
TRELLIS DECODING AND APPLICATIONS FOR QUANTUM ERROR
CORRECTION

A Dissertation
Presented to

The Academic Faculty

By

Eric Sabo

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

College of Sciences

Georgia Institute of Technology

December 2022

c© Eric Sabo 2022

TRELLIS DECODING AND APPLICATIONS FOR QUANTUM ERROR
CORRECTION

Thesis committee:

Dr. Evans Harrell
School of Mathematics
Georgia Institute of Technology

Dr. Matthew Baker
School of Mathematics
Georgia Institute of Technology

Dr. Martin Short
School of Mathematics
Georgia Institute of Technology

Dr. Moinuddin Qureshi
School of Computer Science
Georgia Institute of Technology

Dr. Kenneth Brown
Pratt School of Engineering
Duke Universityy

Date approved: August 02, 2022

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

List of Acronyms . ix

Summary . xi

Chapter 1: Introduction and Background . 1

1.1 Classical Error-Correcting Codes . 2

1.2 Quantum Mechanics For Mathematicians 15

1.3 Quantum Error Correction . 21

1.3.1 Operator Quantum Error Correction 23

1.3.2 The Stabilizer Formalism . 28

1.3.3 CSS Codes . 38

1.3.4 Quantum Topological Codes . 40

1.4 Quantum Circuit Model . 44

1.4.1 The Shor Code . 51

1.4.2 Fault-Tolerance And Transversality 57

1.5 Computer Simulations Of Codes . 64

iii

1.6 Extension To Arbitrary Rings . 78

Chapter 2: Trellis Decoding Stabilizer Codes . 80

2.1 Introduction . 80

2.2 The Syndrome Trellis . 84

2.3 Properties . 91

2.3.1 Syndrome Trellis . 91

2.3.2 Trellis-Oriented Form . 102

2.3.3 The Viterbi Algorithm . 106

2.4 Calderbank-Shor-Steane (CSS) Codes . 116

2.5 Simulations And Discussion . 127

Chapter 3: Applications Of Trellises To Quantum Error Correction 137

3.1 Introduction . 137

3.2 Sectionalization . 138

3.3 The Adjacency Matrix Representation . 143

3.4 The Trellis Product . 149

3.5 Partial Ordering And Intersection Of Trellises 161

3.6 The Dual Trellis And Degenerate Decoding 164

3.7 Minimum Distance . 171

3.7.1 Classical . 172

3.7.2 Quantum . 177

3.8 Weight Distributions & Enumerators . 178

3.8.1 Classical . 178

iv

3.8.2 Quantum . 182

3.9 Words Of Bounded Weight . 188

3.10 Subfield Subcodes . 190

Chapter 4: Future Directions . 192

4.1 Stabilizer Codes For Modular Architectures 194

4.1.1 Modular Quantum CSS Codes From Expanded Reed-Solomon (RS)
Codes . 197

4.1.2 Modular Quantum CSS Codes From Bose-Chaudhuri-Hocquenghem
(BCH) Codes Of Composite Length 203

4.2 Gluing Theory For Stabilizer Codes . 209

References . 216

v

LIST OF TABLES

1.1 The number of bases of various types for each extension field. The normal
bases* follow from direct computation, and the formulas do not apply to **. 10

2.1 The various possible edge configurations for p = 2. Since ∆dimS⊥pi and
∆dimS⊥fi are bounded by one in classical theory, any configurations with a
two is unique to the quantum setting. 100

2.2 State and branch profiles for the [[5, 1, 3]] code. 106

2.3 Vertex counts by distance for common codes. 125

2.4 Edge counts by distance for common codes. 125

3.1 Adjacency matrix densities |E|/|V |2 by distance for the codes in Tables 2.3
and 2.4. 146

3.2 The percentage |Ed|/|E| of the dual trellis to primal trellis for the codes of
Chapter 2 rounded to the nearest whole number. The lower distance codes
have so few edges that removing any is significant, while the opposite effect
happens for the higher distances. 166

vi

LIST OF FIGURES

1.1 A summary of the relationships between the various fundamental mathe-
matical objects in the stabilizer formalism. 38

1.2 The [[25, 1, 5]] rotated surface code used in this work: X stabilizers are
given by grey (light) faces and Z stabilizers by blue (dark) faces. 42

1.3 The 3-valent, 3-colorable tilings of the 2-sphere. 43

1.4 The triangular color codes are constructed by puncturing a tiling of the 2-
sphere. 44

1.5 The 4.8.8 d = 3, 5, and 7 color codes. The tiling is often distorted so as to
make smooth edges as in Figure 1.4b. 45

1.6 Common codes viewed as color codes. 63

2.1 (a) The trellis for the [[5, 1, 1]] code with stabilizers {[α, 1, 0, 0, 0], [1, α, 1, 0, 0],
[0, 1, α, 1, 0], [0, 0, 1, α, 1]} demonstrated in [167]. Measuring the syn-
drome s = (0, 0, 1, 1), we determine Ps = [0, 0, 0, α, α]. Adding π0(Ps) =
π1(Ps) = π2(Ps) = π3(Ps) = (0, 0, 0, 0), π4(Ps) = (0, 0, 1, 0), and
π5(Ps) = (0, 0, 1, 1) to the appropriate Vi produces (b), the trellis found
in Figure 2 of [167]. The presence of the parallel edges in E5 demonstrate
that this code cannot tell the difference between 0/1 and α/1 + α on qubit
five. 86

2.2 The Viterbi algorithm applied to the example trellis of Figure 2.1 for the
error model Pr (I) = 0, Pr (X) = Pr (Z) = 1, and Pr (Y) = 2. Ties were
broken in a manner to keep the result looking clean. The path from V0 to Vn
provides the final correction, in this case IIIII - which is true since there
was no error. 89

2.3 A summary of the relationships between the groups and the maps (Figure
5 of [177]). A line without an arrow between two groups means the group
in the lower level is a subgroup of the upper level. 94

vii

2.4 Grouping all paths from V0 to v into a single line, the trellis may be seen
as the depicted set of cosets. As is clear in the diagram, each vertex has a
unique past and future. 95

2.5 Trellis diagrams for the distance three rotated surface codes: (a) X stabi-
lizers only, (b) Z stabilizers only, (c) the full code with vertices organized
by the trellis product of (a) with (b). 117

2.6 Trellis diagrams for the distance three color code: (a) X (or Z) stabilizers
only, (b) the full code with vertices organized by the trellis product of (a)
with itself. 118

2.7 The scaling of the total edge counts for the trellises listed in Table 2.4. . . . 126

2.8 Simulated logical error rates for the four codes in the row n = 20 satisfying
our requirements at [171]. Triangular data points are importance sampled
to a tolerance of 10−9 and circular points are direct sampled; both methods
were used and were found to agree at p = 0.01. The black line is y = x. . . 129

2.9 (a), (c), (e) - Threshold results for code capacity (memory model) sim-
ulations for the independent Z channel (1.52). (b), (d), (f) - Finite-size
threshold analysis for the corresponding codes near threshold. The log-
ical error rate is shown as a function of the rescaled Z error probability
x = (p − pth)d1/ν . The solid line is the line of best fit to A + Bx + Cx2.
Note that the higher distance codes show some signs of under sampling for
lower p. 132

2.10 Simulated logical error rates for Example 9. The black line is y = x. 134

3.1 The optimal sectionalization graph from [196] for a four section trellis. . . . 142

3.2 elementary trellis (ET)s for the CSS Steane code. 153

3.3 Constructing the CSS trellis for the Steane code using the trellis product (TP).154

4.1 The almost block-diagonal form (ABDF) targeted in this section. 196

viii

LIST OF ACRONYMS

ABDF almost block-diagonal form

BCH Bose-Chaudhuri-Hocquenghem

BCJR Bahl-Cocke-Jelinek-Raviv

BFS breadth-first search

BZ Brouwer-Zimmermann

CP completely positive

CPTP completely-positive, trace-preserving

CSS Calderbank-Shor-Steane

CWE complete weight enumerator

DFS depth-first search

DQC distributed quantum computing

ET elementary trellis

GNS Gelfand-Naimark-Segal

i.i.d. independently and identically distributed

i.ni.d. independently and non-identically distributed

ML maximum likelihood

MWPM minimum-weight perfect matching

NISQ near-term intermediate scale quantum

NP nondeterministic polynomial time

OQEC operator quantum error correction

QEC quantum error correction

QECC quantum error-correcting code

ix

QRM 15-qubit quantum Reed-Muller

RM Reed-Muller

RS Reed-Solomon

TOF trellis-oriented form

TP trellis product

VBD Vardy-Be’ery decomposition

x

SUMMARY

Compact, graphical representations of error-correcting codes called trellises are a cru-

cial tool in classical coding theory, establishing both theoretical properties and performance

metrics for practical use. The idea was extended to quantum error-correcting codes by Ol-

livier and Tillich in 2005. Here, we use their foundation to establish a practical decoder

able to compute the maximum-likely error for any stabilizer code over a finite field of

prime dimension. We define a canonical form for the stabilizer group and use it to classify

the internal structure of the graph. Similarities and differences between the classical and

quantum theories are discussed throughout. Numerical results are presented which match

or outperform current state-of-the-art decoding techniques. New construction techniques

for large trellises are developed and practical implementations discussed. We then define a

dual trellis and use algebraic graph theory to solve the maximum-likely coset problem for

any stabilizer code over a finite field of prime dimension at minimum added cost.

Classical trellis theory makes occasional theoretical use of a graph product called the

trellis product. We establish the relationship between the trellis product and the standard

graph products and use it to provide a closed form expression for the resulting graph, al-

lowing it to be used in practice. We explore its properties and classify all idempotents. The

special structure of the trellis allows us to present a factorization procedure for the product,

which is much simpler than that of the standard products.

Finally, we turn to an algorithmic study of the trellis and explore what coding-theoretic

information can be extracted assuming no other information about the code is available. In

the process, we present a state-of-the-art algorithm for computing the minimum distance

for any stabilizer code over a finite field of prime dimension. We also define a new weight

enumerator for stabilizer codes over F2 incorporating the phases of each stabilizer and

provide a trellis-based algorithm to compute it.

xi

CHAPTER 1

INTRODUCTION AND BACKGROUND

To maintain a coherent presentation, this document does not include the author’s work on

computational knot theory [1] or on a new branch of classical coding theory called DNA

coding theory. A software package covering topics in classical and quantum coding theory

beyond what is discussed here was developed in conjunction with this work and has been

publicly released as the beginning of a coding theory library for the Julia programming

language [2]. This includes code for the trellis-based algorithms developed in this work.

Quantum error correction (QEC) is fundamentally an analysis-based field at heart, and

there are numerous references on quantum computation for mathematicians which do an

excellent job explaining the operator theory behind the subject. However, most physicists

working in the field take a group-theoretic approach. We too will stick to algebra in this

work, and here we discuss both aspects of the subject to reach the largest audience. After

going through the basics of the operator theory, we switch to the group approach while

attempting to motivate and explain how each choice in the modeling stems back to its

analytical core. Undergraduate knowledge of algebra is assumed but all concepts from

operator theory will be explained from scratch. No prior background of QEC is assumed.

The standard reference for this is [3]; however, this book is now dated and does not contain

the material discussed here. A more advanced and recent treatment may be found in [4].

Related to QEC is “classical" coding theory and “classical" error-correcting codes.

Standard references for this material are [5, 6, 7]. The notation and terminology used here

is aligned with [7]. Knowledge of the classical theory can both be beneficial and harmful

to the study of quantum error-correcting code (QECC)s. We compare and contrast the clas-

1

sical and quantum theories throughout this work for those readers which may be familiar

with the classical case. We will return to the majority of the classical concepts introduced

in Section 1.1 in Chapter 4.

Section 1.2 begins the review of operator theory and Section 1.3, QEC. Section 1.3.2

introduces the so-called stabilizer (group) formalism. Several QECCs we will refer to in

the following chapters are introduced in 1.3.3 and 1.3.4. The quantum circuit model is

discussed in Section 1.4. The key concepts of what defines a good QECC begin in Section

1.4.2. Finally, Section 1.5 includes comments on the design, goal and implementation of

computer simulations of classical and quantum error-correcting codes.

1.1 Classical Error-Correcting Codes

For simplicity when we connect to quantum coding theory, we restrict to linear codes over

Fq for some prime power q = pm. A (classical) error correcting code C is a k-dimensional

subspace of Fnq . Elements of C are called codewords. The number of codewords in C is

denoted |C|. The dimension of C, dim (C), is defined to be the dimension of C as a vector

space over Fq, i.e., |C| = qdim (C). It is customary to denote dim (C) by k such that C is an

(n, qk)q code, or an [n, k]q code. The notation of choice depends on whether or not it is

easier to make an argument about |C| or dim (C). The latter is the notation of choice here

and is almost exclusively used in quantum coding theory. An [n, k]q code is written [n, k]

when q = 2.

A k×n matrix G is a generator matrix for C if C is the row space of G. An (n− k)×n

parity check matrix H for C is a generator matrix for the row space of the vector space

orthogonal to C in Fnq with respect to the standard Euclidean inner product, C⊥, i.e., C =

kerH . This is called the dual code of C and the generator and parity-check matrices of C

and C⊥ are switched. A code is called self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

The orthogonality of C and C⊥ gives GTH = GHT = 0. A generator matrix is said to be

in standard form if G = (Ik | A), where Ik is the k × k identity matrix, and a parity-check

2

matrix is said to be in standard form if H = (B | In−k). The relationship between G and

H gives B = −AT . By elementary row operations, any linear code is equivalent to a linear

code with a generator matrix in standard form. The product Hv is called the syndrome of

v and a zero syndrome implies v ∈ C. Given G or H one may always generate the other

in O(n3) by simply computing the (right) kernel of the matrix using elementary linear

algebra. A subset of {1, 2, . . . , n} of cardinality k is called an information set for C if the

corresponding columns of G are linearly independent.

The (Hamming) weight of x ∈ Fnq , wt(x), is the number of nonzero components in

the vector. The (Hamming) distance between x ∈ Fnq and y ∈ Fnq , denoted by d(x, y), is

defined to be the number of places at which x and y differ, i.e., d(x, y) = wt(x − y). It

is easy to see that this satisfies the properties of a metric. For a code C with |C| ≥ 2, the

(minimum) distance of C, denoted by d = d(C), is

d(C) = min{d(x, y) | x, y ∈ C, x 6= y} = min{wt(c) | c ∈ C},

where the second equality holds only for the linear codes considered in this work. An

[n, k]q code with minimum weight d is denoted by [n, k, d]q
1. The weight enumerator of C

is the bivariate polynomial

W (C;x, y) =
n∑
i=0

Aix
iyn−i, (1.1)

where Ai is the number of elements of C with weight i. The weight distribution of C is the

ordered sequence {Ai}ni=0. The minimum distance is hence the smallest index i such that

Ai 6= 0. The weight enumerator of C and C⊥ are related via the MacWilliams identity

W (C⊥;x, y) =
1

|C|
W (C; y − x, y + x). (1.2)

1Some authors, especially in the early quantum literature, use the notation [n, d, k]q . It is usually clear
after a little thought which notation is being employed if not explicitly specified.

3

Taking this as a fundamental property of coding theory, the most general ring over which

such a formula holds, and hence we can do coding theory, is a Frobenius ring [8].

Information is encoded in C via enc : Fkq → Fnq , v 7→ vG. One may think of the k

bits of data in the information set as being embedded, or “smeared out", into the larger,

n-dimensional space. The parameter d is related to the error-correcting process called

decoding, which should not be confused with “unencoding".

Theorem 1.1.1

An [n, k, d]p code can correct t = b(d − 1)/2c or fewer errors. Conversely, a code

which can correct t = b(d− 1)/2c or fewer errors has minimum weight d.

The variables n, k, d, and t will be reserved for these quantities throughout this work and

will be referred to often.

The proof of this result is elementary and may be found in any book on coding theory.

Intuitively, picture each codeword in C as a point in V . If t = (d − 1)/2, then spheres

of radius t centered about each codeword are guaranteed to be disjoint. Now suppose a

codeword is transported from one place to another, or in the terminology of information

theory, a codeword is sent through a channel. The means of transportation (or the details

of the channel) is irrelevant at this point and may be considered to be a black box. We

must determine whether the vector at the end of the process is the same codeword or if any

errors have occurred. If the vector has t or fewer errors, then it will be contained in the

sphere of radius t about the original codeword. One then corrects the errors, or decodes,

by projecting the vector back to codeword at the center of the sphere. If the vector has

greater than t errors, then, in the best case, it will not be contained by any spheres. This

is detectable as HcT 6= 0, and will signal an error has occurred even if it is unable to

be corrected. In the worst case, the vector will be contained by a sphere about another

codeword, causing our decoding scheme to fail.

The construction of classical error-correcting codes becomes a game of balancing the

parameters n and d given k. If n is chosen too large with d small, the probability of a

4

vector not being contained in a sphere becomes large. On the other hand, if n is large, one

may attempt to find a k-dimensional subspace which only contains vectors of large weight.

However, the larger d becomes for a fixed n, the higher the probability that spheres will

start to intersect. This may be tolerated by a decoding scheme as long as the probability that

a vector is contained in the intersection is low. At the same time, listing every codeword

and keeping track of every sphere becomes a daunting task for even for reasonably small

n. All things considered, the sphere model of decoding is too flawed to be used in practice.

Decades of research in the field have replaced it with increasingly more sophisticated tech-

niques and models; however, all of the basic concepts are captured by this simple model,

and the intuition may be used going forward.

The direct sum of codes C1 and C2 has generator matrix G1 ⊕ G2. A code is called

decomposable if can be written as the direct sum of smaller codes. The most common

form of extending a code is to add an extra column to the generator matrix such that the

sum of the coordinates of each row is 0. Augmenting a code adjoins rows to the generator

matrix. Expurgating a code deletes rows from the generator matrix and then removes any

potentially resulting zero columns. Puncturing a code deletes columns from the generator

matrix and then removes any potentially resulting zero rows. Shortening is expurgating

followed by puncturing. We will only puncture a single column in this work, so we drop

the standard notational dependence on column indices and denote a puncture of C by C∗,

which is common. Likewise, we will use the common notation C to denote a shortened

code. The most systematic way to shorten C is to use the theorem that C
⊥

= (C⊥)∗ and

then use elementary linear algebra to compute the duals.

Let C be an [n, k, d]pm code. Then the subfield subcode of C over a subfield F ≤ Fpm ,

denoted C|F, is given by C∩Fn, i.e., the collection of codewords of C whose components lie

entirely in F. The code C is called the supercode of C|F. If C has parameters [n, k, d]pm , C|F

has parameters [n, k′,≥ d] over F, where n−k ≤ n−k′ ≤ `(n−k) and ` = [Fpm : F] (the

index of F in Fpm). As the codewords of C|F are codewords of C, it follows immediately that

5

the minimum distance of C|F is at least the minimum distance of C, and C|F can be decoded

using the same algorithm as C, although perhaps not efficiently as a native algorithm over

F designed specifically for the subfield subcode.

An [mn,mk,≥ d]p code may be constructed from an [n, k, d]pm code by expanding its

elements using a basis of Fpm/Fp. The first code is called the expanded code of the second.

To see why the minimum distance of the code could increase, let β = {βj}m1 be a basis of

Fpm/Fp and let c = (c1, . . . , cn) ∈ Fnpm be a minimum weight codeword in an [n, k, d]pm

code. Expressing each ci with respect to β, ci =
∑

j cijβj , we can replace each element

with its corresponding m-tuple, (ci1, . . . , cim). If ci 6= 0, then the Hamming weight of its

expansion is at least one and therefore the Hamming weight of the expansion of c is at least

d.

Recall that the inner product over finite fields is given by the trace. In particular, if β is

a basis of Fpm/Fp such that x =
∑m

j=1 xjβj for x ∈ Fpm , then xj = TrFpm/Fp(xβ
⊥
j) ∈ Fp,

where β⊥ is the unique trace-orthogonal dual of β such that TrFpm/Fp(xiyj) = δij for

xi ∈ β and yj ∈ β⊥. (The dual basis always exists and is easy to compute given β.)

For c = (c1, . . . , cn) ∈ Fnpm denote the expansion with respect to β by the isomorphism

φβ : Fnpm → Fnmp given by

φβ(c) = (φβ(c1), . . . , φβ(cn))

= (TrFpm/Fp(c1β
⊥
1), . . . ,TrFpm/Fp(c1β

⊥
m),TrFpm/Fp(c2β

⊥
1), . . . ,TrFpm/Fp(cnβ

⊥
m)).

6

Generator and parity check matrices for expanded codes are given by (e.g. [9])

Gφ =

φβ(β1g1)

...

φβ(βmg1)

φβ(β1g2)

...

φβ(βmgk)

, Hφ =

φβ(β1h1)

...

φβ(βmh1)

φβ(β1h2)

...

φβ(βmhn−k)

. (1.3)

In general, an expanded code loses the properties of its parent code and different bases

could produce different expanded codes with different parameters and properties. It is still

not yet known how to choose a basis to a priori maximize the minimum distance of the

expanded code. One crucial property that might not be maintained by a basis expansion

is orthogonality. To see this, let β be an arbitrary basis for Fpm/Fp. If C2 ⊆ C1 over Fpm ,

then φβ(C2) ⊆ φβ(C1) over Fp trivially, since if x ∈ C2 then x ∈ C1 and φβ(x) ∈ φβ(C2)

and φβ(x) ∈ φβ(C1). It is well-known in classical coding theory, and can be verified by

direct computation, that (φβ(C))⊥ = φβ⊥(C⊥). Now suppose C ⊆ C⊥. Then φβ(C) ⊆

φβ(C⊥) and φβ(C) is self-orthogonal if and only if φβ(C⊥) ⊆ (φβ(C))⊥ = φβ⊥(C⊥). It is

sufficient for β = β⊥ but not every field extension has a self-dual basis. Even if a self-dual

basis for the extension exists, it is often difficult to find. The two most common bases

are the polynomial bases of the form {1, α, . . . , αm−1} and the normal bases of the form

{α, αp, αp2 , . . . , αpm−1}. If α is primitive, then the polynomial basis is called a primitive

(polynomial) basis. Polynomial bases cannot be self-dual due to the presence of the 1.

Normal bases are easy to find and it’s trivial to check whether or not a given basis is self-

dual.

Theorem 1.1.2 ([10])

The extension Fqm has a self-dual basis over Fq if and only if either q is even or both q

and m are odd.

7

Theorem 1.1.3 ([10])

The number, sd(m, q), of distinct self-dual bases of Fqm over Fq is

sd(m, q) =
c

m!

m−1∏
i=1

(qi − ai), (1.4)

where

c =

0 if q is odd and m is even

1 if q is even

2 if q and m are odd

and

ai =

0 if i is odd

1 if i is even.

Theorem 1.1.4 ([10])

The extension Fqm has a self-dual normal basis over Fq if and only if both q and m are

odd or q is even and 4 - m.

It is also possible to enumerate the self-dual normal bases. Assume gcd(q, n) = 1

and let xn − 1 = (x − 1)
∏r

i=1 fi(x) be the decomposition of xn − 1 into r distinct ir-

reducible factors fi(x) over Fq. If fi(x) is an irreducible factor, then f ∗i (x) is also an

irreducible factor and the degree of fi(x) is necessarily even, deg fi(x) = 2ci. Suppose

t of these are self-reciprocal, fi(x) = f ∗i (x). Grouping the remaining factors into pairs

gj(x) = fj(x)f ∗j (x) of degree 2dj , we can rewrite the above factorization as xn − 1 =

(x− 1)
∏t

i=1 fi(x)
∏u

j=t+1 gj(x), where u = (r + t)/2.

Theorem 1.1.5 ([10])

8

The number, sdn(m, p), of distinct self-dual normal bases of Fpm over Fp is

sdn(m, p) =

2a

m

t∏
i=1

(pci + 1)
u∏

j=t+1

(pdj − 1) if gcd(m, p) = 1

1

p
p(p−1)(s+b)/2sdn(s, p) if m = sp,

(1.5)

where

a =

0 if p is even and 4 6 | m

1 if both p and m are odd,

and

b =

0 if both p and m are odd

1 if p is even and s is odd.

In the cases where self-dual normal bases do not exist, self-dual bases will have to be

found using another method. For the cases we are generally interested in, the remaining

self-dual bases that are not normal are relatively easy to manually compute. This informa-

tion is compiled in Table 1.1 for convenience. Recall that there are (1/m!)
∏m−1

i=0 (qm− qi)

(unordered) bases of Fqm/Fq. Of these, almost all of these bases can be generated by scalar

multiples and powers of a select few. For example, there are only 16 “distinct" bases for

F24/F2 [11].

A code is cyclic if for every (f0, . . . , fn−1) ∈ C the vector (fn−1, f0, . . . , fn−2) is also

in C. Consider the polynomial f = f0 + f1x + . . . + fn−1x
n−1. Multiplying by x and

setting xn = 1 gives fn−1 + f0x + . . . + fn−2x
n−1. Thus, elements of cyclic codes are

naturally viewed as coefficient vectors of polynomials in Fp[x]/(xn − 1). Cyclic codes are

in bijection with ideals of this ring and hence with divisors of xn − 1.

Let xn − 1 = g(x)h(x) for some g(x), h(x) ∈ Fp[x]. Then C = (g(x)) is a cyclic

code with generator polynomial g(x) viewed as an ideal of Fp[x]/(xn − 1). Let c(x) =

a(x)g(x) ∈ C; then c(x)h(x) = a(x)g(x)h(x) = a(x)(xn − 1) ≡ 0. In analogy with H ,

9

Table 1.1: The number of bases of various types for each extension field. The normal
bases* follow from direct computation, and the formulas do not apply to **.

Extension Field # Bases # Normal Bases* # Self-Dual
Bases

Self-Dual
Normal Bases

F22/F2 3 1 1 1
F23/F2 28 1 1 1
F24/F2 840 2 2 0
F25/F2 83328 3 6 1
F32/F3 24 2 0 0
F33/F3 1872 6 8 2
F42/F4 90 6 2 2**
F52/F5 240 8 0 0

h(x) is called the parity check polynomial. The code C has parameters [n, n−deg g]. Recall

that the reciprocal (reverse) of a polynomial f(x) of degree n is f r(x) = xnf(x−1). An

easy argument shows that C⊥ = (hr(x)/h(0)), where we have introduced a normalization

factor to keep the generator polynomial monic. Note that if h(x) | xn−1, then hr(x)/h(0) |

xn − 1, so the dual code of a cyclic code is cyclic. Let deg g = n− k. Then the generator

and parity check matrices for C are given by

G =

g0 g1 gn−k

g0 g1 gn−k

. .

g0 g1 gn−k

, (1.6)

and

H =

hk hk−1 h0

hk hk−1 h0

. .

hk hk−1 h0

, (1.7)

respectively.

10

The general idea to factoring xn − 1 is always that over the splitting field, xn − 1 =∏
αn=1

(x−α), where the product is taken over all n-th roots of unity, not necessarily primitive.

While not over the splitting field, some of these terms need to be grouped together into

irreducible factors, xn− 1 =
∏

minα(x), where minα(x) is the minimal polynomial for α

over the appropriate base field. It follows from the binomial theorem that for f(x) ∈ Fp[x],

f(xp) = f(x)p. Hence, for α a root of f(x) in some extension field of Fp, f(αp) = f(α)p =

0, implying α, αp, αp2 , . . . are all roots of f(x). This sequence stops when αpr = α for some

natural number r. Let E be the splitting field of xn − 1 with gcd(n, p) = 1, and let β be a

primitive element ofE. Then α = βd is a primitive n-th root of unity with d = (|E|−1)/n.

Then αpr = α→ βdp
r−d = 1, or dpr ≡ d mod (|E| − 1). Note that |E| = pordn(p), where

ordn(p) is the smallest positive integer m such that pm ≡ 1 mod n.

We can collect this sequence of roots into the p-cyclotomic cosets modulo n (p-cosets),

Cs = {s, sp, . . . , spr−1} mod (n− 1),

such that

minα(x) = minβd(x) =
∏
j∈Cd

(x− βj).

If the minimal polynomial contained any other roots, it would also need to contain all of

its p powers and we could separate all of these new terms into a polynomial which divides

minα(x), contradicting the irreducibility of the minimal polynomial. Hence, over Fp, we

have

xn − 1 =
∏
d|n

minαd(x). (1.8)

The assumption gcd(n, p) = 1 ensures there are no repeated roots in the factorization since

f(xp) = f(x)p.

Let C = (g(x)) be a cyclic code. Then T = ∪sCs, where Cs are the p-cosets present in

the construction of g(x), is called the defining set of C. As is clear from the definition, T

11

completely determines g(x) and vice versa, g(x) =
∏

j∈T (x− αj). The set of powers of α

that are roots of g(x) is called the variety (zero set) of C, {αj : j ∈ T }, and elements of

the set are called zeros of the code. For two cyclic codes C1 and C2 with defining sets TC1

and TC2 , respectfully, C1 ⊆ C2 if and only if TC2 ⊆ TC1 (g2(x) | g1(x)).

The first of the three families of codes we will use in this work is a way of constructing

a cyclic code with high minimum distance and high dimension by choosing T as small as

possible that is a union of cyclotomic cosets with δ− 1 consecutive elements. A BCH code

C over Fp of length n and designed distance 2 ≤ δ < n is a cyclic code with defining set

T = Cb ∪Cb+1 ∪ . . .∪Cb+δ−2 and zeros generated by a primitive element α ∈ Fpm , where

m = ordn(p). A BCH code is called narrow-sense if b = 1 and primitive if n = pm − 1.

The number b is called the offset of the code. It is crucial to note that many sources define

narrow-sense as b = 0. This definition uses the zero set {αj+b} which is a shifted version

of the definition above. While less common, the emphasis on the defining set over the

zero set makes the choice b = 1 more natural for this work. The Magma and Sagemath

coding theory libraries define narrow-sense as b = 1 and default to this parameter, although

previous versions of the latter used b = 0.

The BCH bound says that if the defining set of a cyclic code contains a set of δ − 1

consecutive integers (modulo n), then the minimum distance of the code is at least δ. BCH

codes therefore have minimum distance at least δ by design and maximize dimension by

containing no extra roots. The dual of a BCH is, in general, not a BCH code, as the

remaining cyclotomic cosets giving h(x) need no longer be consecutive; however, the dual

of narrow-sense BCH codes are BCH codes.

The second family of codes we will utilize here are the cyclic RS codes, which are

primitive BCH codes over Fpm for an integer m ≥ 1. In this case, Fpm is the splitting field

of xpm−1 − 1 and each element αi has minimal polynomial x − αi with cyclotomic cosets

of cardinality one. Hence, BCH codes are related to two fields while RS codes are only

related to one. RS codes have the theoretically maximum possible distance with parameters

12

[n, k, n−k+ 1]. If C is an [n, k, d]pm RS code, then C|Fp is the BCH code over Fp of length

n and designed distance d. The proof of this follows immediately from the fact that the

codewords of the BCH code are elements of Fnp and the zero set of the RS is a subset of the

zero set of the BCH code.

We will only be concerned with cyclic RS codes, but the more general, and original,

definition of RS codes will lead us into the final family of codes we will use in this work.

Let Pk(x) denote the set of polynomials of degree less than k in Fpm [x]. The RS code of

length n ≤ pm and dimension k < n is given by

RSpm(n, k) = {(f(α1), . . . , f(αn)) | f(x) ∈ Pk(x)},

where αi ∈ Fpm . The most common case n = pm is the extended code of the cyclic

definition, but only the case n = pm − 1 is, in general, cyclic.

Theorem 1.1.6

Let α be a primitive element of Fpm and let 0 ≤ k ≤ n = pm − 1 be integers. Then

RSp(n, k) = {(f(1), f(α), f(α2), . . . , f(αn−1)) | f(x) ∈ Pk(x)}

is a cyclic code.

The proof is an application of the Chinese Remainder Theorem.

Unlike BCH codes which can have any length relatively prime with the characteristic

of the field, RS codes over Fp have n ≤ p and therefore do not make good binary codes

directly. Instead, one may construct a “binary RS code" using the expansion procedure for

F2m/F2 mentioned above.

Finally, we turn to the family of Reed-Muller (RM) codes. These are rather general

mathematical objects and may be described and defined in a number of different ways. The

generalized Reed-Muller codes are extensions of the original binary family to higher fields.

13

Let (P1, . . . , Ppn) be points in the affine space Am(Fp). The Reed-Muller code over Fp is

RMp(r,m) = {(f(P1), . . . , f(Pn)) | f ∈ Fp[x1, . . . , xm], deg f ≤ r}, (1.9)

where 0 ≤ r ≤ m(p − 1) and deg f is the total degree of f (sum of the exponents). A

missing subscript p is assumed to be 2. This definition of RM codes shows they are a

possible generalization of RS codes to multivariate polynomials. An alternative definition

using the (u | u + v)-construction is more useful for explicitly writing down a set of

stabilizers,

RM(r,m) = {(u | u+ v) | u ∈ RM(r,m− 1), v ∈ RM(r − 1,m− 1)}.

Let G(r,m) be a generator matrix for RM(r,m) and set G(0,m) to be the length-2m all

one’s vector andG(m,m) to be the 2m×2m identity matrix. Then the (u | u+v) definition

gives

G(r,m) =

G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)

 . (1.10)

Lastly, letG2 =

1 0

1 1

. ThenRM(r,m) is given by selecting all rows of weight at least

2m−r fromG⊗m2 [12]. So binary RM codes have an underlying Kronecker product structure

with a hand-selected weight distribution, potentially foreshadowing their use in QEC.

Reed-Muller codes have parameters [2m,
∑r

i=0

(
m
r

)
, 2m−r]. Their minimal distance is

generally below that of BCH and RS codes, but they are (classically) easier to encode and

decode (with respect to hardware circuitry). The dual of an RM code is also an RM code,

RM⊥
p (r,m) = RMp(m(p − 1) − r − 1,m), and similar to BCH codes, RMp(r1,m) ⊂

RMp(r2,m) for r1 ≤ r2.

14

1.2 Quantum Mechanics For Mathematicians

Recall that a Banach space is a complete, normed vector space. A Banach space is called

separable if it contains a countable dense subset. Let X and Y be normed vector spaces

over the same ground field K and T : X → Y be a linear map. The norm of T is given by

‖T‖ = sup{‖Tx‖Y : x ∈ X, ‖x‖X ≤ 1}. (1.11)

We say T is bounded if

sup
x∈X\{0}

‖Tx‖Y
‖x‖X

<∞.

If T is bounded, then (1.11) is called the operator norm of T . If Y is a Banach space, the set

of all bounded operators from X to Y , denoted by B(X, Y), is also a Banach space. If X

is a Banach space, then B(X) = B(X,X) is a unital Banach space (contains the identity)

which is also an associative algebra over K with multiplication given by composition. This

is called a Banach algebra. The subscripts X and Y on the norms are usually clear from

context, and we drop them from here on out.

A Hilbert space H is a vector space equipped with an inner product 〈·, ·〉 such that H

is complete in the norm induced by the inner product. This inner product is a sequilinear

form which is complex linear on the left in the math literature and on the right in the physics

literature. LetB(H) denote the set of all bounded operators2 on a complex separable Hilbert

space H. For any A ∈ B(H), the adjoint of A is the unique linear operator A∗ : H → H

such that 〈φ,Aψ〉 = 〈A∗φ, ψ〉 for all φ, ψ ∈ H. An operator is called self-adjoint or

Hermitian if A = A∗. Note that the adjoint is usually denoted by a †, pronounced “dagger",

in the physics literature. Recall that A∗ is bounded, ‖A∗‖ = ‖A‖, and ∗ is an involution,

i.e., (A∗)∗ = A. With this extra structure, B(H) is called a ∗-algebra. A(n) (abstract) C∗-

2Many physical observables, such as position, momentum, and energy, are unbounded, but these can be
reconstructed from bounded operators within the theory of rigged Hilbert spaces so it suffices to stick with
B(H).

15

algebra3 is a Banach algebraA for which ‖A∗A‖ = ‖A∗‖‖A‖ for all A ∈ A. Note that this

definition makes no reference to Hilbert space. A (concrete) C∗-algebra is a subalgebra

C ⊂ B(H) with the adjoint operator, which is closed in the operator norm topology. Every

abstract C∗-algebra is isomorphic to a concrete C∗-algebra via the Gelfand-Naimark-Segal

(GNS) construction, so we henceforth drop the qualifying label, and assume from here

on out that all C∗-algebras are concrete. As a closed subspace of a Banach space, a C∗-

algebra is also a Banach space. In particular, B(H) itself is a C∗-algebra. We will assume

all C∗-algebras are unital, where I is the identity operator onH.

If C is a C∗-algebra, then its topological dual C∗ (linear functionals from C to C) is

a Banach space. A functional φ ∈ C∗ is called positive if φ(A∗A) ≥ 0 for all A ∈ C.

Such a map is called a state if φ is also normalized, i.e., φ(I) = 1. The positivity and

normalization conditions are required to guarantee the values φ(A∗A) may be interpreted

as a probability. In this sense, a state associates an operator to its expectation value. This

follows directly from the formula for φ given A in the GNS construction. There we find

that either for a non-zero operator A there exists a state φ such that φ(A∗A) > 0, or A is

indistinguishable from 0.

Let E be the set of states on a C∗-algebra C. This is a convex subset of the set of linear

forms on C. The extremal points of E are those states which cannot be written as a linear

combination of two elements in E . In the physics literature these are called pure states, with

all other states being called density operators or mixed states. It is important to be able to

distinguish between the two in this work, so we adopt the physics convention from here on

out. The term “density" operator comes from its interpretation as a probability density in

quantum statistical mechanics. The GNS construction says that pure states are projection

operators.

Let A be a positive operator in B(H) and {ei} be an orthonormal basis of H. Then

the sum
∑

i〈ei, Aei〉 is invariant (possibly infinite) and is called the trace of A, Tr(A).

3The C in C∗ stands for compact, not complex.

16

An element A ∈ B(H) is called trace class if Tr(A) is finite. A general A ∈ B(H) is

called trace class if Tr(
√
A∗A) is finite. If A is trace class, then A∗ is also trace class and

Tr(A) = Tr(A∗). If A ∈ B(H) is trace class, then for B ∈ B(H), AB and BA are also

trace class with Tr(AB) = Tr(BA). Gleason’s Theorem establishes the existence and

uniqueness of a trace-class operator A, given a state φ, such that A ≥ 0, TrA = 1, and

Tr(AB) = φ(B) for every B ∈ B(H). This is important for establishing the probabilistic

interpretation of states.

A von Neumann algebra is a C∗-algebra which is closed in the (strong) operator topol-

ogy. This is not the only (or preferred) way to define von Neumann algebras, but it is

the one of a handful of equivalent definitions that make the most sense in our context of

Hilbert space. One may define abstract von Neumann algebras in a similar manner to

abstract C∗-algebras above (and without reference to C∗-algebras), in which case von Neu-

mann algebras are also known as W ∗-algebras. We will not need this distinction here. The

set B(H) is a von Neumann algebra. When dimH = n < ∞, there is no difference be-

tween von Neumann and C∗-algebras, and both are isomorphic to the n×n matrix algebra

Mat(n,K) over the appropriate ground field K. In particular, every operator is trace class

when n <∞.

The general spectral theorem of von Neumann provides a way to rigorously define a

theory of probability from states in terms of measure theory4. In particular, an important

consequence of Gleason’s theorem is the Kochen-Specker theorem which says that there

are no states which assign a probability of one to some operators and zero to the rest. (This

is in direct contrast to the situation in classical mechanics.) For details on this process and

how this “non-commutative" probability differs from that of classical probability theory,

see e.g. [13] and [14].

With the mathematical foundations in place, quantum mechanics may then be charac-

4A result of Connes shows that von Neumann algebras correspond to non-commutative measure theory
while C∗-algebras correspond to non-commutative topology.

17

terized by the Dirac-von Neumann axioms. Roughly, these say:5

• A quantum system is modeled by an infinite-dimensional, separable, complex Hilbert

space H. The Hilbert space of a composite quantum system is the tensor product of

the Hilbert spaces of the component systems.

• The set of observables of a quantum system with the Hilbert space H consists of all

self-adjoint operators onH.

• The set of states of a quantum system with a Hilbert spaceH consists of all positive,

normalized, trace-class operators.

• The result of a measurement of an observable A on a quantum system is the expec-

tation value φ(A), where A is the operator representing A.

The complicated nature of quantum mechanics (the uncertainty principle, Bell’s inequal-

ities, conditional probabilities, entanglement, etc) then follow directly from the structure

of non-commutative von Neumann algebras. It is worth pointing out before we move on

that classical mechanics may also be formalized in this manner but the resulting von Neu-

mann algebra is abelian. The Gelfand-Naimark theorem says every abelian C∗-algebra is

∗-isometric to the algebra of continuous functions. As such, classical mechanics is missing

the structure which makes quantum mechanics interesting.

The appearance of self-adjoint operators in the axioms above is not too surprising. The

spectral theorem for self-adjoint operators guarantees a set of mutually orthogonal states

and their eigenvalues, here corresponding to the possible outcomes of a measurement of

the states, uniquely determines a self-adjoint operator. As written, the axioms suffer from

some minor technicalities overlooked in the above discussion. Mathematically, the possible

outcomes of measuring an observable A are given by the spectrum σ(A) of the operator A

5We should be more careful here about the distinction between ensembles and single systems but a thor-
ough discussion is complicated and beyond the intended scope of this work. The interested reader is referred
to any of the many texts on the mathematical foundations of quantum mechanics.

18

representing A. However, physically a measurement may obtain outcomes in the closure

σ(A). Fortunately this doesn’t cause any problems for the model as no measurement can

distinguish between two arbitrarily close values. More importantly, not every self-adjoint

operator onH represents a physically relevant (measurable) observable nor does every state

inH correspond to a physically obtainable state.

The above material may be found in any reference on operator theory, C∗-algebras, von

Neumann algebras, or the mathematics of (non-relativistic) quantum mechanics. A signif-

icant amount of work has gone into the relationship between these subjects and quantum

theory. The operator approach, Tomita-Takesaki modular theory in particular, is especially

important in quantum information theory, where it is used to establish bounds on measures

of information. We do not touch on this here. We note for completeness that the above

axioms do not hold globally due to the existence of superselection sectors inherent to von

Neumann theory; however, they hold with respect to each sector.

A state φ of a quantum system with Hilbert space H is often denoted in the physics

literature by |φ〉 and a linear functional φ∗ ∈ H∗ by 〈φ|. For convenience, we will adhere

to the physics convention that these are conjugate linear in 〈·| and linear in |·〉 such that

A|φ〉 = |Aφ〉 and 〈φ|A = 〈A∗φ| for an appropriate operatorA ∈ B(H). This notation dates

back to Dirac and is called bra-ket (bracket) notation, 〈·| being a bra and |·〉 a ket, which

stems from the induced inner product 〈·| |·〉 := 〈·|·〉 = 〈·, ·〉. Expressions such as |x〉〈y| ∈

H ⊗ H∗ are extremely common in this field and should be interpreted as a linear operator

on H. In particular, let H be finite-dimensional and |i〉 denote an orthonormal basis for

i = 1, . . . , dimH. Then Πi = |i〉〈i| is a projection operator onto the one-dimensional

subspace spanned by |i〉. By the spectral theorem for self-adjoint operators, we may use

this to express an operator A ∈ B(H) representing the observable A as

A =
dimH∑
i=1

λiΠi =
dimH∑
i=1

λi|i〉〈i|,

19

where λi ∈ R are eigenvalues of A. More generally, following the discussion above, a pure

state is of the form ρ = pj|j〉〈j| and a density operator ρ can be expressed as a sum of pure

states,

ρ =
dimH∑
j=1

pj|j〉〈j|,

for pj ∈ C. The expectation value of A in the state ρ is then

〈A〉ρ := Tr(ρA) =
dimH∑
j=1

pj〈A∗j, j〉 =
dimH∑
j=1

pj〈j, Aj〉. (1.12)

While this notation might seem cumbersome and unnecessary to mathematicians, it is un-

avoidable in this field and actually turns out to simplify many computations tremendously.

The failure of this notation is in describing the inherent composability of the underlying

physics [15].

Before moving on, it is appropriate to comment at this point on the last Dirac-von

Neumann axiom above, concerning the measurement of an observable. At the time of

measurement, the measurement device must be brought into contact with the system to

be studied. Any rigorous definition of the measurement process must therefore include

a complete description of the combined system of both the classical device and quantum

system. This is far beyond the intended scope of this work and the reader is instead referred

to [16] for more details. The general idea, however, will suffice for the proposes of this

work and is as follows.

Definition 1.2.1

LetH be a finite-dimension Hilbert space representing the quantum system and Ω be an

appropriate space representing the measurement device. Define |i〉 to be an orthonormal

basis for H with i = 1, . . . , dimH with corresponding projectors Πi = |i〉〈i|. Then the

20

measurement of a density matrix

ρ =
dimH∑
i=1

pi|i〉〈i|

is an operator MEASΩ : B(H) → B(H) × Ω which returns the classical result i with

probability pi = Tr(ΠiρΠi), and

ρ 7→ ΠiρΠi

Tr(ΠiρΠi)
.

We see that after a measurement the resulting quantum state only has support on the sub-

space spanned by |i〉. In this way, the state is said to have “collapsed". This has dire

consequences for any theory of QEC, as any information stored in the state ρ will be im-

mediately destroyed by trying to read it. Of course, we can also project onto subspaces

and not just a single state. In this case, the projector can be a sum, but we still need an

orthonormal basis to distinguish between measurements.

The following result is also of great consequence to QEC and will force us to dramati-

cally modify the previously described classical approach.

Theorem 1.2.2 (No-Cloning Theorem)

There is no unitary operator U ∈ B(H)⊗ B(H) such that U |φ〉 ⊗ |i〉 7→ |φ〉 ⊗ |φ〉 for

an arbitrary state |φ〉.

1.3 Quantum Error Correction

Let q = pm be a power of a prime. Normal (classical) computers store information in the

bits 0, 1 ∈ F2 (technically bytes, elements of F8). A bit can either be a 0 or a 1, not both.

A quantum bit, called a qudit if q > 2 and a qubit if q = 2, is a normalized vector in Cq.

The normalization is necessary by the normalization of states from the previous section.

By the axioms above, an n qudit system has Hilbert space Cqn ∼= Cq ⊗ . . . ⊗ Cq. The

21

corresponding von Neumann algebra is isomorphic to Mat(n,C). A global phase factor

(scalar) times a state does not change the expectation values of a self-adjoint operator, so

one can think of qudits as really living in projective Hilbert space.

Let {|i〉 | i ∈ Fq} be an orthonormal basis for Cq. Then a qudit may be a linear combi-

nation of basis vectors, |ψ〉 =
∑

i pi|i〉, which is often interpreted as saying a quantum bit

may be simultaneously (in a superposition of) a 0 and a 1. Recall that if {ai} is a basis for

A and {bj} is a basis for B, then {ai⊗ bj} is a basis for A⊗B. An n-qudit system may be

written as |ψ〉 =
∑
pa,...,n|a〉 ⊗ . . .⊗ |n〉, where a, . . . , n ∈ Fq. To keep the notation from

being cumbersome, the tensor product symbol is omitted in the physics literature such that

|a . . . n〉 := |a〉 ⊗ . . .⊗ |n〉. The state associated to a quantum system is |ψ〉〈ψ|.

The initial formalism of QEC stuck to this Hilbert space and operator approach of the

previous sections. Quantum codes are still often described by explicitly specifying vectors

as sums of basis vectors and then discussing their orbit under the action of unitary opera-

tors. This led to the development of QEC fundamentals but left few good examples. The

subsequent development of the stabilizer formalism by Gottesman [17] made constructing

examples almost trivial. This switched the problem from one of analysis to one of groups.

We will stick to the group perspective throughout this work, but we believe it is important

to establish a rigorous connection between the two approaches. The stabilizer formalism is

now dominant in QEC, and the operator formalism is studied in math and physics depart-

ments to establish fundamental limits on quantum information. This places limits on the

subspaces that can be considered QECCs, their decoding procedures, the form certain oper-

ators can take, and the support these operators can have relative to the underlying subspace,

which has been beneficial to the study of QEC. The operator formalism had a resurgence

in the mid-2000’s with the development of the so-called operator quantum error correction

(OQEC), which studied the Hilbert space structure induced by the stabilizer formalism.

This led to an extension of subspace-based codes to subsystem-based codes. We will refer

to this in the last chapter and there is no way to rigorously understand how it works without

22

further extending our operator discussion above. We do this now before switching to the

stabilizer formalism.

1.3.1 Operator Quantum Error Correction

Operations on quantum states may be viewed as linear maps between states. Of course, not

just any linear map is going to be physically valid; it must have certain properties. Since

states are positive, normalized, trace-class operators, a physically valid map must retain this

notation of positivity and be trace preserving to conserve probability. A map Φ : X → Y

is positive for C∗-algebrasX and Y if and only if Φ(A) is positive for all positive operators

A ∈ X . Define Φ⊗ Ik : X ⊗ Ik → Y ⊗ Ik in the natural way. Then Φ is called completely

positive (CP) if and only if Φ ⊗ Ik is positive for all positive integers k. It turns out that

positive maps and CP maps have different properties [18], and quantum operations require

the mathematically rich theory of completely-positive, trace-preserving (CPTP) maps. This

is a natural requirement from a physical standpoint because one can always view a physical

system as a subsystem of a larger physical system (such as the universe itself) and the

physics of the subsystem should be invariant with respect to the way one chooses to look

at it.

Quantum operations, called quantum channels in the quantum information literature in

analogy to the classical channels of classical information theory, have a lot of nice prop-

erties, that make working with them feasible from the perspective of operator theory. The

interested reader should consult [19] and the references there-in for an exhaustive but clear

description. It suffices for the current discussion to note that CP maps may be completely

characterized in four different but equivalent ways. Proving they are equivalent is easy but

proving any of them characterize CP maps directly is more difficult. The two most use-

ful descriptions in this work, and that are also provide an immediate interpretation with

respect to the underlying physics, are the Choi decomposition and Stinespring’s theorem

[20], which are given in their absolute simplest forms below.

23

Theorem 1.3.1 (Stinespring’s Dilation Theorem)

Let A be a unital C∗-algebra and H a separable, complex Hilbert space. For every

completely positive map Φ : A → B(H), there exists a Hilbert space K and a unital ∗-

homomorphism π : A → B(H) such that Φ(a) = V ∗π(a)V , where V : H → K is a

bounded operator.

Theorem 1.3.2 (Choi Decomposition)

Let A be a unital C∗-algebra and H a separable, complex Hilbert space. Every com-

pletely positive map Φ : A → B(H) can be expressed in the form Φ(A) =
∑
i

ViAV
∗
i ,

where {Vi} is a (possibly infinite) sequence of operators in A.

