
Learning From Almost No Data

by

Ilia Sucholutsky

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Statistics

Waterloo, Ontario, Canada, 2021

© Ilia Sucholutsky 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Pascal Tyrrell
Professor, Medical Imaging, University of Toronto

Supervisor: Matthias Schonlau
Professor, Statistics and Actuarial Science, University of Waterloo

Internal Member: Mu Zhu
Professor, Statistics and Actuarial Science, University of Waterloo

Internal Member: Samuel Wong
Professor, Statistics and Actuarial Science, University of Waterloo

Internal-External Member: Jimmy Lin
Professor, Computer Science, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The chapters of this thesis describe and contain Ilia Sucholutsky’s work, under the super-
vision of Dr. Matthias Schonlau, that has been published or pre-printed in the following
venues. Exceptions to sole authorship of material are noted.

• Chapter 3:

– Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fischmeis-
ter. Deep learning for system trace restoration. In 2019 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, July 2019a. doi: 10.1109/IJCNN.
2019.8852116. Pre-print at arXiv:1904.05411

– Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fischmeis-
ter. Pay attention and you won’t lose it: a deep learning approach to sequence
imputation. PeerJ Computer Science, 5:e210, August 2019b

– Note: Section 3.5 was co-authored by Ilia Sucholutsky and Dr. Apurva Narayan.
Dr. Apurva Narayan conducted the experiments involving TREM algorithm.

• Chapter 4:

– Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text
dataset distillation. 2021 International Joint Conference on Neural Networks
(IJCNN), 2019. Forthcoming. Pre-print available at arXiv:1910.02551

• Chapter 5:

– Ilia Sucholutsky and Matthias Schonlau. Optimal 1-NN prototypes for patho-
logical geometries. PeerJ Computer Science, 7, 2021b. doi: 10.7717/peerj-cs.464

– Ilia Sucholutsky and Matthias Schonlau. ‘Less than one’-shot learning: Learning
N classes from M< N samples. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2021a. Forthcoming. Pre-print available at arXiv:2009.08449

– Ilia Sucholutsky, Nam-Hwui Kim, Ryan P Browne, and Matthias Schonlau.
One line to rule them all: Generating LO-shot soft-label prototypes. 2021 In-
ternational Joint Conference on Neural Networks (IJCNN), 2021. Forthcoming.
Pre-print available at arXiv:2102.07834

– Note: ‘Component 1: Finding Lines’ in Section 5.4.2 was jointly authored by
Ilia Sucholutsky and Nam-Hwui Kim. Nam-Hwui Kim developed the Recursive
Regression and Distance-Based Attraction algorithms described in this section.

iv

• Appendix C:

– Ilia Sucholutsky and Matthias Schonlau. SecDD: Efficient and secure method
for remotely training neural networks (Student Abstract). In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021c. Forthcoming. Pre-print
available at arXiv:2009.09155

v

Abstract

The tremendous recent growth in the fields of artificial intelligence and machine learning
has largely been tied to the availability of big data and massive amounts of compute.
The increasingly popular approach of training large neural networks on large datasets has
provided great returns, but it leaves behind the multitude of researchers, companies, and
practitioners who do not have access to sufficient funding, compute power, or volume of
data. This thesis aims to rectify this growing imbalance by probing the limits of what
machine learning and deep learning methods can achieve with small data.

What knowledge does a dataset contain? At the highest level, a dataset is just a
collection of samples: images, text, etc. Yet somehow, when we train models on these
datasets, they are able to find patterns, make inferences, detect similarities, and otherwise
generalize to samples that they have previously never seen. This suggests that datasets
may contain some kind of intrinsic knowledge about the systems or distributions from
which they are sampled. Moreover, it appears that this knowledge is somehow distributed
and duplicated across the samples; we intuitively expect that removing an image from a
large training set will have virtually no impact on the final model performance.

We develop a framework to explain efficient generalization around three principles: in-
formation sharing, information repackaging, and information injection. We use this frame-
work to propose ‘less than one’-shot learning, an extreme form of few-shot learning where
a learner must recognize N classes from M < N training examples. To achieve this extreme
level of efficiency, we develop new framework-consistent methods and theory for lost data
restoration, for dataset size reduction, and for few-shot learning with deep neural networks
and other popular machine learning models.

vi

Acknowledgements

There are so many people I need to give thanks to for helping me get here today.

To Dr. Matthias Schonlau for his tireless supervision, extensive consultation, and
meticulous feedback. Thank you for always giving me your time and attention even when
I would show up unannounced at your office. Your carefully thought-out advice helped
me focus my constant excitement for new ideas into actual progress and contributions.
Most importantly, thank you for always giving me the freedom to explore the ideas that
interested me and being incredibly supportive even when my interests were far away from
yours. I could not possibly have asked for a better supervisor or a better PhD experience.

To the members of my committee - Dr. Pascal Tyrrell, Dr. Jimmy Lin, Dr. Samuel
Wong, Dr. Mu Zhu - for all the time and valuable feedback that they gave me. Thank you
for helping me make this thesis into something I can truly be proud of.

To Dr. Sebastian Fischmeister and Dr. Apurva Narayan for making my first year of
grad school high-paced, productive, and action-packed. You taught me that theory is very
different from practice when it comes to actually making machine learning useful and that
it is just as important to explore engineering considerations as it is to derive equations.
Thank you for making my first foray into the research world so unforgettable.

To all the other teachers, tutors, lecturers, instructors, professors, and mentors in my
life who went above and beyond. Patrick who was the first teacher to treat me like an
adult and encourage me to have strong opinions of my own. Evans who suggested I might
one day get a PhD in math long before I had any idea what career I would want to pursue
(he just thought it would be at Georgia Tech rather than at Waterloo). Chris who changed
my life by telling me to learn how to code when I told him I was bored in his class. David
who not only made me into a mathematician with the breadth and depth of the material
he covered, but also gave life advice that I still remember today. Ilya who guided my
research directions over the years beginning with his simple statement that ‘everything is
irrelevant other than deep learning’. Alex who taught me that the secret to productivity is
collaboration. Thank you to these educators and all the others who helped me learn and
grow.

To my family for a lifetime of unwavering love, support, and heated dinner-time debates.
My grandparents who filled my childhood with love and warmth and were my first teachers
in every subject from language to math. My parents who uprooted their entire lives twice
just to make sure my sister and I could grow up with every possible opportunity to be safe,
successful, and happy. My sister who was always there to guide me and lend a helping,
and very artistic, hand whenever I needed it, including designing the beloved rhinocorn

vii

that graces the cover and inner pages of this thesis (see Note below). Thank you all for
making me who I am today.

To Ellie for being my better half all of these years. You love and support me in more
ways than I could possibly list here, but most importantly, you make me strive to be better
every single day. Thank you for making all of our adventures together so incredible. I could
not imagine undertaking this or any other adventure without you.

To Gennady for not only providing countless ideas but also thoroughly proofreading
this thesis and in so doing becoming the first person to read it from beginning to end.

To Jon for being the best roommate, chef, and friend throughout all our years in
Waterloo. To Nam for the countless hours we spent discussing math, scheming in our
offices, and walking to get tea.

To all my other wonderful friends and colleagues, who I miss already, for making my
time in university so much richer, more fun, and more enjoyable.

Since I spend so much of my productive time thinking about small data, let me distill
these acknowledgements into one final sentence.

Thank you to everyone who helped put me on my current trajectory.

Note: The front cover, the back cover, the black and white image preceding Chap-
ter 1, and the image in Figure 2.1 were created by Asya Sucholutsky (http://www.
AsyaSucholutsky.com/) for use in this thesis and are reproduced here with the creator’s
permission. The background used in the design of the black and white image preced-
ing Chapter 1 and in the design of the full-color image Figure 2.1 was created by iS-
tock.com/Matt Gibson and was used with permission and appropriate licensing.

viii

http://www.AsyaSucholutsky.com/
http://www.AsyaSucholutsky.com/

Table of Contents

List of Figures xiii

List of Tables xviii

1 Introduction 2

1.1 Definitions and Terminology . 4

1.2 Outline . 5

2 Extreme Data Efficiency and ‘Less Than One’-Shot Learning 8

2.1 Introduction . 8

2.2 ‘Less Than One’-Shot Learning . 9

2.3 A Framework for (Efficient) Generalization 11

2.3.1 Types of Information Sharing . 12

2.3.2 Information Repackaging . 14

2.3.3 Information Injection . 16

2.4 Motivating Examples: Efficient Generalization in Practice 17

2.4.1 Practical Setting 1 - Neural Architecture Search 17

2.4.2 Practical Setting 2 - Federated Learning 18

2.4.3 Practical Setting 3 - Expensive Inference 19

2.4.4 Practical Setting 4 - Sequence Imputation 20

ix

3 Data Restoration 22

3.1 Background . 24

3.1.1 Sequence Modelling with Deep Learning 24

3.1.2 Data Restoration with Deep Learning 25

3.2 Setup . 26

3.2.1 Data . 26

3.2.2 Benchmark . 26

3.3 LSTM . 28

3.3.1 RNNs and LSTMs . 28

3.3.2 Architecture . 30

3.3.3 Training . 31

3.3.4 Results . 33

3.4 Restorer . 36

3.4.1 Attention . 36

3.4.2 Architecture . 38

3.4.3 Results . 42

3.5 Case Study: Timed Regular Expression Mining on CAN Traces 44

3.6 Conclusion . 46

4 Dataset Distillation 48

4.1 Introduction . 48

4.2 Related Work . 51

4.2.1 Knowledge Distillation . 51

4.2.2 Sample Efficiency in Deep Learning 51

4.2.3 Dataset Reduction and Prototype Methods 52

4.2.4 Federated Learning and Privacy Preservation 52

4.2.5 Generative Adversarial Networks 53

4.2.6 Measuring Problem Dimensionality 53

x

4.3 Extending Dataset Distillation . 54

4.3.1 Motivation . 54

4.3.2 Basic Approach . 56

4.3.3 Learnable Labels . 57

4.3.4 Text and Other Sequences . 57

4.3.5 Random initializations and multiple steps 59

4.4 Experiments . 59

4.4.1 Metrics . 59

4.4.2 Image Data . 61

4.4.3 Text Data . 63

4.5 Conclusion . 71

5 Soft-Label Prototypes and k-Nearest Neighbors 72

5.1 Motivation and Related Work . 72

5.1.1 Prototype Methods for kNN . 72

5.1.2 Achieving LO-Shot Learning with kNN 73

5.2 Optimal 1NN Prototypes for Pathological Geometries 74

5.2.1 Background . 74

5.2.2 Theory . 77

5.2.3 Computational Results . 83

5.2.4 Conclusion . 89

5.3 Theoretical Foundations of ‘Less Than One’-Shot Learning with kNN . . . 93

5.3.1 Definitions . 93

5.3.2 Probabilistic Prototypes and SLaPkNN with k=2 95

5.3.3 Robustness . 100

5.3.4 Case Study: Prototype Generation for Circles 101

5.3.5 Conclusion . 103

5.4 Algorithms for ‘Less Than One’-Shot Learning with kNN 104

xi

5.4.1 Introduction . 104

5.4.2 LO-Shot Prototype Generation Algorithm 105

5.4.3 Experiments . 113

5.4.4 Conclusion . 119

6 Conclusion 120

References 121

APPENDICES 138

A Additional Practical Setting - Expensive Data and Annotations 139

B Proofs for Chapter 5 141

B.1 Proof of Theorem 1 . 141

B.2 Proof of Corollary 2 . 143

B.3 Proof of Theorem 3 . 143

B.4 Proof of Proposition 4 . 145

B.5 Proof of Theorem 5 . 145

B.6 Proof of Lemma 6 . 146

B.7 Proof of Theorem 7 (Main Theorem) . 147

B.8 Proof of Theorem 8 . 149

C SecDD: Efficient and Secure Method for Remotely Training Neural Net-
works 151

C.1 Introduction . 151

C.2 Related Work . 153

C.3 Secure Dataset Distillation . 153

C.4 Conclusion and Future Work . 154

xii

List of Figures

1.1 The consequent chapters of this thesis flow out of the framework defined
in Chapter 2. Red cells denote the three core premises of the framework.
Green cells denote topics to which this thesis makes novel contributions. . 7

2.1 An artist’s rendition of what a rhinocorn might look like in it’s natural
habitat. Describing a unicorn as being somewhat similar to both horses and
rhinoceroses may be helpful for identification when no photos of unicorns
are available, but it may also be insufficient for differentiating it from other
hybrids such as this one. (Created by Asya Sucholutsky) 10

3.1 Single RNN Unit: A recurrent neural network uses a feedback mechanism
to access information about previous states. 29

3.2 Unrolled RNN Unit: The feedback loop in a recurrent neural network
can be unfolded for an alternative, sequential representation of the repeated
transformations it performs. 29

3.3 LSTM Model Architecture: The LSTM model consists of two hidden
layers followed by two recurrent LSTM layers and one additional hidden
layer. Input is a sequence of events, output is a prediction of next event in
the sequence. Loss is calculated as a logloss function comparing the true
next event to the predicted one. 32

3.4 One-hot Encoded True Events: Visualization of a sequence of just over
100 true events pulled from a testing trace. White pixels correspond to the
one active element in that column. 37

3.5 One-hot Encoded Predicted Events: Visualization of a sequence of
just over 100 predicted events pulled from the predictions on a testing trace.
White pixels correspond to the one active element in that column. 37

xiii

3.6 Transformer Model Architecture [Vaswani et al., 2017]: The Trans-
former consists of an encoder and decoder each made up of N blocks. Input
is a sequence of events, output is a sequence of predicted events. 39

3.7 Testing accuracy of best Restorer configurations measured every 30 epochs
of training. Model titles in the legend follow the format [model name] [# of
blocks]. 43

4.1 Left: An example of a ‘hard’ label where the second class is selected. Cen-
ter: An example of a ‘soft’ label restricted to being a valid probability
distribution. The second class has the highest probability. Right: An ex-
ample of an unrestricted ‘soft’ label. The second class has the highest weight.
‘Hard’ labels can be derived from unrestricted ‘soft’ labels by applying the
softmax function and then setting the highest probability element to 1, and
the rest to 0. 49

4.2 10 MNIST images learned by SLDD can train networks with fixed initializa-
tions from 11.13% distillation accuracy to 96.13% (r10 = 97.1). Each image
is labeled with its top 3 classes and their associated logits. The full labels
for these 10 images are in Table 4.1. 49

4.3 kNN models are fitted on 3 points obtained using four methods: PS, PG, soft
labels, and PG combined with soft labels. Each column contains 4 steps of
the associated method used to update the 3 points. The pie charts represent
the label distributions assigned to each of the 3 points. PS: A different
random point from each class is chosen to represent its class in each of the
steps. PG: The model can select and adjust synthetic points to represent
each class. In this case, the middle point associated with the ’green’ label
is moved diagonally in each step. Soft Labels: The label distribution of
the middle point is changed each step to contain a larger proportion of both
other classes. Combined: The middle point is simultaneously moved and
has its label distribution updated in each step. 55

4.4 A kNN model fitted on 2 points obtained using the ‘Combined’ method. The
pie charts represent the label distributions assigned to each of the 2 points.
From the left plot to the right plot, the locations of the 2 points slightly
shift and the ‘green‘ portions of their label distributions are increased. By
modifying the soft labels of the 2 points, the space can still be separated
into 3 classes. 56

xiv

4.5 SLDD can learn 100 distilled CIFAR10 images (10 steps with 10 images
each) that train networks with fixed initializations from 12.9% distillation
accuracy to 60.0% (r100 = 75.0). Each image is labeled with its top 3 classes
and their logits. Only the last step is shown. 62

4.6 Distilled dataset size and MNIST accuracy 63

4.7 SLDD can learn 100 distilled MNIST images (10 steps with 10 images each)
that train networks with random initializations from 10.09%± 2.54% distil-
lation accuracy to 82.75%±2.75% (r100 = 83.6). Each image is labeled with
its top 3 classes and their logits. Only the last step is shown. 65

4.8 SLDD can learn 100 distilled CIFAR10 images (10 steps with 10 images
each) that train networks with random initializations from 10.17%± 1.23%
distillation accuracy to 39.82%±0.83% (r100 = 49.8). Each image is labeled
with its top 3 classes and their logits. Only the last step is shown. 66

5.1 Decision boundaries of a vanilla 1NN classifier fitted on the minimum num-
ber of prototypes required to perfectly separate circle classes. From inner
to outer, the circles have 1, 4, 7, 10, 13, and 16 prototypes. 75

5.2 1NN decision boundaries when fitted on dtπe prototypes per class. Each
shaded circle represents a different class and the outlined points represent
the assigned prototypes. The colored regions correspond to the decision
boundaries created by the 1NN classifier. The axes form a Cartesian plane
whose origin coincides with the smallest class. Different rotations of pro-
totype placements on adjacent circles can lead to changes in the decision
boundaries. 76

5.3 First order (before and after discretizing by rounding to nearest integer)
and second order approximations for the minimal number of prototypes that
must be assigned to circle t. The approximations are applied to continuous
values of t to show the convergence behavior. 82

xv

5.4 1NN decision boundaries when fitted on two sub-optimal prototype arrange-
ments as well as near-optimal prototypes found using the FindPUGS algo-
rithm. Each shaded circle represents a different class and the outlined points
represent the assigned prototypes. The colored regions correspond to the
decision boundaries created by the 1NN classifier. The axes form a Carte-
sian plane whose origin coincides with the smallest class. Left and Center:
Prototypes on adjacent circles are not optimally rotated resulting in imper-
fect class separation in certain regions. Right: Prototypes are optimally
rotated to maximize distances between the prototypes and prototype arc-
midpoints of adjacent circles resulting in perfect class separation. 83

5.5 The ClusterCentroids prototype generation method finds similar prototypes
to our proposed algorithm when parametrized with the near-optimal number
of prototypes per class. 87

5.6 Examples of failure modes on four and six-class concentric circles data using
prototype methods where number of prototypes per class was found auto-
matically (semi-automatically for the InstanceHardnessThreshold method). 88

5.7 Examples of failure modes on four and six-class concentric circles data using
prototype methods for which the number of prototypes per class was set
manually. 88

5.8 ClusterCentroids parametrized with near-optimal number of prototypes ap-
plied to various levels of noise. From top to bottom, the rows correspond to
4, 6, 8, 10, and 12 classes. From left to right, columns correspond to σ =
0.05, 0.1, 0.2, 0.4. 91

5.9 A SLaPkNN classifier is fitted on 2 soft-label prototypes and partitions
the space into 3 classes. The soft label distribution of each prototype is
illustrated by the pie charts. 93

5.10 SLaPkNN can separate 2M − 1 classes using M soft-label prototypes . . . 97

5.11 SLaPkNN can separate 2M classes using M soft-label prototypes 98

5.12 SLaPkNN can separate 3M − 2 classes using M soft-label prototypes . . . 99

5.13 A SLaPkNN classifier is fitted on two points and used to partition the space
into four classes. The probabilistic soft labels of each point are illustrated
by the pie charts. 100

xvi

5.14 Various LO-shot learning decision landscapes and risk gradients are pre-
sented. Each color represents a different class. Gray-scale is used to visual-
ize the risk gradient, with darker shadows corresponding to lower risk. In
(a), the two colorful charts show decision landscapes and the two gray-scale
charts show risk landscapes. In (b)-(d), the risk gradient is laid directly over
the decision landscape. 102

5.15 SLaPkNN can separate 6 circles using 5 soft-label prototypes. Each pie chart
represents the soft label of one prototype, and is labeled with its location.
4 of the prototypes are located outside of the visible range of the chart. . . 103

5.16 Prototype generation and classification process Hierarchical Soft-Label Pro-
totype k-Nearest Neighbors (HSLaPkNN) 106

5.17 Examples of resulting HSLaPkNN decision landscapes. 114

5.18 Examples of resulting HSLaPkNN decision landscapes. 116

C.1 SecDD can create various sets of 10 synthetic MNIST images that train
target networks to over 95% accuracy while visually appearing to consist
almost entirely of noise. Each image is labeled with its top 3 classes and
their associated logits. 152

xvii

List of Tables

3.1 n-forward prediction accuracy using the direct method 33

3.2 Expected n-forward prediction accuracy using the step-by-step method as-
suming model cannot recover after a mistake 34

3.3 True n-forward prediction accuracy using the step-by-step method 34

3.4 Example of omitted rare event; rarely occurring event ‘340’ was incorrectly
omitted by the model, causing all predicted events beginning from the fourth
one to be shifted one up from their true counterparts. 35

3.5 Example of local ordering mistake; ’2c4’ was incorrectly predicted as the 8th
event instead of 4th, causing all of the other events from 4th to 8th to also
appear misclassified. In reality, true events 5-8 were shifted up by one and
predicted as events 4-7. 35

3.6 Comparison of different layers where n is sequence length, d is dimension of
representation, k is kernel size, and r is neighbourhood size [Vaswani et al.,
2017]. 36

3.7 Size comparison of different model versions in terms of number of parameters 40

3.8 Maximum percent accuracy after n epochs when trained with input and
output lengths of 40 . 41

3.9 Training time in seconds on single V100 GPU 42

3.10 Maximum percent accuracy after n epochs when trained with input and
output lengths of 40 and using all training data at once 43

3.11 Accuracy (as a percentage) when using different output lengths. Training
was performed using all data at once for 3000 epochs with input length of
40 and a new target output length randomly selected every 30 epochs . . . 44

xviii

3.12 Percentage deviation in total number of mined TRE instances in restored
traces and lossy traces at each level of loss when compared to the number
mined in normal traces . 46

4.1 Learned distilled labels for the 10 distilled MNIST images in Figure 4.2.
Distilled labels are allowed to take on any real value. If a probability distri-
bution is needed, a softmax function can be applied to each row. 50

4.2 Means and standard deviations of SLDD, DD, and baseline accuracies (as
detailed by Wang et al. [2018]) on MNIST and CIFAR10 datasets. The
first four baselines produce reduced datasets that are used to train the same
neural network as in the distillation experiments. The last two baselines
produce reduced datasets that are used to train a K-NN classifier. Ex-
periments with random initializations have their results listed in the form
[mean ± standard deviation] and are based on the resulting performance of
200 randomly initialized networks. 64

4.3 Means and standard deviations of TDD and baseline accuracies on text data
using TextConvNet. The first four baselines are used to train the same neu-
ral network as in the distillation experiments. The last two baselines are
used to train a K-NN classifier. Each result uses 10 GD steps aside from
IMDB with k-means (2 GD steps) and TREC50 (5 GD steps, 4 images per
class) which had to be done with fewer steps due to GPU memory con-
straints and also insufficient training samples for some classes in TREC50.
Experiments with random initializations have their results listed in the form
[mean ± standard deviation] and are based on the resulting performance of
200 randomly initialized networks. 64

4.4 Model accuracies when trained on full text datasets. 65

4.5 Distillation ratios for text datasets and their associated neural networks.
The number of distilled sentences, M , is specified ahead of time. Experi-
ments with random initializations have their results listed in the form [mean
± standard deviation] and are based on the resulting performance of 200
randomly initialized networks. 66

4.6 TDD can learn 2 distilled sentences of length 400 that train networks with
random initializations from 50.0% to 69.6% ± 5.5% (r2 = 79.96). Each
sentence is accompanied by its associated soft label logit. Only a segment
of 70 (out of 400) words is shown for each sentence. The first sentence
corresponds to positive sentiment, and the second to negative. 67

xix

4.7 TDD can learn 6 distilled sentences of length 30 that train networks with
fixed initializations from 12.6% to 87.4% (r6 = 97.8). The first column
contains the nearest decoding for each distilled sentence. Each sentence is
accompanied by the logits associated with each value of its distilled label.
Classes are denoted by their standard abbreviations. 69

4.8 TDD can learn 6 distilled sentences of length 30 that train networks with ran-
dom initializations from 16.60% ± 8.33% to 61.99% ± 8.79% (r6 = 69.33).
The first column contains the nearest decoding for each distilled sentence.
Each sentence is accompanied by the logits associated with each value of its
distilled label. Classes are denoted by their standard abbreviations. 70

5.1 A list of prototype selection and generation methods. The last column
describes how the number of prototypes is chosen for each class. 85

5.2 Accuracy of ClusterCentroids parametrized with near-optimal number of
prototypes. 90

5.3 Experimental results on a variety of simulated datasets comparing the per-
formance of HSLaPkNN fitted on our soft-label prototypes to vanilla 1NN
fitted on class centroids. Lines refers to the average number of lines found
for the dataset. Experiments involving synthetic data (all except Penguins
and EColi) are repeated 100 times with different random seeds during data
generation to produce the standard deviations. 117

5.4 Experimental results on a variety of simulated datasets comparing the per-
formance of HSLaPkNN fitted on our soft-label prototypes to vanilla 1NN
fitted on class centroids. Prototypes ratio refers to the ratio of the number of
prototypical lines used by HSLaPkNN to the number of prototypes used by
1NN. Accuracy ratio refers to the ratio of the mean classification accuracy
of HSLaPkNN to the mean classification accuracy of 1NN. 117

5.5 Experimental results on simulated datasets of different dimensionalities com-
paring the performance of HSLaPkNN fitted on our soft-label prototypes to
vanilla 1NN fitted on class centroids. Each dataset contains 2000 points
across 80 classes. Experiments are repeated 100 times with different ran-
dom seeds during data generation to produce the standard deviations. . . . 118

xx

5.6 Experimental results on simulated datasets with increasing feature dimen-
sionalities comparing the performance of HSLaPkNN fitted on our soft-label
prototypes to vanilla 1NN fitted on class centroids. Each dataset contains
2000 points across 80 classes. Prototypes ratio refers to the ratio of the num-
ber of prototypical lines used by HSLaPkNN to the number of prototypes
used by 1NN. Accuracy ratio refers to the ratio of the mean classification
accuracy of HSLaPkNN to the mean classification accuracy of 1NN. 118

xxi

xxii

‘It has been said that everything everywhere affects everything else.
This may be true.

Or perhaps the world is just full of patterns.’
Terry Pratchett, Wings

xxiii

Learning From
Almost No Data

ILIA SUCHOLUTSKY

Chapter 1

Introduction

Conceptually, a dataset is just a collection of samples that can be images, text, time series,
or a multitude of other formats. When we train models on these datasets, we see that these
models are often able to find patterns, make inferences, detect similarities, and otherwise
generalize to samples that they have previously never seen. This suggests that datasets may
contain some kind of intrinsic knowledge about the systems or distributions from which
they are sampled. For many machine learning tasks, it is often the objective to approximate
this underlying true distribution. Deep learning models are increasingly approaching and
exceeding human performance on a number of such tasks [LeCun et al., 2015]; however,
in order to achieve human-level or better performance on these tasks, models generally
need to be trained on datasets containing a very large number of examples. If these
datasets contain noise or loss, then model performance will likely be impacted and an even
larger training set may be needed. These restrictions add a lot of overhead when using
deep learning to automate or solve various tasks as a large, clean dataset must first be
collected and annotated, and then the model must be trained on this entire dataset. The
computational overhead is even higher if the model architecture or hyper-parameters need
to be optimized, as many architecture search or hyper-parameter search algorithms require
that the candidate models be retrained each time [Zoph and Le, 2016, Liu et al., 2018,
Pham et al., 2018].

The old school of thought in the fields of statistical and machine learning was that
the number of trainable parameters in a model could not exceed the number of training
examples without causing overfitting. Combined with the success of applying deep learn-
ing to big data, this has led to the recent trend of training increasingly large models on
increasingly large datasets. Unfortunately, the computational costs of this approach have
led to a de-democratization of AI [Ahmed and Wahed, 2020]: only a shrinking number

2

of stakeholders (researchers, companies, etc.) are able to reap the benefits, or participate
in the development, of new deep learning methods. However, these same developments
in deep learning have also shown that neural networks with millions and even billions of
parameters can be successfully trained without overfitting. Recent studies have even found
that, in certain settings, more data can hurt model performance while larger model sizes
improve it; a phenomenon called ‘deep double descent’ [Nakkiran et al., 2019]. These re-
cent results along with the human ability to solve many learning tasks given only a small
number of examples [Lake et al., 2015] suggest that there is only a relatively small amount
of task-specific knowledge or information needed to find good solutions to a task. It also
suggests that knowledge is duplicated across the observations in a dataset. If knowledge is
duplicated across a dataset and the actual amount of knowledge contained within a dataset
is relatively small, then it is important to determine whether there is a more efficient way
to train our models than by simply showing them these redundant examples.

To this end, we think of a dataset as a set of information (about an underlying dis-
tribution) that has been packaged in a particular way. The features, labels, and every
observation are all just different aspects of that packaging. Much of the work in machine
learning can then be described as finding ‘better’ ways to re-package that information,
where the definition of ‘better’ depends on the type of task being solved. Feature selection
and engineering, dataset reduction and augmentation, and representation learning are all
methods for re-packaging information. In certain cases, we can improve the re-packaging
process by also injecting some external information using methods like transfer learning
and pre-training. This also includes any method that requires input from an ‘expert’ (hu-
man or AI) with prior knowledge, such as data labeling and annotation, manual feature
selection and engineering, knowledge distillation, and many more.

Throughout this thesis we approach the problem of learning from almost no data from
this perspective of re-packaging information. In the next chapter, we formalize our ap-
proach to efficient learning by developing a framework that ties generalization to different
forms of information sharing and redundancy within data. In the remaining chapters,
we use this framework to propose and study novel methods of re-packaging information
and their implications for generalizing from small data. This includes restoring lost data
by adapting sequence-modeling deep neural networks, reducing training dataset sizes by
multiple orders of magnitude while maintaining the same model performance, establishing
a connection between data-efficiency in deep neural networks and classical models like k-
Nearest Neighbor classifiers, and providing both empirical and theoretical evidence that a
model can learn to separate N classes from M < N training examples.

We use the rest of this chapter to provide some definitions and terminology, as well as
to give a more detailed outline of the remainder of this thesis.

3

1.1 Definitions and Terminology

• We interchangeably use the terms (data-)point, sample, example, and observation to
refer to individual records (e.g. an image, a text sequence, etc.) within a dataset.

• We use ‘prototype’ to refer to a representative example which may either be synthetic
or come from the true data distribution.

• When discussing statistical sampling, we provide context around the word ‘sample’
to avoid ambiguity (e.g. ‘...randomly sample from the distribution...’).

• We generally use the term ‘model’ to refer to whichever machine learning model we
are discussing (e.g. neural network, kNN classifier, etc.) when there is no ambiguity.

• We interchangeably use the terms ‘sample efficiency’ and ‘data efficiency’ to refer to
the amount of training data required for a model to properly generalize.

• We use ‘information sharing’ as a broad non-technical term for when a data object
(e.g. an observation, a class of observations, a sequence, etc.) reveals information
about another data object. The closest technical term would be ‘mutual information’,
which quantifies how much information we can receive about one random variable
through observations of another [Kullback, 1997, Cover, 1999, Zeng, 2015], which in
turn is based on Claude Shannon’s foundational concepts of rate of transmission and
joint entropy [Shannon, 1948]. We intentionally avoid framing information sharing
in terms of random variables, and instead suggest that it can cover both stochastic
and deterministic settings. As a result, we consider concepts/measures like mutual
information, directed information, joint entropy, partial redundancies, correlation,
causation, duplication, symmetry, set membership, and structural similarity to be
special cases of information sharing.

• We use ‘label’ to refer to any desired (or ‘target’) output, that a machine learning
model must learn to produce given the associated input. This generalized definition
allows us to discuss all supervised learning settings (e.g. classification, regression,
autoencoding, self-supervised learning, etc.) without having to re-define terminology
for each one.

• In the context of classification, a hard label is a vector of length N representing a
point’s membership to exactly one out of N classes.

yhard = ei =
[
0 ... 0 1 0 ... 0

]T
4

Hard labels can only be used when each point belongs to exactly one class. If there
are n classes, and some point x belongs to class i, then the hard label for this point
is the ith unit vector from the set of standard basis vectors.

• In the context of classification, a soft label is the vector-representation of a point’s
simultaneous membership to several classes. Soft labels can be used when each point
is associated with a distribution of classes. We denote soft labels by ysoft.

ysoft =
[
0.2 ... 0.1 0.6 0 ... 0.1

]T
1.2 Outline

In Chapter 2, we develop a framework for understanding and achieving sample-efficient
generalization in machine learning in terms of three principles: information sharing, infor-
mation repackaging, and information injection. We argue that various forms of information
sharing, or redundancy, in datasets are what enable generalization and that the best way
to leverage this during model training is through rich labels that properly describe the
shared information.

We use this framework to propose ‘less than one’-shot (LO-shot) learning, a new ma-
chine learning task where a model must learn to recognize N classes from M < N training
examples. We also discuss different ways of using this framework to improve sample effi-
ciency, and even achieve LO-shot learning, in practice. Specifically, we suggest methods
consistent with our framework that can improve sample efficiency in various machine learn-
ing settings involving small data or requiring efficient generalization.

The consequent chapters of this thesis flow out of this framework as visualized in
Figure 1.1 and can be summarized as follows:

• In Chapter 3, we focus on a typical applied machine learning workflow, which usually
involves analyzing a custom real-world dataset and training various neural network
architectures to perform some specific task using this data. Specifically, we show that
deep learning architectures that are typically used for language modelling can be used
for imputation of missing observations in any kind of sequence data, even when a
large fraction of the sequence is missing. We provide a practical demonstration of this
with an application to improving anomaly detection in safety-critical systems (like
cars) that rely on clean data. More generally, the study in this chapter demonstrates
that generalization in practical machine learning settings is accurately described by

5

our proposed framework: information sharing between different observations within
a dataset enables imputation of missing observations from the remaining ones.

• In Chapter 4, we turn our focus to studying how our framework can be used to enable
models to generalize from small data. As a first step in this direction, we explore
whether large information-rich training datasets can be reduced, or repackaged, into
small information-rich training datasets that models can still effectively generalize
from. Dataset distillation is a method for reducing training dataset sizes for neural
networks by learning a small number of synthetic observations that contain all the
‘useful’ information of a large dataset [Wang et al., 2018]. We develop a soft-label
version of dataset distillation and show it can leverage the shared information, or
features, between different classes in order to reduce a training dataset to less than one
example per class. This provides the first empirical evidence that LO-shot learning is
possible. We also extend dataset distillation to work with sequential data like text.

