SPA decoder results in a slightly better

performance by the rate-½ (512, 256) OED ACE PEG code in both the waterfall and error-floor

220

regions. However, the performance improvement in the waterfall region appears to be more

significant. It was also observed that the decoding convergence time for the RPCES BP/SPA decoder

is significantly less than that for the FPCES BP/SPA decoder. Using an identical number of frames,

the simulation results obtained from the RPCES BP/SPA decoder were obtained in less than 90% of

the time required to obtain the final simulation results from the FPCES BP/SPA decoder

(the standard BP/SPA decoder).

Figure 7.2 shows the performance of the rate-½ (�, �) = (1024, 512) ACE PEG code when decoded

using the standard BP/SPA decoder (FPCES BP/SPA decoder) and the proposed

RPCES BP/SPA decoder.

Figure 7.2: FER curves for the lowest-error-floor rate-½ (�, �) = (1024, 512) ACE PEG code using:

i) the standard BP/SPA decoder (FPCES BP/SPA decoder), and

ii) the RPCES BP/SPA decoder

221

Similar to the case for the rate-½ (512, 256) OED ACE PEG code, Figure 7.2 shows that using the

RPCES BP/SPA decoder results in slightly better performance by the rate-½ (1024, 512) ACE PEG

code in both the waterfall and error-floor regions. Given an identical number of codewords (frames),

the simulation results obtained from the RPCES BP/SPA decoder were obtained in less than 90% of

the time required to obtain simulation results from the FPCES BP/SPA decoder

(standard BP/SPA decoder).

7.3 An Improved BP/SPA Decoder: BP/SPA Decoding using a

Randomized Parity-Check Equation Sequence and � Detected

Decoding Failure Retrials (RPCES + �-DFR)

As expected, it was observed that different decoding performances are obtained when the

RPCES BP/SPA decoder uses different series of random parity-check equation sequences for decoding

the same LDPC code. Given a reasonably high maximum number of decoding iterations and SNR,

most received codeword vectors will be correctly decoded by the RPCES BP/SPA decoder using any

series of random decoding equation sequences. However, one of the following situations applies to a

small fraction of received codeword vectors.

i) Due to channel distortion and other error-prone graphical structures within LDPC codes

such as trapping sets, correct decoding of some received codeword vectors is highly

dependent on the series of random decoding equation sequences used in their decoding.

ii) Due to channel distortion, the Euclidean distance between the received codeword and the

transmitted codeword is greater than the Euclidean distance between the received

codeword and the more likely (MRL) codeword which it is eventually decoded to

[Papagiannis et al., 2004]. Correct decoding of the received codeword vector is not

possible using any series of random or fixed decoding equation sequences.

222

iii) Due to the channel distortion, there exists no series of random or fixed decoding equation

sequences which can result in decoding the received codeword vector to any valid

codeword of the code.

A method to take advantage of the RPCES BP/SPA decoder in the event of decoding failures arising

from the situation described in i) was incorporated into the RPCES BP/SP algorithm.

After a BP/SP algorithm has executed the maximum number of decoding iterations on a received

codeword vector Ï, there are three possible outcomes as follows.

a) A successful decoding; the decoding results in the transmitted codeword, where µ ∈ X, and the

syndrome of µ is,

³(µ) = µ'+ = 0.

b) An undetectable decoding error; the decoding results in a codeword µ�� ∈ X which is different

from the transmitted codeword µ , i.e. µ�� ≠ µ, and the syndrome of µ�� is,

³(µ��) = µ��'+ = 0.

c) A detectable decoding error; the decoding results in an � bit long binary string Ü which is not

a valid codeword of the code, where Ü ∉ X, and the syndrome of Ü is,

³(Ü) = Ü'+ > 0.

In the case of an undetectable decoding error, although the decoded codeword is not the same as the

transmitted codeword, there is no way of knowing this at the decoder because the syndrome of the

decoded codeword is 0. However, detectable decoding errors are easily identified by the fact that they

have non-zero syndromes; the decoded n bit long binary string Ü is not a codeword of the code.

The implemented RPCES BP/SPA decoder was modified such that, given a received codeword vector

Ï = o½0, ½1, ½2 ½�−1p, whenever a detectable decoding failure is detected after the maximum

number of decoding iterations have been executed, a maximum of � retrials (additional attempts) to

decode Ï using a different series of random decoding equation sequences are made. The proposed

223

improved BP/SPA (IBP/SPA) decoder is obtained by making this simple modification to the

RPCES BP/SPA decoder.

Note that the variable � which is the maximum number of retrials is different from the variable �

which is the length of a code. Decoding retrials in the modified RPCES BP/SPA are only made for

detectable decoding errors. If a received codeword vector Ï is decoded to a valid codeword of the

code µ before the �-th retrial, further retrials on Ï are not attempted and the algorithm proceeds to

decode a new codeword vector. If the decoded codeword µ� is identical to the transmitted codeword µ,

i.e. µ� = µ, the error count is not increased. Conversely, if the decoded codeword µ� is not identical to

the transmitted codeword µ, i.e. µ� ≠ µ, then an undetectable error has occurred and the error count is

increased. However, if after the �-th decoding retrial the modified RPCES BP/SPA decoder fails to

decode the received codeword vector to a valid codeword, the error count is increased and the

algorithm proceeds to decode a new codeword vector.

The IBP/SPA decoder is also referred to as the RPCES + �-DFR BP/SPA decoder, i.e. the

RPCES BP/SPA decoder with � detected decoding failure retrials (�-DFR). The C programming

language code for the RPCES + �-DFR BP/SPA decoder implemented is available in the Appendices

(See Appendix O).

In this thesis, only the performance of the RPCES + �-DFR BP/SPA decoder with maximum number

of decoding retrials � = 10 and 100 are reported. That is, only the performance of a

RPCES + 10-DFR BP/SPA decoder and a RPCES + 100-DFR BP/SPA decoder are reported. This is

due to the fact that the RPCES + �-DFR BP/SPA decoder was invented at a rather late stage of the

research.

224

Figure 7.3 shows the performance of the rate-½ (�, �) = (512, 256) OED ACE PEG code when

decoded using the standard BP/SPA decoder (FPCES BP/SPA decoder), the RPCES BP/SPA decoder,

the RPCES + 10-DFR BP/SPA decoder, and the RPCES + 100-DFR BP/SPA decoder.

Figure 7.3: FER curves for the lowest-error-floor rate-½ (�, �) = (512, 256) OED ACE PEG code

using: i) the standard BP/SPA decoder (FPCES BP/SPA decoder), ii) the RPCES

BP/SPA decoder, iii) the RPCES + 10-DFR BP/SPA decoder, and iv) the

RPCES + 100-DFR BP/SPA decoder

As shown in Figure 7.3, using the RPCES + �-DFR BP/SPA decoders results in superior performance

by the rate-½ (512, 256) OED ACE PEG code in both the waterfall and error-floor regions. As a

result of a high frequency of detectable decoding failures and the attendant decoding retrials in the

waterfall region, obtaining the improved FER performance of LDPC codes in the waterfall region

using the two RPCES + �-DFR BP/SPA decoders require significantly longer decoding times

225

compared to the RPCES BP/SPA decoder and the standard BP/SPA decoder. Naturally, the higher the

maximum number of decoding retrials �, the longer the decoding performance simulation time; the

RPCES + 100-DFR BP/SPA decoder takes a longer time than the the RPCES + 10-DFR

BP/SPA decoder. However, in the error-floor region where there are very rare occurrences of decoding

retrials due to detectable decoding failures, using RPCES + �-DFR BP/SPA decoders to obtain the

improved FER performance of LDPC codes requires only slightly more time compared to the

RPCES BP/SPA decoder. The RPCES + �-DFR BP/SPA decoders (with � = 10 and 100) were

significantly faster than the standard BP/SPA decoder when used in simulations to determine code

performance in the error-floor region. This is because in the error-floor region, the fast decoding

convergence of the RPCES + �-DFR BP/SPA decoders more than compensate for the occasional

delays due to decoding retrials.

As expected, it is clear from Figure 7.3 that increasing the maximum number of decoding retrials, �,

in the RPCES + �-DFR BP/SPA decoder results in an improved decoding performance. However, as

is to be expected, the rate at which the decoding performance of the RPCES + �-DFR BP/SPA

decoder improves with increasing � diminishes as � → ∞.

226

Figure 7.4 shows the performance of the rate-½ (�, �) = (1024, 512) ACE PEG code when decoded

using the standard BP/SPA decoder (FPCES BP/SPA decoder), the RPCES BP/SPA decoder, the

RPCES + 10-DFR BP/SPA decoder, and the RPCES + 100-DFR BP/SPA decoder.

Figure 7.4: FER curves for the lowest-error-floor rate-½ (�, �) = (1024, 512) ACE PEG code

using: i) the standard BP/SPA decoder (FPCES BP/SPA decoder), ii) the RPCES

BP/SPA decoder, iii) the RPCES + 10-DFR BP/SPA decoder, and iv) the

RPCES + 100-DFR BP/SPA decoder

Similar to the case for the rate-½ (512, 256) OED ACE PEG code, Figure 7.4 shows that the

RPCES + �-DFR BP/SPA decoders with � = 10 and 100 results in superior performance by the

rate-½ (1024, 512) ACE PEG code in both the waterfall and error-floor regions. The decoding times

in the waterfall and error-floor differ in the same manner as described for decoding the rate-½

(512, 256) OED ACE PEG code.

227

Table 7.11 shows the distribution of the type of decoding errors that occurred when the

RPCES + 10-DFR BP/SPA decoder and the RPCES + 100-DFR BP/SPA decoder were used to

decode the lowest-error-floor rate-½ (�, �) = (512, 256) code. Similarly, Table 7.12 shows the

distribution of the type of decoding errors that occurred when the RPCES + 10-DFR BP/SPA decoder

and the RPCES + 100-DFR BP/SPA decoder were used to decode the lowest-error-floor rate-½

(�, �) = (1024, 512) code.

For the decoding error distributions in Table 7.11 and Table 7.12, decoding errors were classified

under two broad types: Hamming distance errors and trapping set errors. Hamming distance errors

occur when the received codebit vectors are decoded to a valid codeword which is different from the

codeword that was sent. Hamming distance errors include minimum distance errors, i.e. ���� errors,

where the Hamming distance between the sent codeword and the decoded codeword is equal to the

���� of the code. Hamming distance errors have zero syndromes and are therefore undetectable errors.

All decoding errors which have non-zero syndromes, or detectable errors, are considered to be as a

result of trapping sets, and are classified as trapping set errors.

Table 7.11: Decoding error distributions for the lowest-error-floor rate-½ (�, �) = (512, 256)

OED ACE PEG code using the RPCES + �-DFR BP/SPA decoder with � = 10 and 100

Decoding error distributions at different 89/;< (in percentages)

2.00�F

2.50�F

3.00�F

3.50�F

4.00�F

Type of IBP/SPA
decoder

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

RPCES + 10-DFR

0.06%

99.94%

0.36%

99.64%

2.00%

98.00%

0.00%

100.00%

0.00%

100.00%

RPCES + 100-DFR

0.07%

99.93%

0.47%

99.53%

3.00%

97.00%

0.00%

100.00%

0.00%

100.00%

228

Table 7.12: Decoding error distributions for the lowest-error-floor rate-½ (�, �) = (1024, 512)

ACE PEG code using the RPCES + �-DFR BP/SPA decoder with � = 10 and 100

Decoding error distributions at different 89/;< (in percentages)

1.50�F

2.00�F

2.50�F

3.00�F

3.50�F

Type of IBP/SPA
decoder

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

Hamming
distance
errors

Trapping
set

errors

RPCES + 10-DFR

0.004%

99.996%

0.076%

99.924%

0.00%

100.00%

0.00%

100.00%

0.00%

100.00%

RPCES + 100-DFR

0.00%

100.00%

0.00%

100.00%

0.00%

100.00%

1.00%

99.00%

0.00%

100.00%

It can be observed from Table 7.11 and Table 7.12 that the highest percentage of decoding failures are

due to trapping sets. In fact, irrespective of the 89/;< and/or the decoder used, a minimum of 99% of

the decoding errors were caused by trapping sets. It is therefore obvious from the results in Table 7.11

and Table 7.12 that trapping sets are the main obstacle to improving the performance of

short-to-medium length LDPC codes decoded using iterative message-passing algorithms and

reducing their gap to the ultimate Shannon limit over the AWGN channel. Additionaly, as can be

observed from Table 7.11 and Table 7.12, the maximum number of decoding failure retrials, i.e. �,

has no discernible effect on the distributions of the type of decoding errors.