This was first proved by Choi in the special case Φ : Cm×m → Cn×n [21], but can be

extended to a more general setting. This is often called the operator-sum representation,

Choi-Kraus decomposition, or simply the Kraus decomposition, after the physicist Karl

Kraus who popularized its use in quantum mechanics. In this context, the Vi are called

Kraus operators.

The Stinespring representation is often more useful in a pure quantum information the-

ory setting where one is more concerned with rigorous mathematical analysis. For example,

while all valid quantum operations are unitary, a given quantum channel might not appear

to act as a unitary operator on a quantum system. Stinespring says that one can always view

the channel as a unitary operator acting on a larger system, often called the environment.

Specifically, let ρQ be a density operator on a quantum system Q and let Φ be a channel

acting on the appropriate Hilbert space ofQ. Then, a Stinespring representation of Φ would

be

Φ(ρQ) = TrE
[
V ∗QE (ρQ ⊗ σE)VQE

]
. (1.13)

Here, we have introduced an auxiliary, non-physical/purely-mathematical system labeled

by E (for environment) such that the action of the channel may be represented by a unitary

operator VQE acting on the combined system HQ ⊗HE . A density operator σE was intro-

24

duced out of necessity of the action of VQE on E. It suffices to take this to be the “identity"

on E, or the density operator |0E〉〈0E| in a pure state of the ground state of the physical

system, and as such is often left out of equations and implicitly assumed to be there. This

is considered well-motivated as one can almost always isolate an experimental setup such

that the system interacts with the environment in such a manner. Finally, as the action of Φ

on Q is the only thing of interest, the system E is discarded by taking the partial trace over

all of its degrees of freedom.

The partial trace in (1.13) is a bit inconvenient to deal with directly, so it is common

to pass to the dual problem. The dual of a channel Φ, often denoted by Φ̂ and called

the complementary channel, is defined by the condition, referring back to equation (1.12),

that Tr(Φ(ρ)A) = Tr
(
ρΦ̂(A)

)
for all appropriate ρ and A. This should be interpreted

as switching between the Schrödinger and Heisenberg descriptions of quantum mechanics.

The dual to (1.13) would be

Φ̂(ρQ) = V ∗QE (ρQ ⊗ σE)VQE. (1.14)

A physicist would recognize this as being of the form E(·) = V ∗(·)V . To see why this

form is important, consider the action U∗|ψ〉 of a unitary operator U∗ on a state |ψ〉. To

represent this as a quantum channel, express this as a density operator U∗|ψ〉〈ψ|U . Letting

ρ = |ψ〉〈ψ| then gives a quantum channel E(ρ) = U∗ρU whose action represents U∗|ψ〉

on the level of density operators instead of states. Note that it is common in the physics

literature to switch the roles of the unitary and its adjoint in the above equations; the current

notation has been chosen to match the form of Theorem 1.3.1.

The Choi decomposition 1.3.2 is often more useful in quantum error correction and in

other situations where one has an explicit representation of the noise model for the system

in terms of the matrices Vi, which allows for the calculation of useful quantities. Note that

25

in order to be trace preserving,

Tr(Φ(A)) = Tr

(∑
i

ViAV
∗
i

)
= Tr

(∑
i

V ∗i ViA

)
= 1

must be true for all normalized, trace-class operators A. It follows that
∑
i

V ∗i Vi = I .

A map is unital if it preserves the identity, Φ(I) = I . It follows that for unital maps∑
i

ViV
∗
i = I . Hence, a CP map is trace preserving if its dual map is unital. In general,

quantum operations need not be unital maps. This distinction between unital and non-unital

maps is what separates early work in the direction of OQEC [22, 23, 24, 25, 26, 27, 28]

from the general theory in the references above.

Stripped down to its fundamentals, if E is a CPTP map representing an error occurring

on the system, QEC is concerned with the existence of a CPTP map R such that (R ◦

E)(ρ) = ρ for all states ρ. Such an R, if it exists, is called the recovery operator for E .

The standard model of QEC is given by a triple (R, E , C), where C is a subspace of the

system’s Hilbert space H. The question then becomes given C and an E modeling the

expected errors on the system, does a suitable R exist which “fixes" the errors introduced

by E? In such cases, C is said to be correctable for E . Starting from a more physical

perspective, one often only has E and the goal is to find an appropriate subspace C to

encode the information such that R exists. One can write down conditions on when such

an operator exists, the proof of which is constructive [29, 30].

An important, early result in the QEC literature is the related Knill-Laflamme theorem.

Theorem 1.3.3 (Knill-Laflamme [30])

Let V ⊂ H⊗n and E be a channel with a Kraus operators {Ea}. Then V can detect

(correct) elements of E if and only if 〈ΨiEa, EbΨj〉 = cabδij , where {|Ψi〉} is the basis of

V and cab is non-negative, real.

If the matrix of coefficients (cab) does not have full rank, different errors from E have

the same effect on the subspace and cannot be distinguished. If this occurs, V is called

26

degenerate (with respect to E).

Let B(H) be finite, E : B(H) → B(H) be a given CPTP map with Kraus operators

{Ea}, and A be the algebra generated by Ea and E∗a . The following result then gives the

unique decomposition of A, called the interaction algebra, up to unitary equivalence of the

form

A ∼=
⊕
i

(Mmi ⊗ Ini) , (1.15)

where Ini is the identity on Cni and accounts for the degeneracies ofMmi .

Theorem 1.3.4

Every finite-dimensional C∗-algebra A is ∗-isomorphic to the direct sum of full matrix

algebras, A ∼= Mm1 ⊕ . . . ⊕Mmk . In particular, every finite-dimensional C∗-algebra is

unital.

The structure of (1.15) implies the commutant A′ = {ρ ∈ B(H) | Eρ = ρE, ∀E ∈

{Ea, E∗a}} has the form

A′ ∼=
⊕
i

(Imi ⊗Mni) . (1.16)

We are interested in the set of fixed points of E , Fix(E) = {ρ ∈ B(H) | E(ρ) = ρ}, as these

are those states immune to the errors modeled by E . This equals is A′ if and only if E is

unital,

E(ρ) =
∑
a

EaρE
∗
a = ρ

(∑
a

EaE
∗
a

)
= ρ.

When E is unital, this is called the theory of noiseless subsystems [26, 27, 28], and when

mi = 1 for all i this is called the theory of decoherence-free subspaces [22, 23, 24, 25],

both of which predate the general theory of OQEC.

Equation (1.15) induces a decomposition of the Hilbert space in the formH =
⊕

i(HA
i ⊗

HB
i), with dim HA

i = mi and dim HB
i = ni. Without loss of generality, consider the de-

composition H = (HA ⊗ HB) ⊕ K, where K contains the rest of the terms in the direct

27

sum. Define the semigroup A to be the set of states restricted toHA ⊗HB,

A = {ρ ∈ B(H) | ρ = ρA ⊗ ρB, ρA ∈ B(HA), ρB ∈ B(HB)},

and let ΠA be the projection of H onto HA ⊗ HB. Then define the B-sector of A to be

correctable for E if there exists a recovery operatorR such that

(TrA ◦ ΠA ◦ R ◦ E)(ρ) = TrA(ρ),∀ρ ∈ A,

where TrA is the partial trace of the subsystem A. Our model of error correction is thus

now defined by the triple (R, E ,A).

In essence, by tracing out the degrees of freedom inA, we only care about what happens

to the information stored in B. In particular, we would like a physical system such that for

all ρA and ρB there exists a τA such that E(ρA ⊗ ρB) = τA ⊗ ρB, i.e., R = I . Thus

storing information only in the B-sector achieves a form of passive error correction. With

this in mind, HA is said to be noisy and HB noiseless. One can constructively write down

conditions on when such a situation exists [31, 32, 33]. In particular, we need A′ 6= CI ,

since the operators diagonal with respect to the chosen basis (with all of the ni = 1)

correspond to classical states.

1.3.2 The Stabilizer Formalism

We finally describe the stabilizer formalism of QEC. In order to build an error-correcting

code, we first need to establish what the errors are. We will need a different model for a

different choice of errors. The best set of errors was rigorously developed in the early QEC

literature [34, 35, 36]; see also [37, 38, 39, 40].

Definition 1.3.5 ([37])

Let G be a group of order d2 with identity element e. A nice error basis on Cd is a set

E = {ρ(g) ∈ U(d) | g ∈ G} of unitary matrices such that

28

(i) ρ(e) = I

(ii) Tr(ρ(g)) = nδg,e ∀g ∈ G

(iii) ρ(g)ρ(h) = ω(g, h)ρ(gh)∀g, h ∈ G,

where ω(g, h) is a nonzero complex number depending on (g, h) ∈ G×G.

Conditions (i) and (iii) say ρ is a projective representation of G. Condition (ii) says

that this (irreducible) representation is faithful and the matrices form an orthonormal basis

with respect to the Hilbert-Schmidt inner product, 〈A,B〉 = Tr(A∗B)/d. Reference [37]

classified all viable groups. It is known that nice error bases are also unitary bases. By the

previous discussions, a physical action on a qudit is represented by a unitary matrix, U |ψ〉.

Let {|i〉 | i ∈ Fq} be an orthonormal basis for Cq, and consider the two operators defined

by

X(a)|i〉 = |i+ a〉 (1.17)

and

Z(b)|i〉 = ωTr(bi)|i〉, (1.18)

where ω is a primitive p-th root of unity in C, Tr is the absolute trace for Fq/Fp, and

the result of the trace is naturally embedded in C. Over F2 we simplify the notation and

find X|0〉 = |1〉, X|1〉 = |0〉, Z|0〉 = |0〉, and Z|1〉 = −|1〉. Hence X plays the role

of the familiar bit-flip error from classical computing, but Z, called a phase-flip error, is

completely new, e.g., Z(|0〉 ± |1〉)/
√

2) = (|0〉 ∓ |1〉)/
√

2. These are physically motivated

from elementary quantum mechanics.

It is easy to see that (1.17) and (1.18) satisfy the commutation relations

[X(a), X(a′)] = [Z(b), Z(b′)] = 0, (1.19)

X(a)Z(b) = ω−Tr(ba)Z(b)X(a). (1.20)

29

The second relation gives

X(a)Z(b)X(a′)Z(b′) = ωTr(ba′)X(a+ a′)Z(b+ b′), (1.21)

(X(a)Z(b))` = ωTr(`(`−1)
2

b·a)X(`a)Z(`b). (1.22)

Since Xp = Zp = I , the spectrum of the representations of both operators are all the p-th

complex roots of unity. When q = p, operators with these conditions are called a Weyl pair.

Definition 1.3.6

A Weyl pair (A,B) in dimension d is a pair of d × d unitary matrices such that Ad =

Bd = 1 and AB − ηBA = 0, where ηd = 1.

We may extend the notation to a, b ∈ Fnq byX(a) = X(a1)⊗ . . .⊗X(an) and similarly

for Z(b). This should be interpreted asX(ai) operating on the ith qudit. It is useful to recall

that (A ⊗ B)(C ⊗ D) = (AC ⊗ BD). A straightforward proof shows that {X(a)Z(b) |

a, b ∈ Fnq } forms a nice error basis and a basis for the qn × qn unitary matrices,

U =
∑
a∈Fnq

∑
b∈Fnq

〈U,X(a)Z(b)〉X(a)Z(b). (1.23)

If we can correct any errors of this form acting on our system, we can correct any linear

combination of them, i.e., any unitary error.

We can promote this set to a group

Pn = {ηcX(a)Z(b) | a, b ∈ Fnq , c ∈ Fp}, (1.24)

where η is a primitive p-th root of unity for p odd and a primitive 2p-th root of unity for p

even. This latter condition is necessary to fix the normalizer and essentially gives a double

cover of the group. The inclusion of the scalars ηc are required from equation (1.21) for

closure. This is often called the (generalized) Pauli group in the physics literature since in

F2, X and Z acting on a single qubit are the standard σx, σz Pauli operators of elementary

30

quantum mechanics (generators of the Lie algebra su(2)). Mathematically, these satisfy

the commutation relations of the Heisenberg group when q = p. The standard description

of the Heisenberg group in math textbooks of matrices of the form

1 y z

0 1 x

0 0 1

are an irreducible representation of the group over Zp, whereas Pn is a faithful, irreducible,

unitary representation. The name Heisenberg-Weyl (Weyl-Heisenberg) group,HWn is also

used in the physics literature due to the Weyl pair.

This is one of the main objects in this work, so we will discuss some of its properties.

Repeatedly applying (1.20) gives

(ηcX(a)Z(b))(ηc
′
X(a′)Z(b′)) = ωTr(b·a′−b′·a)(ηc

′
X(a′)Z(b′))(ηcX(a)Z(b)). (1.25)

Hence the derived subgroup is P ′n = {ωcI} ∼= Zp and the center is Z(Pn) which is Zp or

Z2p for p 6= 2 and p = 2, respectively. Equation (1.20) also gives

(X(a)Z(b))T = ω−Tr(b·a)XT (a)ZT (b),

(X(a)Z(b))∗ = ωTr(b·a)X∗(a)Z∗(b) = ωTr(b·a)X(−a)Z(−b).

Consider the action on itself by conjugation, · : Pn × Pn → Pn

(g = ηc
′
X(a′)Z(b′), ηcX(a)Z(b)) 7→ g(ηcX(a)Z(b))g−1 = ωTr(b·a′−b′·a)(ηcX(a)Z(b)).

(1.26)

The stabilizer of the action are those elements which Tr(b · a′ − b′ · a) = 0, which is also

the centralizer by (1.25). If a = b = 0, then the conjugacy class is {ηcI} which is of order

p if p 6= 2 and 2p if p = 2. Otherwise, (1.26) is order p for p 6= 2. If p = 2, the ω term

31

has order p and the η term either has order p or 2p, which splits the conjugacy class in two.

The exponent of the group is therefore exp(Pn) = p if p 6= 2 and exp(Pn) = 2p if p = 2.

Finally, we have that |Pn| = exp(Pn)q2n.

Let S ≤ Pn and define a quantum stabilizer code to be the joint +1-eigenspace of

operators in S,

Q =
⋂
S∈S

{
|v〉 ∈ Cqn | S|v〉 = |v〉

}
. (1.27)

This is a QECC in the sense of the previous sections. Of course, not all subgroups S ≤ Pn

are going to produce “good” quantum stabilizer codes. For starters, in order for Q to exist

(not be the trivial subspace), S must be simultaneously diagonalizable. This forces S to be

abelian. Furthermore, no two elements of S may be scalar multiples of each other. It also

goes without saying that elements of S must have a +1-eigenspace. In F2, for example,

X2 = Z2 = I and so have eigenvalues ±1 by Cayley-Hamilton. The operator X(a)Z(a)

has purely complex eigenvalues and therefore cannot be an element of S if Q is to be

non-trivial, but iX(a)Z(a) is permitted. These kinds of conditions are often included in

the definition of the stabilizer group in the physics literature but is not strictly necessary

from a mathematical point of view. If we assume S is abelian, we can generalize this

further by taking an additive character of S, χ : S → C with χ(I) = 1, and considering

S|v〉 = χ(S)|v〉. Applying S, exp(Pn) times we see that χ(S) must be a power of η. Not

all choices of χ(S) give non-trivial Q for fixed S since a χ(S)-eigenspace might not exist

for a given operator, as before. We call S the stabilizer group of Q and elements of S

stabilizers.

An orthogonal projector onto the codespace Q is

ΠS =
1

|S|
∑
S∈S

S. (1.28)

Information is encoded in the system via enc : Cqk → Cqn : |ψ〉 7→ ΠS |ψ〉. Definition

1.2.1 says this can be physically constructed by measuring a generating set of operators of

32

S. If the result of a measurement is not +1, a correction operation is applied to align the

system into the +1-eigenspace of this operator.

Now consider the action of an arbitrary element E ∈ Pn on the encoded system,

EΠS |ψ〉. It follows from (1.14) that errors (elements of Pn) act on S by conjugation.

Suppose an error E acts on the system and does not commute with at least one generator of

S. Then some term in |ψ〉 will be left with a phase factor (1.26) and |ψ〉 /∈ Q. Measuring

again will produce a +1 for every generator which commutes with E and some ωc for any

generator which does not commute with E. Fixing the ordering of the generators, the vec-

tor of measurement results is called the syndrome of E. Decoding in QECC is therefore

determining a proper correction procedure to make the syndrome the zero vector. This is

an implementation of the recovery operator of the previous section. Errors which commute

with S are not detectable with this method. The set of detectable errors for S is therefore

SZ(Pn) ∪ (Pn\CPn(S)), where CPn(S) is the centralizer of S in Pn. Since S is abelian,

S ≤ CPn(S). The actions of elements of CPn(S)\S represent non-detectable, non-trivial

actions on the encoded information. One may reinterpret the Knill-Laflamme conditions in

this setting but we will have no direct use for this here.

The Heisenberg group has long been studied with its connection to finite geometries.

Consider the homomorphism Ψ : Pn → Fnq × Fnq : ηcX(a)Z(b) 7→ (a, b) with kernel

Z(Pn). By (1.21) and (1.22), Ψ(Pn) is closed under addition and Fp-multiplication. The

trace-symplectic bilinear form Tr(b · a′ − b′ · a) induces a symplectic geometry on Ψ(Pn).

The same equations show that Ψ(S) is a subspace for S ≤ Pn. Bases for this space are

in one-to-one correspondence with generating sets for S. Clearly Ψ(CPn(S)) ∼= Ψ(S)⊥,

where orthogonality is taken with respect to the symplectic form. As a finite-dimensional

vector space, Ψ(S) has a basis of rank n− k for some 0 ≤ k ≤ n such that

q2n = |Ψ(Pn)| = |Ψ(S)||Ψ(S)⊥| = pn−k|Ψ(S)⊥|.

33

The sum of all orthogonal projectors is the identity and ΠS fixes n − k subspaces, so

the size of the Q is TrΠS = qn/|Ψ(S)|. In the special case q = p, |Ψ(S)⊥| = pn+k,

|Q| = qk, and we say S encodes k qudits of information into n qudits. It is currently

unknown how to think about the case pn−k - q2n as the number of encoded bits is non-

integral. Working backwards to the group cardinalities, the size of the orbits of the action

are |Pn|/|CPn(S)| = |Pn|/|Z(Pn)||Ψ(S)⊥|. When q = p, this is pn−k. Since each space is

size pk, the action is transitive on the eigenspaces on the representations of S.

From now on let C := Ψ(S). This is called a stabilizer code6 and is equivalent to

a classical error-correcting code of length 2n over Fq whose rows are trace-symplectic

orthogonal, i.e., C is an isotropic vector subspace of F2n
q . This is a bit inconvenient to work

with since there are only n physical qudits and the operators acting on the i-th qudit are

determined by the i-th and (i + n)-th elements of the vector. It is common in the physics

literature to follow Ψ with a map to the quadratic extension such that C may be viewed

as a subspace of Fnq2 . The length-2n object is referred as the symplectic form(at)7 of the

length-n object. The quadratic form(at) is rarely used in the modern literature, perhaps due

to lack of familiarity with algorithms over F4 as opposed to F2, but offers some theoretical

benefits. For example, the trace-symplectic form can be replaced with familiar algebra over

Fq2 . Also, the weight of a length-2n vector is the symplectic weight,

swt((a, b)) = |{i | (ai, bi) 6= (0, 0), 1 ≤ i ≤ n}|,

whereas the quadratic extension uses the standard Hamming weight. On the other hand, the

dual space C⊥ := Ψ(CPn(S)) is easiest to compute by expressing a set of generators for S

as a matrix (A | B) and then taking the (right) kernel of (B | −A) using elementary linear

6The literature sometimes calls bothQ and C stabilizer codes but the terminology used here is historically
correct and more accurate. In particular, C should not be thought of as a quantum object.

7The word form as in format should not to be confused with the precise mathematical definition of these
terms.

34

algebra. The minus sign comes from the matrix representation of the symplectic form

Ω =

 0 I

−I 0

 .

Note that unlike how the dual of a classical code is another classical code, the centralizer

of S is necessarily nonabelian and therefore does not define its own a quantum stabilizer

codeQ. This has profound consequences as much of the powerful theory of classical codes

derives from the relationship between a code and its dual. It is common to treat C and C⊥ as

fundamental and purely classical objects, enabling classical tools such as the MacWilliams

identities, but care must be taken in their interpretation due to this.

Technically, as previously mentioned, stabilizer codes over Fq with q 6= p are only

closed under multiplication by Fp corresponding to (1.22) and so are only Fp-additive mod-

ules. In classical coding theory these are called additive codes. One must be careful to

avoid unwanted multiplications in algorithmic implementations of the stabilizer formalism

over Fq, for example, during Gaussian elimination. To distinguish the classical and quan-

tum cases, QECCs are denoted by ((n, qk, d))q or [[n, k, d]]q. The minimum distance of a

QECC is defined to be the minimum weight of all non-detectable, non-trivial errors,

d = min
E∈CPn (S)\S

wt(E). (1.29)

The previously described measurement process used to implement QEC is equivalent

to mapping the error to a vector and a generating set for S to a parity-check matrix for

C, which in this context is referred to as the stabilizer matrix. The resulting measured

syndrome is equivalent to the matrix-vector multiplication described in Section 1.1. (This is

why we chose Ψ(S) to have rank n−k instead of k.) A parity-check description compared

to the standard generator-matrix approach is necessary here because the only information

about the system available to the experimenter are the measured syndromes. Combined

35

with its natural interpretation, the parity-check description is the reason (1.29) is defined

with respect to its dual.

Suppose S is a stabilizer group with corresponding quantum stabilizer code Q. The

projector ΠS fixes n − k degrees of freedom of the n-dimensional Hilbert space. The re-

maining k dimensions are free and may take any value without altering the fixed subspaces.

This is where we are going to store our information; this is called the encoded or logical

(sub)space. Since eigenspaces corresponding to distinct eigenvalues are orthogonal to each

other, this induces the decomposition H = Q ⊕ Q⊥. The stabilizer formalism does not

specify the encoded subspace directly, it specifies the orthogonal subspace. A basis for the

logical space induces another set of k elements of Pn. These must commute with S or

at least be an automorphism of S in order to not interfere with the fixed degrees of free-

dom, and they cannot be in S itself if they are to be non-trivial on this space. Stabilizer

groups are abelian so these two conditions are equivalent, and elements act by conjugation

so the subgroup is NPn(S)/S ∼= CPn(S)/S. The physics literature is split on using the

normalizer or the centralizer; both have valid interpretations depending on how one views

the problem: Schrödinger versus Heisenberg.

If we store information into the vectors of Q, we want to be able to manipulate the

information. As before, operations are qk × qk matrices for which Pk is a basis. Choosing

an orthonormal basis {|i〉L | i ∈ Fq}⊗k for Cqk , elements ηcX(a)Z(b) ∈ Pk act as in

(1.17), (1.18). Extending the previous notation to include the dimension, Ψk(Pk) ∼= F2k
q .

Recall that any finite-dimensional symplectic vector space has a basis, called a symplectic

basis, of 2k vectors {u1, . . . , uk, v1, . . . , vk} satisfying

〈ui, uj〉s = 〈vi, vj〉s = 0 , 〈ui, vj〉s = δij,

where the inner product is given by the symplectic form. This induces a generating set on

36

Pk following similar commutation relations, Xi := Ψ−1
k (ui) and Zi := Ψ−1

k (vi),

[Xi, Xj] = [Zi, Zj] = 0 , [Xi, Zj] = η−1δij. (1.30)

These are called logical operators (X-logicals, Z-logicals). Unfortunately, we don’t have

direct access to this space; the physical system is n qudits, so we must convert the logical

operators into equivalent operators in Pn. To do this we use the map γ : F2n
q → F2k

q :

(a, b) 7→ (a, b)Ψn(S) which sends elements to cosets of Ψn(S). Then X i := Ψ−1
n (γ−1(ui))

and Zi := Ψ−1
n (γ−1(vi)) are equivalence class representatives of the operators we are look-

ing for. There is no canonical choice of basis for F2k
q and there are numerous choices one

can make in arriving at a representative {X i}, {Zi}. Cleve and Gottesman provided an

algorithm for deriving a set of representatives from the stabilizer matrix in symplectic form

with the development of the stabilizer formalism [41], but this relies on putting the matrix

into the “standard form"

,

where each letter is an appropriate block matrix resulting from a row-reduction procedure,

which is less intuitive than the simple system of equations above. We will return to this in

more detail in Chapter 4.

The stabilizers and logical operators are the two most important objects related to a

QECC. The overline is often replaced with a subscript L, for logical, in the literature. It is

unfortunate that the lines between the k-dimensional objects and the n-dimensional objects

are blurred throughout the literature, and both are called logical operators. We will refer to

{X i}, {Zi} as physical logical operators. The relationships between the objects are shown

in Figure 1.1, where ρ is the map from the Heisenberg group to its unitary representation.

37

Pn

CPn(S)/S S

Q⊕ Q⊥ F2n
q

Pk F2k
q

≤ ≤ Ψn

ρn

Ψn

ρn
Ψn

γ
ρk

Ψk

Figure 1.1: A summary of the relationships between the various fundamental mathematical
objects in the stabilizer formalism.

1.3.3 CSS Codes

Given a classical error-correcting code which satisfies the properties required in the stabi-

lizer formalism, one may interpret the vectors as elements of the stabilizer group and then

construct a quantum stabilizer code. Unfortunately, the majority of classical codes are not

applicable. Immediately following the birth of QEC, predating the stabilizer formalism,

Calderbank and Shor [42] and Steane [43] (CSS) developed a way to convert some classi-

cal codes to stabilizer codes. The original construction takes the subspace approach but it

is now common to view it with respect to the stabilizer formalism.

Theorem 1.3.7 (CSS Construction, Corollary 12.3 [4])

(i) Let C1 and C2 denote two classical linear codes with parameters [n, k1, d1]q and

[n, k2, d2]q, respectively, such that C2 ⊂ C1. Then there exists an [[n, k1 + k2 − n, d]]1

stabilizer code, CSS(C2, C1), with minimum distance d = min{wt(c) | c ∈ (C1\C2) ∪

(C⊥2 \C⊥1)}.

(ii) If C is a classical linear [n, k, d]q code with C⊥ ⊂ C, then there exists an [[n, 2k−n,≥

d]]q stabilizer code, CSS(C).

The proof of this takes vectors (a, b) ∈ C⊥2 ×C1 such that Tr(b ·a′− b′ ·a) = Tr(0−0) = 0.

Generators of the stabilizer group in this construction may be taken to have either a = 0 or

38

b = 0, and the stabilizer matrix may taken to be H(C⊥2)⊕H(C1), where H(·) is the parity-

check matrix of the corresponding code. Case (b) is a special case of (a) with stabilizer

matrix H(C⊥) ⊕H(C⊥). More generally, codes where the elements of S can be put into

the form a = 0 or b = 0 are called CSS codes.

While this might seem overly restrictive, the overwhelming majority of QECCs in the

current literature are CSS. For starters, they are easier to construct and analyze. If the

stabilizer matrix is of the form A ⊕ B, the orthogonality condition for q = p simplifies

to ABT = 0. Significant effort has been spent constructing binary matrices satisfying this

condition which also have other desirable QEC properties such as rows with low Hamming

weight and a high minimum distance, the former being experimentally preferable. Many

of the currently favored codes come from taking these matrices to be boundary maps of a

cellulation of a manifold or, more generally, adjacency matrices of pairs of graphs.

Since the X and Z components of CSS codes are independent classical linear codes,

they have their own minimum distances, dX , dZ , with d = min{dX , dZ}. This asymmetry

can be useful when either bit flips or phase flips experimentally dominate, as is true in

many state-of-the-art systems. If we are willing to ignore possible degeneracy and X-Z

correlations, CSS codes can also use their corresponding classical decoders. Separating the

X and Z problems are the most popular form of decoding.

The canonical example of a CSS code is the Steane code [43], which is constructed

from the classical (binary) [7, 4, 3] Hamming code,

H1 =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 ,

39

and its dual

H2 =

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

,

which is a [7, 3, 3] code. This is therefore a [[7, 4 − 3, 3]] quantum code. The canonical

example of a quantum code that is not a CSS code is the [[5, 1, 3]]-code, which has stabilizer

matrix

1 α α 1 0

0 1 α α 1

1 0 1 α α

α 1 0 1 α

over F4.

1.3.4 Quantum Topological Codes

The most thoroughly studied quantum codes is the class of topological stabilizer codes,

developed immediately following the introduction of stabilizer codes [44, 45, 46]. The

literature on this topic is vast, spreading in many disjoint directions. Here we briefly discuss

the idea then present the codes we will utilize later. The general construction is as follows:

Let M be a compact manifold of dimension n and let T be a cellulation of the manifold.

Orientation has no physical meaning here, so define the k-chains of T , Ck(T), over Z2 for

k ≤ n. We look for two subspaces of Ck(T ;Z2) to use the CSS construction. The natural

choices are the boundaries Bp = im ∂p+1 and the cycles Zp = ker ∂p. These subspaces

are not orthogonal but since Bp ⊆ Zp, Bp and Z⊥p are orthogonal and CSS(Bp,Zp) is

a valid quantum code. In order to understand these codes, we thus need to understand

the homology groups Hp(M ;Z2) = Zp/Bp and B⊥p /Z⊥p . Of course, there’s no particular

reason we must use the CSS construction here but it is common and convenient.

40

Here we will only be concerned with tilings (tessellations) of compact surfaces. The

dual spaces follow from a special case of Poincaré duality but they are simple enough

to describe explicitly. The set B1 is generated by the borders of faces. Let f denote a

face enclosed with edges ei and f ∗ be its corresponding dual vertex. Then the boundary

∂f = e1 + . . . em is the sum of all edges with tail f ∗, δf ∗ = e∗1 + . . .+e∗m in the dual graph.

Thus elements of B⊥1 are paths which pass through each vertex an even amount of times.

These are closed loops so B⊥1 = Z∗1 , hence Z⊥1 = B∗1 , so B⊥1 /Z
⊥
1 = Z∗1/B

∗
1 . Applying

this to a uniform square lattice on a torus produces the k = 2 toric code. This is studied by

mathematicians under the name quantum double models.

If qudits are placed on vertices and stabilizers represent faces, the number of encoded

logical qudits is purely topological and determined solely by the genus (Euler’s characteris-

tic) of the manifold. This also follows immediately from computing dimHp(M,Z2) using

standard techniques of algebraic topology. All possible dimensions were immediately clas-

sified and discussed for various manifolds and cellulations (e.g. [46, 47, 48]). This idea

has also been extended to 1-skeletons of general graphs with no underlying manifold, in

particular, with tilings of hyperbolic space [49, 50, 51, 52]. Reference [53] connects this

to the original C∗-algebra approach. Note that the problem of constructing good codes is

now that of finding embeddings of graphs in such a way that both the embedded graph

and its dual have a large minimum distances while minimizing the number of edges. Since

it is difficult to physically implement a torus, many codes considered experimentally vi-

able have introduced boundaries [45] either using a manifold with boundary from the start

or puncturing the manifold to introduce holes [54] (equivalently removing faces from the

cellulation), increasing the genus and hence the number of encoded qudits.

Let us introduce the specific examples of topological codes, the rotated surface and

color codes, we will need in the following chapters. The term “surface code", or planar

code, is often used in the literature as a blanket term to cover all quantum codes con-

structed by embedding a graph on the surface of a manifold. Here we reserve the term to

41

2121

1616

1111

66

11

2222

1717

1212

77

22

2323

1818

1313

88

33

2424

1919

1414

99

44

2525

2020

1515

1010

55

Figure 1.2: The [[25, 1, 5]] rotated surface code used in this work: X stabilizers are given
by grey (light) faces and Z stabilizers by blue (dark) faces.

explicitly refer to the so-called “rotated" surface codes of [55]. The most popular topolog-

ical code is the previously mentioned toric code, which is related to the surface codes here

by introducing boundaries and applying the medial-axis transform.

The particular configuration of (rotated) surface codes we are interested here is the so-

called surface-17 family. Start with a (2d − 1) × (2d − 1) lattice with alternating faces

colored in a standard checkerboard pattern, rotate by π/4, and remove the four corner

vertices (e.g. Figure 1.2). Qubits (over F2) are assigned to each vertex. This is in contrast

to the previously mentioned toric code which assigns a qubit to each edge. The vertices

involved in each face give vectors interpreted as a or b in the stabilizer formalism, where

one color is arbitrarily assigned to X and the other to Z. (For example, the vector with

a1 = a2 = a6 = a7 = 1 and all the rest of the 25 elements zero corresponds to the first face

in Figure 1.2.) Here, putting the qubits on the vertices of the lattice requires a boundary

map C2 → C0. The vertex/edge switch and checkerboard pattern stems from an attempt to

view both the cellulation and its dual on the same graph.

The number of stabilizer generators, n − k, is the number of faces, where n is the

number of vertices. This model therefore supports k = 1 logical qubit. Any path of vertices

stretching from the left boundary to the right boundary overlaps each face an even number

of times (commutes with all of the stabilizers) yet cannot be written as a product of faces,

making it a (physical) logical operator. The logical operator of the other type stretches from

42

(a) 4.8.8
(b) 6.6.6

(c) 4.6.12

Figure 1.3: The 3-valent, 3-colorable tilings of the 2-sphere.

top to bottom. The minimum weight logical operator, and hence the minimum distance of

the code, is d on a d× d lattice, resulting in a [[d2, 1, d]] QECC.

By color codes, we specifically mean the triangular color code families with k = 1.

The original definition [47] allows for generalizations to other polynomials with 3m sides

and k = m logical qubits. To the author’s knowledge, these have not been explored.

Instead of a square lattice on the torus or a plane (4-valent, 2-colorable), the color codes

are defined from 3-valent, 3-colorable tilings of the 2-sphere. Recall that in the standard

vertex configuration notation for tilings, a.b.c means every vertex touches an a-gon, a b-

gon, and a c-gon. The relevant tilings are the 4.8.8 [56], 6.6.6 [57], and 4.6.12 [58] seen in

Figure 1.3 and their corresponding color codes are distinguished by the same notation. The

4.6.12 color codes are not considered useful in the literature because a weight-12 stabilizer8

is more difficult to handle experimentally. Taking the theorist’s perspective, we ignore this

and some codes in this work may have considerably larger weight stabilizers; yet, we will

also ignore the 4.6.12 color code family for the rest of this work. See [59] for a discussion

of its properties.

Fix a tiling and let |V | be the number of vertices, |E| the number of edges, and |F |

the faces; then |V | = 2(|F | − 2) and |E| = 3|V |/2. Placing a qubit on each vertex and

8The weight of a stabilizer ηcX(a)Z(b) ∈ S is the Hamming weight of the a and b over the quadratic
extensions or the symplectic weight over the prime subfield.

43

(a) The 6.6.6 tilling of the 2-sphere.

(b) The 6.6.6 d = 5 (triangular) color
code created by puncturing (a).

Figure 1.4: The triangular color codes are constructed by puncturing a tiling of the 2-sphere.

associating both anX and a Z stabilizer with every face produces a k = 0 code. Puncturing

the sphere by deleting one of the faces gives k = 1 (Figure 1.4). By a similar argument to

the surface codes, logical operators are supported on any of the three edges of the triangle.

The minimum distance of the code is hence the number of vertices along any edge, and the

size of the tiling is classified by d (Figure 1.5).

The reader is referred to the various works of Kubica (e.g. [60, 61]) for a good pre-

sentation of this family, including its generalization to `-spheres using higher-dimensional

analogues of faces. Anderson used the medial transform to perform a thorough analysis

of possible valencies and tiling properties required to support a topological stabilizer code

and showed that if two stabilizers are going to be defined on a single face the lattice is

necessarily 3-valent [51].

1.4 Quantum Circuit Model

At this point, we hope the reader has grasped the mathematical foundations of QEC. This

level of understanding is more than enough to read the majority of the QEC literature

with one glaring exception: much of QEC is typically described in pictures akin to circuit

diagrams in electrical engineering. This is called the circuit model of quantum computation

44

Figure 1.5: The 4.8.8 d = 3, 5, and 7 color codes. The tiling is often distorted so as to make
smooth edges as in Figure 1.4b.

[62] and is invaluable to the field. Similar to the early day of classical computers, quantum

computing must still be described at this elementary level. A large portion of the quantum

computing literature is devoted to translating quantum routines to an optimized sequence

of logic gates. Common techniques for this include machine learning, algebraic number

theory (e.g. [63]), and category theory (e.g. [64]). Only in the past three to five years

have the notions of what a high-level quantum programming language would look started

to be developed. This is compounded by the fact that there is not a universal quantum

assembly language; some physical systems support different native logic gates than others.

The quantum circuit model is analogous to bytecode in a classical computer; all programs

may be expressed in it and as long as an algorithm is compiled down to it the job of the

theorist is done. (Machine code would be analogous to the actual (e.g.) laser pulses used

to implement each gate.)

We will not have the opportunity to explicitly use the circuit model this in this work, but

we will make several references to it throughout. In particular, the techniques presented in

the next two chapters do not yet include all of the information required or provided by the

circuit model, and it is an open problem to extend this work to something experimentalists

can use in practice. This description will also demonstrate the main reason QEC is much

more difficult than its classical counterpart.

For the moment, we will align with the literature and stick to F2. As before, a quantum

45

operation on n qubits is a unitary operator on C2n . All unitary operations have inverses, so

quantum circuits are reversible in the sense that given their output it is possible to uniquely

reconstruct their input, which is not true of classical logical gates. A single qubit is de-

scribed by a line (wire),

|ψ〉 A

Time on this diagram is read left to right: a qubit is initially in an arbitrary linear combina-

tion of basis states |ψ〉 and then is acted on by a matrix A such that the output at the end

of the wire is A|ψ〉. Multiple bits are stacked on top of each other and are read from top to

bottom:

|a〉 A

|b〉 B

|c〉 C

is equivalent to (A⊗B ⊗ C)|abc〉 = A|a〉 ⊗B|b〉 ⊗ C|c〉. Imaginary vertical slices in the

diagram represent time steps. The diagram above takes two steps to implement as written

but there’s nothing stopping us from sliding B down the wire to implement it in one time

step as indicated by the math. A vast literature exists on circuit optimization. If time was

the only metric we cared about, we easily could solve this with some circuit identities and

a directed graph.

The simplest quantum gates are those acting on a single qubit. In analogy to the dis-

cussion above, we have the so-called Pauli gates9 X := X(1), Z := Z(1), and Y = iXZ,

the Hadamard gate H , the phase gate P (often denoted S), and the T -gate or π/8-gate.

Representations of these taken with respect to the natural ordering of the basis, {|0〉, |1〉},

are

X =

0 1

1 0

 , Z =

1 0

0 −1

 , Y =

0 −i

i 0

 (1.31)

9The symbols X , Z, and Y will be used throughout this work from here on out without the explicit
notational dependence on Fq .

46

H =
1√
2

1 1

1 −1

 , P =

1 0

0 i

 , T =

1 0

0 eiπ/4

 = eiπ/8

e−iπ/8 0

0 eiπ/8

 .

(1.32)

Defining |+〉 := (|0〉+ |1〉)/
√

2 and |−〉 := (|0〉 − |1〉)/
√

2, we have

X|0〉 = |1〉 , X|1〉 = |0〉 , X|+〉 = |+〉 , X|−〉 = −|−〉, (1.33)

Z|0〉 = |0〉 , Z|1〉 = −|1〉 , Z|+〉 = |−〉 , Z|−〉 = |+〉, (1.34)

H|0〉 = |+〉 , H|1〉 = |−〉 , H|+〉 = |0〉 , H|−〉 = |1〉. (1.35)

It follows that the so-called computational basis {|0〉, |1〉} are eigenvectors of Z with cor-

responding eigenvalues ±1, respectively, and {|+〉, |−〉} are eigenvectors of X with cor-

responding eigenvalues ±1, respectively, and H allows one to switch between bases. The

X gate is commonly referred to as the bit-flip operator as it is the quantum analog of the

classical NOT gate. The Z gate is commonly referred to as the phase-flip operator. Note

that Z = P 2 = T 4. The term Hadamard stems from a more general construction in pure

math, while for q > 2 this matrix is referred to as the discrete Fourier transform.

The measurement process is represented by the meter symbol,

There is no wire extending to the right of a meter symbol due to the fact that the qubit

has been destroyed by the measurement process. Technically, one must store the result

of the measurement, most likely on a classical computer. This is represented by a meter

symbol extending to a target symbol on a double wire representing the one bit of classical

47

information and the collapsed state (Definition 1.2.1).

Common two-qubit gates include the controlled-X gate, CX , also called controlled-

NOT or CNOT, the controlled-Z gate, CZ , and, in general, any controlled 2× 2 unitary gate

U , CU ,

CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

, CU =

I2×2 02×2

02×2 U

 .

(1.36)

Another common two-qubit gate is the SWAP gate,

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

,

but one may easily show that this is simply a combination of three CNOT gates, so we will

not utilize this here.

Following the operator-theoretic discussion of pure and mixed states, a two-qubit state

is separable if it can be decomposed into a tensor product of two states. States which are

not separable are mixed (with respect to individual qubits) and are said to be entangled.

For example, |00〉 + |10〉 = (|0〉 + |1〉) ⊗ |0〉 is separable while |00〉 + |11〉 is not. Now

consider the action of a CNOT gate on a system whose first qubit is in state |0〉 + |1〉 and

48

whose second qubit is in state |0〉:

CX((|0〉+ |1〉)⊗ |0〉) = CX(|00〉+ |10〉) = |00〉+ |11〉. (1.37)

Hence, CNOT gates generate mixed states and may be used to create entanglement. This

is an extremely important point as entanglement is a unique feature of quantum mechanics

not found in classical mechanics, and is one of the main reasons for quantum supremacy

over classical computing. When one sees a CNOT gate in a circuit diagram, it is useful to

interpret it as creating a coupling between the two qubits.

Symbolically, CX(|ab〉) is

|a〉 •
|b〉

The • is on the first qubit, called the control, and the ⊕ is on the second qubit, called the

target. As before in equation (1.37), the target qubit will flip if and only if the control qubit

is in state |1〉. Note that

|a〉
|b〉 •

represents CX(|ba〉). A general controlled gate is represented by

|a〉 •

|b〉 U

with • again representing the control qubit. Here, the operation U is applied to qubit |b〉 if

and only if |a〉 is in the state |1〉.

There are common three- and higher multi-qubit gates, but we do not need them here for

the following reason. In classical computation, the AND, OR, and NOT gates are universal

in the sense that any boolean function can be expressed entirely in terms of only these three

gates. On the quantum side, it is a bit trickier and there are a number of equivalent choices

of sets of results [65], but we have the following result.

49

Theorem 1.4.1

The set of gates H , P , T , and CNOT are universal.

According to this, we can decompose any arbitrary n-qubit gate into a combination of H ,

P , π/8, and CNOT gates. Unfortunately, this process often requires an infinite sequence of

gates. The Solovay-Kitaev algorithm provides a constructive way to approximate such a

gate to arbitrary precision. Formally, (see [66] for a pedagogical review).

Definition 1.4.2

A set of unitary gates G is quantum computationally universal if for any n, any unitary

operation U ∈ SU(2n) can be approximated to arbitrary accuracy ε in some norm || · ||

by a product of gates in G, i.e., ∀ε > 0,∃V = V1V2 . . . Vη(ε) where each Vi ∈ G such that

||V − U || < ε.

Theorem 1.4.3 (Solovay-Kitaev [66])

Let G be the group defined by a set of universal gates for SU(n), and let a desired

accuracy ε > 0 be given. Then there is a constant c such that for any U ∈ SU(n) there

exists a finite sequence of gates from G of length O(logc(1/ε)) and such that the distance

between U and S is less than ε.

It is interesting to note that the proof of this relies on cyclotomic polynomials over Q.

Work in this direction is still ongoing today in several directions. See [67] for a thorough

and rigorous study of universality from a pure math perspective.

This formalization makes the significant assumption that the quantum system is closed,

and henceforth ignores all interactions with the environment. For now, the model further

assumes that every operation is completed without error. It is worthwhile and significant to

mention at this point another significant theorem.

Theorem 1.4.4 (Gottesman-Knill [68])

Any quantum computer performing only: a) I , X , Y , Z, H , P , and CNOT, b) mea-

surements, and c) gates conditioned on classical bits, which may be the results of earlier

50

measurements, can be perfectly simulated in polynomial time on a probabilistic classical

computer.

It follows that we need more complicated operators than Pn for quantum computation,

but since computation is performed on encoded information based on Pn we need these

operations to be elements of NU(n)(Pn), the normalizer of the Heisenberg group in the

unitaries. This is called the Clifford group, Cliff2, and in general we have the Clifford

hierarchy.

Definition 1.4.5 (Clifford Hierarchy [69])

Let Cliff1 = Pn. Then the Clifford hierarchy is defined by

Cliffk = {U | U∗Cliff1U ⊂ Cliffk−1,∀P ∈ Pn}.

The sets Cliffk≥3 are not closed under multiplication and are therefore not groups, but the

set of diagonal operators in each is a group. The structure of Cliffk is unknown but there

are several notable results in this direction, mainly for the diagonal operators [70, 71, 72,

73, 74, 75, 76]. The Clifford group is notoriously difficult to analyze and is usually only

considered up to elements of U(1) [77, 78, 79, 80]. Up to phases, the Clifford group (for

qubits) has cardinality

|Cliff2/U(1)| = 2n
2+2n

n∏
i=1

(4i − 1)

and generators H and P on any single qubit and CNOT between any pairs of qubits. It is

known that any universal gate set must include at least one element outside the Clifford

group; in the set above, T ∈ Cliff3\Cliff2.

1.4.1 The Shor Code

It is worthwhile to derive the first (binary) QECC, the Shor code, in the quantum circuit

language as would be described in the physics literature. One of the simplest classical

codes is called the repetition code. Suppose, for example, that n = 3, then the code is

51

defined by 0 7→ 000 and 1 7→ 111 such that 010100 7→ 000111000111000000. To decode

a codeword, we read it from left to right in batches of three bits at a time and decode

each batch by majority vote. We see immediately that this can only correct one error since

flipping any two bits will cause the majority vote to decode incorrectly. Reproducing this

on the quantum side is a bit tricker. Suppose we wish to encode the unknown quantum state

|ψ〉 using the repetition code. The No-Cloning theorem 1.2.2 prevents us from making a

copy of |ψ〉, so we cannot create the state |ψψψ〉. Instead, expanding in the computational

basis as |ψ〉 = a|0〉 + b|1〉, we can proceed as before with |0〉 7→ |000〉 and |1〉 7→ |111〉

such that |ψ〉 7→ a|000〉 + b|111〉. To build this state we must introduce two new physical

qubits to the system and couple them to |ψ〉 using a CNOT gate with |ψ〉 as the control.

Recalling from above that a CNOT gate flips the target if and only if the control is |1〉, the

a|0〉 term and the new qubit |0〉 will produce a|00〉 and the b|1〉 term and the new qubit |0〉

will produce b|11〉. Repeating this with a second new qubit gives the desired result. This is

called the three-qubit bit-flip code and is summarized by the circuit diagram below.

|ψ〉 • •
|0〉
|0〉

To decode the state a|000〉+ b|111〉 we must be a little more clever than majority vote.

Measuring one of the three qubits will collapse it to |0〉 with probability |a|2 or |1〉 with

probability |b|2, thus destroying the superposition and the information stored in the state as

a result. To get around this, we introduce more qubits into the system, couple them with the

state which we wish to decode, measure (and hence destroy) these new qubits, and use the

results to infer properties of the original state. As long as this coupling and corresponding

measurement are done correctly, no information about the values of a and b is obtained and

the original state remains intact. To separate the new qubits from the old, the qubits in the

original state are called data qubits and the temporary qubits are called the ancilla, which is

Latin for “an auxiliary or accessory". The decoding circuit for the three qubit bit-flip code

52

is given by the following circuit diagram, with the top three qubits being the data qubits

from the encoding circuit above and the bottom two qubits the ancilla qubits.

|ψ〉 • •

|0〉 •

|0〉 •

|0〉

|0〉

(1.38)

To see why this circuit works, we need to investigate the effect an X error has on a

CNOT gate:

X •
I

= • ?

?.

Writing this as an equation and moving the right CNOT gate to the left hand side gives

C∗X(X ⊗ I)CX , which can be directly multiplied to give

X •
I

= • X

X

⇐⇒ X • X

X.

(1.39)

Suppose now that an X error occurs on exactly one qubit. Looking back at (1.38), if an

X error occurs on the first qubit, |ψ〉, or the second qubit, it will propagate through the

CNOTs and the first ancilla will flip from a |0〉 to a |1〉. Likewise, if an X error occurs

on the first qubit or the third qubit, it will propagate through the CNOTs and the second

ancilla will flip from a |0〉 to a |1〉. Recalling that |0〉 and |1〉 are eigenvectors of the Z

operator with eigenvalues +1 and −1, respectively, measuring the first ancilla with respect

to the Z basis tells us that if the outcome is +1 then the first ancilla was not flipped to a

|1〉 and hence neither the first or second qubits suffered an X error. On the other hand, if

the outcome is −1, the first ancilla was flipped implying an error happened to either the

first or second qubits. Likewise, the outcome of the measurement on the second ancilla

tells us if an error happened on the first or third qubits. If both measurement outcomes

53

are +1, we can deduce that none of the qubits suffered an X error. If the first outcome

is +1 and the second −1, we can deduce that the third qubit suffered the X error. If the

first outcome is −1 and the second +1, we can deduce that the second qubit suffered the

X error. Finally, if both measurement outcomes are −1, we can deduce that the first qubit

suffered the X error. Once we know which qubit, if any, has an error, we correct the error

by simply applying aX∗ to the affected qubit. This±1 pattern of measurement outcomes is

the syndrome defined in the sections above. Note that as with the classical repetition code,

the three-qubit bit-flip code can only correct one error since, for example, if the first and

second or first and third qubits both suffered an X error, the corresponding ancilla would

be flipped twice (|0〉 7→ |1〉 7→ |0〉) and would not be detected by the measurement.

New to the quantum realm, we must also correct against Z errors (phase flips). But

equation (1.34) says that a phase flip is a bit flip in the |±〉 basis. Therefore, we can

mimic the bit-flip code via a|0〉+b|1〉 7→ a|+++〉+b|−−−〉 and then detecting errors by

measuring in theX basis since |±〉 are eigenvectors ofX with eigenvalues±1, respectively.