• In Chapter 5, we aim to provide theoretical validation for LO-shot learning to con-
firm that models can indeed generalize from small datasets. We consider a seemingly
simple classification task that turns out to be particularly difficult for kNN classi-
fiers, requiring a large amount of training data to properly fit the classifiers. We
demonstrate a connection between sample efficiency in neural networks and in kNN
classifiers and prove that similarly to the dataset distillation case with neural net-
works, soft labels can also greatly reduce the amount of data required to fit a kNN.
Unexpectedly, we prove that a classifier can learn to separate any finite number of
classes after fitting on as few as two soft-label prototypes. We use this result to
develop the first algorithm for generating LO-shot prototypes for kNN classifiers.

6

Figure 1.1: The consequent chapters of this thesis flow out of the framework defined in
Chapter 2. Red cells denote the three core premises of the framework. Green cells denote
topics to which this thesis makes novel contributions.

7

Chapter 2

Extreme Data Efficiency and ‘Less
Than One’-Shot Learning

2.1 Introduction

As mentioned above, deep supervised learning models are extremely data-hungry, generally
requiring a very large number of samples to train on. Meanwhile, it appears that humans
can quickly generalize from a tiny number of examples [Lake et al., 2015]. Getting machines
to learn from ‘small’ data is an important aspect of trying to bridge this gap in abilities.

In Section 2.2, we propose a new machine learning setting we call ’Less Than One’-
Shot Learning (abbreviated as ‘LO-shot learning’ or ‘LOSL’), where a model must learn
to recognize N classes from M < N training examples. We also compare and contrast this
proposed setting to existing, related settings like few-shot and one-shot learning. Few-shot
learning settings like LOSL require a paradigm shift away from the current trend of big
data machine learning.

Since many current deep learning methods were developed for use with big data, it can
be difficult to achieve the extreme level of sample-efficiency with them that is required for
the LO-shot learning setting. In addition, the methodology suggested for increasing sample
efficiency in a particular setting often depends on the dataset and task being considered.
In Section 2.3, we develop a general, unified framework for understanding and achieving
sample-efficient generalization.

Finally, in Section 2.4, we discuss a number of practical settings as motivating examples
of how our framework can be applied in practice to solve problems related to data-efficiency.

8

2.2 ‘Less Than One’-Shot Learning

Few-shot learning (FSL) is one approach for making models more sample efficient. In this
setting, models must learn to discern new classes given only a few examples per class [Lake
et al., 2015, Snell et al., 2017, Wang et al., 2020]. Further progress in this area has enabled a
more extreme form of FSL called one-shot learning (OSL); a difficult setting where models
must learn to discern a new class given only a single example of it [Fei-Fei et al., 2006,
Vinyals et al., 2016]. We now propose ‘less than one’-shot learning (‘LO-shot learning’ or
‘LOSL’), a setting where a model must learn N new classes given only M < N examples,
less than one example per class. At first glance, this appears to be an impossible task, but
throughout this thesis we both theoretically and empirically demonstrate feasibility.

Some readers may notice a similarity of this formulation to zero-shot learning (ZSL).
ZSL is a few-shot learning setting where models must learn to recognize previously unseen
classes during inference time, typically using meta-information or latent features [Xian
et al., 2018]. One key difference between ZSL and LOSL is that ZSL only restricts the
number of training examples available for the unseen classes (i.e. some classes have zero
associated examples but the remaining classes can have any number of training examples),
but LOSL restricts the total number of training examples (i.e. N classes but fewer than N
training examples). In addition, LOSL assumes that the user has knowledge of all classes
at training time. While some of those classes may not be covered by training examples
(similarly to ZSL), the a priori knowledge of their existence can be used during training
to improve the model’s ability to detect them at inference time. In particular, throughout
this thesis and especially in Chapter 5, we show that soft labels can be used to form a
distribution over all known classes (even if training examples are unavailable for some of
those classes) resulting in coverage of N classes by a set of M < N training examples.
The assumption that a user has prior knowledge of all classes is typically not used in ZSL
frameworks though there are some that also leverage it, for example, to develop attribute-
based profiles (or ‘signatures’) of unseen classes that can be used to detect them at inference
time [Romera-Paredes and Torr, 2015].

As an analogy, consider an alien zoologist who arrived on Earth and is being tasked
with photographing a unicorn. The alien has no familiarity with local fauna and there
are, of course, no photos of unicorns. As a result, humans show the alien a photo of a
horse and a photo of a rhinoceros, and say that a unicorn is something in between. With
just two examples, the alien has now learned to recognize three different animals. This is
the essence of LO-shot learning, generalizing to more (known) classes than the number of
available training examples.

However, with the limited information that was shared, the alien’s mental represen-

9

Figure 2.1: An artist’s rendition of what a rhinocorn might look like in it’s natural habitat.
Describing a unicorn as being somewhat similar to both horses and rhinoceroses may be
helpful for identification when no photos of unicorns are available, but it may also be
insufficient for differentiating it from other hybrids such as this one. (Created by Asya
Sucholutsky)

10

tation, or conception, of a unicorn may be different than what the humans had in mind.
One such possible conception, a ‘rhinocorn’, is pictured on the front cover of this thesis
as well as in Figure 2.1. In order to avoid such misunderstandings, approaches to extreme
few-shot learning must be more careful and complex than the simplistic one described in
our analogy. Throughout this thesis we aim to develop such approaches and analyze their
capabilities and limitations.

2.3 A Framework for (Efficient) Generalization

In in this section, we aim to create a unified and general framework that explains sample-
efficient generalization in terms of three core principles: information sharing, information
repackaging, and information injection. This framework will prove to be helpful for ex-
plaining few-shot learning and beyond that, LO-shot learning.

Learners aim to generalize from training data by forming ‘beliefs’ (e.g. patterns, pri-
ors, etc.) that continue to hold true when applied to previously unseen test data. Our
framework postulates that, regardless of whether these beliefs are learned exclusively from
training data or come as priors or inductive bases from external sources, the underlying
mechanism that enables them is the same: shared information, or redundancy, within the
data (see Section 1.1 for a full definition of information sharing). In particular, we find that
the following three major types of information sharing enable many modern machine learn-
ing settings: sharing between observations, sharing between classes, and sharing between
tasks. We explain each type of information sharing in the next section.

Without information sharing between current and future observations, generalization
would not be possible. Therefore, we consider information sharing to be the root of gener-
alization. However, we still need a mechanism for surfacing insights and prior knowledge
about shared information to our models. We believe that creating information-rich labels
(see Section 1.1 for a generalized definition of labels) is an information repackaging and
injection technique that can quantify, or provide prior knowledge about, each such type of
information sharing. We discuss information repackaging in Section 2.3.2, and information
injection in Section 2.3.3. Our results throughout this thesis suggest that using rich la-
bels to simultaneously leverage multiple types of information sharing can greatly improve
sample-efficiency and even enable LO-shot learning.

11

2.3.1 Types of Information Sharing

We generally divide information sharing into three broad categories: between observations,
between classes, and between tasks. We summarize what we mean by each one and how
they connect to the rest of this thesis.

Information Sharing Between Observations

Correlation, knowledge duplication, and/or partial redundancy between different observa-
tions are required for pattern-matching, inter/extrapolation, and any kind of generalization
from training to inference-time. Broadly speaking, these forms of information sharing be-
tween observations is what enables learning from data in the first place. Data restoration
(e.g. imputation of missing values in a sequence) and data reduction are two clear examples
of machine learning problems that are only solvable due to information sharing between
the observations.

Data Restoration If knowledge is highly distributed, or mostly redundant, across a
dataset, then we would expect that losing some fraction of the examples would not result
in a large amount of knowledge being lost. In other words, models can use the remaining
samples to restore lost samples because of information sharing between observations. One
such way to restore lost data is to train a generative model on the available samples and
use it to generate samples from missing portions of the distribution, a technique that is also
often used for data augmentation [Antoniou et al., 2017]. In Chapter 3, we propose another
way to investigate the idea that knowledge is duplicated within datasets by studying the
ability of state-of-the-art (SOTA) deep learning models to impute lost or missing sequential
data.

Data Reduction If knowledge is indeed duplicated, then we can investigate how much
knowledge is actually contained within a dataset. If there is actually only a small amount of
knowledge, or relevant information, contained within a dataset, then it should be possible
to design a small number of synthetic samples that contain all the information and can thus
train a model to close to its original accuracy. Dataset distillation is a method for reducing
dataset sizes: the goal is to learn a small number of synthetic samples (or prototypes)
containing all the information of a large dataset [Wang et al., 2018]. One way to think
about these synthetic samples is as highly-efficient training examples that are optimized
for training a particular model. As a result, we can use them to study the limits of few-shot

12

learning with different models. In addition, these highly-efficient representations can not
only be used to better understand a dataset and the knowledge it contains, but also to
greatly speed up a large range of machine learning tasks. The benefits include speeding up
deep learning model training, reducing energy consumption, and reducing required storage
space.

While this may seem unintuitive at first, these two machine learning problems (restora-
tion and reduction) are very similar both to each other as well as to related problems like
dataset augmentation; they are all forms of information repackaging that aim to change
the number of samples in a dataset without changing the amount of information contained
therein. We discuss these and other forms of information repackaging in more detail in
Section 2.3.2.

Information Sharing Between Classes

In our alien zoologist analogy, information sharing between classes is what allows us to
describe a unicorn by its common features with horses and rhinoceroses. Horses and
unicorns represent distinct classes, but they share information such as common visual
features; the same is true for the unicorn and rhinoceros classes.

One way to quantify shared information between different classes is by using soft labels
(see definitions in Section 1.1) to associate each observation simultaneously with multiple
classes. As such, soft labels allow us to encode and decode more information from each
example than is otherwise possible. By exploiting the shared information between different
classes, and using soft labels to quantify this relationship, we can more efficiently repackage
the information necessary for solving classification tasks.

For example, soft labels can be used to improve dataset reduction algorithms that are
intended for use with datasets that have implicit (latent) or explicit (user-defined) classes,
by increasing the representational power of each synthetic observation. We use this idea in
Chapter 4 to propose the Soft-Label Dataset Distillation algorithm which extends dataset
distillation to simultaneously optimize the synthetic samples as well as the labels assigned
to them. In our experiments with this algorithm, we present the first empirical evidence
that LO-shot learning is feasible. Specifically, we show that it is possible to design a set
of five soft-labelled synthetic images, that train neural networks to over 90% accuracy on
the ten-class MNIST task (less than one training image per class).

While dataset distillation is intended for use with neural networks, information sharing
between classes can also be leveraged by other machine learning algorithms. In Chapter 5,
we study the increase in sample efficiency enabled by switching from hard labels to soft

13

labels. In order to study this problem analytically, we focus on a simpler machine learning
model, the k-nearest neighbors classifier, and unexpectedly show that soft labels enable
kNN classifiers to separate any finite number of classes given just two carefully-designed
training prototypes.

Information Sharing Between Tasks

While both of the previous information sharing settings focused on single-task datasets, it
is much more common that real-world datasets are used for a multitude of tasks. In real-
world settings, models trained to perform different downstream tasks often rely on detecting
and learning many of the same patterns. Information sharing between tasks allows us to
find these task-independent patterns in datasets which enables major learning settings like
transfer learning, pre-training/fine-tuning, and other forms of multi-task learning. For
example, the same image dataset could be used for learning different tasks like semantic
segmentation, object counting, and classification, but performance on each of these tasks
is likely to be improved by the ability to detect edges or other such inherent, structural
patterns in the dataset. Multi-task learning systems often aim to learn these patterns
independently of the downstream task, so that they can then be re-used for each task
without the need to re-learn them from scratch [Zhang and Yang, 2021].

In Appendix A, we discuss how this type of information sharing can be leveraged using
rich natural language annotations and the practical implications of this finding. We do not
focus on information sharing between tasks in the remaining chapters of this thesis.

2.3.2 Information Repackaging

We consider a dataset to be a set of information that has been packaged in a particular way.
Various aspects of that packaging include the observations, features, and labels chosen for
inclusion in the dataset. Information repackaging refers to any transformation that modifies
these and any other aspects of a dataset while preserving the information contained therein.
From this perspective, data pre-processing methods can be seen as a way to repackage
the information contained within the dataset. The packaging of a dataset should not
have an effect on the performance of a ‘perfect’ learner. If a dataset contains all of the
knowledge or information required to solve a particular task to some desired standard, then
a ‘perfect’ learner should be able to solve the task given any repackaging of the dataset.
However, developing such ‘perfect’ learners that can extract all task-relevant information
while discarding any spurious patterns, features, or noise may be equivalent to achieving
artificial general intelligence (AGI).

14

Until such models are created that can always extract all relevant information from
a dataset, much of the research and development work in machine learning will continue
to revolve around finding ‘better’ ways to re-package information, where the definition of
‘better’ depends on the type of task being solved. For example, when training a model to
discern dogs and wolves from photographs of them, we may wish to remove backgrounds
from the images to prevent models from using presence of snow as an explanatory vari-
able, in order to improve accuracy when testing on previously unseen images (e.g. a wolf
indoors, a husky in the snow, etc.). Obvious examples of this include any kind of pre-
processing or preparation of the data such as feature selection/engineering and dataset
reduction/augmentation. However, even research that focuses on model development is
often about finding ways to improve information re-packaging, for example by getting deep
neural networks to learn better representations of the data in their intermediate layers.

Resizing Datasets

Since information repackaging transforms a dataset without changing what information is
available within it (unlike information injection which we discuss in the next section), this
suggests the unintuitive conclusion that more data may not always be better for machine
learning [Nakkiran et al., 2019]. For example, one way to augment a dataset is to train a
generative model on that dataset and then use it to generate additional samples. This pro-
cess introduces no new information (aside from inductive biases on the generative model)
but simply duplicates and recombines the existing information already contained within
the original dataset. Our framework predicts that sufficiently flexible/general models (i.e.
models that approach the performance of a ‘perfect’ learner on the specific dataset being
considered) should not perform better when trained on this augmented dataset than when
trained on the original dataset.

A recent study provided empirical evidence for this prediction by finding that the
performance of large deep learning models in the ‘real’ world (where data are limited and
models see the same training examples multiple times) is similar to their performance
in the ‘ideal’ world (where there is unlimited data and each observation is viewed only
once) [Nakkiran et al., 2020]. The ‘ideal’ world was simulated by training a generative
model on CIFAR-10 [Krizhevsky et al., 2009] and using that model to augment the dataset
by generating several million additional samples called ‘CIFAR-5m‘. When testing several
different models with different configurations (e.g. regular training, pre-training, data
augmentation, etc.) on CIFAR-5m, their results suggest that test error is the same in both
the ideal and real worlds, which is consistent with our framework’s expectations.

It is also possible to repackage information in such a way that the resulting dataset is

15

smaller (i.e. has fewer samples) than the original dataset, but still contains all the same
information. Conceptually, this is easier to grasp when thinking of a dataset as just one
possible, potentially inefficient, packaging of a set of information that may contain various
redundancies and noise as byproducts of the sampling and dataset creation methodology
that were employed. Throughout this thesis, we extensively explore this idea of reducing
the size of datasets as we believe that studying the reduced datasets may provide insights
into how sample-efficient generalization can be achieved. In particular, in Chapter 4 we
study how large datasets can be reduced into small datasets while maintaining model
performance, and then in Chapter 5 we use our findings to find the theoretical lower limit
on the number of training examples required for a model to learn N classes.

2.3.3 Information Injection

Additional information can be injected into a dataset in various ways: input from an ‘ex-
pert’ (human or AI) with prior knowledge, such as data labeling and annotation, manual
feature selection and engineering, knowledge distillation, pre-training, transfer learning,
inductive biases, and many more. If the information contained within a dataset is insuffi-
cient for even a ‘perfect’ learner to solve a task up to some standard, or there are too few
samples to distinguish signal from noise, the only available remedy may be to supplement
the training process by injecting some external information.

In settings where a large amount of related data (containing relevant external infor-
mation) is available, data-dependent information injection methods, like pre-training or
transfer learning, can be used with ‘imperfect’ learners to achieve large performance im-
provements in few-shot learning. In other words, we can bypass the need for ‘perfect’
learners by throwing large amounts of related data at ‘imperfect’ learners until they man-
age to extract all the relevant external information. For example, when working with
language models, we often first (pre-)train the model on a large text corpus to teach it
how to efficiently represent the language, and then use it to classify domain-specific text
into domain-specific classes [Radford et al., 2018]. Encoding the domain-specific text into
those efficient representations is a form of information repackaging, but the pre-training
injected information into this process that dictates what these representations should be.

Meanwhile, in settings where related data are limited or are highly redundant (i.e.
they contain only a small amount of additional external information), information in-
jection methods that use expert input to increase the amount of information contained
within existing observations, like labelling and annotation, are far more effective than data-
dependent information injection methods. For any type of supervised learning, including

16

classification, regression, and self-supervised learning, labels (see definition in Section 1.1)
are a way to communicate, or encode, the intent of the task. Labels guide the training of
the model by specifying what outputs it must learn to produce for given inputs. Labels
also allow us to inject the annotator’s prior knowledge about the dataset (e.g. knowledge
about shared information between observations and shared information between classes)
into the training process.

Throughout this thesis, we argue that information-rich labels enable more sample-
efficient generalization. In Chapters 4 and 5 we show that in the classification setting,
transitioning from hard labels to soft labels already provides a sufficiently large increase
in sample-efficiency to enable LO-shot learning. In general, we believe that information
repackaging/injection techniques related to labels (e.g. automatic re-labelling, expert an-
notations, etc.) are the most effective methods for improving few-shot learning perfor-
mance by simultaneously leveraging the different types of information sharing that occur
in datasets. As a result, we advocate for the development of novel methods for collecting
increasingly information-rich labels. For example, in Appendix A, we propose a possible
method for packing more information into labels by using natural language annotations
instead of numerical labels. We believe that this is an important direction for future re-
search as it would not only be a more natural way for annotators to share their insights
but would also provide even more information about each observation than soft labels.

2.4 Motivating Examples: Efficient Generalization in

Practice

We consider some practical settings where sample-efficient generalization is useful. For
each setting, we discuss the underlying assumptions, discuss a few examples of problems
that are often encountered within the setting, and suggest solutions to these problems that
are consistent with our framework.

2.4.1 Practical Setting 1 - Neural Architecture Search

Neural Architecture Search (NAS) refers to a family of algorithms used for optimizing neu-
ral network architectures [Elsken et al., 2019]. These algorithms are typically distinguished
by three components: their search space, their search strategy, and their performance eval-
uation strategy. As deep learning began seeing broad adoption into industry, AutoML and

17

NAS became increasingly popular methods for designing neural networks for various ap-
plications with much less manual effort and domain knowledge than previously required.
Unfortunately, NAS tends to be especially computationally expensive as it requires fre-
quent re-training of candidate architectures on the training dataset in order to evaluate
their quality.

A popular approach for mitigating the prohibitive computational costs of NAS is to
use small proxy datasets when evaluating candidate architectures. As mentioned above,
dataset distillation is a powerful information repackaging technique that takes advantage
of information sharing between observations in order to reduce the size of training datasets
while preserving the information contained within [Wang et al., 2018].

The original dataset distillation algorithm assigns each synthetic sample a single hard
label, which limits the accuracies models trained on distilled datasets can achieve. In
Chapter 4, we propose to simultaneously distill both images and their labels, and thus
to assign each synthetic sample a soft label (a distribution of labels) rather than a single
hard label. Our improved algorithm increases accuracy by 2-4% over the original dataset
distillation algorithm for several image classification tasks. We show that a variety of
popular datasets can be distilled down to very small synthetic datasets and still train deep
learning models to close to their original accuracies. For example, training a LeNet model
with just 10 distilled images (one per class) results in over 96% accuracy on the MNIST
data. Using soft labels also enables distilled datasets to consist of fewer samples than there
are classes as each sample can encode information for more than one class. For example,
we show that LeNet achieves almost 92% accuracy on MNIST after being trained on just
5 distilled images. As far as we can tell, this is the first empirical evidence that LO-shot
deep learning is possible.

We also propose an extension of the dataset distillation algorithm that allows it to distill
sequential datasets including texts. We demonstrate that text distillation outperforms
other methods across multiple datasets. For example, we are able to train models to
almost their original accuracy on the IMDB sentiment analysis task using just 20 distilled
sentences.

2.4.2 Practical Setting 2 - Federated Learning

Federated learning systems typically consist of two components: a central node with high
compute power where any intensive processing takes place, and multiple edge nodes with
limited compute power where neural networks are deployed. When any new data are
collected, it is aggregated at the central node, and then distributed to the edge nodes

18

where it is used to update each of the deployed networks. However, frequent transmissions
of large amounts of data may be both expensive and slow. An additional concern in this
setting is that the channels used for transmissions may be insecure.

As a motivation example, consider a medical diagnosis smartphone app that runs on
users’ phones. This app could require transmitting private information, be limited to
the compute power available on a smartphone, and have high cost/slow rate for large
transmissions. In such a case, it is important to simultaneously reduce the size of the
transmission, preserve any private information, and reduce the compute power required
for training.

Dataset Distillation and Soft-Label Dataset Distillation have already been shown to be
good solutions for reducing transmission sizes of training data for federated learning [Goetz
and Tewari, 2020, Zhou et al., 2020]. In Appendix C we use other recent extensions of
Dataset Distillation to propose Secure Dataset Distillation (SecDD). To summarize briefly,
SecDD intentionally overfits the soft-label distillation process to a particular neural network
with known weights. As a result, not only is the resulting synthetic training dataset small,
but it is also privacy-preserving as it does not contain recognizable features and can only
be used for training by the specific combination of neural network and weights to which it
was overfitted.

2.4.3 Practical Setting 3 - Expensive Inference

Instance-based learning algorithms like k-nearest neighbors are incredibly popular due to
their simplicity and interpretability. However, these algorithms tend to be very computa-
tionally expensive at inference time as they usually involve comparing new observations
against a large number of previously seen observations.

As a motivating example, consider a movie recommendation engine with millions of
existing users and a large selection of movies. When a new user joins the service and enters
some information about themselves (e.g. a set of movies or genres that they like), the engine
wants to find the movies they are most likely to be interested in. One straightforward way
to do this would be to compare the new user’s profile against every existing user in the
system and make a recommendation based on the preferences of the most-similar existing
users. While straightforward and likely effective in terms of predictive power, this kind of
kNN-type approach involves performing millions of comparisons and an expensive sorting
of the resulting similarity scores every time that a new user joins the system.

As mentioned above, using prototype methods to reduce the size of training datasets
can drastically reduce the computational cost of classification with instance-based learning

19

algorithms like the k-Nearest Neighbour classifier [Bezdek and Kuncheva, 2001, Triguero
et al., 2011a, Garcia et al., 2012, Kusner et al., 2014]. The number and distribution of
prototypes required for the classifier to match its original performance is intimately related
to the geometry of the training data. As a result, it is often difficult to find the optimal
prototypes for a given dataset, and heuristic algorithms are used instead.

In Chapter 5.2, we consider a particularly challenging setting where commonly used
heuristic algorithms fail to find suitable prototypes and show that the optimal number of
prototypes can instead be found analytically. We also propose an algorithm for finding
nearly-optimal prototypes in this setting, and use it to empirically validate the theoretical
results. Finally, we show that a parametric prototype generation method that normally
cannot solve this pathological setting can actually find optimal prototypes when combined
with the results of our theoretical analysis.

In Chapter 5.3, we use a soft-label generalization of the k-Nearest Neighbors classifier
to explore the intricate decision landscapes that can be created in the ‘less than one’-
shot learning setting. We analyze these decision landscapes to derive theoretical lower
bounds for separating N classes using M < N soft-label samples and investigate the
robustness of the resulting systems. We find that assigning soft labels to prototypes can
allow increasingly small sets of prototypes to accurately represent the original training
dataset.

In Chapter 5.4, we use this to propose a novel, modular method for generating soft-
label prototypical lines that still maintain representational accuracy even when there are
fewer prototypes than the number of classes in the data. In addition, we propose the
Hierarchical Soft-Label Prototype k-Nearest Neighbor classification algorithm based on
these prototypical lines. We show that our method maintains high classification accuracy
while greatly reducing the number of prototypes required to represent a dataset, even when
working with severely imbalanced and difficult data.

2.4.4 Practical Setting 4 - Sequence Imputation

In most areas of machine learning, it is assumed that data are fairly consistent between
training and inference. Unfortunately, in real systems, production/inference data are
plagued by noise, loss, and various other quality reducing factors while training datasets
are typically well-curated and clean. While a number of deep learning algorithms solve
end-stage problems of prediction and classification, fewer aim to solve the intermediate
problems of data pre-processing, cleaning, and restoration at inference time. These inter-

20

mediate problems are clear examples of the ‘information re-packaging’ concept we previ-
ously discussed.

Self-driving cars are the latest example of automotive systems becoming increasingly
complex and algorithm-dependent. Cars and other automotive systems typically contain
dozens of small computers that must communicate between each other to keep the vehicle
functioning. The event data exchanged by these computers, called system traces, can
be monitored to perform predictive analytics tasks like anomaly detection. As mentioned
above, real systems like cars are plagued with data problems like data loss, but downstream
algorithms like anomaly detection often require clean data to function properly. Thus, a
solution must accurately restore lost events given only the remaining events in a sequence
as input.

In Chapter 3, we develop a method for accurately reconstructing discrete temporal or
sequential system traces affected by data loss, using Long Short-Term Memory Networks
(LSTMs). The model works by learning to predict the next event in a sequence of events,
and uses its own output as an input to continue predicting future events. As a result, this
method can be used for data restoration even with streamed data. Such a method can
reconstruct even long sequence of missing events, and can also help validate and improve
data quality for noisy data. The output of the model will be a close reconstruction of
the true data, and can be fed to algorithms that rely on clean data. We demonstrate our
method by reconstructing automotive data (CAN traces) consisting of long sequences of
discrete events. We show that given even small parts of a CAN trace, our LSTM model
can predict future events with an accuracy of almost 90%, and can successfully reconstruct
large portions of the original trace, greatly outperforming a Markov Model benchmark.
However, Long Short-Term Memory (LSTM) networks suffer from a major bottleneck: a
large number of sequential operations. To remedy this, we use attention mechanisms from
the recently proposed Transformer models [Vaswani et al., 2017] to entirely replace the
recurrent components of these data-restoration networks. We demonstrate that such an
approach leads to reduced model sizes by as many as 2 orders of magnitude, a 2-fold to
4-fold reduction in training times, and 95% accuracy for automotive data restoration. We
also show in a case study that this approach improves the performance of downstream
algorithms reliant on clean data.

The ability to restore lost data, even when faced with high levels of loss, suggests that
information is indeed shared across observations. This duplication may be useful when we
are dealing with high levels of noise or loss as it allows our models to still extract the true
signal or pattern from the dataset. However, this duplication also leads to a large number
of samples being required to store a relatively small amount of knowledge.

21

Chapter 3

Data Restoration

Introduction

The growth of the Internet of Things has led to a sharp increase in the number of real-world
datasets being collected, processed, and analyzed in a decentralized way. Unfortunately
such data are rarely as clean as in lab conditions and are often plagued by noise, loss,
and various other quality reducing factors. However, in many areas of machine learning,
algorithms are still designed with the assumption that data at time of inference is of
the same quality as training data. As a result, when algorithms are trained on clean,
pre-processed samples, they may fail to function as desired when performing inference
on raw data. In particular, data loss is a serious issue for many algorithms. This is
especially important for safety-critical systems like cars, where a failure can have very
serious consequences for users. Anomaly detection, and other end-stage algorithms, need
to have very high performance in such systems, but lost data may be a large factor in
preventing this. As a result, for systems that analyze streams of data, a method is needed
to quickly impute the missing values as closely as possible to what the true values would
have been.

Deep learning techniques have been proven to be effective at learning temporal structure
of data [LeCun et al., 2015]. However, while a number of deep learning algorithms have been
successfully shown to solve numerous end-stage problems like prediction and classification
[Glorot et al., 2011, LeCun et al., 2015, Abadi et al., 2016], very few attempts have been
made to use them for solving the intermediate problems of data pre-processing [Kotsiantis
et al., 2006, Garćıa et al., 2015], cleaning [Kotsiantis et al., 2006, Garćıa et al., 2015],

22

and restoration [Efron, 1994, Lakshminarayan et al., 1996], even though from a machine
learning perspective these end-stage and intermediate problems can be very similar.

Many real-world systems produce discrete datasets such as text or event logs during
their operation. Automotive Controller Area Network (CAN) traces, for example, consist
of a long sequence of discrete events. A CAN bus is a communication system that allows
various types of devices like microcontrollers to communicate with each other in real-time
without needing a host. It is a message-based protocol, designed originally for multiplex
electrical wiring within automobiles to save on the cost of copper wires, but is also used
in many other applications. The messages in a CAN trace can be considered as ‘words’
produced by the CAN bus. Therefore, various supervised learning techniques from natural
language processing (NLP) are likely to be effective in analyzing the patterns in sequences
- or “sentences”- of these events.

Recurrent Neural Networks (RNNs), are neural networks that have an internal memory.
Long Short-Term Networks (LSTMs) are a type of RNN that have a superior ability to learn
long-term dependencies in data. LSTMs have been used extensively for work with Natural
Language Processing (NLP) and event based data [Sutskever et al., 2014], they have been
used for data compression [Filippova et al., 2015], and they have recently even been used
- with varying degrees of success - directly for anomaly detection [Malhotra et al., 2015].
The use of LSTMs for restoration of lossy system traces has not been explored. We propose
a method for using LSTMs to accurately reconstruct discrete temporal traces affected by
data loss. The reconstructed traces can then be used by algorithms that rely on ‘perfect’
data. As a case study, we tested the performance of a specification mining framework
that uses timed regular expressions and deterministic finite state automata for extracting
system behavior.

The model works by learning to predict the next event in a sequence of events from a
large database of CAN traces, and uses its own output to continue prediction for multiple
points ahead in time, allowing for even large chunks of lost data to potentially be restored.
We separately feed the original, lossy, and reconstructed traces into a Timed-Regular Ex-
pression Mining (TREM) framework [Cutulenco et al., 2016, Narayan et al., 2018, Schmidt
et al., 2017] to gauge the effectiveness of our LSTM-based reconstruction approach. We
show that given even small parts of a CAN trace, the LSTM model can accurately re-
construct large portions of the original trace thereby permitting the use of algorithms like
TREM, that are reliant on ‘perfect’ data, with ‘imperfect’ data that would otherwise cause
them to perform poorly.

Unfortunately, LSTMs suffer from major bottlenecks like requiring large numbers of
sequential operations that cannot be parallelized. Recently, Transformer [Vaswani et al.,

23

2017], a novel encoder-decoder model that heavily uses attention mechanisms [Luong et al.,
2015], was proposed as a replacement for encoder-decoder models that use LSTM or con-
volutional layers, and was shown to achieve state-of-the-art translation results with orders
of magnitude fewer parameters than existing models. Inspired by this impressive result,
we additionally propose using a version of Transformer with modified hyper-parameters,
that we will refer to in this chapter as “Restorer”. Restorer solves the intermediate prob-
lem of restoring missing elements in sequences of discrete data while entirely replacing
the recurrent components of existing solutions. We demonstrate that such an approach
leads to reduced model sizes, faster training times, and higher-quality reconstruction when
compared to the LSTM model.

Our contributions are as follows:

• We implement and empirically validate LSTMs as a deep learning approach to restor-
ing lost sequential data.

• We implement and empirically validate the neighbourhood-restriction on Transformer
that was theoretically proposed by Vaswani et al. [2017].

• We propose and create Restorer, a Transformer-based model tailored for imputing
sequential data.

• We match the LSTM accuracy in restoring lost automotive CAN data with a Restorer
model that has just 0.6% of the number of parameters.

• We use Restorer to improve the accuracy in restoring lost automotive CAN data by
up to 7% while requiring 2-4 times less training time compared to the LSTM

• We demonstrate Restorer’s positive impact on downstream algorithm performance
in a case study where it outperforms both the benchmark and LSTM models.

3.1 Background

3.1.1 Sequence Modelling with Deep Learning

The most popular deep learning architecture for sequence modelling is Recurrent Neural
Networks (RNNs), a type of neural network with an internal feedback mechanism that can
be used as a form of memory [Williams and Zipser, 1989]. Probably the most success-
ful extension of RNNs are LSTMs, which increase the flexibility of the internal feedback

24

mechanism [Gers and Schmidhuber, 2001]. More recently, LSTM-based encoder-decoder
models like Seq2Seq were shown to improve the state-of-the-art in sequence modelling and
the addition of attention mechanisms was shown to further increase their performance
[Sutskever et al., 2014]. In such models, the encoder performs an embedding of the entire
input sequence before the decoder begins to use this embedding as input when generating
an output sequence.

There has recently been much discussion about whether recurrent models provide
any intrinsic advantage over feed-forward models [Miller and Hardt, 2018]. For example,
Vaswani et al. [2017] recently proposed that an encoder-decoder model they call Trans-
former, can be built that entirely eschews recurrent components. Transformer makes use
of several attention mechanisms to form an architecture that significantly outperforms the
state-of-the-art on machine translation tasks without resorting to recurrent layers [Vaswani
et al., 2017]. While Transformer was demonstrated to work specifically with the task of
machine translation, its impressive performance suggests that it is not unreasonable to
expect it can be adapted to work with other sequence modelling tasks.

3.1.2 Data Restoration with Deep Learning

Classical techniques for imputing lost values typically revolve around using a local or global
mean wherever a missing value occurs [Donders et al., 2006, Schmitt et al., 2015]. When
working with discrete data, instead of means, class values that occur with high frequency
locally or globally are often used in techniques like hot-deck imputation [Andridge and
Little, 2010, Myers, 2011, Aljuaid and Sasi, 2016], k-nearest neighbours [Cover and Hart,
1967], decision trees [Safavian and Landgrebe, 1991], etc. Other, more complex, techniques
work only with multivariate, and primarily continuous, data [Raghunathan et al., 2001,
Buuren and Groothuis-Oudshoorn, 2010]. However, all of these techniques fail to properly
address the problem of imputing missing discrete data in sequences [Schafer and Graham,
2002].