The generalized improvement in the decoding performance of short-to-medium length LDPC codes

achieved using the proposed RPCES + �-DFR BP/SPA decoder are significantly better than the

performance improvements published for check node removal and collaborative decoding as proposed

in [Kang et al., 2016], and the shuffled iterative decoding [Zhang and Fossorier, 2005] which was used

to decode the rate-½ (�, �) = (1000, 500) LDPC codes in Fig. 11 of [Richter and Hof, 2006]. In

each decoding iteration, the RPCES BP/SP algorithm cycles through the equations in the probability

matrix '- in a randomized sequence. This implies that for a code with a large number of parity-check

equations �, the probability of repeating the same decoding equation sequence while iteratively

decoding a received codeword vector is extremely small (≅ 0). The randomized equation sequence

229

can be seen as a technique for breaking up dominant trapping sets using the complete set of

parity-check nodes. This technique for breaking up trapping sets is very similar to the collaborative

decoding described in [Kang et al., 2016]. However, collaborative decoding has the drawback of using

only a subset of the parity-check nodes in the sub-decoding mode. This undoubtedly results in the loss

of information about the relationship between the sets of symbol node in the excluded parity-check

nodes during decoding iterations in the sub-decoding mode. In the two proposed RPCES BP/SPA

decoders, the complete set of parity-check nodes are used in each decoding iteration and there is no

loss of parity-check information in any decoding iteration. The proposed RPCES + �-DFR BP/SPA

decoder significantly improves the decoding performance of all types of short-to-medium length

LDPC codes.

7.4 Summary

• Two novel modifications to the standard BP/SPA decoder, the RPCES BP/SPA decoder and the

RPCES + �-DFR BP/SPA decoder, have resulted in an unprecedented performance improvement

to BP/SPA decoding over the AWGN channel. The RPCES BP/SPA decoder implements a

randomized probability matrix '- parity-check equation sequence in each decoding iteration.

• Compared to the standard BP/SPA decoder, the RPCES BP/SPA decoder results in improved

LDPC code performance in both the waterfall and error-floor regions, and the decoding

convergence time for the RPCES BP/SPA decoder is significantly less than that for the standard

BP/SPA decoder (the FPCES BP/SPA decoder).

• The use of different series of random decoding equation sequences in the RPCES BP/SPA

decoder results in different decoding outcomes. Consequently, the probability of decoding a

received vector to a codeword (even if its the wrong one) is increased by trying different series of

random decoding equations for its decoding. The RPCES + �-DFR BP/SPA decoder augments

the RPCES BP/SPA decoder with the ability to reattempt each unsuccessful decoding up to �

times.

230

• Compared to using the standard BP/SPA decoder and the RPCES BP/SPA decoder, the

RPCES + �-BP/SPA decoder results in an unprecedented improvement to the performance of

short-to-medium length irregular LDPC codes in the waterfall and error-floor regions. The

RPCES + �-BP/SPA decoder is also referred to as an improved BP/SPA (IBP/SPA) decoder.

• The modifications made to the conventional BP/SPA decoding process to obtain the IBP/SPA

decoder results in an efficient and effective technique for breaking trapping sets in LDPC codes.

• Given the IBP/SPA decoder’s capacity for breaking up trapping sets, it is clear that the decoding

performance of IBP/SPA decoders (RPCES + �-DFR BP/SPA decoders) improves with

increasing values of �. However, the rate at which the decoding performance of the

RPCES + �-DFR BP/SPA decoder improves with increasing � diminishes as � → ∞.

231

Chapter 8

Modifying the BP/SPA decoder for Slepian-Wolf coding

Parts of this chapter have been presented in the following conference: Eleruja, S., Abdu-Aguye, U. F.,

Ambroze, M., Tomlinson, M., & Zaki, M. (2017, November). Design of binary LDPC codes for

Slepian-Wolf coding of correlated information sources. 5
th
 IEEE Global Conference on Signal and

Information Processing, 14-16 November, 2017, Montreal, Canada. IEEE.

8.1 Introduction

Slepian-Wolf (SW) coding is a method of coding two lossless compressed correlated

(i.e. statistically dependent) sources. Correlated information sources currently abound in practical

communication systems. Information generated and transmitted by correlated sources usually conform

to identical protocols which implies that certain information in transmitted frames/blocks will be

common to the sources. Common information from different sources can be carefully managed to

avoid duplication and achieve optimal channel capacity utilization.

Slepian and Wolf laid the foundation of distributed source coding (DSC) in 1973, when they proved

the counter-intuitive result that separate encoding with joint decoding achieves the same compression

rate as that of joint encoding [Slepian and Wolf, 1973]. DSC problems pertain to the compression of

multiple correlated information sources that do not communicate with each other and therefore are

encoded in a distributed manner. By modeling the correlation between multiple sources at the decoder

side with channel codes, DSC shifts the computational complexity from the encoder side to the

decoder side, which provides appropriate frameworks for applications with complexity-constrained

232

sender, such as sensor networks and video/multimedia compression. One of the main properties of

distributed source coding is that the computational burden in encoders is shifted to the joint decoder.

Over the past four decades, communications has shifted from point-to-point communication to

network communication with multiple senders and receivers. The emergence of these distributed

systems has increased the requirement for more energy efficient and effective use of limited resources

such as bandwidth and power.

Slepian and Wolf showed that multiple sources can be jointly compressed at a rate greater than the

sum of their respective rates if compressed separately [Slepian and Wolf, 1973]. Given a signal �E

which is transmitted conventionally at full rate of G�/ = '(�E) and is faithfully recovered at the

decoder, while the correlated signal �� is compressed as close as possible to the SW limit '(��|�E).

The SW rate region for two correlated sources �E and �� is bounded by the following inequalities,

G�/ ≥ '(�E|��) (8.1)

G�° ≥ '(��|�E) (8.2)

G�/ + G�° ≥ '(�E,��) (8.3)

If the encoder and decoder of the two sources are independent, the lowest rate that can be achieved for

lossless compression is '(�E) and '(��) for �E and �� respectively, where '(�E) and '(��) are the

entropies of �E and ��. However, the Slepian–Wolf theorem shows that much better compression rate

can be achieved with joint decoding. As long as the total rate of �E and �� is larger than their joint

entropy '(�E,��) and none of the sources is encoded with a rate larger than its entropy, distributed

coding can achieve arbitrarily small error probability for long sequences. In other words, the two

isolated sources can compress data as efficiently as if they were communicating with each other.

A special case of distributed coding is compression with decoder side information, where source �� is

available at the decoder side but not accessible at the encoder side. This can be treated as the condition

that G�° = '(��) has already been used to encode ��, while we intend to use '(�E/��) to encode �E.

The whole system is operating in an asymmetric way, i.e. the compression rate for the two sources are

233

asymmetric [‘Distributed source coding’, 2017], [‘Slepian-Wolf coding’, 2017]. Slepian-Wolf coding

entails lossless coding of a source with the help of side information available at the decoder only.

[Liveris et al., 2002] and [Schonberg et al., 2004] showed that distributed source coding based on

LDPC codes results in better performance than those based on turbo codes.

This chapter describes the modifications made to the implemented standard BP/SPA decoder, which is

described in detail in Section 2.5, to study distributed source coding of two correlated sources for

asymmetric SW coding using binary LDPC codes. The performance of PEG algorithm constructed

binary LDPC codes of short-to-medium length using conventional channel models are compared to

their performance using SW channel models. More details of the investigations carried out and the

results obtained can be found in [Eleruja et al., 2017].

8.2 Modifying the BP/SPA Decoder for Slepian-Wolf Coding of

Correlated Information Sources

In this section, a description of the necessary modifications to the BP/SPA decoder in order to

implement the Slepian-Wolf channel model for the coding of correlated information sources are given.

To obtain the best understanding of the descriptions that follow, the reader should first be familiar

with the BP/SPA decoder implementation which is explained in detail in Section 2.5.

Let � and be two correlated binary information sources. Define the correlation between source �

and source as: is noisy version of �. Source can be obtained by adding AWGN vectors at an

arbitrary SNR (or noise standard variation, ÇH) to BPSK bit vectors of source � and then quantizing

the result to obtain the bit string for correlated source . Alternatively, may be considered to be

obtained as a result of passing � through a BSC with an unknown bit crossover probability À.

 = ��, w|xℎ À½<9«9|&|x� 1 − À
� ⊕ 1, w|xℎ À½<9«9|&|x� À

� (8.4)

In either case, sources � and are considered to be correlated because they differ in only a few bit

positions. Unlike in classical coding, information from correlated sources � and are not necessarily

234

codewords µ ∈ X, and include all bit strings Ü ∈ � of length �, so that X ⊂ � and µ ∈ �. Let Ü be an �

bit long bit string from source � or , where Ü = ouk uE u� u�QEp. Given a parity-check

matrix ', the syndrome ³ of any bit string Ü from source � or is given by,

³ = Ü'+ ¬= 0, u = .
≥ 1, u ≠ .

� (8.5)

In classical coding, only the codewords µ = o.k .E .��QEp of a code defined by an ' matrix

are transmitted, and the syndromes of all codewords are zero, i.e.,

³ = µ'+ = 0 (8.6)

Consequently, the classical BP/SPA decoder is built around the expectation that all binary vectors

received from the channel µ, = o.k
, .E

, .�
, �QE

, p when correctly decoded to a codeword µ ∈ X

would have zero syndromes.

The syndrome of any � bit long bit string Ü is obtained using ³ = Ü'+, and the transposed ' matrix

'+ has dimensions � × �. Consequently, the syndrome of Ü is also � bits long.

Consider an LDPC code parity-check matrix of dimension � × �, where � is the codeword length, �

is the number of information bits, and � is the number of parity-check bits. It follows that � = � + �.

If the code rate G = ½, then G = R
� = �Q�

� = E
� ⇒ � = �

�. Therefore, for a rate-½ code the syndrome

³ of each � bit long bit string Ü will be
�
� bits long. In other words, for the ' matrix of a full rank

rate-½ code, the syndrome of messages from a source are half the lengths of the original messages

from the source.

At any code rate, whether the ' matrix is of full rank or not, the syndrome ³ of a � bit long bit string Ü

can be represented as ³ = o�k �E �� ��QEp. The syndrome ³ of every � bit long bit string Ü is

made up of a set of � bits {��} for all 0 ≤ | ≤ � − 1. There are as many syndrome bits as there are

parity-check equations in a ' matrix, and each syndrome bit �� corresponds to the parity-check

235

equation with index |. That is, given the syndrome ³ of an arbitrary � bit long bit string Ü, bit �k of ³

verifies if parity-check equation 0 is satisfied by Ü, bit �E verifies if parity-check equation 1 is satisfied

by Ü, and so on. The last bit ��QE verifies if parity-check equation (� − 1) is satisfied by Ü. These �

parity-check equation verifications are done even if there are some linearly dependent parity-check

equations and the actual parity-length of a code is less than the number of parity-check equations in

the ' matrix.

If only codewords of an H matrix are transmitted, the decoder expects that the syndrome of any

correctly decoded codeword µ would be equal to 0. That is, ³ = µ'+ = 0, because all the syndrome

bits �� are equal to 0,

³ = � �� = 0
�QE

�ók

(8.7)
where �� = 0, ∀ 0 ≤ | ≤ � − 1

This implies that for codewords, the sum of the symbol node bits in each parity-check equation is

even. However, this is not always so when � bit long arbitrary bit strings Ü are transmitted from

sources.

