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Abstract

The development of shock-capturing finite difference methods for hyperbolic conservation

laws has been a rapidly growing area for the last decade. Many of the fundamental concepts,

state-of-the-art developments and applications to fluid dynamics problems can only be found

in meeting proceedings, scientific journals and internal reports. This paper attempts to give

a unified and generalized formulation of a class of high-resolution, explicit and implicit shock-

capturing methods, and to illustrate their versatility in various steady and unsteady complex

shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These

numerical methods are formulated for the purpose of ease and efficient implementation into a

practical computer code. The various constructions of high-resolution shock-capturing methods

fall nicely into the present framework and a computer code can be implemented with the various

methods as separate modules.

Included is a systematic overview of the basic design principle of the various related numerical

methods. Special emphasis will be on the construction of the basic nonlinear, spatially second-

and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of

extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann

solvers and flux-vector splitting approaches. Generalization of these methods to efficiently in-

clude equilibrium real gases and large systems of nonequilibrium flows will be discussed. Some

issues concerning the applicability of these methods that were designed for homogeneous hy-

perbolic conservation laws to problems containing stiff source terms and shock waves are also

included. The performance of some of these schemes is illustrated by numerical examples for

one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numer-

ical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be

extended to nonlinear systems of equations without the use of Riemarm solvers or flux-vector

splitting approaches and thus provides a large savings for multidimensional, equilibrium real

gases and nonequilibrium flow computations.

1Shorter version of this paper was published as a NASA TM-89464, May, 1987 entitled "Upwind and Symmetric

Shock-Capturing Schemes".

2Research Scientist, Computational Fluid Dynamics Branch.
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I. INTRODUCTION

This paper is an outgrowth of a manuscript entitled "Upwind and Synmmtric Shock-Capturing

Schemes" in the proceedings of the Senfinar on Computational Aerodynamics, University of

California, Davis, spring, 1986, and in a NASA TM-89464, May, 1987. This expanded version

includes approximately 35_ new material, more updated information and an enlarged reference

list. Over all, there is more than 50% increase in content. Many sections have been rewritten to

make the paper more self-contained. The new material includes five new subsections in section

III, three new subsections in section IV, one new subsection in section V, a complete new section

VI, two new subsections in section VII, and approximately 90% increase in the reference fist.

Not all of the contents that appeared in NASA TM-89464 was review material. Consequently,

material inside TM-89464 that was new and not published anywhere else will be referenced from

time to time as TM-89464 or reference [1].

The objective of this paper is to give a unified and generalized formulation of a class of explicit

and implicit, high-resolution, shock-capturing methods for hyperbolic conservation laws, and to

illustrate their versatility in various steady and unsteady complex shock waves, perfect gases,

equilibrium real gases and nonequilibrium flow computations. These methods are formulated

for the purpose of ease and efficient implementation into new or existing computer codes. All

of these methods can be implemented into the same computer code. sharing many of the com-

mon operations. The basic design principle and background information will be systematically
reviewed.

Some issues concerning the applicability of these methods that were designed for homogeneous

hyperbolic conservation laws to problems containing stiff source terms and shock waves are also

included. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing

schemes is generalized. This method can be extended to nonlinear systems of equations without

the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings

for multidimensional, equilibrium real gases and nonequifibrium flow computations.

The performance of some of these schemes is illustrated by numerical examples for one-,

two- and three-dimensional gas-dynamics problems. The discussion on the development of con-

servative shock-capturing methods for hyperbolic conservation laws is the author's personal

interpretation. The illustrations of the types of schemes and the areas of applications reflect

the author's experiences and preferences for certain schemes. No attempt has been made to

present a unified comparison except for the one-dimensional shock-tube problem. The number

of theoretical and application papers on this topics is at least three time the number that the

author has been able to mention, but those included should serve as a good starting point.

Much of the mathematical theory is omitted. However, when appropriate, sufficient references

will be provided. It is assumed that the reader is familiar with the fundamentals of numerical

analysis, fluid dynamics and computational fluid dynamics (CFD). Excellent lecture notes and

review papers covering these subject areas can be found in [2-8]. Before getting into the main

discussion, some pertinent terminology will be covered. The specifics to be addressed, and some

aspects, limitation, and assumptions of shock-capturing schemes for hyperbolic conservation

laws will be summarized. It is recoimnended that the reader refer to this introductory chapter

for the limitations and assumptions stated when reading later sections.



Tevrainolo9y:. In this paper, the terms ezplicit and zmplic_t schemes refer to time discretization,

whereas the terms symmetric and upwind schemes refer to spatml discretization. The order

of accuracy for time-accurate calculations refers to both the time and spatial discretization.

On the other hand, the order of accuracy for steady-state calculations most often refers to the

spatial discretization only. Spatial order of accuracy for high-resolution shock-capturing schemes

usually refers to the order of accuracy away from discontinuities. Throughout the paper, the

term "high-resolution shock-capturing schemes" is used in this context.

Upwind-differencing schemes attempt to discretize hyperbolic partial differential equations

(PDEs) by using differences biased in the direction determined by the sign of the characteristic

speed. Symmetric or centered schemes, on the other hand, try to discretize hyperbolic PDEs

without any knowledge of the sign of the characteristic speed.

Shock-capturing schemes tend to treat shocks as a continuum, as opposed to shock-fitting,

where almost always a prlor, knowledge of the shock location is needed.

Specifics to be Addressed: In this paper, only conservative finite-difference methods for hyper-

bolic conservation laws (i.e., for inviscid compressible flows) containing shock waves are ad-

dressed. The formulations are Eulerian, and the main emphasis is state-of-the-art of a class

of high-resolution shock-capturing methods of the last decade. Theoretical discussions are

for initial-value problems (IVPs). That is, the numerical schemes to be discussed are inte-

rior schemes (schemes for the interior points of the computational domain). When numerical

boundary conditions (boundary schemes) are used, additional conditions have to be satisfied

for the combined interior and boundary schemes (i.e. for the initial-boundary-value problems

(IBVPs)) in order to maintain the same high-resolution and stability properties as the IVPs

[9-11]. Also, the design principle of the schemes to be discussed are for homogeneous PDEs.

For problems containing source terms, and especially stiff source terms and shock waves, the

desired property of the scheme in question might be lost or no longer valid. See sections III for

a discussion and a numerical study.

For compressible Navier-Stokes calculations, the physical problems considered here are as-

sumed to be inviscid-donfinated in the sense that moderate or strong viscous shock waves are

present in the flow field such that high-resolution shock-capturing techniques are required. Thus,

the numerical procedure described here for Navier-Stokes calculations is that a second-order,

central-difference approximation is used for the diffusion terms and a high-resolution shock-

capturing method is used for the inviscid part of the Navier-Stokes equations (Euler equations).

Hierarchy of Conservative Schemes for Hyperbolic Conservation Laws: The Hierarchy of con-

servative schemes for hyperbolic conservation laws can best be illustrated by figure 1.1. Let

ST be the set of all existing conservative schemes of any order for hyperbolic conservation laws

which is the entire region shown in figure 1.1. We can break S:r into two parts, St/v and So,

where Sup is the set of all existing upwind schemes of any order. Furthermore, let SENO be

the set of all essentially nonoscillatory (ENO) [12-14] schemes of any order, let STVD be the

set of all total variation diminishing (TVD) schemes [15-23] of any order and let SM be the

set of all monotone schemes [24-25]. Then SM C STVD C SE_o _ ST. In other words, the

set of monotone schemes is the smallest set and is a subset of the set of TVD schemes. The

set of all TVD schemes in turn is a subset of the ENO schemes. Definition and properties of

these schemes will be described inside the text. This paper covers only a small subset of the

shock-capturing schemes, namely, the TVD schemes.



Classical vs. Modern Shock-Capturing Methods: From an historical point of view, shock-

capturing methods can be classified into two general categories: namely, classical and modern

shock-capturing methods. In the case of classical shock-capturing methods, numerical dissipa-

tion terms are either linear such that the same amount is applied at all grid points or contain of

adjustable parameters [26-28]. Classical shock-capturing methods only exhibit accurate results

for smooth or weak shock solutions and are not robust enough for strong shock wave calcula-

tions. For strong shock waves, classical shock-capturing methods result in oscillatory solutions

across tile discontinuities and/or nonlinear instabilities [29-32]. For modern shock-capturing
methods, however, the numerical dissipations are nonlinear such that the amount varies from

one grid point to another-and usually consists of automatic feedback mechanisms with hardly

any adjustable parameters. These schemes [12-25] are stable for nonlinear scalar hyperbolic

conservation laws. They exhibit high-resolution numerical results even for problems containing

strong shock waves. Numerical dissipation terms sinfilar to those of Jameson et al. [33] seem to

fall in between the classical and modern shock-capturing methods.

Applzcability o] Scalar Schemes to Systems of Hyperbolic Conservation Laws: Basic modern

shock-capturing methods for hyperbolic conservation laws are developed for linear and/or non-

linear scalar hyperbolic conservation laws. Extension of scalar methods to nonlinear systems is

accomplished by assuming certain physical models or by local linearization. The mathematical

foundation relies mainly on the scalar case. There is no identical theory for nonlinear systems or

the multidimensional counterpart [341 . These schemes are formally extended to one- or higher-
dimensional nonlinear systems of hyperbolic conservation laws via the so-called Riemann solvers

(to be defined in section IV) and are evaluated by numerical experiments. Based on these facts,

a major part of the discussion will be on modern shock-capturing schemes for the nonlinear

scalar case and the methods of extending these nonlinear scalar schemes to nonlinear systems

via the different types of Riemann solvers. However, numerical examples for one- and higher-

dimensional nonlinear systems in gas dynamics will be stressed. Also, it is understood that

even though the mathematical properties of modern shock-capturing methods are only valid for

nonlinear scalar hyperbolic conservation laws or constant coefficient hyperbolic systems, in a

loose and convenient way. the same properties are used and referred to when nonlinear systems
or mull idimensional problems are involved.

Guidelines and Usage of Modern Shock-Capturing Methods: Besides the fact that basic modern

shock-capturing methods are developed for nonlinear scalar hyperbolic conservation laws, there

are guidelines and limitations of these schemes that have to be considered. Some of the guidelines

and linfitations when appropriate are discussed at the beginning of each section. Specifically, a

more detailed discussion on this subject for practical CFD applications appears in section 6.3.

In general, the best uses of modern shock-capturing schemes and in particular TVD-type of

schemes are for problems containing moderate to strong shock waves and contact discontinuities.

It is recolmnended not to apply any shock-capturing method (modern or otherwise) for ill-

conditioned hyperbolic conservation laws, e.g., nearly incompressible hyperbolic conservation

laws or very low Math number flows f35,36]. For ill-conditioned hyperbolic conservation laws,

if possible, make a proper transformation and transform the equation to a well-conditioned

one before applying the numerical scheme [35,36]. When applying TVD-type of schemes for

problems containing no discontinuities, the over all resolution compared with a higher-order

classical shock-capturing scheme might be degraded due to the reduction of the scheme to first-

order near extrema (points of extrema).



Outline of Paper. The outline of this paper is as follows. First, the basic properties of hyperbolic

conservation laws and several schemes for linear hyperbolic equations will be reviewed. Then

the various aspects of shock-capturing schemes for nonlinear scalar hyperbolic conservation laws

will be discussed. These include monotone and first-order upwind schemes, deficiency of classical

shock-capturing schemes, and methods of extending first-order TVD schemes to higher-order.

Some issues concerning the applicability of these methods that were designed for homogeneous

hyperbolic conservation laws to problems containing stiff source terms and shock waves also are

included. It is important to investigate finite difference methods for nonhomogeneous hyperbolic

PDEs since nonequilibrium fluid flows contain coupled stiff source terms and this is an area of

vital interest for hypersonic flows and combustion. The use of the Lax-Priedrichs numerical

flux to obtain high-resolution shock-capturing schemes is generalized. This method can be

extended to a nonlinear system of equations without the use of Riemann solvers or flux-vector

splitting approaches and thus provides a large savings for multidimensional, equilibrium real

gas and nonequilibrium flow computations. A discussion on the importance of "asymptotic

analysis of finite difference methods by the nonlinear dynamic approach" is briefly surrmlarized.

This subject is especially important for the analysis of numerical methods for nonhomogeneous

hyperbolic PDEs with nonlinear source terms. Lastly formal extensions of nonlinear scalar TVD

schemes to one- and higher-dimensional nonlinear systems of hyperbolic conservation laws will

be reviewed. A method of extension, which is widely used and practical in terms of complex

fluid dynamics problems, will be stressed. Generalization of these schemes to include steady

and unsteady hypersonic equilibrium real gases and nonequilibrium flows will be described.

Time-accurate as well as steady-state calculations for one-, two- and three-dimensional practical

applications will be illustrated when appropriate.



II. PRELIMINARIES

The main difficulty in solving nonlinear hyperbolic PDEs is the need to allow for discontinuous

solutions even when the initial data are smooth. For constant-coefficient hyperbolic PDEs, we]l-

known stable, finite-difference methods are available in standard textbooks; see for example:

Richtmyer and Morton [2], Mitchell [37], and Garabedian [38]. The theory is more complex

for nonlinear hyperbolic PDEs. In order to motivate the ideas and set up the basic notations

for nonlinear hyperbolic PDEs, some of the schemes originally designed for constant-coefficient
cases are reviewed in this section.

2.1. An Upwind Scheme for Linear Hyperbolic PDEs

Consider the constant-coefficient scalar hyperbolic PDE

Ou Ou

0t + a0--xz = O, (2.1)

where a is a real constant. Let uy be the numerical approximation of the solution of (2.1) at

x = jAx and t nAt, with Ax the spatial mesh size and At the time step. Let A at
-- As.

According to the characteristic theory of hyperbolic PDEs (direction of wave propagation), a

simple first-order accurate explicit upwind scheme for an IVP of (2.1) can be written as

u'_ el = u¢ - Aa j+ln nuJ a < O. (2.2)
uj - u j_ 1 a > 0

Introducing the notation

1
a + = _l(a+ lal); a- = _(a - ial), (2.3)

the scheme for positive or negative a can be rewritten as one equation

u_ +1 : uy - A[a+(u_ - u__l) + a-(u_+ 1 - uy)]. (2.4)

Using the relationship between a i, a and ta], the scheme again can be written as

5 =uj -uj_a)÷ ]al(u'_+l-2U'_+Uj_l). (2.5)

Most often one recognizes the first form (2.4) as an upwind scheme but the second form (2.5) is

less obvious. In this paper, the second form is preferred because when one extends the scheme

to nonlinear equations and systems of equations, the second form is more compact to discuss

and more efficient in terms of operations count [39-41]. Introducing a new notation "hi+}",
consider a scheme of the form

Uj+ 1 n= uj - A[h_?+½ - h'!3_½] , (2.6)

where hi+ ½ is sometimes referred to as a "numerical flux function". Note thai the notation

hi+ ½ will be used throughout this paper. For the previous example (2.5)



•

(2.7)

Higher-order upwind schemes can be obtained by increasing the stencils of the first-order scheme

in the appropriate upwind directions. See references [2,37! for details.

Consider a hyperbolic system

OU 8l:

+ A_ = 0, (2.8)0-_-

where U is a vector with m elements and A is an m × m constant matrix with real eigenvatues.

Let W = R -1U and R -1AR = A. One can transform the above system to a diagonal form

0W 0W

0--7+ h_; = 0, h = diag(a'), I = 1,...,m. (2.9)

Here diag(a l) denotes a diagonal matrix with diagonal elements a t. Applying the scalar scheme

to the new variables, one obtains a scheme for the system case:

with

jAi = diag(latl). (2.10b)

This form looks exactly like the scalar case except it consists of m equations. Transfornfing back

to the original variables, the scheme takes the form

with

?n+l
[j - 2U_ + U_ 1 ), (2.11a)

(2.11b)

or

tS"+': u? - _[a-_(vy- t%, )+ A-tu,5, - t,7)], (2.12a)

where

1

A + =_(A + IAI),

1

A- =_(A IAI).

" _", consider a scheme of the formAgain, introducing a new notation F_+

3-5

where Fj+ ½ is a numerical flux vector function. For the previous example (2.12)

(2.12b)

{2.12c)

(2._3)
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F,+½=-_I[A(Uj+_+ t?)- ral(Us+, - Us)] (2.14)

2.2. Centered (Symmetric) Schemes for Linear Hyperbolic PDEs

Several popular, spatially centered, second-order accurate schemes for the constant-coefficient

scalar hyperbolic PDEs are as follows:

(i) Crank-Nicholson method:

._a n+l _ ,an+l n .,_l n n
U3+' JV T(Uj+, S-1 ) = Uj -- _(Us+ , -- US_,). (2.15)

(ii) Lax- Wendroff method:

= t/j - 5(Uj+l - t/j-l) + A2a2(_,_+l- 2_ + os-, ). (2.16)

(iii) MacCormack method:

tt = t/j

n+l 1 n ?_,)) _ v_a, (1) _ (1)
"uj : _(llj _- _ILj --'aj_l).

(iv) Lax-Friedrichs method:

u,?+l n )m n n 1 n un
3 ='aJ---2(Uj+'--tlj-')-_2(t/j+l--2t/5}-}- j-l)" (2.18)

(v) Leap-frog method:

.ay+l n-1 _ )_a(tt2+ 1 _ un= uj ,-I ), (2.19)

Note that the Lax-Wendroff method can be rewritten as

u2 +' : u 2 - ,_(h2+ ½ - h2_½ ), (2.20a)

with the numerical flux function hi+ ½

1

hs+ _ = -2 [a(uj+, + uj)- Aa2(us+l - uj)]. (2.20b)

The numerical flux function hj+ ½ for the Lax-Friedrichs method can be written as

1 1

hi+½ = _ [a(itS+ , --_ "aj) - _('aj+, - t/j)]. (2.21)

The Crank-Nicholson method, and other centered or upwind in space together with a class of

linear multistep time-discretization methods can be expressed sinfilarly. Note that the leap-frog

method cannot be written in the form of equation (2.20a). Extension of these centered schemes

to constant coefficient systems can be accomplished in a manner similar to the upwind methods.

(2.17a)

(2.17b)

11



III. SCHEMES FOR NONLINEAR SCALAR HYPERBOLIC CONSERVATION LAWS

As mentioned in the introduction, all of the discussion on shock-capturing methods for non-

linear hyperbolic conservation laws are for initial-value problems(IVPs). That is, the numerical

schemes to be discussed are interior schemes (schemes for the interior points of the computa-

tional domain). When numerical boundary conditions (boundary schemes) are used, additional

conditions have to be satisfied for the combined interior and boundary schemes (i.e. for the

initial-boundary-value problems (IBVPs)) in order to maintain the same high-resolution and

stability properties as the IVPs [9-11,42]. See section 3.12 or the cited references for a discus-

sion.

It is also important to point out that the design principle of the schemes to be discussed is

for homogeneous hyperbolic conservation laws (without source terms). For problems containing

source terms, and especially stiff source terms and shock waves, the desired property of the

scheme in question for unsteady computations might be lost or no longer valid. This point will

be stressed in section 3.9.

The main theory for modern shock-capturing methods for nonlinear hyperbolic conservation

laws considered in this paper relies heavily on the basic first-order upwind, the Lax-Friedrichs,

the Lax-Wendroff, and the MacCormack methods. However, the resulting higher-order high-

resolution modern shock-capturing methods, which are designed for the nonlinear hyperbolic

conservation laws, when applied to constant-coefficient cases, are no longer linear finite-difference

schemes (i.e., they are truly nonlinear finite-difference methods). This fact will be stressed in

the current section.

3.1. Conservative Schemes and a Shock-Capturing Theory

The stability analysis of difference schemes for linear hyperbolic PDEs is very well established.

However, the stability analysis of difference schemes for nonlinear hyperbolic PDEs is less de-

veloped. In general, the stability theory for linear difference equations is of use in checking the

"local" stability of linearized equations obtained from truly nonlinear equations. However, in

many instances when strong discontinuities are present, local stability is neither necessary nor

sufficient for the nonlinear problems. One traditional remedy for removing instabilities is to

introduce a "linear" numerical dissipation (or "artificial viscosity" or "smoothing term") into

the difference schemes. One can do so by designing the scheme to be dissipative [2}.

The majority of practical applications in fluid dynanfics during the late seventies and early

eighties is based on the traditional approach of adding an additional dissipation term to the

numerical scheme to improve nonlinear stability. However, this approach alone will not guarantee

convergence to a physically correct solution in the nonlinear case.

Lax and Wendroff [43] showed that the limit solution of any finite-difference scheme in a

conservation form which is consistent with the conservation laws satisfies the jump conditions

across a discontinuity automatically. This was a conceptual breakthrough which enabled the

direct discretization of the conservation laws by introducing the notion of numerical dissipa-

tion. However, weak solutions (solutions with shocks and contact discontinuities) of hyperbolic

conservation laws are not uniquely determined by their initial values; an entropy condition is

needed to pick out the physically relevant solutions. The question arises whether finite-difference

12



approximations converge to this particular solution. It is shown in references [24,25] that in the

case of a single conservation law, monotone schemes (to be defined later) always converge to

the physically relevant solution. If the scheme is not monotone, then it must be consistent with

an entropy inequality for the assurance of convergence to a physically relevant solution [44,451.

Thus monotone schemes possess many desirable properties for the calculation of discontinu-
ous solutions. Moreover, first-order upwind schemes share most of the properties of monotone

schemes. The following is an introduction to monotone and first-order upwind schemes.

Before discussing monotone and first-order upwind schemes, it is important to mention a new

subject area which in the author's opinion will have a dramatic impact on better understanding

of numerical analysis for nonlinear ODEs and PDEs (e.g. nonlinear stability), and will provide

insight on how well a numerical solution can mimic the true physics of the problem. This new

subject area is hereafter referred to as "asymptotic analysis of finite difference methods by the

nonlinear dynamic approach" or, for short, "chaotic dynamics". The sensitivity of numerical

solutions to inilial data and dependence of solutions on the discretized parameters (i.e., time step

and numerical dissipation coefficients) for a fixed spatial mesh are absent from linear analysis

and yet present quite often in nonlinear analysis. These phenomena are often unknown or

ignored by practioners in CFD. Although the understanding of chaotic dynamical theory for

PDEs and their discretized form is still in its infancy and theoretical development in this area is

extremely difficult, the study of numerical analysis would not be complete without the utihzation

of the "nonlinear dynamic approach". For background material see references [29-32]. For an

overview and potential application to CFD, see Yee [46] a paper in preparation. Since nmch

of chaotic phenomena has a direct relation for problems containing nonlinear source terms, a

short introduction to this subject will be discussed after the sections on numerical methods for

nonhomogeneous hyperbolic PDEs.

3.2. Monotone and First-Order Explicit TVD Schemes

Consider the scalar hyperbolic conservation law

Ou Of(u)
Ot + Ox - O, {3.1)

where a(u) = Of/Ou is the characteristic speed. A general three-point explicit difference scheme
in conservation form can be written as

u"+: " - A(h_+ - h?= us 2'- J-½)' (3.2)

where h "j+_ =- h(u'], uj+1'_ ). The numerical flux function hi+½ is required to be consistent with
the conservation law in the following sense

h(uj, uj) = f(uj). (3.3)

Three familiar three-point conservative schemes with the numerical fluxes of the form (3.2) are

the generalization of the Lax-Wendroff scheme with hj+_ = _ [/j+a + fj - X(aj+ ½)2(uj+a - uj)],

the Lax-Friedrichs scheme with hi+: ½[f.i+: + fj - uj)], and a generalization

of the Courant-Isaacson-Rees (CIR) [47], (or the Roe's first-order upwind [48]) scheme with
1

hs+ = : + L- -
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Rewrite equation (3.2) as

,,+1 = G( '_ '_ " ). (3.4)U 9 'ttj_ 1 _/tj, uj__l

The numerical scheme (3.4) is said to be monotone if G is a monotonic increasing function of

each of its arguments. Monotone schemes produce smooth transitions near discontinuities, but

they are only first-order accurate [24,25]. Examples of monotone schemes are the Lax-Friedrichs

scheme [25], the Godunov scheme [49], and the Engquist-Osher scheme [50].