Interestingly, while deep learning has been repeatedly shown to be effective at sequential
modelling, there has been little work in applying it to data restoration. Of the methods that
do address data restoration, many are designed specifically for the restoration of continuous
data [Duan et al., 2014, Zhou and Huang, 2017, Niklaus et al., 2017]. Some methods are
intended for use only with image data through techniques like in-painting [Xie et al.,
2012, Lehtinen et al., 2018, Altinel et al., 2018]. More recently, Generative Adversarial
Networks (GANs) have been used for super-resolution and denoising of images, although
their primary use case is typically image generation [Goodfellow et al., 2014, Ledig et al.,

25

2017]. There are also a number of data restoration methods that assume that all the data
is available at once [Blend and Marwala, 2008, Leke et al., 2015, Gondara and Wang, 2017,
Beaulieu-Jones and Moore, 2017].

3.2 Setup

3.2.1 Data

A simple dataset was needed that was guaranteed to have temporal patterns without being
trivial. Many messages in automotive CAN data occur in a periodic way so temporal
patterns are present; however, other messages in CAN data are event-triggered and thus
predicting upcoming messages is a non-trivial problem. A CAN trace is a long sequence
of timestamped messages that consist of an ID and a payload of several bytes of data. We
strip away the payload and timestamps and keep only the message IDs in order to obtain
a dataset consisting of discrete, sequential data.

Our CAN data comes from a Lexus RX450h hybrid SUV. The data are split into a
number of maneuvers that were repeated multiple times. To reduce some of the variance
and reduce training time while testing our approaches, we used traces from a single ma-
neuver, the vehicle driving at 20 km/h and decelerating down to 0 km/h. 20 clean traces
of this maneuver were available. Of the 20 traces, 15 were used for training and validation,
while 5 were held out for testing.

The traces used for training were examined to compose a dictionary of possible message
IDs. A total of 43 different message IDs were found in the training set. We added a 44th
element to the dictionary to designate any “other” message IDs that may not have been
present in the training set. We then one-hot encoded all traces using this dictionary, re-
placing the one-dimensional message ID with a 44-dimensional vector of indicator variables
where 43 elements have the value 0 and 1 element the value 1.

3.2.2 Benchmark

In order to understand what the results mean, it is important to have a benchmark. We
create a benchmark using a fast Markov Model that could be described as a history search,
or as a conditional probability method. It has been shown that in situations where data
or computational power are limited, Hidden Markov Models can match the performance

26

of LSTMs [Panzner and Cimiano, 2016]. As a result, the Markov Model will act as a
benchmark that our models can be compared against.

The basic premise of this method is that the next message is highly correlated with the
preceding messages in a sequence. However, this correlation is likely to degrade as we look
further into the past. As a result, we can say that the system is a Markov process of order
n, where the previous n messages form a state that influences the next one. Sequences of n
consecutive messages are often called “n-grams”, and their analysis is common in sequence
modelling domains like Natural Language Processing (NLP) [Schonlau et al., 2017, Lin
et al., 2012, Lesher et al., 1999]. The most straightforward method of using this property
is to perform a history search where every time we want to make a prediction, we look
at the previous n messages, and then search our entire training dataset to find the most
commonly occurring message after this n-gram. This of course, can involve performing a
large number of repeated searches since we do not store the results between searches.

Instead we can build a model of the system by selecting an n, and creating a separate
state for each possible combination of the d unique messages. Of course, initializing all
possible states at once means that our model will contain nd states even if some of these
are never seen in the data, which may quickly become too memory-intensive for large n or
d. To mitigate this issue, we iteratively fill a dictionary D by traversing the training data
using the following algorithm:

During inference, each time we would like to impute a value, we take the n preceding
values to create a state and look it up in the dictionary to find the highest probability
transition. If there are multiple missing values within n steps of each other, then we
impute them chronologically and use our previously imputed values when imputing the
consecutive ones. One issue that arises for larger n and d or smaller training datasets, is
that there may be states in the testing data that are not found in the training data. To
address this, we updated D to include sub-sequences of length less than n as states; D
now contains k-grams where k ≤ n. When we want to impute a missing value, we find the
maximal length state in D that matches the preceding values.

After experimenting with different values for the hyper-parameter n, we found that
accuracy reached its peak and stayed constant above n ≥ 30; for consistency with the
LSTM experiments we used n = 40. The maximal next-message prediction accuracy
achieved with this Markov model was 76.55%, but when predicting multiple messages
consecutively, the accuracy rapidly dropped off, falling to just 37.01% when predicting 20
events into the future. Tables 3.8 and 3.11 offer some more benchmark results and some
comparisons in accuracy between Restorer, LSTM, and this benchmark model.

27

Algorithm 1: Iteratively learn transition frequencies

Result: Dictionary D containing all states and transition frequencies found in the
training data

i = 0;
while i+ n < length(train data) do

K = train data[i : i+ n];
if K /∈ D.keys() then

Let SK be a new dictionary;
for each mi in the set of the d unique messages do

SK [mi] := 0;
end
D[K] := SK ;

end
m∗ = train data[i+ n];
SK [m∗] = SK [m∗] + 1;
i = i+ 1;

end

3.3 LSTM

3.3.1 RNNs and LSTMs

One of the major limitations of non-recurrent neural networks is that they operate on
fixed-size vectors, performing a limited number of transformations to derive another fixed-
size vector. This limits the effectiveness of non-recurrent networks in identifying features
dispersed over sequences or over time. Recurrent neural networks (RNNs) are a type
of neural network that use a feedback mechanism to allow the network to operate on a
sequence of inputs as well as outputs by selectively keeping information about previous
states. In this manner, the ith output vector yi of an RNN layer is a function of the ith

input xi to the layer as well as the previous output yi−1 of the layer. As with regular
layers, the function is generally a non-linear transformation over a weighted sum of the
terms involved.

yi = f(yi, xi, yi−1) = f(V ∗ yi−1 +W ∗ xi + c)

Of course in such a recursive function, every previous output and input must be con-

28

sidered when adjusting weights during training, as during backpropagation they would all
have an impact on the error gradient. These incredibly long chains of derivatives pose two
problems: computational intensity and vanishing or exploding gradients.

Figure 3.1: Single RNN Unit: A recurrent neural network uses a feedback mechanism
to access information about previous states.

Figure 3.2: Unrolled RNN Unit: The feedback loop in a recurrent neural network can
be unfolded for an alternative, sequential representation of the repeated transformations
it performs.

One solution to these problems is known as unrolling the RNN. This requires consid-

29

ering that if an RNN is essentially a loop with signal flowing through, it can also be equally
represented by ‘unfolding’ the loop as a long series of the same transformations applied to
the signal. The structures in Figure 3.1 and Figure 3.2 are thus equivalent ways of repre-
senting an RNN. Unrolling is the process of using the second, ‘unfolded’ representation of
an RNN and having the option to consider only a fixed number of previous states when
predicting the current output. If we use the analogy of short-term memory to describe
the feedback mechanism of an RNN, then unrolling would be displaying this memory as a
sequence of events and having the option to cut off the sequence at some event, ignoring
any events that came before it.

A second solution to the problem of vanishing or exploding gradients in recurrent net-
works was the creation of two gates: input and forget. The input gate controls which
information from the current state’s input will be used, while the forget gate controls
which information will be used from the recurrent outputs of previous states. In such a
way, the input and forget gates allow the network to selectively remember or forget infor-
mation about previous and current states. Hochreiter and Schmidhuber (1997) proposed
a new type of RNN that makes use of these two gates in their recurrent units to solve
the vanishing gradient problem and gave it the name Long Short-Term Memory network
(LSTM) [Hochreiter and Schmidhuber, 1997].

3.3.2 Architecture

We built our LSTM model in Tensorflow. After experimenting with a few different archi-
tectures, we found that a smaller model with five layers in the hidden portion as seen in
Figure 3.3 was sufficient. Additional hidden layers did not improve performance.

The input layer has one node for each entry in the trace dictionary, and one additional
“other” node to account for rare events that were not seen in the training data that was
used to compile the dictionary. Input dropout was set to 0.2.

It is followed by two densely-connected hidden layers with double the number of nodes
as in the input layer. Each of these hidden layers uses a hyperbolic tangent activation
function, and has a dropout of 0.4.

The hidden layers are followed by 2 LSTM layers, using Tensorflow’s LayerNormBasi-
cLSTMCell. These cells perform layer normalization based on Lei Ba et al. [2016]. Each one
is unrolled for 40 steps; increasing unrolling further did not seem to increase performance
on this dataset, but may be useful for others such as those with higher dimensionality.
Both LSTM layers also use the hyperbolic tan activation function, and recurrent dropout

30

of 0.4 based on Semeniuta et al. [2016]. Each has four times as many nodes as each of the
hidden layers, or eight times as many as the input layer.

Finally, the last hidden layer is another densely connected layer with a sigmoid activa-
tion function and our final configuration has the same number of nodes as the input layer.
However, in an earlier configuration explained below, this layer had n times the number
of nodes as the input layer, where n is the number of future events the user wishes to
simultaneously predict. The output of this layer is the output of the model.

To increase training speed, LayerNormBasicLSTMCell layers could be replaced with
either the peephole [Sak et al., 2014] or the non-peephole [Hochreiter and Schmidhuber,
1997] implementation of CoupledInputForgetGateLSTM layers that couple the input and
forget gate as described by Greff et al. [2015] resulting in less computational operations but
higher variance in performance. For our CAN trace experiment, the vocabulary size was
43, our input layer had 44 nodes, our hidden layers had 88 nodes each, our LSTM layers
had 352 nodes each, and the last hidden layer had 44 nodes whose output was considered
the output of the model.

3.3.3 Training

The LSTM was trained using the following procedure:

1. Select 2 random traces from set (1 for training, 1 for validation)

2. Train the model on these 2 traces for 10 epochs with a learning rate of 0.2 and a
logloss loss function

3. Train the model on these 2 traces for an additional 20 epochs with learning rate
decay of 1/1.1 and a logloss loss function

4. Reset learning rate, preserve weights, repeat from step 1 selecting 2 new random
traces

Dropout for regularization and randomized input order prevent overfitting, so this proce-
dure should be repeated until accuracy reaches a plateau since early termination due to
detection of overfitting is unlikely to occur. Alternatively, the procedure can be repeated
a fixed number of times if so desired.

31

Figure 3.3: LSTM Model Architecture: The LSTM model consists of two hidden
layers followed by two recurrent LSTM layers and one additional hidden layer. Input is a
sequence of events, output is a prediction of next event in the sequence. Loss is calculated
as a logloss function comparing the true next event to the predicted one.

32

3.3.4 Results

Accurately predicting multiple steps forward is a challenging but important problem in
lossy data restoration, as multiple consecutive events may have been lost. Two ways of
predicting multiple events forward were considered.

The first method was to increase the size of the output layer by a factor of n to directly
predict n events forward. In other words, the output layer was modified to have n*44
nodes where n was number of events to simultaneously predict. The output at each step
was reshaped into n vectors of 44 nodes each, and each vector predicted 1 future event.
Within each vector, the element with the highest value was considered as the prediction.
The true positive rate was used as a measure of accuracy. A set of predictions at step i
was considered to be a true positive if all n of n predictions made at that step were made
correctly. If ci denotes the number of steps in epoch i where all n predictions were correct,
and wi denotes the number of steps in epoch i where at least 1 of the n predictions was
incorrect, then the accuracy for that epoch is denoted by:

acci =
ci

ci + wi

One of the issues with this setup is that each time n is changed, a new network needs to
be initialized and trained. As such, we retrained the model several times with increasingly
large values of n. Table 3.1 documents the average performance of the model for different
values of n as well as the range 95% of the measured accuracy levels were within. The
average accuracy with this method decayed rapidly as n was increased, while the ranges
increased quickly. This suggests that the random initialization of the network plays an
increasingly large role in the quality of predictions as n increases.

n Avg. accuracy 95% range Benchmark

1 0.895 0.88-0.91 0.766
10 0.58 0.52-0.65 0.454
20 0.48 0.4-0.54 0.370

Table 3.1: n-forward prediction accuracy using the direct method

A second method was developed to address the shortfalls of the first method. The
second method predicts only one output at a time; however, the code was altered to allow
the model to use its predictions as inputs to itself. In such a way, the model uses its
own outputs, one at a time, to make long sequences of predictions. Using the numbers

33

from Table 3.1, the expected accuracy for this method when predicting n steps forward
would be the accuracy for 1 step prediction, to the power of n, under the assumption that
the model’s predictions derail after it makes even a single mistake. Table 3.2 details the
expected accuracy levels for this second method based on this calculation.

n Expected accuracy Benchmark

1 0.895 0.766
10 0.330 0.454
20 0.109 0.370

Table 3.2: Expected n-forward prediction accuracy using the step-by-step method assuming
model cannot recover after a mistake

n Accuracy Benchmark

1 0.895 0.766
10 0.892 0.454
20 0.889 0.370

Table 3.3: True n-forward prediction accuracy using the step-by-step method

While the expected accuracy values for this method would be very low, the convergence
in logloss in the model suggested that this accuracy estimate may be underestimating
model performance. In fact, when the model was run on the test traces using this step-
by-step method, the true results were drastically different as shown in Table 3.3. This
suggests that even if the model makes a mistake in its predictions, it is robust enough to
continue predicting correctly contrary to the assumption above. However, it is clear that
the assumption does hold for the benchmark model and as a result it is not nearly as robust
to its own mistakes as the LSTM is.

As mentioned above, the LSTM uses 40 steps of unrolling for the recurrent portion
meaning the model requires 40 inputs to fill its internal feedback sequence. Impressively,
when given just the first 40 events of the shortest CAN trace held out for testing, the model
was able to step-by-step predict the remaining 3500 events of this trace with only several
omissions of rarely occurring events as shown in Table 3.4 and some localized mistakes in
the order of predicted events as shown in Table 3.5.

Figures 3.4 & 3.5 are visualizations of a sequence of true one-hot embedded events and a
sequence of predicted one-hot embedded events, respectively, pulled from the same portion

34

Predicted Event True Event

1 B4 B4
2 25 25
3 22 22
4 23 23
5 B0 340
6 320 B0
7 B2 320
8 2D0 B2
9 2C4 2D0
10 2C4

Table 3.4: Example of omitted rare event; rarely occurring event ‘340’ was incorrectly
omitted by the model, causing all predicted events beginning from the fourth one to be
shifted one up from their true counterparts.

Predicted Event True Event

1 25 25
2 22 22
3 23 23
4 2C6 2C4
5 B0 2C6
6 320 B0
7 B2 320
8 2C4 B2
9 20 20
10 223 223

Table 3.5: Example of local ordering mistake; ’2c4’ was incorrectly predicted as the 8th
event instead of 4th, causing all of the other events from 4th to 8th to also appear misclas-
sified. In reality, true events 5-8 were shifted up by one and predicted as events 4-7.

35

of a test trace. It is noticeable that mismatches between the two Figures get increasingly
worse as the index increases. This is due to the omission problem: each time an event is
omitted in the predictions, the entire sequence of predicted events is shifted to the left,
causing increasingly large mismatches. When gauging model performance, each omission
was recorded, and then the predicted sequence re-aligned at that point in order to once
again match the true sequence. Similarly, each ordering mistake was recorded, and the
one point detected to be in the wrong position moved to its correct location, to identify
whether other mistakes were made in the same area.

On average, the model omitted 5.058% of points and had one local ordering mistake
every 11.1 events. Curiously, both these mismatches and ordering mistakes occur at only
a slowly increasing rate throughout all of the 3500 predictions, suggesting once again that
our model’s flexibility makes it at least partially resistant to mistakes in the input, as
prediction quality did not decrease even if some local mistakes in output prediction were
made and then fed in as input. The LSTM-based approach is thus sufficiently robust to
work with and restore not only lossy, but also noisy, data.

Layer Type Complexity Sequential Maximum
per Layer Operations Path Length

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

Table 3.6: Comparison of different layers where n is sequence length, d is dimension of
representation, k is kernel size, and r is neighbourhood size [Vaswani et al., 2017].

3.4 Restorer

3.4.1 Attention

In RNNs, sequences are represented within their hidden states so that the output of each
hidden state needs to be computed before the model can access the next step in the se-
quence. This results in a large bottleneck since a number of sequential operations have
to be performed that cannot be parallelized. In addition, this results in long path lengths
that elements of the sequence have to traverse, which has been shown to be undesirable

36

Figure 3.4: One-hot Encoded True Events: Visualization of a sequence of just over 100
true events pulled from a testing trace. White pixels correspond to the one active element
in that column.

Figure 3.5: One-hot Encoded Predicted Events: Visualization of a sequence of just
over 100 predicted events pulled from the predictions on a testing trace. White pixels
correspond to the one active element in that column.

37

behaviour when trying to model long-term dependencies [Hochreiter et al., 2001]. Mean-
while, not only can convolutional layers be computationally expensive [Chollet, 2017], but
they also need to be stacked in order to connect all inputs to all outputs [Kalchbrenner
et al., 2016], which in turn increases path length.

Both recurrent and convolutional layers can instead be replaced with self-attention
layers as described in the Transformer model in Vaswani et al. [2017]. This removes the
bottleneck of sequential operations and reduces path length as dot-product attention pro-
vides access to the entire history at once. As a result, training time should be decreased,
while the ability to learn long-term dependencies increased. We confirm that this result
holds in practice by demonstrating it empirically. This improvement does come at a cost:
an increase in complexity relative to sequence length since the entire sequence is operated
on at once and every element attends to every other input. To avoid this new bottleneck,
a version of Transformer can be used where input is restricted to neighbourhoods of size
r instead of operating on the entire sequence at once [Vaswani et al., 2017]. Table 3.6
summarizes the theoretical differences between these layer types across three key metrics.

3.4.2 Architecture

Restorer is not an RNN or LSTM; it instead follows the Transformer architecture illustrated
in Figure 3.6 but with modified hyper-parameters as seen in Table 3.7. For the various
Restorer model versions, Nblocks is the number of blocks in the encoder and decoder, dmodel
is the dimension of the embedding and consequently is used as the scaling factor in our
scaled dot product attention (instead of dk as described in Vaswani et al. [2017]), dk is
the dimension that keys in attention are projected to, dv is the dimension that values in
attention are projected to, dh is the size of the hidden layers, and nhead is the number of
parallel heads in each multi-head attention layer. For the LSTM model, nhid is the number
of non-LSTM hidden layers, nlstm is the number of LSTM layers, dh is the size of the
non-LSTM hidden layers, dlstm is the size of LSTM layers, and nsteps is the number of steps
for which the LSTM is unrolled.

As mentioned above, one of the theoretical advantages of the proposed approach, is a
large reduction in the number of trainable parameters. In fact, we show empirically that
our Restorer architectures have as many as two orders of magnitude fewer parameters than
the LSTM model as seen in Table 3.7.

We implement our Restorer model in Keras based on the implementation of Transformer
by Lsdefine [2018].

38

Figure 3.6: Transformer Model Architecture [Vaswani et al., 2017]: The Trans-
former consists of an encoder and decoder each made up of N blocks. Input is a sequence
of events, output is a sequence of predicted events.

39

Model params

LSTM nhid nlstm dh dlstm nsteps

3 2 88 352 40 1,640,892

Restorer Nblocks dmodel dk dv dh nhead

(main) 1 15 64 64 512 4 80,824
2 15 64 64 512 4 158,873
3 15 64 64 512 4 236,922
5 15 64 64 512 4 393,020
10 15 64 64 512 4 783,265
15 15 64 64 512 4 1,173,510
20 15 64 64 512 4 1,563,755

(1-head) 1 15 64 64 512 1 46,264
2 15 64 64 512 1 89,753
3 15 64 64 512 1 133,242

(mini) 1 15 32 32 88 1 14,216
2 15 32 32 88 1 25,657
3 15 32 32 88 1 37,098

(mini2) 1 32 16 16 32 1 16,704
2 32 16 16 32 1 27,488
3 32 16 16 32 1 38,272

(micro) 1 16 8 8 16 1 5,792
2 16 8 8 16 1 8,624
3 16 8 8 16 1 11,456

Table 3.7: Size comparison of different model versions in terms of number of parameters

40

Model 30-ep. 300-ep. 3000-ep.
acc acc acc

Benchmark 30.07 30.07 30.07
LSTM nhid nlstm dh dlstm nsteps

3 2 88 352 40 67.32 86.72 88.59
Restorer Nblocks dmodel dk dv dh nhead

(main) 1 15 64 64 512 4 62.88 90.01 92.56
2 15 64 64 512 4 74.76 88.12 93.41
3 15 64 64 512 4 74.19 89.56 94.00
5 15 64 64 512 4 74.17 83.01 84.44
10 15 64 64 512 4 9.46 9.47 -

(1-head) 1 15 64 64 512 1 69.40 88.22 90.04
2 15 64 64 512 1 74.79 89.87 92.71
3 15 64 64 512 1 72.01 90.00 92.83

(mini) 1 15 32 32 88 1 68.91 87.01 88.85
2 15 32 32 88 1 71.67 85.83 91.49
3 15 32 32 88 1 71.66 89.85 93.15

(mini2) 1 32 16 16 32 1 71.66 91.02 93.28
2 32 16 16 32 1 73.74 90.89 94.01
3 32 16 16 32 1 74.60 91.27 93.69

(micro) 1 16 8 8 16 1 59.09 84.80 86.45
2 16 8 8 16 1 64.87 85.35 90.33
3 16 8 8 16 1 64.29 88.96 92.22

Table 3.8: Maximum percent accuracy after n epochs when trained with input and output
lengths of 40

41

3.4.3 Results

The models are trained using Adam optimizer [Kingma and Ba, 2014] with a fixed learning
rate for 30 epochs on a randomly selected trace, before moving on to another randomly se-
lected trace and repeating the procedure. Restorer is the restricted neighbourhood version
of Transformer that was briefly mentioned as a future direction in Vaswani et al. [2017], so
input sequence length can be limited to a neighbourhood of size 40 to be consistent with
the LSTM model. As a result, each model received 40 consecutive messages as input and
was asked to predict the next 40 messages as output. One important change when using
the restricted version of Transformer is that the model no longer needs to learn to use an
end of sequence token as length of the output is predetermined.

Model 30-ep. 300-ep.
time time

LSTM 77.64 807.25
Restorer
(main, Nblocks = 3) 36.22 231.95

Table 3.9: Training time in seconds on single V100 GPU

Table 3.8 illustrates that the majority of the different Restorer combinations outperform
the LSTM model by several percent, and the benchmark by much more. Interestingly, the
best performance seems to be achieved by smaller architectures with either 2 or 3 identical
blocks, although the smallest architecture, micro, has a noticeable drop in accuracy. The
larger architectures seem to primarily suffer from overfitting, as training accuracy quickly
begins to exceed validation accuracy during their training. Models with 10 or more blocks
did not converge at all past 10% test accuracy, likely due to the fixed learning rate being
used. Figure 3.7 shows the full testing accuracy for the top configuration of each Restorer
model version. While the increase in testing accuracy certainly slows down by 3000 epochs,
we found that even after 6000 epochs small increases were still being made.

On an Amazon Web Services (AWS) p3.2xlarge machine with a single V100 GPU and
a batch size of 512, we found that the Restorer main model with 3 blocks was on average
2-4 times as fast as the LSTM model, as shown in Table 3.9.

While this method of training by selecting one random trace at a time does achieve
high accuracy and lead to faster training times, we found that by concatenating all of the
training data and training Restorer on it all at once, higher accuracy can be achieved.

42

Figure 3.7: Testing accuracy of best Restorer configurations measured every 30 epochs of
training. Model titles in the legend follow the format [model name] [# of blocks].

Table 3.10 shows that the Restorer achieves one to two percent higher accuracy when
trained in this way instead of the trace-by-trace method.

Model 30-ep. 300-ep. 3000-ep.
acc acc acc

Restorer Nblocks dmodel dk dv dh nhead

(main) 1 15 64 64 512 4 93.72 94.69 94.79
2 15 64 64 512 4 94.16 95.06 95.10
3 15 64 64 512 4 91.48 94.72 94.82
5 15 64 64 512 4 84.36 84.43 93.11

Table 3.10: Maximum percent accuracy after n epochs when trained with input and output
lengths of 40 and using all training data at once

We also found that when Restorer was trained exclusively with output lengths of 40, it
generalized poorly to test cases with longer or shorter output sequences. In order to train
models that would generalize to other output lengths, we found that changing the output
length every 30 epochs to a random integer between 1 and 100 was an effective method.

43

Table 3.11 summarizes the average accuracy achieved by Restorer models when tested
with different output lengths. In this scenario, models with more blocks generalized better
than those with fewer blocks. It appears that when the length of the output sequence is
fixed and known in advance, smaller models should be used, but when this length is either
unknown or variable, it is better to use larger models and train in this stochastic way.

Model 1 out 10 out 20 out 40 out 60 out 80 out 100 out
acc acc acc acc acc acc acc

Benchmark 76.55 45.41 37.01 30.07 25.70 22.99 21.10
Restorer Nblocks

(main) 1 91.22 92.09 92.23 92.16 75.21 56.41 45.13
2 91.98 92.49 92.54 92.44 78.65 58.98 47.18
3 91.89 92.37 92.44 92.58 92.56 92.56 88.41
5 91.66 91.99 91.94 92.08 92.21 92.31 86.96

Table 3.11: Accuracy (as a percentage) when using different output lengths. Training was
performed using all data at once for 3000 epochs with input length of 40 and a new target
output length randomly selected every 30 epochs

3.5 Case Study: Timed Regular Expression Mining

on CAN Traces

This section was jointly written with Dr. Apurva Narayan. The TREM algorithm was
previously proposed by him and his co-authors. He ran this algorithm on the 3 trace types
I provided him with in order to get the results documented in this section.

It is important to verify that the quality of data restoration is not just high in terms
of accuracy, but also in terms of the effect on end-stage algorithms that would make use
of the restored data.

Time of occurrence of an event plays a key role in the domain of real-time systems [Lam-
port, 1978, Dwyer et al., 1999]. Recently, there has been tremendous activity in reverse
engineering of complex real-time systems by mining temporal properties, typically by mak-
ing use of template-based mining frameworks, that reflect the common behavior of these
systems [Lemieux et al., 2015]. Since most programs in industry and elsewhere lack formal
specifications, mined specifications play a key role in the life of software as they can be

44

used for tasks like testing [Dallmeier et al., 2010] or verification [Kincaid and Podelski,
2015].

State-machine based approaches have become quite popular in the domain of both
active and passive learning of system specifications. The behavior of a system is learned
in the form of a state machine that can be employed for numerous tasks such as run-time
monitoring, run-time verification, debugging etc. In the context of real-time systems, the
focus of these temporal specifications is inclined towards a quantitative (actual duration
of time between events) notion of time rather than qualitative (ordering of events) notion
of time. For example, the response of an interrupt handler should be bound within its
predefined time constraints. These time constraints are critical to the safe operation of
real-time systems since a delayed response can lead to a faulty system operation.

System traces used for mining temporal specifications for a system are quite often lossy
due to various software and hardware issues such as a buffer overflow or a memory leak.
Therefore, recovery of data will play a very important role in not only improving under-
standing of system behavior but also performing better fault diagnosis. Mining of Timed
Regular Expressions (TREs) [Eugene Asarin, 2002] was further extended by Cutulenco
et al. [2016], Narayan et al. [2018].The method proposed by Eugene Asarin [2002] to syn-
thesize a timed automaton for a given TRE is the basis of the proposed approach. The
timed automaton is then used as a checker to verify whether traces satisfy the correspond-
ing TRE.

The mining algorithm is executed on three types of traces: a) Normal traces, b) Lossy
traces, and c) Restored traces. The Normal traces in this case correspond to the original
traces obtained from a real vehicle as described above. We do not have a large corpus of
lossy CAN traces so instead lossy traces were generated from Normal traces by introducing
random loss of events. We introduced loss of events at five levels: 5%, 10%, 15%, 20%,
and 25%. Higher levels of loss are extremely unlikely to occur in a real vehicle aside from
total failure of multiple components and as such are not included; nonetheless, exploratory
experiments suggested that final results for higher levels of simulated loss were consistent
with the pattern seen among these 5 selected levels. All losses were random to ensure that
we are able to approximate a real-world scenario, as bugs, sensor defects, buffer overflows,
cyberattacks, disconnects, and other similar events can all cause loss at any point within
a trace. Lastly, the Restored traces were obtained from the Restorer main model with
Nblocks = 3 that was trained on the Normal traces. We ensure that timestamps remain
in order with the Normal traces since both time and order of occurrence of events is of
key importance for specification in the form of TREs. Two TRE templates from Narayan
et al. [2018] are used with a time interval parameter of 0 to 1,000.

45

T-1(response): (̂(P)∗.(〈P.̂ (S)∗.S〉[0, 1000]).̂ (P)∗)+

T-2(alternating): (̂(P |S)∗.(〈P.̂ (P |S)∗.S.̂ (P |S)∗〉[0, 1000]))+

The mining framework extracts all rules from the system traces that take the form of
the above two templates. A ranking module reduces the mined set of rules to a set of most
commonly occurring TRE-instances in the system trace. We compared the presence and
absence of the mined TRE instances from normal, lossy, and restored traces for evaluation
of our restoring algorithms.

Trace Type 5% loss 10% loss 15% loss 20% loss 25% loss

Lossy Traces 6.2% 17.8% 21.6% 33.37% 53.99%
LSTM-Restored Traces 5.9% 8.2% 9.8% 12.6% 10.8%
Restorer-Restored Traces 1.16% 4.6% 6.55% 7.96% 9.53%

Table 3.12: Percentage deviation in total number of mined TRE instances in restored traces
and lossy traces at each level of loss when compared to the number mined in normal traces

In Table 3.12, we present the percent of instances that were not found in the lossy and
restored traces when compared with normal traces. Low deviation values are desirable as
deviation is indicative of information loss. For this case study, we use the Restorer ‘main’
model with Nblocks = 3.

Clearly, performing restoration improves the mining performance greatly over just using
lossy traces. When the traces are restored using either of our models, the number of TRE
instances found is still reduced but much less so than when mining lossy traces, particularly
when the message loss is high. For example, when 25% of the messages are lost, performing
the LSTM restoration leads to a loss of only 10.8% of the TRE-instances as compared to
53.99% of the instances without restoration. Meanwhile, Restorer is even better at reducing
the deviation in number of mined instances: from 6.2% to 1.16% in case of low levels of
loss, and a remarkable reduction of almost 45% in the deviation of number of instances
mined in cases with high levels of loss.

3.6 Conclusion

Restoring lost data is an important intermediate problem in machine learning as many
algorithms rely on clean data for input. We have developed an LSTM-based approach for
restoring lost or noisy data in discrete settings such as CAN traces. This approach can be

46

used to restore or predict arbitrarily large sequences of missing data, with output feedback
used as input to predict further into the future. A major advantage of this approach is
that few assumptions need to be made about the structure of the data, and so it can be
applied in any setting where there is discrete data with some form of temporal or sequential
dependence.

We have also demonstrated that models making use of attention mechanisms based on
the recently proposed Transformer model are faster, smaller, and achieve better accuracy
than the LSTM restoration model. We have shown that the exact architecture can be
tailored to the task at hand based on the associated constraints. For example, for compute-
constrained or time-constrained tasks, a smaller architecture can be chosen to minimize
training or inference times and number of parameters. Meanwhile, for tasks where the
length of the output sequence is variable or unknown beforehand, a larger architecture
with more blocks achieves better accuracy.

There are several limitations of this study that merit discussion. First off, we avoided
using bidirectional methods because they would have a large impact on the latency of
algorithms running downstream from the LSTM model or Restorer when working with
streams of data. However, in order to improve accuracy, it may be useful to develop a
mechanism for using newly processed steps of the input sequence to retroactively correct
predictions made by the model. Second, while we have tested our models on real data, it will
be important to conduct additional studies with other datasets to further establish them as
an effective solution for data restoration. Finally, we have shown that Transformer-based
models can be used for even more sequence modelling tasks than the already wide-range
described in Vaswani et al. [2017].

In general, we have shown that Restorer can achieve accuracies of up to 95% when
restoring long sequences of missing CAN data, beating out the benchmark method by a
wide margin. When comparing Restorer to LSTM-based methods for restoring CAN data,
we demonstrated that using Restorer leads to a reduction in model sizes by up to 2 orders
of magnitude, an up to 4-fold reduction in training times, and an increase of up to 7%
in accuracy of data restoration. We additionally demonstrated in a case study that our
method successfully improves the performance of complex downstream algorithms.

47

Chapter 4

Dataset Distillation

4.1 Introduction

Deep learning is computationally intensive and this poses several issues: high energy con-
sumption [Strubell et al., 2019], high financial cost, and long training times. This is
particularly problematic for settings like federated learning where edge devices are compu-
tationally constrained and may not be able to work with large datasets [Li et al., 2020b].
One path for mitigating these issues is to reduce network sizes. Hinton et al. [2015] proposed
knowledge distillation as a method for imbuing smaller, more efficient networks with all the
knowledge of their larger counterparts. Instead of decreasing network size, a second path
to efficiency may be to decrease dataset size. Dataset distillation (DD) has recently been
proposed as an alternative formulation of knowledge distillation to do exactly that [Wang
et al., 2018].

Dataset distillation is the process of creating a small number of synthetic samples that
can quickly train a network to the same accuracy it would achieve if trained on the original
dataset. It may seem counter-intuitive that training a model on a small number of synthetic
images coming from a different distribution than the training data can result in comparable
accuracy, but Wang et al. [2018] have shown that for models with known initializations this
is indeed feasible; they achieve 94% accuracy on MNIST, a hand-written digit recognition
task [LeCun et al., 1998], after training LeNet on just 10 synthetic images.

We propose to improve their already impressive results by learning ‘soft’ labels as a part
of the distillation process. The original DD algorithm uses fixed, or ‘hard’, labels for the
synthetic samples (e.g. the ten synthetic MNIST images each have a label corresponding

48



0
1
0
0
0
0
0
0
0
0


Set largest to 1←−−−−−−−−
and rest to 0



0.01
0.69
0.02
0.02
0.03
0.05
0.03
0.1
0.01
0.04


Apply←−−−−

softmax



0.8
5.1
1.5
1.5
2

2.5
2

3.2
0.8
2


Figure 4.1: Left: An example of a ‘hard’ label where the second class is selected. Center:
An example of a ‘soft’ label restricted to being a valid probability distribution. The second
class has the highest probability. Right: An example of an unrestricted ‘soft’ label. The
second class has the highest weight. ‘Hard’ labels can be derived from unrestricted ‘soft’
labels by applying the softmax function and then setting the highest probability element
to 1, and the rest to 0.