For an arbitrary � bit long bit string Ü where Ü ∉ X, the syndromes ³ are more than zero. That is,

³ = Ü'+ ≥ 1, because at least one of the � bits of the syndrome of Ü is a 1,

³ = � �� ≥ 1
�QE

�ók

(8.8)
where 0 ≤ | ≤ � − 1, «, 9 ∈ |, |9| ≥ 1, |«| + |9| = ||| = �, �N = 0, and �J = 1

This implies that for these � bit long bit strings Ü ∉ X, the correct sum of the symbol node bits

involved in at least one of the parity-check equations is expected to be a 1.

In an ideal implementation of the SW coding model for distributed sources, the syndromes of the

noise-free source �, and the � bit long vectors of correlated source (which is a quantized noisy

236

version of �) will be transmitted separately over a noiseless channel to the decoder. Compression is

achieved by transmitting only the syndrome bits of one of the sources (i.e., �) instead of all the bits of

the source.

8.2.1 Modifying the BP/SPA Decoder for Syndrome Decoding of Correlated

Information Sources over the AWGN Channel: A SW-Like Coding Model

This section explains how the standard BP/SPA decoder implemented in this research was modified to

implement syndrome decoding of correlated information sources over the AWGN channel

(BP/SPA syndrome decoder). The implementation of the standard BP/PSA decoder is described in

Section 2.5. The C programming language code for the BP/SPA syndrome decoder implemented in

this research is available in the Appendices (See Appendix L).

Unlike conventional channel coding, correlated sources � and are not restricted to transmitting only

codewords, and the transmitted messages can be seen as arbitrary � bit strings Ü. Therefore, there is no

need for a , matrix (generator matrix) for encoding messages from information sources in SW

channels; the BP/SPA syndrome decoder is built around the SW coding model. Consequently, all the

Gaussian elimination operations for obtaining the , matrix corresponding to the ' matrix to be used

for decoding were removed from the BP/SPA decoder implemented for the conventional channel.

Instead, an � bit long random bit string Ü is generated using the same procedure which was originally

used to generate random binary � bit long message bit strings Â = [}k }E }RQE]. An � bit long

random bit strings generated in this way can be represented as,

Ü = [uk uE u� u�QE]

where each Ü generated in this manner is a complete information frame from SW information source

� (and). After a random message is generated at source �, its syndrome is calculated using equation

(8.5). The syndrome of a message from source � can be denoted by,

³ = [�k �E �� ��QE]

237

For rate-½ codes, the syndromes of messages from source � are only half the length of the complete

message from the source, i.e. � = � 2� . Instead of the complete � bit long message from source �, only

its � 2� bit long syndrome is transmitted noiselessly to the BP/SPA syndrome decoder. The syndrome

is the side information required at the BP/SPA syndrome decoder in order to decode the message

transmitted from the other source (source) at any particular instant.

In order to generate messages for transmission from information source which are correlated to

those from source �, AWGN is added to the BPSK modulated representation of the message from

source � in proportion to the required SNR in the same manner as in the conventional BP/SPA

decoder, so that if the resultant BPSK signals were quantized back into bits, a message from source

will differ from that from source � in a few bit positions. That is, the information from source and

source � will be correlated. It is important to note that in the SW coding model, the ideal justification

for the correlation between two sources requires both sources to be in the same form. The

BP/SPA syndrome decoder is therefore not a proper SW coding model due to the deficiency in

defining the correlation between the sources. The proposed BP/SPA syndrome decoding arrangement

is used only to introduce the concept of syndrome decoding.

Assuming the received noisy vector Ï which represents source is,

Ï = [−1.4 − 0.1 + 1.3 − 1.1 − 0.6 + 1.2 + 1.1 − 0.2 − 1.4 − 0.8 − 1.2 + 1.3],

the probabilities that each of these received vectors are equal to bit 1 can be calculated using equation

(2.17) as follows,

À�
EK = 1

1 + �
Q�(�

Æ°

Assuming that Á;G = 1 Ç�⁄ = 1.239 (equal to Á;G(�F) = 0.931), the probabilities that the received

vectors of Ï are equal to bit 1 are as follows,

� = [0.03 0.44 0.96 0.06 0.18 0.95 0.94 0.38 0.03 0.12 0.05 0.96]

238

These received bit probabilities are the required inputs from the AWGN channel to the BP/SP

algorithm. Subsequently, using these bit probabilities, the BP/SP algorithm is used to decode the noisy

BPSK modulated message from source using the noiseless side information received from source �

regarding the correct values of the set of syndrome bits {��} ∀ 0 ≤ | ≤ � − 1 for each � bit long

message vector Ü transmitted.

The following is a description of the modification to the BP/SP algorithm in order to utilize side

information. In the conventional BP/SPA decoder for the AWGN channel, only codewords of the

' matrix used for decoding are transmitted. The bit probability calculation method which was adopted

in the implemented BP/SPA decoder is À�
E) - ‘the probability that a received bit is a 1’, and equation

(2.33) was used to calculate the extrinsic information for every parity-check equation in each decoding

iteration. Equation (2.33) is as follows,

À�
E) = 1 − ∏ ~1 − 2À%�%��

2

However, equation (2.33) is used to evaluate extrinsic information for every equation in the

probability matrix '- of the conventional BP/SPA decoder because the correct syndrome bit value

corresponding to each parity-check equations is 0 for codewords. The correlated information sources

in the BP/SPA syndrome decoder (a SW-like coding model), i.e. source � and source , are not

restricted to transmitting only codewords, and the correct syndrome bit value for each parity-check

equation is determined from the side information obtained from source �. Therefore, a dynamic

‘side-information-dependant’ system for calculating extrinsic information must be adopted.

Consequently, in each decoding iteration, when calculating the extrinsic information for parity-check

equations for which the correct syndrome bit value is 0, equation (2.33) is used as usual, and when

calculating the extrinsic information for parity-check equations for which the correct syndrome bit

value is 1, equation (2.32) is used instead. Equation (2.32) is as follows,

À�
k) = 1 + ∏ ~1 − 2À%�%��

2

239

The side information is used to determine whether equation (2.32) or equation (2.33) should be used to

calculate the extrinsic information for an equation in the probability matrix '-. This decision depends

on the value of the syndrome bit corresponding to the parity-check equation being evaluated at any

instant in a decoding iteration. All other aspects of the BP/SP algorithm in the conventional BP/SPA

decoder and the BP/SP algorithm in the BP/SPA syndrome decoder are identical.

Using the rate-½ (�, �) = (1024, 512) benchmark code with degree distribution @A(x) = 0.47461x
2 +

0.27930x
3 + 0.03418x

4 + 0.10840x
5 + 0.10352x

15, the following two coding models were compared,

i) Conventional BP/SPA decoder: Codeword transmissions in the AWGN channel from a

single information source, and decoded using the standard BP/SPA decoder.

ii) BP/SPA syndrome decoder: Transmissions from two correlated information sources �

and , and decoded using the BP/SPA syndrome decoder.

Information compression is achieved in the BP/SPA syndrome decoder of ii) by using,

a) only the syndromes of messages from source � (instead of the the full message) received

noiselessly, which is used as the side information for the modified BP/SP algorithm in the

BP/SPA syndrome decoder, and

b) the full messages from source which is to be decoded by the modified BP/SP algorithm.

Figure 8.1 shows the simulated frame error rate (FER) performance results obtained for the two coding

models that were compared.

240

Figure 8.1: Conventional BP/SPA decoder vs. the BP/SPA syndrome decoder using an LDPC code

From the results plotted in Figure 8.1, it can be seen that the BP/SPA syndrome decoder

(the SW-like coding model) has a very similar performance to that of the conventional coding model.

Therefore, compared to the conventional BP/SPA decoder, the BP/SPA syndrome decoder achieved a

very good compression with no apparent loss in performance.

8.2.2 Modifying the BP/SPA Decoder for Slepian-Wolf Coding of Correlated

Information Sources over the BSC

This section explains how the standard BP/SPA decoder implemented in this research was modified to

implement the proposed SW coding of correlated information sources over the BSC

(SW BSC decoder). However, due to the similarities between the algorithm for syndrome decoding of

correlated information sources over the AWGN channel (BP/SPA syndrome decoder), as presented in

241

Section 8.2.1, and the SW coding of correlated information sources over the BSC (SW BSC decoder)

which is proposed in this section, emphasis is placed only on the differences between the two BP/SPA

decoder modifications. The C programming language code for the SW BSC decoder implemented is

available in the Appendices (See Appendix M).

As discussed in Section 8.2.1, there is no need for a , matrix (generator matrix) for encoding

messages from information sources in SW coding. Consequently, all the Gaussian elimination

operations for obtaining the , matrix corresponding to the ' matrix used for decoding were removed

from the BP/SPA decoder which was implemented for the conventional channel. Instead, an � bit long

random bit string Ü is generated using the same procedure originally used to generate random binary �

bit long message bit strings, i.e. Â = [}k }E }� }RQE]. So that,

Ü = [uk uE u� u�QE]

Where Ü represents a complete message from SW information source � (and). After each random

message is generated, its syndrome is calculated using equation (8.5). The syndrome of a message

from source � can be denoted by,

³ = [�k �E �� ��QE].

Instead of the complete message from source �, only its syndrome is transmitted noiselessly to the

SW BSC decoder. The syndrome is the side information required at the SW BSC decoder in order to

decode the message transmitted from the other source (source) at any particular instant.

In order to generate the messages to be transmitted from information source which are correlated to

those from source �, AWGN is added to the BPSK modulated representation of the message from

source � in proportion to the required SNR in the same manner as in the conventional BP/SPA

decoder. However, unlike in the BP/SPA syndrome decoder, the resultant BPSK signals obtained after

AWGN is added to the BPSK modulated representation of the message from source � are quantized

back into bits, and the resultant binary message from source differs from the message from source �

242

in a few bit positions (depending on the SNR). For the proposed SW BSC decoder, the information

from source and source � are in the same form (bits). Therefore, the correlation between the two

information sources is ideal.

Borrowing from the example in Section 2.5, assume that a twelve (12) bit long binary string Ü� is

generated as the binary information from source �, where

Ü� = [0 1 1 0 0 1 1 0 0 0 0 1]

The BPSK modulated vector representation of Ü will be represented by Ü�á.

Therefore,

Ü�á = [−1.0 + 1.0 + 1.0 − 1.0 − 1.0 + 1.0 + 1.0 − 1.0 − 1.0 − 1.0 − 1.0 + 1.0]

Let us assume that the following AWGN vector string was obtained using twelve (12) successive calls

to the 1«���u function and then multiplying each deviate returned by the noise standard deviation Ç

for an arbitrary SNR(dB):

Î = [−0.4 − 1.1 + 0.3 − 0.1 + 0.4 + 0.2 + 0.1 + 0.8 − 0.4 + 0.2 − 0.2 + 0.3]

In order to obtain correlated information source , AWGN vector Î is added to the BPSK modulated

information from source �, i.e. Ü�á, to obtain a noisy BPSK modulated information source ,

i.e. Ü�á�, as follows:

Ü�á� = Ü�á + Î, (8.9)

This addition is carried out in the component-by-component basis to obtain the received vector Ü�á�

as:

Ü�á� = [−1.4 − 0.1 + 1.3 − 1.1 − 0.6 + 1.2 + 1.1 − 0.2 − 1.4 − 0.8 − 1.2 + 1.3]

It can be observed that the magnitude of the AWGN noise in the second code bit position of Î

(i.e. ;E) was sufficient to change the polarity (phase of a BPSK modulation) of u��/� compared to that

243

of u��/. The noisy vector Ü�á� in the second bit position is given by u��/� = u��/ + ;E, where

u��/ = +1.0 and ;E = −1.1. Therefore, u��/� = −0.1 while the value of bit vector u��/ = +1.0.

In order to obtain source in the same form as source �, i.e. as a binary string, Ü�á� is quantized back

to bits to obtain Ü� as,

Ü� = [0 0 1 0 0 1 1 0 0 0 0 1]

Recall that,

Ü� = [0 1 1 0 0 1 1 0 0 0 0 1]

Comparing the message from information source , i.e. Ü�, to the message from information source �,

i.e. Ü�, reveals that the two messages differ in one bit position. Therefore, the described process has

successfully generated two correlated information sources. That is, source and source � are

correlated.