In genera], the class &first-order upwind schemes is larger than the class of monotone schemes.

Not all first-order upwind schemes are monotone schemes. For example, the Godunov method

is a first-order monotone upwind scheme and is of the form

{ us < (3.5)hi+½ = max_,>,_>u,_lf(u) uj > uj+l

The Engquist-Osher method is again a first-order monotone upwind scheme. However, the

first-order upwind schemes of Huang [51] and Roe I48,52] are not monotone schemes [53]. It is

instructive to see that all of these popular first-order upwind schemes (with explicit Euler time

discretization) can be cast in the following form:

U°. +1 _- '//'3 ._D1 _D; _. (3.6)
d d

Here, Da represents some forward difference of the f or u and D2 represents some backward

difference of the f or u. For scalar nonlinear hyperbolic conservation laws, the different repre-

sentations for Di, i = 1,2, are not very crucial in terrns of CPU operations count. However, in

the implementation of these types of nonlinear schemes for systems of hyperbolic conservation

laws via certain approximations or local linearizations (e.g., Riemann solvers; c.f. section IV),

the operations count varies widely and depends on their original scalar representations. More

importantly, equivalent representations of the same scheme for the scalar case turns out to be

very different in operations count for their nonlinear system counterparl (employing the same

Riemann solver). This fact, especially in multidimensional cases, will become apparent in section

IV, where a pertinent discussion can be found.

For example, D1 can be

(3.7a)

or

D1 : A2(L,f3+l,uj,ui_l)(uj+l 'L_), (3.7b)

and D2 represents some backward difference of the f or u. For example, D2 can be

D2 --B,(L-,.L,uj-_,u,)(L - L-,) (3.8a)

or

(3.8b)

14



Hereall, al_, B1, and /32 are some known functions of the arguments indicated above. As an

example, consider the Engquist-Osher scheme, where the D1 and Dr for any convex flux function
fare

with

D1 = ff+l- ff, D2 = f f- f;_l,

ff = f(max(u3,_)),

(3.9a)

(3.9b)

aj+½ = (as+l + as)�2.

In [48], Roe defined

111D1 = -2 - sgn(as+½)](fJ+l - fS),

which has the same form as (3.7a), and

02 = _1[1 +sgn(aj__,)](fj- fj-x),

which has the same form as (3.8a).

as+½ = a(uj) Aj+½u : O,
(3.14)

where AS+ _ u = uj+l - uj. This is equivalent to Huang's method for Burgers' equation.

With the definition (3.14), scheme (3.10) can be rewritten as a three-point central difference

method plus a numerical viscosity term

n" 1%_½1Aj_,u ]. (3.15)uy +' = uj - _ [Ij_+a - Ij"-I -laj+½1Aj+_

1 t I](uj+l - uj), which has the same form asNow, using definition (3.14), D1 = _ [aj+ ½ - laj+ _.

a , + laj, j](u) - uj 1), which has the same form as (3.8b).(3.7b), and D2 : _ [aj__

15

(3.11)

(3.12)

(3.13)

Here

fj = f(min(u;,_)), (3.9c)

and _ is the sonic point of f(u); i.e., f'(_) = 0.

In [51], Huang introduced a first-order accurate upwind scheme

uy+l n All- sgn(ay+a)](fj'+,- f_)-All + sgn(ay ,)](fy - fj'-1)- (3.10)

She was vague in defining aj+ _ for a general flux function f, but for Burgers' equation, she

explicitly defined



Thenumericalflux functionasa functionof D1 can be written as

(3.16)

Or, one can express (3.15) as (3.2) with

1 , )A j÷ _ u],
hj+½ = _[fj + fjsl - g,(aj+_ .

(3.17a)

and

1/,(aj+ _ ) laj+ _ [. (3.17b)

g, is sometimes known as the coefficient of the numerical viscosity term. In this paper, the author

prefers to use equation (3.17a) as the form of the first-order upwind numerical flux function.

This form of the numerical flux function (3.17a) is not a common notation. But we can see later

that representation (3.17a) is quite useful for the development of second-order TVD schemes.

especially via the modified-flux approach [17]. Moreover, (3.17a) provides a more compact form

for extension to nonlinear systems [39]. The two previously mentioned fanfiliar schemes with

the numerical flux function (3.17a) are the Lax-Wendroff scheme with ¢',(aj+ _ ) -- A(aj+ _ )2, and

the Lax-Friedrichs scheme with _/,(aj__ :) =

It is well known that (3.10) or (3.15) is not consistent with an entropy inequality, and the

scheme might converge to a nonphysical solution. A slight modification of the coefficient of the

numerical viscosity term [17],

1:1 ;:I > (3.1s)

can remedy the entropy-violating problem. Here _)(z) is an entropy correction to Iz[, where _,

isa small positive parameter or a function of z (see reference [53] for a formula for _i)- Other

ways of modifying (3.17b) to satisfyan entropy inequality can be found in [7,54,55I.One can

view the sizeof _I as a measure of the amount of numerical dissipationfor the first-orderupwind

numerical flux (3.17a). _I - 0 isthe leastdissipative,and the larger the _I the more dissipative

the scheme becomes. Section VI discusses the use of _I for steady-state,blunt-body hypersonic

flOWS.

If we define

(3.19)

then, this upwind scheme can be written as

u_+, ,_ n )Aj+, u" - ,X('*(a_ , )Ai_, ,_". (3.20)

In other words, this conservative scheme can be viewed as a generalization of the Courant et al.

(CIR) nonconservative upwind scheme i47].
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3.3. Deficiency of Classical Shock-Capturing Methods

Although monotone schemes possess many desirable properties for the calculation of discon-

tinuous solutions, they are only first-order accurate [24,25]. For complex flow-field structures,

monotone and first-order upwind schemes are too diffusive. They cannot produce accurate

solutions for complicated flow fields with a reasonable grid spacing. One needs higher-order

shock-capturing methods. In the last ten years the emphasis has been on the development of

better methods for problems with shocks. As discussed in the introduction, one can loosely
divide higher-order shock-capturing methods into two classes. The classical one uses linear nu-

merical dissipation; i.e., ituses the same amount everywhere or consists of adjustable parameters

for each problem. The modern one uses nonlinear numerical dissipation. TILe amount varies

from grid point to grid point and is built into tile scheme with hardly any adjustable parameters.

Higher-order accurate classical upwind and synunetric (centered) shock-capturing schemes suf-
fer from the following deficiencies: (1) they produce spurious oscillations whenever the solution

is not smooth, (2) they may develop nonlinear instabilities when discontinuities are encountered,

and (3) the scheme may select a nonphysical solution. Figure (3.1) shows an example of spurious

oscillations associated with the classical shock-capturing method where the Burgers' equation is

solved by the Lax-Wendroff method. Here the flux function f(u) = u2/2. The initial condition

is taken to be a sine wave and the boundary condition is taken to be periodic. The solid lines

are the exact solutions at two different times and the circles are the solutions computed by the

Lax-Wendroff method. At the time when the solution is still smooth the computed solution

matches with the exact solution very well. However, at the time when the solution has devel-

oped into a shock, the scheme produces oscillations across the shock. The oscillations near the

shock remain the same as the mesh is refined.

3.4. TVD Schemes: Background

There are basically two classes of modern shock-capturing schemes which are more appropri-

ate for the calculation of weak solutions, namely the TVD [15-231 and ENO [12-14] schemes. In

addition, these schemes should be consistent with an entropy inequality, second- or higher-order
in smooth regions, and should produce high-resolution solutions near shock and contact disconti-

nuities. Most of the available higher-order TVD and ENO schemes possess these properties. The

main distinction between ENO and TVD methods is that certain types of ENO schemes can re-

tain the same spatial order of accuracy even at points of extrema, whereas TVD schemes reduce

to spatially first-order at these locations. The stencil of the globally higher-order ENO schemes

is wider than TVD schemes. For example, to achieve second-order accuracy away from shocks,

a five-point stencil is needed for the TVD schemes, whereas a seven-point stencil is needed for

the ENO schemes. However, ENO schemes are not necessarily absolutely oscillation-free. They

pernfit oscillation across discontinuities up to the order of the truncation error. The recently

introduced total variation bounded (TVB) schemes such as Shu [56] can be globally high-order
accurate in space. TVD and TVB schemes are a subset of ENO schemes and are more efficient

in terms of operations count. ENO schemes are still in the development stage, whereas TVD

schemes are more established in the sense of application to a wide range of multidimensional

gas-dynamics problems. Only TVD schemes will be discussed here. Before a detailed discussion

of the theory and the method of construction, the performance of a second-order TVD scheme

will be illustrated. A second-order TVD scheme developed by Harten was applied to the same
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Burgers'equationat the sametwo time instancesas the I,ax-Wendroffschemesasshownin
figure(3.2). Thesolutionsareverysmoothneartheshock.

Thissectionis devotedto theintroductionof TVD schemes.Thedefinitionandsufficientcon-
ditionsfor a schemeto heTVD will first becoveredandthensomefirst-orderTVD schemeex-
ampleswill begiven.It turnsout that all themonotoneandfirst-orderupwindschemesarefirst-
orderTVD schemes,andall first-orderTVD schemesgeneratemonotonicshockprofiles.Unlike
monotoneschemes,not all TVD schemes are automatically consistent with an entropy inequality.

Consequently, some mechanism may have to be explicitly added to TVD schemes to enforce the

selection of the physical solution. An example is the entropy correction _,(z) ((3.18)) to tzl

for the first-order Roe scheme. It is emphasized here that the TVD property is only valid for

homogeneous scalar hyperbolic conservation laws. For nonhomogeneous hyperbolic conservation

laws, in order for the source term to not influence the TVD property, it is restricted to a special

class of functions and fluid flows. For example, if the source term is contractive in the sense of

stiff ordinary differential equations and if the governing equation contains no shock waves, it is

expected that the source term will not influence the TVD property, especially if steady-state

solutions are desired. This as well as TVD schemes for IBVPs will be subjects of discussions in
later subsections.

Since the introduction of the notion of TVD schemes by Harten [17], many sufficient, necessary

and sufficient and necessary conditions for nonlinear difference schemes to be TVD have been

generalized. See for example [56-621. Also, less restrictive conditions than TVD have been

introduced. This leads to the more recent development of ENO schemes [12-14!, TVB schemes

[56!, positive schemes [63,64] and nonlinear filter method [65]. Also, many of the popular schemes

in use today are only either TVD in the semi-discrete (method-of-lines) sense [23,57,66] or only

TVD for the constant coefficient case [19-21,73]. Also, a vigorous approach for a class of TVD

nmlti-]evel type high-order time discretization was recently introduced by Shu !611.

Among all these variations, the basic fundamental idea can be best illustrated by Harten's

original TVD notion for a one-parameter fanfily of linear multislep time discretizations. The

definition of TVB schemes and some examples will also be included in section 3.5.4.

In the following discussion, wherever there is no confusion, the term TVD scheme is loosely

used for schemes that are TVD for (a) the fully discretized form, (b) the semidiscretized form,

or (c) the frozen constant coefficient case.

Consider a one-parameter family of five-point difference schemes in conservation form,

u'] ÷_ + AO( h'!÷z, - h'Y_ ) = u_' - A(1- O)(h']+_ - h" ,), (3.21)

where 0 < 0 < 1, h" h(u_ 1 n ,_ .uy4.). and /,-+1 ,, _-_2 n,÷_ u_÷l _,_÷2,llj,'t/j+l " '" 1 -- /2tl/) I " '- - :+_ 3_ 3 3+1,uj÷2). The

same numerical flux function h j_ _ with a different time-i'ndex appears on both sides of the

equation. Let

hj._ = (1 - O)hy+, ,_-t

be another numerical flux function. Then (3.21) can be rewritten as

(3.22)

uj = uj j+ _ j_ _. (3.23)
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o n nHere ha+_ = h(u'] 1,uj,ua+l,uj+:,u u,]+l ,,+1 n+l_' _ , ,uj+ 1 ,uj+ 2 ) and is consistent with the conser-
vat ion law (3.1) in the following sense

h(u,u,u,u,u,u,u,u) : f(u). (3.24)

This one-parameter family of schemes contains implicit as well as explicit schemes. When

0 - 0, (3.21) is an explicit method. When 0 _ 0, (3.21) is an implicit scheme. For example, if

0 - 1/2, the time differencing is the trapezoidal fornmla, and if0 = 1, the time differencing is the

backward Euler method. It is not necessary to have the same numerical flux function appear in

both the implicit and explicit operators. Other forms of difference schemes can also be analyzed.

However, for implicit methods it will be more difficult to analyze the TVD property. To simplify

the notation, rewrite equation (3.21) as

L • tt n+l = R • llrt3

where L and R are the following finite-difference operators:

(3.25)

(L.u)j = uj + AO(hj+½ - hi_½)

(R.% = - - 0)(hi+ - hi_}).

The total variation of a mesh function u" is defined to be

Here the general notation convention

A i+½z = za+l - za (3.28)

for any mesh function z is used. The numerical scheme (3.21) for the initial-value problem (3.1)
is said to be TVD if

TV(u'+') <_ TV(un). (3.29)

The following sufficient conditions for (3.21) to be a TVD scheme are due to Harten [17]:

TV(R. u '_) < TV(u n) (3.30a)

and

(3.26a)

(3.26b)

TV(L. u _+a) 2 TV(u'+_). (3.30b)

Assunfing thatthe numerical flux hi+ ½ in (3.21)is Lipschitz continuous, (3.21)canbe written
as

u", +lJ - )_0 '- ½A j+

n+l

---- Uj + /_(1 -- 0) , -- Cq- ,z2ij ,'u
._ 3-5 2

(3.3])
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whereC_
j+½ = C'7-(ui_l,u.i,uj±l,uj±2) are some bounded functions.

showed that sufficient conditions for (3.30) are

(a) for all j

Then Harten fllrther

C;+½ = .k(1- 0)(_ff+ ,._>0_ (3.32a)

-+ , + ("j-+, } < 1, (3.32b)

and

(b) for all j

< (_ < --)_0C_:. 1 < 0 (3.33)

= 1 z] defined in {3.19), thefor some finite C. For example, when 0 = 0 and t_:_ = (':_ _ [_',(:)± as

resulting scheme (3.21) is a first-order explicit upwind scheme, whereas when 0 - 1 with the same

±, the scheme is a first-order implicit upwind method. Both of these met hods satisfy conditions

(3.32) and (3.33). By exanfining all the first-order upwind schemes and the Lax-Friedrichs

method in section 3.3, it can be shown that they are first-order TVD schemes. However, the

Lax-Wendroff method does not satisfy the TVD condition (3.30a). Conditions (3.32) and (3.33)

are very useful in guiding the construction of higher-order-accurate TVD schemes which do not

exhibit the spurious oscillations associated with the more classical second-order schemes. Other

necessary and/or sufficient conditions for senti-discrete and fully-discrete difference methods for

nonlinear hyperbolic PDEs can be found in references [23,57,61}.

3.5. Higher-Order Explicit and Implicit TVD Schemes

The author is aware of primarily four different (and yet not totally distinct) design principles

for the construction of high-resolution TVD-type schemes. They are as follows: (1) hybrid

schemes such as the flux-corrected transport (FCT) of Boris and Book [67], Harten !68], and

van Leer [691; (2) second-order extension of Godunov's scheme by van Leer [15], and Colella and

Woodward [16]; (3) the modified-flux approach of Harten [17]; and (4) the numerical fluctuation

approach of Roe [18! and Sweby [70 i. Also, Osher [59] has subsequently extended the first-order

scheme of Engquist-Osher to second-order accuracy by using lhe above ideas. More recently,

Jameson and Lax !23 extended the TVD idea for multi-point schemes. The following is a

subjective interpretation of these design principles.

(1) The flux-corrected transport scheme is a two-step hybrid scheme consisting of a combined

first- and second-order scheme. It computes a provisional update from a first-order scheme, and

then filters the second-order corrections by the use of flux lirrfiters to prevent occurrence of new

extrema.

The idea of the hybrid scheme of Harten or van Leer is to take a high-order-accurate scheme

and to switch it explicitly into a monotone first-order-accurate scheme when extreme points and

discontinuities are encountered.
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(2) Van Leerobservedthat onecanobtainsecond-orderaccuracyin Godunov'sschemeby
replacingthepiecewise-constantinitial dataof theRiemannproblemwithpiecewise-linearinitial
data. Theslopeof thepiecewise-linearinitial datais chosensothat nospuriousoscillationscan
occur.ColellaandWoodwardfurtherrefinedvanLeer'sideabyusingpiecewise-parabolicinitial
data.

(3) The modified-fluxTVD schemeis a techniqueto designa second-orderaccurateTVD
schemeby starting with a first-orderTVD schemeand applying it to a modifiedflux. The
modifiedflux is chosensothat the schemeis second-orderin regionsof smoothnessandfirst-
orderat pointsof extrema.Detailsof the constructionof this schemecanbe foundin reference
[17].A discussionwill bepresentedin a later section.

(4) The numericalfluctuationapproachof Roe is a variation of the Lax-Wendroff scheme.

Hoe's variation depends on an average function. The average function is constructed (in such

a way that spurious oscillations will not occur) by the use of flux linfiters. As a matter of fact,

under certain assumptions, a form of Hoe's second-order scheme is equivalent to the modified-flux

approach. Hoe's second-order scheme was put into the TVD framework by Sweby [70].

Most of the above methods can also be viewed as spatially three-point central-difference

schemes with an "appropriate" numerical dissipation or smoothing mechanism. "Appropriate"

here means automatic feedback mechanism to control the amount of numerical dissipation, unlike

the numerical dissipation used in linear theory. Design principles {2)-(4) are more closely related

to the mathematical notion of TVD schemes devised by Harten. Hybrid types of schemes sinlilar

to design principle (1) do not fit in the same mathematical notion and will not be discussed in

this paper. An excellent comparison between the performance of the various methods and ENO

schemes on a representative scalar advection problem can be found in Zalesak !71].

In general, the basic idea of the above design principles is to construct a higher-order

scheme which has properties similar to a first-order TVD scheme so that spurious oscilla-

tions cannot be generated. The main mechanisms for satisfying higher-order TVD sufficient

conditions are some kind of limiting procedures called ]imiters (or flux limiters). They im-

pose constraints on the gradients of the dependent variable u (slope limiters) or the flux

function f (flux limiters). For constant coefficients, the two types of limiters are equiva-

lent. One can obtain a second-order TVD scheme by modifying an upwind scheme or a centered

scheme with proper limiters; i.e., if the scheme so constructed satisfies the TVD sufficient condi-

tions. For nomenclature purposes, the term "upwind" or "symmetric" TVD schemes will be used

to denote the original higher-order scheme before the application of limiters. Another way of dis-

tinguishing a higher-order upwind from a synunetric TVD scheme is that the numerical dissipa-

tion term corresponding to a higher-order upwind TVD scheme is upwind-weighted, whereas the

numerical dissipation term corresponding to a symmetric TVD scheme is non-upwind-weighted

(centered). This generic use of the notion upwind and symmetric TVD schemes no longer has

its traditional upwinding and centering meanings. Since any high-resolution upwind (except

first-order upwind schemes) or synurtetric TVD schemes has the automatic feedback mechanism

(slope or flux limiters) built into the scheme, a symmetric TVD scheme might become upwind

biased or a high-resolution upwind scheme iIfight become centered. Note that limiters are only

used for schemes that are higher than first-order. In general, symmetric TVD schemes are

simpler than the upwind TVD schemes. This point will become apparent later.

For the purposes of this paper, spatial order of accuracy of TVD schemes refers to the numer-

ical solution that is away from extreme points (shocks and contact discontinuities).
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3.5.1. Higher-Order Upwind TVD Schemes

Now we discuss the derivation of higher-order schemes in conjunction with TVD properties

(i.e., the method of obtaining higher-order schemes using limiters). There are many varia-

tions but basically they can be divided into two general approaches: namely, (1) the so-called

"MUSCL" (monotonic upstream schemes for conservation laws) approach due to van Leer, and

(2) the others, hereafter grouped under the non-MUSCL approach. The methods of van Leer

[151, Harten [17], Roe [18], Sweby [70], and Osher-Chakravarthy [22] for upwind TVD schemes,

and the methods of Davis [19], Roe [20] and Yee [21] for syrmnetric TVD schemes are typical

examples of the MUSCL and non-MUSCL approaches respectively. The "MUSCL" and "non-
MUSCL" nomenclatures are used for convenience and ease of reference for later discussion. Note

that one can obtain higher-order upwind TVD schemes via either the MUSCL or non-MUSCL

approach.

For simplicity, take the forward Euler time differencing so the scheme has the form

u_ +1 = u3n-.X[h'! _-h"s+_ o-½]' (3.34a)

with

- 1
hi÷ ½ = _ [fj+] + fj + q_j._½]. (3.34b)

Here the notation for the higher-order numerical flux hs+ _ is used to distinguish it from a first-

order numerical flux b j+ _. Also the numerical fluxes described below will be a first-order time
discretization for the MUSCL and Osher-Chakravarthy schemes. One would not recommend

the use of the explicit Euler time discretization for these two methods, since if the limiters are

not present, linear stability analysis shows that these two methods are unconditionally unstable.
Forms that are second-order in time will be discussed at the appropriate places. Alternatively,

one can discuss the various higher-order constructions via the semi-discrete approach. However,

additional analyses are needed for the method-of-hnes or multistage time differencing before the

final fully discretized form is TVD. See references [57,61] for a discussion.

MUSCL (Monotonic Upstream Schemes for Conservation Laws) Approach: Consider a three-

point explicit difference scheme (2.2) in conservation form,

u:+1 o- (h L - h, ,)= uj _ j_

t3.35)

where the numerical flux hs+ ½ is a function of u: and uo+l. lrse the short-hand notation

Aj+_ = u3+ 1 - uj (i.e., delete the u from Aj+½u; Aj__½ and Aj. _u will be used interchangebly
throughout the text) and consider a first-order upwind numerical flux function of Roe.