Figure 4.2: 10 MNIST images learned by SLDD can train networks with fixed initializations
from 11.13% distillation accuracy to 96.13% (r10 = 97.1). Each image is labeled with its
top 3 classes and their associated logits. The full labels for these 10 images are in Table 4.1.

49

Table 4.1: Learned distilled labels for the 10 distilled MNIST images in Figure 4.2. Distilled
labels are allowed to take on any real value. If a probability distribution is needed, a
softmax function can be applied to each row.

Digit
Distilled 0 1 2 3 4 5 6 7 8 9

Label

1 2.34 -0.33 0.23 0.04 -0.03 -0.23 -0.32 0.54 -0.39 0.49
2 -0.17 2.58 0.32 0.37 -0.68 -0.19 -0.75 0.53 0.27 -0.89
3 -0.26 -0.35 2.00 0.07 0.08 0.42 0.02 -0.08 -1.09 0.10
4 -0.28 0.04 0.59 2.08 -0.61 -1.11 0.52 0.19 -0.20 0.32
5 -0.11 -0.52 -0.08 0.90 2.63 -0.44 -0.72 -0.39 -0.29 0.87
6 0.25 -0.20 -0.19 0.51 -0.02 2.47 0.62 -0.42 -0.52 -0.63
7 0.42 0.55 -0.09 -1.07 0.83 -0.19 2.16 -0.30 0.26 -0.91
8 0.18 -0.33 -0.25 0.06 -0.91 0.55 -1.17 2.11 0.94 0.47
9 0.46 -0.48 0.24 0.09 -0.78 0.75 0.47 -0.40 2.45 -0.71

10 -0.53 0.52 -0.74 -1.32 1.03 0.23 0.05 0.55 0.31 2.45

to a different digit). In other words, each label is a one-hot vector: a vector where all
entries are set to zero aside from a single entry, corresponding to the correct class, which
is set to one. We relax this one-hot restriction and make the distribution learnable for
these synthetic labels. The resulting distilled labels are thus similar to those used for
knowledge distillation as a single image can now correspond to multiple classes. An example
comparing a ‘hard’ label to a ‘soft’ label is shown in Figure 4.1. A ‘hard’ label can be
derived from a ‘soft’ label by applying the softmax function and setting the element with
the highest probability to one, while the remaining elements are set to zero. Our soft-
label dataset distillation (SLDD) not only achieves over 96% accuracy on MNIST when
using ten distilled images (as seen in Figure 4.2), a 2% increase over the state-of-the-art
(SOTA), but also achieves almost 92% accuracy with just five distilled images, which is
less than one image per class. In addition to soft labels, we also extend dataset distillation
to the natural language/sequence modeling domain and enable it to be used with several
additional network architectures. For example, we show that Text Dataset Distillation
(TDD) can train a custom convolutional neural network (CNN) [LeCun et al., 1999] with
known initialization up to 90% of its original accuracy on the IMDB sentiment classification
task [Maas et al., 2011] using just two synthetic sentences.

The remainder of this chapter is divided into four sections. In Section 4.2, we discuss
related work in the fields of knowledge distillation, dataset reduction, and example gener-
ation. In Section 4.3, we propose improvements and extensions to dataset distillation and

50

associated theory. In Section 4.4, we empirically validate SLDD and TDD in a wide range
of experiments. Finally, in Section 4.5, we discuss the significance of SLDD and TDD, and
our outlook for the future.

4.2 Related Work

4.2.1 Knowledge Distillation

Dataset distillation was originally inspired by network distillation [Hinton et al., 2015]
which is a form of knowledge distillation or model compression [Buciluǎ et al., 2006] that
has been studied in various contexts including when working with sequential data [Kim and
Rush, 2016]. Network distillation aims to distill the knowledge of large, or even multiple,
networks into a smaller network. Similarly, dataset distillation aims to distill the knowledge
of large, or even multiple, datasets into a small number of synthetic samples. ‘Soft’ labels
were recently proposed as an effective way of distilling networks by feeding the output
probabilities of a larger network directly to a smaller network [Hinton et al., 2015], and have
previously been studied in the context of different machine learning algorithms [El Gayar
et al., 2006]. Our soft-label dataset distillation (SLDD) algorithm also uses ‘soft’ labels but
these are persistent and learned over the training phase of a network (rather than being
produced during the inference phase as in the case of network distillation).

4.2.2 Sample Efficiency in Deep Learning

Deep learning models are notoriously data-hungry. In their landmark paper introducing
GPT-3, Brown et al. [2020] write that a ‘limitation broadly shared by language models
is poor sample efficiency during pre-training’. Sample efficiency is also a widely discussed
problem in reinforcement learning [Munos et al., 2016, Nachum et al., 2018, Buckman et al.,
2018]. Deep supervised learning also generally requires a very large number of examples to
train on. For example, MNIST and CIFAR10 both contain thousands of training images
per class.

Meanwhile, it appears that humans can quickly generalize from a tiny number of ex-
amples [Lake et al., 2015]. Getting machines to learn from ‘small’ data is an important
aspect of trying to bridge this gap in abilities. Few-shot learning aims to improve deep
learning sample efficiency to the point where models can learn a new class given only a
few examples [Lake et al., 2015, Ravi and Larochelle, 2017, Snell et al., 2017].

51

Dataset distillation allows us to probe the limits of a given model’s sample efficiency
by creating synthetic samples that are tailored specifically for efficiently training this exact
model. Studying the distilled images produced by dataset distillation may enable us to
identify what allows neural networks to generalize so quickly from so few of them. In some
sense, dataset distillation can be thought of as an algorithm for creating dataset summaries
that machines can learn from.

4.2.3 Dataset Reduction and Prototype Methods

Generally, when discussing dataset reduction, we broadly refer to any information re-
packaging technique that aims to reduce the space taken up by a dataset. If we think of a
dataset as a matrix where the width is the number of features and the length is the number
of observations, then the space taken up by the dataset can be reduced along either of these
axes. Throughout this thesis we focus specifically on reducing the length of datasets.

There are many methods that aim to reduce the size of a dataset with varying objectives.
Active learning aims to reduce the required size of the labeled portion of a dataset by only
labeling examples that are determined to be the most important [Cohn et al., 1996, Tong
and Koller, 2001]. Several methods aim to ‘prune’ a dataset, or create a ‘core-set’, by
leaving in only examples that are determined to be useful [Angelova et al., 2005, Tsang
et al., 2005, Bachem et al., 2017, Sener and Savarese, 2017]. In the context of nearest-
neighbor classification, prototype selection (PS) and prototype generation (PG) are studied
extensively as methods of reducing storage requirements and improving the efficiency of
nearest-neighbor classification [Triguero et al., 2011a, Garcia et al., 2012]. In general, all
of these methods aside from PG, use samples from the true distribution, typically subsets
of the original training set. By lifting this restriction and, instead, learning synthetic
samples, DD requires far fewer samples to distill the same amount of knowledge. PG
methods typically create samples that are not found in the training data; however, these
methods are designed specifically for use with nearest-neighbor classification algorithms. In
addition, most of the methods listed above use fixed labels. SLDD removes this restriction
and allows the label distribution to be optimized simultaneously with the samples (or
prototypes) themselves.

4.2.4 Federated Learning and Privacy Preservation

DD-like algorithms are naturally well-suited for federated learning: they provide the ability
to transmit small, synthetic, privacy-preserving training datasets while still maintaining

52

high performance of the networks trained on them. Increased initial overhead is a small
price to pay for smaller transmission sizes, faster training times, and privacy preservation.
We initially released the code for SLDD and TDD in 2019. Since then, there has been
significant work building on our research that demonstrates the applications of SLDD to
federated learning [Goetz and Tewari, 2020, Zhou et al., 2020, Sucholutsky and Schonlau,
2021c] as well as to the transmission of private data [Sucholutsky and Schonlau, 2021c,
Li et al., 2020a]. There has also been an increasing amount of literature discussing using
the original DD algorithm in the context of federated learning [Kairouz et al., 2019, Song
et al., 2020, Shen et al., 2020, Amiri et al., 2020]. We discuss this further in Appendix C.

4.2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have recently become a very widely used method
for image generation and are primarily used to produce images that closely mimic those
coming from the true distribution [Ledig et al., 2017, Goodfellow et al., 2014, Choi et al.,
2018, Radford et al., 2015]. With dataset distillation we instead set knowledge distillation
as the objective but do not attempt to produce samples from the true distribution. Using
the generator from a trained GAN may be a much faster way of producing images than
the gradient-based method employed by dataset distillation. However, since the number
of distilled images we aim to produce is very small, solving the objective directly through
gradient-based optimization is sufficiently fast, while also more straightforward. Addition-
ally, while some GANs can work with text [Reed et al., 2016, Yu et al., 2017], they are
primarily intended for image generation.

4.2.6 Measuring Problem Dimensionality

We may intuitively believe that one deep learning task is more difficult than another. For
example, when comparing the digit recognition task MNIST, to the image classification task
CIFAR10 [Krizhevsky et al., 2009], it seems that CIFAR is the tougher problem, but it is
hard to determine to what extent it is tougher. It is possible to try to quantify what exactly
it means for one problem to be more difficult than other. One approach is to compare
state-of-the-art (SOTA) results on datasets. For example, the near-SOTA ‘dropconnect’
model on MNIST achieves a 0.21% error rate, while on CIFAR10 it achieves an error
rate of 9.32% [Wan et al., 2013]. However, this approach reveals increasingly little as
deeper networks approach perfect accuracy on multiple tasks. Li et al. [2018] instead derive
a more model-independent metric for comparing the dimensionality of various problems

53

based on the minimum number of learnable parameters needed to achieve a good local
optimum. Similarly, dataset distillation aims to find the minimum number of synthetic
samples needed to achieve a good local optimum. The difference is that Li et al. [2018]
constrain the number of searchable dimensions within the network weight space, while
dataset distillation constrains them within the data space.

4.3 Extending Dataset Distillation

4.3.1 Motivation

As mentioned above, nearest-neighbors classification often involves accuracy-preserving
data reduction techniques known as prototype selection (PS) and prototype generation
(PG). We can use these concepts, along with the k-Nearest Neighbors (kNN) classification
algorithm, to visualize the difference between classical dataset reduction methods, DD, and
SLDD. When we fit a kNN model, we essentially divide the entire space into classes based
on the location of points in the training set. However, the cost of fitting a kNN model
increases with the number of training points.

PS methods use subsets of the training set to construct a reduced training set. In
the first column of Figure 4.3, we visualize reduction of the training set for a three-class
problem, the Iris flower dataset [Fisher, 1936], by selecting one point from each class and
then fitting the kNN on these three selected points. Only being able to use a subset of
the original points limits the ability to finely tune the shape of the resulting partitions.
PG methods create synthetic points whose placement can be optimized to improve kNN
performance. DD for neural networks works analogously. In the second column of Figure
4.3, we generate one point for each class and optimize the location of one of them. Using
synthetic points allows for better control of the resulting landscape.

In the third column of Figure 4.3, we propose that the points have optimizable distri-
butions of labels. In order to visualize the effect of changing a point’s label distribution,
we create one point per class, but then change the label distribution of one of these points,
increasingly making it a mixture of the other two classes. In the final column of Figure
4.3, we combine the PG method with our soft-label modification, to visualize the effect
of simultaneously changing a point’s location and label distribution. This last case is the
kNN counterpart to our proposed SLDD algorithm. The visualization illustrates that this
method provides the most control over the resulting landscape. In fact, Figure 4.4 shows
that we can even separate three classes using just two points when using soft labels with
the kNN classifier.

54

Figure 4.3: kNN models are fitted on 3 points obtained using four methods: PS, PG, soft
labels, and PG combined with soft labels. Each column contains 4 steps of the associated
method used to update the 3 points. The pie charts represent the label distributions
assigned to each of the 3 points. PS: A different random point from each class is chosen
to represent its class in each of the steps. PG: The model can select and adjust synthetic
points to represent each class. In this case, the middle point associated with the ’green’
label is moved diagonally in each step. Soft Labels: The label distribution of the middle
point is changed each step to contain a larger proportion of both other classes. Combined:
The middle point is simultaneously moved and has its label distribution updated in each
step.

55

Figure 4.4: A kNN model fitted on 2 points obtained using the ‘Combined’ method. The
pie charts represent the label distributions assigned to each of the 2 points. From the left
plot to the right plot, the locations of the 2 points slightly shift and the ‘green‘ portions
of their label distributions are increased. By modifying the soft labels of the 2 points, the
space can still be separated into 3 classes.

4.3.2 Basic Approach

In this section, we summarize the approach by Wang et al. [2018] in a slightly modified
way to explicitly show the labels of the distilled dataset. In the next section, we expand
this approach to work with soft labels.

Given a training dataset d = {xi, yi}Ni=1, a neural network with parameters θ, and a
twice-differentiable loss function ` (xi, yi, θ), our objective is to find

θ∗ = arg min
θ

1

N

N∑
i=1

` (xi, yi, θ) , arg min
θ

`(x,y, θ) . (4.1)

In general, training with involves repeatedly sampling mini-batches of training data
and updating network parameters by their error gradient scaled by learning rate η.

θt+1 = θt − η∇θt` (xt,yt, θt) (4.2)

With DD, the goal is to perform just one such step while still achieving the same
accuracy. We do this by learning a small number of synthetic samples x̃ that minimize L,
a one-step loss objective, for θ1 = θ0 − η̃∇θ0` (x̃, θ0).

L (x̃, ỹ, η̃; θ0) : = ` (x,y, θ0 − η̃∇θ0` (x̃, ỹ, θ0)) (4.3)

x̃∗, η̃∗ = arg minL
x̃,η̃

(x̃, ỹ, η̃; θ0) (4.4)

We minimize this objective, or ‘learn the distilled samples’, by using SGD. Here we are
optimizing over x̃ and η̃, but not ỹ, as the labels are fixed for the original DD algorithm.

56

4.3.3 Learnable Labels

Soft labels exploit the fact that each training image contains information about more than
one class (e.g. the digit ‘3’ looks a lot like a ‘3’ but also like an ‘8’). Using soft labels
allows us to convey more information about each image.

The original dataset distillation algorithm was restricted to ‘hard’ labels for the distilled
data; each distilled image has to be associated with just a single class. We relax this
restriction and allow distilled labels to take on any real value. Since the distilled labels are
now continuous variables, we can modify the distillation algorithm in order to make the
distilled labels learnable using the same method as for the distilled images: a combination
of backpropagation and gradient descent. With our modified notation, we simply need to
change Equation 4.4 to also minimize over ỹ.

x̃∗, ỹ∗, η̃∗ = arg minL
x̃,ỹ,η̃

(x̃, ỹ, η̃; θ0)

= arg min `
x̃,ỹ,η̃

(x,y, θ0 − η̃∇θ0` (x̃, ỹ, θ0))

In our experiments, we generally initialize ỹ with the one-hot values that ‘hard’ labels
would have. We found that this tends to increase accuracy when compared to random
initialization, perhaps because it encourages more differentiation between classes early on
in the distillation process.

Algorithm 2 details this soft-label dataset distillation (SLDD) algorithm.

4.3.4 Text and Other Sequences

It is difficult to use gradient methods directly on text data as they are discrete. In order
to use SLDD with text data, we first embed the text data into a continuous space using
pre-trained GloVe embeddings [Pennington et al., 2014]. This is a common practice when
working with many modern natural language processing models, though the embedding
method itself can vary greatly [Ma and Hovy, 2016, Devlin et al., 2019, Peters et al.,
2018]. Distilling embedded text is analogous to image distillation. If all sentences are
padded/truncated to some pre-determined length, then each sentence can be viewed as
a one-channel image of size [length]∗[embedding dimension], though this is not required
when working with RNNs. Only sentences coming from the true dataset need to be em-
bedded; the distilled samples are learned directly as embedded representations. As a
result, finding the nearest sentences that correspond to the distilled embeddings may help

57

Algorithm 2: Soft-Label Dataset Distillation (SLDD)

Input: p(θ0): distribution of initial weights; M : the number of distilled data; α:
step size; n: batch size; T : number of optimization iterations; ỹ0: initial value for
ỹ; η̃0: initial value for η̃
1: Initialize distilled data

x̃ = {x̃i}Mi=1 randomly,

ỹ = {ỹi}Mi=1 ← ỹ0,
η̃ ← η̃0

2: for each training step t = 1 to T do
3: Get a minibatch of real training data

(xt,yt) = {xt,j, yt,j}nj=1

4: One-hot encode the labels
(xt,y

∗
t) = {xt,j,Encode(yt,j)}nj=1

5: Sample a batch of initial weights
θ

(t)
0 ∼ p (θ0)

6: for each sampled θ
(t)
0,i do

7: Compute updated model parameter with GD

θ
(t)
1,i = θ

(t)
0,i − η̃∇θ

(t)
0,i
`
(
x̃, ỹ, θ

(t)
0,i

)
8: Evaluate the objective function on real training data: L(t)

i = `
(
xt,y

∗
t, θ

(t)
1,i

)
9: end for

10: Update distilled data
x̃← x̃− α∇x̃

∑
j L(j),

ỹ← ỹ − α∇ỹ

∑
j L(j), and

η̃ ← η̃ − α∇η̃

∑
j L(j)

11: end for

Output: distilled data x̃; distilled labels ỹ; optimized learning rate η̃

58

with interpretability. To compute the nearest sentence to a distilled embedding matrix,
for every column vector in the matrix, the nearest embedding vector from the original
dictionary must be found. These embedding vectors must then be converted back into
their corresponding words, and those words joined into a sentence. To differentiate this
modified procedure from SLDD, we refer to it as Text Dataset Distillation (TDD). The
resulting algorithm for text dataset distillation (TDD) is detailed in Algorithm 3, which is
a modification of the SLDD Algorithm 2.

4.3.5 Random initializations and multiple steps

The procedures we described above make one important assumption: network initialization
θ0 is fixed. The samples created this way do not lead to high accuracy when the network
is re-trained on them with a different initialization as they contain information not only
about the dataset but also about θ0. In Figures 4.2 and 4.5, this can be seen as what
looks like a lot of random noise. Wang et al. [2018] propose a generalization that works
with network initializations randomly sampled from some restricted distribution.

x̃∗, ỹ∗, η̃∗ = arg min
x̃,ỹ,η̃

Eθ0∼p(θ0)L (x̃, ỹ, η̃; θ0) (4.5)

The resulting images, especially for MNIST, appear to have clearer patterns and less ran-
dom noise. Our experimental results suggest that this method generalizes fairly well to
other randomly sampled initializations from the same distribution.

Additionally, Wang et al. [2018] suggest that the above methods can work with mul-
tiple gradient descent (GD) steps and with multiple epochs over the distilled data. The
experimental results suggest that multiple steps and multiple epochs improve distillation
performance for both image and text data, particularly when using random network ini-
tializations.

4.4 Experiments

4.4.1 Metrics

The simplest metric for gauging distillation performance is to train a model on distilled
samples and then test it on real samples. We refer to the accuracy achieved on real samples
as the ‘distillation accuracy’. However, several of the models we use in our experiments

59

Algorithm 3: Text Dataset Distillation (TDD)

Input: p(θ0): distribution of initial weights; M : the number of distilled data; α:
step size; n: batch size; T : number of optimization iterations; ỹ0: initial value for
ỹ; η̃0: initial value for η̃; s: sentence length; d: embedding size
1: Initialize distilled data

x̃ = {x̃i}Mi=1 randomly of size s×d,

ỹ = {ỹi}Mi=1 ← ỹ0,
η̃ ← η̃0

2: for each training step t = 1 to T do
3: Get a minibatch of real training data

(xt,yt) = {xt,j, yt,j}nj=1

4: Pad (or truncate) each sentence in the minibatch
(xp

t,yt) = {Pad(xt,j, len = s), yt,j}nj=1

5: Embed each sentence in the minibatch
(x∗t,yt) =

{
Embed(xpt,j, dim = d), yt,j

}n
j=1

6: One-hot encode the labels
(x∗t,y

∗
t) =

{
x∗t,j,Encode(yt,j)

}n
j=1

7: Sample a batch of initial weights
θ

(t)
0 ∼ p (θ0)

8: for each sampled θ
(t)
0,i do

9: Compute updated model parameter with GD

θ
(t)
1,i = θ

(t)
0,i − η̃∇θ

(t)
0,i
`
(
x̃, ỹ, θ

(t)
0,i

)
10: Evaluate the objective function on real training data: L(t)

i = `
(
xt,y

∗
t, θ

(t)
1,i

)
11: end for
12: Update distilled data

x̃← x̃− α∇x̃

∑
j L(j),

ỹ← ỹ − α∇ỹ

∑
j L(j), and

η̃ ← η̃ − α∇η̃

∑
j L(j)

13: end for

Output: distilled data x̃; distilled labels ỹ; optimized learning rate η̃

60

do not achieve SOTA accuracy on the datasets they are paired with, so it is useful to
construct a relative metric that compares distillation accuracy to original accuracy. We
define ‘distillation ratio’ as the ratio of distillation accuracy to original accuracy. The
distillation ratio is heavily dependent on the number of distilled samples so the notation
we use is rM = 100% ∗ [distillation accuracy]

[original accuracy]
,M = [number of distilled samples]. We may refer

to this as the ‘M -sample distillation ratio’ when clarification is needed. It may also be
of interest to find the minimum number of distilled images required to achieve a certain
distillation ratio. We call this the ‘A% distillation size’, and we write dA = M where M is
the minimum number of distilled samples required to achieve a distillation ratio of A%.

4.4.2 Image Data

While LeNet achieves 99% accuracy on MNIST, AlexCifarNet only achieves 80% on CI-
FAR10 so it is helpful to use the relative metrics when describing this set of results.
Baselines. We use the same baselines as Wang et al. [2018].
Random real images: We randomly sample the same number of real images per class from
the training data. These images are used for two baselines: training neural networks and
training K-Nearest Neighbors classifiers.
Optimized real images: We sample several sets of random real images as above, but now
we choose the 20% of these sets that have the best performance on training data. These
images are used for one baseline: training neural networks.
k-means: We use k-means to find centroid images for each class. These images are used
for two baselines: training neural networks and training K-Nearest Neighbors classifiers.
Average real images: We compute the average image for each class and use it for training.
These images are used for one baseline: training neural networks.

Each of these baseline methods produces a small set of images that can be used to train
models. All four baseline methods are used to train and test LeNet and AlexCifarNet on
their respective datasets. Two of the baseline methods are used to also train K-Nearest
Neighbor classifiers to compare performance against neural networks. The results for these
six baselines, as determined by Wang et al. [2018], are shown in Table 4.2.
Fixed initialization. When the network initialization is fixed between the distillation and
training phases, synthetic images produced by dataset distillation result in high distillation
accuracies. The SLDD algorithm produces images that result in equal or higher accuracies
when compared to the original DD algorithm. For example, DD can produce 10 distilled
images that train a LeNet model up to 93.76% accuracy on MNIST [Wang et al., 2018].
Meanwhile, SLDD can produce 10 distilled images that train the same model up to 96.13%
accuracy (Figure 4.2). SLDD can even produce a tiny set of just 5 distilled images that

61

train LeNet to 91.56% accuracy. As can be seen in Figure 4.6, the 90% distillation size
(i.e. the minimum number of images needed to achieve 90% of the original accuracy)
of MNIST with fixed initializations is dA = 5, and while adding more distilled images
typically increases distillation accuracy, this begins to plateau after five images. Similarly,
SLDD provides a 7.5% increase in 100-sample distillation ratio (6% increase in distillation
accuracy) on CIFAR10 over DD. Based on these results detailed in Table 4.2, it appears
that SLDD is more effective than DD at distilling image data into a small number of
samples.

Figure 4.5: SLDD can learn 100 distilled CIFAR10 images (10 steps with 10 images each)
that train networks with fixed initializations from 12.9% distillation accuracy to 60.0%
(r100 = 75.0). Each image is labeled with its top 3 classes and their logits. Only the last
step is shown.

Random initialization. It is also of interest to know whether distilled data are robust to
network initialization. Specifically, we aim to identify if distilled samples store information
only about the network initializations, or whether they can store information contained
within the training data. To this end, we perform experiments by sampling random network
initializations generated using the Xavier Initialization [Glorot and Bengio, 2010]. The
distilled images produced in this way are more representative of the training data but
generally result in lower accuracies when models are trained on them. On both datasets,
distilled images produced by SLDD lead to higher distillation accuracies than those from

62

DD when the number of distilled images is held constant. These results are detailed in
Table 4.2. It is also interesting to note that the actual distilled images, as seen in Figures 4.7
and 4.8, appear to have clearer patterns emerging than in the fixed initialization case.
These results suggest that DD, and even more so SLDD, can be generalized to work with
random initializations and distill knowledge about the dataset itself when they are trained
this way.

Figure 4.6: Distilled dataset size and MNIST accuracy

4.4.3 Text Data

We use the IMDB sentiment dataset, the Stanford Sentiment Treebank 5-class task (SST5)
[Socher et al., 2013], and the Text Retrieval Conference question classification tasks with 6
(TREC6) and 50 (TREC50) classes [Voorhees et al., 1999]. Text experiments are performed
with three architectures: a shallow but wide CNN (TextConvNet), a bi-directional RNN
(Bi-RNN) [Schuster and Paliwal, 1997], and a bi-directional Long Short-Term Memory
network (Bi-LSTM) [Hochreiter and Schmidhuber, 1997]. The accuracies on full datasets
are detailed in Table 4.4 and distillation ratios in this section are calculated based on them.

Baselines. We consider the same six baselines as for image data but modify them slightly
so that they work with text data (e.g. padding/truncating the sampled sentences). Each
of the baseline methods produces a small set of sentences, or sentence embeddings, that
can be used to train models. All four of the baseline methods are used to train and test our
TextConvNet on each of the text datasets. Additionally, two of the baseline methods are

63

S
L

D
D

ac
cu

ra
cy

D
D

a
cc

u
ra

cy
U

se
d

as
tr

ai
n

in
g

d
at

a
in

sa
m

e
#

of
G

D
st

ep
s

U
se

d
in

K
-N

N
F

ix
R

a
n

d
F

ix
R

a
n

d
R

an
d

re
al

O
p

ti
m

re
al

k
-m

ea
n

s
A

v
g

re
al

R
an

d
re

al
k
-m

ea
n

s

M
N

IS
T

9
8
.6

82
.7
±

2
.8

96
.6

79
.5
±

8.
1

68
.6
±

9.
8

73
.0
±

7.
6

76
.4
±

9.
5

77
.1
±

2.
7

71
.5
±

2.
1

9
2
.2
±

0
.1

C
IF

A
R

6
0
.0

3
9
.8
±

0
.8

54
.0

36
.8
±

1.
2

21
.3
±

1.
5

23
.4
±

1.
3

22
.5
±

3.
1

22
.3
±

0.
3

18
.8
±

1.
3

29
.4
±

0.
3

T
ab

le
4.

2:
M

ea
n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

of
S
L

D
D

,
D

D
,
an

d
b
as

el
in

e
ac

cu
ra

ci
es

(a
s

d
et

ai
le

d
b
y

W
an

g
et

al
.

[2
01

8]
)

on
M

N
IS

T
an

d
C

IF
A

R
10

d
at

as
et

s.
T

h
e

fi
rs

t
fo

u
r

b
as

el
in

es
p
ro

d
u
ce

re
d
u
ce

d
d
at

as
et

s
th

at
ar

e
u
se

d
to

tr
ai

n
th

e
sa

m
e

n
eu

ra
l

n
et

w
or

k
as

in
th

e
d
is

ti
ll
at

io
n

ex
p

er
im

en
ts

.
T

h
e

la
st

tw
o

b
as

el
in

es
p
ro

d
u
ce

re
d
u
ce

d
d
at

as
et

s
th

at
ar

e
u
se

d
to

tr
ai

n
a

K
-N

N
cl

as
si

fi
er

.
E

x
p

er
im

en
ts

w
it

h
ra

n
d
om

in
it

ia
li
za

ti
on

s
h
av

e
th

ei
r

re
su

lt
s

li
st

ed
in

th
e

fo
rm

[m
ea

n
±

st
an

d
ar

d
d
ev

ia
ti

on
]

an
d

ar
e

b
as

ed
on

th
e

re
su

lt
in

g
p

er
fo

rm
an

ce
of

20
0

ra
n
d
om

ly
in

it
ia

li
ze

d
n
et

w
or

k
s.

T
D

D
ac

cu
ra

cy
U

se
d

as
tr

ai
n

in
g

d
at

a
in

10
G

D
st

ep
s

U
se

d
in

K
-N

N
F

ix
ed

R
an

d
o
m

R
an

d
.

re
al

O
p

ti
m

.
re

al
k
-m

ea
n

s
A

v
g.

re
al

R
an

d
.

re
al

k
-m

ea
n
s

IM
D

B
7
5
.0

7
3
.4
±

3
.3

49
.7
±

0
.9

49
.9
±

0.
8

49
.9
±

0.
6

50
.0
±

0.
1

50
.0
±

0.
1

50
.0
±

0.
0

S
S

T
5

3
7
.5

3
6
.3
±

1
.5

21
.2
±

4
.9

24
.6
±

2.
6

19
.6
±

4.
5

21
.3
±

4.
1

23
.1
±

0.
0

20
.9
±

2.
1

T
R

E
C

6
7
9
.2

7
7
.3
±

2
.9

37
.5
±

1
0.

1
44

.6
±

7.
5

34
.4
±

13
.0

28
.0
±

9.
5

31
.5
±

9.
9

50
.5
±

6.
8

T
R

E
C

5
0

6
7.

4
4
2.

1
±

2
.1

8.
2
±

6
.0

9.
9
±

6.
6

14
.7
±

5.
5

12
.5
±

6.
4

15
.4
±

5.
1

4
5
.1
±

6
.6

T
ab

le
4.

3:
M

ea
n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

of
T

D
D

an
d

b
as

el
in

e
ac

cu
ra

ci
es

on
te

x
t

d
at

a
u
si

n
g

T
ex

tC
on

v
N

et
.

T
h
e

fi
rs

t
fo

u
r

b
as

el
in

es
ar

e
u
se

d
to

tr
ai

n
th

e
sa

m
e

n
eu

ra
l

n
et

w
or

k
as

in
th

e
d
is

ti
ll
at

io
n

ex
p

er
im

en
ts

.
T

h
e

la
st

tw
o

b
as

el
in

es
ar

e
u
se

d
to

tr
ai

n
a

K
-N

N
cl

as
si

fi
er

.
E

ac
h

re
su

lt
u
se

s
10

G
D

st
ep

s
as

id
e

fr
om

IM
D

B
w

it
h

k
-m

ea
n
s

(2
G

D
st

ep
s)

an
d

T
R

E
C

50
(5

G
D

st
ep

s,
4

im
ag

es
p

er
cl

as
s)

w
h
ic

h
h
ad

to
b

e
d
on

e
w

it
h

fe
w

er
st

ep
s

d
u
e

to
G

P
U

m
em

or
y

co
n
st

ra
in

ts
an

d
al

so
in

su
ffi

ci
en

t
tr

ai
n
in

g
sa

m
p
le

s
fo

r
so

m
e

cl
as

se
s

in
T

R
E

C
50

.
E

x
p

er
im

en
ts

w
it

h
ra

n
d
om

in
it

ia
li
za

ti
on

s
h
av

e
th

ei
r

re
su

lt
s

li
st

ed
in

th
e

fo
rm

[m
ea

n
±

st
an

d
ar

d
d
ev

ia
ti

on
]

an
d

ar
e

b
as

ed
on

th
e

re
su

lt
in

g
p

er
fo

rm
an

ce
of

20
0

ra
n
d
om

ly
in

it
ia

li
ze

d
n
et

w
or

k
s.

64

Figure 4.7: SLDD can learn 100 distilled MNIST images (10 steps with 10 images each)
that train networks with random initializations from 10.09%± 2.54% distillation accuracy
to 82.75% ± 2.75% (r100 = 83.6). Each image is labeled with its top 3 classes and their
logits. Only the last step is shown.

Model Dataset # of Classes Accuracy

TextConvNet IMDB 2 87.1%
Bi-RNN SST5 5 41.0%
Bi-LSTM TREC6 6 89.4%
TextConvNet TREC50 50 84.4%

Table 4.4: Model accuracies when trained on full text datasets.

used to also train K-Nearest Neighbor classifiers to compare performance against neural
networks. The baseline results are shown in Table 4.3.

• Random real sentences: We randomly sample the same number of real sentences
per class, pad/truncate them, and look up their embeddings. These sentences are
used for two baselines: training neural networks and training K-Nearest Neighbors
classifiers.

• Optimized real sentences: We sample and pre-process different sets of random

65

Figure 4.8: SLDD can learn 100 distilled CIFAR10 images (10 steps with 10 images each)
that train networks with random initializations from 10.17%± 1.23% distillation accuracy
to 39.82% ± 0.83% (r100 = 49.8). Each image is labeled with its top 3 classes and their
logits. Only the last step is shown.

Distillation Ratio (rM)
Model Dataset M Fixed Random

(Mean ± SD)

TextConvNet IMDB 2 89.9 80.0 ± 6.3
TextConvNet IMDB 20 91.5 85.2 ± 3.2
Bi-RNN SST5 5 87.7 57.0 ± 5.7
Bi-RNN SST5 100 89.8 66.8 ± 5.4
Bi-LSTM TREC6 6 97.8 69.3 ± 9.8
Bi-LSTM TREC6 120 98.2 78.9 ±6.3
TextConvNet TREC50 500 57.6 11.0 ± 0.0
TextConvNet TREC50 1000 67.4 42.1 ± 2.1

Table 4.5: Distillation ratios for text datasets and their associated neural networks. The
number of distilled sentences, M , is specified ahead of time. Experiments with random
initializations have their results listed in the form [mean ± standard deviation] and are
based on the resulting performance of 200 randomly initialized networks.

66

real sentences as above, but now we choose the 20% of the sets that have the best
performance. These sentences are used for one baseline: training neural networks.