Due to received vector quantization in BSC decoding, the received vector Ï which represents source

is obtained simply as the noiseless BPSK modulated vector representation of Ü�, i.e.,

Ï = [−1.0 − 1.0 + 1.0 − 1.0 − 1.0 + 1.0 + 1.0 − 1.0 − 1.0 − 1.0 − 1.0 + 1.0]

The noiseless BPSK modulated vector representation of Ü� may also be denoted by Ü�á so that

Ï = Ü�á.

In the BSC, the probability that a received bit corresponds to the transmitted bit is determined using

the crossover probability À which in turn is calculated using the @(�) function in equation (8.10).

@(�) = 0.5 × �½×.(º
√�) (8.10)

244

From equation (2.9), Á;G = 1 Ç�⁄ , therefore 1 Ç = √(Á;G)⁄ . By substituting 1 Ç⁄ for � in

equation (8.10), we obtain the bit crossover probability À as,

À = 0.5 × �½×.(E
Æ√�) (8.11)

or

À = 0.5 × �½×.(�¨HÍ
�) (8.12)

Assuming Á;G = 1 Ç�⁄ = 1.239 (equal to Á;G(�F) = 0.931), then using equation (8.11) the bit

crossover probability À = 0.13, and the probabilities that the received vectors in Ï are equal to bit 1

are as follows,

� = [0.13 0.13 0.87 0.13 0.13 0.87 0.87 0.13 0.13 0.13 0.13 0.87]

That is, if ½� = −1.0 then the probability that a crossover has occurred À is used, and if ½� = +1.0 then

the probability that a crossover has not occurred, i.e. (1 − À), is used. These crossover probabilities

are used as input from the BSC to the BP/SP algorithm. Subsequently, using the bit crossover

probabilities, the BP/SP algorithm is used to decode the noiseless BPSK modulated message received

from source using the noiseless side information received from source � regarding the correct

values of the set of syndrome bits {��} ∀ 0 ≤ | ≤ � − 1 for each � bit long message vector Ü

transmitted.

In order to utilize the side information, the SW BSC decoder uses the same modification to the BP/SP

algorithm as described for the BP/SPA syndrome decoder. All other aspects of the BP/SP algorithm in

the conventional BP/SPA decoder and the BP/SP algorithm in the SW BSC decoder are identical.

Using the degree distribution of the rate-½ (�, �) = (1024, 512) benchmark code discussed in

Chapter 6, i.e. @A(x) = 0.47461x
2 + 0.27930x

3 + 0.03418x
4 + 0.10840x

5 + 0.10352x
15, a rate-½

(�, �) = (1000, 500) LDPC code was constructed. The bit error rate (BER) performance of the

rate-½ (1000, 500) LDPC code, when used in the proposed SW BSC decoder, was compared to the

245

BER performance of other implementations of distributed source coding at asymmetric and symmetric

rates using the same code lengths. In Figure 8.2, the asymmetric rate performance of the proposed

SW BSC decoder is compared to those of the asymmetric rates in [Sartipi and Fekri, 2004] and

[Pradhan and Ramchandran, 2000], and the symmetric rate in [Sartipi and Fekri, 2005].

Figure 8.2 shows the BER results averaged over the two sources, i.e. �E and ��, as a function of the

joint entropy for asymmetric rates.

Figure 8.2: Distributed source coding using LDPC codes of length 1000 at

symmetric and asymmetric rates

As shown in Figure 8.2, the proposed distributed source coding model, as implemented in the

SW BSC decoder, outperforms the coding models presented in the three previously published works.

246

8.3 Summary

• The standard BP/SPA decoder has been modified to implement distributed source coding of two

correlated sources for asymmetric Slepian-Wolf (SW) coding using binary LDPC codes.

• In an investigation into the concept of syndrome decoding, a BP/SPA syndrome decoder which

implements a SW-like decoding arrangement was implemented. Compared to the conventional

BP/SPA decoder, the BP/SPA syndrome decoder achieved a very good compression with no

apparent loss in performance.

• The standard BP/SPA decoder has been modified to implement SW coding of two binary

correlated information sources over the BSC (the SW BSC decoder).

• Using a rate-½ (�, �) = (1000, 500) LDPC code with symbol node degree distribution @A(x) =

0.47461x
2 + 0.27930x

3 + 0.03418x
4 + 0.10840x

5 + 0.10352x
15, the SW coding model

outperformed other distributed source coding models in literature which utilized LDPC codes of

identical length and rate.

247

Chapter 9

Conclusions

9.1 Contributions to Knowledge

• A detailed and simplified explanation of the iterative decoding procedure in the standard BP/SPA

decoder has been given. {Section 2.5.3}

• The single-edge tree-apex (SETA) subgraph expansion for finding short cycles in LDPC code

Tanner graphs has been proposed. The SETA subgraph expansion is a modification of the

subgraph expansion used in the standard PEG algorithm. {Section 4.4.1}

• A technique of evaluating the ACE of cycles in LDPC codes with respect to the symbol nodes of

Tanner graphs has been proposed. The technique is based on a ‘local ACE ’ metric. Consequently,

the entire ACE spectrum in a Tanner graph can be described using a local ACE distribution.

{Chapter 4}

• An efficient algorithm for determining the local girth and ACE distributions in LDPC code

Tanner graphs has been presented. The algorithm is relatively easy to implement, has a worst case

computational complexity of ò(��), and finds all the short cycles through the symbol nodes in a

Tanner graph using SETA subgraph expansions. When applied to irregular short-to-medium

length LDPC codes, the algorithm is faster than existing algorithms for counting cycles in LDPC

codes. {Chapter 4}

248

• A cyclic PEG (CPEG) algorithm has been presented. The CPEG algorithm constructs LDPC

codes using an edge connections sequence which is different from that of the original PEG

algorithm. The edge connections sequence of the CPEG algorithm results in codes with improved

girth and ACE distributions compared to codes constructed using the edge connections sequence

of the standard PEG algorithm. However, the improved girth and ACE distributions in CPEG

based LDPC codes do not translate to lower error-floors than are achievable by standard PEG

algorithm based LDPC codes. {Chapter 5}

• DE optimized irregular rate-½ (�, �) = (512, 256) LDPC codes that have higher ���� and ����

than have been published for similar LDPC codes have been found. Some of these irregular

rate-½ (512, 256) LDPC codes have ���� = 20, and others have ���� = 20. {Section 5.3}

• From the error-floor performance of ensembles of DE optimized irregular rate-½ (�, �) =

(512, 256) LDPC codes over the AWGN channel, it has been shown that there is a lowering of

the error-floor of LDPC codes as their ���� increases up to a certain threshold ����. However,

no further lowering of the error-floor of LDPC codes are observed as ���� is increased above the

threshold ���� value. Increasing the ���� of LDPC codes above the threshold ���� does not

result in further lowering of their error-floor over the AWGN channel. {Section 5.4}

• A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm has been presented. The

MLG (ES) PEG algorithm controls the global girth of codes it constructs by skipping all edge

connections which would have resulted in undesired local girths. {Section 6.2}

• The concept of optimal low-correlated-edge density (OED) in LDPC codes has been introduced,

OED codes are constructed using DE optimized degree distributions and the MLG (ES) PEG

algorithm modification. An irregular rate-½ (�, �) = (512, 256) LDPC code with the lowest

known error-floor has been found, and it is an OED ACE PEG code. That is, it was constructed

using a combination of the IPEG construction [Xiao and Banihashemi, 2004], the MLG (ES) PEG

algorithm modification, and the proposed technique for obtaining OED codes. {Chapter 6}

249

• Consequent to an improved symbol node degree distribution, irregular rate-½ (�, �) =

(1024, 512) ACE PEG codes that have lower error-floor than published for LDPC codes of

identical rate and length have been found. {Section 6.3.2}

• An improved BP/SPA (IBP/SPA) decoder has been presented. The IBP/SPA decoder results in an

unprecedented improvement to the performance of short-to-medium length LDPC codes in the

waterfall and error-floor regions. The modifications made to the conventional BP/SPA decoding

process in the IBP/SPA decoder results in an efficient and effective technique for breaking

trapping sets in the decoding of LDPC codes. {Chapter 7}

• The Slepian-Wolf coding model for two binary correlated information sources over the BSC

(SW BSC decoder) was implemented and, using a rate-½ (�, �) = (1000, 500) LDPC code

with symbol node degree distribution @A(x) = 0.47461x
2 + 0.27930x

3 + 0.03418x
4 + 0.10840x

5 +

0.10352x
15, the SW coding model has been shown to outperform other distributed source coding

models in literature which utilized LDPC codes of identical length and rate. {Chapter 8}

9.2 Conclusions and Recommendations for Future Work

This thesis focused mainly on improving on the error-floor performance published for

short-to-medium length irregular LDPC codes over AWGN channels in the literature. There are two

approaches to this problem: Improving short-to-medium length LDPC code construction methods, and

improving the performance of the iterative BP/SPA message-passing decoders used for LDPC codes.

In the first approach, the standard PEG algorithm [Hu et al., 2001] and other existing PEG algorithms

were reviewed. New PEG algorithm modifications intended to construct LDPC codes with lower

error-floor were investigated. Noteworthy PEG algorithm modifications in the literature which are

designed to construct short-to-medium length LDPC codes with lower error-floor were investigated.

The standard PEG algorithm, the improved PEG (IPEG) construction [Xiao and Banihashemi, 2004],

and the generalized ACE constrained PEG (G-ACE PEG) algorithm [Vukobratović and Šenk, 2008]

were implemented and compared. DE optimized short-to-medium length LDPC codes constructed

250

using the IPEG algorithm (i.e. ACE PEG codes) have significantly improved cycle connectivity in

their Tanner graphs and have been shown to significantly improve on the performance of codes of

identical dimensions which are constructed using the standard PEG algorithm. G-ACE PEG codes are

constructed to have improved ACE properties compared to ACE PEG codes. In Chapter 4, it has been

shown that G-ACE PEG codes also have improved girth and ACE properties compared to ACE PEG

codes. However, no evidence has been found in the research that G-ACE PEG codes perform better

than ACE PEG codes. Investigation results suggests that the widely distributed check node degrees of

G-ACE PEG codes are responsible for the fact that the performance of G-ACE PEG codes is only

similar to that of ACE PEG codes despite their superior girth and ACE properties.

In Chapter 4, as a necessary aid to the investigations carried out in the thesis, an efficient algorithm for

determining the girth and ACE distributions in LDPC code Tanner graphs has been presented. The

algorithm is relatively easy to implement and finds all the short cycles through the symbol nodes in

Tanner graphs using single-edge tree-apex (SETA) subgraph expansions. The algorithm for

determining the girth and ACE distributions in LDPC code Tanner graphs has been shown to be faster

than existing algorithms for counting cycles in LDPC codes when applied to irregular

short-to-medium length LDPC codes. Additionally, with a worst case computational complexity of

ò(��), the algorithm is considerably less complex than similar algorithms in the literature.

A cyclic PEG (CPEG) algorithm which uses an alternative edge connections sequence to that in the

standard PEG algorithm has been presented in Chapter 5. The minimum weigth, i.e. ���� and ����,

distributions in four ensembles of irregular rate-½ (�, �) = (512, 256) LDPC codes which were

constructed using the PEG, ACE PEG, CPEG, and ACE CPEG algorithms respectively with

DE optimized degree distribution �ô(x) = 0.34961x
2 + 0.39844x

3 + 0.09961x
4 + 0.04883x

5 +

0.10352x
14 were compared. Each of the four LDPC codes ensembles constructed contained 6000

codes. ACE CPEG codes are obtained using a combination of the IPEG modification and the CPEG

algorithm. DE optimized rate-½ (�, �) = (512, 256) irregular LDPC codes which have higher ����

and ���� than have been published for similar LDPC codes were found in all four code ensembles.