, = . - , _. (3.36thj+ 5 _[fj+ fj*l la,4_,Ag,:

Although the Roe's first-order numerical flux is used, the following discussion also applies to a
variant of Roe's numerical flux and the Lax-Friedrichs numerical flux. See section 3.5.4 for a

discussion.
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In reference [15], van Leer observed that one can obtain spatially high-order accuracy in

Godunov's scheme by replacing the piecewise constant initial data of the Riemann problem with

pieeewise linear initial data. The MUSCL approach applied to Roe's first-order numerical flux

(instead of Godunov's scheme) to obtain a spatially higher-order differencing involves replacing

1 and u L , where u R and u L are defined for second- andthe arguments uj+ 1 and u i by u_+_ 3+½

third-order spatial differencings as follow:

1[ ]_+_ :- _j+l - 4 (1 - _)a_+_ + (1 + _)A_+½ , (3.37a)

UL+,._ -- Uj+ _ (1 O)Aj ,_ 4 (1-, _)Aj+½ . (3.37b)

Here the spatial order of accuracy is determined by the value of _/:

_=0,

_1- 1/3,

q=],

fully upwind scheme

Fromm scheme

third-order upwind-biased scheme

three-point central-difference scheme

Various "slope" linfiters are used to eliminate unwanted oscillations. A popular one is the

"rrfinmod" limiter; it modifies the upwind-biased interpolation as follows:

_+_ -- _+_ - _[(1- _)aj+_ + (l+_)aj+_], (3.38a)

1[(1 (1 _)A_+ _],_½=_J+_ -_)__½+ + (3.38b)

At+ ½ = minmod (A j+ ½, _vAj_ ½), (3.38c)

where

A./+ _ = minmod(Aj+ ½, wAj+ _ ), (3.38d)

minmod(x,wy)=sgn(x)'max{O,rnJn[Ixi,_ysgn(x)]}, (3.38e)

and 1 <_ ,l _< _ with _ _ 1, and sgn(x) denotes the sign of the variable x. Therefore, a

spatially higher-order scheme can be obtained by simply redefining the arguments of hi+½ ; i.e.

lty +1 : ?.tin .k h(u _" uL3_, ) - h(u_,,_ u _'). (3.39)

Applying the above to the first-order Roe scheme, the second-order numerical flux by the

MUSCL approach denoted by -hvg is

J+½ -_ h U a,a L
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-- --- t 3_I_ 5,) ,) .

For _ = -1, Aj+½ = Aj_½ can be the limiter function as follows:

(3.40

(3.41
The parameter 10 -7 _< 62 _< 10 -s is a commonly used value in practical calculations. This

limiter function is due to van Albada et al. [721.

One way to obtain a second-order time discretization (in addition to higher-order spatial dis-

cretization) is to replace the forward Euler time discretization by some linear multistep method,

by a Runge-Kutta-type time discretization or a predictor-corrector-type time differencing. An-

other way (due to S. Hancock of Physics International, San Leandro, California, USA, unpub-

and u(" by the following:lished) is to redefine u_. _ j+ ½

3+½ =tuS + _gj) (3.42a)

, =(us_l- - 293+I). (3.42b)-/+5

Here ._j is the same as Aj+½ in equations (3.41) or the nfinmod function (3.38e) (with ,z : 1, x
rl_ 1, .

replaced by AS+ ½ and y replaced by A s_ ½). The quantity u s " _s

u s = uj - _ f (uj + ,2-gs) -f (u_ 295) . (3.43)

One can also obtain second-order time discretization by the predictor-corrector type of time

differencing used by Colella and Woodward [16] and Colella [7T.

Modified-Flux Approach (Harten): Now the second-order (space and time) TVD scheme of

Harten [17] is considered. His method is sometimes referred to as the modified-flux approach.

Apply the first-order TVD scheme to an appropriately modified flux

f ,--- (f + g). (3.44)

The second-order numerical flux looks exactly like the first-order scheme, except it is a function

of ] = (.f - g) instead of f. Thus, the second-order numerical flux denoted by _U is
, , ./_½

1_ )A3_ , 3.45a)

with

gs = nfinm°d(aj--½ As+ _,aJ IAs-{),

as+½ = as+½ + TS+½,

3.45b)

(3.45c)

24



zx¢÷½¢ 07j+½ = 0 A j+½ = 0,
(3.45d)

where the flmction _:(z) is an entropy correction to Iz[ (e.g., equation (3.18)). For time-accurate

- a(a-1 ) and can be expressed ascalculations, crj+ ½ , 3+

1

a(z) = _[_b(z)- Az 2] > 0. (3.45e)

For steady-state calculation and/or implicit methods (0 _ 0 in (3.21}),

a(z) = _/,(z) _> 0. (3.45f)

In other words, (3.45) is a first-order numerical flux with f replaced by f and the mean value

characteristic speed ajq_ 12 replaced by the modified characteristic speed fij+ ½ = aj+ ½ + 7j+½.
Other more complicated forms of the g_ function which include artificial compression can be

found in Harten's original paper. The current form (3.45) is quite diffusive, and a slight modifi-

cation of this form without the use of additional artificial compression [17] by the author [74,75]

will be discussed in section 3.5.2. The TVB scheme of Shu [56] and the generalization to higher-

order TVD and TVB schemes using the first-order Lax-Friedrichs numerical flux [56,76] will

be discussed in section 3.5.4. To illustrate the difference in shock resolution between equations

(3.45) and the form suggested by the author, numerical examples for one-dimensional shock-tube

problems [1J will be given in section IV and two-dimensional problems can be found in [41,74].

Roe-Swcby Second-order TVD Scheme: The scheme of Roe-Sweby [18,701 starts with a first-
order upwind scheme whose numerical flux is

1

hj+_ _[fj+, + fj sgn(aj+½)(fj+i - fj)], (3.46)

and adds a second-order correction term to hi+ ½. The second-order (space and time) numerical
flux is of the form

 Rsl (3.47a)

where

r = uj+l+_-uj+_,, a= sgn(aj+½). (3.47b)
Aj+½

Here 6(r) is a limiter and it can be

_(r) = nfinmod(1, r),

+ Irl
-

l+r

6(r) = max [0, min(2r, 1), nfin(2, r)].

(3.47c)

(3.47d)

(3.47e)

25



r_r" is dueto vanLimiter (3.47d) is due to van Leer and a variant of (3.47d) with b(r) 1--¢-'

Albada et al. 172]. The last linfiter designed by Roe, nicknamed "superbee" [18], is the most

compressive hmiter among the three. It is especially designed for the computation of contact

discontinuities. A wider class of limiters recently generalized by Roe is discussed in reference

[6O].

Osher-Chakravarthy TVD Scheme: Instead of using a MUSCL approach, Osher-Chakravarthy

started with a one-parameter family of senti-discrete schemes with numerical flux

- (l-_)(_j+af_) (l_/)(A_÷,f-)

(l+_/)(Aj+½f+) + (1 q)(A {f_+ 4 -_ ), (3.48)

where hi+½ = h(u.i, uj+l) is some first-order upwind numerical flux. I1 can he the Engquist-
Osher or Roe's first-order upwind numerical flux. Here i? has the same meaning as before. They

also derived formulas for more than five points and higher than third-order cases. Only the

second- and third-order are discussed here since for practical computations, schemes larger than

five-point stencil using linfiters would he extremely CPU intensive.

The superscript + or - in (3.48) denotes the flux difference across the wave with positive or

negative wave speed. To obtain a higher-order TVD scheme, they modified the last four terms

on the right-hand side by utilizing "flux" limiters as

_oc
hi+ = hi+ ½ (1-VI)(Aj_f-)4 (l+_)(AJ_-_f-)4

(1 + _) -_ (1 - _)(Aj--_f-_ ), (3.49a)

with

f- nfinmod A j+ , f iAj+_ (3.49b)

Aj+½f- = minmod[Aj+½f ,wAj+_f i, (3.49c)

A3+_f- =nfinmod[Aj+½f ,t,,'Aj _ I' (3.49d)

Aj_5_ f- = minmod[Aj_ ½f4 ,_.A._ _'f_], (3.49e)

3-_
and 1 <_ ,_' < a-_"

One way to obtain a second-order time discretization is to replace the forward Euler time dis-

cretization by some linear mu]tistep method or by the Runge-Kutta type of time discretization.

Note that the MUSCL way of obtaining higher-order time discretization is no longer valid in

the Osher-Chakravarthy formulation.

Numerical experiments with the above four schemes on one- and two-dimensionaJ steady-state

calculations (section IV and [18,39,41,66,77-79]) show that they produce siHfilar shock resolution.
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In certain instances, the third-order scheme gives a slightly better result than the second-order

method. In general, the improvement from second-order to third-order is far less pronounced

than from first-order to second-order schemes. This is due partly to the fact that all TVD

schemes of higher than first-order reduce to first-order at points of extrema. Knowing their
performance, it is relevant to compare their computational effort.

Due to the design principle of this scheme, for _7 : -1 the numerical flux h° C requires one
' 3+ _-

more limiter than Harten's method. For _ ¢ - 1, two more linfiters than van Leer's method and

three more limiters than Harten's method are required in addition to an extra step of getting

higher-order time discretization. The extra computations will become even more apparent as

we extend these schemes to system cases. See reference [391 or section 4.6 for details.

3.5.2. Higher-Order Symmetric TVD Schemes, and Harten-Yee-Roe-Davis Gener-
alization

The previous four methods are upwind methods. Next, the basic idea of second-order sym-

metric TVD schemes of Davis [19], Roe [20] and Yee I21] will be briefly described. Interested

readers should consult the references cited for the actual construction of these methods.

In 1984, Davis [19] expressed a particular form of Roe-Sweby's second-order TVD scheme

[18,70] as a sum of two terms. One term was the Lax-Wendroff method and the other term

was an additional conservative dissipation term. He then simplified the scheme by eliminating

lhe upwind weighting of the dissipation term and at the same time ensured that the simplified

scheme still had the TVD property. Shortly after that, Roe [20] reformulated Davis's approach

in a way that was easier to analyze and included a class of TVD schemes not observed by

Davis. Subsequently, the author !21,80,81] generalized the Roe-Davis schemes to a one-parameter
family of second-order explicit and implicit TVD schemes. The fornmlations of Roe-Davis can be

considered as members of the explicit schemes. The main advantages of the author's formulation

are that stiffproblems can be handled by using implicit methods and that steady-state solutions

are independent of the time step.

A general discussion and derivation with extensive numerical examples on symmetric TVD

schemes can be found in a reference by Yee 121]. A careful examination of the modified-flux

approach of Harten (later modified by Yee), Roe-Sweby, the symmetric TVD schemes of Davis,

Roe, and Yee, and the higher-order TVD Lax-Friedrichs schemes [76] reveal that these schemes

have a very similar structure and can be expressed in the same general form. They are simpler

to implement than the MUSCL or the Osher-Chakravarthy schemes. Therefore, most of the nu-

merical examples given later mainly employ these methods. Consider the general one-parameter

family of explicit and implicit schemes of the form (3.21)

ltn-_ 1 n

+AO(h'_ +] -h n+'_= '_-_(1-O)(h_+.__ ½, ,,j , - (3.50a)J

The numerical flux for the second-order TVD schemes of Harten-Yee-Roe-Davis can be written

as

"hj-_½ = _[fj + L+l + Cj+ _). (3.50b)

The schemes only differ in the forms of the 0 function which are very sinfilar to each other.
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Harten-}k_e Upwind Schemes: The ¢ function of Harten's original modified-flux scheme was

discussed earher. That form of the numerical flux is quite diffusive. The author's modification

to equation (3.45a) is less diffusive and can be written as

Cj+ _ = a(aj+ ½)(gj + 9j-_1) - z/,(a_+ ½ _ ")j+ _ )Aj+ 3 ' (3.51a)

= + - O)z 2, (3.51b)

9j = minmod( A._+ _, A j_ ½), (3.51e)

{ _-_'---_- A j+½ #0")j+½ : a(aj+{) a,_ (3.51d)
0 Aj+_ 0

The coefficient /3 of the second term on the right-hand side of (3.51b) is the second-order time

discretization. Here for an explicit method one sets _3 - 1, whereas for an implicit method or

steady-state calculations, one sets _ = 0 and 0 _- 0. For implicit methods, it is not recom-

mended that /3 _ 0 be used since the resolution of the solution, in particular for steady-state

computations, depends on the time step At. This modified form (3.51a) is just a change in the

definition of the original 93 function of Harten (equation (3.45b)) by removing lhe cr_ _ from

(3.45b). In equation (3.51a), the crj+__ is then incorporated as a factor of (% + g.H_)- With

the definition of (3.51), the scheme is only TVD for constant coefficient hyperbolic equations.

However, it belongs to the class of positive schemes studied by Einfeldt [63].

One can generalize this method even further by including other linfiters such as

gj = minmod(Aj_ _, A j+ _ )

gJ = (Aj+½AJ-½ + ]Aj+½Aj-_I)/(Aj+½ + Aj-_ )

,))gj = minmod (2A j_ ½,2A j+ ½,

gj : S" max[0,mJn(21Aj+½1,S. A.7_ ½),min(tAj+½],2S.AJ_½)]

(3.51e)

(3.51f)

3.51g)

(3.51h)

: S - sgn(Aj+ ½).
(3.51i)

Here b2 is a small parameter to prevent division by zero. In practical calculations t 0 7 < b2 <

10 5 is a commonly used range. The minmod function of a list of arguments is equal to the

smallest number in absolute value if the list of arguments is of the same sign. or is equal to zero

if any arguments are of opposite sign. The limiter (3.51h) is due to Woodward and Colella [82 I.

Roe-Sweby Scheme: The Roe-Sweby numerical flux can be rewrillen in the form {3.50) with (see

section 4.6 for a derivation)

, .7_
(3.52)
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wherer is the same as (3.47b).

Yee-Roe-Davis Symmetric Scheme: For the Yee-Roe-Davis symmetric TVD schemes, the Cj+ 3
can be expressed in the form

= -[_(aj+})_t)j+ } + _(_j+ _)(ZX3+_ - £)j+})],

with Qj-t } chosen from

(3.53a)

(_ = ,)+minmod(Aj+,,As43 )- AS4,,j.+ }, Irfinmod(Aj4 }, A s _ 5 ._ 5
A

Qj__l = minmod(A s_3,Aj+½,Aj+_),

^ 10s+ _ = mimnod [22x¢_ 3' 2Aj_ 3' 2A j+ :3, } (A s_ __-_ A_+ _ .

(3.53b)

(3.53c)

(3.53d)

Other forms can be found in Roe's paper [20] or one can design one's own limiter as long

as a TVD sufficient condition (or a TVD necessary and sufficient condition) is satisfied. The

coefficient 3 of the first term on the right-hand side of Oj+ _ in (3.53a) is the second-order time

discretization, and the last term can be viewed as a numerical dissipation term. The paran_ter

2 has the same meaning as in (3.51). For the explicit method (0 = 0), if one sets/3 = 1 and Q to

be the first limiter, it is the original explicit synm_etric scheme of Davis. If one sets _ = 1 and

takes any of the three linxiters, it is Roe's TVD Lax-Wendroff scheme [20]. Taking the implict

scheme (0 ¢ 0) with 2 = 0 and any of the lk_fiters, it is the form that the author proposed. It

is suitable for time-accurate as well as steady-state computations [81,21]. See Roe [20] for more

examples of the Qs+ { functions.

For analysis purposes it is sometimes convenient to let Qs+ ½ = Q J+ 3 AS+ ½ and to express the

CS+ ½ function for the explicit second-order synmletric TVD schemes [20] as

Oj+} = - [A(as-_ ½)2Qj÷½ + 0(aj+})(1 - Qj+})] A j+}. (3.54a)

Let

A j_, Aj__ z
r- = ----2; r + -- _ (3.54b)

AS+ } AS+

The Q function can then be written as

Q(r-,r + ) = minmod(1, r- ) + minmod(1,r + ) - 1,

Q(r-,r + ) = minmod(1,r-,r+),

Q(r-,r +)=minmod 2,2r-,2r +,_(r- +r +) .

(3.54c)

(3.54d)

(3.54e)

The graphical representations of these three linfiters for sylmnetric TVD schemes are shown in

figure (3.3). Theoretically, one can design other hrtfiters graphically by the aid of the sufficient

condition. It is recommended that (3.53) he used instead of (3.54) for practical implementation
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sinceone doesnol haveto make an extra logica] test (or add a small number) for avoiding

divison by zero if A)__ ½ = 0.

3.5.3. Global Order of Accuracy of a Second-Order TVD Scheme [83]

One of the drawbacks of higher-order TVD schemes is that they reduce to first-order at points

of extrema. In the modified-flux approach, for example, the form of 9j devised by Harten has

the property of switching the second-order scheme into first-order at points of extrema (i.e.,

gj = 0 at points of extrema). To see this, the behavior of the modified-flux approach around

points of extrema is exanfined by considering its application to data where

uj-1 < uj = u.i+l >_ u3+,,. (3.55)

In this case gj = 93+1 - 0 in (3.45c), and thus the numerical flux (3.45a) becomes identical

to thai of the original first-order-accurate scheme. Consequently, the truncation error of the

second-order scheme (3.34) together with (3.45) deteriorates to O((Ax) "_) at j and j 4 1. This

behavior is colmnon to all TVD schemes, since this is one of the vehicles used to prevent

spurious oscillations near a shock. Thus, a second-order TVD scheme must have a mechanism
that switches itself into a first-order-accurate TVD scheme at poin!s of extrema. Because of

the above property, second-order-accurate TVD schemes are genuinely nonlinear; i.e., they are
nonlinear even in the constant-coefficient case. Due to the uncertainty of the effect of the above

property on the global order of accuracy, some numerical experiments were performed on the

Harten scheme with an artifical compression [171 for Burgers' equation

Ot + (u2/2) = 0. (3.56a)

Here the flux function f(u) = u2/2. Since the theory of TVD schemes is only developed for

initial-value problems at this point, a periodic problem was considered to avoid extra complica-

tion. The initial condition is the same as shown in figures (3.1) and (3.2), namely

u(x,0) = sinrx, 0 < x 5 2. (3.56b)

The local error of the computation at each grid point (jAx, rlAt) is defined as

lq

(j = uj - u(jAx,nAt), (3.57)

where u(jAx, nat) is the exact solution of the differential equation (3.56). Here we assume that

lhere is a fixed relation between At and Ax. _fhe global order of accuracy m is delermined by

I1,,',1= o(A, TM ) (3.58)

as the mesh is refined for some norm.

To obtain the global order of accuracy numerically, the error at a fixed time was computed for

a given mesh and repeated with increasingly finer meshes. Figure (3.4) shows the global order

of accuracy of the second-order TVD scheme compared with the Lax-Wendroff method at time

t = 0.2, when the solution is still smooth. The order of accuracy for the TVD scheme is 2 for
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the L1 norm, around 3/2 for the L2 norm, and 1 for the L_ norm. On the other hand, the order

of accuracy for the Lax-Wendroff is 2 for all three norms. The main reason for the difference in

the order of accuracy on the three norms for the TVD scheme is that the scheme automatically

switches itself into first-order whenever extreme points are encountered. In this case there are

two extreme points.

Next, the global order of accuracy of the two methods was examined at time t = 1.0 when a

shock has developed. Figure (3.5a) shows the order of accuracy of the TVD scheme at t = 1.O,

which is identical to the one at time t = 0.2. But the order of accuracy for the Lax-Wendroff

is drastically degraded. It is 1 for the L1 norm, around 1/2 for the L2 norm, and 0 for the

Lo_ norm. This is due to the inherent characteristic of the Lax-Wendroff method that causes

this scheme to generate spurious oscillations near the shock. Figures (3.1) and (3.2) show the

numerical solution of the Lax-Wendroff method compared with the second-order explicit TVD
method at t = 0.2 and t 1.0

3.5.4. Other High-Resolution Schemes with Related Properties

In sections (3.4) and (3.5.1)-(3.5.3), emphasis was on first-order upwind TVD schemes and

their higher-order extension. Here, besides the synm_etric TVD schemes (3.53), the use of

the Lax-Friedrichs flux to obtain high-resolution shock-capturing schemes is generalized [761.

This method can be extended to a nonlinear system of equations without the use of Riemann

solvers or flux-vector splitting approaches, and thus provides a large saving for multidimensional,

equilibrium real gases and nonequilibrium flow computations.

The construction of second-order TVD schemes using the first-order Lax-Friedrichs numerical

flux on a staggered grid was first suggested by Nessyahu and Tadmor i84i. Shu [56] suggested

modifying many existing TVD schemes such as the modified flux, and the Osher-Chakravarthy

methods to be TVB and at the same time use the Lax-Friedrichs numerical flux as a base. Here,

the author suggests the use of MUSCL and first-order Lax-Friedrichs numerical flux to obtain

high-resolution TVD or TVB schemes [761. The advantage of using the MUSCL approach over

the non-MUSCL approach together with the Lax-Friedrichs numerical flux is that when gen-

eralized to nonlinear system cases, there is no need to use any type of Riemann solver. For

gas dynamics applications the limiter can be applied on the slope of the conservative variables

or the primitive variables themselves, thus making the extension to multidimensional problems

straightforward, since one does not have to use the local one-dimensional characteristic variables

assumptions or the complicated truly multidimensional Riemann solvers. A more detailed dis-

cussion and a generalization including both the MUSCL and non-MUSCL formulation with one-

and two-dilnensional gas dynamics applications can be found in Yee [76]. This type of scheme,

hereafter, referred to as "high-resolution TVD and TVB Lax-Friedrichs schemes" is briefly de-

scribed here. The definition of TVB schemes and an example are also included.

TVB Schemes: The numerical method (3.21) for an initial-value problem of (3.1) is said to be

total variation bounded (TVB) in the time interval (0 < t < T) if

TV(u '_) <_ B, (3.59)

for some fixed B > 0 depending only on u °, and all possible n and time step At such that. nAt _<

T. TVB schemes are less restrictive than TVD schemes. Clearly TVD implies TVB. There are

two advantages of TVB schemes over TVD schemes: (a) TVB schemes can be uniformly higher-
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order accuratein spaceincludingextremapoints: (b) il is easierto deviseboundaryschemes
that areTVB for the combinedinteriorandboundaryscheme.

In references[9,56],Shushowedproceduresof modifying some existing TVD schemes such

that the resulting schemes can be proven to be TVB and of globally higher-order accuracy in

space, including extrema points. For example, by replacing the gj function in equations (3.45b)

and (3.51) by gM below, the modified flux schemes carl be made unifornfly second-order accurate

even at points of extrema. One can define

g_ t = _ nfinmod(dj4 -._."_dj-5' -_ MAz'sgn(d_, ,._))

+ 12nfimnod(dj_ ½,todj+½ t MA_'_sgn(dj ½)). (3.60)

with dj+½ = crj+½Aj+½ to replace (3.45b) for the original Harten scheme to be TVB, and

dj+ 1 = A j+ ½ to replace (3.51) for the author's modification to Harten scheme to be TVB. Here
1 < _v <_ 3 and ill > 0. Shu suggests setting M 50 for the Burgers' equation computations.

One can improve the global order of accuracy of the MUS('L scheme (3.39) by modifying u_+ __

and u L in equations (3.38) bv_+_
M

1_ _ M

_+_ _ _ ,
(3.61b)

Aj_½_ M = nfinmod(Aj__,,wAj _' + MAz2sign(A +. _'))" (3.61c)

M

Aj+½ = minmod(Aj4½,coAj+z + MAz2sign(Aj_ ½)), (3.61d)

where

minmod( z, y) = sgn(:r) . max { 0, min[ I_v], ysgn(a.)l }, (3.61e)

with z = A3._ _ and y = .:Aj_½ 4 MAa'2sgn(Aj+½)in equation (3.61c).

One can also modify the Osher-Chakravarthy method by changing tho appropriate flux limited

functions as above. Modification of other methods can be found in Shu [56!. Although TVB

schemes require slight ly more operations per time st ep, t he improvement in accuracy at extrema

points often justifies the extra computation. Praclical nuinerical testing is required before a

conclusion can be drawn.