The encoding circuit for the three-qubit phase-flip code is given by

|ψ〉 • • H

|0〉 H

|0〉 H

where we have used the fact that the Hadamard gate is a basis transformation. Likewise,

the syndrome extraction circuit first changes basis, checks for bit flips, then changes back,

54

which follow from the previous equations and the fact that H is self-adjoint:10

|ψ〉 H • • H

|0〉 H • H

|0〉 H • H

|+〉

|+〉

Note that these measurements are now in the X basis instead of the Z basis as before. It

is often preferred to always measure in the Z basis due to experimental considerations, in

which case our circuit becomes

|ψ〉 H • • H

|0〉 H • H

|0〉 H • H

|0〉 H H

|0〉 H H

The Shor code is a concatenation (combination) of the three-qubit bit-flip and phase-

flip codes: first encode to protect against bit flips then encode the result to protect against

10Here we are implicitly assuming that the state has already been encoded into the system before running
this circuit.

55

phase flips. The encoding circuit is simply:

|ψ〉 • • H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

(1.40)

This is a [[9, 1, 3]] CSS code with X and Z stabilizer matrices

1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1

 and

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1

,

respectively, and (physical) logical operators X,Z given by the all-ones vector, commonly

denoted X = X⊗9, Z = Z⊗9 in the literature. Both of these can be derived by reasoning

about the circuit diagram. For example, consider deriving the logical operators for the

bit-flip code. Denote operations on the logical level (Pk) with a subscript L for increased

clarify. If we apply the X operator to the generic state |ψ〉 = a|0〉 + b|1〉 before encoding,

we get X|ψ〉 = a|1〉+ b|0〉. We wish to repeat this logic such that apply X after encoding

results in XL|ψ〉 = a|111〉 + b|000〉, but since |000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 we get XL =

X ⊗ X ⊗ X , |0〉L = |000〉, and |1〉L = |111〉. As we see, the stabilizer formalism is

more systematic and constructive; however, in the end, one does need to construct a circuit

56

diagram like (1.40) to actually build the system. It is interesting to note that the Shor code

may be obtained as a cellulation of RP 2 [46].

This simple example demonstrates that we need to relax our previous notation. It is

common in the literature to see these stabilizers denoted as

S = 〈XXXXXXIII, IIIXXXXXX,

ZZIIIIIII, IZZIIIIII, IIIZZIIII, IIIIZZIII, IIIIIIZZI, IIIIIIIZZ〉

or S = 〈X1X2X3X4X5X6, X4X5X6X7X8X9, Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9〉, the

latter of which severely shortens expressions. As before, terms such as X1Z1 will be writ-

ten Y1. In general, qudit systems over Fq may utilize exponents such as XaZb to denote

X(a)Z(b). This is the notation of choice in the physics literature and is immensely con-

venient, but then operations on these symbols must be explicitly defined to match the cor-

responding operations over Fq2 , at which point one might as well simply just use Fq2 . We

will use the physics notation to reference stabilizers but the math notation when we wish to

manipulate them, for clarity.

1.4.2 Fault-Tolerance And Transversality

While the concept of fault tolerance is easily understood and explained, even a semi-

thorough discussion would take several pages and is beyond the intended scope of this

work. At the same time, it is absolutely crucial to the theory of quantum computation and

QEC. In brief, an error occurring during the application of a single-qudit gate U |ψ〉 only

affects that qudit and may therefore be modeled by EU |ψ〉, where E is an appropriate er-

ror. However, an error occurring during a two- (or more) qudit gate can affect multiple

qudits. Not only that, as we have seen with CNOT gates, a single-qudit error can multiply

by propagating through a gate.

To emphasize this, let’s consider the circuit below to measure the weight-four stabilizer

57

Z1Z3Z5Z7:

•

•

•

•

|+〉

•

•

•

•

|0〉

(1.41)

Since qubits 2, 4, and 6 are not involved in the circuit on the left, it suffices to ignore

them as on the right. We will implicitly assume all diagrams are simplified in this manner

going forward. There are no symbols |ψ〉 on the left of the wires denoting that we simply

apply the gates to whatever configuration the qubits are currently in. The top qubits not

being measured are the data and the measured qubit the ancilla. Note that the data is

unaffected by this circuit but the ancilla is destroyed by the measurement. An X error on

any of the data qubits will propagate down through the CNOT symbol and onto the ancilla

(Equation (1.39)), flipping |0〉 to |1〉 (Equation (1.33)). The (Z) measurement will return

a −1 eigenvalue (Equation (1.34)), altering us to an error. To measure X1X3X5X7 we use

the circuit

|+〉 • • • •

and apply

• Z

Z Z.

(1.42)

58

In this way we have “measured" an element of the form ηcX(a)Z(b) and extracted the

syndrome bit corresponding to the operator. For mixed cases with both a and b nonzero, a

combination of CNOT gates of with targets and controls on the ancilla are used appropri-

ately. Syndrome extraction in these cases become messier as errors propagating down from

the data can now potentially propagate back up to other data qubits.

This model assumes everything works as intended. What can go wrong? Turns out,

everything. First, if a Z error occurs on the ancilla of (1.41) it will propagate up onto all

four, three, two, one, or no data qubits depending when it occurs (Equation (1.42)). If it

occurs before the first CNOT, it will cause the weight-four error Z1Z3Z5Z7 on the data, but

this is fine because this is a stabilizer. If it occurs after the last CNOT, Z|0〉 = |0〉 so the

error will be ignored by the measurement and no harm has been done. The problematic

cases are when it occurs between the first and second, second and third, or third and fourth

CNOTs. One possible fix is to switch to the circuit11

•

•

•

•

|0〉

|0〉 H • •

|0〉 •

|0〉

(1.43)

which handles the propagation at the expense of requiring extra resources. This is called

Shor-style syndrome extraction. Such propagating errors from the ancilla are called hook

errors, and the process of “controlling" errors in the implementation is loosely what is

referred to as fault tolerance. Diagram (1.43) is called a fault-tolerant measurement gadget

11A practical circuit would also include a “verification" step, which we ignore here for simplicity of dis-
cussion.

59

for (1.41). See [81] for a general discussion of syndrome measurement techniques.

Chao and Reichardt proposed the following elegant modification to (1.41)

•

•

•

•

|0〉

|+〉 • •

where the top measurement is in the Z basis and the bottom measurement is in the X basis

[82, 83]. The second ancilla is called a flag and will measure −1 when a hook error occurs

during the CNOTs. If an error is detected, the resulting combination of the two measure-

ments is enough to determine which CNOT had the error and hence how to correct it. Of

course this only works in rare circumstances, and it is an open problem to determine for

which QECCs this technique is applicable. It is known that first order 15-qubit quantum

Reed-Muller (QRM) codes (the Steane code), quantum cyclic codes [84], and the quantum

Hamming codes [82] are able to use flag syndrome extraction. For some codes, permut-

ing the order of the CNOTs in the circuit enables the use of flags. It is an open problem

to determine a permutation, if one exists, for which this works. It is likely this is nonde-

terministic polynomial time (NP) in the same way finding permutations of linear codes to

minimize the metrics of the next chapter is NP-Complete [85]. The optimal permutation

for the QRM and Hamming codes are determined by mapping the columns of the stabi-

lizer matrix to polynomials in F2[x], mapping the polynomials to roots in an extension

field, then considering geometric sums [82]. It is probable the decoder studied in this work

can include the information provided by the flag, but other circuit-level information likely

requires significant modification. We will return to this in Chapter 4.

If there are a lot of stabilizers, a single round of error correction will take a lot of time

60

and the laws of physics say errors may spontaneously occur even on idling qudits. Some-

times it is possible to measure stabilizers in parallel. There is no general theory for this. If

the stabilizers are high-weight, which is unfortunately often considered to be greater than

weight four, the propagation patterns from the CNOTs become difficult to reason about

and the resources required to implement the second measurement circuit style become pro-

hibitive as the more qubits are required for syndrome extraction the less are available for the

code itself. Of course errors may occur during the syndrome extraction circuit which can-

cel previous errors, resulting in an incorrect error correction. Or they may occur undetected

until the next round of measurements, which implies we must do this process continuously,

ignoring the fact that it was the syndrome extraction process which caused the error in the

first place.

Thinking back to the mathematical definition of measurement, Definition 1.2.1, the

result of the measurement is actually probabilistic. There is a chance that given a combi-

nation of experimental error and the laws of physics, performing, for example, a Z mea-

surement on |0〉 will incorrectly return the eigenvalue −1. To handle this, every stabilizer

of a [[n, k, d]]q code is often measured O(d) times and the majority vote of the measure-

ment outcomes is taken to be true result. But this gives more, for example, CNOTs, which

provide more opportunities for everything to go wrong.

The dominating source of circuit errors in current state-of-the-art systems is the failure

to correctly experimentally implement a gate. Gate errors are problematic because they

can affect every qubit which it interacts with. Suppose one supplements the Clifford group

with a four-qubit gate in Cliff3 to make a universal gate set. Anytime this gate fails, a single

failure can cause four errors on the data qubits. This is not “fault-tolerant". It would be nice

if the four-qubit gate can be decomposed into the tensor product of single qubit gates since

then a gate error would only affect a single data qubit. Gates of this form are an example

of transversal gates and are automatically fault-tolerant.

Definition 1.4.6 (Loose Version)

61

Consider information encoded in an error-correcting code which is able to correct

t = b(d − 1)c/2 errors. Then a circuit is fault tolerant if whenever the number of input

errors plus the number of circuit errors is no more than t, the output of the circuit has no

more than t errors.

The idea behind fault-tolerance is that the left-over errors can be corrected by the next

round of error correction as long as there are not too many of them.

As previously mentioned, gates acting on encoded data must be elements of the normal-

izer of the stabilizer group so it does not destroy the encoding. A code is said to support a

gate if it commutes with the code projector. Unfortunately, the Eastin-Knill theorem [86]

says that no QECC can support a transversal, universal gate set. A significant amount of

effort has gone into studying transversal gates. The general idea to QECC design is usually

to get as many transversal gates as possible, typically all but one, and then determine a

procedure to implement the missing gate(s). There are many possible QECCs with great

properties but the supported gate set is either unknown or considered poor. This is another

reason QEC is more difficult than classical coding theory.

A few general statements can be made, for example, [17, 87]

(i) all CSS codes support a transversal CNOT

(ii) all CSS(C) codes support a transversal H

(iii) all CSS(C) codes whose parity-check matrix has row weights 0 (mod 4) support a

transversal P .

Further conditions are known for gates we have not discussed in this work. Both necessary

and sufficient conditions for CSS codes supporting a T gate were finally settled in [88, 89].

In particular, [88] showed that CSS codes may even be optimal for obtaining transversal T

gates compared to general non-degenerate stabilizer codes X(a)Z(b).

There are a couple of ways to get around Eastin-Knill. One way is to use multiple

QECCs with complementary transversal gates and then passing the encoded information

62

(a) The Steane code as a d = 3 color
code.

(b) The QRM code contains two copies
of the Steane code plus an extra qubit.

Figure 1.6: Common codes viewed as color codes.

between them as needed during the algorithm. This is complicated and must be done

with care so as not to expose the data to errors in the process of switching. The canonical

example of this is the Steane code with transversal gatesH,P , and CNOT and the [[15, 1, 3]]

QRM code with transversal T [90]. The Steane code is actually equivalent to the 4.8.8 and

6.6.6 d = 3 color codes (Figure 1.6a), and the QRM code can be seen as two copies of

the Steane code plus an extra qubit (Figure 1.6b). Data is encoded into the Steane code

and then the QRM code is constructed and deconstructed whenever a T gate appears in the

quantum circuit. This is a subsystem code of Equation (1.15) where the Hilbert space of

the QRM code is decomposed into the tensor product of the Steane code with the rest of the

space. Errors may accumulate in the unused part of the Hilbert space while in the Steane

code, and the conversion process projects the remaining degrees of freedom onto the +1-

eigenspace of the rest of the stabilizers to form the QRM. This is called gauge fixing with

the unused degrees of freedom being referred to as gauges. Bombín used the gauge fixing

idea to stack color codes to make a 3D color code supporting transversal T [91, 92, 93, 94].

Similar ideas appear in [95, 96, 97]. We will return to this example in Chapter 4.

Another way to circumvent Eastin-Knill is to have a part of a the computer mass pro-

ducing eigenspaces of the missing gates which are then “injected" or teleported into the

running circuit as necessary. Current proposals to do this can be orders of magnitude more

63

costly than if the gate was transversal, and this is expected to dominate the resources of

near-term devices pushing many useful algorithms out until quantum computers with mil-

lions of quantum bits are developed. This is one of the biggest challenges in QEC, but we

will not go into it further. Select references which may be useful to the interested reader

are [98, 99, 100, 101, 102, 103, 104, 105]

The general procedure to implement a quantum algorithm on a future quantum com-

puter is roughly given by the following steps:

(i) pick a universal gate set and QECC

(ii) decompose the algorithm into an optimized circuit using elements of (i)

(iii) replace the logical operations with physical implementations in the encoded space

(iv) replace circuit elements with appropriate fault tolerant versions.

At the time of writing, (iv) is also the least understood. There is no currently known unify-

ing principal for fault tolerance, and it is unclear how to rigorously discuss this mathemat-

ically. There is a common definition of fault tolerance, but [106] shows that it is sufficient

but not necessary. It was conjectured in [107] that “fault-tolerant logical gates can always

be expressed as arising from monodromies of an appropriate fibre bundle with a flat projec-

tive connection". Beyond logical arguments for a handful of codes and a number of works

on general ideas, little is known about this topic. Landahl et al. discuss the assumptions

that all fault-tolerant protocols appear to make [108].

1.5 Computer Simulations Of Codes

To “simulate an error-correcting code” we mean to determine how well the code protects

the information it stores against errors. This of course depends on exactly what the errors

are and how they attack the system. For classical codes these are generally bit flips applied

independently and identically distributed (i.i.d.) to each bit or to a collection of bits with

64

local support (burst errors). For quantum codes, there are many options and an explicit error

channel must be specified. This also highly depends on the chosen decoder. A decoder

which maps all inputs to the zero vector (or identity element) does not do as good a job of

protecting the information as does one which actively attempts to compute the most likely

input.

Irrespective of all these elements, the idea of a simulation is simple: compute the prob-

ability that the decoder will “fail” for a given error model,

Pr (failure) =
∑

Pr (failure | input)Pr (input). (1.44)

The decoders we will discuss here are deterministic so the conditional probability is either

0 or 1. This often cannot be computed exactly in practice as the number of inputs is either

|Fnq | for classical and |Fnq2| for quantum. In these cases estimates of (1.44) are preformed

via Monte Carlo simulations.

To the author’s knowledge, there is no explicit discussion on choosing the proper the

sample size for estimating (1.44) in the QEC literature. It is possible this is widely un-

derstood, but many papers appear to dramatically over or under sample, the former being

a waste of resources. Applying the central limit theorem, as long as the sample size, N

is “large enough”, randomly sampled estimates of (1.44) produce a normal distribution.

Standard arguments about Z-scores give

N >

(
σΦ−1

(
1+α

2

)
ε

)2

, (1.45)

where Φ−1(·) is the quantile function (the inverse of the cumulative distribution function),

α is the confidence level, and ε is the accuracy tolerance. For example, if we want to

estimate (1.44) with 97% confidence that the true value is within 10−4 of the sampled value,

α = 0.97, ε = 10−4. The standard deviation of the sampling, σ, is unknown and must be

estimated by preforming a small number of test simulations. Note that for small codes

65

(n ∼ O(1)) and high tolerance, N is often larger than the population size. The sample

size is directly correlated to the probability of error p through σ and should be computed

independently for each data point.

Consider the qubit depolarizing noise channel12

E(ρ) = (1− p)IρI∗ +
p

3
XρX∗ +

p

3
Y ρY ∗ +

p

3
ZρZ∗. (1.46)

Here, a qubit either has an (i.i.d.) error with probability p or it doesn’t with probabil-

ity (1 − p); hence errors form a binomial distribution. When an error occurs, elements

of P1 are randomly sampled with a uniform distribution. Collecting the errors on every

qubit (a Bernoulli process) forms an element of Pn. Note that this is different than uni-

formly sampling elements of Pn. The probability of the input (1.44) is therefore Pr (v) =

pwt(v)(1 − p)n−wt(v). The expected value, here the weight of the error, is np. For fixed p,

as n increases, d must therefore also increase to keep (1.44) low. The binomial distribution

however, is skewed right (positive skew) for p < 0.5 so even if the expected value of errors

is equal to the number of correctable errors, the majority of errors are going to have weight

less than this. A more precise statement can be made using the cumulative distribution

function.

This is good for physical implementations of the code but can be bad for sampling as

in many cases of interest the majority of samples contain no errors. The decoder should

detect the no-error case and return the input resulting in a successful decode. The artificial

number of successes can underestimate (1.44). To handle this we may either sample until a

certain number of errors are detected, which may take a long time and could skew the data,

or switch from direct (forward) sampling to importance sampling techniques. To see what

12We include the adjoints here to make the connection back to the operator formalism from which this
derives but drop them from here on out as these operators are all self-adjoint.

66

this means in this context, consider an n, k, d = 2t+ 1 code. Then

Pr (failure) =
n∑
i=0

ci

(
n

i

)
pt(1− p)n−t,

where ci is the percentage of errors of weight i that are correctable by the decoder. Note

that ci = 1 for 0 ≤ i ≤ t such that

Pr (failure) ≤
n∑

i=t+1

(
n

i

)
pt(1− p)n−t = 1−

t∑
i=0

(
n

i

)
pt(1− p)n−t.

If the goal is to estimate each of these terms to a tolerance of ε′, then we may precompute

the values

Ai =

(
n

i

)
pt(1− p)n−t

and sample the weight-i vectors to estimate ci for all i such that Ai ≤ ε′. In general, impor-

tance sampling samples from a new, biased distribution then recombines the results using

a weighting function in a manner consistent with the original problem. The second part of

this statement requires proof which is missing in the literature but we will skip this here.

This is more efficient for low p but as p increases the number of i to include also increases.

At some p, the number of i is too large and direct sampling is more efficient. A common

metric used to determine the transition point is the speed-up factor σ2
D/σ

2
I , where the σ’s

are the standard deviations from direct and importance sampling, respectively. References

[106, 109] briefly discuss importance sampling in the context of this work.

What it means for decoding to fail is different for classical and quantum codes. Con-

sider first the classical case. In this scenario, a message at the source is said to be trans-

mitted over a channel to a receiver. The channel is noisy so the message at the source

and receiver may be different. If so, a decoder tries to recover the message at the source

given the message at the receiver and some knowledge about the channel. Let X ∈ C be

a random variable over the inputs and Y ∈ Fnq be a random variable over the outputs. The

67

message at the source, x, may be thought of as chosen at random with probability PrX(x).

The channel is determined by its transition probability Pr Y |X(y | x) and is assumed to act

i.i.d.. on each bit. By a basic result in coding theory, elements of Fq are evenly distributed

amongst elements of C. Given a message y at the receiver, the decoder implements the map

y 7→ x̂(y) ∈ C. This is incorrect with probability 1 − PrX|Y (x̂(Y) | y), in which case

decoding is declared to have failed.

To minimize the risk of failure, choose x̂(Y) to maximize PrX|Y (x̂(Y) | y),

x̂MAP (y) = argmax
x∈C

PrX|Y (x | y)

= argmax
x∈C

Pr Y |X(y | x)
PrX(x)

Pr Y (y)

= argmax
x∈C

Pr Y |X(y | x)PrX(x).

This is called maximum a posteriori (MAP) decoding. If all codewords are equally likely,

PrX(x) is uniform and

x̂MAP (y) = argmax
x∈C

Pr Y |X(y | x) = x̂ML(y). (1.47)

This is called maximum likelihood (ML) decoding. Ties in all schemes are broken arbi-

trarily. As written, these equations consider elements of the code as a whole, but we may

repeat the same arguments to instead maximize the probability at each vector index. This

is called bit-wise decoding and the above approach block-wise decoding.

Classically, we have y ∈ Fnq and we want x ∈ Fkq , which we recover by identifying

the error e ∈ Fnq . In QEC, the state of the quantum system encoded in some quantum

stabilizer code Q is described by some density matrix ρ. An error E ∈ Pn occurs and

ρ 7→ E(ρ) = EρE∗. We have only the syndrome s ∈ Fn−kq and we wish to recover ρ,

which we will do by identifying E. Since we physically cannot talk of ρ directly, we can

think of ρ as IρI and consider the map I 7→ E. We also don’t have access to the output state

68

EρE∗, so the best we can do is use the measured syndrome s. As before, if Ê(s) ∈ Pn is

the output of the decoder given the syndrome s, we want to maximize Pr (Ê(s) | s), where

we have dropped the notational dependence on the random variables to simplify upcoming

expressions.

Underlying the classical case is that if y = x + e1 = x + e2 then e1 = e2 for some

errors e ∈ Fnq introduced by the channel. This does not hold on the quantum side, further

complicating the decoding process. To see this note that S ≤ CPn(S) ≤ Pn, so we can

write any elementE ∈ Pn in the formE = TLS, where T ∈ Pn\CPn(S), L ∈ CPn(S)\S,

and S ∈ S . Physically, T ’s are called pure errors, L’s are logical operators, and S’s are

stabilizers.

It is easy to find a T given a syndrome s. In the physics literature this is often described

by promoting each stabilizer to a stabilizer-destabilizer pair by assigning an element which

commutes with all generators except for the given stabilizer. Pure errors T are then given

by linear combinations of destabilizers corresponding to nonzero syndrome bits. We will

ignore the storage of and all discussion of destabilizers in this work and stick to the purely

mathematical approach of simply multiplying the syndrome by an appropriate pseudoin-

verse. The traditional Moore-Penrose formula is invalid for many modules in this work

since for self-orthogonal codes GTH = HTH = 0. Instead, denote the stabilizer matrix

by H , append an appropriate identity, (I | HT), and row reduce HT to the form (I 0)T .

Write the result as MHT = (I 0)T . The rows of M corresponding to the identity on the

right give the appropriate pseudoinverse. Denote the pure error corresponding to s by Ts.

It remains to find L and S given s, or equivalently, given Ts. Multiplication by elements

of S have no effect on the system or the syndrome since S is closed under this operation.

Hence, a pure error Ts has the same effect and syndrome as TsS for any S ∈ S . Thus,

unlike in the classical case, multiple distinct errors can produce the same output. This is

called degeneracy and QECCs with this property are called degenerate. Unlike the classical

case, what is going on at each qudit is both inaccessible and irrelevant as long as the system

69

is returned to the joint +1-eigenspace; bit-wise decoding does not exist in QEC. Hence, it

does not matter which element of the coset TsS is chosen for the correction step as all will

return the system back to the eigenspace. The element L we do very much want to know,

however, as it has a detrimental effect on the integrity of the stored data. The problem is

therefore

ÊML(s) = argmax
E∈Pn

Pr (L, S | Ts) = argmax
E∈Pn

Pr (L, S, Ts)

Pr (Ts)
= argmax

E∈Pn
Pr (L, S, Ts) ,

(1.48)

where the last equality holds because Pr (Ts) is just a positive constant. It follows that we

can sample the joint probability distribution instead of the conditional probability distribu-

tion. This is suboptimal because it searches for the most likely error instead of the most

likely equivalence class of errors defined by the sum of the probabilities of each element in

the coset. A decoder taking the degeneracy of errors into account would therefore solve

ÊDML(s) = argmax
L∈CPn (S)\S

Pr (L | Ts) = argmax
L∈CPn (S)\S

∑
S∈S

Pr (L, S | Ts). (1.49)

Note that for the depolarizing channel (1.46),

ÊML(s) = argmax
E∈Pn

Pr (L, S, Ts)

= argmax
E∈Pn

pwt(TsLS)(1− p)n−wt(TsLS)

= argmin
E∈Pn

wt(TsLS) = Êwt(s). (1.50)

Decoders solving Equation (1.50) are called minimum-weight decoders and are a pop-

ular choice of decoder for QECCs. Confusingly, decoders solving Equation (1.48) are also

sometimes called minimum weight by extension. Decoders solving Equation (1.49) are

sometimes called ML (e.g. [110, 111]), despite the fact that Equation (1.48) matches the

classical ML problem. Here, we align with decades of coding theory literature and refer

70

to Equation (1.48) as ML decoding, Equation (1.49) as degenerate decoding, and Equation

(1.50) as minimum-weight decoding. Maximum-likelihood degenerate decoding (MLDD)

or maximum-likelihood logical decoding (MLLD) would also be good descriptions for

(1.49).

The large majority of current decoders for QECCs attempt to solve (1.48) and not

(1.49). Ties are usually broken arbitrarily. The difficulty in switching from (1.48) to (1.49)

is that the latter not only has to solve the former but also organize the results into cosets. It

often happens that ÊML(s) is not an element of the most likely equivalence class of errors

and ÊML(s) 6= ÊDML(s). Classical and non-degenerate decoding is NP-Hard [112, 113,

114, 115] and degenerate decoding is #P -complete (up to Turing reduction) [116]. See

[116] for a discussion on the impact of degenerate decoding.

Since Ts is easy to find, any good quantum decoder should at least return the system

back to the correct eigenspace. Success and failure is thus defined by whether or not a

non-trivial logical operator occurred on the system. Consider the Steane code in Figure

1.6a and number the qubits 1, 2, 3 along the bottom, 4 on the left, 5 in the center, 6 on

the right, and 7 on top. Label the red face (stabilizer) by f1, blue by f2, and green by f3.

Order the syndrome bits by (f1, f2, f3). This is a distance three code and so can correct

t = (3 − 1)/2 = 1 errors. If an error happens on qubit 1, only the red face is affected

and the syndrome is (−1, 1, 1). The same goes for the other two corners by symmetry. If

qubit 2, 4, or 6 has an error, the resulting syndrome pattern flips two of the three faces

and the error is uniquely identifiable. If the middle qubit 5 has an error, the syndrome is

(−1,−1,−1), which also uniquely identifies the error. In this way, syndrome decoding

corrects all single-qubit errors. Now consider the two-qubit error on 1 and 4. Two errors on

the red face leave the overall parity of at +1, the blue face is not affected, and the green face

has a single error: (1, 1,−1). This appears like a single error on qubit 7 and correcting this

way leading to a string of errors on 1, 4, and 7. This is a logical operator for this code and

was not made by the error channel but by the decoder itself. This is the danger of smaller

71

QECCs.

We can check for logical errors during simulations by noting that by the {X i, Zi}

commutation relation (1.30) any E = TsLS with nontrivial L must not commute with at

least one canonical logical operator generator. This is a bit artificial since we don’t have

access to the current state of the system experimentally, and since errors can occur during

syndrome extraction and propagate and measurement errors can occur we must assume that

the final round of syndrome measurements is perfect.

Computer simulations of QECCs randomly sample errors and determine the probability

of failure for a given error model over a range of error probabilities. This produces a curve

on the graph of “logical error rate" versus probability of error. The goal is to determine the

maximum possible probability at which using the QECC protects the information better

than if it was unencoded. This value is called the threshold and is historically defined by

a recursive construction called concatenation. Assume for the moment that k | n and call

the unencoded data level L = 0. First encode k bits of information into n physical bits -

call this L = 1. Then repeat the process by encoding the n bits again to give L = 2. The

threshold is the (unstable) fixed point of the logical error rates of this map as L→∞. For

families of codes which naturally have a constructive method for increasing the distance,

such as the rotated surface and color codes, a threshold can be defined as the probability

pth at which for p < pth the logical error rates go to zero as d→∞. Many QECCs do not

have thresholds since this point may not exist. Analytical proofs of the threshold, called

the threshold theorem, have been completed for a handful of codes and error models and

establish the theoretical justification that QEC can work as intended [117, 118, 119, 120,

121].

It is difficult, if not impossible to exactly compute the threshold. Even computer simu-

lations can only practically handle small L. Trends in the data might also be deceptive. For

example, the codes of the next chapter are simulated for d < 21 and there is strong evidence

that the data is converging. However, [122] points out that the true threshold of a certain

72

decoder for a surface code only truly appears in their simulations for d > 21. Computing

the threshold is often relaxed to computing a pseudothreshold which is defined at some

finite L. A pseudothreshold is the probability where one code outperforms another for all

probabilities of smaller magnitude. This is can be pictured as the intersection between the

logical error rate curves of the two codes, if it exists. Arguments may be made about the

threshold by studying the limit of the pseudothresholds of between increasing levels of L

or d. This is the approach taken in the following chapters.

Note that the threshold is not a topological invariant. Different cellulations of the same

manifold can produce different thresholds. The rotated surface and color codes considered

here are special cases in this regard as the X and Z stabilizers have a symmetry. The

cellulation and its dual cellulation are generically different, providing an X-Z asymmetry

in error correction. In this case we can define an X minimum distance and a Z minimum

distance [[n, k, dX/dz]] such that d = min{dX , dZ}. This is useful in physical systems

where, for example, Z errors are significantly more common than X errors. This is of

course only applicable for CSS codes. Fujii and Tokunaga demonstrated the difference

between X and Z thresholds for the independent X and Z channels (below), respectively,

on the kagome, hexagonal, and tri-hexa lattices on the surface of a torus [123].

As described, the threshold is a measure of how well a system can store information.

This may be extended to measure the threshold of a specific circuit such as a fault tolerant

gadget. It may be that the circuit is so complex that the probability of error required to run

it successfully is orders of magnitude lower than that for pure error correction. We will

not consider this further in this work. Regardless of what is being measured, the threshold

is important because it constrains the physical error limits which must be experimentally

realized but also, in combination with fault tolerance, the resource overhead required to

achieve it (e.g. the level of L).

We establish the foundations of a new decoder to solve (1.48) in Chapter 2 and then

show how to extend the idea to solve (1.49) in Chapter 3. To properly understand its role

73

in the field, we make numerous references to current state-of-the-art decoders in the liter-

ature, specifically those based on minimum-weight perfect matching (MWPM). There are

three types of simulations: code-capacity (memory model), phenomenological, and circuit-

level. In code-capacity errors occur on the data qubits and all circuit elements are assumed

to work perfectly. Hence, a specific circuit is not needed since it will always return the

syndrome given by simple matrix-vector multiplication. In the phenomenological model,

errors occur on data qubits but measurement errors are also taken into account in which a

measurement returns the correct eigenvalue with probability 1− pm and a different eigen-

value with probability pm. This takes Definition 1.2.1 (measurement) into account. Finally,

a circuit-level simulation assumes data errors, idling errors, gate errors, and measurement

errors.

Circuit-level simulations are the ideal but take considerably more resources and require

explicit (hopefully fault-tolerant) circuits. Any decoder designed for a code-capacity sim-

ulation can be extended to a phenomenological model by repeating every syndrome mea-

surement a certain number of times, majority voting on each bit, then treating the result as

in the code-capacity case. This often leads to a poor result and a bit of thinking can design

a better system. It is unclear how to extend many decoders to circuit-level simulations. It’s

clear that the results of each level of simulation is an upper bound on the next level of de-

tail, but the difference between code-capacity and circuit-level results can be several orders

of magnitude. The new decoding technique described in this work is currently restricted

to code-capacity. Phenomenological models could be done as above, but we see no reason

to do this at this moment before the technique is fully extended to circuit-level; a strong

limitation towards practical implementation. Let us briefly review the MWPM decoder for

code-capacity simulations; we will compare our technique against it in the next chapter.

Consider the rotated surface code of Figure 1.2. MWPM assumes an i.i.d., independent

74

X-Z error model,

EX(ρ) = (1− pX)IρI + pXXρX (1.51)

EZ(ρ) = (1− pZ)IρI + pZZρZ (1.52)

such that

Pr (0) = (1− pX)(1− pZ) , Pr (1) = pX(1− pZ),

Pr (α) = (1− pX)pZ , Pr (α2) = pXpZ

for each qubit and decodes each channel separately. This error model and decoding scheme

is common for CSS codes. Without loss of generality, consider just the X stabilizers (grey

faces of Figure 1.2) which detect Z errors from (1.52). If an error happens on qubit 7,

for example, the stabilizers X1X2X6X7 and X7X8X12X13 will return −1, uniquely iden-

tifying the location of the error. If an error Z7Z8Z9 happens, stabilizers X1X2X6X7 and

X9X10X14X15 are triggered. The other two stabilizers along this path have two errors each

keeping the overall parities at +1. Also note that errors Z7Z8Z9Z14 and Z7Z12Z13Z14 give

equivalent syndromes. Thus, for any continuous “string" of errors we see that we can only

ever detect the endpoints. Given a collection of endpoints, the goal is therefore to deter-

mine which endpoints belong to the same error string, i.e., the equivalence class of the pure

error in the first homology group.

Define a new graph by placing a vertex on each face with measurement outcome −1.

The vertices are connected in a complete graph with weights given by the Manhattan metric

in the original lattice. Matching endpoints is now a minimum-weight perfect matching on

this graph [110]. The minimum-weight condition ensures this returns Êwt(s). We refer the

interested reader to standard graph theory texts for details on bipartite matching and (e.g.)

[124, 122, 125] for details on its application to QEC. The original algorithm by Edmonds

[126, 127] has runtime O(n4) but modern implementations have reduced to this almost

75

O(n2) [128]. Further simplifications for quantum have reduced this to an impressive O(1)

parallel runtime [122, 125]. (For example, the binomial distribution says that high-weight

error strings are less likely than low-weight strings implying that it probably suffices in

practice to not build a complete graph but instead only connect nearby vertices.)

MWPM can be modified to handle the full depolarizing channel (1.46) [129].13 For phe-

nomenological models, the syndromes are measured multiple times, producing a matching

graph for each. Each round of measurements is placed at a discrete time t = 1, 2, . . .

and edges are now added between time slices. This should be viewed as a foliation of the

surface. Full circuit-level simulations may also be done by modifying the weights on the

edges of the graph to relate to probabilities of errors due to things like hook errors [130].

It turns out that the surface codes have a high threshold and are therefore good for storing

quantum information. But, as seen in Figure 1.2, stabilizers either have Hamming weight

two or four, prohibiting a transversal implementation of the full Clifford group. The color

code family has a lower threshold but better gate set, making it more useful for quantum

computation.

An interesting thing about color codes is the entire concept of color. In particular, we

did not need to invoke them at all to define the code. Consider Figures 1.4b, 1.5, and

1.6a. Each boundary of the triangle is missing a single color due to the puncture. For

example, in Figure 1.5 the left is missing blue faces, the bottom red faces, and the right

green. Each boundary is assigned a color equal to its missing color. When decoding, the

stabilizers (faces) are measured and the corresponding eigenvalues recorded. To model

this, take the dual graph where each face becomes a vertex of the same color and assign

the eigenvalue to the vertex. In the literature, an error on a red face can only be matched

with other red errors or a red boundary, and similarly for the other colors. The general idea

is to make subgraphs (of the dual graph) containing combinations of two colors, ignoring

13One may also attempt to incorporate correlations by simply applying Bayes’ theorem. After determining
theX errors, the Z channel probabilities should be updated as Pr (I | I) = Pr (I)/(Pr (I)+Pr (Z)), Pr (I |
X) = Pr (X)/(Pr (X)+Pr (I)), Pr (Z | I) = Pr (Z)/(Pr (I)+Pr (Z)), Pr (Z | X) = Pr (Y)/(Pr (X)+
Pr (Y)). Similar expressions can be derived for qudits.

76

the third color. Popular color code decoders then project these 2-colorable subgraphs onto

separate copies of the surface code, decode using MWPM, and then attempt to combine

and interpret the results back on the original color code lattice [131, 132, 133, 134, 135,

136]. As clever as these ideas are, there are problems with this method. In short, the two

code families are fundamentally different and too much information is lost in the back-

and-forth mappings. Kubica and Delfosse used homological insights to improve this but

problems still remain [61, 137, 138]. It is the (unpopular) opinion of this author that the

main problem with these approaches is the artificial reliance on colors. Furthermore, the

boundary maps C2 → C0 instead of C2 → C1 make forcing homological results into

geometrical arguments awkward. Trying to mimic MWPM natively on the color codes

leads to a hypergraph matching problem for which there is no known efficient algorithm.

We tackle this in Chapter 2 where we develop a decoder which handles the syndrome

information purely combinatorially without any reference to dual graphs, homology, or

colors. This is the first native decoder for the color codes.

We will not deal with this here but note for completeness that the error models previ-

ously discussed are based on the idea that Pn is a basis for the space. This is not always

accurate due to physical considerations concerning the nature of the environment in Equa-

tion (1.13). Some error models, such as the pulse-area model of coherent errors, cannot be

written in this manner and simulations studying them must keep track of all the informa-

tion in Cqn and can only be done for small q, n. Current proofs of the threshold theorem do

not take such errors into account. Numerical evidence suggests that including things like

coherent errors can drastically lower (pseudo)thresholds (e.g. [139]). Other popular error

models include the amplitude damping channel and the so-called Bloch sphere polarization

given by Kraus operators

E0 = |0〉〈0|+
√

1− γ|1〉〈1| , E1 =
√
γ|0〉〈1|

77

and

E0 =
√

1− pφI , E1 =
√
pφ[cos(φ)X + sin(φ)Y],

respectively.

1.6 Extension To Arbitrary Rings

The theory of stabilizer codes can be generalized to other rings. To see this, notice that

the finite field only serves as a label for the orthogonal basis for Cq and can therefore

be replaced with {|r〉 | r ∈ R} for some appropriate ring R. The operators become

X(a)|r〉 = |r + a〉 and Z(b)|r〉 = χ(br)|r〉 for a, b ∈ R and χ an irreducible character of

(R,+). The errors arePn = {χ(c)X(a)Z(b) | a, b ∈ Rn, c ∈ R}. Two elementsX(a)Z(b)

and X(a′)Z(b′) commute if and only if χ(b · a′ − b′ · a) = 1. The quantities S ≤ Pn and

Q are defined as before and can be studied via the map to R2n. There exists a unique ψ(r)

such that χ(r) = e2iπψ(r), producing the bilinear form 〈(a, b), (a′, b′)〉χ = ψ(b · a′ − b′ · a).

Orthogonality is now given by left and right annihilators

S⊥ = {r ∈ R2n | 〈S, r〉χ = 0∀S ∈ S}

⊥S = {r ∈ R2n | 〈r, S〉χ = 0,∀S ∈ S}.

One may show that R must be a Frobenius ring. Examples of Frobenius rings are fi-

nite fields, integer rings modulo a number, and Galois rings. The emphasis in the current

literature has been on finite chain rings. Let R be a finite chain ring with Jacobson radical

J(R) = rad(R). Then the residue field F = R/J(R) allows us to reconstruct the previous

theory. It is yet unclear if there is any advantage of using the heavy machinery of commu-

tative algebra to obtain codes with the same parameters as ones over finite fields. It is also

an experimental problem to determine how to implement the new ring and its operations.

Although we do not do it here, the proceeding chapters may also be cast into this frame-

work, providing the first decoder for these codes. Rains presents extensions to algebraic

78

number theory in [140].

79

CHAPTER 2

TRELLIS DECODING STABILIZER CODES

This chapter reproduces work from “Trellis Decoding For Qudit Stabilizer Codes And Its

Application To Qubit Topological Codes" by E. Sabo, A. B. Aloshious, and K. R. Brown

[141]. Throughout this chapter we restrict to the prime subfield q = p and all stabilizer

phases will be set to ηc = 1. Elements of Fnp2 will be denoted by length-n vectors in the

{1, α} basis such that X(a)Z(b) is written a+ bα. Occasionally, F4 = {0, 1, α, α2} will be

denoted in physics notation by the elements {I,X, Z, Y }, respectively.

2.1 Introduction

We ended the last chapter with a brief discussion of simulations of quantum codes and

mentioned a few decoding schemes. If one reports a new QECC or family of QECCs, it

is expected to also describe how to decode it. There are presently few generic decoders

applicable to random QECCs. Most decoders developed so far are specifically tailored to

a given code family based on intuitive, visual, or physical arguments. Many decoders and

decoding schemes in the literature are unique to the simulation they are presented with

while others, especially those for topological codes, have enjoyed widespread use, study,

and success.

For topological codes, such as rotated surface and color codes, the decoding problem

is typically reduced to MWPM on independent X and Z channels. This is applicable to

topological codes whenever the syndrome and errors have a string-like pattern. The union

find decoder [142, 143, 144, 145] has been successfully applied to surface codes and homo-

logical product codes, but a color code or more general stabilizer code implementation has

still yet to be developed. Other popular decoders for topological codes include those based

on cellular automata [146, 147, 148], integer programing [108], and renormalization [149,

80

150, 151]. Topological codes are often simulated on infinite lattices or finite lattices with

periodic boundary conditions, and decoders sometimes require structural features such as

locality and translational invariance.

Of particular interest are decoders which apply to multiple families of codes with little

to no modification up to input data. Belief propagation [152, 153], tensor network [111,

154, 155, 156, 157, 158], and machine learning [159, 160, 161, 162, 163, 164, 160] based

decoders generally fall into this category. Belief propagation is useful when codes satisfy

specific sparsity properties but is inherently more difficult for quantum than classical codes.

Recent work has improved this by introducing a common classical post processing step to

prevent the decoder from getting stuck in loops [165, 166]. Tensor network decoders are

theoretically exact maximum likelihood decoders but remain practically limited by compu-

tation with finite resources. As with much of machine learning, these decoders trade good

performance with a thorough understanding of its decisions and the theoretical guarantees

that come with it.

One benefit to general decoding techniques is that they remove things such as geometric

or topological constraints that complicate algorithms. There are a few general decoding

techniques for classical codes, but they typically involve bit-wise comparisons between the

received vector and the suspected input vector, which is just not applicable for QEC where

the only available information is the syndrome. Ollivier and Tillich pointed out how to

port one of the most successful of these classical algorithms to QEC in a short four page

2006 paper [167]. This is applicable to any stabilizer code but only a [[5, 1, 1]] code was

explored. As written, the decoder was not practical and could not be used for large-scale

simulations, and as such no numerical results were included. It was unclear if the proposed

decoder was useful, and it was only revived again in [168, 169] for quantum convolutional

codes, which are a different concept in coding theory than the linear codes explored in this

work. The decoding algorithm relies on the stabilizer matrix being in a certain canonical

form and [170] presented an algorithm for this over F2n
p .

81

The proposed decoder works by building a highly compact graphical representation,

called a trellis, of the algebraic structure of the image of S⊥ := CPn(S) in Fnp2 . The trellis

contains all valid combinations of logical operators and stabilizer generators that will return

the system to its code space. Decoding proceeds by using dynamical programming to glob-

ally search for the most likely path in the trellis corresponding to the measured syndrome.

This is performed efficiently in exactly n major steps for an [[n, k, d]] stabilizer code, al-

though the amount of work required in each step varies with respect to a predictable, code-

dependent formula and can be significant depending on the amount of available resources.

Many fundamental questions and theoretical properties remained unanswered following

[167].

In this work, we make a simple observation which prevents the repeated processing

of potentially massive amounts of data (all of the elements of S⊥), thus making trellis

decoding viable. However, this is still unpractical as enumerating the elements of S⊥ may

not be possible for many interesting codes. Here we expand on the previous literature by

fully developing the theoretical foundations of the decoder. The outcome is a way to extract

all the information needed to construct the trellis solely from the generators of S and S⊥.

This object is independent of error model and may be computed once and saved for future

simulations.

Trellis decoding is well-studied in classical coding theory. The question is what changes

in the switch from classical to quantum? We explore this in this chapter. There are two main

difference right from the start between the classical and quantum cases. First, many of the

best results in classical trellis theory rely on the interplay between the code and its dual,

a relationship which does not exist in QEC. Such results therefore require new proofs, if

they hold at all. Second, classical codes are vector spaces over Fp whereas quantum codes

are only additive Fp-modules over Fp2 . Suppose {1, α} is a basis for Fp2/Fp. Algorithms

and formulas require updates because 1 cannot remove an α in, for example, Gaussian

elimination without multiplication. Third, the previous chapter showed that the classical

82

and quantum decoding problems are fundamentally different, and classical trellis theory

is a bit-wise decoder. We tackle all of these problems here, often recovering the known

classical result with “quantum corrections". We point out changes and provide references

to the original classical results throughout. We also provide missing proofs for claims

previously made and widely cited in the classical literature which were otherwise based on

observation. This work can also be seen as an extension of the classical theory to codes

over Fp × Fp.

We begin by summarizing the main ingredients and fundamental results of our work in

Section 2.2. A rigorous theory is developed in Section 2.3. We attempt to mimic the classi-

cal coding theory literature as closely as possible to make this work available to the widest

audience. It is perhaps remarkable that many of our results have classical analogues despite

the differences between classical and quantum codes forcing alternative proof techniques.

We view this as a strength of the overall theory of trellis decoding.

In Section 2.3.3 we adopt a classical, quantitative metric for the difficulty of decoding

based on the structure of the trellis to stabilizer codes. To the author’s knowledge, this is the

first such metric for QECCs. This allows us to show that the color codes are fundamentally

more difficult to decode than the rotated surface codes, and the 4.8.8 color code is more

difficult to decode than the 6.6.6 color code, facts which were only intuitively understood

from past simulations. We also make quantitative arguments as to exactly how much easier

it is to decode a CSS code using independent X and Z decoders versus a single decoder for

the full code. Although not unique to trellis decoding, we show that large gains in terms of

storage and time complexity are made when splitting the trellis into X and Z parts.

Numerical results for code-capacity simulations are presented in Section 2.5. First, we

demonstrate the power of the theory by decoding four high-density codes from the QEC

Best Codes Table at [171]. As we are unaware of any other decoding algorithm for these

codes, it is difficult to quantify the performance of the trellis with this data. We there-

fore, second, proceed to apply our work to the rotated surface and color code families for

83

which there already exist numerous and highly optimized decoders. Notably, the color

codes (with boundary) are natively decoded without reference to other codes or notions

of color, homology, matching, boundaries, lifting, projections, restrictions, charges, exci-

tations, strings, and/or mappings. Trellis decoding for stabilizer codes over the X , Z, or

depolarizing channels is optimal minimum-weight and numerical results for Z-only noise

should therefore match that of MWPM for the surface codes and exceed the current best

thresholds in the literature for the color codes, although we only simulate codes up to

distances 17-21. Finally, we simulate a 2-stage, suboptimal decoder for the level-2 con-

catenated Steane code and compare it to a concatenated minimum weight decoder.

The main goal and overall contribution of this work is in making trellis decoding prac-

tical. To date, it is the most general and widely applicable decoding technique in QEC.

2.2 The Syndrome Trellis

The classical coding theory literature contains several definitions for the trellis of a linear

block code. Some of them, such as the the Bahl-Cocke-Jelinek-Raviv (BCJR) [172], the

Wolf [173], and the Forney-Muder [12, 174] trellises, are now known to be isomorphic.

With the benefit of this hindsight, Ollivier and Tillich demonstrated how to port what is

often known as the syndrome trellis to the quantum setting [167]. They referred to their

construction as the Wolf trellis; however, the discussion here more closely follows that

of BCJR. As such, we simply use “syndrome trellis" in this work, although, since unlike

classical coding theory, there is only one definition of a trellis for quantum error correction,

we may just as well shorten this to simply “trellis". One may attempt to port the other

classical trellises to the quantum case but the definition used in [167] and this work is

known to be minimal in a rigorous sense that will be defined in Section 2.3, rendering

alternate definitions undesirable. The interested reader is referred to the tutorial piece [175]

for a general discussion of classical trellises.

Recall that a directed edge, e, in a graph goes from source, s(e), to terminus, t(e).

84

Definition 2.2.1 ((Quantum) Syndrome Trellis)

A trellis for an [[n, k, d]]p stabilizer code with stabilizer group S is a directed multigraph

with vertex set, V , and edge set, E, such that

(i) there are n+1 disjoint sets of vertices Vi with V = V0t . . .tVn and |V0| = |Vn| = 1;

(ii) there are n disjoint sets, Ei, of directed edges from Vi−1 to Vi with E = E1t . . .tEn;

(iii) each vertex v ∈ Vi has a unique label given by an (n−k)-tuple of syndromes, although

the same label may be present in multiple Vi;

(iv) each edge e ∈ Ei is a unique triple of the form (s(e), P, t(e)), where P ∈ P1 is a

label;

(v) each edge is assigned a weight, wt(e) ∈ R− ∪ {−∞}.

Following the classical literature, vertices are referred to as states, the Vi as state spaces,

and Vi is said to be at depth i. The edge sets Ei are referred to as the ith section and the

edges as branches. The condition that edge labels must be unique between a fixed pair of

source and terminus vertices means our trellises are proper. Trellises which do not satisfy

this condition are called improper and are not considered in this work. It is perhaps more

convenient to define the trellis without weights (v), but we stick with decades of precedent

in including them here.

To construct the syndrome trellis, choose a set of stabilizer generators {S1, . . . , Sn−k}

for the stabilizer group S, and fix this set throughout. For P ∈ Pn, let a subscript Pi denote

the ith element of this product.

Definition 2.2.2

Let J ⊂ {0, . . . , n} be an index set. Then define πJ : Pn → Pn to be the map which

projects all elements at indices J c to the identity, where π0(P) is the all identity.

Let σi : Pn → Fn−kp be the map from an element to its syndrome,

σi(P) = (〈S1, π{0,...,i}(P)〉, . . . , 〈Sn−k, π{0,...,i}(P)〉), (2.1)

85

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

I
X

Z
Y

(a)

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0010

0011

0011

I
X

Z
Y

(b)

Figure 2.1: (a) The trellis for the [[5, 1, 1]] code with stabilizers {[α, 1, 0, 0, 0], [1, α, 1, 0, 0],
[0, 1, α, 1, 0], [0, 0, 1, α, 1]} demonstrated in [167]. Measuring the syndrome s =
(0, 0, 1, 1), we determine Ps = [0, 0, 0, α, α]. Adding π0(Ps) = π1(Ps) = π2(Ps) =
π3(Ps) = (0, 0, 0, 0), π4(Ps) = (0, 0, 1, 0), and π5(Ps) = (0, 0, 1, 1) to the appropriate Vi
produces (b), the trellis found in Figure 2 of [167]. The presence of the parallel edges in
E5 demonstrate that this code cannot tell the difference between 0/1 and α/1 + α on qubit
five.

where 〈·, ·〉 is an appropriate inner product after mapping group elements to a numerical

form, and let Ps ∈ Pn with syndrome s with respect to the chosen generators, s = σn(Ps).

Compute S⊥ and then PsS⊥. Since everything in S⊥ has zero syndrome, everything in

PsS⊥ has syndrome s.

The vertices in each set are labeled by the values σi(P) for all P ∈ PsS⊥,

Vi = {σi(P) : 1 ≤ j ≤ n− k, P ∈ PsS⊥}. (2.2)

A directed edge is created from the vertex σi−1(P) ∈ Vi−1 to the vertex σi(P) ∈ Vi and

labeled with the ith component of P ,

Ei = {(σi−1(P), Pi, σi(P)) : P ∈ PsS⊥}. (2.3)

86

The weight of an edge with label Pi is defined to be the log-likelihood− log Pr (Pi), where

this probability comes from the assumed error channel. Duplicate edges, which have the

same source, label, and terminus, are not allowed, although they will appear often during

this method of construction. Parallel edges, which have the same source and terminus but

different labels, are allowed and imply the existence of a weight one error for the code.