251

Comparisons of the minimum weight distributions in the PEG, ACE PEG, CPEG, and ACE CPEG

code ensembles reveals that the codes in the ACE PEG ensemble had the highest ���� and ����

distributions. Some DE optimized rate-½ (�, �) = (512, 256) LDPC codes with ���� = 20, and

others with ���� = 20 were found in the ACE PEG code ensemble. In Section 5.4, it has been shown

that increasing the minimum distance of LDPC codes lowers their error-floor performance over

AWGN channels. However, there are threshold minimum distances values above which there is no

further lowering of the error-floor performance consequent to increasing code minimum distances. In

Section 5.5, the global girths, girth distributions, and ACE distributions of the irregular rate-½

(�, �) = (512, 256) LDPC codes in the PEG, ACE PEG, CPEG, and ACE CPEG code ensembles

were compared. Results show that the ACE CPEG algorithm constructed the code ensemble with the

highest local girth and ACE distributions. However, simulation results show that despite improved

girth and ACE distributions, CPEG and ACE CPEG codes do not improve on the error-floor

performance achievable by PEG and ACE PEG codes respectively.

A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm which controls the minimum

cycle girth connected during the construction of LDPC code Tanner graphs has been presented in

Chapter 6. The algorithm controls the global girth of codes it constructs by skipping all edge

connections which would have resulted in undesired local girths. A technique for constructing optimal

low-correlated-edge density (OED) LDPC codes based on modifying DE optimized symbol node

degree distributions and the MLG (ES) PEG algorithm modification has been presented. Results show

that irregular rate-½ (�, �) = (512, 256) OED ACE PEG codes have lower error-floor than the

lowest error-floor published for LDPC codes of identical rate and length. However, similar to the case

for ACE improvements, the proposed method for constructing OED codes only result in lower

error-floor LDPC codes when used with some DE optimized degree distributions. Consequent to an

improved symbol node degree distribution, rate-½ (�, �) = (1024, 512) ACE PEG codes have been

shown to have lower error-floor over the AWGN channel than previously published for LDPC codes

of similar length and rate.

252

In the second approach, modifications to the iterative BP/SPA message-passing decoder with the

potential to improve the decoding performance of short-to-medium length LDPC codes over AWGN

channels were investigated. In Chapter 7, two simple modifications to the standard BP/SPA decoder

have resulted in an unprecedented performance improvement to BP/SPA decoding over AWGN

channels. The randomized parity-check equation sequence (RPCES) BP/SPA decoder implements a

random probability matrix '- parity-check equation sequence in each decoding iteration. Compared to

the standard BP/SPA decoder, the RPCES BP/SPA decoder results in improved LDPC code

performance in both the waterfall and error-floor regions, and the decoding convergence time for the

RPCES BP/SPA decoder is significantly less than that for the standard BP/SPA decoder. The use of

different series of random decoding equation sequences in the RPCES BP/SPA decoder results in

different decoding outcomes. Consequently, the probability of decoding a received vector to a

codeword (even if its the wrong one) is increased by trying different series of random decoding

equations for its decoding. The RPCES + �-DFR BP/SPA decoder augments the RPCES BP/SPA

decoder with the ability to reattempt each unsuccessful decoding up to � times. Compared to using the

standard BP/SPA decoder and the RPCES BP/SPA decoder, the RPCES + �-BP/SPA decoder results

in an unprecedented improvement to the performance of short-to-medium length irregular LDPC

codes in the waterfall and error-floor regions. The RPCES + �-BP/SPA decoder is also referred to as

the improved BP/SPA (IBP/SPA) decoder. The modifications made to the conventional BP/SPA

decoding process in the IBP/SPA decoder results in an efficient and effective technique for breaking

trapping sets in LDPC codes. The IBP/SPA decoder has near maximum likelihood (ML) decoding

performance.

In Chapter 8, the standard BP/SPA decoder has been modified to implement distributed source coding

of two correlated sources for asymmetric Slepian-Wolf (SW) coding using binary LDPC codes. In an

investigation into the concept of syndrome decoding, a BP/SPA syndrome decoder which implements

a SW-like decoding arrangement was implemented. Compared to the conventional BP/SPA decoder,

the BP/SPA syndrome decoder achieved a very good compression with no apparent loss in

253

performance. The standard BP/SPA decoder was modified to implement the SW coding of two binary

correlated information sources over the BSC (SW BSC decoder). Using a rate-½ (�, �) =

(1000, 500) LDPC code with symbol node degree distribution @A(x) = 0.47461x
2 + 0.27930x

3 +

0.03418x
4 + 0.10840x

5 + 0.10352x
15 it has been shown that the SW coding model outperforms other

distributed source coding models in the literature which used LDPC codes of identical length and rate.

In addition to the many existing challenges to realizing capacity-approaching short-to-medium length

LDPC codes which predate this work, several new problems have emerged in the course of this work.

The following is a list of recommendations for future investigations which may contribute to further

advancements in short-to-medium length LDPC code construction and decoding performance. A few

suggestions to improve the performance of some of the algorithms presented in this thesis are also

proffered.

• Arguably, the most important factor which determines the performance of an ensemble of LDPC

codes constructed using any type of PEG algorithm is the symbol node degree distribution used to

construct the codes. The continued research into finding symbol node degree distributions which

are optimized for the construction of short-to-medium length LDPC codes with improved

error-floor performance is of a high priority.

• The algorithm for determining the local girth and ACE distributions in LDPC code Tanner graphs

can be made significantly faster in fully interconnected Tanner graphs which have symbol nodes

of degree 2 by using a single SETA subgraph expansion to determine the girth and ACE of the

shortest cycle through them. This is because SETA subgraph expansions start and end at two

different vertices of the same symbol node and, for degree 2 symbol nodes, SETA expansions

from either edge to the other results in identical shortest cycle girth and ACE values. Hence a

single SETA subgraph expansion suffices for symbol nodes of degree 2.

• An investigation into a modified PEG algorithm which adopts the candidate check node selection

criteria of the generalized ACE constrained PEG (G-ACE PEG) algorithm by

[Vukobratović and Šenk, 2008] but rearranges their prioritization in order to give a higher

254

priority to the selection of lowest degree candidate check nodes is recommended. Such an

algorithm may result in more check node regular short-to-medium length LDPC codes with better

ACE and lower error-floor than LDPC codes obtained using the improved PEG (IPEG)

construction by [Xiao and Banihashemi, 2004].

• The performance of short-to-medium length OED codes based on modified DE optimized symbol

node degree distributions, and constructed using a combination of ACE CPEG algorithm and the

MLG (ES) PEG algorithm modification have not been investigated in this thesis. This may be

investigated in future work.

• The IBP/SPA decoder presented in this thesis has demonstrated a good capacity for breaking

trapping sets and approaches ML decoding performance. It has been observed that the waterfall

and error-floor performance of short-to-medium length regular LDPC codes suffer from

significantly more trapping sets than their irregular counterparts. Regular LDPC codes generally

have significantly higher minimum distances than irregular codes. If it successfully breaks most

of the trapping sets in regular LDPC codes, the IBP/SPA decoder may result in smaller gaps in

performance between irregular and regular short-to-medium length LDPC codes. Therefore, the

performance of short-to-medium length regular LDPC codes using the IBP/SPA decoder

presented in this thesis needs to be investigated.

255

Appendices

The appendices of are stored in and can be accessed from the compact disk (CD) attached to the inner

side of the back cover of the hardcopy of this thesis. The following is a list of appendix designations,

appendix names, and the folder names under which the document(s) corresponding to each appendix

has been saved in the CD.

Appendix A
The standard PEG algorithm opegz

Appendix B
The standard BP/SPA decoder klingon

Appendix C
The SETA subgraph expansion based algorithm algorithm for

determining the local girth and ACE distributions in LDPC code PCMacegirth1000

Tanner Graphs

Appendix D
The ACE PEG/IPEG algorithm

proposed by [Xiao and Banihashemi, 2004] acepegz

Appendix E
The generalized ACE constrained PEG algorithm

Proposed by [Vukobratović and Šenk, 2008] gacepegfixz

Appendix F
The cyclic PEG (CPEG) algorithm cpegz

256

Appendix G
The ACE cyclic PEG (ACE CPEG) algorithm acecpegz

Appendix H
The MLG (ES) PEG algorithm opegfixz

Appendix I
The combined ACE PEG and MLG (ES) PEG algorithm for

constructing OED ACE PEG codes acepegfixz

Appendix J
The LDPC matrix configuration file for the lowest-error-floor

rate-½ (�, �) = (512, 256) OED ACE PEG code acefixpegz512key29

Appendix K
The LDPC matrix configuration file for the lowest-error-floor

rate-½ (�, �) = (1024, 512) ACE PEG code acepegz1024key2

Appendix L
The BP/SPA syndrome decoder SYNDAWGNFER

Appendix M
The SW BSC decoder SWBSCBER

Appendix N
The RPCES BP/SPA decoder klingonrp

Appendix O

RPCES + �-DFR BP/SPA decoder or IBP/SPA decoder klingonrepeat

257

References

A
[Abu-Surra et al., 2010] Abu-Surra, S., DeClercq, D., Divsalar, D., & Ryan, W. E. (2010, January).

Trapping set enumerators for specific LDPC codes. In Information Theory and Applications Workshop

(ITA), 2010 (pp. 1-5). IEEE.

[Ambroze, 2000] Ambroze, M. A. (2000, August). On Turbo Codes and Other Concatenated Schemes

in Communication Systems. PhD Thesis. University of Plymouth, United Kingdom.

[Ambroze et al., 2000] Ambroze, A., Wade, G., & Tomlinson, M. (2000). Practical aspects of

iterative decoding. IEE Proceedings-Communications, 147(2), 69-74.

[Aftab et al., 2001] Aftab, Cheung, Kim, Thakkar & Yeddanapudi (2001), Information Theory:

Information Theory and the Digital Age. [Online]. Website:

web.mit.edu/6.933/www/Fall2001/Shannon2.pdf

[Ambroze, 2014] Ambroze, M. A. (2014, January). ELEC 508 Lecture Notes. University of

Plymouth, United Kingdom.

[Abdu-Aguye., 2016(a)] Abdu-Aguye, U. F., Ambroze, M. A., & Tomlinson, M. (2016, December).

An efficient algorithm for determining the girth and ACE distributions in LDPC code Tanner graphs.

In Signal Processing and Communication Systems (ICSPCS), 2016 10th International Conference on

(pp. 1-7). IEEE.

[Abdu-Aguye., 2016(b)] Abdu-Aguye, U. F., Ambroze, M. A., & Tomlinson, M. (2016, September).

Improved minimum weight, girth, and ACE distributions in ensembles of short block length irregular

LDPC codes constructed using PEG and cyclic PEG (CPEG) algorithms. In Turbo Codes and Iterative

Information Processing (ISTC), 2016 9th International Symposium on (pp. 186-190). IEEE.

[Abdu-Aguye., 2016(c)] Abdu-Aguye, U. F., Ambroze, M. A., & Tomlinson, M. (2016, September).

Lowering the error floor of short-to-medium length LDPC codes using optimal low-correlated-edge

density (OED) PEG Tanner graphs. In Software, Telecommunications and Computer Networks

(SoftCOM), 2016 24th International Conference on (pp. 1-5). IEEE.

258

B
[Bose and Chaudhuri, 1960] Bose, R. C., & Ray-Chaudhuri, D. K. (1960). On a class of error

correcting binary group codes. Information and control, 3(1), 68-79.

[Berlekamp, 1966] Berlekamp, E. R. (1966, December). Nonbinary BCH decoding. University of

North Carolina.

[Bahl et al., 1974] Bahl, L., Cocke, J., Jelinek, F., & Raviv, J. (1974). Optimal decoding of linear

codes for minimizing symbol error rate (corresp.). IEEE Transactions on information theory, 20(2),

284-287.

[Blokh and Zyablov, 1974] Blokh, È. L., & Zyablov, V. V. (1974). Coding of generalized

concatenated codes. Problemy Peredachi Informatsii, 10(3), 45-50.

[Berlekamp, 1978] Berlekamp, E., McEliece, R., & Van Tilborg, H. (1978). On the inherent

intractability of certain coding problems (Corresp.). IEEE Transactions on Information Theory, 24(3),

384-386.

[Berrou et al., 1993] Berrou, C., Glavieux, A., & Thitimajshima, P. (1993, May). Near Shannon limit

error-correcting coding and decoding: Turbo-codes. 1. In Communications, 1993. ICC'93 Geneva.

Technical Program, Conference Record, IEEE International Conference on (Vol. 2, pp. 1064-1070).

IEEE.