H_gh-Resolution TVD and TVB Lax-Fricdrichs Schcn_us: Recall

Friedrichs method

that the firsl-order Lax

_41 = UJn _ A(h_+,_ - h_j { ), (3.62)
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with

1 1
hi+½ = -_[fj+, + fj - _(uj+, - uj)] (3.63)

satisfiesthe TVD condition (3.29). With a simple modification to the schemes discussed in

sections 3.5.1 - 3.5.2, one can obtain a set of simpler higher-order TVD schemes than what

was discussed in sections 3.5.1 - 3.5.2. Basica]]y,ifone replaces f("R'+_)-I(_L'÷_)
__L i) in (3.40),

'5(hi+½) in (3.45a), (3.51a), and (3.53a) by 1/)% high-resolution TVD schemes based on the

Lax-Friedrichs numericalflux will result. Thus the corresponding MUSCL scheme using the

Lax-Friedrichs numerical flux in (3.40) would be

-LF ----h u _,, uj+]

: - ,- ½). (3.64)

The corresponding modified flux approach and sy,:maetric TVD schemes using the Lax-Friedrichs

numerical flux in (3.45a), (3.51a) and (3.53a) would be

-LF 1

hi+½ : _(fj+l + fj-_ _j+½), (3.65)

1

: + gs+:) - (3.66)

for (3.45a)and (3.51a), and

1 )1, (3.67)

for (3.53a). The situation is similar for the Roe-Sweby numerical flux (3.47a), and the Osher-

Chakravarthy numerical flux (3.48). The proof of the TVD property and the order of accuracy

of the above generalizations is left. as an exercise for the reader. Some of the proof and related

theory can be found in references [56,58,84,85].

The high-resolution TVD Lax-Friedrichs numerical flux construction is slightly more dissipa-

tive than the use of a first-order upwind numerical flux construction. However, for the MUSCL

formulation, the Lax-Friedrichs numerical flux has the advantage of extending to a nonlinear

system of equations without the use of Riemann solvers or flux-vector splitting approaches as

mentioned earlier. This is due to the replacement of the dependence of a mean characteristic
1

speed (e.g. ¢(aj+ ½) of (3.51a)) by X. This issue will become more apparent when nonlinear sys-

tems (sections IV-VI) and in particular multidimensional nonlinear systems of nonequilibrium

flows (section VII) are involved.

By replacing all the limiter functions in the above high-resolution TVD Lax-Friedriehs schemes

with the appropriate ones such as equations (3.60) and (3.61), one can obtain the high-resolution
TVB Lax-Friedrichs schemes.
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3.6. Predictor-Corrector TVD Schemes with Source Terms

All of the second-order explicit TVD schemes discussed so far are for homogeneous hyperbolic

PDEs. Consider a nonlinear nonhomogeneous hyperbolic conservation law

0u Of(u)
.... + ........ s(u). (3.68)
0t 0,,

As noted at the end of section 3.3, the TVD property is only valid for tile homogeneous part of

equation (3.68). Certain types of source terms s(u) nfight preserve the original TVD property

of the homogeneous part of (3.68), and others might not. However, disregarding the type of

bounded source terms, one is not precluded from the use of TVI) schemes when source terms

are present, but precaution has to be taken in the procedure of including the source term [86,87}.

Other more sophisticated numerical methods of including source terms can be found in ref-

erences [87-92]. Among these methods, Sweby [87] suggests a syslematic way of approaching

the problem. He utilizes a change of dependent variable to reduce the inhomogeneous nonlinear

scalar hyperbolic conservation law to a homogeneous form which does possess the TVD property.

He then suggests how this transformation can be used to apply TVD schemes to inhomogeneous

equations. Although Sweby's systematic way of applying TVD schemes for nonhomogeneous

PDEs seems to be the best way to obtain nonoscillatory solutions for problems containing source

terms, Sweby's numerical st udy [87] indicated that there still remains a fundament al question of

-- what is the best treatment of the source term itself. Another drawback is that the method of

tranforming to a homogeneous equation is of limited application for nonlinear systems of hyper-

bolic conservation laws since it is very unlikely that one can make this type of transformation for

fully coupled nonlinear system cases, in particular with fully coupled source terms. Other issues

related to this subject can be found in reference [86j. Here a formal extension of TVD schemes

to include source terms is discussed. This method seems to work well for problems containing

no shock waves, for non-stiff source terms, or for steady-state computations.

To formally include the source term efficiently, one can use (1) a two-step Lax-Wendroff-type

method (e.g., explicit predictor-corrector MacCormack type method), (2) an operator-splitting

procedure (similar to the time-splitting procedure in multidimensional problems except the

operator-splitting procedure is on the homogeneous part and the source terms), or (3) the

method-of-lines with a linear multistep approach. In this section, the predictor-correclor type

method is discussed. The next two subsections will describe the other two alternatives.

A discussion and derivation of the two-step Lax-Wendroff method (without the TVD property)

can be found in reference [93]. For steady-state application, to avoid additional treatment of

intermediate boundary conditions and to save storage, a straightforward way of extending the

second-order explict TVD scheme to include source terms is to first rewrite the numerical flux

without the source term in two parts: namely, a predictor-corrector Lax-Wendroff part and a

conservative numerical dissipation part. One then includes the source term in the predictor

corrector step and considers the con>ervative numerical dissipation part as a _econd corrector

step. Take for example the second-order explict symmetric TVD schemes ((3.50) together with

(3.53)). The predictor-corrector ¢cheme can bo written as

11) '_ A(f_ fj_l) _ Ats2 (3.69a)uj = u.i
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3 = 2 3 uj. & (1) - Ats_ 1) (3.69b)

n+l =u(2) 1[_ , __j_½] (3.69c)uj j + _ j_

Here the superscript "(1 )" and the overbar on Cj+ ½ and ¢7- ½ designate the values of the function

evaluated at the intermediate solutions u (1) and _. The value of _ can be _ = uj or _ = u) 2)

Also Cj+ ½ has a slightly different form than (3.53a),

= ._aj+ 1.uj+ _

(3.69d)

(3.69e)

where _,(z)is (3.18).

The value _)j+} can be any of the forms defined in equations (3.53). The main difference

between (3.69d,e) and (3.53a) is an extra term u2
3+ ½Q J+½" However, (3.59)is the same as (3.50)

together with (3.53) for the constant coefficient case. By defining a more complex 0j_ }, scheme

(3.69) can be made upwind-weighted and would belong to the class of upwind schemes. The

derivation is straightforward and will not be given here.

1 _ isFor a high-resolution TVD Lax-Friedrichs scheme, y',(z) = 5," In (3.69c), when Cj+_
_/(2) n

based on j rather than u j, the method is no longer strictly TVD without the source term.

When the source terms are present, it is not. clear which approach is superior. Nmnerical

experiments in reference [86] indicate that for the model problem (3.68) with f(x) = u and

s(u) = flu( u 1)(u - ½), limiting based on u '_ is preferable for small values of Atfi but that

linfiting based on u (2) may be more robust for larger values of AttL. See section 3.9 for a

rmmerical example.

One can see that the formulation of this scheme is broken into two parts, namely, the predictor-

corrector step of the MacCormack explicit scheme, and an appropriate conservative dissipation
term. Here the predictor-corrector scheme is TVD in the sense of a constant-coefficient homo-

geneous case (s = 0) and with ¢5+ ½ evaluated at u" instead of u (2) . Although for the general

nonlinear case, it appears to be difficult to prove that this predictor-corrector scheme is TVD,

numerical experiments for one and higher-dimensional nonlinear homogeneous hyperbolic con-

servation laws show that (3.69) has TVD-type properties. Other equivalent predictor-corrector

forms can also be used. This predictor-corrector TVD method is sometimes referred as the

"TVD MacCormack" scheme. It is a slight modification of Roe's one-step TVD Lax-Wendroff

scheme. If one sets O to be equation (3.53b), ¢(z) = [z I and _ = u', the scheme is the same

as described in Davis [191 and Kwong [94]. The reason for choosing the predictor-corrector step

instead of the one-step Lax-Wendroff formulation is that the predictor-corrector form provides

a natural and efficient inclusion of the source terms, especially for multidimensional problems

i93i.
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3.7. Semi-Implicit Schemesfor Problems Containing Stiff SourceTerms [1,95,86]

The explicit TVD scheme(3.69)canbeusedfor either time-accurate or steady-state calcu-

lations. It is second-order accurate in time and space. For stiff source terms and problems

containing shock waves, a wrong speed of propagation will result. See section 3.9 for details.

Moreover, if the source term is stiff, the restriction in the time step due to stability requirements

is prohibitively small and (3.69) is not practical, especially for steady-slate applications. In this

section a semi-implicit method is described for steady-state computations (or for unsteady com-

putations containing no shock waves). Another alternative is a fully implicit method. The basic

implicit scheme and the related difficulty in extending the implicit method to higher dimensions

with stiff source terms will be discus,;ed in later sections.

The idea of treating the stiff term implicitly and the non-stiff term explicitly is a conunon

procedure in numerical methods for stiff ordinary differential equations. The senti-implicit treat-

ment for PDEs with stiff source terms in conjunction with classical shock-capturing methods is

also a common procedure; see for example, reference i96]. What is proposed here is to replace

the classical shock-capturing methods with a modern shock-capturing method. If one follows

the idea of Bussing and Murman [96] in treating the source term implicitly, a semi-implicit

predictor-correcter TVD scheme can easily be obtained. The basic idea is to treat the source

term implicitly and the homogeneous part of the PDE with a predictor-correclor TVI) scheme.

For "extremely" stiff source terms, it is advisable to solve the resulting nonlinear system it-

eratively. Itowever, for a "moderately" stiff source term, in order to avoid solving nonlinear

equations iterative]y, the Taylor expansion of the source term at time-level n + 1 is truilcated to

first-order as

sjn+l _ sj + tuj - uj ). (3.70)
J

The scheme can be written as a one-parameter family of time differencing schemes for the source

term: i.e.. the following formulation includes scheme (3.69). The senti-implicit scheme is

d;Au(1 , At (f,_ ,_ ) ,J Ax - f_ 1 + Also, (3.71a)

(3.71b)

: _ ,, u/2) _2_ _l) , has the same meaning as in the previouswith uli l) Au l_ + u.i, J = Au + uj andq_j+._

section. Here, d is assumed to be nonzero; i.e., only the type of source terms such that d is

invertible at each grid point is permissible. The parameter 0 is in the range 0 _< 0 _'L"1. For

:_ 0. the source term is treated implicitly. If 0 = 1, the time differencing for the source term

is first-order, and (3.71) is best suited for steady-state calculations. Note that the order of

time-accuracy, which is determined by the parameter }, has a different meaning than for the 0
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appearingin the implicit method(3.21).To obtaina second-ordertime discretization,onecan
set0 = 1/2, and (3.71c) is replaced by

and

= +1 + , (3.71e)

u(_) n I(Au_I) Au_2)). (3.71f)j =uj+_ +

Equation (3.71e) is very similar to (3.71c) except d and s are evaluated at u" instead of u (1),

(2) is (3.71f). By doing this, scheme (3.71,a,b,e,f) is second-order in time and space [86].and uj

3.8. Splitting Methods and Implicit Methods for Problems Containing Source
Terms [86]

In this section, two other alternatives in applying existing methods for homogeneous PDEs

to include source terms are discussed. Instead of implementing the source terms directly into

the predictor-corrector steps as in the previous sections, a splitting method in which the homo-

geneous part of the PDEs and the source term are handled in separate steps is used. The other

is the method-of-lines approach (e.g., linear multistep methods).

,_pMtin 9 methods: The senti-implicit predictor-corrector method attempts to handle the homo-

geneous terms and the source term simultaneously. An alternative approach is to employ a

time-splitting in which one alternates between solving a system of conservation laws, with no

source terms, and a system of ordinary differential equations modeling the source term. In the

simplest case this splitting takes the form

,,,ht'.h n
,tl n+l = LsLf'tl .

Here _:) represents the numerical solution operator for the conservation law

(3.72)

ou of(,,)
+ Ox - o (3.73)

over a time step of length h = At, and £h is the numerical solution operator for the ODE

0U

Ot = s(u). (3.74)

To maintain second-order accuracy, the Strang splitting [91] can be used, in which the solution
u _+1 is computed from u" by

un+l i"h/2 t"hI'h/2_ n

Naturally, when several time steps are taken the adjacent, operators /_h/2s

give

(3.75)

can be combined to

tin ,"h/2.,.hF.',hr, h_n-1 .,h/2 0
= L s Lf[tsLf] L s IL . (3.76)
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In this formthe methodisnearlyasefficientas {3.72).

The splitting approach has also frequently been used to solve reacting flow problems [98-100 i.

At first glance it may appear to be less satisfactory than an unsplit method such as the predictor-

corrector method, since in reality tile fluid dynamics and chemistry are strongly coupled and

cannot be separated. However, the fact that the splitting (3.75) is second-order accurate suggests

that the interaction of different effects is adequately modeled by a split method, at least for

smooth solutions. Moreover, there are distinct advantages to the splitting from the standpoint

of algorithm design. High quahty numerical methods have been developed both for systems

of conservation laws and for stiff systems of ordinary differential equations. By decomposing

the problem into subproblems of these types, it is possible to take advantage of these methods

directly. To some extent the mathematical theory that supports them can also be carried over.

By alternating between using a high-resolution method for the conservation law and a stable

stiff solver for the system of ODEs, one can easily derive a method with excellent prospects of

stability on the full problem. By contrast, attempting to devise a good hybrid method handling

both effects simultaneously with good accuracy and stability properties can be difficult, as has

been seen in the previous section. (But in the stiff case, we will still see the problem of incorrect

wave speeds with the splitting method.)

A split version of the method studied in Sections 3.6 and 3.7 nfigh( take the form

n j = u) + Au_

,'Xz

,, (i)
u(.1) * + tauj3 _ Ztj

Az

(2) 1 (Au(f) " Au_2')

(' _ *

• , (2)+(49i+_/2 _j _/2)tt.i _ Itj

(3.77)

fib�2 :
a .. Iii- Ats'(u'J*)iAttJ = -2

Here _" involves limited fluxes as before, based on u*. Alternatively, we can compute the limited

value u_* based on u (2t and replace ¢)* by _(2).

Each of these methods could be replaced by other well-known methods for the respective

problems. For example, any implicit stiff solver, such as the trapezoidal method, could be used

for £_/: and any of a wide variety of high-resolution methods as discussed in sections 3.5 or 3.6

used for £_. Note that one does not have to use the predictor-corrector type of methods for the

splitting methods for one dimension. Numerical examples will be presented in section 3.9.
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Linear Multistep Implicit Method: One can include the source terms easily by using the method

of lines together with semidiscrete TVD schemes. For example, one can use the same one-

parameter family of time discretizations as (3.21) as follows:

uj + lax hj+ ½ - j_ ½

_ _+_ J-_ -Ats . (3.78)

Here 0 has the same meaning as before. The numerical fluxes h3+_ have the same meaning

and form as the scheme for the homogeneous PDEs (3.1). Again, the MUSCL or non-MUSCL

approaches as discussed in the previous section for the implicit method are applicable here.

3.9. A Study of Numerical Methods for Problems with Stiff Source Terms [86]

For unsteady applications, formally, one can extend the scheme to include stiff source terms as

in earlier sections for steady-state calculations. However, the TVD criterion used in the extension

is inappropriate for inhoinogeneous problems. There are more sophisticated techniques which

have been used successfully in certain problems. See for example 187,88,91,921 . The numerical

study in reference [86] sulmnarized below identified some of the essential numerical difficulties.

The main difficulty seems to relate to obtaining the correct jumps in the correct locations which

are absent from problems containing no shock waves.

The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hyper-

sonic flow. Often a wide range of time scales is present in the problem, leading to numerical

difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by

using implicit methods, but other numerical difficulties are observed. The behavior of typical

numerical methods on a model convection equation with a parameter-dependent source term is

studied. The use of this simple equation is an attempt to bring out some of difficulties sure to be

encountered in solving more realistic equations, although there are fundamental differences such

that a single equation will probably be inadequate to mode] the hypersonic flow phenomena of
interest.

Two approaches to incorporate the source terms were utilized: predictor-corrector methods

with or without flux limiters, and splitting methods in which the fluid dynamics and the chem-

istry are handled in separate steps. Note that for the system counterpart, the homogeneous part

of the conservation law and chemistry are handled in separate steps. Comparisons over a wide

range of parameter values are made. On the whole, the splitting methods perform somewhat
better.

In the study [86], the following questions were investigated: i) Can one develop stable meth-

ods? ii) Can one obtain "high resolution" results, with sharp discontinuities and second-order

accuracy in smooth regions, and iii) Does one obtain the correct jumps in the correct locations?

As stated earlier, numerical stability is typically not a problem. A variety of excellent implicit

methods have been developed for solving stiffsystems of ODEs, and many of the same techniques

can be applied to the stiff source terms in (3.68) to obtain stable methods for solving this system.
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The second question is also not a problem and details can be found in [86]. In reference [86],

it was shown that with some care, second-order accuracy and reasonably sharp discontinuities

can be obtained.

The third question is the most interesting. For stiff reactions containing shock waves, it is

possible to obtain stable solutions that look reasonable and yet are completely wrong, because

the discontinuities are in the wrong locations. Stiff reaction waves move at nonphysical wave

speeds, often at the rate of one grid cell per time step regardless of their proper speed.

This phenomenon has also been observed by ColeUa, Majda, and Roytburd [100] who made a

similar study of the linfiting behavior with increasing stiffness for various model systems. In par-

ticular they looked at the Euler equations coupled with a single chemistry variable representing

the mass fraction of unburnt gas in a detonation wave.

Colella, Majda, and Roytburd applied Godunov's method and a high-resolution extension of

Godunov's method I16] to this problem. The source terms are handled by splitting and solving

the resulting ODEs exactly, so that stability is not a problem. However, they observe that on

coarse grids the numerical solution is qualitatively incorrect.

The essential numerical difficulty can be identified and studied most easily by looking at even

simpler equations. This same numerical behavior of discontinuities traveling at incorrect speeds

can be observed in scalar problems. We have found it illuminating to study the model problem

(3.68) with

1

_(u) = --_u(u- 1)(u- _).

This is the linear advection equation with a source term that is stiff for large _.
characteristic z = z0 + t, the solution to (3.79) evolves according to the ODE

(3.79)

Along the

d
_u(z0 + t,t) = s(u(zo + t,t)), (3.80)

with initial data u(z0,0). This equation has stable equilibria at u -- 0 and u -- 1 and an unstable

equilibrium at u -- 1/2. For large _ and arbitrary initial data the ODE solution consists of a

rapid transient with u approaching 0 (if U(xo,O) < 1/2) or 1 (if u(zo, 0) > 1/2).

Consequently, the solution u(z, t) to (3.68) together with (3.79) with initial data u(x, 0) rapidly

approaches a piecewise constant traveling wave solution w(x - t), where

1

0 if u(z,O)<

1 if u(z,O) 1
1

1 if u(z,0)> _.

In particular, the solution with piecewise constant initial data

(3.81)

1 if r < Xo (3.82)ulz,O)= 0 if x >Zo

is simply u(z,t) = u(z - t,O). In this case the ODE solution is in equilibrium on each side of

the discontinuity, which theoretically behaves as it would if the source term were not present

and we simply solved the linear convection equation Ou/Ot + Ou/Ox = 0. Numerically, however,
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the solutionis smearedout dueto discretizationerrors. This introducesnonequilibriumstates
into the wavefront whichturn on the sourceterms.

This lineardiscontinuitycouldeasilybeconvertedto a shockby replacingOu/Ox in (3.68) by

Of(u)/Ox for some nonlinear flux function f.

Three nmnerical senti-implicit methods are used to compare their numerical behavior on the

model problem for various values of _. The first semi-implicit method that was considered is

based on MacCormack's predictor-corrector method for conservation laws [27]. This second-

order accurate method can be modified to include the source terms, which appear in each step

of the method as in equation (3.71a,b,e,f).

In order to avoid oscillations near discontinuities, the semi-implicit MacCormack's method

can be modified by adding a flux-correction step motivated by the theory of TVD methods (see

section 3.7 and references [1,95]). Two different forms of this correction as in equation (3.71c,d)

and (3.71e,f,d) were compared.

The third method (3.77) is the splitting method in which one alternates between solving the

conservation laws (with no source terms) in one step, and the stiff systems of ODEs modeling

the chemistry (with no fluid motion) in the second step. This approach has certain advantages

in that high quality nmuerical methods exist, for each of the subproblems. Combining these via
splitting can yield stable, second-order accurate methods for the full problem.

Numerical tests on the model problein (3.68) and (3.79) reveal that methods can be devised by

either of these approaches that will be stable and second-order accurate as the mesh is refined.

However, for realistic choices of grid and time step, stiff reaction waves will have the nonphysical
behavior described below.

Numerical Results on D_scontinuous Data: To investigate the ability of this method to deal

with propagating discontinuities, the following initial data for equation (3.68) and (3.79) were
considered:

1 if x < 0.3u(x,0)= 0 if x > 0.3 (3.83)

If the numerical computations were carried out to larger t, the solution would become nearly
discontinuous. For larger values of_ this sharpening happens more quickly. The values u (1) =

u** = uj'_ for (s')_ 1) and s(lj) of (3.71c), and s(u_*) and s((u')_*) for (3.77) were used exclusively

and the effects of the different limiters (no limJter, limiting based on u', and limiting based on

u (2)) were compared. Also Ax = 0.02, At/Ax = 0.75 and various values offi were taken. Note

that due to scaling properties of the equation and method, results at time T with a particular

value of _ can equally well be regarded as results with _ replaced by f//3 for arbitrary/3 at time

_T with time step HAt and grid spacing _/kx (with x rescaled so that [0,13 becomes [0,]_]).

Indeed, the critical dimensionless parameters that determine the performance of the method are

the mesh ratios )_ = At/Ax and the product Atp of the time step and reaction rate. The value

At_ deternfines the stiffness of the system. When At_ is large, relaxation to equilibrium occurs

on a time scale that cannot be temporally resolved on the grid.

All of the methods studied in this section give propagation of the step function (3.83) at

incorrect speeds when the source term is sufficiently stiff; i.e., when fi is sufficiently large. The
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quantity At/i, where At is the time step, is identified as the critical parameter affecting the

propagation speed. Unless Atfi is much smaller than 1, nmnerical difficulties are observed.

Note that 7- - 1/_ is the relaxation time scale for the source term. Typically At = O(Ax),

where Ax is the spatial mesh width, and so At is the appropriate time scale for advection on

the grid. Consequently, one can view Atfi = At/r, the ratio of the advection time scale to the

relaxation scale, as a sort of "cell DamkShler number".

The basic explanation is that numerical advection of the discontinuity gives a smeared repre-

sentation, which includes intermediate states 0 < u < 1 that are not in equilibrium. When Atfi

is large, the source term restores near equilibrium in each time step, shifting the value in each

cell towards 0 or 1 and consequently shifting the discontinuity to a cell boundary. It is thus

not surprising that nonphysical propagation speeds of one cell per time step can be observed for

large Ate.

Clearly this scalar model is inadequate as a full test of any numerical method. However, it

does model one essential difficulty encountered in reacting flow problems, and is sufficient to

point out difficulties that may arise also on more complicated systems of equations. Moreover,

due to the simplicity of this equation, numerical problems that do arise can be easily understood

and their source identified, yielding insight that may be valuable in developing better methods.

Figure 3.6 shows computed results at t = 0.3 for _ = 1,10,100, and 1000 (Atli =

0.015,0.15,1.5, and 15). Each row of figures illustrates a different value of Ate. The three

figures in each row correspond to different choices of limiter. Several interesting things were

observed from these graphs:

(i) For small At-fi (0.0]5) oscillations are visible if no limiter is used and to a lesser extent if

the linfiter is based on u/2), while limiting on u _ gives monotone resulls. This agrees with what

is expected for the pure convection case (Atfi = 0).

(ii) For larger Atfi (0.15 - 1.5) there is a slight overshoot in all cases of similar magnitude

regardless of the limiter. Note that for the case of no limiter there is less oscillation here than

with smaller Atfi due to the stabilizing effect of the source terms that tend to restore u towards

1.