• k-means: First, we pre-process the sentences. Then, we use k-means to learn clusters
for each class, and use the resulting centroids to train. These sentences are used for
two baselines: training neural networks and training K-Nearest Neighbors classifiers.

• Average real sentences: First, we pre-process the sentences. Then, we compute
the average embedded matrix for each class and use it for training. These sentences
are used for one baseline: training neural networks.

Distilled Sentence Label

editor panoramic brewing swat regency medley arts fleet attained hilary
novelist rugged medal who abbot has sweden new ensemble member
understands alba archaeologist operatic intercontinental martian mar-
shal paste smooth titular english-language adaptation songwriter histo-
rian enlightenment royal gaelic ceo author macarthur skipper honored
excellence distance most endings collaborations his mythological polan-
ski mayer choreographer grisham eminent brooke sympathies modelling
vitality dictionary dedication farewell enjoys energetic jordan equality
lectures sophia elijah maureen novelist

2.53

dump misled speculate bait substandard uncovered lump corpses 911
punched whopping discarded ref dollar were dough sided brink uncon-
scious tomatoes locking trash burying punched diversion grenade over-
board cashier wards agreeing brent prematurely knife randomly stupid
buster wipe virus pap waste inflated loan patient peg eliminates nudity
worms ?? rotten shoddy strangled substandard boil whopping tunnels
steep unjust dummy satisfactory mistakenly adopt tightened bloated
hacked misled dump 3-4 untrue contaminated bureaucracy waste

-2.21

Table 4.6: TDD can learn 2 distilled sentences of length 400 that train networks with
random initializations from 50.0% to 69.6%± 5.5% (r2 = 79.96). Each sentence is accom-
panied by its associated soft label logit. Only a segment of 70 (out of 400) words is shown
for each sentence. The first sentence corresponds to positive sentiment, and the second to
negative.

Fixed initialization. TDD achieves impressive performance in fixed initialization
experiments that are detailed in Tables 4.3 and 4.5. For example, TDD can produce 2
distilled sentences that train the TextConvNet up to a distillation ratio of almost 90% on

67

the IMDB dataset. However, TDD does require a larger number of distilled samples M for
more complicated datasets like TREC50. In Table 4.7, we list four of the decoded sentences
corresponding to the distilled embeddings from the six-sentence TREC6 experiments along
with their respective label distributions. These sentences can contain any tokens found in
the TREC6 dataset, including punctuation, numbers, abbreviations, etc. The sentences
do not have much overlap which is consistent with the distilled labels suggesting that each
sentence corresponds strongly to a different class. It appears that TDD encourages class
separation; however, some mixing still occurs and some words do not seem to match the
associated class with the highest logit. This may be due to the TDD algorithm overfitting
to the noise of the model initialization, and is consistent with the fixed initialization results
for image data.
Random initialization. TDD experiments with random initialization are detailed in Ta-
bles 4.3 and 4.5. On IMDB, TDD with random initialization has only a slight performance
drop compared to fixed initialization. However, there is a larger drop in performance when
going from fixed to random initializations in experiments involving the recurrent networks
and the more difficult TREC50 task. We list the decoded distilled sentences corresponding
to the distilled text embeddings from the six-sentence TREC6 experiments with random
network initializations in Table 4.8, along with their respective label distributions. Once
again, the decoded sentences do not have much overlap, though the last two both seem
to focus on locations. This is consistent with the distilled labels which suggest that each
sentence corresponds strongly to a different class, except for the last sentence which is also
associated primarily with the location class. We believe that the model has mostly ignored
the abbreviation class due to severe class imbalance; abbreviation is the smallest class com-
prising only 86 of the 5500 training examples. As such, a greater performance increase can
be achieved by assigning the last sentence to a combination of the other classes. Compared
to the fixed initialization case, the words in each sentence now seem to be more related to
the associated class with the highest logit. This is consistent with the random initializa-
tion results for image data as the TDD algorithm is no longer overfitting to the noise of
the model initialization. We show a sample of the two decoded sentences from the IMDB
experiment with M = 2 in Table 4.6. As this is a binary classification task, each label is
a scalar. TDD produced one sentence with a positive sentiment and one with a negative
sentiment. The model appears to have overcome the challenge of having to describe long
sentences with a single scalar by using duplication. For example in the negative sentence,
words like ‘contaminated’ and ‘misled’ are repeated. In such a way, the algorithm may be
assigning lower sentiment scores to individual words.

68

Logits of Label Class
0 1 2 3 4 5

Distilled Sentence ENT HUM DES NUM LOC ABB

allan milk banned yellow planted successfully in-
troduced bombay 1936 grass mines iron delhi
1942 male heir throne oath clouds 7th occur mil-
lennium smoking flows truth powder judiciary
pact slim profit

2.72 -0.48 -0.07 -0.62 -0.53 -0.27

whom engineer grandfather joan officer entered
victoria 1940s taxi romania motorcycle ital-
ian businessman photographer powerful driving
u brilliant affect princess 1940s enemies con-
flicts southwestern retired cola appearances su-
per dow consumption

-0.05 3.21 -1.15 -0.79 -0.71 -0.64

necessarily factors pronounced pronounced de-
fine bow destroying belonged balls 1923 storms
buildings 1925 victorian sank dragged reputa-
tion sailed nn occurs darkness blockade resi-
dence traveled banner chef ruth rick lion psy-
chology

-0.67 -0.66 3.28 -0.27 -0.77 0.47

accommodate accommodate peak 2.5 adults
thin teenagers hike aged nurse policeman admit
aged median philippines define baghdad libya
ambassador admit baseman burma inning bills
trillion donor fined visited stationed clean

-0.98 -0.14 -1.12 5.57 -0.85 -1.85

suburb ports adjacent mountains nearest com-
pare hilton volcano igor nebraska correspondent
1926 suburb sailed hampshire hampshire gather-
ing lesson proposition metric copy carroll sacred
moral lottery whatever fix o completed ultimate

-0.29 -0.22 -0.36 -1.01 3.86 -0.44

advertising racism excuse d nancy solved con-
tinuing congo diameter oxygen accommodate
provider commercials spread pregnancy mideast
ghana attraction volleyball zones kills part-
ner serves serves congressman advisory displays
ranges profit evil

0.94 0.53 -0.85 0.08 -0.83 1.99

Table 4.7: TDD can learn 6 distilled sentences of length 30 that train networks with fixed
initializations from 12.6% to 87.4% (r6 = 97.8). The first column contains the nearest
decoding for each distilled sentence. Each sentence is accompanied by the logits associated
with each value of its distilled label. Classes are denoted by their standard abbreviations.

69

Logits of Label Class
0 1 2 3 4 5

Distilled Sentence ENT HUM DES NUM LOC ABB

taste displays animated variety comic detroit ad-
ventures comic nickname silk golden circulation
release photograph allegedly scandal allegedly
lynn economist jeremy craig hockey chess preg-
nant ads abraham w chess stakes cliff

4.11 -2.01 0.42 -2.90 -3.31 0.40

who composer nephew conductor founders pro-
ducer ally lady 1922 industry electrical company
commander colonel hood addresses serial handle
issues associates determine cathedral colleges
domestic points la 1922 swing warren kenya

-2.36 6.01 -3.11 -3.03 -3.18 -2.13

necessarily happen happen proceed solved boom
anymore mess ash facts disc fever mess illus-
trated suite ugly plane yankees ticket puerto dog
senator stern floor boycott le lists igor articles
streak

0.35 -3.38 4.16 -2.36 -2.94 0.34

size boom enrolled many seized span occurred
floors detailed visitors m americas temperatures
tropical certified tropical crew no. academy
sponsor merged partner attraction ally floors
justin herbert ivan victory chuck

-0.95 -2.49 -1.73 5.26 -2.32 -1.15

northeast region mountainous located ceme-
tery airport beaches sand mountainous streets
trinidad southern congo border seas britain bev-
erly walks correspondent cooking pit premiered
reviews airports audience moo continental mu-
sician founders actress

-1.66 -2.38 -1.74 -2.11 4.54 0.13

adjacent mozambique austria romania gaza
highways erected tackle romania mile romania
china hiv richest romania romania dream mag-
azine burial detective cliff rhode anna toys bev-
erly hearts square businessman photographer ad

1.19 0.55 0.20 1.14 2.72 1.07

Table 4.8: TDD can learn 6 distilled sentences of length 30 that train networks with random
initializations from 16.60% ± 8.33% to 61.99% ± 8.79% (r6 = 69.33). The first column
contains the nearest decoding for each distilled sentence. Each sentence is accompanied
by the logits associated with each value of its distilled label. Classes are denoted by their
standard abbreviations.

70

4.5 Conclusion

By introducing learnable distilled labels, we have increased distillation accuracy across
multiple datasets by up to 6%. By enabling text distillation, we have also greatly in-
creased the types of datasets and architectures with which distillation can be used. In
fact, as long as a network has a twice-differentiable loss function and the gradient can be
back-propagated to the inputs, then that network is compatible with dataset distillation.
However, there are still some limitations to dataset distillation. The network initializa-
tions come from the same distribution, and no testing has yet been done on whether a
single distilled dataset can be used to train networks with different architectures. Further
investigations are needed to determine more precisely how well dataset distillation can be
generalized to work with more variation in initializations, and even across networks with
different architectures.

As mentioned above, the initialization of distilled labels appears to affect performance.
It is not clear whether it is better to separate similar classes (e.g. ‘3’ and ‘8’ in MNIST)
thereby encouraging the network to discern between them, or to instead keep those classes
together thus allowing soft-label information to be shared between them. It may be inter-
esting to explore the dynamics of distillation when using a variety of label initialization
methods. The pre-specified number of distilled samples also appears to have a large effect.
Generally, we found that adding more distilled samples results in higher performance, but
we quickly ran into issues such as overfitting and decreasing returns as we experimented
with larger numbers of distilled samples.

Working with a very small number of distilled samples also produced several interesting
results. For example, with the TREC6 experiment, it appears that the bottleneck created
by restricting the number of distilled sentences leads to smaller classes being ignored.
Meanwhile, reducing the number of distilled images for MNIST revealed that soft labels
allow us to represent the dataset using less than one sample per class.

More broadly, distilled datasets enable faster training which is particularly useful for
federated learning, as well as for other computationally intensive meta-algorithms like
neural architecture search. When distilled datasets are a good proxy for performance
evaluation, they may reduce training times by multiple orders of magnitude.

71

Chapter 5

Soft-Label Prototypes and k-Nearest
Neighbors

5.1 Motivation and Related Work

As mentioned in the previous chapter, Wang et al. [2018] showed that Dataset Distillation
(DD) can use backpropagation to create small synthetic datasets that train neural networks
to nearly the same accuracy as when training on the original datasets. Networks can reach
over 90% accuracy on MNIST after training on just one such distilled image per class (ten
in total), an impressive example of one-shot learning. However, we showed that dataset
sizes could be reduced even further by enhancing DD with soft, learnable labels. Soft-Label
Dataset Distillation (SLDD) can create a dataset of just five distilled images (less than one
per class) that trains neural networks to over 90% accuracy on MNIST. In other words,
SLDD can create five samples that allow a neural network to separate ten classes. To the
best of our knowledge, this is the first example of LO-shot learning and it motivates us to
further explore this direction.

In this chapter, we aim to investigate the theoretical foundations of LO-shot learning
so we choose to work with a simpler model that is easier to analyze than deep neural
networks.

5.1.1 Prototype Methods for kNN

The k-Nearest Neighbour (kNN) classifier is a simple but powerful classification algorithm.
There are numerous variants and extensions of kNN [Dudani, 1976, Yigit, 2015, Sun et al.,

72

2016, Kanjanatarakul et al., 2018, Gweon et al., 2019], but the simplest version is the
1NN classifier which assigns a target point to a class based only on the class of its nearest
labeled neighbor. Unfortunately, the family of kNN classifiers can be computationally
expensive when working with large datasets, as the nearest neighbors must be located
for every point that needs to be classified. This has led to the development of prototype
selection methods and generation methods which aim to produce a small set of prototypes
that represent the training data [Bezdek and Kuncheva, 2001, Triguero et al., 2011a, Bien
and Tibshirani, 2011, Garcia et al., 2012, Kusner et al., 2014]. Reducing the number of
prototypes required to represent a training dataset is especially valuable for instance-based
algorithms like kNN as the computational complexity at inference time depends on the
number of training examples the classifier was fitted on. In addition to dataset distillation
and prototype generation, there are numerous other methods making use of various tricks
and heuristics to achieve impressive results in reducing the size of training datasets. These
include active learning [Cohn et al., 1996, Tong and Koller, 2001], core-set selection [Tsang
et al., 2005, Bachem et al., 2017, Sener and Savarese, 2017], and dataset pruning [Angelova
et al., 2005]. There are even methods that perform soft-label dataset condensation [Ruta,
2006].

Using prototype methods speeds up the kNN classification step considerably as new
points can be classified by finding their nearest neighbors among the small number of pro-
totypes. Prototype selection methods select a subset of real points to use as prototypes
while prototype generation methods are not similarly restricted and instead create syn-
thetic points (that are not necessarily found in the original data) to act as prototypes.
Generating synthetic prototypes allows for more efficient representations so our analysis
focuses specifically on the generation of optimal or near-optimal prototypes. The number
of prototypes required to represent the training data can be several orders of magnitude
smaller than the number of samples in the original training data. However, in Section 5.2,
we discuss particularly pathological geometric configurations where heuristic methods fail
and analytical methods must be used instead.

5.1.2 Achieving LO-Shot Learning with kNN

In Section 5.3, we build on our previous success with soft labels and focus on theoreti-
cally establishing the link between soft-label prototypes and ‘less than one’-shot learning.
Specifically, we propose a generalization of kNN that can be fitted on soft-label points. Our
analysis is centered around a distance-weighted kNN variant that can make use of soft-
label prototypes. Distance-weighted kNN rules have been studied extensively [Dudani,
1976, Macleod et al., 1987, Gou et al., 2012, Yigit, 2015] since inverse distance weighting

73

was first proposed by Shepard [1968]. Much effort has also gone into providing finer-
grained class probabilities by creating soft, fuzzy, and conditional variants of the kNN
classifier [Mitchell and Schaefer, 2001, El Gayar et al., 2006, Thiel, 2008, El-Zahhar and
El-Gayar, 2010, Kanjanatarakul et al., 2018, Wang and Zhang, 2019, Gweon et al., 2019].
We chose our kNN variant because it works well with soft-label prototypes but remains
simple and easy to implement. We use it to explore the intricate decision landscapes that
can still be created even with an extremely limited number of training samples. We first
analyze these decision landscapes in a data-agnostic way to derive theoretical lower bounds
for separating N classes using M < N soft-label samples. Unexpectedly, we find that our
model fitted on just two prototypes with carefully designed soft labels can be used to divide
the decision space into any finite number of classes. Additionally, we provide a method for
analyzing the stability and robustness of the created decision landscapes. We find that by
carefully tuning the hyper-parameters we can elicit certain desirable properties. We also
perform a case study to confirm that soft labels can be used to represent training sets using
fewer prototypes than there are classes, achieving large increases in sample-efficiency over
regular (hard-label) prototypes. In extreme cases, like the concentric circle dataset, using
soft labels can even reduce the minimal number of prototypes required to perfectly separate
N classes from O(N2) down to O(1). In Section 5.4, we aim to extend the theory from
Section 5.3 into algorithms that can be used for performing LO-shot prototype generation
and learning in practice.

5.2 Optimal 1NN Prototypes for Pathological Geome-

tries

5.2.1 Background

We consider a synthetic dataset consisting of N concentric circles where the points on
each circle belong to a different class. We wish to select or generate the minimal number
of prototypes such that the associated kNN classification rule will separate each circle as
a different class. We find that commonly used prototype generation methods failed to
find prototypes that would adequately represent this dataset, suggesting that the dataset
exhibits pathological geometries. After applying analytical methods to this dataset, we
find that O(N2) hard-label prototypes are required for 1NN to separate the N classes.

Theorem 1 Suppose we have N concentric circles with radius rt = t ∗ c for the tth circle.
An upper bound for the minimum number of hard-label prototypes required for 1NN to

74

Figure 5.1: Decision boundaries of a vanilla 1NN classifier fitted on the minimum number
of prototypes required to perfectly separate circle classes. From inner to outer, the circles
have 1, 4, 7, 10, 13, and 16 prototypes.

produce decision boundaries that perfectly separate all circles, is
∑N

t=1
π

cos−1(1− 1
2t2

)
; with the

tth circle requiring π

cos−1(1− 1
2t2

)
prototypes.

The proof can be found in the Appendix. We can use the approximation cos−1(1 −
y) ≈

√
2y to get that π

cos−1(1− 1
2t2

)
≈ π

(1
t
)

= tπ. Thus the upper bound for the minimum

number of prototypes required is approximately
∑N

t=1 t∗π = N(N+1)π
2

. Figure 5.1 visualizes
the decision boundaries of a regular kNN that perfectly separates six concentric circles
given dtπe prototypes for the tth circle. It is possible that the number of prototypes may
be slightly reduced by carefully adjusting the prototype locations on adjacent circles to
maximize the minimal distance between the prototype midpoints of one circle and the
prototypes of neighboring circles. However, this upper bound does not account for the
possibility of rotating prototypes on adjacent circles as a method of reducing the number
of required prototypes. We explore this direction to analytically find tighter bounds and
an approximate solution for the minimal number of prototypes required for a 1-Nearest
Neighbor classifier to perfectly separate each class after being fitted on the prototypes.
In particular, we show that this problem actually consists of two sub-problems, or cases,
only one of which is closely approximated by the previously proposed upper bound. We
also propose an algorithm for finding nearly-optimal prototypes and use it to empirically
confirm our theoretical results.

75

Figure 5.2: 1NN decision boundaries when fitted on dtπe prototypes per class. Each shaded
circle represents a different class and the outlined points represent the assigned prototypes.
The colored regions correspond to the decision boundaries created by the 1NN classifier.
The axes form a Cartesian plane whose origin coincides with the smallest class. Different
rotations of prototype placements on adjacent circles can lead to changes in the decision
boundaries.

76

5.2.2 Theory

Preliminaries

We first proceed to formalize the problem of having a 1-NN classifier separate the classes
after being fitted on a minimal number of prototypes. Consistent with Sucholutsky and
Schonlau [2021a], we define the tth circle as having radius tc for t = 0, 1, Because each
class is fully separated from non-adjacent classes by its adjacent classes, it is sufficient to
consider arbitrary pairs of adjacent classes when trying to find the optimal prototypes. For
the rest of this section, we consider arbitrarily selected circles t and t+1 with the following
radii.

r1 = tc, r2 = (t+ 1)c, t ∈ N0, c ∈ R>0,

Because of the symmetry of each circle, we require that the prototypes assigned to each
circle be spaced evenly around it. We assume that circle t and t + 1 are assigned m and
n prototypes respectively. We define θ∗ as the angle by which the prototypes on circle
t + 1 are shifted relative to the prototypes on circle t. We record the locations of these
prototypes in Cartesian coordinates.

ai = (r1 cos(
2πi

m
), r1 sin(

2πi

m
)), i = 1, ...,m

bj = (r2 cos(
2πj

n
+ θ∗), r2 sin(

2πi

n
+ θ∗)), i = 1, ..., n

We can then find the arc-midpoints of these prototypes as follows.

a∗i = (r1 cos(
2πi+ π

m
), r1 sin(

2πi+ π

m
)), i = 1, ...,m

b∗j = (r2 cos(
2πj + π

n
+ θ∗), r2 sin(

2πi+ π

n
+ θ∗)), i = 1, ..., n

Letting d(x, y) be the Euclidean distance between points x and y, we find the distances
between prototypes on the same circle.

77

da(m) = d(ai, a
∗
i) =

√
2t2c2 − 2t2c2 cos(

π

m
)

db(n) = d(bi, b
∗
i) =

√
2(t+ 1)2c2 − 2(t+ 1)2c2 cos(

π

n
)

We also find the shortest distance between prototypes of circle t and arc-midpoints of circle
t+ 1 and vice-versa.

d∗1(m,n, θ∗) = min
i,j
{d(ai, b

∗
j)‖

i=1,...,m
j=1,...,n }

= min
i,j
{
√
t2c2 + (t+ 1)2c2 − 2t(t+ 1)c2 cos(

2πi

m
− 2πj + π

n
− θ∗)‖ i=1,...,m

j=1,...,n }

d∗2(m,n, θ∗) = min
i,j
{d(a∗i , bj)‖

i=1,...,m
j=1,...,n }

= min
i,j
{
√
t2c2 + (t+ 1)2c2 − 2t(t+ 1)c2 cos(

2πi+ π

m
− 2πj

n
− θ∗)‖ i=1,...,m

j=1,...,n }

The necessary and sufficient condition for the 1-NN classifier to achieve perfect separation
is that the distance between prototypes and arc-midpoints assigned to the same circle, be
less than the minimal distance between any arc-midpoint of that circle and any prototype
of an adjacent circle. This must hold for every circle. Given these conditions and some
fixed number of prototypes assigned to the tth circle, we wish to minimize n by optimizing
over θ∗.

Given m, t min
θ∗

n

s.t. d∗1(m,n, θ∗) > db(n)

d∗2(m,n, θ∗) > da(m)

Inspecting the inequalities, we see that they can be reduced to the following system which
we note is now independent of the constant c .

− 2t+ 1

2(t+ 1)
> t cos(

2πi

m
− 2πj + π

n
− θ∗)− (t+ 1) cos(

π

n
) (5.1)

2t+ 1

2t
> (t+ 1) cos(

2πi+ π

m
− 2πj

n
− θ∗)− t cos(

π

m
) (5.2)

78

It is clear that n ≥ m, but we separate this system into two cases, n = m and n > m, as
the resulting sub-problems will have very different assumptions and solutions. The simpler
case is where every circle is assigned the same number of prototypes; however, the total
number of circles must be finite and known in advance. In the second case where larger
circles are assigned more prototypes, we assume that the number of circles is countable
but not known in advance. We also note that for t = 0, a circle with radius 0, exactly one
prototype is required. Given this starting point, it can be trivially shown that for t = 1, a
minimum of four prototypes are required to satisfy the conditions above (three if the strict
inequalities are relaxed to allow equality). However for larger values of t, careful analysis
is required to determine the minimal number of required prototypes.

Upper bounds

We first show how our setup can be used to derive the upper bound that was found by
Sucholutsky and Schonlau [2021a].

Theorem 2 (Previous Upper Bound) The minimum number of prototypes required to
perfectly separate N concentric circles is bounded from above by approximately

∑N
t=1 tπ, if

the number of circles is not known in advance (each circle must have a different number
of assigned prototypes).

Proof. Given the setup above, we first consider the worst case scenario where a θ∗ is selected
such that cos(2πi

m
− 2πj+π

n
− θ∗) = cos(2πi+π

m
− 2πj

n
− θ∗) = cos(0) = 1. We can then solve

Inequality 5.1 for n and Inequality 5.2 for m.

− 2t+ 1

2(t+ 1)
> t cos(0)− (t+ 1) cos(

π

n
)

cos(
π

n
) >

2(t+ 1)2 − 1

2(t+ 1)2

n >
π

arccos(2(t+1)2−1
2(t+1)2

)
≈ (t+ 1)π

2t+ 1

2t
> (t+ 1) cos(0)− t cos(

π

m
)

cos(
π

m
) >

2t2 − 1

2t2

m >
π

arccos(2t2−1
2t2

)
≈ tπ

79

This is exactly the previously discovered upper bound.

However, note that we assumed that there exists such a θ∗, but this may not always be
the case for n > m. If we instead use the same number of prototypes for each circle (i.e.
m = n), then we can always set θ∗ = π

n
. This results in a configuration where every circle

is assigned n = d π

arccos(
2(t+1)2−1

2(t+1)2
)
e ≈ d(t + 1)πe prototypes. While the minimum number

of prototypes required on the tth circle remains the same, the total minimum number of
prototypes required to separate N circles is higher as each smaller circle is assigned the
same number of prototypes as the largest one.

Corollary 3 (Upper Bound - Same Number of Prototypes on Each Circle) The minimum
number of prototypes required to perfectly separate N concentric circles is bounded from
above by approximately N2π, if the number of circles is finite and known in advance (each
circle can have the same number of assigned prototypes).

Lower bounds

An advantage of our formulation of the problem is that it also enables us to search for
lower bounds by modifying the θ∗ parameter. We can investigate the scenario where a θ∗

is selected that simultaneously maximizes d∗1(m,n, θ∗) and d∗1(m,n, θ∗).

Theorem 4 (Lower Bound) The minimum number of prototypes required to perfectly sep-

arate N concentric circles is bounded from below by approximately
∑N

t=1 t
1
2π, if the number

of circles is not known in advance (each circle must have a different number of assigned
prototypes).

Proof. If m 6= n, the best case would be a θ∗ such that cos(2πi
m
− 2πj+π

n
− θ∗) = cos(2πi+π

m
−

2πj
n
− θ∗) = cos(π

n
). Solving the inequalities leads to the following values for m and n.

n >
π

arccos(2t+1
2(t+1)

)
≈ (t+ 1)

1
2π

m >
π

arccos(2t2−t−1
2t2

)
≈ t

(t+ 1)
1
2

π

We note again that such a θ∗ may not always exist.

80

Exact and approximate solutions

In the case where m = n, we can always choose a θ∗ such that cos(2πi
m
− 2πj+π

n
−θ∗) = cos(π

n
).

Solving the inequalities, we get that n > π
arccos(2t+1

2(t+1)
)
≈ (t + 1)

1
2π. Thus we have a tight

bound for this case.

Corollary 5 (Exact Solution - Same Number of Prototypes on Each Circle) The minimum
number of prototypes required to perfectly separate N concentric circles is approximately
N

3
2π, if the number of circles is finite and known in advance (each circle can have the same

number of assigned prototypes).

When m > n, we have that cos(2πi
m
− 2πj+π

n
−θ∗) > cos(π

n
) as 2πi

m
− 2πj

n
= 2πc1 gcd(m,n)

mn
, c1 ∈

N0. Let q := 2π gcd(m,n)
mn

, then |2πi
m
− 2πj+π

n
− θ∗| ≤ q

2
and |2πi+π

m
− 2πj

n
− θ∗| ≤ q

2
. Thus

cos(2πi
m
− 2πj+π

n
− θ∗) ≥ cos(q

2
), and cos(2πi+π

m
− 2πj

n
− θ∗) ≥ cos(q

2
).

Using the series expansion at q = 0 we can find that cos(q
2
) = 1− q2

8
+ q4

384
− q6

46080
+O(q8).

Theorem 6 (First Order Approximation - Different Number of Prototypes on Each Circle)
The minimum number of prototypes required to perfectly separate N concentric circles is
approximately 1 +

∑N
t=1 tπ, if the number of circles is not known in advance (each circle

must have a different number of assigned prototypes).

Proof. For a first order approximation, we consider cos(q
2
) = 1− q2

8
+O(q4) and cos(π

n
) =

1− π2

2n2 +O(1
n4). Inequality 5.1 then becomes the following.

− 2t+ 1

2(t+ 1)
> t(1− q2

8
+O(q4))− (t+ 1)(1− π2

2n2
+O(

1

n4
))

= −1− π2

2n2
(t

gcd(m,n)2

m2
− t− 1) +O(

1

n4
)

n2 > −π2(t+ 1)(t
gcd(m,n)2

m2
− t− 1) +O(

1

n2
)

However, we know from our previous upper bound that m+ 1 ≤ n ≤ m+ 4.

Thus 4
(n−4)2

> gcd(m,n)2

m2 > 1
(n−1)2

which means that gcd(m,n)2

m2 = O(1
n2).

n2 > −π2(t+ 1)(t
gcd(m,n)2

m2
− t− 1) +O(

1

n2
)

= π2(t+ 1)2 +O(
1

n2
)

81

Figure 5.3: First order (before and after discretizing by rounding to nearest integer) and
second order approximations for the minimal number of prototypes that must be assigned to
circle t. The approximations are applied to continuous values of t to show the convergence
behavior.

Therefore we have that n+O(1
n
) > (t+ 1)π as desired.

We plot the second order approximation alongside the first order approximation from
Theorem 6 in Figure 5.3, without rounding to show that the two quickly converge even at
small values of t. Thus we can be confident that approximately tπ prototypes are required
for the tth circle since this approximation quickly approaches the true minimal number of
required prototypes as t increases. Since we can only assign a positive integer number of
prototypes to each circle, we assign dtπe prototypes to the tth circle; this is also shown
in Figure 5.3. Applying this to the initial condition that the 0th circle is assigned exactly
one prototype results in the following sequence of the minimal number of prototypes that
must be assigned to each circle. We note that the sequence generated by the second order
approximation would be almost identical, but with a 3 replacing the 4.

1, 4, 7, 10, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41 . . .

82

Figure 5.4: 1NN decision boundaries when fitted on two sub-optimal prototype arrange-
ments as well as near-optimal prototypes found using the FindPUGS algorithm. Each
shaded circle represents a different class and the outlined points represent the assigned
prototypes. The colored regions correspond to the decision boundaries created by the 1NN
classifier. The axes form a Cartesian plane whose origin coincides with the smallest class.
Left and Center: Prototypes on adjacent circles are not optimally rotated resulting in
imperfect class separation in certain regions. Right: Prototypes are optimally rotated to
maximize distances between the prototypes and prototype arc-midpoints of adjacent circles
resulting in perfect class separation.

Corollary 7 (Approximate Solution - Different Number of Prototypes on Each Circle)
The minimum number of prototypes required to perfectly separate N concentric circles is
approximately

∑N
t=1dtπe ≈

N+N(N+1)π
2

, if the number of circles is not known in advance
(each circle must have a different number of assigned prototypes).

5.2.3 Computational Results

Algorithm

While Theorem 6 gives us the number of prototypes required for each circle, it does not
give us the exact locations of these prototypes. Finding the locations would require us
to know θ, the optimal rotation of circle n + 1 relative to circle n. Unfortunately, the
equations involving θ depend on greatest common denominator terms. Since this makes it
difficult to find explicit analytical solutions, we instead turn to computational methods to
find near-optimal prototypes. The theoretical results above enable us to develop computa-
tional methods to empirically find the minimum number of required prototypes. Based on
the equations derived in the previous section, we propose an iterative, non-parametric al-

83

gorithm, Algorithm 4, that proceeds from the innermost circle to the outermost one finding
a near-optimal number of required prototypes, and their positions, in a greedy manner.

The core of the algorithm consists of three loops: outer, middle, inner. The outer
loop iterates over each circle, from smallest to largest. For each circle, m is set to be the
minimum number of prototypes found during the loop for the previous circle. The middle
loop then iterates over candidate values of n, starting from m + 1 and increasing by one
each time, until it reaches the first value of n for which Equations 5.1 and 5.2 can be
simultaneously solved given the current value of m. Whether the equations can be solved
is determined in the inner loop which plugs different values of the rotation angle θ into
the system. Since the distance equations are periodic over values of θ, and the length of
the period depends on the greatest common divisor of m and n, we can speed the search
up by only considering an interval of the length of the maximum period and iterating θ
by an angle inversely proportional to the product of m and n. To avoid any potential
floating-point precision errors, we use a wider than necessary interval and smaller than
necessary update size for θ. At the end of each iteration of the outer loop, the n and θ
that were found are recorded. We note that the rotation angle θ is relative to the rotation
of the previous circle. In other words, the absolute rotation for a given circle can be found
by adding its relative rotation to the relative rotations of all the preceding circles.

Our code for this algorithm can be found at the publicly available GitHub repositories
associated with this thesis. As shown above, the choice of c > 0, the constant length
by which the radius of each consecutive circle increases, does not affect the number of
required prototypes. Nonetheless, we still include c as a parameter in our algorithm to
verify correctness. Running the algorithm for some large T , with any choice of c, results
in the following sequence.

1, 3, 6, 12, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41 . . .

This sequence appears to converge very quickly to the one predicted by our theorem.
Curiously, the small differences between the first few steps of the two sequences cancel
out and the cumulative number of required prototypes is identical when there are four or
more circles. While requiring the algorithm to find numerical solutions to these equations
is perhaps not computationally efficient, it does guarantee near-optimal performance, with
the only sub-optimal portion occurring at the start of the sequence where the algorithm
outputs 1, 3, 6, 12, 13 rather than the optimal 1, 3, 7, 10, 13 due to its greedy nature.

We visualize two sub-optimal prototype arrangements, and the near-optimal arrange-
ment found by our algorithm, in Figure 5.4. The patterns seen in these visualizations

84

are largely dependent on the greatest common divisors of the number of prototypes on
adjacent circles, as well as the relative rotations of the prototypes on adjacent circles. The
particularly symmetrical patterns in Figure 5.4 are a result of the outer three circles hav-
ing 3, 6, and 12 prototypes respectively, doubling each time. We show another example
of the decision boundaries exhibited by 1NN when fitted on near-optimal prototypes in
Figure 5.5.

Heuristic Prototype Methods

We compare the performance of our proposed algorithm against a variety of existing pro-
totype selection and generation methods. Specifically, we compare against every under-
sampling method implemented by Lemâıtre et al. [2017] in the ‘imbalanced-learn’ Python
package. We describe the prototype methods below and summarize their key properties in
Table 5.1.

Name Type Choosing Number of Prototypes

TomekLinks Selection Automatic
RandomUndersampler Selection Automatic or Manual
OneSidedSelection Selection Automatic
NeighbourhoodCleaningRule Selection Automatic
NearMissV1-3 Selection Automatic or Manual
InstanceHardnessThreshold Selection Automatic or Semi-Automatic
AllKNN Selection Automatic
EditedNearestNeighbours Selection Automatic
RepeatedEditedNearestNeighbours Selection Automatic
CondensedNearestNeighbours Selection Automatic
ClusterCentroids Generation Automatic or Manual

Table 5.1: A list of prototype selection and generation methods. The last column describes
how the number of prototypes is chosen for each class.

• TomekLinks: Rebalances classes by removing any Tomek links [Tomek, 1976b].

• RandomUndersampler: Rebalances classes by randomly selecting prototypes from
each class.

• OneSidedSelection: Rebalances classes by isolating each class and resampling the
negative examples (composed of the remaining classes) [Kubat, 1997].

85

• NeighbourhoodCleaningRule: Improves on OneSidedSelection in settings where par-
ticularly small classes are present. As a result, it focuses more on improving data
quality than reducing the size of the dataset [Laurikkala, 2001].