[Bazzi et al., 2004] Bazzi, L., Richardson, T. J., & Urbanke, R. L. (2004). Exact thresholds and

optimal codes for the binary-symmetric channel and Gallager's decoding algorithm A. IEEE

Transactions on Information Theory, 50(9), 2010-2021.

[Butler and Siegel, 2012] Butler, B. K., & Siegel, P. H. (2012, December). Numerical issues affecting

LDPC error floors. In Global Communications Conference (GLOBECOM), 2012 IEEE (pp. 3201-

3207). IEEE.

[Butler and Siegel, 2014] Butler, B. K., & Siegel, P. H. (2014, December). Error floor approximation

for LDPC codes in the AWGN channel. IEEE Transactions on Information Theory, 60(12), 7416-

7441.

[Bocharova et al., 2016] Bocharova, I. E., Kudryashov, B. D., & Johannesson, R. (2016). Searching

for binary and nonbinary block and convolutional LDPC codes. IEEE Transactions on Information

Theory, 62(1), 163-183.

259

C
[Chase, 1972] Chase, D. (1972). Class of algorithms for decoding block codes with channel

measurement information. IEEE Transactions on Information theory, 18(1), 170-182.

[Costello, Jr. et al., 1998] Costello, D. J., Hagenauer, J., Imai, H., & Wicker, S. B. (1998).

Applications of error-control coding. IEEE Transactions on Information Theory, 44(6), 2531-2560.

[Calderbank et al., 1999] Calderbank, A. R., Forney, G. D., & Vardy, A. (1999). Minimal tail-biting

trellises: The Golay code and more. IEEE Transactions on Information Theory, 45(5), 1435-1455.

[Chang, 1999] Chang, E. S., (1999, July). Recommendation of 10QEB bit error rate for 10 Gigabit

ethernet. http://grouper.ieee.org/groups/802/3/10G_study/public/july99/chang_2_0799.pdf

[Campello et al., 2001] Campello, J., Modha, D.S. and Rajagopalan, S., 2001, June. Designing LDPC

codes using bit-filling. In Communications, 2001. ICC 2001. IEEE International Conference on (Vol.

1, pp. 55-59). IEEE.

[Chung et al., 2001] Chung, S. Y., Forney, G. D., Richardson, T. J., & Urbanke, R. (2001). On the

design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE

Communications letters, 5(2), 58-60.

[Costello and Forney, 2007] Costello, D. J., & Forney, G. D. (2007). Channel coding: The road to

channel capacity. Proceedings of the IEEE, 95(6), 1150-1177.

D
[Dorsch, 1974] Dorsch, B. (1974). A decoding algorithm for binary block codes and J-ary output

channels (Corresp.). IEEE Transactions on Information Theory, 20(3), 391-394.

[Dolinar et al., 1998] Dolinar, S., Divsalar, D., and Pollara, F. (1998). Code performance as a

function of block size. JPL TDA Progress Report, 42-120:29-39.

[Divsalar et al., 1998] Divsalar, D., Jin, H., & McEliece, R. J. (1998, September). Coding theorems

for ‘turbo-like’ codes. In Proceedings of the annual Allerton Conference on Communication control

and Computing (Vol. 36, pp. 201-210). University of Illinois.

[Davey and MacKay, 1998] Davey, M. C., & MacKay, D. (1998). Low-density parity check codes

over GF (q). IEEE Communications Letters, 2(6), 165-167.

260

[Di et al., 2002] Di, C., Proietti, D., Telatar, I. E., Richardson, T. J., & Urbanke, R. L. (2002, June).

Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE

Transactions on Information Theory, 48(6), 1570-1579.

[Declercq and Fossorier, 2008] Declercq, D., & Fossorier, M. (2008, July). Improved impulse

method to evaluate the low weight profile of sparse binary linear codes. In Information Theory, 2008.

ISIT 2008. IEEE International Symposium on (pp. 1963-1967). IEEE.

[Diao et al., 2013] Diao, Q., Tai, Y. Y., Lin, S., & Abdel-Ghaffar, K. (2013, February). Trapping set

structure of LDPC codes on finite geometries. In Information Theory and Applications Workshop

(ITA), 2013 (pp. 1-8). IEEE.

[‘Distributed source coding’, 2017] (2017, October 3). Distributed source coding. From Wikipedia,

the free encyclopedia. [Online] https://en.wikipedia.org/wiki/Distributed_source_coding

E
[Elias, 1954] Elias, P. (1954). Error-free coding. Transactions of the IRE Professional Group on

Information Theory, 4(4), 29-37.

[Etzion et al., 1999] Etzion, T., Trachtenberg, A., & Vardy, A. (1999). Which codes have cycle-free

Tanner graphs?. IEEE Transactions on Information Theory, 45(6), 2173-2181.

[Eleruja et al., 2017] Eleruja, S., Abdu-Aguye, U. F., Ambroze, M., Tomlinson, M., & Zaki, M.

(2017, November). Design of binary LDPC codes for Slepian-Wolf coding of correlated information

sources. Presented at the 5
th
 IEEE Global Conference on Signal and Information Processing

(GlobalSIP 2017), 14-16 November, 2017, Montreal, Canada. IEEE

F
[Fano, 1963] Fano, R. (1963). A heuristic discussion of probabilistic decoding. IEEE Transactions on

Information Theory, 9(2), 64-74.

[Forney, 1966] Forney, G. D. Concatenated Codes. PhD Thesis. MIT Press, Cambridge, MA

1966.

[Forney, 1973] Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268-278.

261

[Fossorier and Lin, 1995] Fossorier, M. P., & Lin, S. (1995). Soft-decision decoding of linear block

codes based on ordered statistics. IEEE Transactions on Information Theory, 41(5), 1379-1396.

[Fan, 2000] Fan, J. L. (2000). Array codes as low-density parity-check codes. In Proc. 2nd Int. Symp.

on Turbo Codes Rel. Topics, Brest, France, Sept. 2000. 543-546.

[Fan, 2001] Fan, J. L. (2001). Message-Passing Algorithm. Constrained Coding and Soft Iterative

Decoding, 23-96.

[Fan and Xiao, 2006] Fan, J., & Xiao, Y. (2006, August). A method of counting the number of cycles

in LDPC codes. In Signal Processing, 2006 8th International Conference on (Vol. 3). IEEE.

[Falsafain and Mousavi, 2016] Falsafain, H., & Mousavi, S. R. (2016). Exhaustive Enumeration of

Elementary Trapping Sets of an Arbitrary Tanner Graph. IEEE Communications Letters, 20(9), 1713-

1716.

G
[Golay, 1949] Golay, M. J. (1949). Notes on digital coding. Proceedings of the Institute of Radio

Engineers, 37(6), 657-657.

[Gorenstein and Zierler, 1961] Gorenstein, D., & Zierler, N. (1961). A class of error-correcting

codes in À� symbols. Journal of the Society for Industrial and Applied Mathematics, 9(2), 207-214.

[Gallager, 1962] Gallager, R. G. (1962). Low-density parity-check codes. IRE Transactions on

information theory, 8(1), 21-28.

[Gallager, 1963] Gallager, R. G. (1963). Low-density parity-check codes. Cambridge MA: MIT

Press.

[Gazelle and Snyders, 1997] Gazelle, D., & Snyders, J. (1997). Reliability-based code-search

algorithms for maximum-likelihood decoding of block codes. IEEE Transactions on Information

Theory, 43(1), 239-249.

262

[Guruswami and Sudan, 1998] Guruswami, V., & Sudan, M. (1998, November). Improved decoding

of Reed-Solomon and algebraic-geometric codes. In Foundations of Computer Science, 1998.

Proceedings. 39th Annual Symposium on (pp. 28-37). IEEE.

H
[Hamming, 1950] Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Labs

Technical Journal, 29(2), 147-160.

[Hocquenghem, 1959] Hocquenghem, A. (1959). Codes correcteurs d’erreurs. Chiffres, 2(2), 147-56.

[Hartmann and Rudolph, 1976] Hartmann, C., & Rudolph, L. (1976). An optimum symbol-by-

symbol decoding rule for linear codes. IEEE Transactions on Information Theory, 22(5), 514-517.

[Hagenauer and Hoeher, 1989] Hagenauer, J., & Hoeher, P. (1989, November). A Viterbi algorithm

with soft-decision outputs and its applications. In Global Telecommunications Conference and

Exhibition 'Communications Technology for the 1990s and Beyond' (GLOBECOM), 1989. IEEE (pp.

1680-1686). IEEE.

[Han et al., 1993] Han, Y. S., Hartmann, C. R., & Chen, C. C. (1993). Efficient priority-first search

maximum-likelihood soft-decision decoding of linear block codes. IEEE Transactions on Information

Theory, 39(5), 1514-1523.

[Hu et al., 2004] Hu, X. Y., Fossorier, M. P., & Eleftheriou, E. (2004, June). On the computation of

the minimum distance of low-density parity-check codes. In Communications, 2004 IEEE

International Conference on (Vol. 2, pp. 767-771). IEEE.

[Hirotomo et al., 2005] Hirotomo, M., Mohri, M., & Morii, M. (2005, September). A probabilistic

computation method for the weight distribution of low-density parity-check codes. In Information

Theory, 2005. ISIT 2005. Proceedings. International Symposium on (pp. 2166-2170). IEEE.

[Hirotomo et al., 2008] Hirotomo, M., Konishi, Y., & Morii, M. (2008, July). On the probabilistic

computation algorithm for the minimum-size stopping sets of LDPC codes. In Information Theory,

2008. ISIT 2008. IEEE International Symposium on (pp. 295-299). IEEE.

[Healy and de Lamare, 2012] Healy, C. T., & de Lamare, R. C. (2012). Decoder-optimised

progressive edge growth algorithms for the design of LDPC codes with low error floors. IEEE

Communications Letters, 16(6), 889-892.

263

[Hashemi and Banihashemi, 2015] Hashemi, Y., & Banihashemi, A. H. (2015). On characterization

and efficient exhaustive search of elementary trapping sets of variable-regular LDPC codes. IEEE

Communications Letters, 19(3), 323-326.

[Hashemi and Banihashemi, 2016] Hashemi, Y., & Banihashemi, A. H. (2016). New

characterization and efficient exhaustive search algorithm for leafless elementary trapping sets of

variable-regular LDPC codes. IEEE Transactions on Information Theory, 62(12), 6713-6736.

[Halford and Chugg, 2004] Halford, T. R., & Chugg, K. M. (2004, May). Enumerating and counting

cycles in bipartite graphs. In IEEE Communication Theory Workshop (Vol. 63).

[Halford and Chugg, 2006] Halford, T. R., & Chugg, K. M. (2006). An algorithm for counting short

cycles in bipartite graphs. IEEE Transactions on Information Theory, 52(1), 287-292.

[Hu and Eleftheriou, 2006] Hu, X. Y., & Eleftheriou, E. (2006, April). A probabilistic subspace

approach to the minimal stopping set problem. In Turbo Codes&Related Topics; 6th International

ITG-Conference on Source and Channel Coding (TURBOCODING), 2006 4th International

Symposium on (pp. 1-6). VDE.

J
[Jin et al., 2000] Jin, H., Khandekar, A., & McEliece, R. (2000, September). Irregular repeat-

accumulate codes. In Proc. 2nd Int. Symp. Turbo codes and related topics, Brest, France, (pp. 1-8).

[Johnson and Weller, 2001] Johnson, S. J., & Weller, S. R. (2001). Regular low-density parity-check

codes from combinatorial designs. In Information Theory Workshop, 2001. Proceedings. 2001 IEEE

(pp. 90-92). IEEE.

[Johnson and Weller, 2002] Johnson, S. J., & Weller, S. R. (2002). Codes for iterative decoding from

partial geometries. In Information Theory, 2002. Proceedings. 2002 IEEE International Symposium on

(p. 310). IEEE.

[Johnson, 2003] Johnson, S. (2003). Low-density parity-check codes from combinatorial designs.

Ph.D Thesis, University of Newcastle. Australia

[Johnson, 2006] Johnson, S. J. (2006). Introducing low-density parity-check codes. University of

Newcastle, Australia.