(iii) For large At_ (15), linfiting on u" appears to be unstable (there are large scale oscillations

near z = 0.3 not visible in the figure) whereas linfiting on u Izl or using no limiter gives stable

results. In each case, however, the solution is completely wrong! The discontinuity has remained

at its initial location z = 0.3 rather than propagating.

Note that for Atfi = 1.5 there is also some discrepancy in the location of the discontinuity.

The speed of propagation is slightly too small. For intermediate values of At_ it is possible to

obtain results with the discontinuity anywhere between 0.3 and 0.6. This phenomenon of wrong

propagation speeds for large At_ was discussed in more detail in reference [86].

The splitting method was used to compute the same model problem using the predictor-

corrector form to solve the homogeneous PDE. This form was considered rather than other

possibilities since it is the logical choice for comparison with the previous results. The ODE

method used in (3.77) for /Z h/'_ will be referred to as the "linearized implicit method". Figure

3.7 shows the same set of experiments as in Figure 3.6 but with the splitting method. The

following was observed:
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(i) For smallAtE either choiceof limiter (basedon u C2) or u*) works well, and good results
are obtained.

(ii) For Atp = 15 the discontinuity again moves at the wrong speed, now too fast. In fact it

has moved to x = 0.7 and so is moving at speed 4/3 rather than 1. Since At/Ax = 3/4, this

indicates that the wave is moving at the speed of one mesh cell per time step.

(iii) A large overshoot occurs in one mesh cell behind the discontinuity for At_ = 15, regardless
of the limiter used.

With regard to this last, observation, it appears that the overshoot must originate within the

ODE-solving step. The flux-limiter method is applied only to the homogeneous conservation law

and should give no overshoots, at least in the case where one linfits based on u*. In other words,

£_ keeps monotone data monotone and therefore tile lack of monotoniciy must be generated by

£_/2. Note that this solution operator works pointwise (for example uj is a function only of uy,

independen! of u_ for i ¢ j), and so is oblivious to the gradient in u. What it does see, however,

is a nonequilibrimn value of u near the discontinuity. The linearized ODE method used in (3.77)

is stable but converges in an oscillatory manner to the steady state of a stiff equation and one

is seeing this here. In ODE ternfinology the £, is not a L-stable method (see e.g. [101,102]).

It seems that these overshoots can he avoided by switching to a different ODE method. For

example, if one leaves /:_ unchanged but changes £h/2 to the trapezoidal method, then these

overshoots disappear for this value of Atfi (Figure 3.8), but note that the propagation speed is

still wrong. With the trapezoidal method used for the computations, the value u_ is obtained
by solving the nonlinear equation

1. o _
(3.84)

Although monotone profiles were obtained in Figure 3.8, the trapezoidal method also expe-

riences overshoots if a still larger value of AI_ is used. The use of an L-stable method such as

the backward Euler method might elinfinate this problem more generally, but backward Euler is

only first order accurate. One might consider the use of higher order BDF methods (the "stiffly

stable methods" of [101]), but the second-order BDF method is already a two-step method and

in the present context it appears to require a one-step method because of the nature of the

splitting method. Implicit Runge-Kutta methods are a possibility. For reaction equations a

special asymptotic method has been developed by Young and Boris [103] (see also [98]) which

may avoid this problem. Another possibility is to use several steps of an ODE solver for ,.._ ;

i.e., subdivide the time interval to a point where one can more adequately resolve the transient

approach to equilibrium. It appears that this fails to achieve the goal of using time steps large

relative to the fast time scales, but note that one would need to do this refinement in time

only in regions where nonequlJbrium conditions hold. At grid points where u starts out close to

equilibrium (e.g. those for which Ats(u) is small, presumably most grid points), a single step of

the linearized implicit method used in (3.77) is adequate to maintain stability.

This is another advantage of the splitting method - since the ODE solver is decoupled from

the fluid solver and is applied at each grid point independently, it is easy to change the ODE

solver or even to use different solvers at different points depending on the character of the flow.

This approach is also advocated by Young arid Boris i103i, who suggest using their asymptotic

integration method at stiff points and explicit Euler elsewhere.
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It isemphasizedherehowever,that improvementsto theODEsolvercannot cure the problem

of incorrect propagation speeds. A discussion oll the source of nonphysical wave speeds and

suggestion of ways (yet not too practical for physical applications) to overcome this difficulty

can be found in reference [86].

3.10. Linearized Form of the Implicit TVD Schemes

All of the TVD and TVB schemes discussed above are nonlinear ._chcmes in the sense thai

the final algorithm is nonlinear even .for the constant-coefficient case. For implicit TVD schemes

(0 _ 0 in equation (3.21)), the value of u n+l is obtained as the solution of a system of nonlinear

algebraic equations. To approximately solve this set of nonlinear equations noniteratively, a

linearized version of these nonlinear equations is considered. For the non-MUSCL formulation

(or for a spatially first-order implicit operator and MUSCL fornmlation for the explicit opera-

tor), linearized forms can easily be obtained. For illustration purposes, on_Iv the linearized form

of implicit symmetric TVD schemes will be discussed. The same idea can be used for the im-

plicit upwind TVD scheme (3.51)or the implicit schemes discussed in section 3.5.4. A detailed

derivation can be found in Yee [74]. Also, unlike the Lax-Wendroff-type scheme, it is more

straightforward to include the source terms for the implicit scheme (3.21). See sections 3.6 - 3.9

and 6.4 for a discussion.

3.10.1. Linearized Version for Constant-Coeffieield Equations

For the linear scalar hyperbolic PDE (2.1), the numerical flux for the synunetric TVD scheme

together with (3.54) can be written as

1 , )%+, ]. (3.85)hi+{ = _[a(uj+l + uj) - lal(l - Qj_ 5

Substituting (3.85) in (3.21), one obtains

u_+l 4 A_O2 [auj+l - ial(1-Qj+½)Aj+_u]

)_0 _ ½u]2 [auj_a - !al(1 - Qj_½)Aj

n-l-1

n+l

= arts of (3.el). (3.86)

Here "RHS of (3.21)" means the right-hand side of equation (3.21) with h, defined in (3.85).

_u) "41 in (3.86) by dropping the time-index fromLocally linearizing the coefficients of (Aj±_

(n -+ 1) to n, one obtains

._0 Fal/n__ 1 at/n4 1 11_'_- 1

J 2 L 3+1 j-I , 3"

" , ,u "+1] - t/HS of(3.21).+!al(1 - Qj- _)A5 :

Letting dj = u') +_ - u'] (the "delta" notation), equation (3.87) can be written as

f3.87)
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eldj-1 + e2dj + e3dj+l = -A(h'_+ , - h? _ ), (3.88a)
3-_

where

q = _- -a-lal(l-Qj__) , (3.88b)

e2 : 1 + V lal(1 - QJ-½) + la[(1 -QJ+½) ' (3.88c)

ea = _- a- [at(1-Qj+½) (3.88d)

The linearized form (3.88) is a spatially five-point scheme and yet it is a tridiagonal system

of linear equations. This is because at the (n + 1)th time-level only three points are involved;

i.e., uj_1"+1 , uj-n+l , and u J+1"+1.Although the coefficients ei involve five points, they are at the nth
time-level.

The form of (3.88) is the same as (3.87) except the time-index for the Qj+__ and r_%_ is

dropped from (n + l) to n for the implicit operator. One would expect that the linearized

form (3.88) is still TVD. Nmnerical studies on one- and two-dimensional gas-dynanfics problems

support this hypothesis. It was found in reference [104] that when time-accurate TVD schemes

are used as a relaxation method for steady-state calculations, the convergence rate is degraded if

limiters are present in the implicit operator. Therefore, for steady-state applications, one might

want to use the linearized form obtained by setting Qj_:½ = 0 in (3.88); i.e., by redefining the

coefficients in (3.88) as

_0

e2 : 1 + AO(lal) ,

£3:_-

(3.89a)

(3.89b)

(3.89c)

Scheme (3.88a) together with (3.89) is spatially first-order accurate for the implicit operator and

spatially second-order accurate for the explicit operator.

3.10.2. Linearized Version for Nonlinear Equations

For the nonlinear case, the situation is slightly more complicated since the characteristic speed

cOf/Ou is no longer a constant. Again, only the linearized form of the one-parameter implicit

synunetric TVD schemes will be discussed. The same idea can be used for the implicit upwind

TVD scheme and the implicit schemes discussed in section (3.5.4). For the symmetric TVD

scheme, after substituting (3.54) in (3.21), one obtains

] n+l_ _+, AO _ )A._+,.j + _ fj+, - ¢(aj+__)(1 - Oj-t_ ½u

2 fj-1 w/(aj_½)(1 - Qj_½)Aj ½u : RHS of (3.21). (3.90)
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¢ "+l _+_ }, and ,_j_. FolUnlike the constant-coefficient case, one also has to linearize J::_l , _],(a I ton41

lowing the same procedure as in _r21,741,j two linearized versions of (3.90) are considered.

Linearized Nonconservative Implicit Form: Adding and subtracting f,+l on the left-hand-side
"J

of (3.90) and using the relation (3.14), one can express (3.90) as

_[a n+l - _hta n+l t9 n+l ] lu ntilu +l+ [ j+_ l(1--,jtil) %ti 

A0[-an+12[ j__ -'/'tan+_tlw_j_½,, -Q_._+½])]Aj-_u n+l =RHSof(3.21). (3.91)

Rewriting (3.91) in the same form as (3.31) and dropping the time-index of the coefficients of

Aji½u"+l from (n + 1) to n , one obtains

-_ld._-i + c2dj + e3dj+l = -A(hy+, - hn , ), (3.92a)
J-3

where

_1 : AOB-, (3.92b)

_2: 1-A0(B-+B+), (3.92c)

_3 : AOB +, (3.92d)

and

E: _ ±aJ=L_ - _/,(aja:_)(l - Qj__)
(3.92e)

Equation (3.92) is again a five-point scheme, and yet the coeffÉcient matrix associated with the

dj's is tridiagonal. With this linearization, the method is no longer conservative. Therefore,

(3.92) is more applicable to steady-state calculations. A spatially first-order-accurate implicit

operator similar to (3.92e) can be obtained for (3.92) by setting B _ = _[ _ajj _ _(±aj_)] n.

Since the linfiter does not appear on the left-hand side, improvement in efficiency over (3.89)

might be possible !41,741. This reduced form is especially useful for multidimensional, nonlinear,

hyperbolic conservation laws.

Linearized Conservative Implicit Form: One can obtain a linearized conservative implicit form

by using a local Taylor expansion about u n and expressing fn_ 1 f" in the form

7!

-:f"til f,n : a'_( u'! .1: - uj ) -_ O(AI2), (3.93}

where ay : (Of/Ou)y. Applying the first-order approximation of {3.93) and locally linearizing

U) n+lthe coefficients of (A./_½ in (3.90) by dropping the time-index from (n -f 1) to n, one
obtains
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t/n+1 _ n n 'tA . n+l

j +_[aj+l -"÷luj+l-a'_j-lu"+l-¢(a_+_)(1-Qi+_l"j÷ 'uj-1_

+W(a?_.J-_')(1- Q_? ½)A._ ,_u '_+1] :RHS of(3.21).

Letting dj = u'] +1 - uj,'_ equation (3.94) can be written as

c1d3-1 + _dj + e3a3+l = -a(h_+_ h___),

where

(3.94)

(3.95a)

AO -at-1 _ _(%__)(1 - Qj__)
C1 _ _ - i

e2 = 1+ _- _(aj__)(1-Qj__)+w(aj+½)(1-Qj+½) ,

¢73 : _ aj+ 1 -- ¢(aj+½)(1 - Qj÷_) .

(3.95b)

(3.95c)

(3.95d)

The linearized form (3.95) is conservative and is a spatially five-point scheme with a tridiagonal

system of linear equations. Scheme (3.95) is applicable to transient as well as steady-state

calculations. As of this writing, the conservative linearized form (3.95) has not been proven to

be TVD. Yet numerical study shows that for moderate CFL number, equation (3.95) produces

high-resolution shocks and nonoscillatory solutions.

For steady-stale applications, one can use a spatially first-order implicit operator for (3.95)

by simply setting all the Q j±½ = 0; i.e., redefining (3.95b)-(3.O5d)as

[ in_ --aj_ 1 -- ¢(Qj_!) (3.96a)
C1= E . '

e2=1+_- _(%_½)+_(aj. ½ , (3.96b)

e3 : --_ aj+l - ¢(aj+½) (3.96c)

Numerical experiments with two-dimensional steady-state airfoil calculations show that this

form (alternating direction imphcit (ADI) version) is the most efficient (in terms of CPU time)

among the various linearized methods for the case of _ = 1. For time-accurate calculations, see
section VI for a discussion.

3.11. Two-Parameter Family of Method-of-Lines TVD Schemes

The two-parameter family of explicit and implicit high-resolution schemes [66] presented here

is based on a senti-discrete methodology and on the one-parameter family of TVD-type algo-

rithms discussed in the previous sections. The idea is to use the same spatial discretization as
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beforefor the spatialderivatives(with 3 = 0) and to use the two-parameter family of linear

multistep methods for the time derivatives. The original one-parameter family of TVD-type

schemes is a subset of the two-parameter family of algorithms. Mathematical analysis similar to

that in the previous section for the fully discretized form for the current larger family of schemes

requires further investigation. Numerical experiments with steady and unsteady viscous calcula-

tions for a particular set of the two-parameter family [66] indicate that the TVD-type property

is preserved. This two-parameter family of schemes takes the form

A0 [_.+1 _.+1 A(1 - 8) "_ . .-1 (3.97)

Here the function hi+ _ is the same higher-order numerical flux defined in the one-parameter
family of schemes in section 3.5.2. This two-parameter fanfily of algorithms contains first- and

second-order implicit as well as explicit schemes. The scheme is temporally second-order if

1 and first-order otherwise. When O 5/ 0, algorithm (5) is an implicit scheme. In this0=,v+_
paper, only the temporally first-order backward Euler (0 -- 1, _., = 0) and the temporally second-

order three-point backward differentiation (O = 1, tv -- 1/2) time differencing are investigated.

One can use the same procedure as in section 3.10 to obtain a linearized form of implicit methods

for (3.97). Note that _vin (3.97) is different from the w in (3.38).

3.12. IBVPs and TVD/TVB Schemes

All of the previous discussion on TVD or TVB schemes was for IVPs. That is, these numeri-

cal schemes are interior schemes (schemes for the interior points of the computational domain).

For IBVPs, one hopes that the boundary treatment still retains the TVD or TVB (or at least

high-resolution) property of the scheme. However, analysis shows that when numerical bound-

ary conditions (boundary schemes) are used additional conditions have to be satisfied for the

combined interior and boundary schemes (i.e. for the initial-boundary-value problems) in order

to maintain the same high-resolution and stability properties as the IVPs [9-11.42j.

It is important to distinguish the difference between linearized stability for IBVPs and main-

taining TVD or TVB properties for IBVPs. A combined interior and boundary sch_qne (of which

the individual scheme is TVD for the IVP) might be stable in the linearized sense, and yet might

not satis_" the TVD or TVB property for the IBVP. For example, (3.21) with 0 :- 1/2 and (3.51)

is unconditionally stable in the linearized sense but TVD if Aioj_ _' " 2. A common boundar_

treatment for use with high-order interior schemes is to use a lower-order scheme, _uch as a

lower order upwind scheme and/or to use extrapolation near the boundary. These boundary

schemes seem to be standard practice in CFD circles and most of the computations presented

in this manuscript use these approaches. While these boundary treatments are widely used,

there are, however, a few theoretical drawbacks concerning their usage; namely, (a) the local
order of the scheme near the boundary is reduced. (b) these boundary treatmenls only proved

to be linearly stable and (c) the proof of TVD and TVB properties for the combined interi¢,r

and boundary schemes for the IBVPs appears to be extremely difficult. In reference i9j, Shu

introduces an approach to the treatment of boundaries which uses the same high-order scheme

up to the boundary, plus extrapolation and an upwind treatment at the boundary. The resulting
scheme is proved to be TVB for the scalar nonlinear case and for linear systems. His boundary

treatment is based on the globally high-order TVB schemes discussed in [9,56,611. His schemes
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have natural upwind-downwind decompositions which help to implement and prove the TVB

boundary treatments. Interested readers should consult Shu's papers for details. Theoretical

results for a combined interior and boundary scheme to be TVD remain an open question.

3.13. Asymptotic Analysis of Finite Difference Methods by the Nonlinear Dynamic
Approach

This section presents a brief discussion on the uniqueness, stability and accuracy of differ-

ence methods for nonlinear PDEs by the "nonlinear dynamic approach". Many existing results

for nonlinear dynamical systems such as chaos, bifurcations, and limit cycles have a direct ap-

plication to problems containing nonlinear source terms such as the reaction-diffusion or the

reaction-convection-diffusion equations. With the advent of increasing demand for numerical

accuracy, stability, efficiency, and uniqueness of numerical solutions in modeling such equations,

an interdisciplinary approach for the analysis of these systems is needed.

Dynamical systems is a broad area of inquiry focusing on the development in time -- con-

tinuous or discrete -- of a wide variety of systems. The models that simulate these systems

describe generic phenomena of interest to biologists, economists, physicists, chemists and en-

gineers. This subject area, which in the author's opinion would have a dramatic impact in

the better understanding of numerical analysis for nonlinear ODEs and PDEs, would provide a

better judgement on how well a numerical solution can mimic the true physics of the problems.

This proposed subject area hereafter is referred to as "asymptotic analysis of finite difference

methods by the nonlinear dynanfic approach" or for short, "chaotic dynamics". The sensitivity

of numerical solutions to initial data and the dependence of solutions on the temporal time

step and numerical dissipation coefficients as parameters for a fixed spatial mesh are absent

from linear analysis and yet present quite often in nonlinear analysis. These phenomena are

often not known or ignored by practioners in CFD. Although the theory of chaotic dynamics for

continuous systems and for discrete maps have flourished rapidly for the last decade, there are

very few investigators addressing the issue of the correlation between the nonlinear dynamical

behavior of the continuous systems and the corresponding discrete map resulting from finite

difference discretizations. In addition, although the understanding of chaotic dynamical theory

for PDEs and their discretized form is still in its infancy and theoretical development in this

area is extremely difficult, the study of numerical analysis would not be complete without the

utilization of the nonlinear dynamic approach and the correlation with the dynamical behavior

of the corresponding PDEs. For background material see references [29-32,105-109]. For an

overview and potential application to CFD, see Yee [46] a paper in preparation. The following

is an attempt to give a flavor of the subject and at the same time provide a possible application
in aerodynanfics.

In particular, one of the recent emphases in computational fluid dynamics has been the de-

velopment of appropriate finite difference methods for nonequilibrium gas dynamics in the hy-

personic range. A nonlinear scalar model equation would be of the fornl

Ou Of(u) 02_
Ot + O;r - _O-_-x_- + s(u), s a constant (3.98)

for the reaction-convection-diffusion model, or
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Ou Of(u} s(u}, (3.99)
-0/ + O_ -

without the diffusion term. The nonlinear source term (or the reaction term) s(u) carl be very

stiff and the simplest nonlinear function f(u) can be taken as u2/2. In order to understand the

fundamentals, (3.99) can be simplified as

or

Ou 0(u2/2) 1
-- + - _u(u- 1)(u- 2), (3.100a)Ot Oz

O_ cgu 1

0_- + coxx = -_u(u - 1)(u - _), c a constant (3.100b)

Note that phenomena such as chaos, bifurcations and linfit cycles seem to only relate to source

terms s(u) which are nonlinear in u. Equation (3.100b) leads to a linear advection equation with

a source term that is stiff for large _i. Equation (3.98) can be viewed as a model equation in

combustion or as one of the species continuity equations in nonequilibrium flows (except in this

case, the source term is coupled with other species mass fractions). The above model equations

are a good starting point in the investigation of correlation between theory of chaotic dynandcal

systems [110,111] and uniqueness, stability, accuracy and convergence rate of finite difference

methods for computational fluid dynamics.

The main interest is to investigate what types of new phenomena arise from the numerical

methods (e.g., spatio4emporal chaos for nonlinear partial difference equations) but not from

the original PDE as a function of the stiff coefficient _, the diffusion coefficient e, and the time

step At with a fixed (or variable) grid spacing Ax. The time step can vary a lot depending

on whether the time discretization is explicit or implicit. More precisely, one wants to weed

out all undesirable phenomena due to the numerical method (e.g., additional equilibrium points

introduced by the numerical methods, domain of attraction, etc.) and to identify whether the

numerical method really describes the true solution of the PDE under a prescribed initial and

boundary condition with f. E, and the time step At being parameters. The study can be divided

into steady and unsteady behavior with or without shock waves. But most of all, before anything

else, one wants to fully understand the topographical behavior (e.g. solution trajectories in phase

planes) of these PDEs as the parameters _ and __are varied. At this moment, understanding the

topographical behavior of nonlinear dynanfical systems relies heavily on numerical methods.

There is an added stumbling block as mentioned in the previous section, namely: the diffi-

culties concerning the selection of proper numerical methods or devising suitable yet feasible

schemes for practical computations for hyperbolic conservation laws with nonlinear stiff source

terms. This stems partly from the fact that schemes were designed for homogeneous hyperbolic

conservation laws. Most often for low speed flows, if source terms exist, they are not stiff and

are well-behaved. However, with the increased interest in high speed and reentry vehicle type

aerodynanfics design, suitable and yet efficient numerical methods are a vital tool for the ad-

vancement in this area and such numerical methods have not yet been discovered. To gain some

insight, conventional finite difference methods such as upwind or central differences plus numer-

ical dissipation methods for the convection term and central differences for the diffusion term

can be used for analysis. Time differencing can be the class of a two-parameter family of explicit

and implicit linear muttistep methods or multistage methods. Most of them are similar to the
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ones that ]serles [105], Mitchell [106] and Sleeman et al. [107] have studied for the nonlinear
ODE dynamical systems.

Another difficulty is that combustion-related and high speed hypersonic flow problems usually

contain multiple equilibrium states and shock waves that are inherent in the governing equations.

Furthermore, additional equilibrium states might be introduced due to the time differencing. In

many instances the stable and unstable states, whether due to the physics or spurious in nature

(i.e., introduced by the numerical methods), are interwoven over the domain of interest and are

usually very sensitive to initial conditions and the time steps (even when the chosen time step is

within the linearized stability limit) as well as variation of parameters such as angle of attack,

Reynolds number and coefficients of physical and numerical dissipations.

Oil the subject of sensitivity to initial data, the basin of attraction or domain of attraction

(i.e. the domain for which the set of initial conditions that are time-asymptotically approach to

a specified stable equilibrimn state) might be very different between the governing differential

equations and the discretized counterpart. The basin of attraction might contract in one direc-

tion, expand in the other direction or be very different from the original PDEs depending on the

numerical methods. In many instances, even with the same spatial discretization but different

time discretizations, the basins of attraction can also be extremely different. However, mapping

out the basin of attraction for any nonlinear continuum dynarIfical system other than the very

simple scalar equations relies on numerical methods. The type of nonlinear behavior and the

sensitivity to initial conditions for both the PDEs and their discretized counterparts make the

understanding of the true physics extremely difficult when numerical methods are the sole source.

Under this situation, how can one delineate the numerical solutions that approximate the true

physics from the numerical solutions that are spurious in nature? Numerical studies show that

for relatively simple equations and well-known time discretizations with modest step-lengths,

some schemes can converge to a false asymptote or wrong solution in a deceptively "smooth"
manner [105].