• NearMiss: All three versions rebalance classes by resampling the negative examples
for a particular class. V1 selects the points from other classes which have the shortest
distance to the nearest three points from the target class. V2 selects the points from
other classes which have the shortest distance to the furthest three points from the
target class. For every point in the target class, V3 selects a fixed number of the
nearest points from other classes [Mani and Zhang, 2003].

• InstanceHardnessThreshold: Rebalances classes by fitting a classifier to the data and
removing points to which the classifier assigns lower probabilities [Smith et al., 2014].

• EditedNearestNeighbours:Resamples classes by removing points found near class
boundaries defined by a fitted classifier [Wilson, 1972].

• RepeatedEditedNearestNeighbours: Resamples classes by repeatedly applying Edit-
edNearestNeighbours and refitting the classifier. [Tomek, 1976a].

• AllKNN: Resamples classes similarly to RepeatedEditedNearestNeighbours but in-
creases the parameter k of the classifier each time [Tomek, 1976a].

• CondensedNearestNeighbours: Rebalances classes by repeatedly fitting a 1NN on the
set of candidate prototypes and then adding all misclassified points to that set [Hart,
1968].

• ClusterCentroids: Rebalances classes by using kMeans to replace clusters with their
centroids.

For each experiment, the dataset consists of 800 points divided as evenly as possible
between the circles. We note that most methods are not able to reduce the number of
prototypes much below the number of training points. This is in part due to the automatic
class re-balancing that some of these methods attempt to do. Since all classes already have
roughly the same number of points, and since none are misclassified when all 800 training
points are used, several of the methods determine that little-to-no re-sampling is necessary.
As a result, these methods provide at most a small reduction in the number of prototypes.
We visualize some of the methods performing automatic undersampling in Figure 5.6, where
two common failure modes can be seen: the methods either fail to reduce the number of
prototypes but achieve good separation of classes, or reduce the number of prototypes but

86

Figure 5.5: The ClusterCentroids prototype generation method finds similar prototypes to
our proposed algorithm when parametrized with the near-optimal number of prototypes
per class.

fail to separate the classes. However, the user can also override the automatic re-balancing
for a few of the methods, those which include the ‘Manual’ option in Table 5.1, by passing
the number of desired prototypes per class as a hyperparameter. We pass the optimal
number of prototypes per class suggested by our earlier theoretical analysis, and the near-
optimal number suggested by our algorithm, to these methods and document the results in
Figure 5.7. Curiously, none of the prototype selection methods achieve perfect separation
when restricted to this nearly optimal number of prototypes, even though the nearly-
optimal prototypes found by our algorithm have extremely close-by neighbors among the
training points. In other words, it is not theoretically impossible for the prototype selection
methods to select prototypes close to where the optimal prototypes would be, and yet
they do not. Meanwhile, the ClusterCentroids prototype generation method finds similar
prototypes to the ones proposed by our algorithm as seen in Figure 5.5.

Additional Experiments

By using the results of our theoretical analysis to parametrize ClusterCentroids, we enable
it to find efficient sets of high-quality prototypes. We combine our proposed algorithm
with ClusterCentroids to produce a method that combines the benefits of both: a non-
parametric algorithm that finds near-optimal prototypes in our pathological case but is
robust to noise. We conduct additional experiments to show that this resulting method is
indeed robust to noise. Each experiment still uses a dataset of 800 points that are spread
over N concentric, circular classes with radius growth parameter c = 0.5; however, we now
introduce Gaussian noise to each class. The level of noise is controlled by parameter σ,
the standard deviation of the Gaussian distribution underlying the positioning of points
within a class. The ratio of σ to c dictates how much overlap occurs between classes. For

87

Figure 5.6: Examples of failure modes on four and six-class concentric circles data using
prototype methods where number of prototypes per class was found automatically (semi-
automatically for the InstanceHardnessThreshold method).

Figure 5.7: Examples of failure modes on four and six-class concentric circles data using
prototype methods for which the number of prototypes per class was set manually.

88

example, when σ = 0.25 = c
2
, only around 68% of points belonging to a particular class

will be contained within the band of thickness c = 0.5 associated with that class. We use
four levels of noise (σ = 0.05, 0.1, 0.2, 0.4) and five different numbers of classes (4, 6, 8, 10,
12), for a total of 20 generated datasets to which we apply the near-optimally parametrized
ClusterCentroids algorithm and measure classification accuracy.

The results are detailed in Table 5.2 and visualized in Figure 5.8. As expected, increas-
ing noise causes a decrease in classification accuracy. However, the decrease in accuracy is
roughly equal to the percentage of points found outside of their class’s band as they are
indistinguishable from the points of the class whose band they are in. This suggests that
the 1NN classifier fitted on prototypes designed by the near-optimally parametrized Clus-
terCentroids algorithm, approaches the Bayes error rate. We also note that as the number
of classes increases, and hence the number of points per class decreases, the accuracy of
the classifier stays stable or even increases at high levels of noise. The near-optimally
parametrized ClusterCentroids algorithm is clearly robust to increases in the number of
classes. It is also partially robust to noise, even though noise violates the underlying
assumptions on which the nearly-optimal parametrization is based.

5.2.4 Conclusion

The kNN classifier is a powerful classification algorithm, but can be computationally ex-
pensive. While numerous prototype methods have been proposed to alleviate this problem,
their performance is often strongly determined by the underlying geometry of the data.
Certain pathological geometries can result in especially poor performance of these heuris-
tic algorithms. We analyzed one such extreme setting and demonstrated that analytical
methods can be used to find the minimal number of optimal prototypes required for fit-
ting a 1NN classifier. We also found that in such pathological cases, theoretical analysis
may not be able to provide the exact locations of the prototypes, but it can be used to
derive systems of equations that when solved with numerical methods, produce optimal or
near-optimal prototypes.

To demonstrate this approach, we proposed an algorithm for finding nearly-optimal
prototypes in the particular pathological setting of concentric circular classes, and used
it to validate our theoretical results. The algorithm outperformed all prototype selection
methods that it was tested against. A prototype generation method was able to find the
optimal prototypes, but only when parametrized using either the theoretical results or
the outputs of our proposed algorithm. We further showed that this combination of our
proposed algorithm with an existing prototype generation method exhibited the desirable

89

features of both: not only is it non-parametric, but it is also guaranteed to find near-
optimal prototypes even in the examined pathological case. It is also general enough that
it is robust to violations of the underlying assumptions of our theoretical analysis, such as
the addition of Gaussian noise to the data.

We believe that identifying and studying further pathological geometries in kNN and
other machine learning models is an important direction for understanding their failure
modes and jointly improving training algorithms and prototype methods.

Out-of-band Accuracy Accuracy Accuracy Accuracy Accuracy
Noise (σ) points (4 classes) (6 classes) (8 classes) (10 classes) (12 classes)

0.05 0% 0.975 0.98625 0.9775 0.9775 0.975
0.1 1% 0.94375 0.94 0.94 0.9425 0.93125
0.2 21% 0.77375 0.77625 0.76375 0.79375 0.81375
0.4 53% 0.53 0.4925 0.5325 0.58375 0.60875

Table 5.2: Accuracy of ClusterCentroids parametrized with near-optimal number of pro-
totypes.

90

Figure 5.8: ClusterCentroids parametrized with near-optimal number of prototypes applied
to various levels of noise. From top to bottom, the rows correspond to 4, 6, 8, 10, and 12
classes. From left to right, columns correspond to σ = 0.05, 0.1, 0.2, 0.4.

91

Algorithm 4: FindPUGS Algorithm: Finding (nearly-optimal) Prototypes Using
Greedy Search

Result: Two ordered lists, N and R, of the minimum number of prototypes required for each circle and their
rotations relative to the previous circle.

T ← the number of circles;
c← the length by which radii should grow;
Algorithm FindPUGS(T, c)

N← [1];
R← [0];
for t = 1, 2, . . . , T − 1 do

m← N[−1];
n← m+ 1;
p← 0;
while True do

da ←
√

2t2c2 − 2t2c2 cos(π
m

);

db ←
√

2(t+ 1)2c2 − 2(t+ 1)2c2 cos(π
n

);

for i = 0, 1, . . . , 4mn do

θ ← iπ
m∗n∗16 ;

if d1(t, c,m, n, θ) > db and d2(t, c,m, n, θ) > da then
p← n ;
break;

end

end
if p > 0 then

N.append(p);
R.append(θ);
break;

end
n← n+ 1;

end

end
return N, R;

Procedure d1(t, c,m, n, θ)
dists ← [] ;
for i = 0, . . . ,m− 1 do

for j = 0, . . . , n− 1 do

dist ←
√
t2c2 + (t+ 1)2c2 − 2t(t+ 1)c2 cos(2iπ

m
− 2jπ

n
− π
n
− θ);

dists.append(dist);

end

end
return min(dists);

Procedure d2(t, c,m, n, θ)
dists ← [] ;
for i = 0, . . . ,m− 1 do

for j = 0, . . . , n− 1 do

dist ←
√
t2c2 + (t+ 1)2c2 − 2t(t+ 1)c2 cos(2iπ

m
− 2jπ

n
+ π
m
− θ);

dists.append(dist);

end

end
return min(dists);

92

Figure 5.9: A SLaPkNN classifier is fitted on 2 soft-label prototypes and partitions the
space into 3 classes. The soft label distribution of each prototype is illustrated by the pie
charts.

5.3 Theoretical Foundations of ‘Less Than One’-Shot

Learning with kNN

In this section, we derive and analyze several methods of configuring M soft-label pro-
totypes to divide a space into N classes using the distance-weighted soft-label prototype
k-Nearest Neighbors classifier. An example can be seen in Figure 5.9 where two samples
with soft labels are used to separate a space into three classes. All proofs for results in this
section can be found in Appendix B.

5.3.1 Definitions

Definition 1 A hard label is a vector of length N representing a point’s membership to
exactly one out of N classes.

yhard = ei =
[
0 ... 0 1 0 ... 0

]T
Hard labels can only be used when each point belongs to exactly one class. If there are

n classes, and some point x belongs to class i, then the hard label for this point is the ith

unit vector from the standard basis.

93

Definition 2 A soft label is the vector-representation of a point’s simultaneous mem-
bership to several classes. Soft labels can be used when each point is associated with a
distribution of classes. We denote soft labels by ysoft.

Definition 2.1 A probabilistic (soft) label is a soft label whose elements form a valid
probability distribution.

∀i ∈ {1, ..., n} ysofti ≥ 0
n∑
i=1

ysofti = 1

Definition 2.2 An unrestricted (soft) label is a soft label whose elements can take on
any real value, including negative values.

Definition 3 A soft-label prototype (SLaP) is a pair of vectors (X,Y) where X is a
feature (or location) vector, and Y is the associated soft label.

A probabilistic label can be derived from an unrestricted label by applying the softmax
function. A hard label can be derived from a probabilistic label by applying the argmax
function (setting the element with the highest associated probability to 1 and the remaining
elements to 0). We illustrate this in Figure 4.1.

When using the classical k-Nearest Neighbors (kNN) classifier rule to partition a space,
it is clear that at least n points are required to separate n classes (i.e. create n partitions).
kNN uses only hard labels, so each of these points, or prototypes, contains information
only about the single class to which it is assigned. We investigate whether a soft-label
prototype generalization of kNN can more efficiently separate n classes by using only
m < n soft-label prototypes.

Definition 4 The distance-weighted soft-label prototype k-Nearest Neighbors
(SLaPkNN) classification rule takes the sum of the label vectors of the k-nearest proto-
types to target point x, with each prototype weighted inversely proportional to its distance
from x. x is then assigned to the class corresponding to the largest value of the resulting
vector.
More formally, assume we are given a set of M soft-label prototypes representing a dataset
with N classes. Let S = (X1, Y1), ..., (XM , YM) be the prototypes available for training where
Xi is the position of the ith prototype and Yi, a vector of length N , is its soft label. Let x be

94

the position of the target point that we wish to classify. Compute D = {d(Xi, x)}i=1,...,M , the
set of distances between each prototype and the target. Let S ′ = (X(1), Y(1)), ..., (X(M), Y(M))
be a reordering of the prototypes such that d(X(1), x) ≤ ... ≤ d(X(M), x). Then the distance-

weighted sum of the k-nearest prototype labels is Y ∗ =
∑k

i=1

Y(i)
d(X(i),x)

and x is assigned to

class CSLaPkNN(x) = arg maxj Y
∗
j where Y ∗j is the jth element of Y ∗.

Distance-weighted kNN is the special case of SLaPkNN where each prototype is assigned
a hard label.

5.3.2 Probabilistic Prototypes and SLaPkNN with k=2

We first derive and analyze several methods of configuring soft-label prototypes to separate
a space into N partitions using M points in the restricted case where prototypes must be
probabilistic, and the number of considered neighbors (k) is set to two.

Theorem 8 (Learning Three Classes From Two Samples) Assume that two points,
x1 and x2, are positioned 3 units apart in two-dimensional Euclidean space and have prob-
abilistic labels y1 and y2, respectively. We denote the ith element of each label by y1,i and
y2,i for i = 1, 2, 3. There exist y1 and y2 such that decision boundaries created by SLaPkNN
with k = 2 separate the space into three classes when fitted on (x1, y1) and (x2, y2).

Assuming that we want symmetrical labels for the two prototypes (i.e. y1,i = y2,(3−(i−1))),
the resulting system of linear equations is quite simple.

2
3
> y1,1 >

1
2
> y1,2 >

1
3
> y1,3 ≥ 0

4y1,2 = 1 + y1,1

5y1,2 = 2− y1,3

(5.3)

Since we have a system of linear equations with one free variable, infinite solutions exist.
We set y1,3 to zero in order to get a single solution and simplify the resulting label.

y1,1 = y2,3 =
3

5

y1,2 = y2,2 =
2

5

y1,3 = y2,1 =
0

5

We visualize the results of fitting a SLaPkNN classifier with k = 2 to a set of two points
with these labels in Figure 5.9.

95

Corollary 9 Assume that the distance between two points (in two-dimensional Euclidean
space), x1 and x2, is c, and they have probabilistic labels y1 and y2, respectively. We denote
the ith element of each label by y1i and y2i. There exist values of y1 and y2 such that the
decision boundaries created by SLaPkNN with k = 2 can separate the space into three
classes when fitted on (x1, y1) and (x2, y2).

‘Every Pair’ Methods

We have shown that a third class can be induced between a pair of points. We now focus
on the case where we consider more than two points. We first show that it is possible for a
single point to simultaneously belong to multiple pairs, each creating an additional class.

Theorem 10 Suppose we have M soft-label prototypes (x0, y0), (x1, y1), ...(xM−1, yM−1)
with the xi arranged such that each pair of the form {(x0, xi)|i = 1, ..,M − 1} is unique
and the other terms are all equidistant from x0. There exist values of y0, y1, ..., yM−1 such
that SLaPkNN with k = 2 can can partition the space into 2M − 1 classes.

One way to select such labels is to use the same labels for each pair as in Theorem 8,
This results in y1, ..., yM−1 each having a label distribution containing two non-zero values:
3
5

(associated with its main class) and 2
5

(associated with the class created between itself
and x0). Meanwhile, y0 contains one element with value 3

5
(associated with its own class)

and M-1 elements with value 2
5

(each associated with a unique class created between x0 and
each one of the other points). To get probabilistic labels, we can normalize y0 to instead
have values 3

2M+1
and 2

2M+1
. The resulting decision landscape is visualized in Figure 5.10.

The local decision boundaries in the neighbourhood between (x0, y0) and any one of the
surrounding prototypes then takes the following form.

Predicted Class =


a if d < 5p

4M+7

b if d > 10p
2M+11

c if 5p
4M+7

< d < 10p
2M+11

(5.4)

Examining the asymptotic behavior as the total number of classes increases, we notice a
potentially undesirable property of this configuration. Increases in M ‘dilute’ classes a and
c, which results in them shrinking towards x0. In the limit, only class b remains. It is
possible to find a configuration of probabilistic labels that results in asymptotically stable
classes but this would require either lifting our previous restriction that the third label
value be zero when separating three classes with two points, or changing the underlying
geometrical arrangement of our prototypes.

96

(a) Seven classes using four soft-label pro-
totypes

(b) Nine classes using five soft-label proto-
types

Figure 5.10: SLaPkNN can separate 2M − 1 classes using M soft-label prototypes

Proposition 11 Suppose M soft-label prototypes are arranged as the vertices of an M-
sided regular polygon. There exist soft labels (Y1, ..., YM) such that fitting SLaPkNN with
k = 2 will divide the space into 2M classes.

In this configuration, it is possible to decouple the system from the number of pairs that
each prototype participates in. It can then be shown that the local decision boundaries,
in the neighbourhood of any pair of adjacent prototypes, do not depend on M.

Predicted Class =


a if d < p

3

b if d > 2p
3

c if p
3
< d < 2p

3

(5.5)

We visualize the resulting decision landscape in Figure 5.11. By combining these two
results, we can produce configurations that further increase the number of classes that can
be separated by M soft-label prototypes.

Theorem 12 Suppose M soft-label prototypes are arranged as the vertices and center of an
(M−1)-sided regular polygon. There exist soft labels (Y1, ..., YM) such that fitting SLaPkNN
with k = M will divide the space into 3M − 2 classes.

Interval Partitioning Methods

We now aim to show that two points can even induce multiple classes between them.

97

(a) Eight classes using four soft-label proto-
types

(b) Ten classes using five soft-label proto-
types

Figure 5.11: SLaPkNN can separate 2M classes using M soft-label prototypes

Lemma 13 Assume that two points are positioned 4 units apart in two-dimensional Eu-
clidean space. Without loss of generality, suppose that point x1 = (0, 0) and point x2 =
(4, 0) have probabilistic labels y1 and y2 respectively. We denote the ith element of each
label by y1,i and y2,i. There exist values of y1 and y2 such that SLaPkNN with k = 2 can
separate four classes when fitted on x1 and x2.

We can again find a solution to this system that has symmetrical labels and also sets
an element of the label to zero.

y1,1 = y2,4 =
6

14

y1,2 = y2,3 =
5

14

y1,3 = y2,2 =
3

14

y1,4 = y2,1 =
0

14

We visualize the results of fitting a SLaPkNN classifier with k = 2 to a set of two points
with these labels in Figure 5.13.

We can further extend this line of reasoning to produce the main theorem of this section.

98

(a) Ten classes using four soft-label proto-
types

(b) Thirteen classes using five soft-label pro-
totypes

Figure 5.12: SLaPkNN can separate 3M − 2 classes using M soft-label prototypes

Theorem 14 (Main Theorem) SLaPkNN with k = 2 can separate n ∈ [1,∞) classes
using two soft-label prototypes.

This unexpected result is crucial for enabling extreme LO-shot learning as it shows
that in some cases we can completely disconnect the number of classes from the number
of prototypes required to separate them. The full proof can be found in the supplemental
materials, but we provide a system of equations describing soft labels that result in two
soft-label prototypes separating n ∈ [1,∞) classes.

y1,i = y2,(n−i) =

∑n−1
j=i j∑n−1
j=1 j

2
=
n(n− 1)− i(i− 1)

2
∑n−1

j=1 j
2

,

i = 1, 2, ..., n

Other Results

The diverse decision landscapes we have already seen were generated using probabilistic
labels and k = 2. Using unrestricted soft labels and modifying k enables us to explore a
much larger space of decision landscapes. Due to space constraints we present only a few of
the results from our experiments with modifying these parameters, but more are included
in the accompanying supplemental material. One unexpected result is that SLaPkNN
can generate any number of concentric elliptical decision bounds using a fixed number of

99

Figure 5.13: A SLaPkNN classifier is fitted on two points and used to partition the space
into four classes. The probabilistic soft labels of each point are illustrated by the pie charts.

prototypes as seen in Figures 5.14a and 5.14b. In Figure 5.14d, we show that variations in
k can cause large changes in the decision landscape, even producing non-contiguous classes.

5.3.3 Robustness

Several studies have been conducted on the robustness and stability of kNN classifiers.
El Gayar et al. [2006] found that that using soft labels with kNN resulted in classifiers
that were more robust to noise in the training data. Sun et al. [2016] proposed a nearest
neighbor classifier with optimal stability based on their extensive study of the stability of
hard-label kNN classifiers for binary classification. Our robustness and stability analyses
focus specifically on the LO-shot learning setting which has never previously been explored.

In order to understand the robustness of LO-shot learning landscapes to noise, we aim
to analyze which regions are at highest risk of changing their assigned class if the prototype
positions or labels are perturbed. We use the difference between the largest predicted label
value and second-largest predicted label value as a measure of confidence in our prediction
for a given point. The risk of a given point being re-classified is inversely proportional to the
confidence. Since our aim is to inspect the entire landscape at once, rather than individual
points, we visualize risk as a gradient from black (high confidence/low risk) to white (low
confidence/high risk) over the space. We find that due to the inverse distance weighting
mechanism, there are often extremely high confidence regions directly surrounding the
prototypes, resulting in a very long-tailed, right-skewed distribution of confidence values.
As a result, we need to either clip values or convert them to a logarithmic scale in order to be

100

able to properly visualize them. We generally find that clipping is helpful for understanding
intra-class changes in risk, while the log scale is more suited for visualizing inter-class
changes in risk that occur at decision boundaries.

Figure 5.14 visualizes the risk gradient for many of the decision landscapes derived
above. Overall, we find that LO-shot learning landscapes have lower risk in regions that are
distant from decision boundaries and lowest risk near the prototypes themselves. Changes
in k can have a large effect on the inter-class risk behaviour which can be seen as changes in
the decision boundaries. However, they tend to have a smaller effect on intra-class behavior
in regions close to the prototypes. The most noticeable changes occur when increasing k
from 1 to 2, as this causes a large effect on the decision landscape itself, and from 2 to
3, which tends to not affect the decision landscape but causes a sharp increase in risk
at decision boundaries. Meanwhile, increasing the number of classes (M) can in some
cases cause large changes in the intra-class risk behaviour, but we can design prototype
configurations (such as the ellipse generating configuration) that prevent this behaviour. In
general, it appears that by tuning the prototype positions and labels we can simultaneously
elicit desired properties both in the decision landscape and risk gradient. This suggests
that LO-shot learning is not only feasible, but can also be made at least partially robust
to noisy training data.

5.3.4 Case Study: Prototype Generation for Circles

We consider the pathological circle dataset from the previous section as it adeptly captures
the difference between hard and soft-label prototype generation. As mentioned, we tested
several hard-label prototype methods and found their performance to be poor on this
simulated data. Many of the methods produced prototypes that did not achieve separation
between classes thus preventing us from performing a fair comparison between hard and
soft-label prototypes. In order to allow such a comparison, we use the analytically derived
near-optimal hard-label prototype configuration for fitting a 1NN classifier to the circle
data.

As previously shown, the number of required hard-label prototypes is quadratic in the
number of classes. However, SLaPkNN requires only a constant number of prototypes to
generate concentric ellipses. In Figure 5.15, SLaPkNN fitted on five soft-label prototypes
is shown separating the same six circles that were used with hard-label prototypes and
1NN in Figure 5.1. The decision boundaries created by SLaPkNN match the underlying
geometry of the data much more accurately than those created by 1NN. This is because
1NN can only create piecewise-linear decision boundaries.

101

(a) SLaPkNN with k = 3 is shown separating N = 3, 5, 7, 9
classes (left to right, top to bottom) with elliptical decision
boundaries after being fitted on 3 prototypes. The pie charts
represent unrestricted labels.

(b) SLaPkNN with k = 2 is shown separating N = 2, 3, 4, 5
classes (left to right, top to bottom) after being fitted on 2
prototypes. The pie charts represent probabilistic labels.

(c) SLaPkNN with k = 2 is shown separating 2M classes
after being fitted on M = 4, 6, 8, 10 prototypes (left to right,
top to bottom). The pie charts represent probabilistic labels.

(d) SLaPkNN with k = 1, 2, 3, 4, 5 (left to right, top to bot-
tom) is shown separating 15 classes after being fitted on 8
prototypes. The pie charts represent unrestricted labels.

Figure 5.14: Various LO-shot learning decision landscapes and risk gradients are presented. Each color
represents a different class. Gray-scale is used to visualize the risk gradient, with darker shadows corre-
sponding to lower risk. In (a), the two colorful charts show decision landscapes and the two gray-scale
charts show risk landscapes. In (b)-(d), the risk gradient is laid directly over the decision landscape.

102

Figure 5.15: SLaPkNN can separate 6 circles using 5 soft-label prototypes. Each pie
chart represents the soft label of one prototype, and is labeled with its location. 4 of the
prototypes are located outside of the visible range of the chart.

In this case study, enabling soft labels reduced the minimal number of prototypes
required to perfectly separate N classes from O(N2) down to O(1). We note that the
number of required hard-label prototypes may be reduced by carefully tuning k as well as
the neighbor weighting mechanism (e.g. uniform or distance-based). However, even in the
best case, the number of required hard-label prototypes is at the very least linear in the
number of classes.

5.3.5 Conclusion

We have presented a number of results that we believe can be used to create powerful
and efficient dataset condensation and prototype generation techniques. More generally,
our contributions lay the theoretical foundations necessary to establish ‘less than one’-shot
learning as a viable new direction in machine learning research. We have shown that even
a simple classifier like SLaPkNN can perform LO-shot learning, and we have proposed
a way to analyze the robustness of the decision landscapes produced in this setting. We
believe that creating a soft-label prototype generation algorithm that specifically optimizes
prototypes for LO-shot learning is an important next step in exploring this area. Such an al-
gorithm will also be helpful for empirically analyzing LO-shot learning in high-dimensional
spaces where manually designing soft-label prototypes is not feasible.

Additionally, we are working on showing that LO-shot learning is compatible with
a large variety of machine learning models. Improving prototype design is critical for

103

speeding up instance-based, or lazy learning, algorithms like kNN by reducing the size
of their training sets. However, eager learning models like deep neural networks would
benefit more from the ability to learn directly from a small number of real samples to
enable their usage in settings where little training data is available. This remains a major
open challenge in LO-shot learning.

5.4 Algorithms for ‘Less Than One’-Shot Learning

with kNN

5.4.1 Introduction

While the results above have shown that LO-shot learning is theoretically plausible, a
practical algorithm for harnessing its potential is yet to be developed. Our main theorem
from the previous section showed that with just two carefully-designed soft-label prototypes
it is possible to separate any finite number of classes. However, this particular result
requires that the classes being separated lie roughly on a 1-dimensional manifold so that
a soft-label prototype could be assigned to each end of the manifold and used to separate
the classes in between. Thus, we propose the first method for generating prototypical lines
and a new kNN classification algorithm that can use them to perform LO-shot learning in
practice. Our key contributions in this section can be summarized as follows:

• We develop three methods for finding co-linear classes.

• We develop a method for producing ‘prototypical lines’ by optimizing the two soft-
label prototypes assigned to each set of approximately co-linear classes.

• We develop a novel classification algorithm, the Hierarchical Soft-Label Prototype
kNN (HSLaPkNN), that can be fitted on the prototypical lines produced by these
two components.

• We show that HSLaPkNN can perform LO-shot learning with prototypical lines and
determine the tradeoff between dataset size reduction and classification accuracy. In
particular, our method can retain over 90% of the classification accuracy of 1NN
while reducing the required number of prototypes (prototypical lines) by up to 80%.

Our modular approach allows newly-developed algorithms for each component to be swapped
in without interfering with the remaining components. This implies that our approach ac-
commodates a continuous performance improvement through component-wise innovations.

104

This is indeed an attractive feature for researchers, as the progress on individual compo-
nents can by combined into the improvement of overall process. The remainder of this
section is divided into four subsections. In Section 5.4.2 we detail our method, each of
its components, and the theory behind them. In Section 5.4.3 we describe our experimen-
tal setup and results. In Section 5.4.4 we analyze the impact of our method and suggest
promising directions for future work.

5.4.2 LO-Shot Prototype Generation Algorithm

Our method primarily consists of three modular components. In the first component,
we find a small set of prototypical line segments that cover all classes (i.e. each class is
associated with a line). The second component generates two soft-label prototypes for each
line, one at each endpoint, that are optimized based on the subset of classes assigned to
that line. Finally, the HSLaPkNN algorithm uses the lines and prototypes to classify the
dataset. We present a visual illustration of each component in Figure 5.16.

Component 1: Finding Lines

The objective of the first component of our prototype generation method is to find subsets
of classes that lie along the same 1-dimensional manifold. We can find subsets of this
type by grouping together classes that are approximately co-linear. In other words, our
objective is roughly to find the smallest possible set of lines that cover (pass through) all
classes. We propose three methods for finding such lines.

The search for observations lying on a line can be dated back to the analysis of multi-
collinearity in linear regression Belsley et al. [2005]. Conventionally, multicollinearity is a
topic of concern in modelling due to it resulting in a verbose model. However, identifying
co-linear observations could be useful in finding an efficient representation. If the classes
in a dataset could be grouped by various co-linear structures, then a representation of
arbitrarily many classes using a much smaller number of lines may be possible. There has
been significant past work on covering points with various geometrical objects Langerman
and Morin [2001, 2005], Grantson and Levcopoulos [2006], Genç et al. [2011], Dumitrescu
and Jiang [2015], Carmi et al. [2007], Mahapatra et al. [2007], Ahn et al. [2011]. Our
approach draws contrast from these methods in that we seek to use lines as a satisfactory
approximation of a multi-class dataset, instead of a precise covering of all points.

105

(a) Select a dataset (b) Find ‘good’ covering lines

(c) Solve system to find two soft-label proto-
types for each line

(d) Classify points based on nearest line and
its two prototypes

Figure 5.16: Prototype generation and classification process Hierarchical Soft-Label Pro-
totype k-Nearest Neighbors (HSLaPkNN)

106

Brute Force One straightforward approach for finding the best combination of M lines
that pass through/near all the classes is to generate all such combinations of lines, score
each one, and finally pick the best one. To reduce interactions between different lines in
Component 3, we first filter out all combinations of lines where any of the lines intersect.
For our experiments with this approach, we score each line by first finding all the classes
that are closest to that line, and then taking the sum of the absolute values of the shortest
distances from every point in those classes to the line. The scores are summed across each
combination of lines, and the combination with the lowest score is chosen. This process is
detailed in Algorithm 5. Unfortunately, the complexity of this algorithm is O(n2∗l) where
n is the number of classes and l is the number of lines. While computationally expensive,
it is guaranteed to find near-optimal lines. As a result, this method is best used when there
are either relatively few classes or only a small number of lines is required to cover all of
them. For datasets with a large number of classes that cannot be covered with a small
number of lines, we instead propose an approximate method.

Recursive Regression The exhaustive enumeration like the brute force approach can
quickly lose its viability as the number of classes increases. Instead, a preliminary clustering
of the classes can produce a more elegant algorithm for line-finding. Let N be the number
of classes present, and denote by c1, . . . , cN the class-wise centroids. We want to find M
lines. The set {c1, . . . , cN} is partitioned into M clusters such that each cluster contains
at least two centroids. We use hierarchical clustering with the single linkage Everitt et al.
[2011], but a different method could be deployed based on the investigator’s judgement.
For the purpose of regression fit, we selected the last feature of the dataset to be the
‘response’ and the rest of the features to be the ‘covariate’. This means that, for a centroid
c, its last entry could function as a response variate and the remaining entries would be the
covariates. However, the response-covariate configuration may be different based on the
context or other external information. As an illustration, consider one of the clusters Gi

with size ni, Gi = {ci1, ci2, . . . , cini}, where each element in Gi is a centroid. We partition
Gi into Ai = {ci1, ci2} and Bi = Gi \ Ai where ci1 and ci2 are of maximum pairwise
Euclidean norm between the centroids in Gi. We fit a regression line βi on ci1 and ci2.
Then, for each c ∈ Bi, we estimate a line β̂ on Ai ∪ {c}. Then, if ||β − β̂||2 is less than
a pre-determined tolerance ε > 0, then c is added to Ai and Bi is updated to Bi \ {c}.
Otherwise, c is not added to Ai and is discarded from Bi. This forward selection process is
repeated until Bi = ∅. This procedure is applied to all Gi for i = 1, 2, . . . ,M . The results
are {A1, . . . , AM} and {β1, . . . , βM}, where each line βj (j = 1, . . . ,M) is segmented to
have endpoints at the furthest-apart pair of centroids that generated it. This method will
be called Recursive Regression (RR) hereafter.

107

Algorithm 5: Brute-force line-finding algorithm

Result: Best set of M non-intersecting lines (as pairs of endpoints) for covering
all classes

M = desired number of lines;
C = centroids of each class;
Lines = all combinations of two elements of C;
M Lines = all combinations of M elements of Lines;
best lines = None;
min dist = -1;
for cur lines in M Lines do

if no intersections(cur lines) then
cur dist=0;
for c in C do

nearest = nearest line(c, cur lines);
cur dist += dist to line(c, nearest);

end
if cur dist ¡ min dist or min dist==-1 then

min dist = cur dist;
best lines = cur lines;

end

end

end
return best lines;

108

Algorithm 6: Recursive Regression (RR) for line-finding

Result: A set of M lines and classes assigned to each line
C = centroids of each class;
M = number of preliminary clusters that contain at least two different centroids
from C;

Gi (i = 1, 2, . . . , M) = ith preliminary cluster;
ε = pre-determined positive maximum tolerance;
best lines = ∅;
captured groups = ∅;
for i in 1, 2, . . . , M do

A = set of two furthest centroids in Gi in terms of Euclidean distance;
B = Gi \A;
β = regression line fitted on two furthest centroids in Gi;
while B 6= ∅ do

all dist = {||β − βA∪{c}||2}c∈B where βA∪{c} is the regression line fitted on
A ∪ {c};

if all(all dist ¿ ε) then
stop

end
c∗ = minimizer among B of all dist ;
A = A ∪ c∗;
B = B \ c∗;

end
best lines = best lines ∪ β;
captured groups = captured groups ∪ {classes associated with A};

end
return best lines, captured groups;

109

Distance-based Attraction While the Recursive Regression is careful when adding
classes to the distilling lines, a possible shortfall is its dependence on the initial clustering
result, because the cluster-wise regression lines are not altered. Moreover, the tolerance
threshold ε can influence the number of classes that are left out. To mitigate these issues,
we propose another clustering-based algorithm called Distance-based Attraction (DA).
The initial clustering stage is similar to that of RR, and we obtain M line segments
β1, . . . , βM . Then, for each centroid ci (i = 1, . . . , N), we compute the shortest distance
from it to each line segment, denoted by dβ1 , . . . , dβM . Then, ci is assigned to the line
argminβ1,...,βM{dβ1 , . . . , dβM}. Notice that we do not require a tolerance threshold, and
that every class is guaranteed to be assigned to a line. Once the assignment is completed,
the line segment for each cluster is re-calculated, as there may be a new furthest-apart pair
of centroids.