264

K
[Kschischang and Frey, 1998] Kschischang, F. R., & Frey, B. J. (1998). Iterative decoding of

compound codes by probability propagation in graphical models. IEEE Journal on Selected Areas in

Communications, 16(2), 219-230.

[Kou et al., 2001] Kou, Y., Lin, S., & Fossorier, M. P. (2001). Low-density parity-check codes based

on finite geometries: a rediscovery and new results. IEEE Transactions on Information Theory, 47(7),

2711-2736.

[Kschischang et al., 2001] Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs

and the sum-product algorithm. IEEE Transactions on information theory, 47(2), 498-519.

[Kotter and Vardy, 1998] Kotter, R., & Vardy, A. (1998, August). Factor graphs: constructions,

classification, and bounds. In Information Theory, 1998. Proceedings. 1998 IEEE International

Symposium on (p. 14). IEEE.

[Kyung and Wang, 2000] Kyung, G. B., & Wang, C. C. (2012). Finding the exhaustive list of small

fully absorbing sets and designing the corresponding low error-floor decoder. IEEE Transactions on

Communications, 60(6), 1487-1498.

[Koetter and Vardy, 2003] Koetter, R., & Vardy, A. (2003). Algebraic soft-decision decoding of

Reed-Solomon codes. IEEE Transactions on Information Theory, 49(11), 2809-2825.

[Krishnan and Shankar, 2006] Krishnan, K. M., & Shankar, P. (2006, March). On the complexity of

finding stopping set size in Tanner graphs. In 40th Annual Conference on Information Sciences and

Systems (pp. 157-158).

[Krishnan and Shankar, 2007] Krishnan, K. M., & Shankar, P. (2007). Computing the stopping

distance of a Tanner graph is NP-hard. IEEE transactions on information theory, 53(6), 2278-2280.

[Karimi and Banihashemi, 2012(a)] Karimi, M., & Banihashemi, A. H. (2012). Efficient algorithm

for finding dominant trapping sets of LDPC codes. IEEE Transactions on Information Theory, 58(11),

6942-6958.

[Karimi and Banihashemi, 2012(b)] Karimi, M., & Banihashemi, A. H. (2012). Counting short

cycles of quasi cyclic protograph LDPC codes. IEEE Communications Letters, 16(3), 400-403.

[Khazraie et al., 2012] Khazraie, S., Asvadi, R., & Banihashemi, A. H. (2012). A PEG construction

of finite-length LDPC codes with low error floor. IEEE Communications Letters, 16(8), 1288-1291.

265

[Karimi and Banihashemi, 2013] Karimi, M., & Banihashemi, A. H. (2013). Message-passing

algorithms for counting short cycles in a graph. IEEE Transactions on Communications, 61(2), 485-

495.

[Kang et al., 2011] Kang, J., Huang, Q., Lin, S., & Abdel-Ghaffar, K. (2011). An iterative decoding

algorithm with backtracking to lower the error-floors of LDPC codes. IEEE Transactions on

Communications, 59(1), 64-73.

[Kang et al., 2016] Kang, S., Moon, J., Ha, J., & Shin, J. (2016). Breaking the Trapping Sets in LDPC

Codes: Check Node Removal and Collaborative Decoding. IEEE Transactions on Communications,

64(1), 15-26.

[Kim et al., 2004] Kim, J. L., Peled, U. N., Perepelitsa, I., Pless, V., & Friedland, S. (2004). Explicit

construction of families of LDPC codes with no 4-cycles. IEEE transactions on information theory,

50(10), 2378-2388.

L
[Land and Doig, 1960] Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete

programming problems. Econometrica: Journal of the Econometric Society, 497-520.

[Lodge et al., 1992] Lodge, J., Hoeher, P., & Hagenauer, J. (1992). The Decoding of

Multidimensional Codes Using Separable Map ‘Filters’. In Proc. of the 16th Biennial Symp. on

Comm., Canada, (pp. 343-346).

[Lodge et al., 1993] Lodge, J., Young, R., Hoeher, P., & Hagenauer, J. (1993, May). Separable MAP

‘filters’ for the decoding of product and concatenated codes. In Communications, 1993. ICC'93

Geneva. Technical Program, Conference Record, IEEE International Conference on (Vol. 3, pp.

1740-1745). IEEE.

[Lucas et al., 2000] Lucas, R., Fossorier, M. P., Kou, Y., & Lin, S. (2000). Iterative decoding of one-

step majority logic deductible codes based on belief propagation. IEEE Transactions on

Communications, 48(6), 931-937.

[Luby et al., 1998] Luby, M., Mitzenmacher, M., Shokrollah, A., & Spielman, D. (1998, May).

Analysis of low density codes and improved designs using irregular graphs. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing (pp. 249-258). ACM.

266

[Luby et al., 2001] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., & Spielman, D. A. (2001).

Improved low-density parity-check codes using irregular graphs. IEEE Transactions on information

Theory, 47(2), 585-598.

[Liveris et al., 2002] Liveris, A. D., Xiong, Z., & Georghiades, C. N. (2002). Compression of binary

sources with side information at the decoder using LDPC codes. IEEE communications letters, 6(10),

440-442.

[Lin and Costello, Jr., 2004] Lin, S., & Costello, D. J. (2004). Error control coding (Vol. 2).

Englewood Cliffs: Prentice Hall.

[Lee et al., 2005] Lee, S. H., Kim, K. S., Kim, Y. H., & Ahn, J. Y. (2005). A cycle search algorithm

based on a message-passing for the design of good LDPC codes. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, 88(6), 1599-1604.

[Li et al., 2015] Li, J., Lin, S., & Abdel-Ghaffar, K. (2015, June). Improved message-passing

algorithm for counting short cycles in bipartite graphs. In Information Theory (ISIT), 2015 IEEE

International Symposium on (pp. 416-420). IEEE.

[‘Low density parity-check code’, 2017] (2017, July 12). Low-density parity-check code. From

Wikipedia, the free encyclopedia. [Online] https://en.wikipedia.org/wiki/Low-density_parity-

check_code

M
[Mitani, 1951] Mitani, N. (1951, November). On the transmission of numbers in a sequential

computer. In National Convention of Inst. Elect Engineers of Japan.

[Muller, 1954] Muller, D. E. (1954). Application of Boolean algebra to switching circuit design and to

error detection. Transactions of the IRE Professional Group on Electronic Computers, (3), 6-12.

[Massey, 1969] Massey, J. (1969). Shift-register synthesis and BCH decoding. IEEE transactions on

Information Theory, 15(1), 122-127.

[MacWilliams and Sloan, 1977] MacWilliams, F. J., & Sloane, N. J. A. (1977). The theory of

error-correcting codes. Elsevier. North Holland.

[Margulis, 1982] Margulis, G. A. (1982). Explicit constructions of graphs without short cycles and

low density codes. Combinatorica, 2(1), 71-78.

267

[MacKay and Neal, 1995] MacKay, D. J., & Neal, R. M. (1995, December). Good codes based on

very sparse matrices. In IMA International Conference on Cryptography and Coding (pp. 100-111).

Springer, Berlin, Heidelberg.

[MacKay and Neal, 1996] MacKay, D. J., & Neal, R. M. (1996). Near Shannon limit performance of

low density parity check codes. Electronics letters, 32(18), 1645.

[MacKay and Neal, 1997] MacKay D. J., & Neal, R. M. (1997, March). Near Shannon limit

performance of low density parity check codes. Electronics letters, 33(6), 457-458.

[McEliece et al., 1998] McEliece, R. J., MacKay, D. J. C., & Cheng, J. F. (1998). Turbo decoding as

an instance of Pearl's" belief propagation" algorithm. IEEE Journal on selected areas in

communications, 16(2), 140-152.

[MacKay, 1999] MacKay, D. J. (1999). Good error-correcting codes based on very sparse matrices.

IEEE transactions on Information Theory, 45(2), 399-431.

[Mao and Banihashemi, 2001] Mao, Y., & Banihashemi, A. H. (2001, June). A heuristic search for

good low-density parity-check codes at short block lengths. In Communications, 2001. ICC 2001.

IEEE International Conference on Communications (Vol. 1, pp. 41-44). IEEE.

[MacKay, 2002] MacKay, D. J. (2002, April 11). D. MacKay’s Gallager code resources [Online].

Website: http://www.inference.phy.cam.ac.uk/mackay/codes/

[MacKay and Postol, 2003] MacKay, D. J., & Postol, M. S. (2003, October). Weaknesses of

Margulis and Ramanujan-Margulis low-density parity-check codes. Electronic Notes in Theoretical

Computer Science, 74, 97-104.

[Mouri, 2017] Mouri, S. P., (2017, September). Website:

https://www.researchgate.net/post/What_is_the_acceptable_BER_value_for_voice_communication_d

ata_communication_and_Video_communication

N
[Nguyen et al., 2012] Nguyen, D. V., Chilappagari, S. K., Marcellin, M. W., & Vasic, B. (2012). On

the construction of structured LDPC codes free of small trapping sets. IEEE Transactions on

Information Theory, 58(4), 2280-2302.

268

P
[Peterson, 1960] Peterson, W. (1960). Encoding and error-correction procedures for the

Bose-Chaudhuri codes. IRE Transactions on Information Theory, 6(4), 459-470.

[Peterson and Weldon Jr., 1972] Peterson, W., & Weldon Jr, E. J. (1972). Error-correcting

codes. MIT Press, Cambridge, MA 1972.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Franscisco, CA: Morgan Kaufmann, 1988.

[Pradhan and Ramchandran, 2000] Pradhan, S. S., & Ramchandran, K. (2000). Distributed source

coding: Symmetric rates and applications to sensor networks. In Data Compression Conference, 2000.

Proceedings. DCC 2000 (pp. 363-372). IEEE.

[Proakis, 2001] Proakis, J. G. (2001) Digital Communications. 4th Edition, McGraw-Hill, New York.

[Papagiannis et al., 2004] Papagiannis, E., Ambroze, M. A., & Tomlinsom, M. (2004). Approaching

the ML performance with iterative decoding. In Communications, 2004 International Zurich Seminar

on (pp. 220-223). IEEE.

R
[Reed, 1953] Reed, I. S. (1953). A class of multiple-error-correcting codes and the decoding scheme

(No. TR-44). MIT Lexington Lab.

[Reed and Solomon, 1960] Reed, I. S., & Solomon, G. (1960). Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics, 8(2), 300-304.

[Roseenthal and Vontobel, 2000] Rosenthal, J., & Vontobel, P. O. (2000). Constructions of LDPC

codes using Ramanujan graphs and ideas from Margulis. In in Proc. of the 38-th Allerton Conference

on Communication, Control, and Computing.

[Richardson and Urbanke, 2001] Richardson, T. J., & Urbanke, R. L. (2001). The capacity of low-

density parity-check codes under message-passing decoding. IEEE Transactions on information

theory, 47(2), 599-618.

269

[Richardson et al., 2001] Richardson, T. J., Shokrollahi, M. A., & Urbanke, R. L. (2001). Design of

capacity-approaching irregular low-density parity-check codes. IEEE transactions on information

theory, 47(2), 619-637.

[Richardson, 2003] Richardson, T. (2003, October). Error floors of LDPC codes. In Proceedings of

the annual Allerton conference on communication control and computing. Monticello. IL, (Vol. 41,

No. 3, pp. 1426-1435). The University; 1998.

[Richter et al., 2005] Richter, G., Schmidt, G., Bossert, M., & Costa, E. (2005, May). Optimization of

a reduced-complexity decoding algorithm for LDPC codes by density evolution. In Communications,

2005. ICC 2005. 2005 IEEE International Conference on (Vol. 1, pp. 642-646). IEEE.

[Richter, 2006] Richter, G. (2006, April). Finding small stopping sets in the Tanner graphs of LDPC

codes. In Turbo Codes&Related Topics; 6th International ITG-Conference on Source and Channel

Coding (TURBOCODING), 2006 4th International Symposium on (pp. 1-5). VDE.