The above subject area is especially important for employing a "time-dependent" approach

to the steady state with a given initial data. In many CFD computations, the initial data

are not known. A freestream condition or an intelligent guess for the initial condition is used.

In particular, the controversy of the "existence of multiple steady-state solutions" will not be

exactly resolved until there is a better understanding of basins of attraction for both the PDEs

and the discretized equations.

I'd like to end this section with a direct quote from Sanz-Serna and Vadillo's paper [31]. This

quote indicates the danger of relying on linearized stability and convergence theory in analyzing

nonlinear dynanfical problems. Reference [31] is one of the few papers trying to convey to

numerical analysts the flavor of the powerful "nonlinear dynamic approach". Hopefully with

section 3.13, I can convey to computational fluid dynamicists the flavor of the importance of the

"nonlinear dynamic approach" in CFD analysis.

"Assume that the convergence of a numerical method has been established; it is still possible

that for a given choice of At, or even for any such a choice, the qualitative behaviour of the nu-

merical sequence u °, u l, ..., u ", ... be competely different from that of the theoretical sequence

u(t0), u(tl), ... u(t,), ... This discrepancy which refers to n tending to oo, At fixed cannot

be ruled out by the convergence requirement, as this involves a different limit process (namely

At tending to 0)." ........................

.......... "The fact that analyses based on ]inearization cannot accu-
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rately predict the qualitativebehaviourof u '_ for fixed At should not be surprising: there is

a host. of nonlinear phenomena (chaos, bifurcations, limil cycles ...) which cannot possibly be

mimicked by a linear model."

The unresolved problem of fixed step stability for calculations involving nonlinear ODEs and

its link with dynamical systems was disscussed by Iserles [105 i.
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IV. EXTENSION OF NONLINEAR SCALAR TVD SCHEMES

TO 1-D NONLINEAR SYSTEMS

Before getting into a detailed discussion, it is important to emphasize that fi_rst-order up-

wind schemes for one-dimensional nonlinear systems encountered in the literature differ mainly

by their so-called "Riemann solver". For constant-coefficient systems, they all reduce to the

CIR (Courant-lsaacson-Rees) method [47]. There exist three popular ways of extending scalar

schemes to nonlinear systems (hereafter, referred to as Riemann solvers): the exact Riemaam

solvers I49,112], the approximate Riemann solvers [48,113!, and the flux-vector splitting tech-

niques [114,115 I. In this paper, the discussion and numerical comparison only stress the use of

high-resolulion TVD schemes in conjunction with an approximate Riemann solver of Roe, and

the flux-vector splittings of Steger-Warming and of van Leer for perfect gases. Comparison of

these methods in conjunction with the generalized Roe's approximate Riemann solver of Vinokur

i1161, and the generalized flux-vector splittings of Vinokur and MontagnO II171 for equilibrium

real gases are also considered. Generalization of the high-resolution schemes to nonequilibrium

flows was discussed in references [95,99,100,118-120i and will be discussed in section VII.

Recent developments of higher-order modern shock-capturing methods stress the nonlinear

scalar case. The extension of higher-order modern shock-capturing methods to systems relies

heavily on these Riemann solvers. Furthermore, since the extension is not unique, it depends

on the form of the nonlinear schemes that one started with [39]. One form might be simpler

than another for its system counterpart. The situation arises even when one starts with a

scheme with two different representations for the scalar case. A discussion on this subject will

be presented in section 4.6. For example, the Osher-Chakravarthy scheme is more complicated

and more expensive in the system cases than other schemes under discussion. See reference [39]

or section 4.6 for a discussion. Moreover, a comparison among the numerical results for schemes

(3.39), (3.47), (3.49), (3.51), and (3.53) does not indicate any advantage of the more complicated
schemes over the simpler ones. Based on this fact, numerical results presenled here reflect the

author's personal experiences and preferences for certain schemes. No attempt has been made

to present a unified comparison. Also, no effort has been made to collect numerical results

from investigators in related fields to illustrate the performance of similar schemes. Readers are

encouraged to study the related theory [15-23,77,114,115! and numerical results of references

117,77,82,121-128].

Since the current discussion is on conservative shock-capturing finite-difference methods, non-

conservative schemes such as the lambda scheme of Moretti [1291 will not be discussed, although

recent results of Moretti [130,131] show that the lambda scheme together with a shock-fitting

procedure suggests an efficient alternative to shock-capturing methods. An excellent detailed

discussion on the lambda scheme can be found in Pandolfi [91]. More detailed study and numeri-
cal tests are needed in this direction in the near future. Also, the FCT scheme of Boris and Book

1671 for nonlinear systems does not make use of any type of Riemann solver and the flux limiters

were applied directly to the flux functions even for a nonlinear coupled system of equations.

Thus this scheme will not fall into the category of the current discussion. Historically, Boris and

Book were two of the pioneers in introducing the concept of flux limiters for nonlinear scalar

hyperbolic conservation laws. However, for nonlinear systems lhey applied flux linfiters to the

individual flux functions. In the author's opinion this is less effective than the use of Riemann
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solvers. A discussion is included below. Also the popular and efficient shock-capturing method

of Jameson et al. will not be discussed here. The scheme of Jameson et al. [33] seems to fall in

between the classical and modern shock-capturing schemes. Their scheme, originally designed

for the Euler equations, uses two adjustable parameters to control the amount of numerical dis-

sipation, and also does not use any Riemann solver. The relative advantages and disadvantages
of the schemes of Moretti, Boris and Book, Jameson et al.. and TVD schemes for weak and

moderate shock-wave calculations are not clear at this point. However, for strong shock waves,

especially in the hypersonic regime, TVD or TVB schemes in conjunction with the appropriate

Riemann solvers are conjectured to perform better than the other aforementioned approaches.

One possible efficient type of numerical method that can avoid the use of Riemann solvers and

yet have the TVD or TVB properties are the high-resolution TVD and TVB Lax-Friedrichs

methods using the MUSCL as suggested in section 3.5.4 and in reference 1761. See sections 4.4

and 4.5 for a discussion.

4.1. Methods of Extension (Riemann Solvers)

The following is a brief review of the methods of extending nonlinear scalar difference schemes

to nonlinear systems of hyperbolic conservation laws. The objective is 1o giw, a flavor of the

developments and therefore many of the details are left out. First the various methods of

extension to systems and the original use of these methods in conjunction with the first-order

upwind finite-difference methods will be discussed. All of the original methods of extension to

systems were developed for perfect or thermally perfect gases and/he resulting algorithms for the

gas-dynamics equations were first-order accurate (except in flux-vector splitting approaches). In

the subsequent sect ion, generalization of these methods to equilibrium real gases will be described

in conjunction with numerical schemes that are higher than first-order.

The conservation laws for the one-dimensional Euler equations for equilibrium real gases can

be written in the form

OU OF(U) (4.1a)--4 -0.
Ot O.r

where the column vectors U and F(U) take the form

U F mu + p (4.1b)

cu -f pu

Here p is the density, m - pu is the momentum per unit volume, p is the pressure, e - p(e 4 _ u _ )

is the total internal energy per unit volume, and _ is the inlernal energy per unit mass. Note

that there is an arbitrary additive constant in the definition of (.

Many approximate Riemann botvers make use of the eigenvalues and eigenvectors of the .la-

cobian matrix A OF/OU. For a general gas, one therefore requires the thermodynamic

derivatives of p. In terms of the internal energy per unit volume 7 - pt, the differential of p can

be written as

dp - X dp + t¢ dT, (4.2a)
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where the thermodynamic derivatives are defined as

= ; K = (4.2b)

Here the subscript _" ( p ) means the partial derivative of p with respect to p (_') by holding

( p ) constant. If h -- e + p/p is the specific enthalpy, one can obtain for the speed of sound c
the relation

c2 = X + uh. (4.3)

For a perfect gas withp = pc(7- 1), where 7 is the ratio of specific heat, k = 0, and n = ('t- 1).
For a thermally perfect gas p =- pw(_), the temperature T = w(_) where w is a function of e

only, and X = w(e).

The Jacobian matrix A takes the form

0 1 0 ]A = X (2_ _)u2t2 (2- r)u K , (4.4)
(X + _tt_/2- H)u H- nu 2 (l+_)u

where H = h 4 u2/2 is the total enthalpy. The three eigenvalues of A are

a1 _ '// -- C, a 2 = U, and a3 = u + c.

The corresponding right-eigenvector matrix is

(4.5)

I 1 1 1 J
R= u- c u u+c , (4.6)

,_ x H + uc
H-_lC 2 --

while its inverse can be written as

,1 1 (ub2 + 1 _ ]= l-b1 b2u -b2J,_ i(ub2 1
c 2

where bl _ + <] b2 2

(4.7}

In order to relate the variables p and c to the independent variables p and ¢, it will also be

convenient to introduce the nondimensional thermodynamic variables

p pc 2
= 1+ --, 7- (4.8)

P_ P

For a perfect gas, these two parameters are constant and equal to each other; for an equilibrium

real gas, they are both arbitrary functions of p and e. Note that while n, c, and "t have well-

defined values, the values ofx and _ depend on the choice of arbitrary constant in the definition
of (.

Many existing conservative schemes for the system (4.1) use forward Euler time discretization.

For simplicity of presentation, this time discretization is used for discussion in this section and
the scheme can be written as
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,,_+1 T,, __ A /_ /_? , ]. (4.9)

The vectors Fj±_ are numerical flux vectors corresponding to h j+ _ for the scalar case. Note

that the numerical flux function/_j+½ should not be confused with the flux function Fj = F(Uj).

An excellent brief description of the various Riemann solvers for a perfect gas can be found

in Roe [7,60]. Here a short narrative discussion of the exac! Riemann solver and a more de-

tailed description of the approximate Riemann solvers and flux-vector splitting approaches are

included. For a systematic discussion of the topic see LeVeque I8].

CIR Method: The earliest method for gas-dynanfic equations in characteristic form was proposed

by Courant et al. [471. Their procedure, sometimes called the CIR method, is to trace back from

(jAx, (n + 1 )_/_/Xt)all three characteristic paths. Since the problem is nonlinear, the directions of

these paths are not known exactly, but to a first approximation they can be taken equal to their

known directions at (jAx, nat). Then each characteristic equation is solved using interpolated

data at time nat, in the interval to the left of j for characteristics with positive speed, and in

the interval to the right of j for characteristics with negative speed. The resulting method is

only firsl-order accurate. It has a principal drawback in thal the scheme cannot convey a shock

wave with the proper speed because it is not a conservative scheme. This method was later

rediscovered by Chakravarlhy el al. !1321 and was renamed the split-coefficient matrix method.

Exact Riemann Solver: Godunov !49] was the first to develop the idea of advancing the solution

to the next time-level by solving a set of Riemann problems. Recall that the Riemann problem

for any system of conservation laws arises if initial data are prescribed as two constant states

(U = U L for ,e < 0, U = U _ for x > 0). The solution then consists of centered waves. For the

one-dimensional Euler equations, the solution consists of three waves; lhe inner one is a contact

discontinuity, and the outer ones may be shock waves or rarefaction fans. The exact solution of

this problem involves only algebraic equations. See references [2,49 i for details.

1)Ax) at (_At). The way Godunov used the
Let U_+_ be the average state over ((j ± _

Riemann solvers was to replace the data by an approximate distribution in which the state

inside each interval is uniform and equal to Uj'. For each interface (j __ _1)A_-, one can solve the

Rieinann problem with U L Uj and ITR Uj+I- This gives an exact solution "tT'_+ _'' to the.... j+_

approximate problem, assuming At is small enough that the waves from neighboring interfaces

do not intersect. The solution at (n -- 1)At can again be approximated by a piecewise uniform

distribution, and then the process can be repeated. For the (_odunov method, the numerical

flux is

_'_ = F(rT "_
_+-_ _j+_ )"

(4.10)

More recently Ben-Artzi and Falcovitz [1331 generalized the exact tliemann solver of (;odunov

to be second-order accurate. Their theory is too complicated to be summarized here. The

versatility of their method remains to be shown.

Another closely relat ed method, devised by Glinun [134], modified by Chorin [135], and further

improved by Co;ella [112], is the random-choice method. It represents the staggered grid solution

56



by randomlysamphngthe Riemannsolutionsgeneratedat the previoustime-level.Recently,
Toro[136],RoeandToro [137],andToroandClarke[138]extendedthe random-choice method

to be second-order accurate. Their preliminary result is very encouraging for utilizing this type
of scheme in combustion-related flows.

Approximate Ricmann Solvers: Since the Riemann problems arising in Godunov's method re-

late only to an approximation of the data, one might reasonably be satisfied with approxinlate

solutions of the Riemann problem if these solutions still describe the important nonlinear be-

havior. Roe [48], Osher-Solomon [139], Harten et al. [113], Davis I140], and Einfeldt [141]

proposed methods for finding such solutions. The method of Osher-Solomon is quite compli-

cated to explain, and uses a similar number of arithmetic operations (and is not as exact) as

the Godunov method. The method of Harten et al., Davis and Einfeldt does not retain all the

information about every wave. Nmnerical experiments [140,141] showed high-resolution solu-

tions for one-dimensional shock tube problems but more extensive numerical testing on practical

application is needed before a decisive conclusion can be made. Roe's idea is closely tied with

the characteristic field decomposition method which is an effective approximate local decoupling

of the nonlinear system and is widely used in CFD practical applications. Therefore, only Roe's

approximate Riemann solver is described here. Interested readers should refer to the original

references for details. Roe's approximate Riemann solver is a linear wave decomposition in which

he required that there exists an average state U which is a nonlinear function of the left and
r _ Tright states U L'R (or _J+5 for _ and _j+l) satisfying

(1)F(U n) - F(U L) = A(U n,UL)(U n- U L) = A(U)(U n - U L)

(2) A(U R, U L) has real eigenvalues and a complete set of eigenvectors

(3) A(U, U) = A(U)

(4) U R - tTL : R(Un, UL)c, : R(-U)c,

where the klh element of a is the strength of the kth characteristic wave (or the jmnp in the

characteristic variables). The main feature of the method that makes it valuable for nonlinear

systems is that it returns the exact solution whenever U s: and U n lie on opposite sides of a

shock wave or a contact discontinuity. For the one-dimensional Euler equations for a perfect

gas, the Roe averaged state can readily be obtained as

U L + Du R

- 1 + D ' (4.11a)

__ H L + DH n
H - , (4.11b)

I+D

_2 = ("/ -- 1)[H - _2], (4.11c)

with

D= (4.11d)
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To makeuseof hisapproximateRiemannsolver.Roeappliedhisaveragestate (4.11)in con-
junctionwith hisfirst-orderupwindschemefor thenonlinearscalarcaseto arriveat afirst-order
schemefor thenonlinearsystemcase. The numerical flux is of the form

1
(4.12a)

where Rj+_ = R(Uj+,_) and

1 0 0
ai+_ a2 0

0 aa

(4.12h)

o _ =-R -_ (t,_+_ - Uj).
3+_ j+½

(4.12c)

1. denotes the average state between j and j + 1 using relation (4.11). It canThe subscript "j +

shown that the Roe-averaged Mach number M can lie outside of the range (1_1 L, Mn). Roberts

(142] investigated the phenomenon of noise radiated from slowly moving shock waves associated

with (4.12). However, this type of deficiency can easily be corrected by replacing IAj+ _1 in

(4.12a) by diag(¢(a)+½)) or by using the Lax-Friedrichs numerical flux as suggested in section

III. See also section VI for a discussion on high speed flows.

Flux-l,_ctor Splittings:. The simplest way of introducing upwinding into s)'stems of hyperbolic

conservation laws seems to be based on the representation of the flux vector F(U) as the sum

of F-(U) + F + (U) such that one can apply forward- and backward-differencing to the Jacobian

matrices o___ and °_t¢, respectively. This would be equivalen! to using an approximate Riemann

solution in which the numerical flux Fj+ ½ is of the form

r/:/

Fg+_ = F+(ujL½)4 F-(lj__½). (4.13)

OF 4
This numerical flux amounts to requiring that the Jacobian matrices °g_v- and -gU_r have no

positive and no negative eigenvalues, respectively. A popular way is to split the flux according

to the characteristic speeds (u. u ± c).

This idea, assunfing that the flux is homogeneous of degree one (for thermally perfect gases),

seems to have been first used in the context of astrophysical gas d vnanfics [143], and to have

been rediscovered with a fuller mathematical development by Steger-Warnfing [114]. Note that

Steger-V(arI_fing make use of the flux-vector splitting for a second-order upwind scheme in a

non-MUSCL way and without the use of limiters (non-TVD method). Their final second-order

upwind scheme cannot be represented in the form (4.13). Mulder and van Leer !144] and

Anderson et al. [77] introduced the MUSCL approach with linfiters into the Steger-Warrning

flux-vector splitting (TVD method, hereafter referred to as TVD_flUX yector-:splitting method)

and its numerical fluxes have the form (4.13). The MUS('L approach with linfilers (TVD)

formulation can produce a better shock resolution than the non-MI!SCL and non-TVI) flux-

vector splitting approaches.

In 1982, van Leer [115] devised an alternative splitting for a perfec! gas such thai there are

noticeably better results around sonic points and sharper shock transitions than can be obtained
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with the Steger-Warmingsplitting. For the derivation,seethe originalpaperfor details.In the
next fewsections,twogeneralizationsof theseflux-vectorsplittingsanda generalizationofRoe's
averageto equilibriumrealgaseswill bedescribed.In theseformulations,the perfect-gas version

is included as a particular case.

4.2. Description of the Riemann Solvers for Equilibrium Real Gases

Extensions of the exact Riemann solver of Godunov to certain types of equilibrium real gases

have been obtained by Colella and Glaz [145!, Dukowicz [146], Ben-Artzi and Falcovitz I147! and

in a more general setting by Liu I1481. The derivations are quite involved and interested readers

should refer to their papers for details. Efficient extensions of the Osher-Solomon Riemann solver

for equilibrium real gases are not known at this point. The recent generalization of Roe's average

by Vinokur [116], and generalization of Steger-Warming and van Leer flux-vector splittings by

Vinokur and Montagn6 [117] will be discussed in this section. Comparison among the various

generalization will also be included. These generalizations are also simpler to use than the exact

Riemarm solvers of references I145-1471.

The following three subsections (4.2.1 - 4.2.3) were written by M. Vinokur of Sterling

Software, Palo Alto, California. They are smmnaries of his papers II16,117,149 I.

4.2.1. An Approximate Riemann Solver (Generalized Roe Average [116])

Among the various approximate Riemann solvers 148,113-115] for a perfect gas, the most

coimnon one uses the Roe average [481 because of its simplicity and its ability to satisfy the

jump conditions. Surprisingly, an exact definition of a Roe average for equilibrium real gases

not only exists but is actually not unique. A number of different ways of obtaining a unique

solution have been proposed. Due to the arbitrary nature of the equation of state, it is difficult

to evaluate the various solutions. The amount of computation involved in the various solutions

is also a function of the equation of state subroutine. Thus different formulas could prove to be

more efficient when used with different equation of state routines.

While an exact definition of a Roe average for equilibrium real gases will be given below,

its implementation is generally not practical. Various approximations to the Roe average for

equilibrium real gases have been proposed [51,99,113,116,150-1541. The exact and approximate

formulae of Vinokur [116 i will be given here, whereas the others can be found in the appropriate

references. The reason for choosing Vinokur's formulation is that his derivation is more system-

atic than those of other investigators. Comparisons with the formulae of other investigators will

also be indicated. Generalizations of the Roe average for multidimensional flows are found in

Vinokur [1161. The use of the approximate Riemann solver in conjunction with the numerical
schemes will be discussed in sections 4.4 and 4.5.

The flux at a point separating two states U L and U R is based on the eigenvalues and eigen-

vectors of some average A. The optimum choice for A is one satisfying

AF = AAU, (4.14)

One way ofwhere A(.) = (.)R _ (.)r. This choice of A will capture discontinuities exactly.

obtaining A is to seek an average stale U, such that
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: A((T). (4.15)
E

The notation U inlplies only those variables that appear explicitly in equation (4.15). Such a

state is known as a Roe-averaged state. Expressions for a perfect gas were first devised by Roe

[48] and are given by equation (4.11).

The entries in A depend explicitly on the thermodynanfic variables h, k, and n. as well as

the velocity u. Since the density is not explicitly required, one would expect the Roe-averaged

state to depend on pL and pn through their ratio only. It is therefore convenient to define

the parameter D = _pL. We first examine the second component of equation (4.14). The

average velocity _ must be a linear combination of u L and u n. Recalling that u L and u R can

be independently prescribed, we can readily establish the same u as in equation (4.11a) for a

perfect gas. This definition will satisfy all the terms involving the velocity. Note that _ always

lies between u L and _n. The remaining terms in the equation result ill the new condition

_Ap + gA_ = Ap. (4.16)

This is just the discrete form of equation (4.2a), averaged between the two states. This last

condition is automatically satisfied for a perfect gas.

In order to satisfy the third component of equation (4.14) we also require H to have tile same

form as the perfect-gas version (equation (4.lib)). llsing the definition of H, equations (4.1 la)

and (4.11b) can be combined to define the Roe averaged specific enthalpy as

hL + Dh n D
-h_ +

1 ÷ D " (4.17)

Note that Jz could lie outside the range given by h L and h n if Au is sufficiently large. The

Roe-averaged sound speed is given by (4.3) as

_2 = _-+ _. (4.18)

For a perfect gas, equations (4.11a), (4.11b), (4.17) and (4.18) are sufficient lo define mfiquely

_t, _, and _-1, since _ = 0 and g is a given constant.

For an equilibrium real gas, equation (4.16) provides only one relation for the variables _: and

_. We thus have the paradoxical situation that not only does a Roe_averaged state exist for an

equilibrium real gas, but also its precise value is not uniquely defined. For the special case in

which states L and R are precisely those that satisfy the jump conditions across a discontinuity.

equations (4.11a) through (4.18) are consistent with the exact Biemann solver, ewm though t

and K are not uniquely defined. For a shock wave one obtains

A7 h L , D2h n
h - - (4.19a)

Ap I _ D 2

and

_, Ap (4.19b)
c'- Ap"
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For the specialcaseof a thermallyperfectgas,c2 is a function of h only, and one can readily

show that the values of h and ?2 given by equations (4.19a) and (4.19b) can only satisfy this

gas law if the function is linear. But this is precisely the definition of a perfect gas.

It is clear that unique values of _ and _ must be defined in terms of the thermodynamic

states L and R. Accurate numerical calculations for air [1551 show that _ and _ can have a

nomnonotonic behavior if the states L and R are far apart. One way to obtain unique values of

_ and _ is to integrate equation (4.2a) along the straight-line path between states L and R in

the p-_" plane. This results in the expressions

1

= J[0 X[P0")'_-(7")]dr' (4.20a)

= tc[p(v), _'(T)] dr, (4.20b)

where

(4.20c)

(4.20d)

Equations (4.20a) to (4.20d) give unique definitions of _ and _ satisfying equation (4.16) for

arbitrary values of Ap and AT, including the limiting case Ap = AT = 0. From equations (4.17)

and (4.18) one sees that even if Au = 0, _2 is not equal to the integrated average of c 2. Since

h is a smootMy varying function (compared to X and K), it is reasonable to expect that c 2 will

always be positive.