Algorithm 7: Distance-based Attraction (DA) for line-finding

Result: A set of M lines and classes assigned to each line
C = {c1, . . . , cN} = centroids of each class;
M = number of preliminary clusters that contain at least two different centroids
from C;

Gi (i = 1, 2, . . . , M) = ith preliminary cluster;
pre lines = line segments generated from furthest-apart pair of centroids from each
Gi;

best lines = ∅;
group assignment = ∅;
for i in 1, 2, . . . , N do

index = argmin
j=1,...,M

(shortest dist(ci, βj));

group assignment = group assignment ∪ {index};
end
for i in unique elements(group assignment) do

set = {cj : group assignment[j − 1] = i};
β∗i = line on furthest pair(set);
best lines = best lines ∪ β∗i ;

end
return best lines, group assignment;

110

Component 2: Finding Optimal Prototypes for a Single Line

Once a suitable line segment is found, along with the classes assigned to it, we can use the
idea of the main theorem from Sucholutsky and Schonlau [2021a] to design two soft-label
prototypes that will be placed at each endpoint of the line segment. The soft labels of these
two prototypes must be designed in such a way that a SLaPkNN classifier fitted on them
would accurately separate the classes lying along the line segment. Similarly to Sucholutsky
and Schonlau [2021a] we can formulate this as an optimization problem where we want to
maximize each class’s influence over its interval of the line segment. We approximate each
class’s interval of the line segment as starting from the midpoint between the class centroid
and the preceding class’s centroid, and ending at the midpoint between the class centroid
and the next class’s centroid. We approximate a class’s influence over its interval by its
influence at the centroid of that interval. A class’s influence at a given point is equal to
the sum of the associated soft-label value divided by distance from the prototype, for each
prototype. For a point to be assigned to a particular class, that class’s influence must be
higher than all the other classes’ influences at that point. To enforce this, at each interval
centroid we not only add a constraint forcing the desired class to have the highest influence,
but we also actually maximize the difference between the influence of the desired classes
and the sum of the influences of all the other classes. A key difference between the system
we aim to solve and the one solved in Sucholutsky and Schonlau [2021a] is that we do not
assume that classes will be distributed symmetrically along the line segment. As a result,
we cannot use the simplifying constraints that the soft labels of the two prototypes are
symmetrical. Instead, we add the additional constraint that the influence of neghboring
classes must be equal at the midpoint of their centroids. In order to solve the resulting
optimization problem we use the CVXPY library Diamond and Boyd [2016], Agrawal et al.
[2018]. The full algorithm for generating and solving this optimization problem is specified
in Algorithm 8.

Component 3: Classifying with Multiple Lines

The two prototypes assigned to the endpoints of a single line are near-optimal for fitting a
SLaP2NN classifier if that line and its associated classes are isolated from all other classes.
However, in practice, lines could pass fairly close to each other. As a result, the two
nearest prototypes to a particular point on a line may not end up being the two prototypes
assigned to the endpoints of that line. In order to rectify this problem, we propose the
Hierarchical Soft-Label Prototype kNN (HSLaPkNN) classification rule. This classifier
performs two main steps when determining how to classify a target point. First, it finds

111

Algorithm 8: Generating system of equations and constraints for two soft-label
prototypes

Result: Two lists containing the soft labels corresponding to the two prototypes
p1 = location of first prototype, p2 = location of second prototype;
N = number of classes assigned to line, centroids = list of class centroids;
x = length 2N array of variables to optimize;
ε = 0.01;
projections = [], dists = [], middists=[], A=[];
constraints=[x ≥ 0, x ≤ 1, sum(x[0:N])==1, sum(x[N:2N])==1];
for centroid in centroids do

projections.append(project(centroid, [p1, p2]));
dists.append(dist(p1, projection));
middists.append(dist(p1, projection)/2);

end
for i in 0, 1, 2, . . . , N-1 do

vector = zeros(2*N) ;
vector[i] += 1/(dists[i]+ε-p1) ;
vector[N+i] += 1/(p2-dists[i]+ε) ;
q1 = x[i]/(dists[i]+ε-p1) + x[N+i]/(p2-dists[i]+ε);
for j in 0, 1, 2, . . . , N-1 do

if i 6= j then
vector[j] -= 1/(dists[i]+ε-p1);
vector[N+j] -= 1/(p2-dists[i]+ε);
q2=x[j]/(dists[i]+ε-p1) + x[N+j]/(p2-dists[i]+ε);
constraints.append(q1 ≥ q2+ε2);

end
A.append(vector);

end
if i < N-1 then

q1 = x[i]/(mid dists[i+1]-p1) + x[N+i]/(p2-mid dists[i+1]);
q2 = x[i+1]/(mid dists[i+1]-p1) + x[N+i+1]/(p2-mid dists[i+1]);
constraints.append(q1==q2);

end

end
objective = Maximize(sum(A′x)+sum smallest(A′x,2));
solve(objective, constraints);
return x.value[0:N], x.value[N:2N];

112

the nearest prototype line to the target point. Second, it fits a SLaP2NN classifier on the
two endpoint prototypes assigned to that line. These steps are detailed in Algorithm 9. We
note that the algorithm is intentionally designed to allow more than the minimum required
two prototypes per line in case the user wishes to improve accuracy by adding additional
prototypes.

Algorithm 9: Hierarchical Soft-Label Prototype k-Nearest Neighbor (HSLaP-
kNN) classification rule

Result: Predicted classes of every target point in P
P = list of target points for classification;
lines = list of M pairs of prototypes;
preds = [];
for p in P do

nearest = nearest line(p, lines);
soft pred = [0]*N;
for prototype in nearest do

proto loc = prototype[0];
proto lab = prototype[1];
dist = dist(proto loc, p);
soft pred += proto lab/dist;

end
hard pred = argmax(soft pred);
preds.append(hard pred);

end
return preds;

5.4.3 Experiments

We perform a variety of experiments to determine the tradeoff between classification ac-
curacy and dataset size reduction offered by our prototyping algorithm and HSLaPkNN.
For every experiment, we also fit a normal 1NN classifier as a baseline. Each type of ex-
periment is summarized below and some examples of the resulting classification decision
boundaries are visualized in Figures 5.17 and 5.18.

• Regular1: Brute force line-finding is used to find three lines in a 10-class dataset
consisting of 1000 points with two feature dimensions. Each class consists of 100

113

(a) Example result of Regular2 experiment (b) Example result of Regular (5) experiment

(c) Example result of Imbalanced1 experiment (d) Example result of Imbalanced2 experiment

Figure 5.17: Examples of resulting HSLaPkNN decision landscapes.

114

points.

• Regular2: Brute force line-finding is used to find four lines in a 10-class dataset
consisting of 1000 points with two feature dimensions. Each class consists of 100
points.

• Regular (5): Brute force line-finding is used to find two lines in a 5-class dataset
consisting of 1000 points with two feature dimensions. Each class consists of 200
points.

• Giant: Distance-based attraction is used to find some number of lines that cover all
classes in a 100-class dataset consisting of 2000 points with two feature dimensions.
Each class consists of 20 points. For this experiment we also record the average
number of lines found along with the other metrics.

• Imbalanced1: Brute force line-finding is used to find three lines in a 10-class dataset
consisting of 550 points with two feature dimensions. Five classes consist of 10 points
each, and five classes consist of 100 points each.

• Imbalanced2: Brute force line-finding is used to find three lines in a 10-class dataset
consisting of 550 points with two feature dimensions. Class i consists of 10i points
for i = 1, 2, ..., 10.

• Small: Brute force line-finding is used to find three lines in a 10-class dataset con-
sisting of 100 points with two feature dimensions. Each class consists of 10 points.

• Penguins: Distance-based attraction is used to find some number of lines that cover
all classes in the 5-class version of the Palmer Penguins dataset Horst et al. [2020]. We
use the four continuous explanatory variables (bill length, bill depth, flipper length,
body mass) as the features, and the combination of ‘species’ and ‘island’ as the class.

• EColi: Distance-based attraction is used to find some number of lines that cover all
classes in the 5-class version of the E. Coli dataset (‘ecoli’) from OpenML Vanschoren
et al. [2013]. We use the six continuous explanatory variables (mcg, gvh, lip, aac,
alm1, alm2) as the features.

We repeat each experiment involving simulated data 100 times with a different ran-
dom seed and record the mean and standard deviation of the classification accuracy in
Table 5.3, along with other details about each experiment. In order to understand the
tradeoff between dataset size reduction and classification accuracy, we also calculate the

115

ratio of the number of prototypical lines used by HSLaPkNN compared to 1NN, as well as
the ratio of their classification accuracies when fitted on these prototypes. We summarize
these results in Table 5.4. Notably, our method retains upwards of 90% of the classification
accuracy of 1NN while reducing the number of nearest prototypes (prototypical lines) that
must be considered at inference time by as much as 80%.

(a) Example result of Giant experiment
with 25 lines found

(b) Example result of Giant experiment
with 30 lines found

Figure 5.18: Examples of resulting HSLaPkNN decision landscapes.

Our method is most interpretable when working with datasets that have two-dimensional
feature sets due to the ease of visualizing the resulting decision landscapes. However, our
method can also work with higher-dimensional datasets as seen by the results with the
Palmer Penguins dataset and E. Coli dataset. In order to better understand the effect of
data dimensionality on the performance of our method, we perform an additional set of
experiments where we hold all other hyperparameters of the algorithm and data-generation
constant but increase the dimensionality of the datasets. Table 5.5 compares the mean and
standard deviations of the classification accuracy achieved by HSLaPkNN against those
achieved by vanilla 1NN on these experiments with synthetic datasets containing 80 classes.
Table 5.6 summarizes the associated prototype and accuracy ratios. Each experiment uses
the distance-based attraction line-finding method and is repeated 100 times with a different
random seed used to generate the data each time. Because we hold all hyperparameters
constant, our method exhibits lower classification accuracy on this set of experiments. Cu-
riously, we notice that our method exhibits greater variability in classification accuracy
when used with higher-dimensional datasets. We believe that this may be caused by the
sparsity introduced at higher dimensions (i.e. the curse of dimensionality) but further
investigation is required to confirm this.

116

Experiment Points Lines HSLaPkNN (µ± σ) 1NN (µ± σ)

Regular 1000 3 0.814 ± 0.063 0.895 ± 0.045
Regular 1000 4 0.837 ± 0.06 0.894 ± 0.045

Regular (5) 1000 2 0.909 ± 0.077 0.951 ± 0.05
Small 100 3 0.82 ± 0.06 0.90 ± 0.05

Imbalanced1 550 3 0.815 ± 0.098 0.896 ± 0.059
Imbalanced2 550 3 0.813 ± 0.081 0.895 ± 0.054

Giant 2000 23.82 0.835 ± 0.042 0.996 ± 0.004
Penguins 342 1 0.4327 0.5029

EColi 327 2 0.8135 0.8654

Table 5.3: Experimental results on a variety of simulated datasets comparing the perfor-
mance of HSLaPkNN fitted on our soft-label prototypes to vanilla 1NN fitted on class
centroids. Lines refers to the average number of lines found for the dataset. Experiments
involving synthetic data (all except Penguins and EColi) are repeated 100 times with dif-
ferent random seeds during data generation to produce the standard deviations.

Experiment Points Lines Prototypes ratio Accuracy ratio

Regular 1000 3 0.3 0.91
Regular 1000 4 0.4 0.936

Regular (5) 1000 2 0.2 0.948
Small 100 3 0.3 0.911

Imbalanced1 550 3 0.3 0.909
Imbalanced2 550 3 0.3 0.909
Giant (100) 2000 23.82 0.238 0.838

Penguins 342 1 0.2 0.86
EColi 327 2 0.4 0.94

Table 5.4: Experimental results on a variety of simulated datasets comparing the perfor-
mance of HSLaPkNN fitted on our soft-label prototypes to vanilla 1NN fitted on class
centroids. Prototypes ratio refers to the ratio of the number of prototypical lines used by
HSLaPkNN to the number of prototypes used by 1NN. Accuracy ratio refers to the ratio
of the mean classification accuracy of HSLaPkNN to the mean classification accuracy of
1NN.

117

Dimension Lines HSLaPkNN (µ± σ) 1NN (µ± σ)

2 23.3 0.497 ± 0.034 0.782 ± 0.021
3 22.7 0.692 ± 0.046 0.974 ± 0.01
4 22.6 0.717 ± 0.055 0.997 ± 0.002
5 22.0 0.701 ± 0.062 0.999 ± 0.001
6 22.3 0.692 ± 0.068 1 ± 0
7 21.8 0.67 ± 0.067 1 ± 0.0
8 21.4 0.653 ± 0.062 1 ± 0.0
9 21.5 0.637 ± 0.073 1 ± 0.0
10 21.5 0.63 ± 0.07 1 ± 0.0

Table 5.5: Experimental results on simulated datasets of different dimensionalities com-
paring the performance of HSLaPkNN fitted on our soft-label prototypes to vanilla 1NN
fitted on class centroids. Each dataset contains 2000 points across 80 classes. Experiments
are repeated 100 times with different random seeds during data generation to produce the
standard deviations.

Dimension Lines Prototypes ratio Accuracy ratio

2 23.3 0.291 0.635
3 22.7 0.284 0.71
4 22.6 0.283 0.719
5 22.0 0.275 0.701
6 22.3 0.279 0.692
7 21.8 0.273 0.67
8 21.4 0.268 0.653
9 21.5 0.269 0.637
10 21.5 0.269 0.63

Table 5.6: Experimental results on simulated datasets with increasing feature dimension-
alities comparing the performance of HSLaPkNN fitted on our soft-label prototypes to
vanilla 1NN fitted on class centroids. Each dataset contains 2000 points across 80 classes.
Prototypes ratio refers to the ratio of the number of prototypical lines used by HSLaPkNN
to the number of prototypes used by 1NN. Accuracy ratio refers to the ratio of the mean
classification accuracy of HSLaPkNN to the mean classification accuracy of 1NN.

118

5.4.4 Conclusion

We have proposed an algorithm for finding LO-shot prototypes in practice. The algorithm
is intentionally designed to be modular so that each component can be improved inde-
pendently. Next steps include finding better algorithms for detecting co-linear classes in
datasets, improving the formulation of the soft-label optimization problem, and generaliz-
ing the method to work with a greater variety of classifiers.

Our proposed algorithm currently makes distributional assumptions about the datasets
and classes to which it is applied. In particular, it assumes that each class is fairly contigu-
ous and disjoint. When these assumptions are violated, even existing hard-label prototype
methods need to increase the number of prototypes they produce in order to maintain clas-
sification accuracy. We believe an interesting direction would be to relax these assumptions
for our soft-label prototype generation algorithm, perhaps by treating clusters in the data
as sub-classes and optimizing for them separately rather than treating the entire class in
a monolithic way. While this would likely increase the average number of classes assigned
to each line, and may even increase the total number of lines required to achieve good
coverage, it would likely result in higher performance on a larger variety of datasets.

We note that our proposed algorithm builds directly on the result from the previous
section regarding separation of classes lying on a 1-dimensional manifold. However, it is
possible that the underlying theory could be extended to classes lying on higher dimensional
manifolds. In particular, we conjecture that, given some distributional assumptions, if a
finite set of classes lies on an M-dimensional manifold, only M+1 soft-label prototypes are
required to separate them. If this conjecture holds, then our proposed algorithm could be
extended to work with M-dimensional manifolds. However, the key problem that would
need to be solved is how to automatically detect subsets of the training dataset that lie on
various manifolds with differing dimensionalities, and then optimize the selection of these
subsets so as to minimize the total number of soft-label prototypes required to represent the
dataset. When optimizing soft labels for these higher-dimensional manifolds, maintaining
stability and robustness to noise may become increasingly challenging as there may be many
more potentially unstable solutions than in the 1D case. Thus the optimization problem
may require either a secondary objective that rewards stability or additional constraints
that try to enforce it directly.

119

Chapter 6

Conclusion

The contributions described in the technical chapters of this thesis flow from the frame-
work we established in Chapter 2. The loss restoration experiments in Chapter 3 provided
an example of a typical applied machine learning workflow starting from analyzing a cus-
tom real-world dataset and ending with experimenting with different architectures to see
if performance on a specific task could be improved. Information sharing (between obser-
vations) is what enables us to impute missing values based on the remaining ones, and
information repackaging suggests that a reconstructed dataset contains no more informa-
tion than the one affected by loss, yet ‘imperfect’ models may still work better with the
repackaged data. The soft-label extension of dataset distillation in Chapter 4 enabled us
to study near-optimal training examples and probe the limits of sample-efficiency in neural
networks by repackaging information into increasingly small datasets. Information sharing
between classes (via soft labels) helped us push past the previous best of one example per
class and led to the first empirical evidence of LO-Shot Learning. Finally, the analytical
results with SLaPkNN in Chapter 5 provided a theoretical basis for LO-Shot Learning.

More generally, if there is a single message that a reader should take away from this
thesis, it is that training giant models on big data is not the only valid way to do machine
learning. Users, practitioners, companies, and researchers should not be locked out of
benefiting from the latest breakthroughs in machine learning and deep learning just because
they face restrictions in terms of data availability or compute power. Small data problems
are just as important as their big data counterparts and can often be solved to the same
level of performance though this may sometimes require some careful and creative thought
about how to best leverage information repackaging and injection techniques. For readers
seeking inspiration, in Appendix A we provide a practical example related to medical
imaging of the type of creative solutions that small data problems can require.

120

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 308–318.
ACM, 2016.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

Nur Ahmed and Muntasir Wahed. The de-democratization of ai: Deep learning and the
compute divide in artificial intelligence research. arXiv preprint arXiv:2010.15581, 2020.

Hee-Kap Ahn, Sang Won Bae, Erik D Demaine, Martin L Demaine, Sang-Sub Kim, Matias
Korman, Iris Reinbacher, and Wanbin Son. Covering points by disjoint boxes with
outliers. Computational Geometry, 44(3):178–190, 2011.

Tahani Aljuaid and Sreela Sasi. Proper imputation techniques for missing values in data
sets. In International Conference on Data Science and Engineering (ICDSE), 2016,
pages 1–5. IEEE, 2016.

Fazil Altinel, Mete Ozay, and Takayuki Okatani. Deep structured energy-based image
inpainting. In 2018 24th International Conference on Pattern Recognition (ICPR), pages
423–428. IEEE, 2018.

Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R Kulkarni, and H Vincent
Poor. Federated learning with quantized global model updates. arXiv preprint
arXiv:2006.10672, 2020.

Rebecca R Andridge and Roderick JA Little. A review of hot deck imputation for survey
non-response. International Statistical Review, 78(1):40–64, 2010.

121

Anelia Angelova, Yaser Abu-Mostafam, and Pietro Perona. Pruning training sets for learn-
ing of object categories. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pages 494–501. IEEE, 2005.

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340, 2017.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv preprint arXiv:1703.06476, 2017.

Brett K. Beaulieu-Jones and Jason H. Moore. Missing data imputation in the electronic
health record using deeply learned autoencoders. Biocomputing, 2017. doi: 10.1142/
9789813207813 0021.

David A Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics: Identifying
influential data and sources of collinearity, volume 571. John Wiley & Sons, 2005.

James C Bezdek and Ludmila I Kuncheva. Nearest prototype classifier designs: An exper-
imental study. International Journal of Intelligent Systems, 16(12):1445–1473, 2001.

Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification.
The Annals of Applied Statistics, 5(4):2403–2424, Dec 2011. ISSN 1932-6157. doi:
10.1214/11-aoas495. URL http://dx.doi.org/10.1214/11-AOAS495.

Darren Blend and Tshilidzi Marwala. Comparison of data imputation techniques and their
impact. arXiv preprint arXiv:0812.1539, 2008.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation:
learn labels instead of images. arXiv:2006.08572, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 535–541. ACM, 2006.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion. In
Advances in Neural Information Processing Systems, pages 8224–8234, 2018.

122

http://dx.doi.org/10.1214/11-AOAS495

S van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. Journal of Statistical Software, pages 1–68, 2010.

Paz Carmi, Matthew J Katz, and Nissan Lev-Tov. Covering points by unit disks of fixed
location. In International Symposium on Algorithms and Computation, pages 644–655.
Springer, 2007.

Chin-Liang Chang. Finding prototypes for nearest neighbor classifiers. IEEE Transactions
on Computers, 100(11):1179–1184, 1974.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.
Stargan: Unified generative adversarial networks for multi-domain image-to-image trans-
lation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 8789–8797. IEEE, 2018.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1251–1258, 2017.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of Artificial Intelligence Research, 4:129–145, 1996.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. IEEE trans-
actions on information theory, 13(1):21–27, 1967.

Greta Cutulenco, Yogi Joshi, Apurva Narayan, and Sebastian Fischmeister. Mining timed
regular expressions from system traces. In Proceedings of the 5th International Workshop
on Software Mining, SoftwareMining 2016, pages 3–10, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4511-8. doi: 10.1145/2975961.2975962. URL http://doi.acm.org/

10.1145/2975961.2975962.

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas Zeller.
Generating test cases for specification mining. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, pages 85–96. ACM, 2010.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. Proceedings of the 2019
Conference of the North, 2019. doi: 10.18653/v1/n19-1423. URL http://dx.doi.org/

10.18653/v1/N19-1423.

123

http://doi.acm.org/10.1145/2975961.2975962
http://doi.acm.org/10.1145/2975961.2975962
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and Karel GM Moons.
A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology,
59(10):1087–1091, 2006.

Yanjie Duan, Yisheng Lv, Wenwen Kang, and Yifei Zhao. A deep learning based ap-
proach for traffic data imputation. 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), 2014. doi: 10.1109/itsc.2014.6957805.

Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions
on Systems, Man, and Cybernetics, (4):325–327, 1976.

Adrian Dumitrescu and Minghui Jiang. On the approximability of covering points by lines
and related problems. Computational Geometry, 48(9):703–717, 2015.

Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in Property Speci-
fications for Finite-State Verification. In Software Engineering, 1999. Proceedings of the
1999 International Conference on, pages 411–420. IEEE, 1999.

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American
Statistical Association, 89(426):463–475, 1994.

Neamat El Gayar, Friedhelm Schwenker, and Günther Palm. A study of the robustness of
knn classifiers trained using soft labels. In IAPR Workshop on Artificial Neural Networks
in Pattern Recognition, pages 67–80. Springer, 2006.

Mohamed M El-Zahhar and Neamat F El-Gayar. A semi-supervised learning approach for
soft labeled data. In 2010 10th International Conference on Intelligent Systems Design
and Applications, pages 1136–1141. IEEE, 2010.

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search: A
survey. J. Mach. Learn. Res., 20(55):1–21, 2019.

Oded Maler Eugene Asarin, Paul Caspi. Timed Regular Expressions. J. ACM, 49(2):
172–206, March 2002. ISSN 0004-5411. doi: 10.1145/506147.506151. URL http://doi.

acm.org/10.1145/506147.506151.

Brian S Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster analysis 5th ed,
2011.

124

http://doi.acm.org/10.1145/506147.506151
http://doi.acm.org/10.1145/506147.506151

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006.

Katja Filippova, Enrique Alfonseca, Carlos A Colmenares, Lukasz Kaiser, and Oriol
Vinyals. Sentence compression by deletion with lstms. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pages 360–368, 2015.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x.

Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection
for nearest neighbor classification: Taxonomy and empirical study. IEEE transactions
on pattern analysis and machine intelligence, 34(3):417–435, 2012.

Salvador Garćıa, Julián Luengo, and Francisco Herrera. Data preprocessing in data mining.
Springer, 2015.

Burkay Genç, Cem Evrendilek, and Brahim Hnich. Covering points with orthogonally
convex polygons. Computational Geometry, 44(5):249–264, 2011.

F. A. Gers and E. Schmidhuber. LSTM recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333–1340,
Nov 2001. ISSN 1045-9227. doi: 10.1109/72.963769.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 249–256. PMLR, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sen-
timent classification: A deep learning approach. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 513–520, 2011.

Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint
arXiv:2008.04489, 2020.

Lovedeep Gondara and Ke Wang. Multiple imputation using deep denoising autoencoders.
CoRR, abs/1705.02737, 2017. URL http://arxiv.org/abs/1705.02737.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances

125

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
http://arxiv.org/abs/1705.02737

in Neural Information Processing Systems, pages 2672–2680. Curran Associates, Inc.,
2014.

Jianping Gou, Lan Du, Yuhong Zhang, Taisong Xiong, et al. A new distance-weighted
k-nearest neighbor classifier. Journal of Information and Computational Science, 9(6):
1429–1436, 2012.

Magdalene Grantson and Christos Levcopoulos. Covering a set of points with a mini-
mum number of lines. In Italian Conference on Algorithms and Complexity, pages 6–17.
Springer, 2006.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R. Steunebrink, and Jürgen
Schmidhuber. LSTM: A search space odyssey. CoRR, abs/1503.04069, 2015. URL
http://arxiv.org/abs/1503.04069.

Hyukjun Gweon, Matthias Schonlau, and Stefan H Steiner. The k conditional nearest
neighbor algorithm for classification and class probability estimation. PeerJ Computer
Science, 5:e194, 2019.

Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on Infor-
mation Theory, 14(3):515–516, 1968.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Sepp Hochreiter, Yoshua Bengio, and Paolo Frasconi. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In J. Kolen and S. Kremer, editors, Field
Guide to Dynamical Recurrent Networks. IEEE Press, 2001.

Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. palmerpenguins:
Palmer Archipelago (Antarctica) penguin data, 2020. URL https://allisonhorst.

github.io/palmerpenguins/. R package version 0.1.0.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

126

http://arxiv.org/abs/1503.04069
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://allisonhorst.github.io/palmerpenguins/
https://allisonhorst.github.io/palmerpenguins/

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves,
and Koray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint
arXiv:1610.10099, 2016.

Orakanya Kanjanatarakul, Siwarat Kuson, and Thierry Denoeux. An evidential k-nearest
neighbor classifier based on contextual discounting and likelihood maximization. In
International Conference on Belief Functions, pages 155–162. Springer, 2018.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, 2016. doi:
10.18653/v1/d16-1139. URL http://dx.doi.org/10.18653/v1/D16-1139.

Zachary Kincaid and Andreas Podelski. Automated Program Verification. In Language
and Automata Theory and Applications: 9th International Conference, LATA 2015,
Nice, France, March 2-6, 2015, Proceedings, volume 8977, page 25. Springer, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

SB Kotsiantis, Dimitris Kanellopoulos, and PE Pintelas. Data preprocessing for supervised
leaning. International Journal of Computer Science, 1(2):111–117, 2006.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009. URL https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.

M Kubat. Addressing the curse of imbalanced training sets: One-sided selection. In
Proceedings of the Fourteenth International Conference on Machine Learning (ICML),
1997, pages 179–186, 1997.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal. Stochastic neighbor
compression. In International Conference on Machine Learning, pages 622–630, 2014.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Kamakshi Lakshminarayan, Steven A Harp, Robert P Goldman, and Tari Samad. Im-
putation of missing data using machine learning techniques. In KDD, pages 140–145,
1996.

127

http://dx.doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
munications of the ACM, 21(7):558–565, 1978.

Stefan Langerman and Pat Morin. Covering points with lines. In 11th Fall Workshop on
Compu-tational Geometry, 2001.

Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational
Geometry, 33(4):717–729, 2005.

Jorma Laurikkala. Improving identification of difficult small classes by balancing class
distribution. In Conference on Artificial Intelligence in Medicine in Europe, pages 63–
66. Springer, 2001.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object Recognition with
Gradient-Based Learning, pages 319–345. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999. ISBN 978-3-540-46805-9. doi: 10.1007/3-540-46805-6 19. URL https://doi.org/

10.1007/3-540-46805-6_19.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436,
2015.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Ale-
jandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4681–4690, 2017.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. Noise2noise: Learning image restoration without clean data.
arXiv preprint arXiv:1803.04189, 2018.

J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. ArXiv e-prints, July 2016.

Collins Leke, Tshilidzi Marwala, and Satyakama Paul. Proposition of a theoretical model
for missing data imputation using deep learning and evolutionary algorithms. CoRR,
abs/1512.01362, 2015. URL http://arxiv.org/abs/1512.01362.

128

https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
http://arxiv.org/abs/1512.01362

Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal
of Machine Learning Research, 18(17):1–5, 2017. URL http://jmlr.org/papers/v18/

16-365.html.

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General LTL Specification Min-
ing. In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 81–92. IEEE, 2015.

Gregory W Lesher, Bryan J Moulton, and D Jeffery Higginbotham. Effects of ngram order
and training text size on word prediction. In Proceedings of the RESNA’99 Annual
Conference, pages 52–54. Citeseer, 1999.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Soft-label anonymous gastric
x-ray image distillation. In 2020 IEEE International Conference on Image Processing
(ICIP), pages 305–309. IEEE, 2020a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):
50–60, 2020b.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brockman, and
Slav Petrov. Syntactic annotations for the google books ngram corpus. In Proceedings
of the ACL 2012 system demonstrations, pages 169–174. Association for Computational
Linguistics, 2012.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Computer Vision (ECCV), pages
19–34, 2018.

Lsdefine. Lsdefine/attention-is-all-you-need-keras, 2018. URL https://github.com/

Lsdefine/attention-is-all-you-need-keras.

Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, 2015.

129

http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://github.com/Lsdefine/attention-is-all-you-need-keras
https://github.com/Lsdefine/attention-is-all-you-need-keras

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional lstm-
cnns-crf. Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2016. doi: 10.18653/v1/p16-1101. URL
http://dx.doi.org/10.18653/v1/P16-1101.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

James ES Macleod, Andrew Luk, and D Michael Titterington. A re-examination of the
distance-weighted k-nearest neighbor classification rule. IEEE Transactions on Systems,
Man, and Cybernetics, 17(4):689–696, 1987.

P Mahapatra, R Sinha, Partha P Goswami, and Sandip Das. Covering points by isothetic
units squares. 2007.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term
memory networks for anomaly detection in time series. In Proceedings, page 89. Presses
universitaires de Louvain, 2015.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case
study involving information extraction. In Proceedings of Workshop on Learning from
Imbalanced Datasets, volume 126, 2003.

Pascal Mettes, Elise van der Pol, and Cees GM Snoek. Hyperspherical prototype networks.
arXiv:1901.10514, 2019.

John Miller and Moritz Hardt. When recurrent models don’t need to be recurrent. arXiv
preprint arXiv:1805.10369, 2018.

HB Mitchell and PA Schaefer. A “soft” k-nearest neighbor voting scheme. International
Journal of Intelligent Systems, 16(4):459–468, 2001.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1054–1062, 2016.

Teresa A Myers. Goodbye, listwise deletion: Presenting hot deck imputation as an easy
and effective tool for handling missing data. Communication Methods and Measures, 5
(4):297–310, 2011.

130

http://dx.doi.org/10.18653/v1/P16-1101

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierar-
chical reinforcement learning. In Advances in Neural Information Processing Systems,
pages 3303–3313, 2018.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. arXiv
preprint arXiv:1912.02292, 2019.

Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap: Good
online learners are good offline generalizers. arXiv preprint arXiv:2010.08127, 2020.

Loris Nanni and Alessandra Lumini. Particle swarm optimization for prototype reduction.
Neurocomputing, 72(4-6):1092–1097, 2009.

Apurva Narayan, Greta Cutulenco, Yogi Joshi, and Sebastian Fischmeister. Mining timed
regular specifications from system traces. ACM Trans. Embed. Comput. Syst., 17(2):
46:1–46:21, January 2018. ISSN 1539-9087. doi: 10.1145/3147660. URL http://doi.

acm.org/10.1145/3147660.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive convolu-
tion. CoRR, abs/1703.07514, 2017. URL http://arxiv.org/abs/1703.07514.

Maximilian Panzner and Philipp Cimiano. Comparing hidden markov models and long
short term memory neural networks for learning action representations. In International
Workshop on Machine Learning, Optimization and Big Data, pages 94–105. Springer,
2016.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, 2014.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018. doi: 10.
18653/v1/n18-1202. URL http://dx.doi.org/10.18653/v1/N18-1202.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

131

http://doi.acm.org/10.1145/3147660
http://doi.acm.org/10.1145/3147660
http://arxiv.org/abs/1703.07514
http://dx.doi.org/10.18653/v1/N18-1202

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazon-
aws. com/openai-assets/research-covers/languageunsupervised/language understanding
paper. pdf, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021.

Trivellore E Raghunathan, James M Lepkowski, John Van Hoewyk, and Peter Solenberger.
A multivariate technique for multiply imputing missing values using a sequence of re-
gression models. Survey Methodology, 27(1):85–96, 2001.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:

//openreview.net/forum?id=rJY0-Kcll.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee. Generative adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396, 2016.

Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple approach to zero-
shot learning. In International conference on machine learning, pages 2152–2161. PMLR,
2015.

Dymitr Ruta. Dynamic data condensation for classification. In International Conference
on Artificial Intelligence and Soft Computing, pages 672–681. Springer, 2006.

S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier methodology.
IEEE transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition. CoRR,
abs/1402.1128, 2014. URL http://arxiv.org/abs/1402.1128.

132

https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
http://arxiv.org/abs/1402.1128

José Salvador Sánchez. High training set size reduction by space partitioning and prototype
abstraction. Pattern Recognition, 37(7):1561–1564, 2004.

Teven Le Scao and Alexander M Rush. How many data points is a prompt worth? arXiv
preprint arXiv:2103.08493, 2021.

Joseph L Schafer and John W Graham. Missing data: our view of the state of the art.
Psychological Methods, 7(2):147, 2002.

Lukas Schmidt, Apurva Narayan, and Sebastian Fischmeister. Trem: A tool for mining
timed regular specifications from system traces. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, pages 901–
906, Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-2684-9. URL http:

//dl.acm.org/citation.cfm?id=3155562.3155675.