[Richter et al., 2005] Richter, G., Schmidt, G., Bossert, M., & Costa, E. (2005, May). Optimization of

a reduced-complexity decoding algorithm for LDPC codes by density evolution. In Communications,

2005. ICC 2005. 2005 IEEE International Conference on (Vol. 1, pp. 642-646). IEEE.

[Richter and Hof, 2006] Richter, G., & Hof, A. (2006, June). On a construction method of irregular

LDPC codes without small stopping sets. In Communications, 2006. ICC'06. IEEE International

Conference on (Vol. 3, pp. 1119-1124). IEEE.

[Rosnes and Ytrehus, 2009] Rosnes, E., & Ytrehus, Ø. (2009). An efficient algorithm to find all

small-size stopping sets of low-density parity-check matrices. IEEE Transactions on Information

Theory, 55(9), 4167-4178.

[Rosnes et al., 2012] Rosnes, E., Ytrehus, Ø., Ambroze, M. A., & Tomlinson, M. (2012). Addendum

to “An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices”.

IEEE Transactions on Information Theory, 58(1), 164-171.

[Rosnes et al., 2014] Rosnes, E., Ambroze, M. A., & Tomlinson, M. (2014). On the

minimum/stopping distance of array low-density parity-check codes. IEEE Transactions on

Information Theory, 60(9), 5204-5214.

270

S
[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell System

Technical Journal 27(3): 379-423.

[Silverman and Balser, 1954] Silverman, R., & Balser, M. (1954). Coding for constant-data-rate

systems. Transactions of the IRE Professional Group on Information Theory, 4(4), 50-63.

[Slepian, 1956] Slepian, D. (1956). A class of binary signaling alphabets. Bell Labs Technical

Journal, 35(1), 203-234.

[Slepian and Wolf, 1973] Slepian, D., & Wolf, J. (1973). Noiseless coding of correlated information

sources. IEEE Transactions on information Theory, 19(4), 471-480.

[Shokrollahi, 1999] Shokrollahi, M. A. (1999, November). New sequences of linear time erasure

codes approaching the channel capacity. In AAECC (pp. 65-76).

[Sweeney, 1991] Sweeney, P. (1991). Error Control Coding: An Introduction. Prentice Hall, UK

(pp. 185-192).

[Sipser and Spielman, 1996] Sipser, M., & Spielman, D. A. (1996). Expander codes. IEEE

Transactions on Information Theory, 42(6), 1710-1722.

[Sudan, 1997] Sudan, M. (1997). Decoding of Reed Solomon codes beyond the error-correction

bound. Journal of complexity, 13(1), 180-193.

[Schonberg et al., 2004] Schonberg, D., Ramchandran, K., & Pradhan, S. S. (2004, March).

Distributed code constructions for the entire Slepian-Wolf rate region for arbitrarily correlated sources.

In Data Compression Conference, 2004. Proceedings. DCC 2004 (pp. 292-301). IEEE.

[Sartipi and Fekri, 2004] Sartipi, M., & Fekri, F. (2004, October). Source and channel coding in

wireless sensor networks using LDPC codes. In Sensor and Ad Hoc Communications and Networks,

2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 309-

316). IEEE.

[Sartipi and Fekri, 2005] Sartipi, M., & Fekri, F. (2005, March). Distributed source coding in

wireless sensor networks using LDPC coding: the entire Slepian-Wolf rate region. In Wireless

Communications and Networking Conference, 2005 IEEE (Vol. 4, pp. 1939-1944). IEEE.

[Sharon and Litsyn, 2008] Sharon, E., & Litsyn, S. (2008). Constructing LDPC codes by error

minimization progressive edge growth. IEEE Transactions on Communications, 56(3).

271

[Subbiah, 2008] Subbiah, P. (2008, November). Bit-Error Rate (BER) for high speed serial data

communication. http://www.cypress.com/file/88426/download

[Sason, 2009] Sason, I. (2009, July). On universal properties of capacity-approaching LDPC code

ensembles. IEEE Transactions on Information Theory, 55(7), 2956-2990.

[Sy et al., 2011] Sy, L. P., Savin, V., Declercq, D., & Pham, N. (2011, April). Scheduled-PEG

construction of LDPC codes for Upper-Layer FEC. Workshop on Coding and Cryptography

WCC 2011, 429-432. arXiv preprint arXiv:1103.2690.

[‘Slepian-Wolf coding’, 2017] (2017, November 22). Slepian-Wolf coding. From Wikipedia, the free

encyclopedia. [Online] https://en.wikipedia.org/wiki/Slepian-Wolf_coding

T
[Tanner, 1981] Tanner, R. (1981). A recursive approach to low complexity codes. IEEE Transactions

on information theory, 27(5), 533-547.

[Teukolsky et al., 1992] S.A. Teukolsky, W.T. Vetterling and B.P. Flanner, “Numerical Recipes in

C. The Art of Scientific Computing,” W.H. Press, Second Edition, Cambridge University Press, 1992.

[Tian et al., 2004] Tian, T., Jones, C. R., Villasenor, J. D., & Wesel, R. D. (2004, August). Selective

avoidance of cycles in irregular LDPC code construction. IEEE Transactions on Communications,

52(8), 1242-1247.

[Tian et al., 2003] Tian, T., Jones, C., Villasenor, J. D., & Wesel, R. D. (2003, May). Construction of

irregular LDPC codes with low error floors. In Communications, 2003. ICC'03. IEEE International

Conference on (Vol. 5, pp. 3125-3129). IEEE.

[Tjhai et al., 2006] Tjhai, C., Tomlinson, M., Horan, R., Ahmed, M., & Ambroze, M. (2006, April).

GF (2m) Low-Density Parity-Check Codes Derived from Cyclotomic Cosets. In Turbo

Codes&Related Topics; 6th International ITG-Conference on Source and Channel Coding

(TURBOCODING), 2006 4th International Symposium on (pp. 1-6). VDE.

[Tomlinson et al., 2007] Tomlinson, M., Tjhai, C., & Ambroze, M. (2007). Extending the Dorsch

decoder towards achieving maximum-likelihood decoding for linear codes. IET communications, 1(3),

479-488.

272

[Tjhai, 2007] Tjhai, C. J. (2007, September). A Study of Linear Error Correcting Codes. PhD Thesis,

University of Plymouth. United Kingdom.

[‘Turbo code’, 2017] (2017, June 20). Turbo code. From Wikipedia, the free encyclopedia. [Online]

https://en.wikipedia.org/wiki/Turbo_ code

U
[Ungerboeck, 1982] Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE

transactions on Information Theory, 28(1), 55-67.

V
[Viterbi, 1967] Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE transactions on Information Theory, 13(2), 260-269.

[Vardy, 1997] Vardy, A. (1997). The intractability of computing the minimum distance of a code.

IEEE Transactions on Information Theory, 43(6), 1757-1766.

[Valembois and Fossorier, 2004] Valembois, A., & Fossorier, M. (2004). Box and match techniques

applied to soft-decision decoding. IEEE Transactions on Information Theory, 50(5), 796-810.

[Vasić and Milenkovic, 2004] Vasic, B., & Milenkovic, O. (2004). Combinatorial constructions of

low-density parity-check codes for iterative decoding. IEEE Transactions on information theory,

50(6), 1156-1176.

[Vasić et al., 2009] B. Vasić, S. K. Chilappagari, D. V. Nguyen and S. K. Planjery, "Trapping Set

Ontology" In 47th Annual Allerton Conference on Communication, Control and Computing 2009,

Allerton, Illinois, September 2009, pp. 1–7. IEEE

273

[Venkiah et al., 2008] Venkiah, A., Declercq, D., & Poulliat, C. (2008, September). Randomized

progressive edge-growth (RandPEG). In Turbo Codes and Related Topics, 2008 5th International

Symposium on (pp. 283-287). IEEE.

[Vukobratović and Šenk, 2007] Vukobratovic, D., Djurendic, A., & Senk, V. (2007, June). ACE

spectrum of LDPC codes and generalized ACE design. In Communications, 2007. ICC'07. IEEE

International Conference on (pp. 665-670). IEEE.

[Vukobratović and Šenk, 2008] Vukobratović, D., & Šenk, V. (2008, January). Generalized ACE

constrained progressive edge-growth LDPC code design. IEEE Communications Letters, 12(1), 32-34.

[Vukobratović and Šenk, 2009] Vukobratovic, D., & Senk, V. (2009, August). Transactions papers

evaluation and design of irregular LDPC codes using ACE spectrum. IEEE Transactions on

Communications, 57(8), (pp. 2272-2278). IEEE

W
[Wozencraft, 1957] Wozencraft, J. M. (1957). Sequential decoding for reliable communication.

Technical Report 325. Research Laboratory of Electronics MIT

[Weldon, 1966] Weldon, E. J. (1966). Difference‐Set Cyclic Codes. Bell Labs Technical Journal,

45(7), 1045-1055.

[Wiberg et al., 1995] Wiberg, N., Loeliger, H. A., & Kotter, R. (1995). Codes and iterative decoding

on general graphs. Transactions on Emerging Telecommunications Technologies, 6(5), 513-525.

[Wiberg, 1996] Wiberg, N. (1996). Codes and Decoding on General Graphs. PhD Thesis, Linköping

University, Sweden, 1996.

[Weiss, 2000] Weiss, Y. (2000). Correctness of local probability propagation in graphical models with

loops. Neural computation, 12(1), 1-41.

[Wang et al., 2006] Wang, C. C., Kulkarni, S. R., & Poor, H. V. (2006). Exhausting error-prone

patterns in LDPC codes. arXiv preprint cs/0609046 or ArXiv: http://arxiv.org/pdf/cs/0609046, 2006.

274

[Wang et al., 2009] Wang, C. C., Kulkarni, S. R., & Poor, H. V. (2009). Finding all small error-prone

substructures in LDPC codes. IEEE Transactions on Information Theory, 55(5), 1976-1999.

X
[Xiao and Banihashemi, 2004] Xiao, H., & Banihashemi, A. H. (2004). Improved progressive-edge-

growth (PEG) construction of irregular LDPC codes. IEEE Communications Letters, 8(12), 715-717.

Y
[Yazdani and Banihashemi, 2004] Yazdani, M., & Banihashemi, A. H. (2004, June). On construction

of rate-compatible low-density parity-check codes. In Communications, 2004 IEEE International

Conference on (Vol. 1, pp. 430-434). IEEE.

Z
[Zinov’ev, 1976] Zinov'ev, V. A. (1976). Generalized cascade codes. Problemy Peredachi Informatsii,

12(1), 5-15.

[Zhang and Fossorier, 2005] Zhang, J., & Fossorier, M. P. (2005). Shuffled iterative decoding. IEEE

Transactions on Communications, 53(2), 209-213.

[Zhang and Siegel, 2011] Zhang, X., & Siegel, P. H. (2011, December). Efficient algorithms to find

all small error-prone substructures in LDPC codes. In Global Telecommunications Conference

(GLOBECOM 2011), 2011 IEEE (pp. 1-6). IEEE.

[Zhang and Schlegel, 2011] Zhang, S., & Schlegel, C. (2011, September). Causes and dynamics of

LDPC error floors on AWGN channels. In Communication, Control, and Computing (Allerton), 2011

49th Annual Allerton Conference on (pp. 1025-1032). IEEE.

275

Publications

276

9th International Symposium on Turbo
Codes & Iterative Information Processing
(ISTC’ 2016) Conference Paper

Lowering the Error Floor of Short-to-Medium Length LDPC
Codes using Optimal Low-Correlated-Edge Density (OED)
PEG Tanner Graphs

277

278

279

280

281

282

24th International Conference on Software,
Telecommunications and Computer
Networks (SoftCOM 2016) Conference
Paper

Improved Minimum Weight, Girth and ACE Distributions in
Ensembles of Short Block Length Irregular LDPC Codes
Constructed using PEG and Cyclic PEG (CPEG) Algorithms

283

284

285

286

287

288

10th International Conference on Signal
Processing and Communication Systems
(ICSPCS’ 2016) Conference Paper

An Efficient Algorithm for Determining the Girth and ACE
Distributions in LDPC Code Tanner Graphs

289

290

291

292

293

294

295

296

5th IEEE Global Conference on Signal and
Information Processing (GlobalSIP 2017)
Conference Paper

Design of Binary LDPC Codes for Slepian-Wolf Coding of
Correlated Information Sources

297

298

299

300

301