Given an equation of state, or some interpolation representation (such as in reference [155]),

the integrals in equations (4.20a) and (4.20b) can be evaluated for any two end states L and

R. Since the exact evaluation may not be practical, some approximate quadratures may be

required. Let _ and g be approximations to equations (4.20a) and (4.20b). They will not satisfy

equation (4.16) exactly. One therefore requires values of _ and _ satisfying equation (4.16)

which are closest to _ and _. This can be formulated geometrically by projecting the point _,

onto the straight line defined by equation (4.16). But in order for the Roe-averaged state to be

independent of the arbitrary constant in the definition of _, one must first recast the problem

so that geometric relationships will not be affected by the choice of this constant. This can

be accomplished if one first divides equation (4.16) by _. The slope of the straight line for

the variables 1/_ and _/_ is now given by Ap and Ap, both of which are uniquely defined by

states L and R. A further scale factor _" with the dimension of _ must be introduced, since

is not dimensionless. A natural choice for the scale factor .7 is an average value of c2. In terms

of arithmetic averages, which is equivalent to a trapezoidal quadrature approximation to the

integrals, one obtains the expressions

b_ + _.2_p @
_ = , (4.21a)

b- Ap@

b_

-_- b Apgp' (4.21b)
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where
(4.21c)6p = Ap - ;, At) - _ A;-

b = (_'Ap) 2 -- (Apf, (4.21d)

_- (_L + xR)/2, (4.21e)

(K L + KR)/2, (4.21f)

and

_" p = ((d) L + (dIR]/2. (4.21g)

L andk= K L.Note that if Ap Ap = 0, equations (4.21a) and (4.21b) are replaced by Jt = ),

Other approximate formulas for ,_, _, and _"may be found in reference [116]. Note that the earlier

expressions for _: and K given by equations (6.1a) and (6.1t)) of reference [150] are based on a

projection onto the straight line defined by equation (4.16), and the choice h for the scale factor

_'. The resultant values are not independent of the arbitrary constant in the definition of (, and

also depend on Au. These expressions therefore do not have as general a validity as those given

by equations (4.21a) to (4.21g). The numerical experiments reporled in reference [150] show I,o

significant differences between the two expressions. The particular cases discussed in section 4.4

actually used modifications of the average of Carofano [991 given by equations (6.2a} to (6.2c) of

reference [150]. Even though this average, as well as the arithmetic average suggested by Huang

[51], does not satisfy the Roe condition, no significant differences among the various averages
were observed. Also note that the expressions for _ and _: given by equations (3.17a) and (3.17b)

of reference [1501 and also quoted in references [151] and [1! differ from the expressions given by

equations (4.21a) to (4.21g), since the projection onto the straight line was defined in terms of

1/_ and _./_, instead of 1/_ and _/_.

The colunm vector 6 can be expressed simply in term of Ap, Ap and Au as

Ap- Ap/_ 2 1
1 i-2

= ;(Apjc _ -pAul,) , (4.22a)

_(ap/'c 2 .- _ /xu/_)

where one formally defines

= v/pLpR. (4.22b)

These expressions have the same form as for the perfect gas case. The quantities _ and _ do

not appear explicitly. One can show that unlike the perfect gas, (2 in (4.18) (depending on the

formula) could be negative if the two states are far apart and _" and _ are poorly approximated.

The same situation holds true for the nonequilibrium flows to be described in section VI1.

Comparison Among th( Various Generalizations: The expressions for A given by refer-

ences [51,99,113! do not satisfy the Roe condition (4.14). In the formulas for the Roe average

derived by Grossman and Walters [152!, 7 and § are introduced to relate c2 to h using equation
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(4.8). Their final expressions,whichdo not satisfyequation(4.14)exactly,areequivalentto
setting_:= 0, with "_ and 7 replaced by their arithmetic averages. Tile calculations of refer-

ence !155] show that setting _ - 0 may not be justified. The simple arithmetic average may
also not be justified if the two states are far apart.

(;laister !1531 employs e instead of _'in equations (4.2), and introduces p from equation (4.226)

as well as ( given by a relation analogous to equation (4.11a) in order to obtain equation (4.16)

in terms of Ae. He obtains his _: and _ by averaging the results of integrating his equation

(4.2a) along two piecewise straight-line paths, one passing through the state pL,eR and the

other passing through the state pn, eL. The results can be simply expressed in terms of the

values of p at the four states. Actually, Glaister's results do not reduce to Roe's average state

solution for a perfect gas. This can be corrected by employing a weighted average of the results

along the two paths in a manner similar to equation (4.11a). If the states L and R are far apart,

and the equation of state is non-convex, the introduction of the two fictitious states could give
poor results.

Liou et al. [154] also employ e instead of_-, and use the state/_, e defined by Glaister to calculate

their approximate _ and _. One can show that equation (4.16) in terms of A¢ can be satisfied by

integrating the analogous equation (4.2a) along a piecewise straight-line path passing through the

state _, _'. Their approximate ,_, _ thus corresponds to a one term quadrature approxinlation.

Their method for obtaining the values of their _= and _ satisfying equation {4.16) which are

closest to their _: and fi differs from that used by Vinokur [116]. Their formulae break down

when either Ap or Ae approaches zero.

4.2.2. Generalized Steger-Warming Flux-Vector Splitting [117]

For subsonic flow, the eigenvalues of A are of mixed sign. In flux vector-splitting methods,

the flux F is divided into several parts, each of which has a Jacobian matrix whose eigenvalues

are all of one sign. The flux-vector splitting approach of Steger-Warming [114] made use of

the assumption that the Euler equations are homogeneous of degree one. This homogeneity

properly is satisfied for a thermally perfect gas. While they only gave results for a perfect gas,

the results for a thermally perfect gas are found in reference [1171. Various generalizations of the

Steger-Warming flux-vector splitting for an arbitrary equilibrium real gas have been proposed

[117,150-152,154,156,157]. The formulae of Vinokur and Montagn_ !117] will be given here,

whereas the others can be found in the appropriate references. Comparisons with the formulae

of other investigators will also be indicated.

The generalization to an arbitrary equilibrium real gas presented here makes direct use of the

eigenvalues of A, and is an extension of the work of Sanders and Prendergast [143] and Montagn_

[157]. The basic idea is the observation that the eigenvalues are actually three velocities. One

can associate with each eigenvalue a t, l = 1, 2, 3, a stream with velocity a t, and some unknown

density pt and specific internal energy _z. Each stream can then be characterized by the column
vector

I ]U t = m t , (4.23)

1 l
where rn z = pZai and e t = ptIet + _(a )_']. The fictitious flux associated with each stream is
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assumedto beconvectiveonly,namely,

F t = atU t. (4.24)

The six unknowns are determined from the conditions

3 3

U = _ U t and F = _ F'. (4.25)
1=1 l= 1

Since the second component of U and the first component of F give the same equation, only

one degree of freedom remains. From the first two components of U and F one readily obtains

pl = p3 _ P and p2 _ p(1 - 1 ). (4.26a)
27 "7

The third components of U and F result in the relations

(;;)el : ¢3 and ZPl I = P _ _ . (4.26b)
l=l

The relations in equations (4.26a) and (4.26b) have the same form as those for the Steger-

Warming solution for a thermally perfect gas. In choosing the manner in which the remaining

degree of freedom is expressed, we are guided by the fact that _ is not an absolute quantity.

Consequently, we express the d as

= e , and el = e3 ¢ -_ --- c 2. (4.26c)
7(_ - ]) -_ 2

Here the non-dimensional thermodynamic parameter o (no! to be confused with a ::

R l([v)(Un uL)) has been chosen so that o = 0 corresponds to the Steger-Warming solution

for a thermally perfect gas. The final expressions for the F z can be written in the form

[ : ]F 2 _ P(7- 1) (a2) _ _ , (4.27a)
F<- _ia 27 (-a_-t_ -_ L -y(-y-l) J

and

[ °' ]Ft = p (a t)2 (4.27t))

--f-+ 4 _ 2

for l = 1 or 3. We thus have a one-parameter family of flux-vector splittings, where o can be an

arbitrary parameter. The total flux can be split according to the sign of the eigenvalues. For

-c < u < 0 we, therefore, have

= /:2 (4.28a)/_'-_ F 3 and F :: F l

and for0< u < c

__ F 3 F 1F -_ F 2 + and F . (4.28b)
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For a perfect gas one can show that when -c < u < 0, the determinant of the split-flux
Jacobian A + = OF +/OU is

det(A÷) - (c+u)313-7-2_)].1672 (4.29a)

The determinant is the product of the three eigenvalues, and a necessary condition for A + to

have eigenvalues that are all positive is that det(A +) ) 0. It follows from equation (4.29a) that

we must take o < 7(3- 7)/[2(7- 1)]. For the region 0 < u < c, one can show that the minimum

of det(A +) occurs when u approaches zero. This minimum value is

c3 [ (3-7)(7-1)]det(A +)- 1673 5-37-2a . (4.29b)7

The condition det(A +) > 0 requires that _ < 7(5 - 37)/[2(3- 7)(7 - 1)]. For 1 < 7 < 3, tMs

second condition on a automatically satisfies the previous inequality derived for -c < u < 0. In

order to determine an optimum value of c_, we note that in general the three eigenvalues of A +

are discontinuous at -c, 0, and c. For _ = 0, two of the eigenvalues are continuous at u = c, and

one can further show that all the eigenvalues are real and non-negative in the subsonic region

when 7 < 5/3. For a thermally perfect gas with vibrational excitation, one can show that all

the eigenvalues remain real and non-negative when a = 0. Because of the general nature of

the variation of 7 and e, it is simplest to set _ = 0 for an arbitrary equilibrium real gas. The
numerical results presented in section 4.4 were actually based on an earlier parameterization

which was chosen to reduce to the perfect-gas solution. It corresponds to the present (_ --
(7 - 7)/(_ - 1). The cases were also rerun with _ = 0, and no noticeable difference was
observed.

Comparison Among the Various Generalizations: The generalization of Steger-Warming flux-

vector splitting for an equilibrium real gas given by Palmer [156] and Grossman and Waiters

[152] is obtained by replacing 7 with _ in Eqs. (4.8), (4.27a), and (4.27b), and setting X = a = 0.

Since accurate numerical calculations for air [155] show that 7 and _ can differ by more than 20%,

the effective sound speed can differ from the true sound speed by more than 10%. This could

give rise to errors in transonic regions. The formula of Montagn6 [157] is based on the analysis of

this paper, except that the arbitrary parameter is chosen by assuming that the internal energy

per unit mass of each stream is the same. This is equivalent to setting o = (3 - 7)/2, and does

not reduce to the Steger-Warming flux-vector splitting for a perfect gas. In the pseudo-splitting

formula of Liou et al. [154], the homogeneous term AU is treated in the manner of Steger-
Warming, and the inhomogeneous term F - AU is treated in a central difference manner. The

solution explicitly involves the additional parameter t¢ and is, therefore, not as simple a form
of flux-vector splitting. It also appears that their split fluxes are discontinuous at u = c and

u = - c for an arbitrary gas law.

4.2.3. Generalized van Leer Flux-Vector Splitting [117]

In a different approach, van Leer [115] constructed a flux-vector splitting for a perfect gas
in terms of low-order polynomials of u, which gives continuous eigenvalues at u = 0 and u =

+c. The splitting also has the desirable property that one of the eigenvalues of the split-flux
Jacobians is identically zero. This results in a sharper capture of transonic shocks. Various

generalizations of van Leer's flux-vector splitting for an arbitrary equilibrium real gas have been
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proposed [l17,150-152,154,158j. Tile lormulae of Vinokur and Montagn_. [117 t will be given here,

whereas the others can be found in tile appropriate references. Due to the arbitrary nature of a

real-gas law, the condition of one eigenvalue being identically zero cannot be satisfied exactly.

Comparisons with the formulae of other investigators will also be indicated.

For ]u I < c, the continuity requirements necessitate a factor (u ± c) 2 in the formulas for

F ±. The expressions for the first two components of F ± that are given by the lowest-order

polynomials in u are readily found to be

and

F± - P ,
,_,, = Z_ccL, U :[: c) 2 (4.30a)

F,_omt _ 74cp(u+c) _[2c±(7- 1)u]. (4.30b)

For a perfect gas they are identical to those derived by van Leer. The expression for the third

component, which satisfies continuity and symmetry conditions, can be written most generally

in the form

F_
- _t 2(._2 -_ 1 ) 4c

± 3ZI + c)2( 
4c

i)]

(4.30c)

where the arbitrary parameter 3 has been chosen so that _fl = 0 corresponds to van Leer's

solution for a perfect gas. We again have a one-parameter family of flux-vector splittings. Note

that when /3 = 1/(-_ + 1), F_ = F_,_,,H. This choice of flux-vector splitting, which preserves

the total enthalpy, was recommended for high Mach number flows by H_nel et at. [159].

For a perfect gas, the second term in F_,_ vanishes. Van Leer's condition of a vanishing

eigenvalue for A ± requires/3 to vanish also, so that F_,_ reduces to one term. One can readily

show that the remaining eigenvalues are both of the proper sign for 1 < 7 _< 3. For an equilibrium

real gas, one requires at least two terms for F)n_. Because of the general nature of the variations

of 7 and ¢, it is impossible to obtain the vanishing eigenvalue condition identically throughout

the velocity range for any choice of i3.

One can demonstrate readily that for a thermally perfect gas, the two-term solution has

one eigenvalue that is of the wrong sign for the whole subsonic velocity range. Fortunately,

the magnitude of the offending eigenvalue is extremely small, so that its effect on a numerical

scheme is not noticeable. In view of this fact and because of the general nature of the variation

of 7 and _, it is simplest to set/3 = 0 for an equilibrium real gas. The results presented in section

4.4 are obtained with this value of _ and seem to show that this approximation is valid for a

wide range of flow conditions.

Comparison Among the Various Generalizations: The generalization of van Leer flu_x-vector

splitting given by Grossman and Waiters [152] is again based on replacing _ by #, and does

not use the true sound speed. Since § is a variable, van Leer's condition of one zero eigenvalue

can also not be obtained exactly in their formulation. For a thermally perfect gas, the)' also

obtain one eigenvalue of the wrong sign. The formula of Montagnd [158] differs from Eq. (4.30c),
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involvingboth 3'and_tin thefirst term,with the secondtermabsent.Hissolutionis internally
inconsistent,sinceit doesnot satisfythe conditionF = F + + F-. The formula of Liou et al.

[a54] is obtained from Eq. (4.30c) by setting/3 = (9 - 7)/(7 + 1)[7(7 - 1) + 2@ This does not

satisfy the principle that the solution should be independent of the arbitrary constant in the
definition of e.

4.3. Extension to Systems via the Local-Characteristic Approach

In this section, the method sometimes referred to as the "local characteristic approach" (a
generalization of Roe's approximate Riemann solver) in conjunction with TVD schemes is dis-

cussed. Consider a system of hyperbolic conservation laws of the form (4.1a) where U and F are

vectors of m components. The idea of the local-characteristic approach is to extend the scalar

TVD method to systems so that the resulting scheme is TVD for the "locally" frozen constant-

coefficient system. The procedure is to define at each point a local system of characteristic

variables I4 _ and to obtain a system of uncoupled scalar equations

Wt + AW_ = O, W = R-1U (4.31a)

A : diag(at). (4.31b)

The matrix R can be (4.6) for the Euler equations, and is a transformation matrix such that

A is diagonal. One then applies the nonlinear scalar scheme to each of the scalar characteristic

equations. The final form after transforming back to the original variables looks like the scalar

case except there is coupling between the characteristic variables through the eigenvectors R.

The numerical flux for the corresponding explicit scheme (3.34) or implicit scheme (3.50) can
be written in the form

Fj+½ =_ _l[fj + Fj÷a ÷ Rj+½_J+½],

for the non-MUSCL formulation and

(4.32a)

1iv(u  + )+ v( 5 ½) + kj+½ .½] (4.32b

for the MUSCL formulation. The matrix Rj+ ½ is R evaluated at some symmetric average of U s

and b)+a. For example, Rj+½ = R( U'+_+U'_ ). Other approximate ways of obtaining synmletric

averages are the Roe average for a perfect gas and its various generalizations to equilibrium real

gases as discussed in sections 4.1 and 4.2. The lth element of _j+ ½, denoted by ¢_+ ½ for the lth

characteristic, has the same form as the scalar case except that a j+ _1 is replaced by a zj+½ and

Aj+½ is replaced by a(. 1,1 = 1,...,m. Here a t = R -1 (Uj+I - U_).5- _ j+ ½ are elements of a j+ ½ J+

Specific forms of the Ctj+½ for explicit and implicit methods will be discussed in sections 4.4 and

4.5. Here /_j+ ½ and _,j+_ have the same meaning as (4.32a) except that the variables are in

terms of (U_ ½, ujL_)instead of (Uj+I,Uj)

The local-characteristic approach is more efficient, than the exact [49] or approximate Riemann

solvers of Osher-Solomon [139], and it provides a natural way to linearize the implicit TVD
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schemes[21,74i. The advantagesof this approachasopposedto Davis" simplified approach [8j

or the Boris and Book approach [67] to systems are that (a) the current approach in effect

uses scalar schemes on each characteristic field so that the limiter used need not be the same

for each field (e.g., one can use a more compressive limiter for the linear fields and use a less

compressive limiter for the nonlinear fields as in the numerical examples of references [21,75,160-

162]) and (b) one can even use different schemes for different fields. For the one-dimensional

Euler equations, the characteristic fields consist of two nonlinear fields u ± c and a linear field u.

The contact discontinuities are associated with the linear fields. It has been shown [21,75,160-

162] that the two different fields required different amounts of numerical dissipation (i.e., different

limiters). Often the limiters that are designed for the linear field might give spurious oscillation

or nonphysical solutions for the nonlinear field. Numerical examples concerning this aspect will

be discussed in subsections 4.4.3 and 4.4.4, and in section V.

4.4. Description of the Explicit Numerical Algorithms and Examples

Tile second-order in time and second- or third-order in space explicit-difference schemes con-

sidered here for both the MUSCL and the non-MUSCL approaches for the system case can be

written in the same form as equation (4.9); i.e. U_ -_1 = U_- A[F' -" .3+ _ F__ _] These nonlinear

scalar schemes as discussed in section III were purposely wriUen in a more convenient form for

the generalization to systems via the local characteristic approach. The various methods can

be implemented into a new or existing computer code with nfinimum effort. Also the various

methods fall nicely into the present framework and a computer code can be implemented with

the various methods as separate modules. These schemes are written in a manner such that

there is a smaller operations count than other equivalent forms for their scalar counterparts.

For scalar problems, the difference in operations count between any two algorithms may be very

small and yet the operations counts for their system counterparts nfight be vastly different. The

situation occurs even though one starts with a different yet equivalent representation for the

scalar case. More detail on this matter can be found in Yee [39] or section 4.6.

4.4.1. The Non-MUSCL Approach

The numerical flux functions/Sj± ½ for a non-MUSCL-type approach for both the upwind and

symmetric TVD schemes [21,75 i using the local-characteristic approach are given by equation

: 1 [Fj + Fj÷I + }_j+½1"(4.32);i.e., Fj+½ _ R j+

! ,5"

Second-Order Symmetric TVD Scheme: The elements of the vector di,j÷ I' denoted by (¢j+ ½ ) ,

for a general second-order symmetric TVD scheme are

: , -'^, I- (4.33a)

The value a( is the characteristic speed a t evaluated at some svrrmaetric average of l': and

Uj+I. The function 4' is an entropy correction to I:]. It can be the same as (3.18), which is

repeated here for completeness:
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Izl _>6, (4.33b)

For the test problems containing only unsteady shocks to be shown, 61 is set to zero in most

of the computations. Note that entropy-violating phenomena occur only for steady or nearly

steady shocks. For steady-state problems containing strong shock waves, a proper control of the

size of 61 is very important, especially for hypersonic blunt-body flows. A discussion is given in
section 5.7. The 'limiter' function ^l

Q j+ ½, expressed in terms of characteristic variables, can be
of the form

, = minmod(a , o( ) + minmod(ol=.,,o( )
, - oj+½_ J+½ j-_ j+_ ,

Q_+_ =minmod(o( 1 az , o(

(4.33c)

(4.33d)

(4.33e)

The minmod function has the same meaning as in the scalar case.

Second-Or&r Upwind TVD Scheme: The elements of the vector _j+ ½ for a second-order upwind

CtTVD scheme, denoted by ( j+½)v originally developed by Harten and later modified and

generalized by Yee [74,75,163], are

The function a(z) = }[¢(z) - $z _] and

g(_/a l
I = a(a_+_) (g_+l - 3"" j+½

7#+ _ 0

l
Examples of the 'limiter' function gj can be expressed as

(4.34a)

(4.34b)

= nfinmod( at. 1 a zgJ 3-_' j+½)

z ( z t t cd ,)/(cd a()g,= a.3+_,a. ,___+la3+½ __½ _+½ + j__

gj' = minmod(2at__t,2a_+_,_. _ _(a_+½ + aj_½' ))

'gj = S.max I,S ' min(ja_+½1,2S.o(

(4.34c)

(4.34d)

+ (_½) + _,
(4.34e)

(4.34t")

; S=sgn(a_+½).
(4.34g)

Here 5z is a small parameter to prevent division by zero. In practical calculations 10 -7 < 62

10 -_ is a commonly used range. The parameter di2 -= 10-7in all of the calculations presented in
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t is setto zeroin (4.34d).Thelimiter (4.34f)sections4.4.3and4.4.4.For a( * o)_ , --- O, gj
3_ 1

is due to Woodward and Colella (82j.

Roe-Sweby Second-order TVD Schemes: The elements of the vector @j+ } for the second-order

Roe-Sweby upwind TVD scheme denoted by (¢( , )Rs are
3+3

(¢_+})Rs L[aQ!I3*; _ z-"_(r') )_ ]-w-(laZ_+,l-A(a_+_ ) o' (4.35)= - _ J+}

where r z is (3.47b) with the u's replaced by the Ith local characteristic variable, and the A j+

by a t_+½"

An Explicit Predictor-Corrector TVD Scheme: With the above notation, a formal extension of

the scalar explicit second-order TVD method (section 3.6) in a predictor-corrector form via the

local-characteristic approach for the nonlinear hyperbolic system (4.1) can be written as

A[_x) -- - A--xAt(F_' - FJ"-I ) (4.36a)

uJl)= AU_} ) + U_, (4.36b)

Al'J3(2) : 21 { -'_T;1) AxA' [ F_'I}+I - F(1)]}.3 (4.36c)

U_2'= AIr_2'-_ Irma', (4.36d)

v;+' 7(2, [ - (4.36e)

)PC, , are the same as equations (3.69d) andThe elements of the vector @j+ _ denoted by (¢_j+

(3.69e) with aj+_ replaced by a t:_½, Aj+j5 replaced bv_ o t:+_, and Qj+{ replaced by Q._+_.

Rj+½ and _j+½ can be evaluated at U" or U (2) as discussed in sections 3.6 - 3.9.

High-Resolution TVD _: TVB Lax-Friedrichs Schemes: The corresponding high-resolution TVD

Lax-Friedrichs schemes for system cases can be obtained by changing the ¢(z) in (4.33a) and

' for any of the (¢_+})s, (¢lj. ½ or , In addition in changing the(4.34a) with _'(z) = _ _
1

¢(z) to $ one can obtain a high-resolution TVB Lax-Friedrichs method by changing the limiter

function to be the same form as equation (3.60). Although using the Lax-Friedrichs numerical

flux would introduce more nmnerical dissipation into the scheme, with this numerical flux, an

entropy inequality is automatically satisfied. Thus one does not have to deal with an arbitrary

parameter 61. In addition, at each grid point a savings of a (3 × 3) matrix multiplication with

a vector is realized.