These will generally not appear, but we will consider them in this work for completeness.

The example trellis of Figure 2.1 has parallel edges in E5.

This represents the construction process of [167] and [170]. Assuming S⊥ is able to be

computed and stored, the trellis as written so far is dependent on Ps and must be recom-

puted for every measured syndrome, which is computationally expensive for a practical

implementation for many codes. This can be avoided by noting that since for P ∈ PsS⊥,

σi(P) = σi(Ps) + σi(P
′) for P ′ ∈ S⊥, the trellis with respect to syndrome s is simply

a shift of the trellis with respect to the zero syndrome. Since σi(Ps) is a single value, the

set {σi(Ps) + σi(P
′)} is unique when {σi(P ′)} is unique so |Vi| remains invariant. Like-

wise, the map (σi−1(P ′), P ′i , σi(P
′)) 7→ (σi−1(Ps) + σi−1(P ′), Ps iP

′
i , σi(Ps) + σi(P

′)) is

an isomorphism permuting edge labels via the action of Ps i. It follows that one may pre-

compute the trellis for the zero syndrome then update each Vi with the syndrome of πi(Ps),

updating edges accordingly. See Figure 2.1 for an example. We may thus trade the affine

space PsS⊥ with the vector space S⊥. This is convenient as many mathematical objects are

not well-defined over affine spaces and working with the associated vector space allows for

easier proofs of properties that more closely mimic their classical counterparts.

We take the trellis for S⊥ (with respect to the zero syndrome) to be the fundamental

object in this work. The general decoding scheme proceeds as follows: 1) construct the

trellis, 2) measure a syndrome and shift the base trellis with respect to it, 3) decode the

shifted trellis, 4) repeat steps 2) and 3). We avoid assigning edge weights to the trellis until

step 2) so the trellis resulting from step 1) is independent of any measured syndromes or

error model. Hence step 1) is an “offline" procedure while 2) and 3) are “online". Trellises

87

for larger distance codes may therefore be computed once and saved for future use. For

the codes considered in this work, the efficiency of the construction algorithm made this

unnecessary for most distances. Since |V | ≤ |E|, shifting the trellis is Θ(|E|) in time but

the procedure is easily parallelized. As we will see later, decoding is also Θ(|E|) and may

also be parallelized.

With the edge weights prescribed above, the desired correction is given by the maximum-

likely (or minimum-weight) path from V0 to Vn. We refer to this in the following as the

“optimal path". The Viterbi algorithm is an example of forward dynamical programming

and is the most common trellis-based decoder [176]. The idea is as follows. Choose an

arbitrary vertex v ∈ Vi for some i 6= 0 or n and suppose that the optimal path travels

through v. Then the optimal path can be split into two parts: the optimal path going from

V0 to v and the optimal path going from v to Vn. Compute the optimal path from V0 to

v and repeat for all v. Once the optimal paths are computed for every vertex in Vi−1, the

optimal path for a vertex in Vi is chosen by finding the minimum value of the sums of the

incoming edge weights plus the weight of the optimal path for each edge’s source vertex in

Vi−1. The weight at V0 is arbitrary but is convenient to initialize to zero. Having completed

this for all vertices, the Pauli correction may be read off the trellis by taking the edge labels

for the optimal path connecting V0 to Vn. Figure 2.2 demonstrates the Viterbi algorithm on

Figure 2.1; an example implementation is also provided in Algorithm 1. The algorithm is

often described in a manner in which vertices with no outgoing edges are removed from

the system. This creates nicer diagrams but actual deletion steps can be algorithmically

expensive and should be ignored as in Figure 2.1. Also note that the partial syndromes, or

vertex labels, make no appearance in the algorithm and may be safely removed after the

construction phase, also ignoring vertices in the shifting phase. The partial syndromes of

the distance 15 rotated surface code are 224 bits long, for example, and not storing them,

even in a more efficient fashion, leads to large savings in storage.

The Viterbi algorithm is sometimes confused with other standard minimum-path graph

88

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

I
X

Z
Y

(a) Section 1

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

(b) Section 2

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

(c) Section 3

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

(d) Section 4

0000

1000

0100

0000

1100

0000

0100

0010

0110

0000

0010

0001

0011

0000

0001

0000

(e) Section 5

Figure 2.2: The Viterbi algorithm applied to the example trellis of Figure 2.1 for the error
model Pr (I) = 0, Pr (X) = Pr (Z) = 1, and Pr (Y) = 2. Ties were broken in a manner
to keep the result looking clean. The path from V0 to Vn provides the final correction, in
this case IIIII - which is true since there was no error.

89

Algorithm 1: Viterbi
Input: A vertex set, V , along with an edge set, E, corresponding to a valid trellis.
Output: Pauli string

1 Struct Vertex contains
2 int prev . Final step acts as a linked list
3 float value
4 Edge edge . Initialized to null

5 end

6 Struct Edge contains
7 Vertex source
8 float weight
9 char label

10 end

11 V0 3 0.value← 0
12 for i← 1 to n do
13 foreach v ∈ Vi do
14 v.value← min

e∈Ei
t(e)=v

{e.source.value+ e.weight} . For e which

achieves minimum
15 v.prev ← e.source
16 v.edge← e

17 end
18 end

19 v ← 0 ∈ Vn . Trace optimal path backward for correction
20 correction← “" . Empty string
21 for i← n to 2 by − 1 do
22 correction← v.edge.label + correction . Concatenate to left of

string
23 v ← v.prev

24 end

25 return correction

algorithms but it is distinct and more efficient given the strict edge and vertex dependencies

required in the definition of a trellis. Underlying the success of this algorithm is the implicit

assumption that the trellis behaves as a Markov chain with each Vi only depending on the

result at Vi−1. In particular, at each Vi, all the information regarding the correction of all

previous qudits has already been processed.

The behavior of the decoder depends strongly on the assumed error model. If all Pauli

90

operators are equally likely, as in the standard depolarizing noise model, the Viterbi algo-

rithm acts as a minimum Hamming-weight decoder and may run into a significant number

of ties which may be broken arbitrarily. For a biased noise model, the decoder is able to

differentiate between, say, X and Z, and is able to make a more informed choice.

2.3 Properties

Throughout this section we denote the vertex with zero syndrome by 0. Dimension will

always refer to the number of generators of an object, and |·|will be reserved for cardinality.

An element of Pn will be denoted by P , whereas p will denote the characteristic of the

underlying field. We first show several properties of the syndrome (base) trellis then we

turn to trellis-oriented form before finally discussing the Viterbi algorithm. Many, but not

all, of the results here have classical analogies, and we attempt to provide original citations

to the best of our knowledge for those which are not typically discussed in textbooks.

Classically, however, codes are vector spaces whereas here we consider stabilizer codes as

groups. This changes the techniques, but we try to maintain the same overall direction of

the proofs if possible. We consider it a strength of the theory that a single framework can

handle both classical and quantum trellises. The closest classical work to this is that of

Forney and Trott on convolutional group codes [177].

2.3.1 Syndrome Trellis

The first result was understood and implicitly used in [167] and [170] but was never explic-

itly stated. It is perhaps obvious, but we include a proof here for completeness.

Proposition 2.3.1

There is a one-to-one correspondence between elements in S⊥ and length-n paths in

the trellis.

Proof. It is clear that by construction every element in S⊥ corresponds to a length-n path

in the trellis. It remains to show that every length-n path in the trellis corresponds to an

91

element in S⊥ and that all such paths are unique. Let (0, P1, σ1(P1I . . . I)) ∈ E1 be an

edge with label P1, then pick an arbitrary edge (σ1(P1I . . . I), P2, σ2(P1P2I . . . I)) ∈ E2.

Continuing this process, we end with an edge (σn−1(P1 . . . Pn−1I), Pn, σn(P1 . . . Pn)) ∈

En. This last terminus is the zero syndrome by construction, hence, concatenating the edge

labels in the path, the element P1P2 . . . Pn has zero syndrome and is therefore an element

of S⊥ by definition. Since each vertex can only have a unique outgoing edge with a given

label, this string uniquely identifies a path in the trellis and no other path can have the same

label.

Corollary 2.3.2

Let vi ∈ Vi and vi+1 ∈ Vi+1 be arbitrary. If there is an element Pi ∈ P1, which takes vi

to vi+1, then (vi, Pi, vi+1) ∈ Ei.

Proof. Let vi ∈ Vi, vi+1 ∈ Vi+1, and suppose concatenating a Pauli element Pi to a path

with terminus vi changes the syndrome of vi to the syndrome of vi+1. Let V0vi and vi+1Vn

be a path from V0 to vi and vi+1 to Vn, respectively. Then the element represented by the

path V0viPivi+1Vn has a length-n and zero syndrome, and is hence an element of S⊥. The

result then follows from the previous proposition.

In the previous section we attempted to stick to the notation of the preceding literature,

following [167]. At this point, we make some adjustments which we find necessary to

simplify the proofs and discussion. The main reason for this is that S and S⊥ are groups

whereas Vi and Ei are vector spaces. Mapping elements of Pn to vectors or the vector

spaces to groups provides for a more coherent argument. Choosing groups, we henceforth

introduce the following notation. We begin with a rather general definition for complete-

ness; however, our goal and use case throughout this paper is the rather natural splitting of

the qudit indices into a “past" and “future", which is defined later in Definition 2.3.4.

Definition 2.3.3

• Let J ⊂ {0, . . . , n} be an index set and define AJ to be the set of elements in a

92

subgroup A ≤ Pn whose Pauli operators are equal to the identity on the complement

of J , J c := {0, . . . , n} \ J .

• Denote by A|J the set of elements in P |J |1 constructed from elements in A whose

elements at indices J c have been deleted. Alternatively, A|J is the image ofA whose

elements at indices J c have been set to the identity.

The alternative definition of A|J is useful to keep all elements the original length, whereas

in the first definition the strings are shortened to length |J |. Both definitions are conceptu-

ally equivalent.

Remark: If C is a classical code, then CJ and C|J are the shortened and punctured codes

of C with respect to J , respectively. The concepts of shortening and puncturing are a bit

more complicated for quantum codes [140], so we refrain from using this terminology here.

Example 1. Let J = {0, . . . , i}. Then AJ is the set of elements which naturally have

identity elements in indices {i + 1, . . . , n} and A|J = im πJ (A) is the set of elements

whose elements in indices {i + 1, . . . , n} have been projected to the identity regardless of

their initial value.

Critical to our proofs is the fact that since πJ (PP ′) = πJ (P)πJ (P ′) for P, P ′ ∈ Pn,

πJ is a group homomorphism. Then kerπJ (A) = A|J c and kerπJ c(A) = A|J , and

A|J c E A and A|J E A as all kernels are normal. The product group A|JA|J c is also

normal, and as J ∩ J c = ∅, A|JA|J c = A|J ×A|J c E A.

In keeping with the standard trellis literature, we introduce the following further termi-

nology.

Definition 2.3.4

Fix an index i ∈ {0, . . . , n}. Then the past and future, with respect to i, are defined to

be the index sets pi := {0, . . . , i} and fi := {i+ 1, . . . , n}, respectively.

93

A|pi A A|fi

Api Api ×Afi Afi

1 Api Afi 1

1

πpi πfi

πpi πfi

πfi πpi

Figure 2.3: A summary of the relationships between the groups and the maps (Figure 5 of
[177]). A line without an arrow between two groups means the group in the lower level is
a subgroup of the upper level.

In particular, we will utilize the sets Spi , Sfi , S|pi , S|fi , and likewise for S⊥. See Figure

2.3 for a summary of the relationships between the groups. Note that the literature varies

on which set includes the index i. In this work we index the qudits on {1, . . . , n} but it is

necessary to include zero in order to project to the identity.

The previously mentioned subgroups (Figure 2.3) depend only on the set A and not

the choice of generators, although S and S⊥ may have different subgroups at the same

index. Lagrange’s theorem restricts their cardinality to powers of p. (In fact, this was

a motivation for promoting V and E to groups instead of dealing with less-constrained

vector subspace dimensions.) Initially, Af0 = A and monotonically decreases in size as i

goes to n, Afn = {I⊗n}. Likewise, Ap0 = {I⊗n} and monotonically increases in size as i

goes to n, Apn = A.

For a fixed i, sort the elements of S⊥ into sets S⊥pi , S
⊥
fi

, and S⊥ai , where the “active"

set, denoted by a, contains the remaining elements neither wholly in the past nor future.

Include the identity in S⊥ai to give these trivial intersection. An element of S⊥ may hence

be decomposed in the form PpPaPf, where Pp ∈ S⊥pi , Pa ∈ S⊥ai , and Pf ∈ S⊥fi . An element

P|pi ∈ S
⊥
|pi

is of the form P|pi = (Ppi)|pi
(Pai)|pi

, and similarly for the future. Thus S⊥|pi =

span
{
S⊥pi ,

(
S⊥ai
)
|pi

}
and S⊥|fi = span

{
S⊥fi ,

(
S⊥ai
)
|fi

}
. Fix a P ∈ S⊥ai and let v be the vertex

generated by P in Vi. Then every length-i path from V0 to v is generated by the coset

94

vV0 Vn

...

...

P|pi
S⊥
pi

P|fiS
⊥
fi

Figure 2.4: Grouping all paths from V0 to v into a single line, the trellis may be seen as the
depicted set of cosets. As is clear in the diagram, each vertex has a unique past and future.

P|piS
⊥
pi

. Likewise, every path from v to Vn is generated by an element of the coset P|fiS
⊥
fi

.

Putting these together, every path from V0 to Vn may be viewed as a coset P|piS
⊥
pi
P|fiS

⊥
fi

with respect to v. See Figure 2.4 for a visual summary.

As mentioned in the previous section, there are historically numerous definitions of

trellises in the classical literature. It was therefore important to determine whether some

are “better" than others, leading to the concept of a “minimal" trellis (defined below). We

will see below that if another trellis would be defined for stabilizer codes, the trellis of this

work is minimal. The following proposition takes us in this direction and holds for any

definition of a trellis for a stabilizer code. To connect with the literature, we define the

dimension of a group to be the minimum number of generators in any generating set. This

terminology is induced by considering a basis under the map Pn → Fnp2 .

Proposition 2.3.5 (Lemma 1 [167])

Given a stabilizer code S, any trellis for S must satisfy

|Vi| ≥ pdimS⊥−dimS⊥pi−dimS⊥fi ,

|Ei| ≥ p
dimS⊥−dimS⊥pi−1

−dimS⊥fi .

Proof. Every path from V0 to Vn must go through some vertex v ∈ Vi. The set of all

elements in S⊥ which map to the vertex v under σi is a subset of the cosets described in

Figure 2.4 and hence has cardinality bounded above by |S⊥pi ||S
⊥
fi
|. The trellis can be written

95

as a union of paths passing through v over all v ∈ Vi, so the number of such cosets is |Vi|.

Using Proposition 2.3.1, we then have

|S⊥| ≤ |Vi||S⊥pi ||S
⊥
fi
|.

Likewise, every path in the trellis contains one edge in section Ei. Since edges are of the

form (s(e), P, t(e)), a similar argument gives

|S⊥| ≤ |S⊥pi−1
||Ei||S⊥fi |.

Definition 2.3.6

A trellis that meets the lower bounds of Proposition 2.3.5 is minimal.

Remark: Non-minimal trellises will not be discussed in this work. As a trivial example,

one could define a trellis where each element of S⊥ consists of its own path from V0 to

Vn without intersecting any other path. The number of vertices at each depth would then

be |S⊥|. We refer the reader to [175] for further (classical) examples. The concept of a

minimal trellis comes from [174].

While the edges of the trellis encode S⊥, the vertices do not take the logical operators

into account and are determined by S, an important point in sharp contrast with the classical

case whose vertices and edges are both constructed relative to the same object: the code.

For the vertices, fix i, let P be an arbitrary element of S⊥, and let Sj be a fixed generator

of S. If Sj ∈ Spi then 〈Sj, π{0,...,i}(P)〉 = 0 since Sj is the identity at indices {i+1, . . . , n}

and these will commute with any elements of P at these positions. Thus, the syndrome

of P with respect to the generator Sj has already been completely determined (and is zero

96

since P ∈ S⊥). Likewise, if Sj ∈ Sfi then 〈Sj, π{0,...,i}(P)〉 = 0 since Sj is the identity at

indices {1, . . . , i}, which, again, commute with π{0,...,i}(P). Only generators Sj ∈ Sai can

have nonzero syndromes.

Theorem 2.3.7 (Quantum Space Theorem(s))

The syndrome trellis of Section 2.2 is minimal, i.e.,

(i) (Quantum State Space Theorem, Lemma 2 [167])

|Vi| = pdimS⊥−dimS⊥pi−dimS⊥fi (2.4)

(ii) (Quantum Branch Space Theorem)

|Ei| = p
dimS⊥−dimS⊥pi−1

−dimS⊥fi (2.5)

Proof. Let i be fixed.

(i) The vertices are the image of S⊥ under σi. By the above comments, the past and

the future have zero syndrome; therefore, Vi = σi(S⊥) ∼= S⊥/S⊥pi × S
⊥
fi

by the first

isomorphism theorem for groups.

(ii) The kernel of the map from S⊥ to Ei consists of the elements which map to (0, I, 0),

i.e.,

kerσi−1(S⊥) ∩ {P ∈ S⊥ | Pi = I} ∩ kerσi(S⊥)

= S⊥pi−1
× S⊥fi−1

∩ {P ∈ S⊥ | Pi = I} ∩ S⊥pi × S
⊥
fi

= S⊥pi−1
× S⊥fi .

Remark: The sequences {|Vi|}ni=0 and {|Ei|}ni=1 are often referred to as the state space

and branch space complexity profiles, respectively. The quantity maxi dimVi is the state

97

complexity, maxi dimEi the branch complexity, and |E| the edge complexity. Computing

the branch complexity for a given family of codes is a major theme of the classical trellis

literature. We will not utilize these in this work.

Lemma 2.3.8

The set of edges in Ei with terminus vertex 0 is a subgroup of Ei.

Proof. The proof of Theorem 2.3.7 shows that Ei is a group. Clearly the identity edge

exists and closure follows since if (s1, P1, 0), (s2, P2, 0) ∈ Ei, then (s1, P1, 0)(s2, P2, 0) =

(s1 + s2, P1P2, 0) ∈ Ei. It remains to show that E0 contains inverses. Let (a, b, 0) ∈ E0

and (c, d, e) be its inverse in Ei. The group operation on Ei forces e = 0.

Corollary 2.3.9

For 1 ≤ i ≤ n, every vertex v ∈ Vi has incoming degree

degin(v) = p
dimS⊥pi−dimS⊥pi−1 , (2.6)

and for 0 ≤ i ≤ n− 1, every vertex v ∈ Vi has outgoing degree

degout(v) = p
dimS⊥fi−dimS⊥fi+1 . (2.7)

Proof. Let v ∈ Vi and denote by Ein(v) the set of edges with terminus v, Ein(v) = {e ∈

Ei | t(e) = v}. By definition, degin(v) = |Ein(v)|. By Lemma 2.3.8, Ein(v) is a coset

of Ein(0) in Ei. In particular, |Ein(v)| = |Ein(0)|. Since there are |Ei| total edges equally

divided among |Vi| vertices, degin(v) = |Ei|/|Vi|. The result follows from Theorem 2.3.7.

An identical proof gives the second equality with degout(v) = |Ei+1|/|Vi|.

Lemma 2.3.10

Let A = S or S⊥. Then 0 ≤ dimAfi − dimAfi+1
≤ 2 for 0 ≤ i ≤ n − 1 and

0 ≤ dimApi − dimApi−1
≤ 2 for 1 ≤ i ≤ n.

98

Proof. We show the result for the first inequality and the remaining proof is identical. An

easy counting argument shows that the number of I’s in the ith column of Afi are either

|Afi |, |Afi |/p, or |Afi |/p2. (If there are not all I’s, then pair any element with its inverse to

create an element with an I . Likewise, pair any element without an I with an element with

an I . Do the same for X and Z combinations.) These are the elements which are also in

Afi+1
, so |Afi+1

| ≥ |Afi|/p2. The dimension change is therefore no more than two.

Corollary 2.3.11

For 0 ≤ i ≤ n − 1, degout(v) ∈ {1, p, p2}, and for 1 ≤ i ≤ n, degin(v) ∈ {1, p, p2}.

Equivalently, for 1 ≤ i ≤ n, dimVi ≤ dimEi ≤ dimVi + 2.

Table 2.1 records this result graphically for the special case p = 2. It is well-known

in classical trellis theory that the dimension change in Lemma 2.3.10 is bounded by one

[178]. This is due to classical codes only having one symbol alphabet instead of the two,

X , Z, which allows one to completely row reduce to a single pivot per column. Any

configuration in Table 2.1 with a two is therefore unique to the quantum setting. The next

theorem shows that these are the only possible configurations. No corresponding proof

exists in the classical literature, but the proof here also holds in the classical case with

minor modifications.

Theorem 2.3.12

Consider an arbitrary edge e = (s(e), Pi, t(e)) ∈ Ei and define Ii = {v ∈ Vi | ∃e′ ∈

Ei, t(e
′) = t(e)} and Ii+1 = {v ∈ Vi+1 | ∃e′ ∈ Ei, s(e′) = s(e)}. Then the vertices of Ii

and Ii+1 form a completely-connected bipartite graph and no other elements of Vi\Ii or

Vi+1\Ii+1 are connected to the vertices in Ii+1 and Ii, respectively. If there exists a parallel

edge in Ei then all edges in Ei are parallel with the same number of edges in parallel.

Proof. From Corollary 2.3.2 and Lemma 2.3.8, it suffices to show this for the edge (0, 0, 0) ∈

Ei, as all edge configurations are a shift of this one. Choose an arbitrary vi ∈ Ii and vi+1 ∈

Ii+1. By definition there exists Pauli labels Ps and Pt such that (vi, Ps, 0), (0, Pt, vi+1) ∈

99

Table 2.1: The various possible edge configurations for p = 2. Since ∆dimS⊥pi and
∆dimS⊥fi are bounded by one in classical theory, any configurations with a two is unique
to the quantum setting.

∆ dimS⊥
pi

∆ dimS⊥
fi

Ei ∆ dimS⊥
pi

∆ dimS⊥
fi

Ei ∆ dimS⊥
pi

∆ dimS⊥
fi

Ei

0 0 1 0 2 0

0 1 1 1 2 1

0 2 1 2 2 2

Ei. Hence, (vi, PsPt, vi+1) ∈ Ei. This works for any pair of vertices in Ii and Ii+1,

proving the first statement. Now suppose, without loss of generality, there exists a v′i+1 ∈

Vi+1\Ii+1 connected to a vi ∈ Ii via (vi, P
′, v′i+1) but is not part of the bipartite graph.

As a subgroup, the inverse syndrome to vi, v−1
i , exists with some edge label Pi. Then

(v−1
i , Pi, 0)(vi, P

′, v′i+1) = (0, PiP
′, v′i+1) ∈ Ei, a contradiction to the fact that v′i+1 6∈ Ii+1.

To prove the last statement, pick a source/terminus pair vi ∈ Vi and vi+1 ∈ Vi+1 with

parallel edges uniquely labeled by {P1, . . . , Pk}. We will show that every other edge must

also have k parallel edges; hence it suffices, without loss of generality, to assume that both

syndromes are 0. Now choose any other edge (v′s, P
′, v′t) ∈ Ei with v′s and v′t not both 0.

By Lemma 2.3.8, (0, P−1
1 , 0) exists and (v′s, P

′, v′t)(0, P
−1
1 , 0)(0, Pj, 0) = (v′s, P

′P−1
1 Pj, v

′
t)

for some 1 < j ≤ k. Since P ′P−1
1 Pj1 = P ′P−1

1 Pj2 implies Pj1 = Pj2 , a contradiction,

there are k−1 additional parallel edges between v′s and v′t of this form. Since the same idea

works when P−1
1 is replaced with any other of the k labels, the number of parallel edges

from v′s to v′t is greater than or equal to k. Running the argument backwards shows that for

each edge between v′s to v′t there is a corresponding edge from 0 to 0. Since the number of

100

these is k, we have that the number of parallel edges from v′s to v′t is exactly k.

Corollary 2.3.13

The number of disjoint edge configurations in Ei is pdimS⊥−dimS⊥pi+1
−dimS⊥fi .

This is simply |Vi+1|/ degout(v) for v ∈ Vi.

At first glance, Equation (2.4) should be viewed with skepticism. It is common for

dimSpi = dimSfi = 0 (see Example 4) and if the same holds true for S⊥, then |Vi| = pn+k

which is notably greater than the number of total possible syndromes, pn−k. Applying the

classical formula for Vi or using the logic above, one would expect dimVi = dimS −

dimSpi − dimSfi , and in fact this also works. The inclusion of the logicals therefore

always forces dimS⊥pi + dimS⊥fi ≥ 2k. The various formulas throughout this subsection

may therefore be written with this alternative view of dimVi, but this leads to a lack of

cancellation of terms and an unpleasant factor of 2k floating around whose lack of obvious

effect on the results requires justification.

Corollary 2.3.14

For 0 ≤ i ≤ n, dimS⊥pi + dimS⊥fi ≥ 2k.

Proof. Starting with dimS⊥f0 = n+k and repeatedly applying Lemma 2.3.10 gives dimS⊥fi ≥

n + k − 2i and, likewise, dimS⊥pi ≥ −n + k + 2i. Combining these two equations gives

the desired result.

The same proof applied to S instead of S⊥ shows dimSpi + dimSfi ≥ 0.

The next result says that for a fixed qudit ordering the choice of stabilizer or logical

generators is irrelevant.

Lemma 2.3.15

Any two minimal trellises for the same stabilizer code are isomorphic.

Proof. Since dimS⊥p and dimS⊥f are invariant, we know from Corollary 2.3.9 that any

trellises satisfying Theorem 2.3.7 have the same vertex degrees and are hence isomorphic.

101

It remains to specify the mapping. Let there be two minimal trellises for the code with sets

V,E and V ′, E ′, respectively. Fix a v ∈ Vi and consider its past coset (see Figure 2.4). Pick

an element of S⊥ in this coset and determine its terminus v′ ∈ V ′i . The map f : V → V ′,

f(v) = v′ is clearly an isomorphism. It immediately follows that the edge isomorphism is

given by (s(e), Pi, t(e)) 7→ (f(s(e)), Pi, f(t(e))).

2.3.2 Trellis-Oriented Form

The term “trellis-oriented" was introduced in passing in an appendix by Forney [12] and

wasn’t thoroughly defined until seven years later by Kschischang and Sorokine [179]. Here

we adapt the latter approach to the quantum setting, as did [167], but we will stick closer

to the classical notation than that of [167]. The term “minimal-span" is preferred by some

authors in the literature.

Let P ∈ Pn be arbitrary with components Pi at index i.

Definition 2.3.16

(i) The left index of P , L(P), is the smallest index such that Pi 6= I and the right index

of P , R(P), is the largest index such that Pi 6= I .

(ii) The span of P is the index set {L(P), L(P) + 1, . . . , R(P)} and the span length of P

is the cardinality of the span of P , R(P)− L(P) + 1. The span of the identity string

is defined to be { } and the corresponding span length to be 0.

(iii) Say P is active at depth i if i − 1 and i are in the span of P , i.e., L(P) ≤ i − 1 and

R(P) ≥ i.

Definition 2.3.17 (Left-Right Property)

A set of elements of Pn is said to have the left-right property if no two elements with the

same left or right index have more than one X(a) or Z(b) at these index locations.

The next definition is intended to be applied to a set of generators and not the entirety

of its span.

102

Definition 2.3.18 (Trellis-Oriented Form)

A set of Pn is said to be in trellis-oriented form (TOF) if the sum of the span lengths of

the elements is as small as possible.

Proposition 2.3.19

A set of elements Pn is in TOF if and only if it has the left-right property.

Proof. Suppose a set of elements Pn is in TOF but does not have the left-right property.

Then there exists two elements of the set, P̃ and P̃ ′ such that L(P̃) = L(P̃ ′) or R(P̃) =

R(P̃ ′). Without loss of generality, assume L(P̃) = L(P̃ ′) and R(P̃) > R(P̃ ′). One can

always replace any X(a) or Z(b) with X(1) and Z(1) by repeatedly applying it to itself

since p is prime and any power generates the cyclic group 〈p〉. Assume this is done for P̃

and replace the X or Z in P̃ ′ by X(p − 1) or Z(p − 1), P̃ 7→ P and P̃ ′ 7→ P ′. Then PP ′

has lower span length than P̃ , a contradiction to the fact that the set is in TOF.

Now suppose the set has the left-right property but is not in TOF. The only way to

reduce the span length of the set is to increase a left index or decrease a right index. But

this is impossible since there is only a single X or Z at these indices by the left-right

property. Hence the set already has the lowest total span length.

Example 2. The generators for the rotated surface and color codes naturally have the

left-right property. The canonical form of the stabilizer generators of the [[5, 1, 3]] code as

cyclic shifts of [1, α, α, 1, 0] may be put into TOF as follows:

S1 = [1, α, α, 1, 0]
S2 = [0, 1, α, α, 1]
S3 = [1, 0, 1, α, α]
S4 = [α, 1, 0, 1, α]

7→

S1 = [1, α, α, 1, 0]
S4 = [α, 1, 0, 1, α]
S2 = [0, 1, α, α, 1]
S1S3 = [0, α, α2, α2, α]

7→

S1 = [1, α, α, 1, 0]
S1S3S4 = [α, α2, α2, α, 0]
S2 = [0, 1, α, α, 1]
S1S3 = [0, α, α2, α2, α]

.

The left and right indices for each row are, in order, {[1, 4], [1, 4], [2, 5], [2, 5]}, where we

have used the notation [L(P), R(P)]. It is customary, and sometimes included in the defi-

nition, to rearrange the strings by increasing left index when viewing them in a matrix-like

103

format, similar to a row-reduced matrix, but this is not strictly necessary.

The procedure used in the previous example is quite simple: after reducing the left side

from top to bottom, the right side is reduced from bottom to top and the upper generator is

always replaced instead of the lower. This prevents the combination of the generators from

changing the left indices. The key to automating this is considering elements as length-n

vectors over Fp2 and using appropriate operations in this field. This should be compared

with the complex algorithm given in [170] for obtaining the TOF using the symplectic

representation over Fp.

The quantum TOF is more complicated than in classical theory. To gain some intuition

for this consider a set of elements of Pn in TOF. A quantum index, either left or right, is

of the form X(a)Z(b), where a, b ∈ Fp. Given two indices X(a)Z(b) and X(a′)Z(b′) with

all integers nonzero, one can only eliminate the other to produce an identity if and only if

they are scalar multiples of each other in Fp, i.e., (a′, b′) ∈ 〈(a, b)〉 ∈ Zp × Zp. In the more

general case, by repeated application of the string to itself, a and b can individually be made

to take any value in Fp. In particular, −a′ ∈ 〈a〉 = Zp since p is prime, and likewise for

b. So, one of a′ or b′ may always be eliminated. An index X(a) cannot eliminate an index

Z(b) and vice versa. To summarize, the possible elements at left or right index locations for

qubit codes are {{1, 0}, {α, 0}, {α2, 0}, {1, α}, {α2, 1}, {α2, α}}. This is in stark contrast

to the classical case where a matrix can always be put into reduced-row echelon form.

Let P and P ′ be two elements of Pn with the left-right property and span [L,R], then

PP ′ also has span [L,R]. This is often referred to as the predictable span property. If

P and P ′ have span [L,R1] and [L,R2], respectively, with R1 < R2, then PP ′ has span

[L,R2], and likewise for [L1, R] and [L2, R]. These two cases are not possible classically

when there is only one copy of Fp, necessitating different proof strategies.

Example 3. The first two stabilizers for the TOF of the following [[8, 2, 3]] code [171]

104

have the same left index but different right indices:

[α2, α, α, α, 1, 0, 0, 0]
[α, 0, 0, 1, 0, α2, 0, 0]
[0, 1, α, α, α2, 1, α2, 0]
[0, α, α2, 0, α2, α2, 1, 0]
[0, 0, 1, α2, 1, α, α2, α]
[0, 0, α, 0, 0, 0, α2, 1]

.

If we start with a generating set for A, the resulting TOF still generates A. Each

generator has order p and generates p − 1 nonidentity strings with the same span. Sup-

pose two generators P and P ′ have spans [L1, R1] and [L2, R2], respectively, and both

R1, R2 ≤ i ∈ {1, . . . , n}. Then all products of the p elements generated by P and the p

elements generated by P ′ also have right index less than or equal to i. If there are no other

generators with right index less than or equal to i, then these are all of the elements of Api .

Extending this argument shows the following.

Proposition 2.3.20

Let A be a set of elements of Pn with generators Ai in TOF. Then

dimApi = | {Ai | R(Ai) ≤ i} | (2.8)

dimAfi = | {Ai | L(Ai) ≥ i+ 1} |. (2.9)

Unfortunately, the previous argument also shows that the TOF is not unique since a

generator may be replaced by any of its p − 1 multiples. (In Example 2, replace S1S3

with, for example, S1S2S3). However, in light in of Theorem 2.3.7 and Corollary 2.3.9, the

entire structure of the trellis may be read-off directly from the generators of S⊥ when put

into TOF. Proposition 2.3.20 also provides trivial proofs of results such as Lemma 2.3.10

by merely counting the number of possible new generators obtained when shifting indices

in TOF.

105

Example 4. The stabilizers of the [[5, 1, 3]] code appear in Example 2. The generators of

S⊥ have a different TOF,

[1, α2, 1, 0, 0]
[α, 1, α, 0, 0]
[0, 1, α2, 1, 0]
[0, α, 1, α, 0]
[0, 0, 1, α2, 1]
[0, 0, α, 1, α]

.

Applying Proposition 2.3.20 to both sets we get Table 2.2.

Table 2.2: State and branch profiles for the [[5, 1, 3]] code.

[[5, 1, 3]]
i dimSpi dimSfi dimS⊥pi dimS⊥fi |Vi| |Ei| in out
0 0 4 0 6 1 − − 4
1 0 2 0 4 4 4 1 4
2 0 0 0 2 16 16 1 4
3 0 0 2 0 16 64 4 1
4 2 0 4 0 4 16 4 1
5 4 0 6 0 1 4 4 −

These may be compared with the trellis diagram for the code given in [170].

Remark: As discussed in the previous subsection, the structure of the trellis is invariant

with respect to a change of stabilizers. One may compute a TOF of a set of generators,

apply Proposition 2.3.20 to determine |Vi|, |Ei|, etc, and then construct the trellis with

respect to the original set of stabilizers which, for example, may have been more beneficial

experimentally.

2.3.3 The Viterbi Algorithm

It is worth clarifying exactly which decoding problem the trellis solves. Let E ∈ Pn be an

error acting on a quantum stabilizer codeQ with stabilizer group S = 〈S1, . . . , Sn−k〉. The

syndrome, s = (s1, . . . , sn−k), is the ordered tuple of commutation relations of E with the

106

stabilizer elements, sj = 〈Sj, E〉. The trellis solves Equation (1.48),

ÊML(s) = argmax
E∈Pn

Pr (L, S, Ts) ,

While this incorporates all of the information of the logical operators, it is technically not

the degenerate decoder of (1.49). Pelchat and Poulin give a procedure for constructing a

“degenerate" trellis to solve (1.49) for quantum convolutional codes [169]. We give an

unrelated and different procedure in the next chapter based on the work developed here.

Proposition 2.3.21

The Viterbi algorithm solves (1.48) for i.i.d. noise models.

Proof. Let µ(v) be the value of the optimal (minimum weight) path at vertex v, initialize

µ(0) = 0 at V0, and denote by wt(e) the weight of edge e (see Algorithm 1). We proceed

by induction on the depth i. By construction, all paths from V0 to v ∈ V1 consist of a single

edge. The optimal path V0 to v is given by the minimum weighted edge from V0 to v. By

Algorithm 1, µ(v) = min
e∈E1
t(e)=v

{µ(0) + wt(e)} = wt(e) for the edge e ∈ E1 of minimum

weight, which is correct. Now assume the Viterbi algorithm computes the optimal path for

all depths 1 to i and let v ∈ Vi+1. Then

µ(v) = min
e∈Ei
t(e)=v

{µ(s(e)) + wt(e)} = min
e∈Ei
t(e)=v

path:V0→s(e)

{wt(path) + wt(e)} = min
e∈Ei
t(e)=v

path:V0→t(e)

{wt(path)}.

Every path from V0 to v is of this form.

Remark: For independent X , Z, or depolarizing channels, the weights of the edges of

the trellis are in correspondence with the Hamming weight of the vector, in which case

the Viterbi algorithm returns the minimum Hamming weight correction. This is the same

solution returned by algorithms like MWPM.

107

As mentioned in Section 2.2, the full decoding procedure consists of finding a pure

error, shifting the trellis, and then applying the Viterbi algorithm. The shifting procedure

requires at most n symplectic inner products followed by |V |+ |E| shifts. Fortunately, this

operation is embarrassingly parallel, and the runtime may be significantly reduced depend-

ing on the implementation and available resources. For a potentially large computational

speedup, one may skip shifting the vertices, as they play no role in the Viterbi algorithm.

It is clear from Algorithm 1 that every edge incurs a single addition followed by incoming-

degree comparisons for every vertex. For large codes, the vertices of Vi may be processed

independently in parallel. The Viterbi algorithm may also be run simultaneously in a “for-

ward pass" from V0 to some Vi and a “backwards pass" from Vn to Vi+1. The choice of

the optimal splitting depends highly on the left-right balance of the trellis. Further opti-

mizations such as those based on the coset structure of the code (vertical symmetry) are

generally code specific. In practice, the shifting and decoding can proceed one after the

other inside a given section before moving onto the next, but for the sake of theoretical

fundamentals we momentarily assume they are separate.

Theorem 2.3.22 (Theorem 2.10 [175])

The Viterbi algorithm requires Θ(|E|) arithmetic operations.

Proof. It suffices to characterize the operations of line 14 in Algorithm 1. For each vertex

v ∈ Vi for 1 ≤ i ≤ n, degin(v) additions are preformed:

total additions =
n∑
i=1

∑
v∈Vi

degin(v).

For simplicity we take a computational model where x − 1 minimums are computed for a

list of size x. From this we then have

total minimums =
n∑
i=1

∑
v∈Vi

degin(v)−
n∑
i=1

∑
v∈Vi

1.

108

The first term in this sum is equal to the total number of edges, |E|, and the second term is

total number of vertices minus V0, |V | − 1:

total additions = |E|

total minimums = |E| − |V |+ 1.

Therefore,

total number of arithmetic operations = total additions+total minimums = 2|E|−|V |+1.

Since the trellis is connected, |E|−|V |+1 ≥ 0, so 2|E|−|V |+1 ≥ |E|. The total number

of arithmetic operations is hence upper bounded by 2|E| and lower bounded by |E|.

Theorem 2.3.7 shows that the syndrome trellis minimizes |Vi| and |Ei|, but in light of the

previous proof it would be useful to show that it also minimizes the quantity |E| − |V |+ 1.

That is, the trellis minimizes the number of algorithmic operations. Classically, Muder first

showed that the analogous trellis minimizes |V | [174], McEliece showed it minimizes |E|

[180, 175], and Vardy and Kschischang showed it minimizes |E| − |V | + 1 [181]. The

proof of this follows for the quantum case with minor modifications (Proposition 2.3.25)

and we include it here in Theorem 2.3.26 for completeness. We first establish a geometric

interpretation of this quantity.

The quantity |E| may be further resolved using the edge configurations in Table 2.1.

While these are drawn for the special case p = 2, here we will use them to represent the

corresponding diagrams for higher p. One may check that substituting p = 2 produces the

correct coefficients in the formula below. We have,

|E| = 1 ·# () + p ·#
()

+ p2 ·#

 + p ·#
()

+ p ·#
()

109

+ p2 ·#
()

+ p2 ·#
()

+ p3 ·#

 + p2 ·#

 + p2 ·#
()

(2.10)

+ p3 ·#

 + p2 ·#
()

+ p3 ·#
()

+ p4 ·#

 .

Similarly, ignoring V0 and counting the right hand sides,

|V | − 1 = 1 ·# () + 1 ·#
()

+ 1 ·#

 + p ·#
()

+ 1 ·#
()

+ p ·#
()

+ p ·#
()

+ p2 ·#

 + p2 ·#

 + 1 ·#
()

(2.11)

+ p ·#

 + 1 ·#
()

+ p ·#
()

+ p2 ·#

 .

Definition 2.3.23

A vertex v with degout(v) > 1 is called an expansion and a merger if degin(v) > 1.

The number of mergers is graphically given by

M = (p− 1) ·
()

+ (p2 − 1) ·

 + (p− 1) ·
()

+ p(p− 1) ·
()

+ p(p− 1) ·
()

+ p2(p− 1) ·

 + (p2 − 1) ·
()

+ p(p2 − 1) ·

(2.12)

+ (p2 − 1) ·
()

+ p(p2 − 1) ·
()

+ p2(p2 − 1) ·

 .

Subtracting (2.11) from (2.10) shows that this is exactly |E| − |V | + 1 [182], as expected

110

from the proof of Proposition 2.3.22. To match the classical proof in [181] we switch to

from mergers to expansions E . Repeating the arguments of the proof with degin(v) in place

of degout(v) shows E = |E| − |V | + 1 as well. This is intuitively clear from the fact that

the trellis both starts and ends with a single vertex. Writing a similar expression to (2.12)

for expansions and setting E =M, the diagrams which share a left-right symmetry cancel

leaving only an equality of total asymmetric edge configurations.

Returning to our goal, it is clear from Section 2.3 that the number of paths from V0 to

any vertex in Vi is pdimS⊥pi and the total number of paths from V0 to all of Vi is p
dimS⊥|pi .

Furthermore, for any definition of a trellis, the number of paths is at most pdimS⊥pi and the

total number of paths is at least p
dimS⊥|pi .

Lemma 2.3.24 (Lemma 5 [181])

Let Pi(v) denote the number of paths from V0 to v ∈ Vi and Pi =
∑
v∈Vi

Pi(v) be the

number of paths from V0 to all vertices in Vi. Then

Pi = 1 +
i−1∑
j=0

∑
v∈Vj

Pj(v) (degout(v)− 1) .

Proof. We proceed by induction. For i = 1, P1 = degout(0), as desired. Now suppose the

formula is true for some i. Then

Pi =
∑
v∈Vi−1

Pi−1(v) degout(v)

=
∑
v∈Vi−1

Pi−1(v) (degout(v)− 1) +
∑
v∈Vi−1

Pi−1(v)

=
∑
v∈Vi−1

Pi−1(v) (degout(v)− 1) + 1 +
i−2∑
j=0

∑
v∈Vj

Pj(v) (degout(v)− 1)

= 1 +
i−1∑
j=0

∑
v∈Vj

Pj(v) (degout(v)− 1) .

111

The next result is used but not proved in [181]. We present the proof for the quantum

case; the proof of their original expression follows from this by restricting to dimS⊥pi −

dimS⊥pi+1
≤ 1. Recall that {dimS⊥pi} is an increasing sequence whose value changes when

a new right index is encountered in the TOF. Let {Ri} be the locations of the right indices.

The idea behind the following proof is to divide the index set {0, . . . , n} into intervals

of constant past dimension and then make arguments about the locations {Ri}. To be

explicit, in this notation dimS⊥pRi < dimS⊥pRi+1
and dimS⊥pi = dimS⊥pRa if and only if

Ra ≤ i < Ra+1. The proof is purely algebraic.

Proposition 2.3.25

Let unprimed quantities be with respect to the syndrome trellis and primed quantities

be with respect to any other trellis for the same code. Denote by

Ej =
∑
v∈Vj

(degout(v)− 1)

the number of expansions at depth j and likewise for the primes, and define

∆i :=
i−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
.

Then for Rκ < i ≤ Rκ+1,

i−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
= ∆i +

κ∑
a=1

pκ,a(pa − 1)∆Ra

where pa = p
dimS⊥pRa−dimS⊥pRa−1 and pκ,a = p

dimS⊥pRκ−dimS⊥pRa .

Proof. We proceed by induction on κ. For κ = 1,

R1 < i ≤ R2,

dimS⊥pR0
= 0,

112

dimS⊥pi−1
= dimS⊥pR1

,

p1,1 = p
dimS⊥pR1

−dimS⊥pR1 = 1,

p1 = p
dimS⊥pR1

−dimS⊥pR0 = p
dimS⊥pR1 .

Then,

i−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
=

R1−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
+

i−1∑
j=R1

p
dimS⊥pi−1

(
E ′j − Ej

)
= p

dimS⊥pR1

R1−1∑
j=0

(
E ′j − Ej

)
+

i−1∑
j=R1

p
dimS⊥pj

(
E ′j − Ej

)
= p

dimS⊥pR1
−dimS⊥pR0

R1−1∑
j=0

p
dimS⊥pR0

(
E ′j − Ej

)
−

R1−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
+

R1−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
+

i−1∑
j=R1

p
dimS⊥pj

(
E ′j − Ej

)
= p1

R1−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
−

R1−1∑
j=0

p
dimS⊥pRj

(
E ′j − Ej

)
+

i−1∑
j=0

p
dimS⊥pj (E ′j − Ej)

= (p1 − 1)

R1−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
+ ∆i

= p1,1(p1 − 1)∆R1 + ∆i.

Assume the result is true for κ− 1. We wish to show that

i−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
= ∆i +

κ∑
a=1

pκ,a(pa − 1)∆Ra ,

where

Rκ < i ≤ Rκ+1,

pκ,a = p
dimS⊥pRκ−dimS⊥pRa ,

pa = p
dimS⊥pRa−dimS⊥pRa−1 .

113

We have,

i−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
=

Rκ−1∑
j=0

p
dimS⊥pi−1

(
E ′j − Ej

)
+

i−1∑
j=Rκ

p
dimS⊥pi−1

(
E ′j − Ej

)
=

Rκ−1∑
j=0

p
dimS⊥pRκ

(
E ′j − Ej

)
+

i−1∑
j=Rκ

p
dimS⊥pRκ

(
E ′j − Ej

)
= p

dimS⊥pRκ−dimS⊥pRκ−1

Rκ−1∑
j=0

p
dimS⊥pRκ−1

(
E ′j − Ej

)
+

i−1∑
j=Rκ

p
dimS⊥pj

(
E ′j − Ej

)
= p

dimS⊥pRκ−dimS⊥pRκ−1

(
∆Rκ +

κ−1∑
a=1

pκ−1,a(pa − 1)∆Ra

)
+

i−1∑
j=Rκ

p
dimS⊥pj

(
E ′j − Ej

)
= p

dimS⊥pRκ−dimS⊥pRκ−1 ∆Rκ + p
dimS⊥pRκ−dimS⊥pRκ−1

κ−1∑
a=1

p
dimS⊥pRκ−1

−dimS⊥pRa (pa − 1)∆Ra

+
i−1∑
j=Rκ

p
dimS⊥pj

(
E ′j − Ej

)
= pκ∆Rk −∆Rk + ∆Rk +

κ−1∑
a=1

p
dimS⊥pRκ−dimS⊥pRa (pa − 1)∆Ra +

i−1∑
j=Rκ

p
dimS⊥pj

(
E ′j − Ej

)
= (pκ − 1)∆Rκ +

Rκ−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
+

κ−1∑
a=1

pκ,a(pa − 1)∆Ra +
i−1∑
j=Rκ

p
dimS⊥pj

(
E ′j − Ej

)
= pκ,κ(pκ − 1)∆Rκ +

κ−1∑
a=1

pκ,a(pa − 1)∆Ra +
i−1∑
j=0

p
dimS⊥pj

(
E ′j − Ej

)
=

κ∑
a=1

pκ,a(pa − 1)∆Ra + ∆i.

Theorem 2.3.26 (Theorem 6 [181])

Let |E| and |V | be with respect to the syndrome trellis and |E ′| and |V ′| be with respect

to any other definition of a trellis for the same code. Then |E ′| − |V ′|+ 1 ≥ |E| − |V |+ 1.

Proof. Let unprimed quantities be with respect to the syndrome trellis and primed quanti-

114

ties for the other trellis. For the syndrome trellis,

Pi = 1 +
i−1∑
j=0

∑
v∈Vj

Pj(v) (degout(v)− 1) = 1 +
i−1∑
j=0

p
dimS⊥pj

∑
v∈Vj

(degout(v)− 1) ,

and for any other trellis,

P ′
i = 1 +

i−1∑
j=0

∑
v′∈V ′j

P ′
j(v
′) (degout(v

′)− 1) ≤ 1 +
i−1∑
j=0

p
dimS⊥pj

∑
v′∈V ′j

(degout(v
′)− 1) .

Since P ′
i ≥Pi, subtracting the two expressions gives ∆i ≥ 0. Then

(|E ′| − |V ′|+ 1)− (|E| − |V |+ 1) =
n−1∑
j=0

(
E ′j − Ej

)
=

1

pdimS⊥pn−1

n−1∑
j=0

pdimS⊥pn−1

(
E ′j − Ej

)
=

1

pdimS⊥pn−1

(
∆n +

n−1∑
a=1

pn−1,a(pa − 1)∆Ra

)

≥ 0,

where the last line follows because every term in the sum is positive.

Since the syndrome trellis is a minimal representation of the code that is invariant with

respect to the generators, following Theorems 2.3.22 and 2.3.26, it is often argued in the

classical literature that the quantity |E| should be regarded as a fundamental description of

how hard it is to decode a given code, rivaling in importance with n, k, and d. Adopting

this philosophy shows, for example, that the color codes are fundamentally more difficult

to decode than the rotated surface code of the same distance without invoking projections

or hypergraph matching. We provide quantitative data on this in Example 7 in the next

section after introducing the CSS splitting of trellises.

Proposition 2.3.1 shows that the trellis essentially functions as a compact lookup table

115

for S⊥. The key to the efficiency of the Viterbi algorithm is its ability to make decisions

about all of the elements of this set without computing every path individually. For a given

v ∈ Vi, edge sharing in the trellis enables the algorithm to simultaneously check every

element in S⊥|pi ending at v. When it discards all outgoing edges for v, a total of |S⊥fi |

elements are eliminated from S⊥ for further consideration (see Figure 2.4).

Assuming |E| scales at least cubically in n, the cost of the Viterbi algorithm also dom-

inates that of finding the pure error T given the syndrome. Finding a pure error with the

given syndrome is not difficult. The trellis decoder may use any valid T since the most

likely solution is an element of the set LST enumerated by the paths of the trellis and will

hence be found by the Viterbi algorithm. Given a potentially high-weight pure error, decod-

ing may therefore be interpreted as a refinement process to the minimum-weight solution.

