23 research outputs found

    A large time-step and well-balanced Lagrange-Projection type scheme for the shallow-water equations

    Get PDF
    This work focuses on the numerical approximation of the Shallow Water Equations (SWE) using a Lagrange-Projection type approach. We propose to extend to this context recent implicit-explicit schemes developed in the framework of compressibleflows, with or without stiff source terms. These methods enable the use of time steps that are no longer constrained by the sound velocity thanks to an implicit treatment of the acoustic waves, and maintain accuracy in the subsonic regime thanks to an explicit treatment of the material waves. In the present setting, a particular attention will be also given to the discretization of the non-conservative terms in SWE and more specifically to the well-known well-balanced property. We prove that the proposed numerical strategy enjoys important non linear stability properties and we illustrate its behaviour past several relevant test cases

    A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations

    Get PDF
    International audienceWe present an extension to high-order of a first-order Lagrange-projection like method for the approximation of the Euler equations introduced in Coquel et al. (Math. Comput., 79 (2010), pp. 1493–1533). The method is based on a decomposition between acoustic and transport operators associated to an implicit-explicit time integration, thus relaxing the constraint of acoustic waves on the time step. We propose here to use a discontinuous Galerkin method for the space approximation. Considering the isentropic Euler equations, we derive conditions to keep positivity of the mean value of density and to satisfy a discrete entropy inequality in each element of the mesh at any approximation order in space. These results allow to design limiting procedures to restore these properties at nodal values within elements. Numerical experiments support the conclusions of the analysis and highlight stability and robustness of the present method, while it allows the use of large time steps

    A class of high resolution explicit and implicit shock-capturing methods

    Get PDF
    An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems

    Coupling techniques for nonlinear hyperbolic equations. IV. Multi-component coupling and multidimensional well-balanced schemes

    Get PDF
    This series of papers is devoted to the formulation and the approximation of coupling problems for nonlinear hyperbolic equations. The coupling across an interface in the physical space is formulated in term of an augmented system of partial differential equations. In an earlier work, this strategy allowed us to develop a regularization method based on a thick interface model in one space variable. In the present paper, we significantly extend this framework and, in addition, encompass equations in several space variables. This new formulation includes the coupling of several distinct conservation laws and allows for a possible covering in space. Our main contributions are, on one hand, the design and analysis of a well-balanced finite volume method on general triangulations and, on the other hand, a proof of convergence of this method toward entropy solutions, extending Coquel, Cockburn, and LeFloch's theory (restricted to a single conservation law without coupling). The core of our analysis is, first, the derivation of entropy inequalities as well as a discrete entropy dissipation estimate and, second, a proof of convergence toward the entropy solution of the coupling problem.Comment: 37 page

    On the Eulerian Large Eddy Simulation of disperse phase flows: an asymptotic preserving scheme for small Stokes number flows

    Full text link
    In the present work, the Eulerian Large Eddy Simulation of dilute disperse phase flows is investigated. By highlighting the main advantages and drawbacks of the available approaches in the literature, a choice is made in terms of modelling: a Fokker-Planck-like filtered kinetic equation proposed by Zaichik et al. 2009 and a Kinetic-Based Moment Method (KBMM) based on a Gaussian closure for the NDF proposed by Vie et al. 2014. The resulting Euler-like system of equations is able to reproduce the dynamics of particles for small to moderate Stokes number flows, given a LES model for the gaseous phase, and is representative of the generic difficulties of such models. Indeed, it encounters strong constraints in terms of numerics in the small Stokes number limit, which can lead to a degeneracy of the accuracy of standard numerical methods. These constraints are: 1/as the resulting sound speed is inversely proportional to the Stokes number, it is highly CFL-constraining, and 2/the system tends to an advection-diffusion limit equation on the number density that has to be properly approximated by the designed scheme used for the whole range of Stokes numbers. Then, the present work proposes a numerical scheme that is able to handle both. Relying on the ideas introduced in a different context by Chalons et al. 2013: a Lagrange-Projection, a relaxation formulation and a HLLC scheme with source terms, we extend the approach to a singular flux as well as properly handle the energy equation. The final scheme is proven to be Asymptotic-Preserving on 1D cases comparing to either converged or analytical solutions and can easily be extended to multidimensional configurations, thus setting the path for realistic applications

    Dynamics of Numerics & Spurious Behaviors in CFD Computations

    Get PDF
    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD

    Nonlinear dynamics and numerical uncertainties in CFD

    Get PDF
    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations
    corecore