Peter Schmitt, Jonas Mandel, and Mickael Guedj. A comparison of six methods for missing
data imputation. Journal of Biometrics & Biostatistics, 6(1):1, 2015.

Matthias Schonlau, Nick Guenther, and Ilia Sucholutsky. Text mining with n-gram vari-
ables. Stata Journal, 17(4):866–881, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673–2681, 1997.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without
memory loss. CoRR, abs/1603.05118, 2016. URL http://arxiv.org/abs/1603.05118.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. arXiv preprint arXiv:1708.00489, 2017.

Claude E Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Fei Wu, and
Chao Wu. Federated mutual learning. arXiv preprint arXiv:2006.16765, 2020.

Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proceedings of the 1968 23rd ACM National Conference, pages 517–524, 1968.

Sam Shleifer and Eric Prokop. Using small proxy datasets to accelerate hyperparameter
search. arXiv:1906.04887, 2019.

133

http://dl.acm.org/citation.cfm?id=3155562.3155675
http://dl.acm.org/citation.cfm?id=3155562.3155675
http://arxiv.org/abs/1603.05118

Michael R Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level anal-
ysis of data complexity. Machine Learning, 95(2):225–256, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
In Advances in neural information processing systems, pages 4077–4087, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1631–1642, 2013.

Shaoming Song, Yunfeng Shao, and Jian Li. Loosely coupled federated learning over
generative models. arXiv preprint arXiv:2009.12999, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019. doi: 10.18653/v1/p19-1355. URL http://dx.doi.

org/10.18653/v1/P19-1355.

Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset
distillation. 2021 International Joint Conference on Neural Networks (IJCNN), 2019.
Forthcoming. Pre-print available at arXiv:1910.02551.

Ilia Sucholutsky and Matthias Schonlau. ‘Less than one’-shot learning: Learning N classes
from M< N samples. In Proceedings of the AAAI Conference on Artificial Intelligence,
2021a. Forthcoming. Pre-print available at arXiv:2009.08449.

Ilia Sucholutsky and Matthias Schonlau. Optimal 1-NN prototypes for pathological ge-
ometries. PeerJ Computer Science, 7, 2021b. doi: 10.7717/peerj-cs.464.

Ilia Sucholutsky and Matthias Schonlau. SecDD: Efficient and secure method for remotely
training neural networks (Student Abstract). In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021c. Forthcoming. Pre-print available at arXiv:2009.09155.

Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fischmeister. Deep
learning for system trace restoration. In 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, July 2019a. doi: 10.1109/IJCNN.2019.8852116. Pre-print at
arXiv:1904.05411.

Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fischmeister. Pay
attention and you won’t lose it: a deep learning approach to sequence imputation. PeerJ
Computer Science, 5:e210, August 2019b.

134

http://dx.doi.org/10.18653/v1/P19-1355
http://dx.doi.org/10.18653/v1/P19-1355

Ilia Sucholutsky, Nam-Hwui Kim, Ryan P Browne, and Matthias Schonlau. One line
to rule them all: Generating LO-shot soft-label prototypes. 2021 International Joint
Conference on Neural Networks (IJCNN), 2021. Forthcoming. Pre-print available at
arXiv:2102.07834.

Will Wei Sun, Xingye Qiao, and Guang Cheng. Stabilized nearest neighbor classifier and
its statistical properties. Journal of the American Statistical Association, 111(515):1254–
1265, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

Christian Thiel. Classification on soft labels is robust against label noise. In International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems,
pages 65–73. Springer, 2008.

Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-6(6):448–452, 1976a. doi: 10.1109/TSMC.1976.
4309523.

Ivan Tomek. Two modifications of cnn. IEEE Trans. Systems, Man and Cybernetics, 6:
769–772, 1976b.

Simon Tong and Daphne Koller. Support vector machine active learning with applications
to text classification. Journal of Machine Learning Research, 2(Nov):45–66, 2001.

Isaac Triguero, Joaqúın Derrac, Salvador Garcia, and Francisco Herrera. A taxonomy and
experimental study on prototype generation for nearest neighbor classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42
(1):86–100, 2011a.

Isaac Triguero, Salvador Garćıa, and Francisco Herrera. Differential evolution for optimiz-
ing the positioning of prototypes in nearest neighbor classification. Pattern Recognition,
44(4):901–916, 2011b.

Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6(Apr):363–392,
2005.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/
2641190.2641198. URL http://doi.acm.org/10.1145/2641190.2641198.

135

http://arxiv.org/abs/1409.3215
http://doi.acm.org/10.1145/2641190.2641198

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000–6010, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching net-
works for one shot learning. In Advances in Neural Information Processing Systems,
pages 3630–3638, 2016.

Ellen M Voorhees et al. The TREC-8 question answering track report. In the Proceedings
of the Eighth Text Retrieval Conference (TREC-8), volume 99, pages 77–82, 1999.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International Conference on Machine Learning,
pages 1058–1066, 2013.

Shanshan Wang and Lei Zhang. Regularized deep transfer learning: When cnn meets knn.
IEEE Transactions on Circuits and Systems II: Express Briefs, 2019.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):
1–34, 2020.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man, and Cybernetics, (3):408–421, 1972.

Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learn-
ing—a comprehensive evaluation of the good, the bad and the ugly. IEEE transactions
on pattern analysis and machine intelligence, 41(9):2251–2265, 2018.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep
neural networks. In Advances in neural information processing systems, pages 341–349,
2012.

Halil Yigit. Abc-based distance-weighted knn algorithm. Journal of Experimental & The-
oretical Artificial Intelligence, 27(2):189–198, 2015.

136

L Yu, W Zhang, J Wang, and Y Yu. SeqGAN: sequence generative adversarial nets with
policy gradient. In AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence,
volume 31, pages 2852–2858. Association for the Advancement of Artificial Intelligence
(AAAI), 2017.

Guoping Zeng. A unified definition of mutual information with applications in machine
learning. Mathematical Problems in Engineering, 2015, 2015.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering, 2021.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Lan-
glotz. Contrastive learning of medical visual representations from paired images and
text. arXiv preprint arXiv:2010.00747, 2020.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. arXiv:2006.05929, 2020.

Jingguang Zhou and Zili Huang. Recover missing sensor data with iterative imputing
network. CoRR, abs/1711.07878, 2017. URL http://arxiv.org/abs/1711.07878.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot feder-
ated learning. arXiv preprint arXiv:2009.07999, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

137

http://arxiv.org/abs/1711.07878

APPENDICES

138

Appendix A

Additional Practical Setting -
Expensive Data and Annotations

In the extreme case, both data and annotations are expensive or hard to come by. A perfect
motivating example is applications of AI to medical imaging tasks. Data are notoriously
expensive in the medical space; depending on the disease/topic being studied, there may
only be a handful of patients available for imaging and observation. In addition, expert
annotators in the medical space (e.g. pathologists) are busy and their time is expensive.
Even if a large amount of imaging data is somehow collected, annotating it may not be
possible.

Unfortunately, this annotation cost problem is further exacerbated when multiple tasks
need to be solved with the same dataset. The current process for developing AI applications
for the medical space is as follows:

1. Define the task (e.g. classification - diagnose a patient’s chest infection based on
imaging of the lungs).

2. Send the medical images to the expert annotator (e.g. pathologist).

3. The annotator expends valuable time carefully analyzing every image.

4. The annotator returns roughly a single byte of information per image (e.g. a class
for each image).

5. Pick a new task and repeat from step 1.

139

As a result, each time that a new task is defined, the expert analyzes the same images and
likely performs mostly the same analysis before generating a (roughly one-byte) annotation
for the specific task currently being targeted.

A much more efficient process would enable the experts to provide more information
about their full analysis, that can then be used to solve multiple tasks without requiring
that experts create new annotations for each one. Perhaps the most natural way for human
experts to provide this kind of rich information is through open-ended natural language
annotations. If information is shared between different tasks for one dataset, then we
can still use the same natural language annotations to guide model training regardless of
which task we are solving. Powerful, modern language models could be used to extract
intermediate features from these annotations that can in turn be used to guide model
training by learning a mapping from images to intermediate features and from intermediate
features to the target variable associated with each task. If such pairs of mappings can be
successfully found, then natural language annotations are only needed at training time, and
the pair of mappings can be used to predict the target variable from the image at inference
time. In the medical space, such a system aligns perfectly with the regular workflow that
pathologists have since they already produce pathology reports for every patient. For
example, Zhang et al. [2020] train medical image encoders by aligning representations of
medical images with representations of their associated pathology reports and show that
these encoders can be transferred to multiple different medical imaging tasks using far
fewer labeled samples than other methods.

Unfortunately, natural language comments of the quality and information-density of
pathology reports are usually hard to come by aside from in the medical industry. For
example, it is difficult for an annotator to produce a large amount of descriptive text
about samples from image datasets like ImageNet. In the medical setting, the incentives
between the AI researcher and the annotator are aligned since the pathologist naturally
wants to write detailed, accurate, informative pathology reports that describe anything
that they find relevant in the images they analyze. In other settings, it may be difficult to
properly align incentives between the AI researcher and the annotator.

A similar but more general solution to natural language annotations may be to leverage
recent advances in multi-modal modelling, such as joint text and image modelling [Radford
et al., 2021], and use natural language prompts as a mechanism for guiding the training
process. Scao and Rush [2021] recently showed that natural language prompts can reduce
the number of training examples required for fine-tuning large language models to a partic-
ular task by two to three orders of magnitude. Developing sample-efficient, prompt-based,
multi-modal systems remains an important direction for future research.

140

Appendix B

Proofs for Chapter 5

B.1 Proof of Theorem 1

Proof. One way to partition the space into 3 partitions, is to have a different class for
every unit of space between the two points. Points lying on the x-axis within the interval
(i− 1, i) should be assigned to the ith class. For example, points on the x-axis within (0, 1)
should be assigned to class 1. Succinctly put, we are trying to find y1 and y2 such that

arg max
i

(
y1i

d
+

y2i

3− d

)
= dde ∀d ∈ (0, 3) (B.1)

It may also be desirable to have a class’s ‘influence’ decrease monotonically as distance
increases along the x-axis away from the center of its corresponding interval. Combining
these two objectives results in the following system of inequalities.

y11
d

+ y21
3−d >

y12
d

+ y22
3−d >

y13
d

+ y23
3−d 0 < d < 1

y12
d

+ y22
3−d = y11

d
+ y21

3−d >
y13
d

+ y23
3−d d = 1

y12
d

+ y22
3−d >

y11
d

+ y21
3−d >

y13
d

+ y23
3−d 1 < d < 3

2
y12
d

+ y22
3−d >

y11
d

+ y21
3−d = y13

d
+ y23

3−d d = 3
2

y12
d

+ y22
3−d >

y13
d

+ y23
3−d >

y11
d

+ y21
3−d

3
2
< d < 2

y13
d

+ y23
3−d = y12

d
+ y22

3−d >
y11
d

+ y21
3−d d = 2

y13
d

+ y23
3−d >

y12
d

+ y22
3−d >

y11
d

+ y21
3−d 2 < d < 3

(B.2)

141

Since the labels are probabilistic, the sum of their elements must be one and each element
must have a value greater than or equal to 0.

3∑
i=1

y1i =
3∑
i=1

y2i = 1

y1i ≥ 0, y2i ≥ 0 for i = 1, 2, 3

To simplify this system of equations, we can also require that the label values for the two
classes be symmetric with y1i = y2(n−i) for i = 1, 2, 3.

y11 = y23

y12 = y22

y13 = y21



y11
d

+ y13
3−d >

y12
d

+ y12
3−d >

y13
d

+ y11
3−d 0 < d < 1

y12
d

+ y12
3−d = y11

d
+ y13

3−d >
y13
d

+ y11
3−d d = 1

y12
d

+ y12
3−d >

y11
d

+ y13
3−d >

y13
d

+ y11
3−d 1 < d < 3

2
y12
d

+ y12
3−d >

y11
d

+ y13
3−d = y13

d
+ y11

3−d d = 3
2

y12
d

+ y12
3−d >

y13
d

+ y11
3−d >

y11
d

+ y13
3−d

3
2
< d < 2

y13
d

+ y11
3−d = y12

d
+ y12

3−d >
y11
d

+ y13
3−d d = 2

y13
d

+ y11
3−d >

y12
d

+ y12
3−d >

y11
d

+ y13
3−d 2 < d < 3

y11 + y12 + y13 = 1

y1i ≥ 0, for i = 1, 2, 3

(B.3)

Remark The inequalities in Equation B.3 are symmetric about d = 3
2
. We can reduce

them by considering only the cases where d ≤ 3
2
.

y11
d

+ y13
3−d >

y12
d

+ y12
3−d >

y13
d

+ y11
3−d 0 < d < 1

y12
d

+ y12
3−d = y11

d
+ y13

3−d >
y13
d

+ y11
3−d d = 1

y12
d

+ y12
3−d >

y11
d

+ y13
3−d >

y13
d

+ y11
3−d 1 < d < 3

2
y12
d

+ y12
3−d >

y11
d

+ y13
3−d d = 3

2

y11 + y12 + y13 = 1

y1i ≥ 0, for i = 1, 2, 3

(B.4)

142

We can further simplify this system.



(3− d)y11 + dy13 > 3y12 > (3− d)y13 + dy11 0 < d < 1

3y12 = 2y11 + y13 > 2y13 + y11 d = 1

3y12 > (3− d)y11 + dy13 > (3− d)y13 + dy11 1 < d < 3
2

4y12 > 2y11 + 2y13 d = 3
2

y11 + y12 + y13 = 1

y1i ≥ 0, for i = 1, 2, 3
3y12 = 2y11 + y13 > 1

y11 > y12 > y13 ≥ 0

y11 + y12 + y13 = 1

B.2 Proof of Corollary 2

Proof. We proceed similarly to the previous proof. One way to partition the space into 3
partitions, is to have a different class for every unit of space between the two points; each
interval should have length c

3
. Points lying on the x-axis within the interval ((i− 1) c

3
, (i) c

3
)

should be assigned to the ith class. For example, points on the x-axis within (0, c
3
) should

be assigned to class 1. Succinctly put, we are trying to find y1 and y2 such that

arg max
i

(
y1i

(d) c
3

+
y2i

(3− d) c
3

)
= d(d)e c

3
∀d ∈ (0, 3) (B.5)

However, this is exactly equal to Equation B.1 and the rest of the proof follows as above.

B.3 Proof of Theorem 3

Proof. One way to select such labels is to use the same labels for each pair as in Theorem 1.
This results in y1, ..., yM−1 each having a label distribution containing two non-zero values:

143

3
5

(associated with its main class) and 2
5

(associated with the class created between itself
and x0). Meanwhile, y0 contains one element with value 3

5
(associated with its own class)

and M-1 elements with value 2
5

(each associated with a unique class created between x0

and each one of the other points). To get all probabilistic labels, we can normalize y0 to
instead have values 3

2M+1
and 2

2M+1
.

It can be shown that this configuration of labels leads to 2M − 1 classes as each point
has its own class and every pair creates one additional one. Without loss of generality,
assume X0 has position (0, 0) and one of the remaining points xi, i > 0 has position (p, 0).
Since all the points are equidistant to x0, the nearest 2 points to any location between
(0, 0) and (p

2
, 0) must be x0 and xi. Let d be the distance from x0 to some arbitrary point

q = (d, 0) within this interval (then p − d is the distance from q to xi). Let a denote the
index of the main class of x0 (i.e. the class with the highest label value in y0), b denote
the index of the main class of xi, and c denote the index of the class they share (i.e. the
only other non-zero class in y1). Using the distance-weighted SLaPkNN rule, q would be
classified as follows. 

a if y0,a
d
>

yi,b
p−d ,

y0,c
d

+
yi,c
p−d

b if
yi,b
p−d >

y0,a
d
, y0,c

d
+

yi,c
p−d

c if y0,c
d

+
yi,c
p−d >

y0,a
d
,
yi,b
p−d

(B.6)

Plugging in the label values described above, we get the following system.
a if 3

(2M+1)d
> 3

5(p−d)
, 2

(2M+1)d
+ 2

5(p−d)

b if 3
5(p−d)

> 3
(2M+1)d

, 2
(2M+1)d

+ 2
5(p−d)

c if 2
(2M+1)d

+ 2
5(p−d)

> 3
(2M+1)d

, 3
5(p−d)

(B.7)

This can be further simplified.
a if 1

(2M+1)d
> 2

5(p−d)

b if 1
5(p−d)

> 2
(2M+1)d

c if 1
(2M+1)d

< 2
5(p−d)

< 4
(2M+1)d

(B.8)


a if d < 5p

4M+7

b if d > 10p
2M+11

c if 5p
4M+7

< d < 10p
2M+11

(B.9)

Clearly, there are valid values of d that can result in each of these classifications.

144

B.4 Proof of Proposition 4

Proof. Theorem 1 shows that a pair of neighboring prototypes can define their own respec-
tive classes as well as induce a third class between them. Theorem 3 shows that a single
point can belong to multiple such pairs that each generate a unique ‘third’ class. If this
is the case, then by taking the pair of vertices corresponding to each edge in an M -sided
regular polygon we can create one class for every vertex and one for every edge of the
polygon for a total of 2M classes.

In this case, every point belongs to two pairs, so the system will be somewhat different
from the one found in the proof of Theorem 3 since every point will now need to have its
label normalized. We use T to denote the number of pairs each point participates in, which
in this case would just be two.

a if 3
(2T+3)d

> 3
(2T+3)(p−d)

, 2
(2T+1)d

+ 2
(2T+3)(p−d)

b if 3
(2T+3)(p−d)

> 3
(2T+3)d

, 2
(2T+3)d

+ 2
(2T+3)(p−d)

c if 2
(2T+3)d

+ 2
(2T+3)(p−d)

> 3
(2T+3)d

, 3
(2T+3)(p−d)

(B.10)

This can be further simplified. 
a if 1

d
> 2

(p−d)

b if 1
(p−d)

> 2
d

c if 1
d
< 2

(p−d)
< 4

d

(B.11)


a if d < p

3

b if d > 2p
3

c if p
3
< d < 2p

3

(B.12)

B.5 Proof of Theorem 5

Proof. We have already shown that every pair of neighboring prototypes can define their
own respective classes as well as induce a third class between them. However, we now
arrange M soft-label prototypes to be the vertices and centroid of an (M−1)-sided regular

145

polygon. Using our previous method, we now have 2(M − 1) classes from the perimeter.
In addition, the prototype in the middle induces its own class as well as another class with
each of the M − 1 other points. Thus this configuration allows us to divide the space into
3M − 2 partitions.

B.6 Proof of Lemma 6

Proof. We proceed in the same manner as in Theorem 1 .
One way to partition the space into 4 partitions, is to have a different class for every unit
of space between the two prototypes. Points lying on the x-axis within the interval (i−1, i)
should be assigned to the ith class. For example, points on the x-axis within (0, 1) should
be assigned to class 1. Succinctly put, we are trying to find y1 and y2 such that

arg max
i

(
y1i

d
+

y2i

4− d

)
= dde ∀d ∈ (0, 4) (B.13)

It may also be desirable to have a class’s ‘influence’ decrease monotonically as distance
increases along the x-axis away from the center of its corresponding interval. Combining
these two objectives results in a system of inequalities that are symmetric about d = 2.

146

We can reduce them by considering only the cases where d ≤ 2.

y11
d

+ y14
4−d >

y12
d

+ y13
4−d >

y13
d

+ y12
4−d >

y14
d

+ y11
4−d 0 < d < 1

y11
d

+ y14
4−d = y12

d
+ y13

4−d >
y13
d

+ y12
4−d >

y14
d

+ y11
4−d d = 1

y12
d

+ y13
4−d >

y11
d

+ y14
4−d >

y13
d

+ y12
4−d >

y14
d

+ y11
4−d 1 < d < 1.5

y12
d

+ y13
4−d >

y11
d

+ y14
4−d = y13

d
+ y12

4−d >
y14
d

+ y11
4−d d = 1.5

y12
d

+ y13
4−d >

y13
d

+ y12
4−d >

y11
d

+ y14
4−d >

y14
d

+ y11
4−d 1.5 < d < 2

y12
d

+ y13
4−d = y13

d
+ y12

4−d >
y11
d

+ y14
4−d = y14

d
+ y11

4−d d = 2

y11 + y12 + y13 + y14 = 1

y1i ≥ 0, for i = 1, 2, 3, 4

y11
d

+ y14
4−d >

y12
d

+ y13
4−d >

y13
d

+ y12
4−d >

y14
d

+ y11
4−d 0 < d < 1

3y11 + y14 = 3y12 + y13 > 3y13 + y12 > 3y14 + y11 d = 1
y12
d

+ y13
4−d >

y11
d

+ y14
4−d >

y13
d

+ y12
4−d >

y14
d

+ y11
4−d 1 < d < 1.5

5y12 + 3y13 > 5y11 + 3y14 = 5y13 + 3y12 > 5y14 + 3y11 d = 1.5
y12
d

+ y13
4−d >

y13
d

+ y12
4−d >

y11
d

+ y14
4−d >

y14
d

+ y11
4−d 1.5 < d < 2

y12 + y13 > y11 + y14 d = 2

y11 + y12 + y13 + y14 = 1

y1i ≥ 0, for i = 1, 2, 3, 4
y11 + y14 = 2y13

2y11 + 10y13 = 3

y12 + 3y13 = 1
1
2
> y11 >

5
12
> y12 >

1
4
> y13 >

1
6
> y14 ≥ 0

(B.14)

B.7 Proof of Theorem 7 (Main Theorem)

Proof. The n = 1 and n = 2 cases are trivial. We have already shown that this holds for
n = 3 and n = 4 in Theorem 1 and Lemma 6 . In order to show the statement holds
for n ∈ [5,∞) we proceed similarly. Assume that two prototypes are positioned distance
n apart in a two-dimensional Euclidean space. Without loss of generality, suppose that
point x1 = (0, 0) and point x2 = (n, 0) have probabilistic labels y1 and y2 respectively. We

147

denote the ith element of each label by y1i and y2i. One way to partition the space into
n partitions, is to have a different class for every unit of space between the two points.
Points lying on the x-axis within the interval [i− 1, i) belong to the ith class. The general
objective is to find y1 and y2 satisfying the following equation.

arg max
i

(
y1i

d
+

y2i

n− d

)
= dde

We require that the label values for the two classes be symmetric with y1i = y2(n−i) for i =
1, 2, ..., n. We also require that a class’s ‘influence’ decrease monotonically as distance away
from the center of its interval increases. Just as before, we can equivalently consider only
the equations where d ≤ n

2
. The resulting system is described in Equation B.15.

∀i = 1, 2, ..., dn
2
e − 1

∀j = 2i, 2i+ 1, ..., n− 1
y1i

j
2

+
y1(n−i+1)

n− j
2

=
y1(j−i+1)

j
2

+
y1(n−j+i)

n− j
2

(B.15)

Unfortunately, this system is overdetermined for n > 6. In fact, the number of equations
in this system for a given n is described in Equation B.16.

dn
2
e−1∑
i=1

n−1∑
j=2i

1 =

dn
2
e−1∑
i=1

n− 2i = (dn
2
e − 1)(n− dn

2
e) (B.16)

Lemma 15 The system described in Equation B.15 has only n − 2 linearly independent
equations.

Proof. First, we rewrite the system slightly to remove the denominators.

∀i = 1, 2, ..., dn
2
e − 1

∀j = 2i, 2i+ 1, ..., n− 1

(n− j

2
)y1i + (

j

2
)y1(n−i+1) = (n− j

2
)y1(j−i+1) + (

j

2
)y1(n−j+i)

It may be helpful to visualize this system as the equations arranged onto a grid correspond-
ing to different values of i and j. Note that for i = 1, there are n− 2 equations and they

148

are clearly linearly independent. In addition, for i > 1 each equation can be rewritten as a
linear combination of these first n− 2 equations. We denote the equation associated with
i = a, j = b by eqna,b.

eqni,j =− n+ i− j − 1

n− 1
(eqn1,i) +

n− i
n− 1

(eqn1,(j−i+1))

+
i

n− 1
(eqn1,(j−i))−

j − i
n− 1

(eqn1,(n−i))

Thus, the system has exactly n− 2 linearly independent equations.

Finally, we add our familiar restrictions: making the labels probabilistic and setting
the last label value to zero. These additional equations increase the rank of the system to
n.

n∑
k=1

y1k = 1, y1n = 0 (B.17)

The resulting system always has one solution, and this solution allows us to separate n
classes using two points.

Remark We can find the exact solution to the system in Equation B.15 combined with the
equations from Equation B.17 for a given n.

y1i = y2(n−i) =

∑n−1
j=i j∑n−1
j=1 j

2
=
n(n− 1)− i(i− 1)

2
∑n−1

j=1 j
2

, i = 1, 2, ..., n

Remark The two points do not have to be n units apart. The same result can be shown
to hold for two points any distance part by dividing that distance into n intervals of equal
length and scaling the associated constants accordingly.

B.8 Proof of Theorem 8

Proof. We can rephrase our objective as the following. Find the minimum number of
prototypes required on each circle, such that the nearest prototype to any point along the
circumference of the ith circle, is also on the ith circle.

Let the number of prototypes on the ith circle (with radius i ∗ c for some positive
constant c) be denoted by ni. Since the prototypes must be evenly spread out along the

149

circumference of each circle, the furthest point on circle i from any prototype of circle i,
must be the point located at the arc midpoint of two neighboring prototypes. In that
case, a sufficient condition is that the shortest distance between two neighboring circles
(c), be longer than the distance between neighboring prototypes and arc midpoints on
the ith circle. Since c is constant, we can only modify the distance between prototypes
and arc midpoints. We can do so by changing the number of prototypes found on the ith

circle. The Euclidean distance between a prototype and its neighboring arc midpoint is

di = ri

√
2− 2cos(li

ri
) where ri = i ∗ c is the radius of the ith circle, and li = 2πr

2n
is the

arclength between neighboring prototypes and arc midpoints. Thus di = ic
√

2− 2cos(π
ni

)

and we want di < c ∀i = 1, 2, Solving for ni we get the following inequality.

ni >
π

cos−1(1− 1
2i2

)
(B.18)

We can use the approximation cos−1(1−y) ≈
√

2y to get that π
cos−1(1− 1

2i2
)
≈ π

1
i
)

= iπ.

150

Appendix C

SecDD: Efficient and Secure Method
for Remotely Training Neural
Networks

We leverage what are typically considered the worst qualities of deep learning algorithms
- high computational cost, requirement for large data, no explainability, high dependence
on hyper-parameter choice, overfitting, and vulnerability to adversarial perturbations - in
order to create a method for the secure and efficient training of remotely deployed neural
networks over unsecured channels.

C.1 Introduction

We consider the situation where a neural network must be trained using proprietary or
confidential data, but only an unsecured channel is available for providing data to the
network. We assume that any data transmitted over this channel can be accessed by
other parties. Our objective is to transmit data that will train the target network to
desired accuracy, but will be unusable by other networks, and will also not reveal any
information through qualitative inspection. A secondary objective is to improve efficiency
by minimizing the size of our transmission.

We propose using dataset distillation, the process of representing the knowledge of
a large dataset using a smaller number of synthetic samples [Wang et al., 2018], as a

151

Figure C.1: SecDD can create various sets of 10 synthetic MNIST images that train target
networks to over 95% accuracy while visually appearing to consist almost entirely of noise.
Each image is labeled with its top 3 classes and their associated logits.

method for efficiently and securely training neural networks. Soft-Label Dataset Distil-
lation (SLDD) is an extension to the dataset distillation algorithm that achieves better
performance by learning distillation labels along with the distillation images [Sucholutsky
and Schonlau, 2019]. We propose Secure Dataset Distillation (SecDD) as an extension
of SLDD that intentionally overfits samples to a target network in order to create tiny
privacy-preserving training sets that reduce transmission size by several orders of magni-
tude. These synthetic samples can only train a network with the same architecture and
random initialization as the target network. These synthetic training samples can also
be designed to be qualitatively dissimilar to real samples; even appearing to belong to
completely unrelated datasets. In order to retrieve private information from the synthetic
samples, an attacker would need to discover both the architecture and the random ini-
tialization of the target network. To do so, an attacker would have to perform Neural
Architecture Search (NAS) on the synthetic training set. Fortunately, NAS methods are
computationally intensive and data-hungry [Strubell et al., 2019]. In particular, NAS has
been shown to be ineffective when using small distilled datasets as proxies for the full train-
ing set [Shleifer and Prokop, 2019]. In addition, the search space for the NAS algorithm
grows rapidly as the size of the target network increases. If the target network contains
unusual components, it may even be impossible for NAS to find it as the search space is
often constrained to popular network components. A good analogy for this is the process
for creating a strong password: having a long password with special characters greatly
increases the search space making it difficult for a brute-force attack to succeed.

152

C.2 Related Work

Prototypes have long been studied in the context of algorithms like k-nearest neighbours
[Chang, 1974, Sánchez, 2004]. Generally speaking, prototype methods aim to approximate
datasets using a smaller number of samples. Prototype selection methods aim to choose
prototypes from the actual dataset [Garcia et al., 2012]. Prototype generation methods,
like the k-means algorithm, instead create synthetic samples [Nanni and Lumini, 2009,
Triguero et al., 2011b]. Most prototype methods use hard labels, but some propose more
complex prototypes that aim to increase efficiency [Mettes et al., 2019, Sucholutsky and
Schonlau, 2021a].

Dataset distillation can be described as a family of prototype generation methods in-
tended for use with neural networks [Wang et al., 2018, Sucholutsky and Schonlau, 2019,
Bohdal et al., 2020]. Flexible Dataset Distillation (LD) is a recently proposed extension of
dataset distillation that learns unrestricted labels as in SLDD but for a small fixed set of
real images taken from the training dataset [Bohdal et al., 2020].

C.3 Secure Dataset Distillation

When using DD, and especially SLDD, with fixed initialization, the distilled images qual-
itatively look mostly like random noise, yet they train the target network to impressive
accuracies. Several studies criticized this behavior and proposed algorithms that result in
clearer patterns [Zhao et al., 2020, Bohdal et al., 2020]. However, we instead utilize the
lack of interpretability to preserve privacy by transmitting samples that do not resemble
the ones in the original dataset. We modify the SLDD algorithm to encourage aggressive
overfitting to the target network. While SLDD generally uses one-hot encoding to initial-
ize the distilled labels, we experiment with alternative initializations that encourage more
class mixing, and result in less identifiable features in the distilled images.

Flexible Dataset Distillation uses fixed distilled images and instead only learns the
associated soft labels. In fact, Bohdal et al. [2020] showed that the frozen images can come
from a different dataset and still train the model to high accuracies on the target dataset.
We propose two SecDD modes that leverage this idea in order to mask transmissions. In
the first mode, fixed distilled images are initialized as random noise to ensure that attackers
would not be able to discern qualitative features by observing transmissions. In the second
mode, fixed distilled images are taken from a different, completely unrelated dataset.

For both modes, the soft labels for the images are learned through backpropagation.
While aiding with privacy preservation, these modes may require larger distilled datasets

153

to train models to the same accuracies than when using regular SLDD. Two example sets of
fixed, random-noise samples used for training a target network to achieve high accuracy on
MNIST are shown in Figure C.1. The two sets used different initializations which resulted
in visually different images, but both initializations still result in high accuracy of around
95% for the target network.

C.4 Conclusion and Future Work

We have proposed a method for producing synthetic data that can be used to securely
and efficiently train remotely deployed neural networks over unsecured channels. These
transmissions can even appear to contain random noise or completely unrelated data while
still training target neural networks to high accuracies.

We have so far only conducted exploratory experiments to validate our claims and
are working on conducting a comprehensive set of experiments that would quantify the
improvements in privacy preservation and efficiency that SecDD can provide.

154

	List of Figures
	List of Tables
	Introduction
	Definitions and Terminology
	Outline

	Extreme Data Efficiency and `Less Than One'-Shot Learning
	Introduction
	`Less Than One'-Shot Learning
	A Framework for (Efficient) Generalization
	Types of Information Sharing
	Information Repackaging
	Information Injection

	Motivating Examples: Efficient Generalization in Practice
	Practical Setting 1 - Neural Architecture Search
	Practical Setting 2 - Federated Learning
	Practical Setting 3 - Expensive Inference
	Practical Setting 4 - Sequence Imputation

	Data Restoration
	Background
	Sequence Modelling with Deep Learning
	Data Restoration with Deep Learning

	Setup
	Data
	Benchmark

	LSTM
	RNNs and LSTMs
	Architecture
	Training
	Results

	Restorer
	Attention
	Architecture
	Results

	Case Study: Timed Regular Expression Mining on CAN Traces
	Conclusion

	Dataset Distillation
	Introduction
	Related Work
	Knowledge Distillation
	Sample Efficiency in Deep Learning
	Dataset Reduction and Prototype Methods
	Federated Learning and Privacy Preservation
	Generative Adversarial Networks
	Measuring Problem Dimensionality

	Extending Dataset Distillation
	Motivation
	Basic Approach
	Learnable Labels
	Text and Other Sequences
	Random initializations and multiple steps

	Experiments
	Metrics
	Image Data
	Text Data

	Conclusion

	Soft-Label Prototypes and k-Nearest Neighbors
	Motivation and Related Work
	Prototype Methods for kNN
	Achieving LO-Shot Learning with kNN

	Optimal 1NN Prototypes for Pathological Geometries
	Background
	Theory
	Computational Results
	Conclusion

	Theoretical Foundations of `Less Than One'-Shot Learning with kNN
	Definitions
	Probabilistic Prototypes and SLaPkNN with k=2
	Robustness
	Case Study: Prototype Generation for Circles
	Conclusion

	Algorithms for `Less Than One'-Shot Learning with kNN
	Introduction
	LO-Shot Prototype Generation Algorithm
	Experiments
	Conclusion

	Conclusion
	References
	APPENDICES
	Additional Practical Setting - Expensive Data and Annotations
	Proofs for Chapter 5
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Proposition 4
	Proof of Theorem 5
	Proof of Lemma 6
	Proof of Theorem 7 (Main Theorem)
	Proof of Theorem 8

	SecDD: Efficient and Secure Method for Remotely Training Neural Networks
	Introduction
	Related Work
	Secure Dataset Distillation
	Conclusion and Future Work