Here, we use pseudoinverses for the syndromes to find T .

2.4 CSS Codes

CSS codes have the property that the generators of S (S⊥) split into those with only X or

Z. It is common in QEC to decode each set of generators independently then combine the

results into a single correction. This has the advantage of reducing decoding complexity

and enabling parallelization at the expense of ignoring potential X-Z correlations. The

same technique can, of course, be used with trellises. As a first example, consider the

trellis diagrams in Figure 2.5. Figure 2.5c shows the trellis diagram of the distance three

rotated surface code and Figures 2.5a and 2.5b show the effect on the trellis of considering

the X and Z stabilizers separately. Figure 2.6 shows the same for the distance three color

code. The reduction in trellis and decoding complexity is immediately apparent even for

these small examples.

An immediate consequence of decoding the X and Z stabilizers separately is that mov-

ing from left-to-right in the TOF, the past (future) can only increase (decrease) by a max-

imum of one stabilizer generator: dimS⊥fi − dimS⊥fi+1
≤ 1 and dimS⊥pi − dimS⊥pi−1

≤ 1.

116

0000

0000

1000

1100

0000

0100

1000

0000

1000

0000

1000

0000

0010

0000

0010

0001

0000

0011

0010

0000

0010

0000

I

Z

(a)

0000

0000

1000

0100

0000

1100

1000

0100

0000

1100

1000

0000

0100

0110

0010

0000

0100

0110

0010

0000

0010

0011

0001

0000

0010

0011

0001 0000

0001

0000

I

X

(b)

00000000

00001000

10000000

00000000

10001000

11000100

11001000

01000000

01001100

11001100

11000000

00001000

00000100

00001100

00000000

01000100

01001000

10000000

10001100

10000100

10001000

00000000

00000100

00001100

00001000

10000000

10000100

10001100

10001000

00000000

00000100

00000110

00000010

10000000

10000100

10000110

10000010

00000000

00000100

00000110

00000010

00100000

00100100

00100110

00100010

00000000

00000001

00000011

00000010

00100000

00100001

00100011

00100010

00010000

00010001

00010011

00010010

00110000

00110001

00110011

00110010

00000010

00000011

00000001

00000000

00100000

00100001

00100011

00100010

00000000

00000001

00100000

00100001

00000000

I
X

Z
Y

(c)

Figure 2.5: Trellis diagrams for the distance three rotated surface codes: (a) X stabilizers
only, (b) Z stabilizers only, (c) the full code with vertices organized by the trellis product
of (a) with (b).

Thus, in contrast to Corollary 2.3.9, none of the more complicated edge configurations in

Table 2.1 with a two are allowed and the edge configurations with the highest contribution

of edges do not occur, i.e.,

|VX/Z |−1 = 1·# ()+1·#
()

+p·#
()

+1·#
()

+p·#
()

,

(2.13)

117

000

000

100

010

000

110

100

110

000

010

100

(a)

110

010

001

101

111

000

011

100

000

010

001

011

001

000

000

I

Z

000000

000100

100000

000000

100100

010110

010100

110000

110010

010010

010000

000100

000110

000010

000000

110110

110100

100000

100010

100110

100100

(b)

000000

000010

000110

000100

010000

010010

010110

010100

110000

110010

110110

110100

100000

100010

100110

100100

010000

010111

010101

010010

010110

010001

010011

010100

110000

110111

110101

110010

110110

110001

110011

110100

101100

101011

101001

101110

101010

101101

101111

101000

111100

111011

111001

111110

111010

111101

111111

111000

000100

000011

000001

000110

000010

000101

000111

000000

001000

001111

001101

001010

001110

001001

001011

001100

011000

011111

011101

011010

011110

011001

011011

011100

100000

100111

100101

100010

100110

100001

100011

100100

000000

000010

000001

000011

010000

010010

010001

010011

001000

001010

001001

001011

011000

011010

011001

011011

000000

000001

001000

001001

000000

I
X

Y
Z

Figure 2.6: Trellis diagrams for the distance three color code: (a) X (or Z) stabilizers only,
(b) the full code with vertices organized by the trellis product of (a) with itself.

118

and

|EX/Z | = 1 ·# ()+p ·#
()

+p ·#
()

+p ·#
()

+p2 ·#
()

.

(2.14)

Thus, stabilizer CSS codes which have unit dimension change in the TOF of the X and Z

stabilizers at the same index i will have higher dimension changes and hence more edges

and will therefore be more difficult to decode than those which do not. It follows that self-

dual codes are more difficult to decode than non-self-dual codes of the same parameters.

Note that applying E =M to CSS trellises gives [182]

#

()
= #

()
.

Let S be a stabilizer code given by the CSS construction with C1 = [n, k1, d1]p, C2 =

[n, k2, d2]p, and CT
2 ⊆ C1. Denote by Gi and Hi the generator and parity-check matrices

for Ci, respectively. The stabilizers of the quantum code are given, in symplectic form

(X | Z), by H1 ⊕ H2. The set S⊥ is generated by the corresponding normalizer matrix

[183, 184, 185] 0 G1

G2 0

 ,

as can be seen immediately from the relationship between the generator and parity-check

matrices of classical codes. The trellis for the X (Z) stabilizers only in a CSS code is

therefore determined by the classical trellis whose paths are in one-to-one correspondence

with the codewords of G1 (G2). Edge labels for CSS trellises should be restricted to I and

Z or I and X with weights − log Pr (I)− log Pr (X) and − log Pr (Y)− log Pr (Z) for X

and similarly for the Z stabilizers.

It is well-known in classical trellis theory that the dimension of Vi is equal to the di-

mension of the corresponding Vi for the dual code. Since one has pn−k possible syndromes

and the other pk, we immediately get the following.

119

Corollary 2.4.1 (Wolf Bound For CSS Codes [173])

Let Ci be as above. Then for the X stabilizer trellis, |VX,i| ≤ pmin{k1,n−k1}, and for the

Z stabilizer trellis, |VZ,i| ≤ pmin{k2,n−k2}.

Example 5. The distance three color code is equivalent to the well-known [[7, 1, 3]] Steane

code. This is a CSS code constructed with the [7, 4, 3] binary Hamming code and its dual.

Hence, |VX/Z,i| ≤ 2min{3,4} = 8, which agrees with Figure 2.6.

It is perhaps not surprising that the full trellis for a CSS code turns out to be a product

of the two trellises of its component codes. For instance, the active generators of the full

code are the active generators of the X code and the active generators of the Z code. Thus,

|Vi| = pdimSX,a+dimSZ,a = pdimSX,apdimSZ,a = |VX,i||VZ,i|.

Definition 2.4.2 (Trellis Product [179])

The trellis product of two trellises with vertices V , V ′ and edges E, E ′, respectively, is

denoted by �i and has vertices

V�iV
′ =

n⋃
i=0

Vi × V ′i

and edges

E�iE
′ = {((vi, v′i), PP ′, (vi+1, v

′
i+1)) | (vi, P, vi+1) ∈ Ei, (v′i, P ′, v′i+1) ∈ E ′i}.

Remark: This is sometimes called the Shannon product [186] for historical reasons after

Claude Shannon who first described the product of two channels operating at the same time

or also the tensor product [187]. However, much of the classical literature on the trellis

product is based on non-syndrome trellises and does not apply here. We will completely

classify this product in Section 3.4.

Example 6. Using shorthand (∆dimS⊥pi ,∆dimS⊥fi) = (m,n) for edge configurations in

120

Table 2.1, it may be checked that (m,n)�i(m′, n′) = (m+m′, n+n′). Such configurations

occur in the full trellis as graph products of lower dimensional configurations in the CSS

trellises. The vertices of Figure 2.5c are ordered by the trellis product of Figure 2.5a by

Figure 2.5b and the vertices of Figure 2.6 (b) by the trellis product of (a) with itself.

Lemma 2.4.3

Let S be a CSS code with X stabilizers, SX , and Z stabilizers, SZ . Let VX , EX ,

degin,X , and degout,X denote the appropriate quantities for the trellis of SX , and likewise

for SZ . Then the trellis for S is given by the trellis product of the trellises for SX and SZ .

Furthermore,

(i) |Vi| = |VX,i||VZ,i|,

(ii) |Ei| = |EX,i||EZ,i|,

(iii) degin,i = | degin,X,i || degin,Z,i |,

(iv) degout,i = | degout,X,i || degout,Z,i |.

The proof of the enumerated parts of this lemma follow from Definition 2.4.2 and the

larger claim is a restatement of the well-known fact that X and Z errors may be decoded

independently for CSS codes. A rigorous proof is fairly trivial and we leave it to the reader.

These results may be demonstrated with the diagrams above. Note that the Space Theorems

2.3.7 do not hold for CSS splittings. Following the proof of the theorem, the number of

vertices is isomorphic to |S⊥/ kerσi| but now the kernel with respect to SX includes S⊥X as

well as the past and future elements of S⊥Z :

|VX,i| = pdimS⊥−dimS⊥Z,pi−dimS⊥Z,fi−dimS⊥X = pdimS⊥Z−dimS⊥Z,pi−dimS⊥Z,fi . (2.15)

Similar equations hold for |VZ,i| and the edges. The same idea holds for counting vertices

and edges for an arbitrary subset of generators of S. This split trellis idea may be used

121

in more generality. The proof of the following with the clear associativity of the trellis

product implies the main part of the lemma above.

Theorem 2.4.4

For S = 〈S1, . . . , Sn−k〉, the minimal trellis for S is given by the trellis product of the

minimal trellises for each Si.

Proof. We show minimality, which is the non-trivial part of the proof.

We proceed by induction on the number of generators in the product. Let S̃⊥i be the

subset of generators of S⊥ (in TOF) which have trivial partial syndromes with respect to

Si. Let [L1, R1] and [L2, R2] be the spans of S1 and S2, respectively, and construct trellises

for each following Section 2.2 with vertex profiles

|V 1
i | =

1 if i ∈ [0, L1)

pdimS⊥−dim S̃⊥1 if i ∈ [L1, R1)

1 if i ∈ [R1, n]

|V 2
i | =

1 if i ∈ [0, L2)

pdimS⊥−dim S̃⊥2 if i ∈ [L2, R2)

1 if i ∈ [R2, n]

.

The vertex profile of the trellis product of the trellises for S1 and S2 are given by Lemma

2.4.3 (i) to be

|V 1,2
i | =

1 if i ∈ [0, L1)

|V 1
i | if i ∈ [L1, L2)

|V 1
i ||V 2

i | = p(dimS⊥−dim S̃⊥1)+(dimS⊥−dim S̃⊥2) = pdimS⊥−dim S̃⊥1∩2 if i ∈ [L2, R1)

|V 2
i | if i ∈ [R1, R2)

1 if i ∈ [R2, n]

= pdimS⊥−dimS⊥pi−dimS⊥fi−dim S̃⊥i ,

122

where we have used that for sets A,B ⊂ C, (C\A) ∪ (C\B) = C\(A ∩ B), S̃⊥1∩2 :=

S̃⊥1 ∩ S̃⊥2 , the past and future are taken with respect to the generators S1 and S2, and

the intersection S̃⊥i depends on i. Having recovered the minimal form of Theorem 2.3.7,

assume the theorem holds for the trellis product of S1, . . . , Sn−k−1. It remains to show that

the overlap |V 1,...,n−k−1
i ||V n−k

i | produces Equation (2.4). In this case S̃⊥1∩...∩n−k = ∅ so

|V 1,...,n−k−1
i ||V n−k

i | = |V 1,...,n−k−1
i | pdimS⊥−dim S̃⊥n−k = pdimS⊥−dimS⊥pi−dimS⊥fi .

The proof for the edges is similar.

This splitting idea may be used to decode in a similar manner to the CSS codes where

each grouping of syndrome bits are corrected independently and then combined. The suc-

cess of this approach is tied to finding an appropriate grouping of generators with respect

to which the logical operators split “nicely" such that the combined corrections do not in-

troduce a logical error not returned by the individual trellises. We return to this idea in

Example 9.

If we adopt the idea that |E| represents a fundamental description of how difficult it is

to decode, then the two quantities of interest to compare are |EX |+ |EZ | and |E|, where the

latter is with respect to the full stabilizer code. In particular, for a self-dual code 2|EX/Z | ≤

|EX/Z |2. It follows that splitting the decoding of a self-dual CSS code is square-root easier

than decoding the full code. A rather trivial bound on the more general case is immediate.

Proposition 2.4.5

Let |E| be the total number of edges in a trellis diagram for a CSS code whose X and

Z codes have trellises with total number of edges |EX | and |EZ |, respectively. Then,

|EX |+ |EZ | ≤ |E| ≤ |EX ||EZ | − p2n(n− 1) (2.16)

Proof. Let ξi = logpEX,i and ηi = logpEZ,i such that |EX | =
∑n

i=1 p
ξi and |EZ | =

123

∑n
i=1 p

ηi , and recall that ξi, ηi ≥ 1. By Lemma 2.4.3, |E| =
∑n

i=1 p
ξi+ηi . The left inequal-

ity is clear. For the right, we have

(|EX |+ |EZ |)2 = |EX |2 + |EZ |2 + 2|EX ||EZ |

= |EX |2 + |EZ |2 + 2

(

n∑
i=1

pξi+ηi

)
+

n∑
i=1

n∑
j=1
j 6=i

pξi+ηi

= |EX |2 + |EZ |2 + 2

|E|+ p2

n∑
i=1

n∑
j=1
j 6=i

pξi+ηi−2

≥ |EX |2 + |EZ |2 + 2|E|+ 2p2n(n− 1),

where in the last line we have assumed that ξi = ηi = 1 for all i.

The right-hand side of (2.16) is tight for the case that there are a minimal number of

edges at each depth such that |Ei| = 4 for all i. This, of course, is rare, usually only

occurring around the left and right ends of the trellis, and the more the trellis deviates from

this value the worse this upper bound becomes.

It would be more useful to obtain bounds on the number of edges in any of the diagrams

with only the values n, k, and d. We leave this for future work and simply note that

several classical trellis bounds could potentially be exploited for CSS codes. An easy one

in particular worth mentioning is the case of classical maximum distance separable (MDS)

codes where it is well-known that the sequence {|Vi|} has the following pattern [173]

{1, p, p2, . . . , pmin{k,n−k}, pmin{k,n−k}, . . . , p2, p, 1}.

Combining this with the fact thatEi ≥ Vi, removing the contribution from V0 and summing

124

the geometric series we get

|EX/Z | ≥
2pmin{k,n−k} − p− 1

p− 1
, (2.17)

which is tight for the (unrealistic) case that the outgoing degree at every i is one. Replacing

p with p2 in (2.17) provides the corresponding bound on |E| for a self-dual CSS code.

Combining the two loose bounds (2.16) and (2.17) does not appear useful.

Example 7. Returning to the proposal that |E| represents a fundamental parameter for the

code, vertex and edge counts for the 4.8.8 and 6.6.6 color codes, rotated surface codes, and

their CSS splittings are given in the following tables. The non-CSS XZZX surface codes

have the same values as the full rotated surface codes. A standard qubit numbering order

was applied to the surface codes but the qubit numbering for the color codes was assigned

greedily to minimize the trellis. The difference in values between distances may become

more consistent given more consistent numbering schemes. Note that the total vertex and

edge counts for the CSS trellises are the sum of the X and Z counts.

Table 2.3: Vertex counts by distance for common codes.

3 5 7 9 11 13 15 17 19 21
4.8.8 122 4042 83402 2126282 8673370 108195242 2074018922 36433758250 618938698730 10475888643050
4.8.8X/Z 26 230 1382 8198 20058 66710 327278 1498758 6610590 28827294
6.6.6 122 2522 49802 496010 4719242 54470282 604814042 5357974490 40005091802 326581575962
6.6.6X/Z 26 170 974 3966 14414 48878 174170 617322 1728842 5102498
RSurf 74 1098 10058 73034 464202 2708810 14898506 78468426 399856970 1985303882
RSurfX 22 118 470 1590 4854 13814 37366 97270 245750 606198
RSurfZ 30 198 854 2998 9334 26870 73206 191478 485366 1200118

Table 2.4: Edge counts by distance for common codes.

3 5 7 9 11 13 15 17 19 21
4.8.8 232 7080 143272 3559336 14506536 175628968 3358695592 60870993576 1031533604008 17421128805544
4.8.8X/Z 36 316 1884 11100 27084 89628 439100 2020188 8901500 38785916
6.6.6 232 4648 89512 832936 7708072 89669032 1007967784 8733820456 64652391976 532838443048
6.6.6X/Z 36 236 1340 5372 19388 65852 234956 828556 2316044 6847020
RSurf 152 2152 19688 143336 913384 5341160 29425640 155189224 791674856 3934257128
RSurfX 30 172 700 2388 7316 20852 56436 146932 371188 915444
RSurfZ 44 284 1228 4332 13548 39148 106988 280556 712684 1765356

The difference in sizes between theX and Z trellises for the rotated surface code family

is an artifact of the particular numbering system used in this work. Consider the X2X3

stabilizer in Figure 1.2. This is active only at depth two since at depth three its syndrome

is already zero. On the other hand, the Z1Z6 stabilizer is active over five depths and hence

125

Figure 2.7: The scaling of the total edge counts for the trellises listed in Table 2.4.

contributes vertices over this entire range. Since the X and Z stabilizer measurements

are independent, arranging the data with respect to two different numbering schemes will

allow both the X and the Z trellises to be isomorphic. This demonstrates the strong effect

permutations have on the trellis.

While an analytical formula for the edge scaling is currently missing, we can gain some

numerical insights from Table 2.4. In Figure 2.7 we see that |E| is exponential in the

minimum distance d (compare to the lines y = 2d (blue) and y = d (orange)). The slight

bend in the data points, most predominately seen for the CSS rotated surface codes, suggest

a more complicated behavior. It is possible that the color codes also have the same trend

but were not simulated to high enough distances to make this as visually apparent. It is also

possible that the greedy algorithm used to assign qubits to the color code geometries was

suboptimal enough to erase this effect.

Example 8. To further emphasize the effect permutations have on the trellis, draw the

distance five and seven 4.8.8 color codes, choose an arbitrary boundary, and number the

qubits from left to right, level by level. The minimum trellis for this configuration for

the distance five code has |V | = 5, 242 and |E| = 9, 000 and has |V | = 177, 018 and

|E| = 293, 928 for distance seven. Comparing to Tables 2.3 and 2.4, using this numbering

scheme would increase the slope of the blue dots in Figure 2.7, potentially limiting the

126

ability to do large-scale simulations at a lower distance.

2.5 Simulations And Discussion

Numerical simulations were performed in the Julia programming language with pre-simulation

computations in the MAGMA quantum coding theory library [188]. We begin by construct-

ing the trellis. Historically, it is widely assumed, even to this day, that the trellises consid-

ered in this work are too large to ever build. Fortunately, the commonly referred to size

estimates date back to the late 1980’s, early 1990’s when constructing the multi-gigabyte

trellises required for color codes of distance 21 would have indeed been impossible. The

construction algorithms in [167, 170] iterate through all pn+k elements of S⊥. The the-

oretical guarantees of the Space Theorems 2.3.7 allow us to do better by only generating

elements until we hit |V | and |E|. Numerical trials using this method suggested the largest

trellis considered in this work would take between one to two months to generate. Many

classical construction algorithms are just as wasteful [173]. The theoretical results in this

work provide a better algorithm, although we will also present a different algorithm in the

next chapter based on trellis products of subcodes, which may be faster given the trellis for

the subcodes have been constructed using the method described here.

Our algorithm is closest to [189] for classical codes, but is conceptually simpler and

more efficient. The basic idea is to serially proceed through Vi picking a vertex and ex-

amining all possible outgoing edges for matches in Vi+1. This implicitly utilizes Corollary

2.3.2, although this result never appears in the literature. Here we rely on the theoreti-

cal guarantees provided by Corollary 2.3.2, Theorem 2.3.7, Lemma 2.3.8, and Theorem

2.3.12. By Theorem 2.3.7, the vertices at depth i are given by the set of all (n − k)-tuples

whose bits corresponding to generators active at i range through all possible values. To

construct the edges at section i, determine all of the vertices in Vi−1 connecting to 0 ∈ Vi

via Corollary 2.3.2. Then choose one of these v ∈ Vi−1 and determine all of the vertices

in Vi to which it connects, again via Corollary 2.3.2. These are all of the vertices in the

127

edge configuration by Theorem 2.3.12, which may be completed with Corollary 2.3.2. This

is the subgroup of Ei by Lemma 2.3.8. The rest of the section consists of all translations

(cosets) of this subgroup. Our new proof of the classification of edge configurations allows

us to only compute a small, bipartite graph for each depth to generate the entire trellis.

The Vi are independent and may be constructed in parallel, after which the Ei may also be

parallelized. For the codes considered in this work, only the distance 19 and 21 color code

trellises were large enough to justify saving so as to not compute them on-the-fly later.

As previously mentioned, the vertex labels are required for the construction of and the-

oretical justification for the trellis, but an examination of the Viterbi algorithm shows that

they serve no role in decoding. As such, we need not bother shifting the vertex labels for

each measured syndrome, and generally we can safely discard them after the construction

phase is completed. Even storing the labels as integers is similar to creating a lookup table

and can take a non-trivial amount of memory starting at moderately sized codes. The stor-

age requirements for the zero-syndrome trellis valid for any error model became slightly

unwieldy to use for large-scale simulations for the distance 21 color codes, but this was

implementation dependent. Choosing a specific error channel allowed the trellis to be

translated to a data structure a fraction of the storage size of the original. For example, the

distance 21, 4.8.8 CSS trellises come out to around 300 MB in contrast to the roughly 2

GB file size of the original data structure which includes all the information and generality.

We leave a discussion of such improvements to the next chapter. However, since the trellis

searches all elements of S⊥, the proper comparison to make here is to the size of a lookup

table for the same code. Assuming the 2n+k elements of S⊥ are stored as length-n strings

of character size 1 byte, a lookup table for the [[111, 1, 11]] code above would be on the

order of ∼ 1017 exabytes.

To exemplify the versatility of trellis decoding, the row n = 20 was selected at random

from the quantum error-correcting codes table at [171]. Extended codes (with weight one

stabilizers) and codes with k = 0 or d ≤ 2 were discarded, and code-capacity (memory

128

Figure 2.8: Simulated logical error rates for the four codes in the row n = 20 satisfying
our requirements at [171]. Triangular data points are importance sampled to a tolerance
of 10−9 and circular points are direct sampled; both methods were used and were found to
agree at p = 0.01. The black line is y = x.

model) numerical simulations were performed on the remaining four codes: [[20, 3, 6]],

[[20, 4, 6]], [[20, 10, 4]], and [[20, 13, 3]]. These codes and their properties were previously

unknown to the authors of this work and were never investigated. In particular, it is un-

known if another decoding method is known for these codes and if there exist previous

pseudothreshold results in the literature. Simulations consisted of a single round of error

correction under depolarizing noise (1.46) following the discussion in the previous chapter.

Results are presented in Figure 2.8, and the stabilizers for these codes are given below for

convenience.

129

[[20, 3, 6]]

XIIIIIIIIYIXIYZYXZXI

ZIIIIIIIZXIZIYXYIXZY

IXIIIIIIZYZYXIXYYYIZ

IZIIIIIIIXYXZYXZZZIZ

IIXIIIIIZXIXYXZIYXXY

IIZIIIIIIZIZXXIYZXZI

IIIXIIIIIIXXXIZIIIXX

IIIZIIIIZIZZZZXZZZZX

IIIIXIIIIXYXXXXYXXXX

IIIIZIIIIZXZZZZXZZZZ

IIIIIXIIIYXZXZYZZYIX

IIIIIZIIZXZYZXYXXYIX

IIIIIIXIZYYZZXIZZIXY

IIIIIIZIIXXYYXYIIYZI

IIIIIIIXZXXIZZYXZIZZ

IIIIIIIZIZZIYIZXIYYZ

IIIIIIIIXIIIIXXXXXIZ

[[20, 4, 6]]

XIIIIIIIXYIXIZYZIYXZ

ZIIIIIIIZXIZIYXYIXZY

IXIIIIIIYYZYXXIZZZII

IZIIIIIIXXYXZZIYYYII

IIXIIIIIYXIXYIYXZIXX

IIZIIIIIXZIZXIXZYIZZ

IIIXIIIIXIXXXXYXXXXY

IIIZIIIIZIZZZZXZZZZX

IIIIXIIIIXYXXXXYXXXX

IIIIZIIIIZXZZZZXZZZZ

IIIIIXIIXYXZXYZYYZIY

IIIIIZIIZXZYZXYXXYIX

IIIIIIXIYYYZZIXYYXXX

IIIIIIZIXXXYYIZXXZZZ

IIIIIIIXYXXIZYZIYXZI

IIIIIIIZXZZIYXYIXZYI

[[20, 10, 4]]

XIIXZIIXYZIYIXZIZXIZ

ZIIZYIIZXYIXIZYIYZIY

IXIZZIIIYYXZXZIYIIZZ

IZIYYIIIXXZYZYIXIIYY

IIXZXIIXIXXXXYZIXZXY

IIZYZIIZIZZZZXYIZYZX

IIIIIXIXZZZZXIXYZIZY

IIIIIZIZYYYYZIZXYIYX

IIIIIIXZZXZXIXZZIZYY

IIIIIIZYYZYZIZYYIYXX

[[20, 13, 3]]

XIIZIXXIYZYIZYXZXIZY

ZIXIIXZYZIXZIXIYZYXY

IXXYIZZIXYXYXYXXIZII

IZXXIIIIYYYXIIXIYYZX

IIZYIXYZZXIIZYYIIXYY

IIIIXXXXXXXXXXXXXXXX

IIIIZZZZZZZZZZZZZZZZ

130

In order to quantitatively assess the success of trellis decoding, the same simulations

were carried out for three common qubit code families, the rotated surface and 4.8.8, 6.6.6

color codes for the independent Z channel (1.52) up to at least distance 17. These codes

and this noise model were chosen solely for the purpose of comparison with existing de-

coding literature. Due to the X-Z symmetry of the codes, the same results are obtained

for independent X channel and depolarizing thresholds are at 3/2 times the X or Z noise

results decoded independently, which we numerically verified for low distances. There are,

of course, many other highly-optimized decoders for topological codes, and these choices

may not sufficiently demonstrate the value of trellis decoding which shines for moderately-

sized QECCs for which there are no efficient decoding strategies. Data were taken at inter-

vals of size 0.0025 around the suspected threshold to reduce the error caused by sampling

and fitting.

Previous studies have reported a surface code Z threshold of 10.3% under MWPM

[190] and 10.9% using the tensor network decoder of [111]. The statistical mechanical

threshold is estimated to be 10.9% [110] without correlations and 12.6% with X and Z

correlations taken into account [191]. Both the trellis and MWPM are minimum-weight

decoders for this channel, so they should agree for uncorrelated noise. For correlated er-

ror models trellis decoding should beat MWPM since the minimum-weight correction on

the full trellis will not always match the minimum-weight X correction combined with

the minimum-weight Z correction returned by MWPM. For example, consider the error

Y8Y13Y18 on the distance five rotated surface code of Figure 1.2. The full trellis will return

the correction Y8Y13Y18, while the X- and Z-trellises will return Z3Z23 and X8X13X18,

respectively; the latter of which is a logical error. The Viterbi algorithm takes the same

number of steps every time and could be slower than using a small matching graph for a

large code, so the expected number of errors should be taken into account when compar-

ing the runtime of these two algorithms for uncorrelated error models. The results of our

simulations are shown in Figure 2.9a.

131

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: (a), (c), (e) - Threshold results for code capacity (memory model) simulations
for the independent Z channel (1.52). (b), (d), (f) - Finite-size threshold analysis for the
corresponding codes near threshold. The logical error rate is shown as a function of the
rescaled Z error probability x = (p − pth)d1/ν . The solid line is the line of best fit to
A + Bx + Cx2. Note that the higher distance codes show some signs of under sampling
for lower p.

The Restriction Decoder of [137] achieves a Z threshold of 10.2% for the 4.8.8 color

codes with periodic boundary conditions. This was modified to include boundaries in [138]

132

which reports a full depolarizing noise threshold of 12.6% for the 6.6.6 lattice, which results

in a Z threshold of roughly 8.4%. Reference [131] finds a Z threshold of roughly 8.7%

for the 4.8.8 lattice. The statistical mechanical thresholds for both lattices are estimated

to be 12.6% and 12.52% for the 6.6.6 and 4.8.8 families, respectively [192, 191]. The

results of our simulations for the 6.6.6 and 4.8.8 families are shown in Figures 2.9c and

2.9e, respectively.

Following references such as [193] we perform a finite-size threshold analysis on our

data by fitting to the ansatz

A+B(p− pth)d1/ν + C(p− pth)2d2/ν

for A,B,C, pth, and ν starting with d ≥ 9. For the rotated surface codes we find pth ≈

10.25% (ν = 1.58). It is noteworthy that [122] did not see convergence to this value below

d = 21. For the color codes, it’s possible that all of the distances reported in this work

are within the finite-size-effect regime. Nevertheless, we see strong evidence for threshold-

like behavior at 10.1% (ν = 1.29) and 10.4% (ν = 1.51) for the 6.6.6 and 4.8.8 families,

respectively. Further simulations and analysis are required to better estimate the thresholds

for these codes using this decoder. Figures 2.9b, 2.9d, and 2.9f show the logical error rate

versus the rescaled Z noise probability x = (p − pth)d1/ν for data near each threshold,

along with the line of best fit.

Judging by the time it took to complete each simulation, we believe that the CSS, dis-

tance 21 trellis for the 4.8.8 color code ([[421, 1, 21]]) roughly represents the limit for large-

scale simulations. Considering |E| as a measure of the difficulty of decoding, trellis profiles

for codes were compared to Tables 2.3 and 2.4 before using this method. We offer this as

a rough benchmark but acknowledge that some of this may due in part to not properly

leveraging the limited computational resources available for this work. For example, we

noticed that a large percentage of the total simulation time for the distance 19 and 21 color

133

Figure 2.10: Simulated logical error rates for Example 9. The black line is y = x.

codes was consumed by distributing the trellis to all the processors. We have chosen to use

this chapter as a baseline for trellis theory, including its limits. Reporting all improvements

to the theory or its practical implementation has been relegated to the next chapter. The

special structure of some codes may be utilized to reduce |E| without the need for further

theory, as demonstrated by the next example.

Example 9. Let H denote the X and Z stabilizer matrix for the [[7, 1, 3]] Steane code,

H =

1 1 0 1 1 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

 .

The level-2 concatenated Steane code is the [[49, 1, 9]] code whose X or Z stabilizers are

given by the Pauli operators corresponding to I⊗H andH⊗~1, where I is the 7×7 identity

matrix and ~1 is the length-7 all-ones vector. The trellis for this code has |V | = 626 and

|E| = 844. Using Theorem 2.4.4 and the subsequent discussion, we consider a 2-stage,

suboptimal decoder. The seven copies of H are decoded independently at a cost of 36

edges each. The resulting corrections are made then the syndrome updated and the bits

134

corresponding to H ⊗ ~1 are again decoded using the trellis for H . The correction returned

from this trellis is tensored with~1 to map back to the original problem. Since the first seven

decodes can be done simultaneously, the time complexity of this decoder is determined by

only 36 + 36 = 72 edges, a 91.5% savings. Numerical simulations similar to the ones

above were performed for both this decoder and the normal, single stage trellis. Results

are presented in Figure 2.10 where we see that this is indeed suboptimal, trading speed for

accuracy.

The calculated pseudothreshold for the independent Z channel between the Steane code

and concatenated Steane code using 2-stage block decoding is 6.44%, in agreement with the

Z threshold of 6.46% estimated from the depolarizing channel threshold of 9.69% [194].

The calculated Z pseudothreshold between the Steane and the concatenated Steane code

using the full trellis is 10.55%. This is known to be below the true threshold for continued

concatenation based on message passing of 12.5% estimated from a depolarizing channel

threshold of 18.8% [195]. The [[7, 1, 3]] Steane code can also be considered a distance 3

6.6.6 color code. It is informative to compare the performance of the [[61, 1, 9]] 6.6.6 color

code to the level-2 concatenated Steane code. We see that the color code has a slightly

better performance at the cost of 12 more qubits.

The numerical threshold estimates obtained in this work are competitive with, and

sometimes even better than, current state-of-the-art decoders. We attribute this success

to two main things. First, with the exception of organizing the data into logical cosets, the

decoder is provided with close to the maximum amount of information possible of both the

code and the error channel. Traditional decoders often only rely on a fraction of this infor-

mation. Second, since every element of Pn represented by a path in the trellis has the same

syndrome as was measured, any correction returned by the decoder will, at minimum, force

the resulting state to have zero syndrome. If there are few or no logical operators of the

weight of the true error, the decoder will therefore correct the majority of the correctable

135

errors of that weight regardless of the minimum distance of the code.

136

CHAPTER 3

APPLICATIONS OF TRELLISES TO QUANTUM ERROR CORRECTION

3.1 Introduction

In the previous chapter we established trellis decoding as a powerful technique for QECCs.

The success of this decoding scheme comes at the price of speed and storage for codes

with moderate values of combinations of the parameters n, k, and d. In order to be consid-

ered among practical decoders, it remains to reduce the computational complexity of trellis

decoding in both space and time.

We start with a review of the classical theory of sectionalization and show how it applies

to stabilizer codes. This merges edge sections Ei to reduce |E|, which saves both storage

space and algorithmic runtime. We prove that sectionalized trellises can be computed using

the algorithm of the previous chapter. We then show how discarding some information

about the trellis allows for an often considerably smaller storage representation of the trellis

using the adjacency matrix of the graph. The Viterbi algorithm is recast for this format.

Having reduced space and time for the algorithms, we proceed to reduce the initial cost

of trellis construction by further investigating the trellis product. We begin by classifying

it in terms of the standard graph products, then use this to provide an efficient method of

constructing a trellis using matrix multiplication of the adjacency matrices of subtrellises.

A thorough analysis of this construction process offers new insights on previous results

and completes the mathematical analysis of the internal structure of the graphs. This new

understanding allows us treat the graph as a fundamental representation of the code, and

we show how to decompose a syndrome trellis into subtrellises corresponding to individual

generators in TOF.

Having increased the efficiency of and improved our understanding of trellises, we

137

move on to applications. We begin by switching the vertices and edges with respect to

Chapter 2 and show how a well-known result from graph theory applied to the adjacency

matrix of the trellis can be used to solve the degenerate decoding problem for any stabilizer

code. To the author’s knowledge, this is the first application of algebraic graph theory

in QEC. Using the same technique to separate cosets, we show how to use the trellis to

compute the minimum distance of both classical and stabilizer codes. This is a simple

application of the Viterbi algorithm, and if the trellis has already been constructed for a

previous purpose, the computation is essentially free. We compare this to state-of-the-art

algorithms. Along a similar line, we show how to use the trellis to compute various weight

enumerators and the set of elements of bounded weight. A new weight enumerator for

stabilizer codes is introduced which takes the phases of elements ηcX(a)Z(b) into account,

and a new signed trellis is introduced to compute it.

We will continue to think of trellises as representations of codes in this chapter, but there

is nothing stopping us from considering trellises as representations of appropriate modules.

Codes are themselves are nothing more than finitely-generated Fp-submodules of Fnp with a

finitely-generated dual taken with respect to a given annihilator (see Section 1.6). We have

not pursued this generality here to make the results accessible to the widest audience, but

with some work the proofs can be modified for this new language. Considering a trellis

as a compact representation of every element of an appropriate module M , the previously

mentioned topics show how to extract n, |M |, and a finite generating set.

Although we will not discuss it here, the techniques discussed in this chapter, in partic-

ular the minimum distance, words of minimum weight, and coset decoding, are the basis

for attacks on cryptographic systems based on error-correcting codes.

3.2 Sectionalization

Sectionalization is the process in which multiple edge sections of the trellis are merged into

one. The merging of sections Ei to Ej will be denoted by Ei:j , and indices i and j + 1 are

138

called the section boundaries. This is a common technique in classical trellis theory and the

literature is vast. We review the necessary ideas here in our notation and refer the reader

to (e.g.) [189] for further details. To demonstrate the basic idea, consider the trellis for the

[[7, 1, 3]] Steane code (d = 3 color code) in Figure 2.6. The vertex and edge profiles are

given in Table 2.3 and 2.4, respectively. As can be seen from both the figure and the tables,

|Vi| hits a maximum when the incoming and outgoing vertex degrees are both one. By

merging E4 and E5 into a single section, E4:5, where each edge is now labeled by a tuple

of elements of P1, 64 vertices and edges are removed from the trellis for a 52% reduction

in vertices and 27% in edges.

The Viterbi algorithm runs in Ω(|E|) time, so we are interested in sectionalization as

a means to decrease |E|, as seen in the example above. Consider removing a vertex v ∈

Vi. The incoming and outgoing edges associated with this vertex must be combined into

degin(v) ∗ degout(v) edges in the sectionalized trellis. This can increase |E|; for example,

E1:n is simply a lookup table for S⊥. However, as observed in the example when both

degrees were one, this can also decrease |E|. Sectionalizing larger trellises may result in a

significant speedup in decoding if done properly and may slow down decoding if not.

Let {0 = h0, h1, . . . , hL = n} be a set of ordered section boundaries. The case hi = i

for all i corresponds to an unsectionalized trellis. By construction, vertex sets are either

kept or removed but never modified, so the vertex formula remains the same

|Vhi | = p
dimS⊥−dimS⊥phi

−dimS⊥fhi .

Likewise, the number of edges becomes

|Ehi−1:hi | = p
dimS⊥−dimS⊥phi−1

−dimS⊥fhi .

Let {S` | hi−1 < L(S`), R(S`) < hi} be the set of stabilizer generators active only between

two section boundaries. These paths will originate from 0 ∈ Vhi−1
and terminate at 0 ∈ Vhi;

139

hence, each edge in Ehi−1:hi will have p|{S`}| parallel edges. These may be thought of as

subtrellises and exploiting these substructures has been useful in classical trellis theory.

The degrees are given by

degin(v) = p
dimS⊥phi

−dimS⊥phi−1 ,

degout(v) = p
dimS⊥fhi

−dimS⊥fhi+1 .

It remains to show that we can construct the sectionalized trellis efficiently. Since we

are introducing this concept as a way to reduce storage space (and therefore time), it would

be preferable to construct this without first constructing the full trellis then merging. The

procedure of the previous chapter relied on the bipartite, complete structure of the edge

configurations. The edge configurations of Table 2.1 become increasingly complex during

the merging process and we do not attempt to enumerate them here. The next theorem

shows that the merging of edge configurations is still bipartite, complete.

The proof of this can be taken in two ways. First, ignore the fact that sections Ei to

Ej exist and simply define Ei:j as the fundamental object. The proofs of the last chapter

show that this is a group with subgroup the zero syndrome. The edge configuration proof

then holds by replacing labels P with an appropriately defined ordered set of labels. On

the other hand, one could treat the full trellis as fundamental and then view the proof as a

merger of individual Ei. The latter is more complicated as one needs to define the group

Ei:j in terms of Ei, . . . , Ej . Naïvely one could suggest Ei:j = Ei × . . . × Ej , but this

does not hold as edges (e, e′) ∈ Ei × Ei+1 might not have an appropriate terminus-source

pairing to be a valid edge in the trellis. Viewed in this manner Ei:i+1 = {ee′ | e ∈ Ei, e′ ∈

Ei+1, t(e) = s(e′)}. It is easy to see that this set satisfies the group axioms because Ei and

Ei+1 do.

Theorem 3.2.1 (Merger Viewpoint)

Consider two edge sections Ei and Ei+1 of a syndrome trellis with edge configurations

140

in Table 2.1. Let e ∈ Ei:i+1 and define Ii = {v ∈ Vi | ∃e′ ∈ Ei:i+1, t(e
′) = t(e)} and

Ii+2 = {v ∈ Vi+2 | ∃e′ ∈ Ei:i+1, s(e
′) = s(e)}. Then the vertices of Ii and Ii+2 form a

completely-connected bipartite graph inEi:i+1 and no other elements of Vi\Ii or Vi+2\Ii+2

are connected to the vertices in Ii+2 and Ii, respectively. If there exists a parallel edge in

Ei:i+1 then all edges in Ei:i+1 are parallel with the same number of edges in parallel.

Proof. Let e = Ei:i+1 be arbitrary. Then there exists two edges ei = (a, Pax1 , x1) ∈ Ei

and ei+1 = (x1, Px1b, b) ∈ Ei+1 such that e = eiei+1. The sets Ii and Ii+2 are taken

with respect to b and a, respectively. Let c ∈ Ii+2 and d ∈ Ii. We need to show there

exists an edge in Ei:i+1 with source c and terminus d. By definition of I, the exists edges

ecb = (c, Pcx2 , x2)(x2, Px2b, b) and ead = (a, Pa,x3 , x3)(x3, Px3d, d). Then

(c, Pcx2 , x2)(x2, Px2b, b)(−a, P−1
ax1
,−x1)(−x1, P

−1
x1b
,−b)(a, Pa,x3 , x3)(x3, Px3d, d)

= (c, Pcx2P
−1
ax1
Pa,x3 , x2 − x1 + x3)(x2 − x1 + x3, Px2bP

−1
x1b
Px3d, d)

is the desired edge. As in Theorem 2.3.12, we know these inverses exist. We need to show

that for f ∈ Vi\Ii there does not exist a path from f to b and that for g ∈ Vi+2\Ii+2

there does not exist a path from a to g. The arguments are similar to the above and that

in Theorem 2.3.12, so we omit the details here. The last statement similarly follows from

Theorem 2.3.12.

Corollary 3.2.2

The edge configurations of a sectionalized trellis are completely-connected, bipartite

graphs.

The proof of this follows from repeated applications of the previous theorem.

The proof of the theorem shows that the edge configurations of a sectionalized trellis

do not merge in such a way that their sizes grow exponentially. Thus, sectionalization

shows that the edge configurations of Ei+1 cannot randomly connect to Ei, but instead the

combinatorics of the vector space cause them to align.

141

V1 V2 V3 V4
|E1| |E2| |E3|

|E1:3|

|E1:4|

|E2:4|

Figure 3.1: The optimal sectionalization graph from [196] for a four section trellis.

Corollary 3.2.3

The number of disjoint edge configurations in Ehi−1:hi is p
dimS⊥−dimS⊥phi+1

−dimS⊥fhi .

An optimal sectionalization is a trellis with the lowest |E| taken over all possible sec-

tionalizations. The optimal may not be unique, and it may the case, likely only for small

examples, that the optimal sectionalization requires no merging at all. Since the objec-

tive of this trellis is decoding, we require that V0 and Vn are fixed as section boundaries.

Lafourcade and Vardy pointed out that the straightforward greedy algorithm to determine

the optimal sectionalization of a trellis may be expressed as a graph algorithm [196]. Make

an n + 1 vertex graph arranged linearly and number them from left to right by 0, 1, . . . , n.

Connect vertices 0 and 1 by a directed edge with weight E1. Connect vertices 0 and 2 by

a directed edge with weight |E1:2|. Repeat this for all pairs of vertices 0 ≤ i ≤ j ≤ n

weighting with the value |Ei:j|, where |Ei:i| = |Ei|. The optimal sectionalization is then

given by the minimum-weight path from vertex 0 to vertex n, which may be again found

by the Viterbi algorithm. See Figure 3.1 for an example.

Heuristically, these kinds of basic optimizations should arguably always be made, al-

though this may complicate computer implementations of algorithms. This should be done

on a code-by-code basis. We will not explicitly work with sectionalized trellises in the rest

of this chapter but instead implicitly assume the trellis is in the desired form.

142

3.3 The Adjacency Matrix Representation

A graph G = (V,E) consists of a set of vertices, V , and edges, E. It is bipartite if the

vertices can be partitioned into disjoint sets V = V1 t V2 such that every edge has one

end in V1 and the other in V2. A path of length ` from vertices v to v′ is a sequence of `

distinct vertices starting with v and ending with v′ such that each consecutive vertices are

connected by an edge. A graph is equipathic if all paths with common endpoints have equal

length. A cycle is a path where v = v′. A graph is acyclic if it contains no cycles. It will be

convenient in this work to consider paths as sequences of edges instead of vertices. Edges

whose vertices lack a distinct ordering are called undirected and those with an ordering

directed. Undirected edges represent a symmetric relation - v is connected to v′ implies

v′ is connected to v - while directed edges do not. Directed edges, also called arcs, are

denoted with an arrow starting from the source and ending at the terminus. A graph whose

edges are directed is called a directed graph, or a digraph for short. A digraph is weakly

connected if there exist a path between any two vertices on the graph obtained by making

all directed edges undirected. All edges in this work are directed, and so from here on out

we will drop the adjective directed and “graph" will always mean “digraph". For a given

vertex v, the number of edges whose terminus is v is called the in(coming) degree, and the

number of edges whose source is v the out(going) degree. A vertex with in-degree zero is

called a source and one with out-degree zero a sink. Finally, a graph is graded, or layered,

if there exists a rank function, ϕ, on the vertices which can be used to construct a partial

order on the edges by evaluating ϕ on the sources and termini.

Trellises are a strict structure and are slightly boring from an algebraic graph theoretical

perspective. They are weakly-connected, equipathic, graded, acyclic, directed graphs with

a unique source (V0) and sink (Vn). The grading is known by construction and is given

by the rank function ϕ : V → {0, . . . , n} such that ϕ(v) = i if and only if v ∈ Vi.

Trellises have trivial spectrum, a major focus of algebraic graph theory, and all random

143

walks converge to Vn. Considered as a network, flow problems currently do not appear

physically relevant.

An adjacency matrix of a graph G, A = A(G), is a |V | × |V | integer matrix with rows

and columns indexed by V whose ij-th entry is equal to the number of edges from vertex i

to j. If G is undirected, A is symmetric. All graphs in this work are simple graphs meaning

no edge has the same source and terminus, i.e., there are no self-loops. Thus the diagonal

entries of A are zero. If the edges of a graph are weighted, a weighted adjacency matrix

of the graph has ij-entries equal to the (sum of the) weight(s) of the edge(s) from i to

j. For the moment we will only deal with integer matrices. We will need the following

well-known result, which we record as two separate statements solely for added clarity.

Lemma 3.3.1

(i) Let A be an (integer) adjacency matrix for a connected graph. The ij-th entry of Am

is the number of paths from vertex i to vertex j of length m.

(ii) Let A be a weighted adjacency matrix for a connected graph. The ij-th entry of Am

is the sum of the products of all weights of all paths from vertex i to vertex j of length

m.

For the rest of this chapter, let A be an adjacency matrix for a trellis representing an

error-correcting code, classical1 or quantum. Considering the size of |V | for the codes of

Chapter 2, it is not clearA is a more useful representation of the trellis. To see why it might

be, we need to understand the structure of the matrix. Begin by assigning an ordering to the

vertices. The natural way to do this is to enumerate the vertices in the order V0, V1, . . . , Vn,

where the order in each Vi is arbitrary. Then vertex vi connects to vj only if i < j with

respect to this ordering. (This is another way of saying the trellis is graded, acyclic, and

directed.) Hence A is upper triangular with zeroes along the diagonal with respect to this

ordering. Since edges only exist from Vi to Vi+1, the adjacency matrix exhibits a block

1To build a trellis for a classical code, use the parity-check matrix in the role of S⊥ in Chapter 2.

144

structure of sizes |Vi| × |Vi+1|, the ratio of which are determined by degin and degout. Since

|Vi|/|V | is usually much less than one, A is typically sparse.

Example 10. The adjacency matrix for the trellis in Figure 2.1 is

A =

0 1 1 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 2

0 2

0

.

There is no widely agreed upon precise definition, but a square matrix is generally con-

sidered sparse if the number of nonzero entries is roughly the number of rows (columns).

The ratio of nonzero entries to total entries is called the density of the matrix. It immedi-

ately follows from its upper triangular form that the density of the adjacency matrix of a

trellis is less than 50%. Tables 2.3 and 2.4 of Chapter 2 provide vertex and edge counts,

respectively, for the 4.8.8 and 6.6.6 color codes, the rotated surface codes, and their CSS

splittings. The density of the corresponding adjacency matrices are |E|/|V |2 and are given

145

in Table 3.1. A better understanding of the scaling of these variables for QECCs could

allow for more analytical statements to be made about the density of A.

Table 3.1: Adjacency matrix densities |E|/|V |2 by distance for the codes in Tables 2.3 and
2.4.

3 5 7 9 11 13 15 17 19 21
4.8.8 1.6e-2 4.3e-4 2.1e-5 7.9e-7 1.9e-7 1.5e-8 7.8e-10 4.6e-11 5.8e-13 1.6e-13
4.8.8 X/Z 5.3e-2 6.0e-3 9.9e-4 1.7e-4 6.7e-5 2.0e-5 4.1e-6 9.0e-7 2.0e-7 4.7e-8
6.6.6 1.6e-2 7.3e-4 3.6e-5 3.4e-6 3.5e-7 3.0e-8 2.8e-9 3.0e-10 4.0e-11 5.0e-12
6.6.6 X/Z 5.3e-2 8.2e-3 1.4e-3 3.4e-4 9.3e-5 2.8e-5 7.7e-6 2.1e-6 7.7e-7 2.6e-7
RSurf 2.8e-2 1.8e-3 1.9e-4 2.7e-5 4.2e-6 7.3e-7 1.3e-7 2.5e-8 5.0e-9 1.0e-9
RSurf X 6.2e-2 1.2e-2 3.7e-3 9.4e-4 3.1e-4 1.1e-4 4.0e-5 1.6e-5 6.1e-6 2.5e-6

An immediate consequence of Lemma 3.3.1 (i) combined with the structure of the

adjacency matrix is that A is nilpotent of order n+1. Each successive power of A becomes

more sparse and at An there is only a single nonzero value in A0,n equal to the number

of paths between V0 and Vn. By the one-to-one correspondence of paths and elements in

Proposition 2.3.1, this is also equal to the cardinality of the code. This can be used to check

the trellis was constructed correctly.

There are two immediate questions concerning the computation of An required in the

above algorithm: can it be done efficiently and is it numerically stable (for the weighted

case)? The answer to the second question is yes, and the interested reader is referred to

standard texts on numerical analysis. The answer to the first question comes in several

pieces. First note that An can be done in Ω(log n) matrix-matrix multiplications using

recursive doubling. For example, to computeA9, first computeA2 = AA, thenA4 = A2A2,

andA8 = A4A4; finally, A9 = A8A. If n is a power of two, this terminates in exactly log2 n

steps. Otherwise, compute the blog2 nc squares then use the binary representation of n to

break An into a product of powers of two of A. In the worse case, the binary representation

is all ones and an extra log2 n − 1 products need to be done for a total of 2 log2 n − 1

matrix-matrix multiplications. For example, for a code of length n = 500, compute that

500 ≡ 1111101002, so A500 = A256A128A64A32A16A4 for a total of 13 matrix-matrix

multiplications.

146

The second piece regarding the efficiently of computing An is that sparse matrices may

be stored in special formats such as the compressed sparse row/column formats (CSR and

CSC, respectively), which are taken advantage of by sparse matrix algorithms. In these

formats, matrix multiplication is essentially a loop over an array of the nonzero values of the

matrix. Since A256 has fewer nonzero values than A, computing A256A256 is a faster than,

say, AA. The associativity of the decomposition of An into matrix products should take

this into account. GPUs may be useful in some matrix multiplications, but at a certain point

the extreme sparsity of the matrix powers may make the overhead involved in this process

an unnecessary bottleneck. As a final comment, we remark that the block compressed

sparse row (BCSR) format may or may not be desirable depending on whether or not the

underlying implementation requires the size of every block (|Vi| × |Vi+1|) to be the same,

as is common. The CSC is used in this work.

If not implemented properly, the adjacency-matrix representation of the trellis can lose

vital information about the graph. For example, in the worst case scenario that multiple

errors have equal weight, edge labels cannot be inferred from the weights so additional

information must be kept to handle shifting and decoding. This can be done at the cost of

an extra byte per edge, and is still a considerable savings over the standard 4-byte pointers

on 32-bit systems and 8-byte pointers on 64-bit systems used in a straightforward linked-

list based implementation of the trellis or the integer-based addressing scheme used in the

previous chapter. We find it convenient to construct the trellis in full generality with vertex

and edges structures holding numerous pieces of information and then cast down to the

adjacency matrix for speed if necessary.

It remains to show how shifting and the Viterbi algorithm can be done using just the

adjacency matrix. We will describe these separately but note that these can be combined

into a single shift-and-decode step on each Ei, reducing the number of memory accesses

to this data. The benefit of this depends on the specific choice of parallelism in the im-

plementation of the algorithms but in all scenarios considered here was indeed faster. We

147

will assume that the edge labels can either be inferred from the weights or a modified-CSC

format is used which allows them to be stored with each entry. Shifting merely requires

one to keep track of the matrix indices corresponding to each Vi. The Viterbi algorithm is

presented in this format in Algorithm 2 for completeness.

Algorithm 2: Adjacency matrix version of the Viterbi algorithm.
Input: A - An adjacency matrix for a trellis
Input: n - The depth of the trellis
Output: Correction vector ∈ F n

p

1 µs ∈ R1×|V | - vertex weights
2 prev ∈ N1×|V |

3 µs[1]← 0.0
4 prev[1]← 0
5 for i← 2 to ncols(A) do
6 vals, rows← nonzeros(A[:, v]), rows(A[:, v])
7 for j ← 1 to |vals| do
8 vals[j]← vals[j] + µs[row[j]]
9 end

10 min, arg ← argmin(vals)
11 µs[v], prev[v]← min, rows[arg]

12 end

13 path ∈ F1×n
p2

14 vi ← ncols(A)
15 vi−1 ← prev[vi]
16 for i← n to 1 by − 1 do
17 path[i]← edge label for A[vi−1, vi]
18 vi ← vi−1

19 vi−1 ← prev[vi]

20 end

21 return path

Remark: The adjacency matrix is an elementary and unoriginal tool to apply to a graph. It

is therefore interesting to find it rarely mentioned in the classical trellis literature (outside

of convolutional codes). We assume this is largely due to the fact that implementation

details are usually ignored in theoretical publications. We mention it here for two reasons.

148

First, the previous chapter might leave the impression that the algorithm is completely

unscalable, in which case we explicitly show how to reduce the overhead. Second, we have

further computational uses for the adjacency matrix than just representing the graph in a

compact representation. It is also interesting that the 2011 paper “Matrix Representations

Of Trellises And Enumerating Trellis Pseudocodewords" introduced a matrix they called an

adjacency matrix for a slightly different concept called a tail-biting trellis whose elements

are multivariate polynomials [197]. This is entirely distinct from the common use of the

term but allowed them to define new invariants. They also come up with a similar formula

for a trellis product (below) but, again, it is unrelated to our use or derivation.

3.4 The Trellis Product

The TP introduced in Definition 2.4.2 has been studied in a few papers, but never in the

context of a syndrome-based trellis. Many of the results and diagrams in the literature do

not hold for the trellises considered here. Likewise, the results derived here are not valid

for those trellises. Unraveling the definition, its consequences, and its inverse will further

illuminate and complete our discussion of the internal structure of the trellis.

Recall the definition from 2.4.2.

Definition 3.4.1

The TP of two trellises T 1 = (V 1, E1) and T 2 = (V 2, E2) of depth n is denoted by �i

and has vertices

V 1�iV
2 =

n⋃
i=0

V 1
i × V 2

i

and edges

E1�iE
2 = {((v1

i , v
2
i), P

1P 2, (v1
i+1, v

2
i+1)) | (v1

i , P
1, v1

i+1) ∈ E1
i , (v

2
i , P

2, v2
i+1) ∈ E2}.

The trellises T 1 and T 2 are called factors of the product. There are 256 ways to define

the product of graphs in algebraically reasonable ways, only six of which are commutative,

149

associative, and have a unit. There are exactly four graph products in which at least one of

the projections onto its factors is a weak-homomorphism [198]. These are the four standard

graph products: Cartesian�, direct×, strong�, and lexicographical ◦. Let G1 = (V 1, E1)

and G2 = (V 2, E2) be connected graphs. The vertex set of all the graph products is the

Cartesian product V 1 × V 2; they are distinguished by the edges. For example, the directed

Cartesian product G1�G2 has edge set

E(G1�G2) = {(g1, g2)→ (h1, h2) | g1 = h1, g2 → h2 ∈ E2 or g1 → h1 ∈ E1, g2 = h2},

where a→ b represents a directed edge with source a and terminus b.

We note immediately that there are easy isomorphisms showing the TP is both com-

mutative and associative, T 1�iT 2 ∼= T 2�iT 1 and T 1�i(T 2�iT 3) ∼= (T 1�iT 2)�iT 3,

and has a unit, I, the trellis for the identity of Pn. This last point will become obvious in

our exploration as will the projections onto factors, but for the moment we point out that

although no attempt has been previously made to classify the TP, it has been incorrectly

referred to as a Cartesian product or a tensor product. The Cartesian product is only tech-

nically incorrect as the Cartesian product of two trellises would contain |V 1||V 2| vertices

(with no edges) combining, for example, V 1
0 and V 2

n , which doesn’t happen in the TP. For

the CSS Steane code trellis of Figure 2.6 (a), this would give a full Steane code trellis with

676 vertices, far greater than the 122 vertices of Figure 2.6 (b). Comparing to Definition

2.4.2, we see that the TP is really a graded, directed Cartesian product taken independently

over each depth/section.

Proposition 3.4.2

Let T 1 = (V 1, E1) and T 2 = (V 2, E2) be trellises of depth n, and let Gi be the

subgraph (Vi ∪ Vi+1, Ei). Then T 1�iT 2 =
⋃n
i=0 G1

i�G2
i .

The current TP literature is devoted to trellis construction using smaller trellises (e.g.

[186]), similar to our discussion of trellises for CSS codes in Section 2.4. However, no

150

explicit formula is given to aid in this process, reducing the usefulness of the procedure to

those trellises for which one can manually draw and combine or brute-force loop over on

a computer. Our identification of the TP with the Cartesian product allows us to fill this

gap. It is well-known that the adjacency matrix of the Cartesian product is the Kronecker

product of the adjacency matrices of each factor, A(G1�G2) = A(G1)⊗ A(G2).

Corollary 3.4.3

Let T 1 = (V 1, E1) and T 2 = (V 2, E2) be trellises of depth n, and let Gi be the sub-

graph Vi,Ei, Vi+1. The adjacency matrixA(T 1�iT 2) is the
∑n

i=0 |V 1
i ||V 2

i |×
∑n

i=0 |V 1
i ||V 2

i |

upper triangular matrix with blocks of size |V 1
i ||V 2

i |×|V 1
i+1||V 2

i+1| given byA(G1
i)⊗A(G2

i).

Note that this relies on the assumption that the individual Cartesian products are taken

consistently in a manner which does not rearrange the vertices between Gi and Gi+1. The

Kronecker product is associative and commutative up to row and column permutations.

Trellises created in this manner essentially treat vertices as tuples (v1
i , v

2
i) ∈ V 1

i ×V 2
i . This

is interesting as it allows us to view trellises as higher-dimensional structures. However,

vertices of the syndrome trellis are defined with labels v1
i + v2

i , and it remains to show

that this does not collapse the labels into less than |V 1
i ||V 2

i | vertices. We will return to this

below where we provide conditions for when this happens.

The corollary is meant to be understood structurally; the edge labels need to be com-

puted separately at each element of the Kronecker product if using an additive representa-

tion of Pn such as Fnq2 or F2n
q . Information about vertex labels is lost using the Kronecker

product but isn’t necessary to store anyway. Labels can always be recreated by simply tak-

ing the partial syndrome of any path leading up to a given vertex. This is most likely the

quickest way to construct a large trellis, beating out even the parallel algorithm of Chapter

2. The Kronecker product also has a specialized implementation for sparse matrix formats.

Remark: The TP was originally described as a “product of edges", which makes sense

from the definition. It is interesting then that the formula for the TP is given in terms of

151

the adjacency matrix from the vertex perspective and not from the incidence matrix from

the edge perspective. This is an |E1| × |E2| matrix with −1 and each source and 1 at each

terminus. The TP product from this perspective must first split the matrices into positive

and negative parts, then the Kronecker product of the two positive parts and of the two

negative parts are taken separately before recombining them, being careful to remove any

introduced self-loops.

With these preliminaries out of the way, we move to exploring the structure of the

syndrome trellis using the TP. For this we will need to define an ET. We will again stick

to trellises for stabilizer codes, noting that the same intuition and proofs hold classically

as well. This will hold for both trellises with vertices S and edges S⊥ and trellises with

vertices S⊥ and edges S (Section 3.6), so we will switch to using A and A⊥, where either

A = S or A = S⊥ as desired.

Definition 3.4.4

Let A = 〈A1, . . . , A`〉 ≤ Pn with generators in TOF. An ET is a syndrome trellis for a

single generator 〈Aj〉 with vertices taken with respect to A⊥.

Our goal is to build a trellis forA via T 1�i . . .�iT `, where T j is the ET for generator Aj .

Example 11. Figure 2.6 (a) gives the CSS trellis for the Steane code. This has vertices

with respect to the stabilizer matrix

1 1 0 1 1 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

and edges

S⊥1 = [1, 1, 1, 0, 0, 0, 0]

152

000 000

100

000

010

000 000 000 000 000

(a) T 1

000 000 000

110

000

110

000

011

000

011

000 000

(b) T 2

000 000 000 000

010

000

111

000 000 000

(c) T 3

000 000 000 000 000

101

000

010

000

001

000

(d) T 4

Figure 3.2: ETs for the CSS Steane code.

S⊥2 = [0, 1, 0, 1, 0, 1, 0]

S⊥3 = [0, 0, 1, 1, 1, 0, 0]

S⊥4 = [0, 0, 0, 1, 1, 1, 1].

Letting T j denote the ET for S⊥j , the ETs are given in Figure 3.2a. Figure 3.3 shows the

construction of the full CSS trellis with the TP.

Consider the ET T 1 in the previous example. The corresponding generator has left-

right indices [1, 3], which can be seen directly in the trellis. The number of paths in T 1

is |〈S⊥1 〉| = |{[0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0]}| = 2. The edge (0, 0, 0) interacts with

any other edge (vi, Pi, vi+1) as (0 + vi, Pi + 0, 0 + vi+1) = vi, Pi, vi+1) and hence acts

as the identity in its section. Hence, sections E4 to E7 of T 1 do not interact with any

other ETs in the product in these sections. Likewise, sections E1 to E3 are completely

constructed in T 1�iT 2�iT 3 because T 4 has only the identity path until E5. These are

153

000
000

100

010

000

110

100

110

000

010

100

110

010

001

101

111

000

011

100

000

010

001

011

001

000
000

(a) T 1�iT 2

000
000

100

010

000

110

100

110

000

010

100

110

010

001

101

111

000

011

100

000

010

001

011

001

000
000

(b) T 1�iT 2�iT 3

000
000

100

010

000

110

100

110

000

010

100

110

010

001

101

111

000

011

100

000

010

001

011

001

000
000

(c) T 1�iT 2�iT 3�iT 4

Figure 3.3: Constructing the CSS trellis for the Steane code using the TP.

154

graphical equivalents to the statements about active and inactive generators made when

discussing the TOF.

Since every ET contains the identity path, the TP always contains an exact copy of all

of its factors, inducing a well-defined projector ΠT j(T 1�i . . .�iT `) = T j . This further

illustrates Example 6 and the discussion of CSS trellises of the previous chapter. The

syndromes of Figures 2.5a, 2.5b, and 2.6 (a) should be longer but are written with respect

to SX or SZ only for simplicity because they are identically zero for the other set. The

SX labels thus serve as the identity path for the SZ labels and vice versa. By the previous

discussion, there is an exact copy of both CSS trellises inside the full trellis plus terms with

mixed labels coming from the TP, as expected.

Now consider a generator Aj ∈ Fnp2 with p > 2. The ET contains paths for 〈Aj〉 =

{Aj, 2Aj, . . . , (p−1)Aj〉. Since the partial syndrome is a homomorphism, if vi is the partial

syndrome of Aj at depth i, then `vi is the partial syndrome for `Aj for 2 ≤ ` ≤ (p − 1).

These are distinct for vi 6= 0. Suppose vi = 0 for some depth not equal to the left or right

index of Aj . Since the degree of a vertex is either 1 or p, degin 0i = p for some i and

degout 0m = p for some L(Aj) < i ≤ m < R(Aj); for example,

.

But then there are at least p2 paths in the trellis which is in one-to-one correspondence with

the p elements of 〈Aj〉, a contradiction. We have shown the following result.

Lemma 3.4.5

The ET for Aj contains p − 1 parallel paths which expand from and merge with the

identity path only at the left and right indices of Aj , respectively, but otherwise do not

intersect.

Lemma 3.4.6

LetA1 andA2 be generators in TOF with ETs T 1 and T 2, respectively. The paths of the

155

TP T 1�iT 2 only intersect the identity path at the left and right indices of each generator.

Equivalently, no two ETs for a set of generators in TOF contain the same nonzero vertex in

the same vertex depth.

Proof. Suppose 0 6= v ∈ V 1
i and v ∈ V 2

i . Then {v, 2v, . . . , (p−1)v} are also all in V 1,2
i . In

particular, the additive inverse of v exists, producing a vertex 0 with degree p in T 1�iT 2.

There are p2 − 1 paths going through this vertex. Every vertex in Vi(T 1�iT 2) will also

have the same degree and number of paths, contradicting the fact that there are only p2 total

paths in T 1�iT 2.

Corollary 3.4.7

Let T 1 = (V 1, E1) and T 2 = (V 2, E2) be two ETs. Then |Vi(T 1�iT 2)|= |V 1
i (T 1)||V 2

i (T 2)|

and |Ei(T 1�iT 2)| = |E1
i (T 1)||E2

i (T 2)|.

Re-examining the edge configurations in light of Lemma 3.4.5 and the TP we see that

because any configuration is shared by 0 the following are only possible when there exists

a generator with a left index at this section

, , , , ,

, , , ,

and

, , , , ,

, , , ,

are only possible when there exists a generator with right index at that section. For all other

156

sections without either a left or right index,

is the only possible configuration, since the TP of parallel paths are parallel paths. These

are the sections which can be merged during sectionalization for free. It follows that low-

weight stabilizers permuted to be active over a large span, or high-weight stabilizers, such

that the occurrences of left and right indices are infrequent may benefit the most from

sectionalization.

Corollary 3.4.7 is one of the fundamental properties of the TP quoted throughout the

literature. This was used for CSS trellises in Lemma 2.4.3, however, this does not hold in

general. To see this, consider the TP of this edge configuration with itself over F2,

000 000

vi vi+1

I

X

�i
000 000

vi vi+1

I

X

=
000 000

vi vi+1

I

X

.

Here, all edges of the TP are

{(0 + 0, 0 + 0, 0 + 0), (0 + vi, 0 + 1, 0 + vi+1), (vi + 0, 1 + 0, vi+1 + 0),

(vi + vi, 1 + 1, vi+1 + vi+1}

= {(0, 0, 0), (vi, 1, vi+1)}.

This simplifies because vertex and edge label addition are commutative. If we consider

edges labeled by elements ηcX(a)Z(b) ∈ Pn instead of x ∈ Fnp2 , we would need to be

more careful due to the commutation relations between X and Z. There are many edge

configurations which act as an idempotent for the TP. The reason for this is that the vertices

form a discrete, additive subgroup and adding a subgroup still generates the same group.

Lemma 3.4.8

157

Let T 1 and T 2 be two trellises and suppose, without loss of generality, V 1
i ∩ V 2

i . Then

|V 2
i (T 2)| = |Vi(T 1�iT 2)| 6= |V 1

i (T 1)||V 2
i (T 2)|.

Fortunately, Corollary 3.4.7 shows that V 1
i ∩ V 2

i = {} for ETs.

Remark: These results are in contrast with the non-syndrome-based trellises of the classi-

cal literature in which the paths can intersect in different ways. In fact, it was in this context

that the edge configurations in Table 2.1 were first noted. It is therefore interesting that the

same edge configurations not only exist for the syndrome trellis but are also provably the

complete set.

Some of the previous results may seem like nothing more than a restatement of Table

2.1, which was deduced from the TOF, but interpreting this from a purely graph theoretic

standpoint allows us to ask different questions. In particular, given only the trellis, can

we decompose it into a set of ETs from which a set of generators in TOF follows? The

answer to this is yes, which might not be surprising given that the Cartesian product is

decomposable in each section. However, the standard decomposition may choose any of

the non-identity elements of 〈Aj〉 and the choices may not line up from section to section

to make connected paths from V0 to Vn. Fortunately, we will see that the strict structure of

the trellis as a directed graph allows us to extract this information almost immediately with

little work and without relying on standard graph product decomposition algorithms.

Remark: Koetter and Vardy considered the related question of whether or not a (non-

syndrome based) trellis represents a linear subspace and showed that a trellis represents a

linear subspace if and only if can be constructed via the TP [199]. We are not concerned

with this here; we assume that all the trellises dealt with in this section are constructed

properly using the techniques of Chapter 2. This implies that they are depth n, weakly-

connected, equipathic, graded, acyclic, directed graphs with a unique source and sink such

158

that every vertex has a connected path to both V0 and Vn. We also assume the number of

paths in the trellis is the correct cardinality of the space, and, for simplicity of discussion,

there are no parallel edges. We have already shown that such trellises can be constructed

via the TP of ETs in Theorem 2.4.4. The proof of the decomposition (factorization) in

[199] relies on a simultaneous study of the trellis and a generator matrix for the space.

Here, we suppose that the trellis is constructed then all information about the generators

are subsequently lost and we wish to recover them.

We begin by noting that if the trellis was constructed using the TP in the first place,

information about the ETs could be stored to make this decomposition immediate if desired.

So we assume this is not the case. Consider the trellis T 1�iT 2�iT 3�iT 4 in Figure 3.3c.

Using the previous discussion we see that the non-parallel structure of E1 − E4 imply the

existence of a left index in the TOF at these locations. Likewise, there are right indices in

the TOF at 3, 5, 6, and 7. If we can pair up the left and right indices, we could immediately

identity the zero and nonzero entries of the TOF. By Definition 2.3.18 of the TOF, the

left-right indices pair to minimize the total span length.

Definition 3.4.9

Two vertices are called admissible if there exists a path between them that does not

include part of the identity path.

Let 0L and 0R be the zero vertices at the left and right indices L and R, respectively.

To determine the pairings, construct a bipartite graph with a vertex for every left and right

index. Connect each admissible pair of vertices with a weighted edge whose value is the

minimum (Manhattan) distance between them. This can be found efficiently via depth-first

search on the outgoing edges of 0L. If it exists, the directed and graded properties of the

trellis give that this distance is exactly R − L + 1. The structure of the TOF follows from

159

a MWPM on this graph.

Example 12. The matching graph for Figure 3.3c is

1

2

3

4

3

5

6

7

3

5

6
7

56

3
5

4

.

Two left-right pairs (1, 3) and (4, 7) are immediate and can be removed from the matching

graph. MWPM for the other two give the TOF

∗ ∗ ∗ 0 0 0 0

0 ∗ ∗ ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ ∗

.

Consider the ET for the first row in the TOF of the previous example: A1 = [∗, ∗, ∗, 0, 0,

0, 0]. There are exactly (p− 1) = 1 non-identity paths, and one of them begins with a 1, α,

or α2. The goal is to find T 1 in Figure 3.3c, which is equivalent to understanding how to

implement the projector ΠT 1 . Recall from Chapter 2 that the edge configurations of Ei is

a collection of shifts of the edge configuration for (0, 0, 0) ∈ Ei. The previous discussions

make the origin and nature of the shifts more apparent: the edge configuration is copied

onto every parallel path in the ET via the TP. The edge configuration copied onto the

identity path is the location of T 1. Thus, to extract T 1 from T 1�iT 2�iT 3�iT 4 it suffices

to study the outgoing edges of 0.

Since A1 is the only row of the TOF with this left index, these are the only outgoing

160

paths from 0 ∈ V0 and are immediately identifiable. If there were two rows of the TOF

with this left index, there would be p2 − 1 outgoing non-identity paths from 01, and we

could single out those with edge labels 1 or α for A1 and recognize the rest as the parallel

paths of 〈A1〉. Having identified the first edge, [1, ∗, ∗, 0, 0, 0, 0], we note that there can be

no other path from 0 ∈ V0 to 0 ∈ V3 starting with this edge than the one representing A1

because if there was we could use it to reduce the span of A1, contradicting the definition

of the TOF. Therefore, A2 = [1, 1, 1, 0, 0, 0, 0].

Repeating this for A2 = [0, ∗, ∗, ∗, ∗, ∗, 0], we find two possible generators [0, 1, 0, 1, 0,

1, 0] and [0, 1, 1, 0, 1, 1, 0]. This occurs because the span of the third row, A3, is contained

in the span of A2. Picking a path corresponds to choosing A2 and A3 or A2A3 and A3 as

generators, either of which are fine. The rest of the rows have unique paths, producing a

TOF which agrees with S⊥ above.

It is easy to see that the above logic produces a decomposition for any trellis.

Theorem 3.4.10

Any syndrome trellis is decomposable into a TP of its ETs.

3.5 Partial Ordering And Intersection Of Trellises

Thinking of a trellis as a set of elements of a set, the partial ordering of sets by inclusion

induces a partial ordering of trellises.

Definition 3.5.1

Let T 1 and T 2 be two syndrome trellises constructed as in Chapter 2. Then

(i) T 1 ≺ T 2 if the set of elements represented by the edges of T 1 is strictly contained in

the set of elements represented by the edges of T 2,

(ii) T 1 = T 2 if the set of elements represented by the edges of T 1 is equal to the set of

elements represented by the edges of T 2,

(iii) T 1 � T 2 if the set of elements represented by the edges of T 1 is strictly contained in

161

or is equal to the set of elements represented by the edges of T 2,

(iv) T 1 and T 2 are said to be incomparable if none of the above relationships hold.

Similar relationships hold for the symbols � and �.

This is clearly reflexive (T � T), antisymmetric (if T 1 ≺ T 2 and T 2 ≺ T 1 then T 1 = T 2),

and transitive (if T 1 ≺ T 2 and T 2 ≺ T 3, then T 1 ≺ T 3).

In general, most trellises are incomparable. Those that are, are subcodes or have com-

mon subcodes. All codes (trellises) contain the identity, so I is a least element for the set of

all trellises (@T such that T ≺ I). All codes considered here are contained in Fnq (classical)

or Fnq2 (quantum), but we cannot build a trellis for the ambient space, as the dual space is

zero. In this sense, there are maximal elements but no greatest element. More usefully,

consider a trellis whose edges represent the elements A = 〈A1, . . . , A`〉. The power set

of generators {Aj} gives a Hasse diagram of trellises via the TP equivalent to the Hasse

diagram of subcodes. While a partial ordering on trellises produces no new information

about the objects or their relationships, it takes us one step closer to viewing the trellis as a

fundamental representation of the code without requiring the simultaneous storage of other

representations to understand it.

Example 13. A Hasse diagram for the CSS trellises for the Steane code of Example 11 is

T 1�iT 2�iT 3�iT 4

T 1�iT 2�iT 4 T 1�iT 3�iT 4T 1�iT 2�iT 3 T 2�iT 3�iT 4

T 1�iT 4 T 2�iT 3T 1�iT 3 T 2�iT 4T 1�iT 2 T 3�iT 4

T 1 T 2 T 3 T 4

I

.

162

A common operation in classical coding theory is the intersection of two codes, C1∩C2,

defined as the set of common elements. The codes do not need to be related in any sense,

but some formulas exist for families with special structure. For example, the intersection

of two cyclic codes C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 is C1 ∩ C2 = 〈lcm{g1(x), g2(x)}〉. One

may always compute the intersection of two finitely-generated modules using standard

elementary linear algebra, so it is lamentable that, at the time of writing, many existing

coding theory libraries do this by enumerating all possible elements of both codes, finding

the intersection of the two lists, then building a finitely-generating set from it. Intersection

is not a common operation in QEC, although it is important in subsystem codes and code

switching (e.g. [200]). As a representation of all of the elements of a code, it is not

surprising that we can define the intersection of two trellises.

Definition 3.5.2

Let T 1 and T 2 be two syndrome trellises of depth n constructed as in Chapter 2. Then

T 1 ∩ T 2 is the syndrome trellis whose paths are in one-to-one correspondence with the

paths in both T 1 and T 2.

We note right away that this is distinct from the common operation of the intersection

of two graphs which individually checks every source-edge label-terminus pairing. The

intersection of trellises can only contain connected paths from V0 to Vn. For any element

represented by a path in the intersection, the full cyclic group generated by the element

must be contained in both trellises and therefore the intersection as well. We can use such

observations to see that the intersection of trellises is determined by their ETs and hence

by common ancestors in their Hasse diagrams.

The decomposition of trellises into their ETs is the most efficient way to compute the

intersection. In fact, the identification of the left-right indices is enough to determine when

the intersection is trivial (I). We may compare this to the more standard graph-theoretical

approaches of depth-first search (DFS) and breadth-first search (BFS). For DFS, start with

163

0 ∈ V0 in both trellises and choose the first outgoing edge with the same label that exists

in both trellises. Move to V1 and repeat. If Vn is reached or there are no common edges,

backtrack to the previous depth and search for the next common edge label. If one trellis

is completely contained in the other, say if we were comparing S⊥ with Z(S⊥) = S, then

this will enumerate every element of S, which we want to avoid.

Notice that the algorithm for DFS did not make use of the vertex information. This

is because one can construct the same trellis with different vertex labels by, for example,

replacing or permuting generators in the TOF. The edges are the invariant information. In

the BFS approach, we analyze every edge in a section before moving on to the next section.

In order to move from section to section, we require some way to identify how a path in

one trellis corresponds to a path in the other, and to do this we introduce new vertex labels.

Begin again with 0 ∈ V0 in both trellises and choose a common edge. Assign the terminus

of these edges the same label in both trellises. Repeat this for everything in E0. Moving

to E1, pick a newly labeled vertex in one trellis and its pair in the other trellis, then find

all common edges and label termini as before. Doing this for all labeled vertices in E1, we

may repeat the process until En. In the worst case, this will enumerate all |E| edges in one

or both of the trellises; however, it makes better use of the edge sharing than DFS.

3.6 The Dual Trellis And Degenerate Decoding

As mentioned in the previous chapter, many results in classical coding theory rely on the

dual trellis, which is defined to be the trellis of the dual code. The relationship between

S and S⊥ is more complicated, but that does not prevent us from formally defining a dual

trellis. The roles of the generator and parity-check matrices switch in C and C⊥, motivating

us to switch the roles of S and S⊥ in the dual trellis for a quantum stabilizer code. For in-

creased clarity of discussion, the original trellis of the previous chapter will be referred to as

the primal trellis and equations with respect to the dual with be adorned with a superscript

d.

164

Let S be a stabilizer group corresponding to an [[n, k, d]]p stabilizer code. First we note

that this object is well-defined. The edges are given by elements of S and the vertices by

partial syndromes with respect to S⊥. Since S commutes with S⊥, Vn consists of only a

single vertex with label zero, as before. Following the same proofs as before, we find

|V d
i | = pdimS−dimSpi−dimSfi (3.1)

|Ed
i | = pdimS−dimSpi−1−dimSfi (3.2)

degd
in(v) = pdimSpi−dimSpi−1 (3.3)

degd
out(v) = pdimSfi−dimSfi+1 . (3.4)

In the previous chapter we remarked that we could have also proved the State Space Theo-

rem using S instead of S⊥, resulting in

|Vi| = pdimS⊥−dimS⊥pi−dimS⊥fi = pdimS−dimSpi−dimSfi . (3.5)

Comparing this to (3.1) shows that |V | is not reduced in the dual trellis. Since |S| < |S⊥|,

we would hope the total number of edges would decrease in the dual, but there is no obvious

guarantee that the dual trellis shares edges as efficiently as the primal trellis. In fact, we

find that |Ed
i | may theoretically be even larger than the primal trellis.

Proposition 3.6.1

Let V,E be with respect to the primal trellis and V d, Ed be with respect to the dual.

Then

p−2|Ei| ≤ |Ed
i | ≤ p2|Ei|. (3.6)

Proof. Equating the exponents of (3.5) we have

dimS⊥ − dimS⊥pi − dimS⊥fi = dimS − dimSpi − dimSfi

165

or

dimS = dimS⊥ − dimS⊥pi − dimS⊥fi + dimSfi + dimSpi .

Substituting into Equation (3.2),

|Ed
i | = pdimS−dimSpi−1−dimSfi

= pdimS⊥−dimS⊥pi−dimS⊥fi+dimSfi+dimSpi−dimSpi−1−dimSfi

= p

(
dimS⊥−dimS⊥pi−1

−dimS⊥fi
)

+
(

dimS⊥pi−1
−dimS⊥pi+dimSpi−dimSpi−1

)

=
|Ei|

p

(
dimS⊥pi−dimS⊥pi−1

)
−(dimSpi−dimSpi−1)

.

The sequence Api is monotonically increasing with maximum difference two given by the

number of new right pivots in the TOF. The denominator is maximum when dimS⊥pi −

dimS⊥pi−1
= 2 and dimSpi − dimSpi−1

= 0, giving the lower bound. The upper bound

corresponds to the opposite case dimS⊥pi−dimS⊥pi−1
= 0 and dimSpi−dimSpi−1

= 2.

Remark: For all of the cases we have tried so far, |Ed
i | ≤ |Ei|, implying there may be

something deeper going on similar to the discussion between Theorem 2.3.12 and Corol-

lary 2.3.14. See Table 3.2.

Table 3.2: The percentage |Ed|/|E| of the dual trellis to primal trellis for the codes of
Chapter 2 rounded to the nearest whole number. The lower distance codes have so few
edges that removing any is significant, while the opposite effect happens for the higher
distances.

3 5 7 9 11 13 15 17 19 21
4.8.8 79 89 91 94 95 98 99 95 95 95
4.8.8 X/Z 89 95 97 98 98 99 99 98 99 99
6.6.6 79 83 86 94 97 96 95 98 99 98
6.6.6 X/Z 89 93 95 98 99 98 98 99 99 99
RSurf 79 94 97 99 99 99 100 100 100 100
RSurf X 93 95 95 96 96 96 97 97 97 97

166

The first step in trellis decoding is to shift with respect to the length-(n− k) measured

syndrome. This works because the vertices of the primal trellis are partial syndromes with

respect to the stabilizer generators. The vertices of the dual trellis are partial syndromes

with respect to the n + k generators of S⊥, which are not measured. We may compensate

for this by constructing a pure error for the dual trellis given the pure error for the measured

syndrome. Let s be a measured syndrome, HS and HS⊥ be the stabilizer matrices for gen-

erators of S and S⊥, respectively, andHS+ andHS⊥+ be appropriate pseudoinverses. Then

T Ss = HS+s is a pure error for the primal trellis andHS⊥T Ss is the corresponding syndrome

for the dual trellis. A pure error for the dual trellis is therefore HS⊥+HS
⊥
T Ss = T Ss . So the

same pure error works for shifting both trellises, eliminating the need to compute and store

HS
⊥ and HS⊥+.

The obvious drawback of decoding using the dual trellis is that it contains none of the

information about the logical operators that made the primal trellis so successful. The dual

trellis only contains information concerning the identity coset of S in S⊥. Let {`i}2k
i=1

be coset representatives of the (physical) logical operators. In order to decode as well as

before, we need to construct trellises for the rest of the cosets `iS. We know from the

last chapter’s discussion of affine spaces that this is exactly the dual trellis shifted by `i.

We could therefore repeatedly decode on all 2k shifted trellises then take the most likely

result as the final answer. This is of course embarrassingly parallel and could represent a

significant speedup if |Ed| � |E|. In all of the examples computed for this work, this was

never the case, so the primal trellis was preferred. We will refer to the dual trellis plus its

logical shifts collectively as coset trellises and this method of decoding as coset decoding.

The optimal use case for the coset trellises is solving the degenerate decoding problem

Equation (1.49). As previously mentioned, the difficulty here lies in enumerating S⊥,

organizing the elements into cosets, then computing the probabilities of each coset. The

coset trellises solve the first two of these problems. The most probable coset is defined

to be the greatest sum of all of the probabilities of every element in the coset, taken over

167

all cosets. Going back to Section 1.5, errors act i.i.d. on each qubit so that Pr (E) =∏n
i=1 Pr (Ei) for E ∈ Pn. The straightforward approach of extracting every path from

the trellis is infeasible and defeats the purpose of constructing the trellis in the first place.

Fortunately, there are two ways to extract the summary information of each coset without

explicit knowledge of its elements.

For both techniques, we change the weights from the additive log-likelihoods to stan-

dard multiplicative probabilities. The first way to do this is using a standard product-sum

algorithm at each vertex: at each v ∈ Vi for 1 ≤ i ≤ n, pick an edge and multiply the

weight of the source vertex by the weight of the edge, repeat for all edges, add the results,

and store the final value at the vertex. The value at Vn is the desired probability.

Algorithm 3: Probability of a coset using forward dynamical programming.
Input: A vertex set, V , along with an edge set, E, corresponding to a valid trellis.
Output: Probability

1 Struct Vertex contains
2 float value
3 end

4 Struct Edge contains
5 Vertex source
6 float weight
7 end

8 V0 3 0.value← 0.0
9 for i← 1 to n do

10 foreach v ∈ Vi do
11 foreach e ∈ Ei do
12 v.value← v.value+ e.source.value ∗ e.weight
13 end
14 end
15 end

16 return Vn 3 0.value

Proposition 3.6.2

Algorithm 3 computes the coset probability.

The proof is similar to that of Proposition 2.3.21.

168

The second technique to compute the coset probabilities is to use Lemma 3.3.1 (ii).

Using a weighted adjacency matrix,A, to represent the (shifted) trellis, the coset probability

is exactly the sole nonzero value A0,n of An. The previous discussion of the computation

ofAn applies, and we note that, depending on the implementation, it is possible to compute

this faster than product-sum in some circumstances.

In both techniques, the probability of each coset is computed, hopefully in parallel.

The most probable coset is chosen, and the applied correction is the corresponding logical

operator combined with the pure error Ts. The identity coset is always preferred and other

ties are broken at random. One can use the Viterbi algorithm to find a most-likely element

inside the most-likely coset, if desired, but this is unnecessary.

It is known that not all stabilizer codes are going to benefit from the extra effort required

to solve the degenerate decoding problem. There are few examples of this in the literature

since prior to this work there was no general degenerate decoder, and preliminary results

using the technique developed here confirm this. Informally, the “large gains" expected

with a degenerate decoder seem to be achieved by the primal trellis and account for the gap

between many state-of-the-art decoders and traditional trellis decoding.

Example 14. Consider the Steane code under the action of the depolarizing channel. In

this model, the weight of a coset A is

∑
A∈A

n∏
i=1

Pr (Ai) =
∑
A∈A

(1− p)7−wt(A)pwt(A),

where wt(A) is the Hamming weight of A. For small enough p, low-weight terms com-

pletely dominate the sum. For example, when p = 10−3, a single weight-one term has a

probability

(1− 10−3)610−3 = 9.9× 10−4,

169

whereas the weight of a coset whose every element is weight-two is

64(1− 10−3)5(10−3)2 = 6.4× 10−5.

This particular code is both the easiest and the least interesting to analyze due to its trian-

gular symmetry. To demonstrate the effect of symmetry here, note that for every X there is

an element with a Z and hence a Y in its place. The complete weight enumerator (CWE)

of S , computed using the technique in the proceeding sections, is

1 + 7x4 + 7y4 + 7z4 + 42x2y2z2.

The weight enumerator of TsS for Ts = X1 is

x+ 4x3 + 3x5 + 3xz4 + 3xy4 + 4y3z + 4yz3 + 12xy2z2 + 12x2yz3 + 12x2y3z + 6x3y2z2

By symmetry, Z1 and Y1 errors give instead

z + 4z3 + 3z5 + 3x4z + 3y4z + 4x3y + 4xy3 + 12xy3z2 + 12x2y2z + 12x3yz2 + 6x2y2z3

and

y + 4y3 + 3y5 + 3x4y + 3yz4 + 4x3z + 4xz3 + 12xy2z3 + 12x2yz2 + 12x3y2z + 6x2y3z2,

respectively. Hence it suffices to only consider X errors. There are also only three unique

single qubit errors up to symmetry: X1, X2, and X5. The CWE of each of these errors are

the same and the logical X cosets are

3x2 +4x4 +x6 +3x2z4 +12xy3z+12xyz3 +12x2y2z2 +3x2y4 +4x3yz3 +4x3y3z+6y2z2.

170

Thus there is only one weight-one solution, which is an element of the most likely coset,

so both and primal and dual trellises will always return the same correction. One can check

that this holds for all single qubit errors.

Example 15. The previous example assumed the pseudoinverse of the syndrome returned

the minimum-weight pure error. If this were always the case, we would not need decoders.

Suppose instead that an X1 error was treated as X4X7. This causes the identity and logical

cosets to switch with respect to the previous example. The logical coset is now most likely

and contains the weight-one solution X1. The correction is therefore (X4X7)XL = X1, as

desired.

The tensor network decoder of [111] also solves the maximum-likely coset problem for

surface codes (only). This decoder is complex and a proper description of it is beyond the

intended scope of this work. It is able to compute the exact coset probabilities for indepen-

dent X or Z error channels but must resort to approximations for the depolarizing channel.

The algorithm may also take significant time and resources and requires a practical limit on

the distance between correlated qubits. Reference [111] reports the ratio of the degenerate

decoder to MWPM is no more than around 1.8 for the independent X channel, which is a

negligible effect for such small numbers. This is in agreement with preliminary findings

using the dual trellis for various codes. They detected a discernible difference between the

two decoding methods for the depolarizing channel and d = 25. Further numerical sim-

ulations are needed to thoroughly investigate this parameter regime using the dual trellis.

Trellis decoding is simpler than tensor network decoding and should theoretically achieve

the same results.

3.7 Minimum Distance

Since the paths of a trellis can encode all of the elements of C, S, S⊥, or a coset S⊥/S, it is

not surprising that we can use it to compute the minimum distance of a code. This is surely

171

not a novel idea for classical codes; however, it is suspiciously absent from the literature.

The QEC literature is almost completely silent on the issue of computing the minimum

distance. A 2022 paper by Pryadko et al [201] claimed that “The lack of available software

has caused researchers in the field of QECC to either skip the minimum distance calcula-

tions altogether (. . .), or develop their own suboptimal algorithms. In particular, Bravyi and

Hastings (. . .) used an exhaustive search over all non-trivial codewords for calculating the

minimum distances.". Here, we briefly describe the current minimum-weight algorithms,

why a trellis may not currently be considered one of them, and when a trellis approach can

be useful. This is valid for both classical and quantum codes; we begin with the classical

case.

3.7.1 Classical

Recall that for linear codes the minimum distance is equal to the minimum weight. It is

therefore always valid to compute every element of the code one-by-one by constructing all

possible combinations of the generators of the generator matrix, computing their weights,

and then returning the minimum. This takes exponential time. Vardy showed that the com-

putation of the minimum distance is NP-Hard and the corresponding decision problem is

NP-Complete [202], so we can’t expect a polynomial-time algorithm but we can do better

than brute force. There are two main minimum-weight algorithms in the literature: the

Brouwer-Zimmermann (BZ) algorithm and Leon’s algorithm [203]. The latter is proba-

bilistic and returns the minimum-weight with high confidence for a binary linear code. The

BZ algorithm is implemented in MAGMA over any finite field [204], in the GAP coding

theory package GUAVA over F2 and F3 [205], and the library in Sagemath is a Python

interface to GAP [206]. The MAGMA implementation is the fastest and is considered the

standard.

The history of the Brouwer algorithm is reported in [204, 207]. Brouwer developed

the algorithm in the 1980’s and it remains unpublished. He used this to publish tables

172

of best upper and lower bounds of the minimum distance of linear codes (which are now

maintained by Grassl [171]). Brouwer visited the MAGMA group in 1992 and explained

the algorithm which was then added to the proprietary MAGMA C kernel. Perhaps due

to this, a large number of coding theory libraries currently available use the brute-force

solution, adding Brouwer-Zimmermann type algorithms only relatively recently if at all. In

1999, the MAGMA coding theory project formed to find explicit codes realizing Brouwer’s

bounds. Most knowledge of the BZ algorithm comes from reports from this project by

Grassl [204] and White [207] in 2006, the latter of which cites the original C code, although

Zimmermann’s refinement was published in German in 1996 [208] and 1998 [209].

Let C be an [n, k]q code with standard form generator matrix G = (I | A), where

I is the k × k identity matrix. For v ∈ Fkq , c = vG = (v | vA), so wt(c) ≥ wt(v),

which we can use to reduce the number of elements we have to enumerate. One is always a

lower bound on the minimum distance and an upper bound is given by the Singleton bound,

d ≤ n− k+ 1. Enumerate all elements of v ∈ Fkq with Hamming weight equal to the lower

bound r and compute the set W = {vG}. For any element c ∈ C\W , wt(c) ≥ r + 1 since

wt(c) ≥ wt(v) which must be at least r + 1 or else it would be in W . If an element of W

has weight equal to the lower bound, we are done. Otherwise, set the upper bound equal to

the minimum weight of the set, increase the lower bound by one, and repeat.

If d ≥ k + 1, this will still enumerate everything. To get around this we must increase

the lower bound faster. Brouwer used the fact that any set of k linearly independent vectors

generate C and simultaneously utilized multiple generator matrices to compute multiple

sets of encoded vectors. The key is to come up with m generator matrices with disjoint

information sets. Since G = (I | A), the first k columns form an information set and the

others must be found in the columns of A. The lower bound in this case can start at m.

Given m disjoint information sets, Gauss-Jordan2 can be used to put the identity matrix in

these columns producing matrices {G2, . . . , Gm}. We then proceed as before but now the

2We can ignore any column permutations because it doesn’t affect the weight.

173

upper bound becomes the minimum of the previous upper bound and the weights of the

union of the sets {vGi} for 1 ≤ i ≤ m. After enumerating all elements of weight w, the

lower bound becomes m(w + 1). Unfortunately m can be as low as one for many codes of

interest, reducing to the previous algorithm. Also, if k - n, then there are nmod k columns

not being used to produce information for the lower bound.

Zimmermann adapted Brouwer’s algorithm to use overlapping information sets: Start

with the standard form generator matrix G1 = (Ik | A1). If the matrix A1 is nonzero it has

nonzero rank 0 < k2 ≤ k1 := k. Define G2 by reducing A1, allowing the identity of G1 to

change,

G2 =

A′2 Ik2 A2

0 0

 .

Repeat this for each Ai until either Ai is empty or zero,

Gm =

A′m Ikm Am

0 0

 .

The last matrix Am has n − k1 − . . . − km columns, so Gm has this many zero columns

such that wt(vGm) ≤ k1 + . . .+ km. We then proceed as before but one can show that the

lower bound at each step is now

m∑
i=1

k−ki≤j

(j + 1)− (k − ki).

More matrices mean more enumeration but also a faster growing lower bound. MAGMA

chooses which algorithm to use by using an estimate on the number of elements it will need

to generate. See the references for details.

There are several improvements one can make but the underlying idea of computing

sets {vGi} and updating bounds remains constant. Lisoněk and Trummer used Edmond’s

matroid partitioning algorithm to construct information sets with optimal properties and

174

showed this has a dramatic effect on the runtime of BZ [210]. In an extreme case, their new

information sets were able to generate all minimum weight codewords of a [1344, 128] code

used in an attack on the block cipher PICARO [211] in only 94 seconds, while MAGMA es-

timated it would complete in roughly 106 years. Bouyuklieva and Bouyukliev extended the

definition of information set to further reduce the number enumerated elements [212]. Ref-

erences [204, 213, 214] consider implementation improvements from a computer science

perspective leading to dramatically shorter runtimes than the current MAGMA standard.

For many codes of practical use, the number of elements which must be enumerated

before the upper and lower bounds meet is low enough for this to be usable. For other

codes one can consider other techniques. Sometimes the number of elements is greater

than the number of elements of the code itself, so computing the weight distribution is

better. Recall that C⊥ has parameters [n, n − k] and that |C| = qk and |C⊥| = qn−k. If the

number of enumerated elements is expected to be greater than |C⊥|, it is more efficient to

compute the weight distribution of C⊥, apply the MacWilliams identities (1.2) to get the

weight distribution of C, and then return the lowest exponent of x. Known symmetries

of the code can also be extremely useful. Permutations can also dramatically change the

runtimes of algorithms. MAGMA heuristically permutes the generator matrix if it detects

its information set algorithm does not produce a short enough expected runtime [204].

A trellis representation of C can return the minimum distance by weighting all edges

with nonzero labels with a one and the rest with zeros. The Viterbi algorithm then com-

putes not only the minimum weight but also an element of minimum weight, if desired,

at negligible extra cost. This latter point is key as it may take the BZ algorithm an extra

enumeration cycle to produce an element after its upper and lower bounds meet. As with

decoding, the runtime cost for this is O(|E|) and this holds true for both low-distance and

high-distance codes. When n is large, an enumeration-based method could return quicker

than the trellis can be constructed, although the adjacency matrix approach presented in

this chapter should improve this. On the other hand, enumeration-based methods may be

175

inappropriate when d is large.

A fair comparison between the two algorithms is difficult. Explicit runtimes are im-

plementation, machine, and resource dependent, and trellises have not shared the same

level of interest and optimization as MAGMA. The first performance analysis of the BZ

algorithm and its variants was conducted in 2006 by White [207]. The enumeration step

overwhelmingly dominates the runtime of these algorithms, so all other operations are as-

sumed to cost unit time and are ignored. This includes the numerous comparisons between

the bounds and the weight of the newly generated vector, but comparisons make up the total

of the Viterbi algorithm. Yet even for the largest trellis of the previous chapter, unoptimized

code benchmarked Viterbi in the microseconds. So while this is this O(|E|), the constants

matter.

The construction phase of the trellis overwhelmingly dominates the runtime of this ap-

proach. Unfortunately, this is also extremely implementation dependent. The BZ algorithm

can forget an encoded vector immediately after generating it, keeping storage costs mini-

mal. The trellis is of course saved in memory and accessing it depends highly on the size,

location, and structure of the underlying data structure in memory. A single Vi may not fit

in the cache and buildingEi may be dominated by cache misses. As we’ve seen above, sim-

plifying the data structure can improve this dramatically. A full computer science analysis

is beyond the intended scope of this work, so we will not discuss this further.

So why isn’t this considered amongst the possible minimum-distance algorithms? One

guess is the era during which these algorithms were developed. Trellises can take a sig-

nificant amount of storage memory which was just simply not available in the late 1980’s,

early 1990’s. Also, without the new construction algorithms discussed in this work, trel-

lises were largely generated by enumerating elements of C until complete. In many if not

most cases, the BZ algorithm will terminate before the trellis is even constructed. However,

this may no longer hold true. We hope to have made a convincing argument that there are

cases in which trellises should be considered as a realistic minimum-distance algorithm.

176

3.7.2 Quantum

The situation is much different in the quantum case. Recall that the minimum distance is

given by the minimum weight of a non-trivial logical operator (1.29). This generally has

nothing to do with the minimum distance of the corresponding stabilizer code considered

as a classical, additive code. Note that CPn(S)\S is a set-difference of size pn+k−pn−k and

not a quotient module of size p2k. Constructing a basis for the centralizer is an easy row

reduction but enumerating its elements are not as easy as before. The brute-force method

always works, but the concept of an information set is now more complicated since one

cannot row reduce down to the identity, as we saw with the TOF. White and Grassl tackled

this in [207, 215] where they map the additive code onto a linear code in a way that the

minimum of distance of the additive code may be implied from that of the linear code.

This mapping increases the parameters from n to 3n and d to 2d, dramatically increasing

the overall runtime of the BZ algorithm. Further complicating the quantum case, once a

minimal weight vector is detected, one must check to see if it is an element of S.

To see how classical intuition can be harmful here, recall that the rotated surface code

of Figure 1.2 has many weight-two elements but is distance five. In general, low-weight

elements are necessary for quantum codes to perform well against certain types of errors

[216]. The Steane code also has minimum distance three despite having all elements of

weight four. These apparent inconsistencies go back to the fact that stabilizer codes are

specified by their parity-check matrices but the distances are determined by the dual.

The previous section on coset trellises show how to organize the elements of CPn(S)

by cosets of S. To determine the minimum weight, we may simply exclude the S-only

trellis corresponding to the identity coset. The steps are therefore 1) construct the coset

trellis with S on the edges, S⊥ on the vertices, and weights 1 for any non-identity label

and 0 otherwise, 2) shift with respect to the first logical operator (`1), 3) apply Viterbi to

find a minimum weight element, 4) shift with respect to the next logical operator (`2`
−1
1),

5) repeat steps 3) and 4) until all logical operators have been used, 6) return the minimum

177

of all the outputs of the Vitberi algorithm.

The algorithm presented in [201] was developed independently of and simultaneously

to the one in this work and is probabilistic for a specific family of stabilizer codes called

low-density parity-check (LDPC) codes. Since the trellis can be constructed for any stabi-

lizer code, the method described here can work for any stabilizer code.

3.8 Weight Distributions & Enumerators

3.8.1 Classical

Let C be an [n, k, d]q code and recall from the first chapter that the weight enumerator of C

is the bivariate polynomial

W (C;x, y) =
n∑
i=0

Aix
iyn−i,

where Ai is the number of elements of C with weight i. The weight distribution of C is the

ordered sequence {Ai}ni=0. This is sometimes called the homogeneous weight enumerator

since we can define this without the y if desired. If we wanted to be more descriptive, we

could extend the polynomial to have |Fq| variables and count the number of occurrences of

each element of Fq in each vector v ∈ C. For example, define a CWE over F4 by

wwt0(v)xwt1(v)ywtα2 (v)zwtα(v),

where the subscript on the weight counts the number of occurrences of that symbol; then

v = [1, 0, α, α, 1, α2] corresponds to wx2yz2. The homogeneous and complete weight

enumerators coincide for F2, and the homogeneous is derivable from the complete over

higher fields by summing the exponents not corresponding to the identity: wx2yz2 7→ x5y.

Complete are more difficult to analytically predict than the homogeneous case, but this

usually isn’t a problem since F2 codes are dominate. Enumeration-based algorithms which

178

compute the weight enumerator should be able to compute both with no extra effort. Thus,

in this work we adopt the approach that the CWE should always be computed and anything

else should be derived from this.

In addition to BZ-type enumeration algorithms, there are a few probabilistic, genetic,

and Walsh-Hadamard transform algorithms to obtain the weight distribution of a linear code

in the academic literature. However, as before, the brute-force algorithm is overwhelmingly

used in current software. Trellises may also be used for this purpose, and are the only way

to compute the weight enumerator for convolutional codes, which we do not discuss in

this work. We are unfamiliar with the literature in this direction. Note that to compute a

weight enumerator from a BZ-type algorithm, one must either enumerate the entire code

or compute enough values of the weight distribution that the rest may be inferred from

symmetries. As before, one may compute the weight enumerator of the dual if easier and

then convert back to the desired code using MacWilliams-like identities.

Let C be an [n, k, d]q code and assume its trellis representation has been constructed.

Every vertex will be assigned a multivariate polynomial in Z[x0, . . . , xm−1] with the ex-

ponents of each variable assigned to an element of the field. Initiate the polynomial at V0

to 1. Now pick a v ∈ V1 and consider an edge in e = (s(e), L, v) ∈ E1 with L ∈ Fq.

Multiply the polynomial at the vertex s(e) by the xi assigned to L. Repeat this for every

edge, sum the results, and assign the (reduced) polynomial to v. Do this for every vertex in

the trellis. The polynomial at Vn is the CWE of C. See Algorithm 4. This an example of a

sum-product algorithm, which are widely used in decoding methods for linear codes.

Theorem 3.8.1

Algorithm 4 computes the CWE of an [n, k, d]q code C.

Proof. Enumerate the elements of Fq by integers in {1, . . . ,m}. We’ve already shown

there’s a one-to-one correspondence between paths in the trellis and elements of C. It

remains to show that the operation at each vertex is correct. Since n ≥ 1, initiate the

polynomial at V0 to one. Since degin(v) = 1 for all v ∈ V1, the polynomial at any vertex

179

Algorithm 4: CWE
Input: A vertex set, V , along with an edge set, E, corresponding to a valid trellis.

A fixed ordering of symbols of Fq corresponding to variables {x0, . . . , xm}.
Output: The CWE.

1 Struct Vertex contains
2 Edge edge
3 Polynomial polynomial
4 end

5 Struct Edge contains
6 float weight
7 char label
8 end

9 V0.polynomial← 1
10 for i← 1 to n do
11 for (j, v)← Enumerate(Vi) do
12 poly ← 0
13 for e← Ei[j] do
14 prev ← Vi−1[e.outvertex].polynomial
15 for k ← e.label do
16 for (`, x)← Enumerate(Fq) do
17 if k is equal x then
18 for term in prev do
19 term← term ∗ x`
20 end
21 break
22 end
23 end
24 end
25 end
26 poly ← poly + prev

27 end
28 v.polynomial← Simplify(poly)

29 end

30 return Vn.polynomial

is xj corresponding to the jth element in the enumeration of Fq, which is correct. Now

suppose v ∈ Vi+1 for some 1 ≤ i < n and pick an edge e = (s(e), P, t(e) = v) ∈ Ei.

Denote the path from V0 to s(e) ∈ Vi by P1 . . . Pi. Including the edge extends the path

to P1 . . . PiP . The weight enumerator at s(e) must increase the exponent corresponding

180

to the label P ∈ Fq, which is equivalent to multiplying by the appropriate xj; store this

at v. Picking another edge with terminus v, if any, represents a new path which needs to

be distinguished from the previous. Multiplying with respect to the edge label and then

adding the result to the weight enumerator from the previous edge accomplishes this. The

two terms will only be combined if they are the same, which is correct since the weight

enumerator only distinguishes paths up to weights and not labels. Since there are only n

depths, the total degree of each term must be less than or equal to n with equality only if

the homogeneous version is being computed.

Remark: After the completion of this work, the author stumbled upon a 1994 paper cited

almost exclusively in a small Japanese coding theory community which proposes an al-

gorithm for generating the weight distribution of binary linear code using a sectionalized

trellis [217]. Their algorithm is equivalent to the one presented here when specialized to

that case but their approach is sufficiently different. Their approach emphasizes the set

of paths between pairs of arbitrary vertices as the fundamental object, whereas we have

chosen V and E. The path view is dominant in the classical trellis literature and is natural

since distinct paths leaving v ∈ Vi cannot reintersect until at least Vi+d, where d is the

minimum distance. This does not hold in the quantum case, where the nature of d is more

complicated. As such, the quantum case is currently missing analogous results to much, if

not most, of the classical theory. Their approach is two-sided, working from both V0 and

Vn and appealing to Figure 2.4.

We have so far skipped a rigorous analysis of our algorithms here because our empha-

sis is on the comparison to enumeration-based algorithms, which is not an apples-to-apples

comparison for storage heavy algorithms with repeated memory accesses. The analysis in

[217] counts the number of additions and multiplications but the result is highly dependent

on the chosen sectionalization. In enumeration-based algorithms, basic arithmetic opera-

tions are assumed to have negligible cost. For the construction phase, the analysis simply

sets the cost to |E| and cites the original classical construction technique of Wolf [173].

181

This method generates all possible edges at every vertex until depth N and then goes back-

wards and removes all paths and vertices which don’t end at the zero syndrome vertex.

This is clearly exponential and is cited heavily throughout the literature, although enumer-

ation techniques are used to generate all possible parallel edges during sectionalization. It’s

likely enumeration is also used to construct trellises by generating vectors until the bounds

on Vi, Ei are satisfied, but we have no explicit reference for this. The analysis in [217]

claims |E| is less than 2nmin{2k, 2n−k}, where the latter is the Wolf bound mentioned in

Corollary 2.4.1. The claim is that this proves efficiency, but this is unclear as it is clearly

not scalable.

Interestingly, [217] points out that the weight distribution of shortened codes could be

computed by simply skipping appropriate edges. Their comment should extend to punc-

tured codes as well. Trellis symmetries are also considered to speed up the algorithm,

which we do not consider here.

3.8.2 Quantum

Weight enumerators play a significantly less important role in QEC than in classical coding

theory. For starters, the role of the dual is more complicated in QEC, but also the emphasis

in quantum is the circuits and gates and less on the combinatorial structure of the distribu-

tion of non-identity operators in the stabilizer group. Quantum weight enumerators, now

called the Shor-Laflamme enumerators, were first defined by Shor and Laflamme in 1997 in

terms of arbitrary operators and their Hibert-Schmidt inner product with the basis Pn [218].

They also defined a formal dual by applying the MacWilliams identity and interpreted the

result in relation to (what we have described in this work as) the success and failure prob-

abilities of decoding. Rains reworked the Shor-Laflamme enumerators in 1998 into a new

definition with made their properties more explicit [219]. Both of these definitions essen-

tially define the weight enumerator of a QECC to be that of its stabilizer code considered as

a classical additive code over Fq2 . This is not enough for many problems in quantum theory.

182

Here, we would like to encode the full group structure ηcX(a)Z(b). Knill and Laflamme

(2001) [220] and Rall (2017) [221] defined signed homogeneous weight enumerators for

qubit codes by allowing the coefficients Ai to be negative. Such weight enumerators often

include a lot of cancelations and there’s nothing preventing this definition from returning

the zero polynomial. Here, we extend the definition of weight enumerators to construct an

invariant of the code which keeps better track of the combinatorial structure of the group.

Definition 3.8.2 (Signed Complete Weight Enumerator)

Let A ⊆ Pn with elements of the form ±X(a)Z(b), where a, b ∈ Fn2 . Denote the ele-

ments of F4 by {0, 1, α, α2}. Consider the map φ : Pn → {±1}×Fn4 , ±X(a)Z(b) 7→ ±P ,

where P ∈ Fn4 and Pi = ai + biα for 1 ≤ i ≤ n, as before. For P ∈ Pn denote the

number of occurrences of j ∈ F4 by wtj(P). Define A(t0, t1, tα, tα2) to be the number of

elements +P ∈ φ(A) with t0 = wt0(P), t1 = wt1(P), tα = wtα(P), tα2 = wtα2(P).

Likewise, denote B(t0, t1, tα, tα2) to be the number of elements −P ∈ φ(A) with corre-

sponding weights. The signed complete weight enumerator of A is the Laurent polynomial

WA(x, y, z) =
∑

(t0,t1,tα,tα2)∈I

A(t0, t1, tα, tα2)xt1ytα2ztα +B(t0, t1, tα, tα2)x−t1y−tα2z−tα ,

(3.7)

where I = {(t0, t1, tαtα2) | 0 ≤ ti ≤ n,
∑
ti = n}. The corresponding signed homoge-

neous, complete weight enumerator of A is the Laurent polynomial

WA(x, y, z) =
∑

(t0,t1,tα,tα2)∈I

A(t0, t1, tα, tα2)wt0xt1ytα2ztα (3.8)

+B(t0, t1, tα, tα2)w−t0x−t1y−tα2z−tα .

There may be situations in which we want to physically distinguish the cases where

an XZ error occurs, which is why this is not counted as one X and one Z in the weight

enumerator. The case in which we don’t want to do this is derivable from our definition

183

by adding or subtracting the exponent of y to that of x and z appropriately and then re-

moving the symbol. It is also sometimes useful to know only the X terms or only the

Z terms, which may be derived by distributing the exponent of y then dropping the other

unwanted symbols. If the code is CSS, this is equivalent to the standard classical weight

enumerator of the linear code whose generator matrix is given by the X or Z stabilizer ma-

trices. The previous definitions of signed weight enumerators in the QEC literature may be

recovered by mapping B(t0, t1, tα, tα2) to −B(−t0,−t1,−tα,−tα2) and simplifying. To

the author’s knowledge this is the only weight enumerator in the literature with negative

exponents. This makes sense since there are no phases in classical codes, and unlike the

previous quantum literature we have, for better or for worse, abandoned the concept of a

MacWilliams identity. We are comfortable with using the term “weight enumerator” since

our definition satisfies the intention of this name.

Despite the lack of attention to weight enumerators in QEC, it is a bit ironic that in

the short paper introducing the quantum syndrome trellis, Ollivier and Tillich ended with a

paragraph description of how to use a trellis to compute a weight enumerator of a stabilizer

code by treating it as a classical code [167]. While we very naturally stumbled upon the

same basic algorithm, our result extends theirs by redefining the trellis of Chapter 2 to

include signs. We spare the reader of going through all of the technicalities of that chapter

and instead describe the signed trellis by pointing out what changes.

It is not so simple to keep track of the overall phase of a path due to edge sharing in

the trellis. Instead, we have to think deeper about the physics of the operator. Let S be

the stabilizer group of a quantum stabilizer code Q. Phases cannot be assigned randomly

to elements ηcX(a)Z(b) ∈ S; the ηc must be chosen in a consistent manner to maintain

group closure and a non-trivial eigenspace for Q. Physically, the ηc are determined by the

overall phases of the individual qubits. Each qubit can be “in phase" or “out of phase" with

respect to X-axis rotations, Z-axis rotations, or both.

Definition 3.8.3 (Character Vector)

184

A character vector for an n-qudit system is a length-2n complex vector, χ, consisting

of all the X phases then the Z phases on each qudit in a fixed order,

χ =
[
ηc1X , . . . , η

cn
X , η

c′1
Z , . . . , η

c′n
Z

]
.

Assuming Q is non-trivial, for a given stabilizer ηcX(a)Z(b),

ηc =
∏

i∈supp(a)

χi
∏

j∈supp(b)

χj, (3.9)

where supp(v) = {i | vi 6= 0} is vector support.

To unambiguously add signs to the trellis, modify every edge label with appropriate

signs using χ. The correctness of this method follows from the one-to-one correspondence

between paths in the trellis and elements of the subgroup and (3.9). Given the signed trellis,

we want to compute the signed complete weight enumerator of the subgroups S, CPn(S),

and CPn(S)\S for a stabilizer group over F2. The weight enumerator for CPn(S)\S may be

computed by summing the weight enumerators of each coset trellis since cosets are disjoint.

The idea is to modify Algorithm 4 such that any term with positive exponents flips to one

with negative exponents and vice versa when encountering an edge with a negative phase.

Positive exponents stay positive and negative exponents stay negative when encountering

an edge with a positive phase. Algorithm 5 assumes the fixed ordering of F4 = {0, 1, α, α2}

corresponding to variables {w, x, z, y}, respectively.

Theorem 3.8.4

Algorithm 5 correctly computes the signed complete weight enumerator of a subset

A ⊂ Pn defined by the trellis.

The proof follows from the proof of Theorem 3.8.1 while appealing to Equation (3.9).

As an application of the new weight enumerator, let ρ be the density matrix of a quan-

tum system encoded in some quantum stabilizer codeQ and U be an operator inM(2n,C).

185

Algorithm 5: Signed Complete Weight Enumerator
Input: A vertex set, V , along with an edge set, E, corresponding to a valid signed trellis.
Output: The signed complete weight enumerator.

1 Struct Vertex contains
2 Edge edge
3 Polynomial polynomial
4 end

5 Struct Edge contains
6 char label
7 Int sign
8 end

9 V0.polynomial← 1
10 for i← 1 to n do
11 for (j, v)← Enumerate(Vi) do
12 poly ← 0
13 for e← Ei[j] do
14 prev ← Vi−1[e.outvertex].polynomial
15 for k ← e.label do
16 if k is equal 0 then
17 if e.sign is equal + 1 then
18 if any exponents are negative then
19 for term← prev do
20 term← term ∗ w−1
21 end
22 else
23 for term← prev do
24 term← term ∗ w
25 end
26 end
27 else
28 for term← prev do

// Flip signs of all exponents
29 if any exponents are negative then
30 term← term ∗ w−1
31 else
32 term← term ∗ w
33 end
34 end
35 end
36 end

// Repeat for rest of symbols
37 end
38 end
39 poly ← poly + prev

40 end
41 v.polynomial← Simplify(poly)
42 end

43 return Vn.polynomial

186

Recall from Equation (1.23) that U may be written as a linear combination of {X(a)Z(b)}

with coefficients Ua,b ∈ C,

U =
∑
a∈Fnq

∑
b∈Fnq

Ua,bX(a)Z(b).

We wish to consider the action of the special case

UZ =
∑
b∈Fnq

UbX(0)Z(b)

on ρ via UZΠSρΠ∗SU
∗
Z , where ΠS is a projector onto the subspace fixed by the stabilizer

group S of Q. Suppose this is a CSS code with X and Z stabilizers given by generator

matrices of the classical codes C2 and C⊥1 , respectively. Since ΠS = ΠSXΠSZ and UZΠSX

simply produces a phase factor canceled out by swapping Π∗SX and U∗Z , it remains to study

UZΠSZ . Hu, Liang, and Calderbank show that

UZΠSZ =
1

|C⊥1 |
∑

µ∈Fnq /C⊥2

∑
γ∈C⊥2 /C⊥1

Aµ,γ
∑

u∈C⊥1 +v

ωcuZ(u),

where µ are pure errors for Z, γ are logical operators for Z, and

Aµ,γ :=
∑

v∈C⊥1 +µ+γ

η−cvUv

are the so-called generator coefficients of UZ [89]. In the case UZ =
(
e−iθZ/2

)⊗n,

Aµ,γ(θ) =
∑

v∈C⊥1 +µ+γ

η−cv
(

cos
θ

2

)n−wt(v)(
−i sin

θ

2

)wt(v)

.

To compute Aµ,γ(θ), one needs to know not only the Hamming weight but also the

phase η−cv of each operator in C⊥1 + µ + γ. This is easily accomplished with the trellis

since the signed CWE for the trellis for C⊥1 shifted by a fixed µ + γ contains all of this in-

187

formation. Note that if UZ preserves the code space, it can contain no pure errors (µ = 0),

making the operator more physically interesting and the sum more manageable. The ex-

amples in [89] either assume ηcv = 1 for all v, in which case the weight enumerator of

the classical code suffices, or the codes are small enough to brute-force enumerate every

element. Generator coefficients have been shown to be useful in the study and design of

QECCs [76, 216, 222], and the application here may be extended past our simple example.

Remark: Subtracting the weight enumerator of S from the weight enumerator of S⊥ pro-

vides an alternative method of computing the minimum distance of a stabilizer code. This

avoids the repeated shifting and processing of each coset in Section 3.7 for a faster runtime

at the expense of not returning a vector of minimum weight. Additionally, since the weight

enumerator never needs to traverse the trellis in both directions, one may compute the trellis

section-by-section, never storing more than one section in memory at a time. This further

reduces the storage cost and can be useful if the trellis is not going to be used twice.

3.9 Words Of Bounded Weight

Similar to the previous two applications, it is often useful to compute the set of elements

of a code, classical or quantum, with (Hamming) weight between some upper and lower

bound. Often, we want to know if there exist elements with a specific weight and if so

what they are in which case the upper and lower bound coincide. Conceptually, one could

do this using a trellis by simply applying DFS from Vn to V0. Each vertex must now store

a list of size degin of all path weights ending at that vertex, which is already computed

by the Viterbi algorithm. DFS is well-understood so we do not discuss this further. Note

however, this is unlikely to be parallelizable due to potential simultaneous memory access

with intersecting paths, and having a large gap between the upper and lower bounds will

require enumerating a significant amount of elements which could behave like a brute-

force enumeration algorithm. In these cases, a BZ-type algorithm will be more efficient

188

due to being able to use more than one generator matrix at a time. The catch is determining

whether a generator matrix has computed an element that another generator matrix has

already done. See [223] for an example solution. Note that the straightforward use of the

BZ algorithm for this is only effective for low weights, an adaption can be made for high

weights, and brute-force is faster for a range of weights in the middle [207]. This difficulty

is not present in the trellis-based algorithm.

Since computing the weight enumerators is typically so hard, it is often beneficial to

compute a partial weight distribution of the code using a words-of-bounded-weight al-

gorithm. This can give information about the number of correctable errors beyond the

b(d − 1)/2c guarantee. The trellis algorithm proposed here has the same runtime for the

partial and full weight enumerator, rendering this issue moot.

While we have not discussed it in this work, one of the most important pieces of infor-

mation about a code is its automorphism group (see Section 1.1). The most well-known

and widely implemented algorithm for this (GUAVA and MAGMA) is due to Leon [203].

The input to this algorithm is the set of elements of minimum weight. The original im-

plementations for this used the brute-force algorithm. More recent updates ran BZ once

to find the minimum weight, again to compute all the elements of minimum weight, then

ran Leon’s algorithm. At least MAGMA has combined the first two steps such that the ele-

ments of lowest known weight are stored until a new minimum weight is discovered. This

is also inefficient. The author has never implemented Leon’s algorithm, but [207] reports

that this often dominates the runtime of Leon’s algorithm. This again is not a problem for

the trellis-based approach. The forward pass (V0 to Vn) of the Viterbi algorithm computes

the minimum weight and then DFS on the backwards pass completes the set of minimum

weight elements.

189

3.10 Subfield Subcodes

Let C be an error correcting code over Fpm , and recall from Section 1.1 that the subfield

subcode of C over F ≤ Fpm , C|F, is the collection of codewords of C whose components lie

entirely in F. This is surprisingly easy to compute: chose a basis for Fpm/F, replace each

element of the parity-check matrix of C, H , with a column vector representing its basis

expansion, delete any linearly dependent rows, then the result is the parity-check matrix of

C|F. Using the terminology of Section 1.1, this is the transpose of the expansion of HT ,

since the expansion described there was row-wise (for generator matrices). A dual basis

may be need to be computed to determine the expansion of each element; see Section 1.1

for details.

The subfield subcode is similarly easy to compute directly from the trellis. If the trellis

is the only available information about a code, one does not need to extract a generating

set, compute a parity-check matrix, and then construct a trellis for the subcode. Instead,

one need only select the length-n paths of the trellis whose edge labels are elements of F.

To do this, set 0 ∈ V0 as “marked" and examine all outgoing edges. Set any edges and

corresponding terminal vertices as marked if the edge label is in the subfield. Now move

to V1 and repeat the same procedure for all of the marked vertices. Continue this until

Vn−1. Any path from V0 to Vn consisting of entirely marked edges and vertices is in the

subfield subcode, and it is clear from construction that this is the entire subcode. This is

never empty as the identity is always in both C and C|F.

This is a BFS approach. It may be desirable to remove the unmarked and “dead end"

paths and vertices which don’t make it to Vn before requiring an element of the extension

field. Instead of “deleting" or “unmarking", one may extract the subcode with BFS, work-

ing backwards from Vn along the marked paths. We refer to the trellis for the subfield

subcode as the subfield trellis.

Generators for CF may not have any discernible relationship to those of the supercode;

190

however, the above procedure makes clear that the set of left and right indices for the TOF

of C|F must be contained in the set of left and right indices for the TOF of C. This is stronger

than the statement that the generators of C may be chosen as the union of generators for

C|F and generators for C\C|F, and may point to the use of the TOF as a more important

canonical form than currently used in the literature.

The appeal of trellis algorithms for computing these quantities is in their absolute sim-

plicity. A single sweep through the trellis can generate the weight enumerators at the same

price as computing the minimum distance, so one might as well get the extra information.

If the trellis is going to be constructed for another purpose, it does not make sense to use

another algorithm. The NP-Hard runtime of these algorithms gets transferred to the one-

time construction and the exponential storage requirement. Given these two aspects can be

accommodated on a particular computer system, the trellis allows for quick computation of

numerous desirable objects and properties without repeated enumerations of elements.

191

CHAPTER 4

FUTURE DIRECTIONS

Despite the progress of the last two chapters, there are more open theoretical questions

about trellises than we have answered, leaving plenty of room for future exploration. We

hope the internal structure of the trellis will one day be useful in understanding the internal

structure of QECCs and their design. It is likely this will stem from a better understanding

of the relationship between the trellis, its dual (cosets), and their subcodes. Some of this

in the classical literature relies on the relationship between the trellis and the minimum

distance, which we have just established. The vertex and edge scaling of families of QECCs

is particularly important to understand for the practicality of trellis decoding of stabilizer

codes moving forward.

We have attempted to reduce both the storage and time requirements of the trellis. In

some situations, large trellises for classical codes are not stored but are computed as needed.

More advanced decoding techniques are also used to circumvent the high computational

complexity of the Viterbi algorithm; see [224] for a review. Both are fruitful avenues to

explore for QEC.

With respect to the material contained in this work, more examples and simulations

are needed. While we have not emphasized this here, simulations are the most important

aspect discussed here for the physics community. Decoders are typically benchmarked

against the depolarizing channel, as we have done; however, this is the worst case scenario

for the trellis as all non-identity edges have equal weight and ties are broken randomly.

Both depolarizing and biased error channels (e.g. pX < pZ) are experimentally relevant;

yet experimental characterizations of current quantum technology demonstrate that noise

does not affect each qubit equally. We should therefore be using an independently and non-

identically distributed (i.ni.d.) error channel. This may be taken into account in MWPM by

192

updating the edge weights in the matching graph, as before. Instead of using the Manhattan

metric on the lattice, the edge weights of the matching graph should be the maximum-likely

path between the two syndrome bits appropriately incorporating pX , pY , and pZ in the edges

of the lattice. This optimal path must be computed and requires standard graph algorithms,

such as A∗, to be run for every edge in the matching graph, which is a potential bottleneck.

Incorporating an i.ni.d. error channel for any stabilizer code with the trellis is easy: simply

use a different error model for each Ei for no added complexity.

A recent 2022 paper [225] simulated both the standard and modified MWPM algorithms

for a standard topological code for d = 3, 5, and 7 using the i.ni.d. error channel

E(ρ) = (1− pX − pY − pZ)ρ+ pXXρX + pY Y ρY + pZZρZ,

where

pX = pY =
1

4

(
1− e−t/T1

)
, pZ =

1

4

(
1 + e−t/T2 − 2e−t/T2

)
,

and T1 and T2 are physical parameters called the relaxation time and dephasing time, re-

spectively. Their d × d lattices are firmly in the finite-size effect regime and one does not

expect the results to hold as d goes to infinity (for example, note the behavior of the lower

distance lines in Figure 2.9). Nevertheless, they find the standard MWPM algorithm per-

forms poorly under the new error model and report significant gains for modified MWPM

using Dijkstra’s algorithm.

Modifying the edge weights of the trellis may also be the key to extending the decoder to

new paradigms. For example, erasures can be handled by setting the weight of the identity

such that it is never chosen in a given section. Bayes’ Theorem could be used to incorporate

flag information in circuit-level syndrome extraction. It’s still unclear at this preliminary

stage if this is the best method or if, for example, mimicking MWPM’s 3D matching graph

is more useful. In general, we are positively hopeful both spatial and temporal correlations

193

can be handled by minimal modifications to the previous chapters.

It remains to be seen how trellis decoding can benefit qudit codes such as those in [92].

4.1 Stabilizer Codes For Modular Architectures

Attempts to increase the (psuedo)threshold with more detailed simulations and better de-

coders should be performed in tandem with device specific QECC design for best results.

One area of practical interest where more detailed modeling and decoding can provide no-

table improvements is modular quantum computing architectures. Current state-of-the-art

designs and fabrication techniques combined with physical constraints dramatically limit

the number of qudits (currently qubits) in near-term quantum devices. It is expected that

near-term intermediate scale quantum (NISQ) technologies will consist largely of smaller

hardware modules interconnected in a larger plug-and-play type system.

Significant attention has been paid in recent years to optimizing quantum algorithms for

NISQ devices. All physical implementations of quantum computers large enough to run

quantum algorithms are going to suffer from some form of limited qubit connectivity [226].

Hardware specific compiling and scheduling have a profound effect on circuit depth (size),

overhead reduction, and error rate. This will likely be necessary for the foreseeable future

as the community continues to develop both efficient high-level and low-level quantum

programming languages. However, many of these optimizations are implicitly running on

encoded qubits. Often excluded in the analysis is the underlying error-correcting code.

QECCs have long been studied with respect to realistic error models, parallel measurement

scheduling, resource minimization, circuit-level optimizations, and transversal gates, but it

is less common to see codes developed for a specific qubit connectivity. This constraint

is less likely to be important for many of today’s popular codes which tend to have small

length and support only a single or few logical qubits, but certain applications of quantum

computers may require longer, high-rate codes to increase feasibility.

There are numerous obstacles to scaling current quantum technologies to larger devices.

194

The distributed quantum computing (DQC) approach to overcoming this is to network a

number of high-fidelity, smaller modules which are easier to manufacture and control. Each

module should have its own storage and ancilla qubits and a communication interface to

at least one other module. The interface could share classical or quantum information and

can move quantum data or teleport gates between modules. A sizable number of works

have aimed to optimize intermodule entanglement protocols, especially in the context of

one-way or measurement-based quantum computing where probabilistic methods are more

tolerable.

Traditional discussions of DQC are usually described as either top-down (completely

theoretical) or bottom-up (realistic modeling of a physical device). QECCs are mostly top-

down, although they may be simulated against realistic error models, and assume the entire

code fits inside a single module and any single-qubit (multi-qubit) operation has equal

fidelity (between any pair of qubits). Depending on the length of the code, this may or

may not be realistic. It is then the experimentalist’s job to come up with an implementation

of a given code on their system. Here we consider a meet-in-the-middle approach where

we would like to stay as theoretical as possible while also acknowledging the underlying

distributed architecture.

To accomplish this, we propose studying codes whose stabilizer matrix is in an ABDF

where each block corresponds to a single module. The code cannot be decomposable (a

direct sum), the modules need to be entangled; so the stabilizers cannot be put into a true

block-diagonal form, but we attempt to minimize the number of stabilizers requiring slow,

expensive, and noisy intermodule communication. This decreases the overall error rate and

increases parallelism since measurements may be made in each module independently. We

remain completely agnostic as to the specific technology used to implement each module,

and the modules need not be homogenous. We ignore network topology and assume a

pair of modules are connected if necessary. Stabilizers contained in a module are allowed

to be any weight. Some modules, qudits, or stabilizers may be more noisy than others,

195

...

B

B

B

glue vectors

,

Figure 4.1: The ABDF targeted in this section.

introducing a space-like component to the standard time-like error models, as previously

discussed.

Block-diagonal forms are common in mathematics, but ABDFs are not. To demonstrate

how this can be done, we present two approaches of constructing ABDF codes: using

subcodes of existing codes (Sections 4.1.1) and using existing codes on each module then

constructing a larger code which includes this as a subcode (Section 4.1.2). As an example

of the former, we examine CSS codes whose stabilizers use a lesser-known almost block-

diagonal decomposition from classical coding theory. Unfortunately, the examples here

are instructive but not yet promising. More work is required to comb through the sizable

space of potential codes. Perhaps the most interesting example, the celebrated 15 qubit

QRM code, is a negative result, exemplifying the need for more study. We discuss the open

questions stemming from this in Section 4.2.

Formally, consider nh hardware modules each contributing nq qubits to the implemen-

tation of a single stabilizer code of length n = nhnq. We would like both the X and Z

stabilizers to be put into the ABDF of Figure 4.1, where there are nh copies of some length

nq code B. The remaining stabilizers serve to “glue" the smaller codes together.

196

4.1.1 Modular Quantum CSS Codes From Expanded RS Codes

Vardy and Be’ery proved in 1991 that expanded, cyclic RS codes have exactly the structure

of Figure 4.1 [227].

Theorem 4.1.1 (Vardy-Be’ery decomposition (VBD))

Let C be a cyclic RS code over Fpm for p,m ≥ 2. Using column permutations, the

expanded generator matrix, Gφ (Equation (1.3)), can be put into the form of Figure 4.1,

where B is the generator matrix of the corresponding BCH subfield subcode B.

The proof of this is easy. Instead of expanding C in its entirety, first perform the expan-

sion on B ⊂ C only. As a subfield subcode, the codewords of B are closed in C under scalar

multiplication in Fpm . Choose a basis, β, of Fpm/Fp and let Bi = {βib : b ∈ B}. Clearly

the Bi are disjoint subcodes of C. For b = (b1, . . . , bn), a row of the generator matrix of B,

the expansion of βib gives m rows of the form

(b1, 0, . . . , 0, b2, 0, . . . , 0, bn, 0, . . . , 0),

(0, b1, 0, . . . , 0, b2, 0, . . . , 0, bn, 0, . . . , 0), (4.1)

(0, 0, b1, 0, . . . , 0, b2, 0, . . . , 0, bn, 0, . . . , 0),

where we have used the fact that TrFpm/Fp is Fp-linear and TrFpm/Fp(b`βiβ
⊥
j) = b`δij . There

are m− 1 zeros (cyclically) between each non-zero element. Permuting columns put these

into the form

(b1, . . . , bn, 0, . . . , 0, 0, . . . 0),

(0, . . . , 0, b1, . . . , bn, 0, . . . 0),

(0, . . . , 0, 0, . . . 0, b1, . . . , bn).

Repeating this for all of the rows of the generator matrix of B then permuting rows com-

pletes the m factors of B ⊕ . . .⊕B.

197

If C has dimension k and B, k′, then m(k−k′) more “glue vectors" are required to span

the expanded code, φβ(C). These must be inside of φβ(C) but with a nonzero component

outside out Bi if we want the generator matrix to be full rank. The remaining vectors are

therefore a basis of the row space of φβ(C)/ (⊕mi=1Bi). The literature often describes the

glue vectors as sums of minimum-weight coset leaders of B considered as polynomials also

satisfying the zeros of C [228]; however, the standard coset leaders algorithm makes this

difficult to use for even small codes. Instead, these may be computed, even for large codes,

using elementary linear algebra using the same algorithm one would for computing the

quotient space of two modules. It may be experimentally advantageous to further enforce

that the glue vectors be of specific weight or as low-weight as possible. This can be done by

selecting appropriate elements from φβ(C)/ (⊕mi=1Bi) using the techniques of the previous

chapter.

Vardy and Be’Ery provide no insight as to when a non-trivial decomposition exists in

the sense that we desire k 6= 0, 3 ≤ d < n. There are too many parameters in the problem

to prove a general statement about this. It’s possible to prove some number-theoretic state-

ments when the length of the code is of a specific form; however, we do not see the utility

in performing this exercise here. Instead, fixing all the parameters we demonstrate how

to easily determine when a non-trivial VBD exists. We do this over the low-dimensional

qudit systems F2,F3, and F5 and stick to codes of moderate length n ≤ 200. Codes over

F26 ,F34 ,F53 , and larger fields produce expanded codes that are too long.

We prove the first two statements of the following proposition. The proofs for (iii) -

(vii) follow the same pattern but are tedious, since instead of finding contradictions one

must now keep track of all of the examples constructed by checking all possible parameter

choices. The RS codes using the field extensions in (i) and (ii) are too small to fit non-

trivial subfield subcodes. These cases are a bit contrived as one would not, for example,

make modules of length three to implement a code of length six. We consider them here

to demonstrate the proof technique. Examples are plentiful in (iii) - (vii), however, not all

198

of them are good in the sense that the ratio of glue vectors to the total number of rows

could easily be over 50%. These codes defeat the purpose of this application, so instead we

search for codes with the number of glue vectors less than some threshold.

Proposition 4.1.2

(i) There are no stabilizer codes with both X and Z stabilizers supporting a non-trivial

VBD for F4/F2.

(ii) There are no stabilizer codes with both X and Z stabilizers supporting a non-trivial

VBD for F8/F2.

(iii) There are four VBDs for F16/F2 where less than 20% of the rows are glue vectors.

All of them have between 15% - 17% glue vectors.

(iv) There are eight VBDs for F32/F2 where less than 20% of the rows are glue vectors.

All of them have between 10% - 14% glue vectors.

(v) There are six VBDs for F9/F3 where less than 20% of the rows are glue vectors. All

of them have between 16% - 20% glue vectors.

(vi) There are 40 VBDs for F27/F3 where less than 20% of the rows are glue vectors. All

of them have between 8% - 18% glue vectors.

(vii) There are 88 VBDs for F25/F5 where less than 20% of the rows are glue vectors. All

of them have between 4% - 20% glue vectors.

Proof. Let the superscript Cpm

s denote the q in q-coset, and recall that the cyclotomic cosets

of the RS codes over the extension fields are always of size one. RS codes with δ = 2 have

a single cyclotomic coset and therefore parameters [n, n− 1, 2]pm , which we ignore as we

require 3 ≤ d < n. We also define codes to have support on all of their bits, so all binary

[n, 1] codes are necessarily the [n, 1, n] repetition code, which we are also not interested in.

(i) For F4 we have C2
0 = {0} and C2

1 = {1, 2}. To ensure d ≤ 3, δ ≥ 2. If δ > 2, then

all cyclotomic cosets are chosen for the generator polynomial and the resulting code

199

has dimension 0. Therefore δ = 2 and either b = 0 or b = 1. If b = 0, the RS code is

[3, 2, 2]4, the BCH subcode is [3, 2, 2]2, and the expanded code is [6, 4,≥ 2]2. There

are therefore no glue vectors and the code is decomposable. If b = 1, we may choose

T1 = C4
1 or T2 = C4

1∪C4
2 . The code T1 has parameters [3, 2, 2]3 with subcode [3, 1, 3]2

and expanded code [6, 4,≥ 2]2. This has two glue vectors. Considering this generator

matrix as either X or Z stabilizers leaves the other with exactly one stabilizer with

support over all six qubits. This could be beneficial if so desired, but does not satisfy

the ABDF requirement chosen for our model. The code T2 is [3, 1, 3]4 with subcode

[3, 1, 3]2, and the [6, 2,≥ 3]2 expanded code has no glue vectors. Alternatively, we

could have disqualified any [n, 1, n] repetition code for not meeting our criteria.

(ii) The 2-cyclotomic cosets modulo 7 are C2
0 = {0}, C2

1 = {1, 2, 4}, and C2
3 = {3, 5, 6}.

For b = 0: 2 < δ < 5 since for δ ≥ 5 the subfield subcode has dimension 0.

— δ = 3→ TRS = C8
0 ∪ C8

1

RS code: [7, 5, 3]8, subcode: [7, 3,≥ 3]2, expanded code: [21, 15,≥ 3]2,

glue: 6

— δ = 4→ TRS = C8
0 ∪ C8

1 ∪ C8
2

RS code: [7, 4, 4]8, subcode: [7, 3,≥ 3]2, expanded code: [21, 12,≥ 3]2,

glue: 3

For b = 1: 2 < δ < 4 since for δ ≥ 4 the subfield subcode is a repetition code

or dimension 0.

— δ = 3→ TRS = C8
1 ∪ C8

2

RS code: [7, 5, 3]8, subcode: [7, 4,≥ 3]2, expanded code: [21, 15,≥ 3]2,

glue: 3

For 2 ≤ b ≤ 4: all cases lead to the repetition code or dimension 0.

For b = 5: 2 < δ < 5.

200

— δ = 3→ TRS = C8
5 ∪ C8

6

RS code: [7, 5, 3]8, subcode: [7, 4,≥ 3]2, expanded code: [21, 15,≥ 3]2,

glue: 3

— δ = 4→ TRS = C8
0 ∪ C8

5 ∪ C8
6

RS code: [7, 4, 3]8, subcode: [7, 3,≥ 3]2, expanded code: [21, 12,≥ 3]2,

glue: 3

For b = 6: 2 < δ < 4.

— δ = 3→ TRS = C8
0 ∪ C8

6

RS code: [7, 5, 3]8, subcode: [7, 3,≥ 3]2, expanded code: [21, 12,≥ 3]2,

glue: 6

Used as either an X or Z stabilizer, the [21, 15]2 code supports a maximum of

five stabilizers of the other type and the [21, 12]2 a maximum of eight. Hence,

neither code can be used if we require both the stabilizer types to support the

VBD.

For the reader’s convenience in deriving the results in (iii) - (vii):

— The 2-cosets modulo 15 are:

C16
0 = {0} , C16

1 = {1, 2, 4, 8} , C16
3 = {3, 6, 9, 12}

C16
5 = {5, 10} , C2

7 = {7, 11, 13, 14}.

— The 2-cosets modulo 31 are:

C32
0 = {0} , C32

1 = {1, 2, 4, 8, 16} , C32
3 = {3, 6, 12, 17, 24},

C32
5 = {5, 9, 10, 18, 20} , C32

7 = {7, 14, 19, 25, 28} , C32
11 = {11, 13, 21, 22, 26},

201

C32
15 = {15, 23, 27, 29, 30}.

— The 3-cosets modulo 8 are:

C9
0 = {0} , C9

1 = {1, 3} , C9
2 = {2, 6} , C9

4 = {4} , C9
5 = {5, 7}.

— The 3-cosets modulo 26 are:

C27
0 = {0} , C27

1 = {1, 3, 9} , C27
2 = {2, 6, 18} , C27

4 = {4, 10, 12},

C27
5 = {5, 15, 19}, , C27

7 = {7, 11, 21} , C27
8 = {8, 20, 24},

C27
13 = {13} , C27

14 = {14, 16, 22} , C27
17 = {17, 23, 25}.

— The 5-cosets modulo 24 are:

C25
0 = {0} , C25

1 = {1, 5} , C25
2 = {2, 10} , C25

3 = {3, 15},

C25
4 = {4, 20} , C25

6 = {6} , C25
7 = {7, 11} , C25

8 = {8, 16},

C25
9 = {9, 21} , C25

12 = {12} , C25
13 = {13, 17} , C25

14 = {14, 22},

C25
18 = {18} , C25

19 = {19, 23}.

Remark: The process of mapping a cyclotomic coset from an extension field to a subfield

is sometimes referred to as coset aliasing.

This method of obtaining an ABDF is highly constrained. For a given nh, the RS code

has length pm − 1, and the expanded code has length nh(pm − 1), which is why we did not

need to specify the lengths of the codes in the statement of the previous theorem. To build

a stabilizer code, we may use the CSS constructions CSS(C2, C1), CSS(C), or otherwise

ensure that the stabilizers are symplectic orthogonal. Section 1.3.3 shows that this requires

nested codes and Section 1.1 gives conditions for when two cyclic codes are nested. The

202

expansion must preserve the orthogonality of the original codes, so the discussion of self-

dual bases in Section 1.1 applies. As mentioned in that section, different bases may give

expanded codes with different properties, and this extends to quantum properties such as

transversal gates as well.

In all cases (iii) - (vii), finding “good" CSS codes with both X and Z supporting a

non-trivial VBD requires

(i) enumerating all possible VBDs

(ii) enumerating all nested combinations of these

(iii) enumerating all bases

(iv) computing the properties of every nested combination with every basis.

We could relax the requirement that both X and Z must support a VBD to only one must

support a VBD to significantly increase the number of possible codes. We can also derive

non-CSS stabilizer codes from classical codes using the Hermitian construction, but we did

not cover this in Chapter 1 and therefore will not discuss this further here.

4.1.2 Modular Quantum CSS Codes From BCH Codes Of Composite Length

In a separate 1994 paper [229], Vardy and Be’ery show that binary, primitive BCH codes

and binary BCH codes of composite block length may also be put into ABDF. We will also

refer to this as a VBD since the proper technique should be clear from context. For primitive

BCH codes, they extended the code and then split the zeros into partitions satisfying certain

properties. The direct-sum subcodes are then obtained by puncturing on the set complement

of the indices corresponding to the defining sets of each partition. This applies directly

to RM codes. We will not use this approach here but instead consider BCH codes of

composite block length. The two approaches are almost identical except that in the latter

case the partitions are immediate from the structure of the code. The following applies to

203

cyclic codes in general, however, we stick to BCH codes here for the minimum distance

guarantees provided by the BCH bound.

Let C be a BCH code over F2 of composite length n = nhnq with defining set Cn
b ∪

. . . ∪ Cn
b+δ−2. Consider the sets Ii = {1 + j + i · nh} where 0 ≤ j ≤ nh − 1 for fixed

0 ≤ i ≤ nq − 1.

Theorem 4.1.3 (Proposition 2 [229])

The code obtained from C punctured on the complement, Ici , is a BCH code of length

nq with defining set Cnq
b ∪ . . . ∪ C

nq
b+δ−2.

For example, consider the BCH code with b = 0 and δ = 5 constructed with nh = 3

hardware modules of nq = 15 qubits each. The 2-cosets modulo 45 are

C45
0 = {0} , C45

1 = {1, 2, 4, 8, 16, 17, 19, 23, 31, 32, 34, 38} , C45
3 = {3, 6, 12, 24},

so this has parameters [45, 28, 6]. Then

I1 = {1, 4, 7, . . . , 43} , I2 = {2, 5, 8, . . . , 44} , I3 = {3, 6, 9, . . . , 45}.

The BCH subcode has the defining set C15
0 ∪ . . . ∪ C15

3 . The 2-cosets modulo 15 are

C15
0 = {0} , C15

1 = {1, 2, 4, 8} , C15
3 = {3, 6, 9, 12},

C15
5 = {5, 10} , C15

7 = {7, 11, 13, 14}.

giving a [15, 6, 6] code. Permuting the indices of I1 to indices 1 - 15, I2 to 16 - 30, and I3

to 31 - 45 completes the direct-sum subcode.

While it is not mentioned in [229], the first VBD may seen as a special case of the

second. It is well-known in the study of cyclic codes that expanded RS codes are BCH

codes. The RS code has length nq = pm−1 and the expansion mnq, where we can identify

nh = m. The sets Ii are the non-zero locations of (4.1).

204

We can use the previous theorem to construct codes in a similar way to the previous

subsection; however, we again run into an exhaustive blind search for a code with good

properties. Instead, we propose a novel application of the previous theorem: start with a

desirable subcode and then build a BCH supercode around it. At the moment, it is un-

clear which subcodes are “desirable". Two of the most popular QECCs are the Steane and

15-qubit QRM code, and it is interesting to consider them as subcodes in a toy model.

There are a few different ways one could define a family of CSS QRM codes, of which

the previous two codes are one example. To use them in the previous theorem, we first

show that these RM codes are equivalent to BCH codes. While the RM-BCH relationship

is well-known in classical coding theory, the fact that the 15-qubit code is cyclic has not

appeared in the QEC literature. The end result of our example is that it cannot be done

without expurgating some of the resulting stabilizers, but it is easy to see that this stems

from the particular parameters of the code, and other QRM codes in this family are unlikely

to run into the same problem. We consider expurgating in the next section.

Let n = pm − 1. The p-weight of an integer 0 ≤ a ≤ n is wtp(a) =
∑m−1

j=0 aj ,

where a =
∑m−1

j=0 ajp
j , 0 ≤ aj ≤ p − 1 is the p-adic expansion of a. Equivalently,

we may interpret a vector in Fmp as the coefficients of a p-adic expansion and define the

p-weight as the sum of the elements. Consider monomials of the form xi11 x
i2
2 . . . x

im
m for

i1 + . . . + im ≤ r. Interpreting (i1, . . . , im) as a p-adic expansion, all cyclic shifts are

also valid monomials of total degree less than r, have constant p-weight, and generate the

p-coset Ci where i =
∑m−1

j=0 ijp
j . In this way we establish a correspondence between

multivariate polynomials of RM∗(r,m) and univariate polynomials of BCH codes.

Theorem 4.1.4 ([230])

Let α be a primitive root of F×pm and define g∗r.m(x) =
∏

(x− αa) where 0 < wtp(a) ≤

m(p− 1)− r− 1. ThenRM∗
pm(r,m) is permutation equivalent to the subfield subcode of

C∗r.m = (g∗r.m(x)) over Fp.

Since the defining set of C∗r.m is comprised of complete p-cosets, g∗r.m ∈ Fp[x] and hence

205

C∗r.m = C∗r.m ∩ Fp.

The 15-qubit QRM code is formed from the shortened RM codesRM(1, 4) andRM(2, 4)

with X stabilizers given by G(1, 4) and Z stabilizers by G(2, 4). Recalling the relation-

ship between shortened and punctured codes, the X stabilizers are equivalent to a parity

check matrix for RM∗(2, 4) and the Z stabilizers are equivalent to a parity check matrix

forRM∗(1, 4). It’s instructive to construct these explicitly.

We begin with RM∗(1, 4). The set of all integers a with Hamming weight 0 <

wt2(a) ≤ 2 is

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12} = C16
1 ∪ C16

3 .

The corresponding generator polynomial is g∗1,4(x) = 1 +x+x2 +x4 +x5 +x8 +x10. For

RM∗(2, 4), the set of all integers awith Hamming weight 0 < wt2(a) ≤ 1 is {1, 2, 4, 8} =

C16
1 . The corresponding generator polynomial is g∗2,4(x) = 1 + x2 + x3 + x4. The dual

codes have generator polynomials (g∗1,4)⊥(x) = 1 + x2 + x4 + x5 and (g∗2,4)⊥(x) = 1 +

x3 + x4 + x6 + x8 + x9 + x10 + x11. Generator matrices for these are

G(1, 4) =

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

, (4.2)

206

and

G(2, 4) =

1 0 1 0 1 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

. (4.3)

A set of explicit stabilizers for the 15-qubit QRM code are given in [231] as

GX =

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

, (4.4)

207

and

GZ =

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

. (4.5)

One may check that rowspace(G(1, 4)) ∼= rowspace(GX) and rowspace(G(2, 4)) ∼=

rowspace(GZ) via the permutation (3 5 9 15 13 14 12 7 11 8 4).

It remains to show that these two codes can form direct-sum subcodes of BCH codes

such that the number of glue vectors is greater than zero but less than some reasonable

percentage of the overall code. The X code has parameters [15, 4] and Z, [15, 10]. The

number nh cannot be even because cyclic codes require gcd(n, p) = 1, so the first test

case is nh = 3. The 2-cosets modulo 45 are given in the previous section. The duals

have defining sets TX = C15
0 ∪ C15

1 ∪ C15
3 ∪ C15

7 (b = 0, δ = 7) and TZ = C15
0 ∪ C15

1

(b = 0, δ = 4), so the corresponding BCH supercodes for X has parameters [45, 22] and

[45, 32] for Z. There are therefore ten X stabilizer glue vectors and Z has two. However,

the combined stabilizer code encodes no logical qubits.

The problem with this code is there are too many Z stabilizers. The coset C0 always

has a single element, and the cardinality of all other cosets must divide ordn(p), which is

exactly |C1|. Since the dimension of the code is n− |T | = n− 1− ordn(p), reducing the

number of stabilizers requires ordn(p) to be large, which simply does not occur for the nh

in the ranges we are interested in. Thus, in order to make a stabilizer code with these X

208

modules and these Z modules, we would have to expurgate glue vectors. The question then

becomes deeper: which stabilizers can be removed and which cannot? We briefly discuss

this next.

4.2 Gluing Theory For Stabilizer Codes

To answer the questions asked at the end of the last section, we must answer the more

fundamental question of: what is the role of each stabilizer in a code? This question does

not make sense in classical coding theory as there is no equivalent concept of encoded

operations. For a stabilizer code, one can ask, for example, whether or not a transversal

gate remains transversal after a given stabilizer is added or removed. A generator-by-

generator study or building of a code is currently missing in the QEC literature. We call

this “gluing" in analogy to the way classical self-dual codes can be put together to create

larger self-dual codes. The ABDF of the previous section may also be seen in this light.

motivating the glue vector terminology. In fact, many QECCs may be seen as descending

from this procedure.

The codes of the previous sections had the distinctive feature that the supercode al-

ready existed and we merely permuted it to expose a desired form. This has the advantage

that the glue vectors are pre-determined and are computable by elementary linear algebra.

However, as we’ve seen, this also has its drawbacks. For starters, it may be unclear if a

given code may be put into ABDF. When it can, the supercode might not have desirable

properties such as transversal gates. The constructions of the previous sections also forced

each block to be the same. We tried to improve this by working backwards from a desirable

subcode, but the construction was highly specific and still left us with a fixed supercode.

Now we consider the more general scenario of gluing m blocks Xi (Zi) to make a

generating set of X and Z stabilizers, respectively. We require the length of Xi and Zi to

be the same but they may differ for indices i 6= j. In particular, the pairs Xi, Zi and Xj, Zj

need not have any relationship to each other. Since X must commute with Z, Xi ⊂ Z⊥i for

209

all 1 ≤ i ≤ m.

Glue vectors are of the form (g1, . . . , gm), where each glue component, gi, is a vector

the length of block i. If only one gi is nonzero, the vector may be expurgated from the

glue and augmented to the appropriate block as a stabilizer, if it is not already one. So

we may assume without loss of generality that at least two gi are nonzero for every glue

vector. Codes with decomposable parts are not physically interesting, so we require that gi

is nonzero for at least one glue vector for all i.

We analyze the X glue vectors, the Z discussion is similar. The only constraint on the

gi is that it also commutes with Zi. There are three ways to select them:

Type I: glue vectors may consist entirely of stabilizers (gi ∈ Xi) by removing generators

from a block and concatenating them in the glue

Type II: glue vectors may consist entirely of logical operators of each block (gi ∈ Z⊥i \Xi)

Type III: glue vectors may consist of a combination of logicals and stabilizers removed

from blocks.

Not all three types of gluing are available in every scenario. For example, taking the direct

sum of two [[ni, 1, di]] CSS codes gives n1 + n2 − 2 stabilizers. Assuming both X and Z

need at least one glue vector, a Type II gluing produces a k = 0 code.

Example 16. The [[7, 1, 3]] Steane code has X and Z stabilizers

f1 = (1 0 1 0 1 0 1), f2 = (0 1 1 0 0 1 1), f3 = (0 0 0 1 1 1 1),

and the all-ones vector is a logical representative L. One possible Type I gluing for two

copies of this code would be

SX/Z = {(f1 | 0), (f2 | 0), (0 | f1), (0 | f2), (f3 | f3)},

210

where (· | ·) denotes vector concatenation. One possible Type III gluing would be

SX = {(f1 | 0), (f2 | 0), (0 | f1), (0 | f2), (f3 | f3)},

SZ = {(f1 | 0), (f2 | 0), (f3 | 0),

(0 | f1), (0 | f2), (0 | f3), (L | L).

The first example has parameters [[14, 4, 2]] and the second [[14, 2, 2]]. To understand this

distance drop notice that for every stabilizer there is a weight-one error which anticom-

mutes with only that stabilizer. Then any (fi | fj) has a commuting weight-two error. (It

may be helpful to picture the Steane code as the d = 3 triangular color code, in which case

these errors are on the outer corners of Figure 1.6a.)

Example 17. It is well-known that the QRM code contains two copies of the Steane

code plus an extra qubit. We may consider this as an inhomogeneous modular architecture

with blocks of sizes seven, one, and seven and codes [[7, 1, 3]], [[1, 1, 1]], and [[7, 1, 3]],

respectively. Then the stabilizers (4.4) and (4.5) are of the form

GX = {(f1 | 0 | f1), (f2 | 0 | f2), (f3 | 0 | f3), (0 | 1 | L)}

and

GZ = {(f1 | 0 | f1), (f2 | 0 | f2), (f3 | 0 | f3), (0 | 1 | L),

g1, g2, g3,

(0 | 0 | f3), (0 | 0 | f2), (0 | 0 | f1)},

respectively. The last three elements of GZ may be used to remove the second Steane copy

211

from the first three elements leaving the ABDF

GZ = {(f1 | 0 | 0), (f2 | 0 | 0), (f3 | 0 | 0),

(0 | 0 | f3), (0 | 0 | f2), (0 | 0 | f1),

(0 | 1 | L), g1, g2, g3},

where the last four elements are Type II glue vectors. The inclusion of the logical prevents

the distance drop from the Type I gluing in the previous example, and the remaining three

rows of (4.5), {g1, g2, g3}, may be interpreted as glue vectors. Alternatively, we could

have started with two copies of Steane and tried to target a transversal T logical gate.

The Hamming weight-eight condition for T forces a gluing similar to GX with an extra

qubit because (the usual representative of) L has weight seven. We also know that we

need rowspace(GX) ⊂ rowspace(GZ), leaving a [[15, 7, 3]] code. Desiring k = 1, we can

decouple the rows of GZ back into blocks since they are not required to be higher weight

to get a [[15, 4, 3]] code. Type II glue vectors may be chosen to reduce this to [[15, 1, 3]].

Remark: This code had previously only been derived via puncturing and shortening and

happens to come out with the desirable properties it has. The cyclic derivation of the pre-

vious section is new and demonstrates a previously unknown internal structure of the code,

but was also not very illuminating. Gluing theory was able to derive it with just a few guid-

ing principles. The approach of the previous example also shows that stabilizers of the form

(fi | 0 | fj) with i 6= j are also viable, representing a permutation of the second Steane

block. Most importantly, we see that from this perspective the stabilizers {g1, g2, g3} only

exist for a singular reason: to lower the number of encoded qubits. These may therefore be

selected arbitrarily from G⊥X as long as they satisfy the weight requirements for maintain-

ing the transversal T gate.

212

Converting between the Steane and QRM codes is a leading method to circumvent the

Eastin-Knill theorem to obtain a transversal, universal gate set. The logical gate set of the

input and output codes of the gluing are thus not only changed, but in this extreme example,

complementary. An interesting question is whether or not this is generic. To answer this,

we recall the fundamentals of the stabilizer formalism from Section 1.3.2.

To align with the rest of the coding theory literature, we refer to the process of removing

a stabilizer generator as expurgating and adding a generator by augmenting. Fix an ordering

of stabilizer generators S = 〈S1, . . . , Sn−k〉 and let

Q(i) =
i⋂

j=1

{v ∈ Cqn | Sjv = v} (4.6)

be the quantum stabilizer code for part of S and Q be the full quantum stabilizer code.

Each stabilizer Si adds a new constraint, fixing a degree of freedom in Cqn . Consider

expurgating, without loss of generality, the generator Sn−k to form a new stabilizer group

S\〈Sn−k〉. Then Q ⊂ Q(n−k−1) with co-dimension one. A basis for the new space is

obtained by extending the old basis {ui, vi} by one pair. In particular, none of the existing

logical operators {X i, Zi} are modified, so the stored information and operators acting as

linear combinations of these matrices are preserved.

Now consider augmenting Sn−k+1: S 7→= S × 〈Sn−k+1〉. Then Q(n−k+1) ⊂ Q with

co-dimension one. The new stabilizer must commute with all elements ηcX(a)Z(b) ∈ S,

which only depends on (a | b) ∈ F2n
p . It therefore suffices to study this in the symplectic

formulation via Ψ : Pn → F2n
p (see Section 1.3.2). The problem is then understanding

the behavior of the orthogonal complement of a vector space as the vector space grows.

Recall Ψ(S) ⊂ Ψ(S⊥) ⊂ F2n
p and that the inner product is given by the symplectic form

〈(a, b) | (c, d)〉s = b·c−d·a, where b·a is the standard dot (Euclidean inner) product. Since

S is abelian, the form vanishes on Ψ(S), making it a totally isotropic subspace of Ψ(S⊥).

The generators of S induce a basis on this space {s1, . . . , sn−k}. The full space Ψ(S⊥) is

213

symplectic and therefore there exists a basis {u1, . . . , un+k, v1, . . . , vn+k} satisfying

〈ui, uj〉s = 〈vi, vj〉s = 0 , 〈ui, vj〉s = δij.

Instead of using this basis, the logical operators are defined by extending the basis of Ψ(S)

to Ψ(S⊥) by 2k operators: {s1, . . . , sn−k, u1, . . . , uk, v1, . . . , vk}. To do this, solve the

system of equations

〈s1, ui〉s = . . . = 〈sn−k, ui〉s = 0 , 〈uj, ui〉 = 0 (4.7)

for ui /∈ Ψ(S) for 1 ≤ i ≤ k and 1 ≤ j < i when i 6= 1. Then solve the system of

equations

〈s1, wi〉s = . . . = 〈sn−k, wi〉s = 0 , 〈ui, wj〉s = δij (4.8)

for wj for 1 ≤ j ≤ k. Finally, set cij in vi = wi + cijuj such that 〈vi, vj〉s = 0.

Codes are created by fixing the degrees of freedom corresponding to {s1, . . . , sn−k}.

Information is stored in the remaining degrees of freedom as v =
∑k

i=1 aiui + bivi with

coefficients ai, bi ∈ Fp. Suppose a new stabilizer sn−k+1 is added to the basis of Ψ(S).

If sn−k+1 ∈ Ψ(S) this has no affect, so assume this is not the case. Without loss of

generality, we may consider sn−k+1 ∈ Ψ(S⊥)\Ψ(S) such that sn−k+1 =
∑k

i=1 diui + eivi

with di, ei ∈ Fp.

Consider the special case sn−k+1 = u1, v1, or u1+v1. Adding a generator to Ψ(S) drops

the dimension of Ψ(S⊥) by two. The set {s1, . . . , sn−k, sn−k+1, u2, . . . , uk, v2, . . . , vk} sat-

isfies Equations (4.7) and (4.8), so Ψ(S⊥) only updates by removing u1 and v1. If either a1

or b1 are nonzero, the information in v is destroyed. In the more general case, any nonzero

di or ei causes a violation of the system of equations and must be removed from the basis

for Ψ(S⊥). If too many basis elements are removed, the system needs to be resolved for

new ui, vi to complete the set. Sometimes a simple Gram-Schmidt-like procedure can up-

214

date the old basis, but it is unclear if this procedure is always available. Any information

stored using the removed or updated basis elements will be destroyed.

We hope that this insight can serve as a guiding principle pulling all sections of this chap-

ter together: QECCs for modular architectures glued together in such a way that desirable

properties of individual codes are not disturbed by the others. This shares similarities with

gauge fixing of subsystem codes and may open new directions in this area such as a more

general and less intuitive method of construction. The above examples concentrated on

CSS codes, but gluing is even easier for general stabilizer codes because only one glue

vector is required instead of one for each X and Z type. Further exploration of the connec-

tion between cyclotomic cosets, Hamming weight, and logical operators may be necessary

to extend the cyclic code examples above.

The number of active generators in the trellis of codes in ABDF is bounded by the size

of the block plus the number of glue vectors, which is usually considerably smaller than

the number of generators of the full code. One may also consider a 2-stage decoder similar

to the concatenated Steane code in Example 9. Detailed modeling and the minimization

of noisy qudit interactions using the ABDF may compensate for the sub-optimality of this

style of decoder.

215

REFERENCES

[1] S. Garoufalidis, E. Sabo, and S. Scott, “Exact computation of the n-loop invariants
of knots,” Experimental Mathematics, vol. 25, no. 2, pp. 125–129, 2016.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[3] M. A. Nielsen and I. Chuang, Quantum computation and quantum information,
2002.

[4] D. A. Lidar and T. A. Brun, Quantum error correction. Cambridge university press,
2013.

[5] J. H. Van Lint, Coding theory. Springer, 1971, vol. 201.

[6] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. Else-
vier, 1977, vol. 16.

[7] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes. Cambridge
university press, 2010.

[8] J. A. Wood, “Duality for modules over finite rings and applications to coding the-
ory,” American journal of Mathematics, pp. 555–575, 1999.

[9] Y. Wu, “On expanded cyclic and reed–solomon codes,” IEEE transactions on in-
formation theory, vol. 57, no. 2, pp. 601–620, 2011.

[10] D. Jungnickel, A. J. Menezes, and S. A. Vanstone, “On the number of self-dual
bases of gf(qm) over gf(q),” Proceedings of the American Mathematical Society,
vol. 109, no. 1, pp. 23–29, 1990.

[11] C. T. Retter, “Orthogonality of binary codes derived from reed-solomon codes,”
IEEE transactions on information theory, vol. 37, no. 4, pp. 983–994, 1991.

[12] G. D. Forney, “Coset codes. ii. binary lattices and related codes,” IEEE Transac-
tions on Information Theory, vol. 34, no. 5, pp. 1152–1187, 1988.

[13] K. Parthasarathy, An Introduction To Quantum Stochastic Calculus. Birkhäuser,
2012, vol. 85.

[14] P. Meyer, Quantum Probability For Probabilists. Springer, 2006.

216

[15] B. Coecke and E. O. Paquette, “Categories for the practising physicist,” in New
structures for physics, Springer, 2010, pp. 173–286.

[16] P. Busch, P. J. Lahti, J.-P. Pellonpää, and K. Ylinen, Quantum measurement. Springer,
2016, vol. 890.

[17] D. Gottesman, Stabilizer codes and quantum error correction. California Institute
of Technology, 1997.

[18] M. Choi, “Positive linear maps on c∗-algebras,” Canad. J. Math, vol. 24, 1972.

[19] J. Watrous, The theory of quantum information. Cambridge University Press, 2018.

[20] W. Stinespring, “Positive functions on c∗-algebras,” Proc. Of The AMS, vol. 6,
no. 2, 1955.

[21] M. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra
And Its Applications, vol. 10, no. 3, 1975.

[22] G. Palma, K. Suominen, and A. Ekert, “Quantum computers and dissipation,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, vol. 452, 1996.

[23] L. Duan and G. Guo, “Preserving coherence in quantum computation by pairing
quantum bits,” Phys. Rev. Lett., vol. 79, no. 10, 1997.

[24] P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett., vol. 79,
no. 17, 1997.

[25] D. Lidar, I. Chuang, and K. Whaley, “Decoherence-free subspaces for quantum
computation,” Phys. Rev. Lett., vol. 81, no. 12, 1998.

[26] E. Knill, R. Laflamme, and L. Viola, “Theory of quantum error correction for gen-
eral noise,” Phys. Rev. Lett., vol. 84, no. 11, 2000.

[27] P. Zanardi, “Stabilizing quantum information,” Phys. Rev. A, vol. 63, no. 1, 2000.

[28] J. Kempe, D. Bacon, D. Lidar, and K. Whaley, “Theory of decoherence-free fault-
tolerant universal quantum computation,” Phys. Rev. A, vol. 63, no. 4, 2001.

[29] C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, “Mixed-state entanglement
and quantum error correction,” Phys. Rev. A, vol. 54, no. 5, 1996.

[30] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Phys. Rev.
A, vol. 55, no. 2, 1997.

217

[31] D. Kribs, R. Laflamme, and D. Poulin, “Unified and generalized approach to quan-
tum error correction,” Phys. Rev. Lett., vol. 94, no. 18, 2005.

[32] D. Kribs, R. Laflamme, D. Poulin, and M. Lesosky, “Operator quantum error cor-
rection,” arXiv preprint quant-ph/0504189, 2005.

[33] R. Johansen, “Operator quantum error correction,” PhD thesis, Københavns Uni-
versitet, 2006.

[34] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane, “Quantum error cor-
rection and orthogonal geometry,” Physical Review Letters, vol. 78, no. 3, p. 405,
1997.

[35] E. Knill, “Non-binary unitary error bases and quantum codes,” arXiv preprint quant-
ph/9608048, 1996.

[36] ——, “Group representations, error bases and quantum codes,” arXiv preprint quant-
ph/9608049, 1996.

[37] A. Klappenecker and M. Rotteler, “Beyond stabilizer codes. i. nice error bases,”
IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2392–2395, 2002.

[38] A. Klappenecker and M. Rotteler, “On the monomiality of nice error bases,” IEEE
transactions on information theory, vol. 51, no. 3, pp. 1084–1089, 2005.

[39] R. Howe, “Nice error bases, mutually unbiased bases, induced representations,
the heisenberg group and finite geometries,” Indagationes Mathematicae, vol. 16,
no. 3-4, pp. 553–583, 2005.

[40] R. J. Higgs, “Nice error bases and sylow subgroups,” IEEE transactions on infor-
mation theory, vol. 54, no. 9, pp. 4199–4207, 2008.

[41] R. Cleve and D. Gottesman, “Efficient computations of encodings for quantum
error correction,” Physical Review A, vol. 56, no. 1, p. 76, 1997.

[42] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”
Physical Review A, vol. 54, no. 2, p. 1098, 1996.

[43] A. M. Steane, “Error correcting codes in quantum theory,” Physical Review Letters,
vol. 77, no. 5, p. 793, 1996.

[44] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” arXiv preprint quant-
ph/9707021, 1997.

218

[45] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,” arXiv
preprint quant-ph/9811052, 1998.

[46] M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes,”
Foundations of Computational Mathematics, vol. 1, no. 3, pp. 325–332, 2001.

[47] H. Bombín and M. Martin-Delgado, “Topological quantum error correction with
optimal encoding rate,” Physical Review A, vol. 73, no. 6, p. 062 303, 2006.

[48] C. Albuquerque, R. Palazzo Jr, and E. Silva, “Topological quantum codes on com-
pact surfaces with genus g ≥ 2,” Journal of Mathematical Physics, vol. 50, no. 2,
p. 023 513, 2009.

[49] H. Bombín and M. A. Martin-Delgado, “Homological error correction: Classical
and quantum codes,” Journal of mathematical physics, vol. 48, no. 5, p. 052 105,
2007.

[50] G. Zémor, “On cayley graphs, surface codes, and the limits of homological coding
for quantum error correction,” in International Conference on Coding and Cryptol-
ogy, Springer, 2009, pp. 259–273.

[51] J. T. Anderson, “Homological stabilizer codes,” Annals of Physics, vol. 330, pp. 1–
22, 2013.

[52] N. Delfosse, P. Iyer, and D. Poulin, “Generalized surface codes and packing of
logical qubits,” arXiv preprint arXiv:1606.07116, 2016.

[53] P. Vrana and M. Farkas, “Homological codes and abelian anyons,” arXiv preprint
arXiv:1505.01001, 2015.

[54] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:
Towards practical large-scale quantum computation,” Physical Review A, vol. 86,
no. 3, p. 032 324, 2012.

[55] Y. Tomita and K. M. Svore, “Low-distance surface codes under realistic quantum
noise,” Physical Review A, vol. 90, no. 6, p. 062 320, 2014.

[56] Wikipedia, Truncated square tiling — Wikipedia, the free encyclopedia, http : / /
en . wikipedia . org / w / index . php ? title = Truncated % 20square % 20tiling & oldid =
1044805958, [Online; accessed 17-March-2022], 2022.

[57] ——, Hexagonal tiling — Wikipedia, the free encyclopedia, http://en.wikipedia.
org/w/ index.php?title=Hexagonal%20tiling&oldid=1075758815, [Online; ac-
cessed 17-March-2022], 2022.

219

http://en.wikipedia.org/w/index.php?title=Truncated%20square%20tiling&oldid=1044805958
http://en.wikipedia.org/w/index.php?title=Truncated%20square%20tiling&oldid=1044805958
http://en.wikipedia.org/w/index.php?title=Truncated%20square%20tiling&oldid=1044805958
http://en.wikipedia.org/w/index.php?title=Hexagonal%20tiling&oldid=1075758815
http://en.wikipedia.org/w/index.php?title=Hexagonal%20tiling&oldid=1075758815

[58] ——, Truncated trihexagonal tiling — Wikipedia, the free encyclopedia, http://en.
wikipedia.org/w/index.php?title=Truncated%20trihexagonal%20tiling&oldid=
1032204050, [Online; accessed 17-March-2022], 2022.

[59] C. Trout, “Methods for universal fault-tolerant quantum computation in small de-
vices,” PhD thesis, Georgia Institute of Technology, 2018.

[60] A. Kubica and M. E. Beverland, “Universal transversal gates with color codes: A
simplified approach,” Physical Review A, vol. 91, no. 3, p. 032 330, 2015.

[61] A. M. Kubica, “The abcs of the color code: A study of topological quantum codes as
toy models for fault-tolerant quantum computation and quantum phases of matter,”
PhD thesis, California Institute of Technology, 2018.

[62] D. E. Deutsch, “Quantum computational networks,” Proceedings of the Royal Soci-
ety of London. A. Mathematical and Physical Sciences, vol. 425, no. 1868, pp. 73–
90, 1989.

[63] N. J. Ross and P. Selinger, “Optimal ancilla-free clifford+ t approximation of z-
rotations,” arXiv preprint arXiv:1403.2975, 2014.

[64] A. Kissinger and J. van de Wetering, “Reducing t-count with the zx-calculus,” arXiv
preprint arXiv:1903.10477, 2019.

[65] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T.
Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computa-
tion,” Physical review A, vol. 52, no. 5, p. 3457, 1995.

[66] C. Dawson and M. Nielsen, “The solovay-kitaev algorithm,” arXiv preprint quant-
ph/0505030, 2005.

[67] K. Karnas, “Universality in quantum computation,” 2018.

[68] D. Gottesman, “The heisenberg representation of quantum computers,” arXiv preprint
quant-ph/9807006, 1998.

[69] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quan-
tum computation using teleportation and single-qubit operations,” Nature, vol. 402,
no. 6760, pp. 390–393, 1999.

[70] B. Zeng, X. Chen, and I. L. Chuang, “Semi-clifford operations, structure of c k
hierarchy, and gate complexity for fault-tolerant quantum computation,” Physical
Review A, vol. 77, no. 4, p. 042 313, 2008.

220

http://en.wikipedia.org/w/index.php?title=Truncated%20trihexagonal%20tiling&oldid=1032204050
http://en.wikipedia.org/w/index.php?title=Truncated%20trihexagonal%20tiling&oldid=1032204050
http://en.wikipedia.org/w/index.php?title=Truncated%20trihexagonal%20tiling&oldid=1032204050

[71] S. Beigi and P. W. Shor, “C3, semi-clifford and generalized semi-clifford opera-
tions,” arXiv preprint arXiv:0810.5108, 2008.

[72] I. Bengtsson, K. Blanchfield, E. Campbell, and M. Howard, “Order 3 symmetry
in the clifford hierarchy,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 45, p. 455 302, 2014.

[73] S. X. Cui, D. Gottesman, and A. Krishna, “Diagonal gates in the clifford hierarchy,”
Physical Review A, vol. 95, no. 1, p. 012 329, 2017.

[74] N. Rengaswamy, R. Calderbank, and H. D. Pfister, “Unifying the clifford hierarchy
via symmetric matrices over rings,” Physical Review A, vol. 100, no. 2, p. 022 304,
2019.

[75] T. Pllaha, N. Rengaswamy, O. Tirkkonen, and R. Calderbank, “Un-weyl-ing the
clifford hierarchy,” Quantum, vol. 4, p. 370, 2020.

[76] J. Hu, Q. Liang, and R. Calderbank, “Climbing the diagonal clifford hierarchy,”
arXiv preprint arXiv:2110.11923, 2021.

[77] A. R. Calderbank, E. M. Rains, P. Shor, and N. J. Sloane, “Quantum error correction
via codes over gf (4),” IEEE Transactions on Information Theory, vol. 44, no. 4,
pp. 1369–1387, 1998.

[78] J. Tolar, “On clifford groups in quantum computing,” in Journal of Physics: Con-
ference Series, IOP Publishing, vol. 1071, 2018, p. 012 022.

[79] V. Teska, “Clifford groups in quantum computing,”

[80] S. Bravyi and D. Maslov, “Hadamard-free circuits expose the structure of the clif-
ford group,” IEEE Transactions on Information Theory, vol. 67, no. 7, pp. 4546–
4563, 2021.

[81] S. Huang and K. R. Brown, “Between shor and steane: A unifying construction for
measuring error syndromes,” Physical review letters, vol. 127, no. 9, p. 090 505,
2021.

[82] R. Chao and B. W. Reichardt, “Quantum error correction with only two extra
qubits,” Physical review letters, vol. 121, no. 5, p. 050 502, 2018.

[83] ——, “Fault-tolerant quantum computation with few qubits,” npj Quantum Infor-
mation, vol. 4, no. 1, pp. 1–8, 2018.

221

[84] T. Tansuwannont, C. Chamberland, and D. Leung, “Flag fault-tolerant error cor-
rection, measurement, and quantum computation for cyclic calderbank-shor-steane
codes,” Physical Review A, vol. 101, no. 1, p. 012 342, 2020.

[85] G. B. Horn and F. R. Kschischang, “On the intractability of permuting a block code
to minimize trellis complexity,” IEEE Transactions on Information Theory, vol. 42,
no. 6, pp. 2042–2048, 1996.

[86] B. Eastin and E. Knill, “Restrictions on transversal encoded quantum gate sets,”
Physical review letters, vol. 102, no. 11, p. 110 502, 2009.

[87] A. M. Steane and B. Ibinson, “Fault-tolerant logical gate networks for calderbank-
shor-steane codes,” Physical Review A, vol. 72, no. 5, p. 052 335, 2005.

[88] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister, “On optimality of
css codes for transversal t,” IEEE Journal on Selected Areas in Information Theory,
vol. 1, no. 2, pp. 499–514, 2020.

[89] J. Hu, Q. Liang, and R. Calderbank, “Designing the quantum channels induced by
diagonal gates,” arXiv preprint arXiv:2109.13481, 2021.

[90] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, “Fault-tolerant conversion be-
tween the steane and reed-muller quantum codes,” Physical review letters, vol. 113,
no. 8, p. 080 501, 2014.

[91] H. Bombín, “Gauge color codes: Optimal transversal gates and gauge fixing in
topological stabilizer codes,” New Journal of Physics, vol. 17, no. 8, p. 083 002,
2015.

[92] F. H. Watson, E. T. Campbell, H. Anwar, and D. E. Browne, “Qudit color codes
and gauge color codes in all spatial dimensions,” Physical Review A, vol. 92, no. 2,
p. 022 312, 2015.

[93] H. Bombín, “Dimensional jump in quantum error correction,” New Journal of Physics,
vol. 18, no. 4, p. 043 038, 2016.

[94] ——, “Transversal gates and error propagation in 3D topological codes,” arXiv
preprint arXiv:1810.09575, 2018.

[95] S. Bravyi and A. Cross, “Doubled color codes,” arXiv preprint arXiv:1509.03239,
2015.

[96] C. Jones, P. Brooks, and J. Harrington, “Gauge color codes in two dimensions,”
Physical Review A, vol. 93, no. 5, p. 052 332, 2016.

222

[97] T. Jochym-O’Connor and S. D. Bartlett, “Stacked codes: Universal fault-tolerant
quantum computation in a two-dimensional layout,” Physical Review A, vol. 93,
no. 2, p. 022 323, 2016.

[98] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates
and noisy ancillas,” Physical Review A, vol. 71, no. 2, p. 022 316, 2005.

[99] E. T. Campbell and D. E. Browne, “On the structure of protocols for magic state
distillation,” in Workshop on Quantum Computation, Communication, and Cryp-
tography, Springer, 2009, pp. 20–32.

[100] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,” Physical Re-
view A, vol. 86, no. 5, p. 052 329, 2012.

[101] E. T. Campbell, H. Anwar, and D. E. Browne, “Magic-state distillation in all prime
dimensions using quantum reed-muller codes,” Physical Review X, vol. 2, no. 4,
p. 041 021, 2012.

[102] T. Jochym-O’Connor, Y. Yu, B. Helou, and R. Laflamme, “The robustness of magic
state distillation against errors in clifford gates,” arXiv preprint arXiv:1205.6715,
2012.

[103] D. Litinski, “Magic state distillation: Not as costly as you think,” Quantum, vol. 3,
p. 205, 2019.

[104] C. Chamberland and A. W. Cross, “Fault-tolerant magic state preparation with flag
qubits,” Quantum, vol. 3, p. 143, 2019.

[105] C. Chamberland and K. Noh, “Very low overhead fault-tolerant magic state prepa-
ration using redundant ancilla encoding and flag qubits,” npj Quantum Information,
vol. 6, no. 1, pp. 1–12, 2020.

[106] M. Li, M. Gutiérrez, S. E. David, A. Hernandez, and K. R. Brown, “Fault tolerance
with bare ancillary qubits for a [[7, 1, 3]] code,” Physical Review A, vol. 96, no. 3,
p. 032 341, 2017.

[107] D. Gottesman and L. L. Zhang, “Fibre bundle framework for unitary quantum fault
tolerance,” arXiv preprint arXiv:1309.7062, 2013.

[108] A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant quantum computing
with color codes,” arXiv preprint arXiv:1108.5738, 2011.

[109] C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang, L. Duan, and K. R. Brown,
“Simulating the performance of a distance-3 surface code in a linear ion trap,” New
Journal of Physics, vol. 20, no. 4, p. 043 038, 2018.

223

[110] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,”
Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505, 2002.

[111] S. Bravyi, M. Suchara, and A. Vargo, “Efficient algorithms for maximum likelihood
decoding in the surface code,” Physical Review A, vol. 90, no. 3, p. 032 326, 2014.

[112] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent intractability
of certain coding problems (corresp.),” IEEE Transactions on Information Theory,
vol. 24, no. 3, pp. 384–386, 1978.

[113] M.-H. Hsieh and F. Le Gall, “Np-hardness of decoding quantum error-correction
codes,” Physical Review A, vol. 83, no. 5, p. 052 331, 2011.

[114] K.-Y. Kuo and C.-C. Lu, “On the hardness of decoding quantum stabilizer codes
under the depolarizing channel,” in 2012 International Symposium on Information
Theory and its Applications, IEEE, 2012, pp. 208–211.

[115] ——, “On the hardnesses of several quantum decoding problems,” Quantum Infor-
mation Processing, vol. 19, no. 4, pp. 1–17, 2020.

[116] P. Iyer and D. Poulin, “Hardness of decoding quantum stabilizer codes,” IEEE
Transactions on Information Theory, vol. 61, no. 9, pp. 5209–5223, 2015.

[117] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for con-
catenated distance-3 codes,” arXiv preprint quant-ph/0504218, 2005.

[118] P. Aliferis, “Level reduction and the quantum threshold theorem,” arXiv preprint
quant-ph/0703230, 2007.

[119] P. Aliferis, D. Gottesman, and J. Preskill, “Accuracy threshold for postselected
quantum computation,” arXiv preprint quant-ph/0703264, 2007.

[120] D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation with constant
error rate,” SIAM Journal on Computing, 2008.

[121] K. Fujii, “Noise threshold of quantum supremacy,” arXiv preprint arXiv:1610.03632,
2016.

[122] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards practical clas-
sical processing for the surface code,” Physical review letters, vol. 108, no. 18,
p. 180 501, 2012.

[123] K. Fujii and Y. Tokunaga, “Error and loss tolerances of surface codes with general
lattice structures,” Physical Review A, vol. 86, no. 2, p. 020 303, 2012.

224

[124] A. G. Fowler, “Proof of finite surface code threshold for matching,” Physical review
letters, vol. 109, no. 18, p. 180 502, 2012.

[125] ——, “Minimum weight perfect matching of fault-tolerant topological quantum
error correction in average o(1) parallel time,” arXiv preprint arXiv:1307.1740,
2013.

[126] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics, vol. 17,
pp. 449–467, 1965.

[127] ——, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of re-
search of the National Bureau of Standards B, vol. 69, no. 125-130, pp. 55–56,
1965.

[128] V. Kolmogorov, “Blossom v: A new implementation of a minimum cost perfect
matching algorithm,” Mathematical Programming Computation, vol. 1, no. 1, pp. 43–
67, 2009.

[129] A. G. Fowler, “Optimal complexity correction of correlated errors in the surface
code,” arXiv preprint arXiv:1310.0863, 2013.

[130] D. S. Wang, A. G. Fowler, and L. C. Hollenberg, “Surface code quantum computing
with error rates over 1%,” Physical Review A, vol. 83, no. 2, p. 020 302, 2011.

[131] H. Bombin, G. Duclos-Cianci, and D. Poulin, “Universal topological phase of two-
dimensional stabilizer codes,” New Journal of Physics, vol. 14, no. 7, p. 073 048,
2012.

[132] A. M. Stephens, “Efficient fault-tolerant decoding of topological color codes,” arXiv
preprint arXiv:1402.3037, 2014.

[133] N. Delfosse, “Decoding color codes by projection onto surface codes,” Physical
Review A, vol. 89, no. 1, p. 012 317, 2014.

[134] A. B. Aloshious, A. N. Bhagoji, and P. K. Sarvepalli, “On the local equivalence of
2d color codes and surface codes with applications,” arXiv preprint arXiv:1804.00866,
2018.

[135] A. B. Aloshious and P. K. Sarvepalli, “Projecting three-dimensional color codes
onto three-dimensional toric codes,” Physical Review A, vol. 98, no. 1, p. 012 302,
2018.

[136] ——, “Local equivalence of qudit color codes and toric codes,” Physical Review A,
vol. 100, no. 1, p. 012 348, 2019.

225

[137] A. Kubica and N. Delfosse, “Efficient color code decoders in d ≥ 2 dimensions
from toric code decoders,” arXiv preprint arXiv:1905.07393, 2019.

[138] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, “Triangular color codes on
trivalent graphs with flag qubits,” New Journal of Physics, vol. 22, no. 2, p. 023 019,
2020.

[139] J. P. Barnes, C. J. Trout, D. Lucarelli, and B. Clader, “Quantum error-correction
failure distributions: Comparison of coherent and stochastic error models,” Physi-
cal Review A, vol. 95, no. 6, p. 062 338, 2017.

[140] E. M. Rains, “Nonbinary quantum codes,” IEEE Transactions on Information The-
ory, vol. 45, no. 6, pp. 1827–1832, 1999.

[141] E. Sabo, A. B. Aloshious, and K. R. Brown, “Trellis decoding for qudit stabilizer
codes and its application to qubit topological codes,” arXiv preprint arXiv:2106.08251,
2021.

[142] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algorithm for topo-
logical codes,” arXiv preprint arXiv:1709.06218, 2017.

[143] S. Huang, M. Newman, and K. R. Brown, “Fault-tolerant weighted union-find de-
coding on the toric code,” Physical Review A, vol. 102, no. 1, p. 012 419, 2020.

[144] N. Delfosse and M. B. Hastings, “Union-find decoders for homological product
codes,” Quantum, vol. 5, p. 406, 2021.

[145] N. Delfosse, V. Londe, and M. Beverland, “Toward a union-find decoder for quan-
tum ldpc codes,” arXiv preprint arXiv:2103.08049, 2021.

[146] M. Herold, E. T. Campbell, J. Eisert, and M. J. Kastoryano, “Cellular-automaton
decoders for topological quantum memories,” npj Quantum information, vol. 1,
no. 1, pp. 1–8, 2015.

[147] M. Herold, M. J. Kastoryano, E. T. Campbell, and J. Eisert, “Cellular automaton
decoders of topological quantum memories in the fault tolerant setting,” New Jour-
nal of Physics, vol. 19, no. 6, p. 063 012, 2017.

[148] A. Kubica and J. Preskill, “Cellular-automaton decoders with provable thresholds
for topological codes,” Physical review letters, vol. 123, no. 2, p. 020 501, 2019.

[149] G. Duclos-Cianci and D. Poulin, “Fast decoders for topological quantum codes,”
Physical review letters, vol. 104, no. 5, p. 050 504, 2010.

226

[150] ——, “A renormalization group decoding algorithm for topological quantum codes,”
in 2010 IEEE Information Theory Workshop, IEEE, 2010, pp. 1–5.

[151] P. Sarvepalli and R. Raussendorf, “Efficient decoding of topological color codes,”
Physical Review A, vol. 85, no. 2, p. 022 317, 2012.

[152] D. J. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-graph codes for quan-
tum error correction,” IEEE Transactions on Information Theory, vol. 50, no. 10,
pp. 2315–2330, 2004.

[153] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum codes,”
arXiv preprint arXiv:0801.1241, 2008.

[154] A. J. Ferris and D. Poulin, “Tensor networks and quantum error correction,” Phys-
ical review letters, vol. 113, no. 3, p. 030 501, 2014.

[155] A. S. Darmawan and D. Poulin, “Tensor-network simulations of the surface code
under realistic noise,” Physical review letters, vol. 119, no. 4, p. 040 502, 2017.

[156] ——, “Linear-time general decoding algorithm for the surface code,” Physical Re-
view E, vol. 97, no. 5, p. 051 302, 2018.

[157] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, “Ultrahigh error threshold for
surface codes with biased noise,” Physical review letters, vol. 120, no. 5, p. 050 505,
2018.

[158] C. T. Chubb, “General tensor network decoding of 2d pauli codes,” arXiv preprint
arXiv:2101.04125, 2021.

[159] G. Torlai and R. G. Melko, “Neural decoder for topological codes,” Physical review
letters, vol. 119, no. 3, p. 030 501, 2017.

[160] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W. Beenakker, “Machine-learning-
assisted correction of correlated qubit errors in a topological code,” Quantum, vol. 2,
p. 48, 2018.

[161] C. Chamberland and P. Ronagh, “Deep neural decoders for near term fault-tolerant
experiments,” Quantum Science and Technology, vol. 3, no. 4, p. 044 002, 2018.

[162] P. Baireuther, M. D. Caio, B. Criger, C. W. Beenakker, and T. E. O’Brien, “Neural
network decoder for topological color codes with circuit level noise,” New Journal
of Physics, vol. 21, no. 1, p. 013 003, 2019.

227

[163] C. Chinni, A. Kulkami, D. MPai, K. Mitra, and P. K. Sarvepalli, “Neural decoder
for topological codes using pseudo-inverse of parity check matrix,” in 2019 IEEE
Information Theory Workshop (ITW), IEEE, 2019, pp. 1–5.

[164] N. Maskara, A. Kubica, and T. Jochym-O’Connor, “Advantages of versatile neural-
network decoding for topological codes,” Physical Review A, vol. 99, no. 5, p. 052 351,
2019.

[165] P. Panteleev and G. Kalachev, “Degenerate quantum ldpc codes with good finite
length performance,” arXiv preprint arXiv:1904.02703, 2019.

[166] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding across the quan-
tum ldpc code landscape,” arXiv preprint arXiv:2005.07016, 2020.

[167] H. Ollivier and J.-P. Tillich, “Trellises for stabilizer codes: Definition and uses,”
Physical Review A, vol. 74, no. 3, p. 032 304, 2006.

[168] D. Poulin, J.-P. Tillich, and H. Ollivier, “Quantum serial turbo codes,” IEEE Trans-
actions on Information Theory, vol. 55, no. 6, pp. 2776–2798, 2009.

[169] E. Pelchat and D. Poulin, “Degenerate viterbi decoding,” IEEE transactions on
information theory, vol. 59, no. 6, pp. 3915–3921, 2013.

[170] F. Xiao and H. Chen, “Construction of minimal trellises for quantum stabilizer
codes,” Science China Information Sciences, vol. 56, no. 1, pp. 1–11, 2013.

[171] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,
Online available at http://www.codetables.de, 2007.

[172] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate (corresp.),” IEEE Transactions on information the-
ory, vol. 20, no. 2, pp. 284–287, 1974.

[173] J. Wolf, “Efficient maximum likelihood decoding of linear block codes using a
trellis,” IEEE Transactions on Information Theory, vol. 24, no. 1, pp. 76–80, 1978.

[174] D. J. Muder, “Minimal trellises for block codes,” IEEE Transactions on Informa-
tion Theory, vol. 34, no. 5, pp. 1049–1053, 1988.

[175] R. J. McEliece, “On the bcjr trellis for linear block codes,” IEEE Transactions on
Information Theory, vol. 42, no. 4, pp. 1072–1092, 1996.

[176] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3,
pp. 268–278, 1973.

228

http://www.codetables.de

[177] G. D. Forney and M. D. Trott, “The dynamics of group codes: State spaces, trel-
lis diagrams, and canonical encoders,” IEEE Transactions on Information Theory,
vol. 39, no. 5, pp. 1491–1513, 1993.

[178] G. D. Forney, “Dimension/length profiles and trellis complexity of linear block
codes,” IEEE Transactions on information theory, vol. 40, no. 6, pp. 1741–1752,
1994.

[179] F. R. Kschischang and V. Sorokine, “On the trellis structure of block codes,” IEEE
Transactions on Information Theory, vol. 41, no. 6, pp. 1924–1937, 1995.

[180] R. J. McEliece, “The viterbi decoding complexity of linear block codes,” in Pro-
ceedings of 1994 IEEE International Symposium on Information Theory, IEEE,
1994, p. 341.

[181] A. Vardy and F. R. Kschischang, “Proof of a conjecture of mceliece regarding the
expansion index of the minimal trellis,” IEEE Transactions on Information Theory,
vol. 42, no. 6, pp. 2027–2033, 1996.

[182] A. B. Kiely, S. J. Dolinar, R. J. McEliece, L. L. Ekroot, and W. Lin, “Trellis decod-
ing complexity of linear block codes,” IEEE Transactions on Information Theory,
vol. 42, no. 6, pp. 1687–1697, 1996.

[183] R. Li, Z. Xu, and X. Li, “Standard forms of stabilizer and normalizer matrices for
additive quantum codes,” IEEE transactions on information theory, vol. 54, no. 8,
pp. 3775–3778, 2008.

[184] M. M. Wilde, “Logical operators of quantum codes,” Physical Review A, vol. 79,
no. 6, p. 062 322, 2009.

[185] M. Grassl, “Variations on encoding circuits for stabilizer quantum codes,” in Inter-
national Conference on Coding and Cryptology, Springer, 2011, pp. 142–158.

[186] V. Sidorenko, G. Markarian, and B. Honary, “Minimal trellis design for linear codes
based on the shannon product,” IEEE Transactions on Information Theory, vol. 42,
no. 6, pp. 2048–2053, 1996.

[187] H. Kan and H. Shen, “Trellis properties of product codes,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, vol. 88,
no. 1, pp. 353–358, 2005.

[188] J. Cannon, W. Bosma, C. Fieker, and A. Steel, “Handbook of mamga functions:
Volume 13 - coding theory and cryptography,” vol. 13, 2008.

229

[189] S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellises and trellis-based decod-
ing algorithms for linear block codes. Springer Science & Business Media, 2012,
vol. 443.

[190] C. Wang, J. Harrington, and J. Preskill, “Confinement-higgs transition in a disor-
dered gauge theory and the accuracy threshold for quantum memory,” Annals of
Physics, vol. 303, no. 1, pp. 31–58, 2003.

[191] H. Bombín, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and M. A. Martin-Delgado,
“Strong resilience of topological codes to depolarization,” Physical Review X, vol. 2,
no. 2, p. 021 004, 2012.

[192] H. G. Katzgraber, H. Bombín, and M. Martin-Delgado, “Error threshold for color
codes and random three-body ising models,” Physical review letters, vol. 103, no. 9,
p. 090 501, 2009.

[193] A. M. Stephens, “Fault-tolerant thresholds for quantum error correction with the
surface code,” Physical Review A, vol. 89, no. 2, p. 022 321, 2014.

[194] B. Rahn, A. C. Doherty, and H. Mabuchi, “Exact performance of concatenated
quantum codes,” Physical Review A, vol. 66, no. 3, p. 032 304, Sep. 2002.

[195] D. Poulin, “Optimal and efficient decoding of concatenated quantum block codes,”
Phys. Rev. A, vol. 74, p. 052 333, 5 Nov. 2006.

[196] A. Lafourcade and A. Vardy, “Optimal sectionalization of a trellis,” IEEE Transac-
tions on Information Theory, vol. 42, no. 3, pp. 689–703, 1996.

[197] D. Conti and N. Boston, “Matrix representations of trellises and enumerating trellis
pseudocodewords,” in 2011 49th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2011, pp. 1438–1445.

[198] R. H. Hammack, W. Imrich, S. Klavžar, W. Imrich, and S. Klavžar, Handbook of
product graphs. CRC press Boca Raton, 2011, vol. 2.

[199] R. Koetter and A. Vardy, “On the theory of linear trellises,” in Information, Coding
and Mathematics, Springer, 2002, pp. 323–354.

[200] C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels, and B. M. Terhal, “Code
deformation and lattice surgery are gauge fixing,” New Journal of Physics, vol. 21,
no. 3, p. 033 028, 2019.

[201] L. P. Pryadko, V. A. Shabashov, and V. K. Kozin, “Qdistrnd: A gap package for
computing the distance of quantum error-correcting codes,” Journal of Open Source
Software, vol. 7, no. 71, p. 4120, 2022.

230

[202] A. Vardy, “The intractability of computing the minimum distance of a code,” IEEE
Transactions on Information Theory, vol. 43, no. 6, pp. 1757–1766, 1997.

[203] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large
error-correcting codes,” IEEE Transactions on Information Theory, vol. 34, no. 5,
pp. 1354–1359, 1988.

[204] M. Grassl, “Searching for linear codes with large minimum distance,” in Discover-
ing mathematics with magma, Springer, 2006, pp. 287–313.

[205] J. Cramwinckel, E. Roijackers, R. Baart, E. Minkes, L. Ruscio, R. L. Miller, T.
Boothby, D. Joyner, and J. Fields, “A gap4 package for computing with error-
correcting codes,” 2008.

[206] T. S. D. Team, Sage 9.5 reference manual: Coding theory - sagemath, Online avail-
able at https://doc.sagemath.org/pdf/en/reference/coding/coding.pdf, 2022.

[207] G. White, “Enumeration-based algorithms in linear coding theory,” 2006.

[208] K.-H. Zimmermann, “Integral hecke modules, integral generalized reed-muller codes,
and linear codes,” Techn. Univ. Hamburg-Harburg, Tech. Rep., 1996.

[209] A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.-H. Zimmermann,
“Zyklische codes,” in Codierungstheorie, Springer, 1998, pp. 77–174.

[210] P. Lisoněk and L. Trummer, “Algorithms for the minimum weight of linear codes,”
Advances in Mathematics of Communications, vol. 10, no. 1, p. 195, 2016.

[211] A. Canteaut, V. Lallemand, and M. Naya-Plasencia, “Related-key attack on full-
round picaro,” in International Conference on Selected Areas in Cryptography,
Springer, 2015, pp. 86–101.

[212] S. Bouyuklieva and I. Bouyukliev, “An extension of the brouwer–zimmermann al-
gorithm for calculating the minimum weight of a linear code,” Mathematics, vol. 9,
no. 19, p. 2354, 2021.

[213] F. Hernando, F. D. Igual, and G. Quintana-Ortí, “Algorithm 994: Fast implementa-
tions of the brouwer-zimmermann algorithm for the computation of the minimum
distance of a random linear code,” ACM Transactions on Mathematical Software
(TOMS), vol. 45, no. 2, pp. 1–28, 2019.

[214] G. Quintana-Ortí, F. Hernando, and F. D. Igual, “Parallel implementations for com-
puting the minimum distance of a random linear code on multicomputers,” arXiv
preprint arXiv:1911.08963, 2019.

231

https://doc.sagemath.org/pdf/en/reference/coding/coding.pdf

[215] G. White and M. Grassl, “A new minimum weight algorithm for additive codes,” in
2006 IEEE International Symposium on Information Theory, IEEE, 2006, pp. 1119–
1123.

[216] J. Hu, Q. Liang, N. Rengaswamy, and R. Calderbank, “Mitigating coherent noise
by balancing weight-2 z-stabilizers,” IEEE Transactions on Information Theory,
2021.

[217] Y. Desaki, T. Fujiwara, and T. Kasami, “A method for computing the weight dis-
tribution of a block code by using its trellis diagram,” IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and Computer Sciences, vol. 77,
no. 8, pp. 1230–1237, 1994.

[218] P. Shor and R. Laflamme, “Quantum analog of the macwilliams identities for clas-
sical coding theory,” Physical review letters, vol. 78, no. 8, p. 1600, 1997.

[219] E. M. Rains, “Quantum weight enumerators,” IEEE Transactions on Information
Theory, vol. 44, no. 4, pp. 1388–1394, 1998.

[220] E. Knill and R. Laflamme, “Quantum computing and quadratically signed weight
enumerators,” Information Processing Letters, vol. 79, no. 4, pp. 173–179, 2001.

[221] P. Rall, “Signed quantum weight enumerators characterize qubit magic state distil-
lation,” arXiv preprint arXiv:1702.06990, 2017.

[222] J. Hu, Q. Liang, and R. Calderbank, “Divisible codes for quantum computation,”
arXiv preprint arXiv:2204.13176, 2022.

[223] I. Bouyukliev and V. Bakoev, “A method for efficiently computing the number
of codewords of fixed weights in linear codes,” Discrete applied mathematics,
vol. 156, no. 15, pp. 2986–3004, 2008.

[224] V. Senk, P. Radivojac, and I. Stanojevic, “An overview of decoding procedures for
trellis codes,” in Proc. of TELFOR, vol. 99, pp. 257–264.

[225] A. d. iOlius, J. E. Martinez, P. Fuentes, P. M. Crespo, and J. Garcia-Frias, “Perfor-
mance of surface codes in realistic quantum hardware,” arXiv preprint arXiv:2203.15695,
2022.

[226] A. Holmes, S. Johri, G. G. Guerreschi, J. S. Clarke, and A. Y. Matsuura, “Impact
of qubit connectivity on quantum algorithm performance,” Quantum Science and
Technology, vol. 5, no. 2, p. 025 009, 2020.

[227] A. Vardy and Y. Be’Ery, “Bit-level soft-decision decoding of reed-solomon codes,”
IEEE Transactions on Communications, vol. 39, no. 3, pp. 440–444, 1991.

232

[228] T. R. Halford, V. Ponnampalam, A. J. Grant, and K. M. Chugg, “Soft-in soft-out de-
coding of reed-solomon codes based on vardy and be’ery’s decomposition,” IEEE
transactions on information theory, vol. 51, no. 12, pp. 4363–4368, 2005.

[229] A. Vardy and Y. Be’ery, “Maximum-likelihood soft decision decoding of bch codes,”
IEEE Transactions on Information Theory, vol. 40, no. 2, pp. 546–554, 1994.

[230] T. Kasami, S. Lin, and W. Peterson, “New generalizations of the reed-muller codes–
i: Primitive codes,” IEEE Transactions on Information Theory, vol. 14, no. 2, pp. 189–
199, 1968.

[231] C. Chamberland and T. Jochym-O’Connor, “Error suppression via complementary
gauge choices in reed-muller codes,” Quantum Science and Technology, vol. 2,
no. 3, p. 035 008, 2017.

233

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	Classical Error-Correcting Codes
	Quantum Mechanics For Mathematicians
	Quantum Error Correction
	Quantum Circuit Model
	Computer Simulations Of Codes
	Extension To Arbitrary Rings

	2 | Trellis Decoding Stabilizer Codes
	Introduction
	The Syndrome Trellis
	Properties
	css Codes
	Simulations And Discussion

	3 | Applications Of Trellises To Quantum Error Correction
	Introduction
	Sectionalization
	The Adjacency Matrix Representation
	The Trellis Product
	Partial Ordering And Intersection Of Trellises
	The Dual Trellis And Degenerate Decoding
	Minimum Distance
	Weight Distributions & Enumerators
	Words Of Bounded Weight
	Subfield Subcodes

	4 | Future Directions
	Stabilizer Codes For Modular Architectures
	Gluing Theory For Stabilizer Codes

	References