7O



4.4.2. The MUSCL Approach

MUSCL Approach Using an Approximate Riemann Solver. The numerical flux function Fj+

for a MUSCL type approach of an upwind scheme as described in Yee [39] using the local-

characteristic approach can be expressed as

- 1 , F(IL+ )+Rj+½_J+½] (4.37a)

where the elements of if j+ ½ are

%+½ -Rj+_(

(4.37b)

(4.37c)

where _b(z) can be Izl or (4.33h). Here _t ^ t is the eigenvectorj+½ are the eigenvalues and R j+

, and uL+½; i.e.,matrix of A, evaluated using a symmetric average between Un+

"6_+_ -altU n_- , (4.37d)

(4.37e)

However, there are options in applying the limiters for system cases. Namely, one can impose

limiters on the conservative, primitive, or characteristic variables. For a first-order time dis-
R,L

cretization, the simplest case is to define each of the elements of U._+ } as in the scalar case

(equation (3.38)). For a second-order time discretization, in addition to the various options in

imposing the linfiter, another step is needed. For the moment, let us assume that the vari-

ables for imposing the limiter are W = (p, u, pc). Denote P and p-1 as the matrices such that

U = PW and W = P-'U. The vectors [_n+½ and uL+_ for a second-order in time (due to s.

Hancock of Physics International, unpublished work), second-order in space MUSCL approach
can be

, =P(Wj "+_ + _j), (4.38a)

+½ --,"j+l - _gj+l). (4.385)

Here ffj is defined as in equations (4.34c)-(4.34g), except the arguments will be elements of

(V'3n+l- W?)and (HZ" - Wj_-I), with W_+-_ = P-I(U_+{)where

U_. +½ : U_n A {F[P(_r_ ÷ l"_j)] - F[P(_r_- 1 }-_ _j)] . (4.38c)

One can define W = /:7 the conservative variables or W W the characteristic variables. A

second-order in time but third-order in space scheme can be obtained by defining a different _j
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function(seeequation(3.38)for a formula).In all theshocktubecomputationsin section4.4.3,
W = (p, u, pc).

MUSCL Approach Using the Lax-Friedrichs Numerical Flux [76]: The numerical flux function

Fj+ _ for a M[ S(,L type approach using the Lax-Friedrichs numerical flux can be expressed as

- 1 (4.39a)

where the lth element of @j+ ½ is

'(q+ (4.39b)

In addition to the fact that the Lax-Friedrichs numerical flux automatically satisfies an en-

tropy inequality (thus one does not have to deal with an arbitrary parameter /_1), there is

also a tremendous savings in operations count (especially for multidimensional problems and/or

nonequilibritml flows) in using this type of numerical flux instead of the Roe-type first-order

upwind numerical flux for the MUSCL formulation if the limiter function is applied to the con-

servative or primitive variables instead of the characteristic variables. In problems containing

contact discontinuities as well as shocks, one can use a more compressive limiter for the density

and a less compressive limiter for the other variables. Note that one does not have a similar

savings using the Lax-Friedrichs numerical flux for the non-MUSCL formulations.

MUSCL Approach Using Flux-Vector Splittings: The numerical flux 153+½ for either flux-vector

splittings, can be expressed as

/>j+_ : F+(U_ _)+ F-(¢,,_n+__), (4.40)

where F±(uL+_) are evaluated using either the generalized Steger-Warming splitting or the

generalized van Leer splitting. The vectors U_+½ and U)+a_ are the same as in equation (4.38).

4.4.3. Comparative Study of TVD Schemes for Equilibrium Real Gases [150]

A detailed description of this study can be found in Montagn6 et al. [150]. Six one-dimensional

shock-tube problems were considered.
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Case State Density Pressure I Temp. ] Energy I Velocity I Mach

Case A Left 0.0660 9.84 104 4390 7.22 106 0 0.0

Right 0.0300 1.50 104 1378 1.44 l0 s 0 0.0

Case B Left 1.4000 9.88 10 _ [ 2438 2.22 106 0 0.0

Right 0.1400 9.93 103 / 2452 2.24 106 0 0.0

CaseC Left 1.2900 1.0010 s 272 I 1.9510s 0 I 0.0Right 0.0129 1.00 l04 2627 2.75 106 0 0.0

Case D Left 1.0000 6.50 10 s 2242 [ 2.00 l0 s 0 0.0

Right 0.0100 1.00 103 346 t 2.50 10 s 0 0.0

Case E Left 0.0100 5.73 102 199 I 1.44 l0 s 2200 7.8

Right 0.1400 2.23 104 546 p 4.00 10 s p 0 0.0

Case F Left 0.0100 5.73 102 199 1.44 l0 s 4000 14.6

Right 0.0100 5.73 102 199 1.44 l0 s -4100 -14.5

Table 1. Initial conditions for the test cases.

The left and right states of the initial conditions for all six cases are tabulated in table 1. The

cases have been ordered in the direction of increasing maximum Math numbers encountered in

the flow. The densities are given in kg/m 3, the pressures in Newtons/m 2, the temperatures in

Ke]vin, the internal energies in kg(m/sec) 2 and the velocities in rv_/sec.

The thermodynamic properties of equilibrium air were obtained from the curve fits of Srini-

vasan et al. I164]. These curve fits give analytic expressions for "_ in several ranges of density

and internal energy. The values of 7, X, and K are then calculated from the derivatives of

these analytical expressions. The numerical solutions were compared with an "exact solution"

computed by solving the Rankine-Hugoniot jump conditions and integrating numerically the

characteristic equations in the expansion fan. Figure 4.1 shows the distribution of Mach number

and of the two quantities 7 and _ defined in (4.8). Not only the changes in their values but

also tile differences between them are indications of departure from the perfect-gas case. These

differences do not necessarily occur at very high temperatures, but at intermediate temperatures

when the vibration is excited and when the dissociation reactions start. Results for cases B, C
and E are discussed here.

The combination of Riemann solvers and of differencing algorithms considered above yields

five different schemes: a symmetric non-MUSCL scheme, an upwind non-MUSCL scheme, and

three MUSCL-type schemes, depending on the Riemann solvers. The Roe-Sweby and the high-

resolution Lax-Friedrichs schemes were not considered in this study. The study provided a check

on the validity of the extended formulas, since theoretical prediction of their properties appears

to be difficult due to the non-analytic form of the state equation. Comparisons were done on

the accuracy and the robustness of the methods. The six test cases chosen were intended to

highlight the effect of the high ratios in pressure or density related to shocks, and the effect of

departure from a perfect gas in the state equation.

The five second-order explicit schemes tested were (a) the synunetric TVD scheme (4.33), (b)

the upwind TVD scheme (4.34), (c) the upwind TVD scheme (4.37, 4.38), (d) the generalized van
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Leer flux splitting (4.40) and (e) the generalized Steger-Warming flux splitting (4.40). Schemes

(a) and (b) follow the non-MUSCL approach, while schemes (c)-(e) follow the/vlUSCL approach.

The same approximate Riemann solver (local-characteristic approach, section 4.3) is used in the

three schemes (a), (b) and (c). The limiter function used for each scheme remains the same for

all the cases. Limiter (4.33e) is used for the symmetric TVD scheme (4.33), and limiter (4.34e)

is used for the rest. For the MUSCL computations, the function _p(--) = Izt. The time-step limit

is expressed in terms of a CFL number related to the eigenvalues of the numerical fluxes. The

CFL number is fixed at 0.9 in cases B and E. In case C, it has been fixed at 0.5 for the upwind

non-MUSCL and MUSCL scheme and at 0.9 for the syrmnetric scheme. The actual CFL used

for the flux splitting approaches is approximately 80% of the fixed CFL (see reference [1501 for

details). The number of discretization points is 141 in cases B and C, and only 81 for case E

because the expansion fan is replaced by a shock. The time for stopping the computation has

been chosen for each case in order to use the full computational domain. For a Az normalized to

0.1 meter, these times, given in 10 -3 seconds, are t = 3.0 for case B, t = 5.0 for case C and t --

3.2 for case E. The comparative study can be divided into two aspects, one on the differencing

algorithms, and the other on the Riemann solvers. Figures (4.2)-(4.4) show the perfect-gas

computations and figures (4.5)-(4.7) show the equilibrium real-gas computations. In all of the

computations _1 (in equation (3.18)) was set to zero for the non-flux-split approach. The vector

H" in (4.38) is set. to (p,u,p_). Since the resolutions of shock and contact discontinuities do

not always behave the same for the different variables, the computed solutions for 7,7, Mach

number, energy, velocity and density are shown here for completeness.

Comparison of the Differencing Techniques: Parts (a)-(c) of figures (4.2)-(4.7) provide a con,-

parison of the symmetric TVD and the upwind TVD non-MUSCL scheme, and the MUSCL

scheme with the same approximate Riemann solver for both perfect and equilibrium real gases.

The three techniques give almost the same results in general and the differences are similar

to those found for a perfect gas. The greatest difference occurs in test case C. But, this case

happens to be already a difficult one when the same initial conditions on density and energy

are applied to a perfect gas. The major differences are between the synnnetric scheme and the

two upwind schemes. Although the symmetric scheme is generally more diffusive at the contact

discontinuities, the situation is reversed in case E where the main shock is almost stationary

and the flow behind it has a very low velocity. Furthermore, this symmetric scheme yields more

stable results in that case. The influence of the limiters is the same as for a perfect gas as

sunmmrized in references [21,751 and in sections 5 and 6. A comparative study of flux limiters

for case B will be discussed in the next subsection (4.4.4). This point, like some aspects related

to the computational efficiency, is discussed more fully in [150].

The main difference in computational effort lies in the MUSCL and non-MUSCL approaches.

The operations count between the non-MUSCL and MUSCL is within 30% for a perfect gas.

However, due to extra evaluation in the curve fitting between the left and right states in an

equilibrium real gas for the MUSCL formulation, additional computation is required for the

MUSCL approach. The slight advantage of MUSCL over non-MUSCL is that MUSCL can be

spatially third-order accurate. One word of caution is that experiences with the third-order case

(r/= 1/3 for equation (3.38)) do not show a very visible improvement over the second-order case.

Part of the reason is that all TVD schemes reduce to first-order at points of extrema regardless

of the order of accuracy in smooth regions.
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Comparison of the Rzemann Solvers:. Parts (c)-(e) of figures (4.2)-(4.7) compare the three Rie-

mann solvers for the MUSCL scheme for both perfect and equilibrium real gases.

In the test conditions used, a comparison between the two classes of flux splittings showed

little difference when equilibrium air was used. The generalized van Leer splitting yields a

sharper capture of the shocks than the generalized Steger-Warming splitting. The resolution

and operations count of the different approximate Riemann solvers [51,99,116] are very similar.

The results obtained with the approximate Riemann solver are very similar to the ones obtained

with the generalized van Leer splitting. Actually, the generalized van Leer splitting seems to

be less sensitive to the state equation for the shock resolution while the approximate Riemann
solver is more accurate at the contact discontinuities.

It is important to note that flux-vector splittings make use of the sound speed only, whereas

approximate Riemann solvers of the Roe-type make use of the thermodynamic dervatives X and

t_ of equation (4.2). These thermodynamic derivatives put more stringent requirements on the

curve fit that represents the thermodynamic properties of the gas. In this regard, the curve fits

of Srinivasan et al. may be deficient for the approximate Riemann solver as can be seen from

figure (4.1), case D. One probably needs more improved curve fits such as those of reference

I155] before a definite conclusion can be drawn about the accuracy of the different Riemann
solvers and schemes.

In conclusion, for the purpose of calculations in gas dynamics with equilibrium real gases,

these numerical tests show that the simple extensions to an equilibrium real gas of the flux-

vector splitting or the approximate Riemann solver presented in this section are valid. The

main effect of using a real-gas equation of state is to exacerbate the problems of the methods for

large discontinuities. Test case C is an example of such a situation. Sinfilarily, it seems difficult

to give a ranking of the methods. Depending on the case, each one presents some drawbacks or

some advantages. The present results also indicate that the state equation does not have a very

large effect on the general behavior of these methods for a wide range of flow conditions.

None of the differences observed for the explicit versions seems to be decisive for the one-

dimensional tests, but factors such as stability and computational efficiency need further in-

vestigation in multidimensional tests. The main differences between the methods lie in their

versatility in extending to implicit methods with efficient solution procedures, especially for

multidimensional steady-state computations. Preliminary study shows certain advantages of

the approximate Riemann solver over the flux-vector splitting approaches (see section 4.5 for a

discussion).

4.4.4. Comparative Study of Flux Limiters for a 1-D Shock-Tube Problem [1]

The same five different explicit schemes discussed in the last subsection (4.4.3) were used

to study the effect of different limiters on the accuracy of the schemes for both perfect and

equilibrium real gases. Because of the anticipated decrease in accuracy for equilibrium real

gases of the curve fits of Srinivasan et al. in providing the thermodynamic derivatives, only the
result of case B is summarized and shown here.

Figure (4.8) provides a perfect-gas comparison of the five schemes in conjunction with the

different limiters (4.33) and (4.34) corresponding to the appropriate schemes. Figure (4.9)
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providesthe samecomparisonfor an equilibriumreal gas. A CFL = 0.9 wasusedfor all
computations.Parts (a) - (c) of figures(4.8)and (4.9)showthe accuracyof Roe'sfirst-order
scheme,Harten'soriginalmodified-fluxscheme(3.45)without the addedartificial compression
[17],andtheauthor'smodificationto (3.45)(i.e. (4.34a)-(4.34c))respectively.Onecanseethe
dramaticimprovementof scheme(4.34a)-(4.34c)over(3.45).Harten'sscheme(3.45)produced
accuracysimilarto that of Roe'sfirst-ordermethod.

Parts(d) - (m) of figures(4.8)and(4.9)summarizethenon-MUSCLandMUSCLapproaches
forbothperfectandequilibriumrealgasesforall thesecond-ordermethodsin section4.4.In the
caseofa non-MUSCLapproach,limiter (4.33e)is themostaccurateamong(4.33c)- (4.33e)for
the syrmnetricTVD scheme(4.33).As for theupwindschemes,limiters(4.34d)and(4.34e)are
very similar,whereaslimiter (4.34g)givesveryaccurateresultsfor contactdiscontinuitiesbut
is sometimestoo compressive,thuscausingslightoscillationsin smoothregionsfor high Math
numbercases(resultnot shown).A combinationof limiters suchas (4.34d)or 4.34e)for the
nonlinearfieldsand (4.34g)for the linear fieldseemsto bea goodcompromise.In the caseof
theMUSCLapproach,onlylimiters(4.34c)and(4.34e)werestudied.Betweenthetwolimiters,
(4.34e)produceshighershockresolutionthan (4.34c)(comparisonnot shown). Not shownis
the Colellaand Woodwardlimiter (4.34f). Theresolutionis somewherebetweenthe superbee
and(4.34e).

4.5. Description of an Implicit Numerical Algorithm and an Example

The corresponding implicit scheme of equation (3.21) for the system case via the local-

characteristic approach can be written as

(4.41)

Here 0 has the same meaning as in equation (3.21). The spatial accuracy of the scheme depends

on the form of the numerical flux functions. Note that the same numerical flux (to be discussed

in section VI) is also applicable for the two-parameter family of time differencings as discussed

in section 3.11. Implicit methods via the flux-vector splitting approaches in conjunction with a

MUSCL formulation can be found in references [77,122,123] and will not discussed here.

Non-MUS('L Approach: The numerical flux function Fj+½ for a non-MUSCL type approach

for both the upwind and symmetric TVD schemes has the same form as equation (4.32); i.e.,

F3+ _: = 21r[FJ + Fj+I + Rj+_2_(I'j+ ,5i" The elements of the vector (I)j+ _ denoted by (O_,_)s for a

general second-order symmetric TVD scheme are

l S
- ½),(¢J+½) = ^' (4.42)

where o tj+ ½ are elements of R j: ½(Uj+t - Uj). The function _p is the same as in the corresponding

scalar case. The limiter function ^zQj+½ can be the same as (4.33).

(_lThe elements of the vector ¢I,j+ ½ denoted by ( j+ ½)v for a second-order implicit upwind TVD

scheme, originally developed by Harten [17] and later modified by Yee [74,75,163], are
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(4.43)(¢_+_ = _(a +½)(g_+l + gj)-- 5 5 5

The z l
7j+ ½ and the limiter function gj can be the same as (4.34). The situation is similar for

¢_ )Rsthe Roe-Sweby numerical flux except the ( j+½ function in this case is (4.35) with the term

A(a_ , )2 set to zero.
J+5

MUSCL Approach: The numerical flux function /Sj+½ for a MUSCL-type approach of

the implicit TVD upwind scheme has the same form as the explicit case, i.e., Fj+½ =
A

! , ) + F(ujLI ) + Rj+_j+_] except that the form of the V R'L2 [F(Uj_5 _ , j+ ½ is slightly different.

The values Uff+½ and uL½ are the same as (4.38)without the additional step (4.38c); i.e.,

setting Ujn+_ = Uj.

High-Resolution Lax-Friedrichs Method: The TVD or TVB numerical flux function Fj+ _ for a

MUSCL or non-MUSCL approach using the Lax-Friedrichs numerical flux for (4.41) has the

same form and properties as discussed in sections 4.4.1 and 4.4.2 for the exlflicit methods with

the exception of dropping the A(aZ¢+½)2_ term in (4.33a), (4.34a), (4.35)and (4.36), and the

appropriate limit for TVD or TVB methods.

A Conservative Linearized Form ]or Steady-State Applications: A conservative hnearized form

of (4.41) (see section 3.10) can be written as

[ ( )in ( )I + O At H_ E, _ At - - Fn- - F. _ (4.44a)Ax Hj+_ j_½ Ax _+_ :-'i '

with

E n = U n+] _ U n, (4.44b)

where

1(_+_ = _ Aj+I - _j+_ . (4.44c)

Note that the matrix H _ in (4.44c) is different from the total enthalpy H in section 4.1 The_+_
nonstandard notation

j+½ -_ Aj+,Ej+I- j+½E

$8

is used, and for a first-order implicit operator, Dj+½E can be

(4.44d)

Ft _j+½E= Rj+_diag[¢(a_+½ )]R_½ (EJ+l - Ej). (4.44e)

Here Aj+I, is the Jacobian of F evaluated at (j + 1) and E_ = /:_+_ - U_. For steady-state

applications, one can simplify (4.44e) as
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Qa'j+__E = J_.I(Ej+I - E/). (4.44f)

The scalar value A4_ is

.A4:_ = max _b(a_+ ½), (4.44g)
l

and I is the identity matrix. Note that (4.44f) involves scalar multiplications only. The solution

using (4.44) is still spatially second-order (or third-order) accurate after it reaches steady state.

A second-order form of (4.44e) for the non-MUSCL formulation can be found in references

[21,74 i. The nonconservative linearized form as discussed in the scalar case can be obtained

similarly. See references [21,74] for details.

The author would like to point out an important distinction between the flux-vector split-

tings and the local-characteristic approach for implicit methods. Unlike flux-vector split-

ting approaches, implicit methods employing the local-characteristic approach (non-MUSCL

or MUSCL) with first-order implicit operators such as (4.44f)) do not require the Jacobian

of the F :L fluxes. In many instances, the Jacobian of F ± is relatively difficult to obtain. A

similar difficulty applies to the MUSCL formulations via the local-characteristic approach if a

second-order implicit operator is desired.

To show the stability and accuracy of an implicit upwind TVD-type method for steady-state

application, results for a quasi-one-dimensional divergent nozzle problem [11] are presented.

Figure (4.10b) shows the converged density distribution after 25 steps at a CFL number of 106

using 20 equal grid spacings and using (4.43) with the minmod function (4.34c) and 0 = 1. The

value dil in (3.18) is set to 0.125. The solid line is the exact solution and lhe diamonds are the

computed solution. Only 14 points are plotted. The six points not shown on both ends of the x-

axis are equal to the exact solution. The solution looks very much like the explicit upwind TVD

scheme using the corresponding explicit numerical flux and the same hnfiter (figure 4.10a) except

the implicit method has a tremendous gain in efficiency. Figures (4.10c) and (4.10d) show the

same computation with a classical shock-capturing method and the first-order Steger-Warming

flux-vector splitting methods.

4.6. On the hnplementation of High-Resolution Schemes for Nonlinear Systems

This section discusses a practical point on implementing schemes that are designed for non-

linear scalar equations into nonlinear systems by Riemann solvers. This is largely related to

the way second-order accuracy is achieved and to the types of linfiters (flux or slope limiters).

For the scalar case the difference in operations count between any two algorittuns may be very

small and yet the operations count for their system counterparts might be vastly different, es-

pecially for problems in nmltidimensions and in curvilinear coordinates. The situation occurs

even though one starts with two different yet equivalent representations for the scalar case. In

the discussion, only the MUSCL scheme (3.39), Harten scheme (3.45) with t'_(z) _- Izl and the

Osher-Chakravarthy scheme (3.49) are considered. The results and discussion carry over to

other schemes with similar structures as well.

To discuss the relative computational effort among the spatially five-point TVD schemes of

Harten, MUSCL and Osher-Chakravarthy for system cases, the local characteristic method of
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generalizationfor systemsis chosen. It is emphasized here that the scalar schemes of Harten,

MUCSL, and Osher-Chakravarthy are used. Then extensions to systems are employed by the

same method (i.e. Huang or Roe), not by their original Riemann solvers [69,139] for system
cases.

For simplicity of presentation, assume _(z) in (3.45) has the form _O(z) = Izl. The use

of an entropy-satisfying ¢(z) is only a minor modification of what is about to be presented.

Furthermore, since the main concern of this discussion is the spatial discretization, only the

forward Euler time differencing is considered. Other explicit, implicit, or predictor-corrector

types of time differencing do not alter the results.

Using the identity ]aj+ ½l = sgn(_j+,3, _J+_-' and _j+½ = (fj+_ - )_+l)/(uj+l - uj), Harten's
scheme can be rewritten as

'_ A[1 + sgn(_y ½)J(L" 7n.41 A [1 sgn(-5'___ )] ()_n+l _n)...... (4.45)

The gj function of (3.45b) can be defined in a slightly different form.

gj = minmod (Yj+ ½A j+ ½1, y j_ ½A j_ ½]) (4.46a)

with Yj+½ = Y(aj+ ½) and

1

Y(z) = _ [sgn(z)- Az]. (4.46b)

Here the identities sgn(Aj+½f)sgn(aj+½) = sgn(uj+l- u./) and IAj+½fl =

[aj+½[luj÷_ - ujl are used. The above limiter gj of (4.46) can be considered as a flux lim-

iter since the flux f is limited. For scalar problems, equations (3.45a), and (4.45) are equivalent.

The difference in operations count is very minor. Equation (3.45a) is preferred over (4.45) for its

straightforward extension to system cases because u appears rather than f. In the extension to

nonlinear systems via Huang's and Roe's generalizations, (3.45a) results in a smaller operations

count than (4.45).

Similarly, the Roe-Sweby scheme (3.47b) can be rewritten in a similar form as (3.45a) (i.e.

in terms of Uj+l - uj instead of f3+1 - ]j using the above identities). The Roe-Sweby scheme

written in terms of uj+l - u.i is expressed in equation (3.52). Again, with the same reasoning,

equation (3.52) is preferred over (3.47b).

The numerical flux (3.45) for the Harten scheme for the system case can be found in section

1 [Fj + Fj+a + a _j+_ ] Extension of the scalar TVD scheme4.4. His numerical flux Fj+ ½ = _ Rj__ 2 _ "

to nonlinear system cases is not unique. Take, for example, the case where the numerical flux

hi+½ in (3.45a) is equivalent to hi+½ in {4.45). The corresponding numerical fluxes for the

system case have a very different operations count and are no longer equivalent to each other.

If one started with (4.45), the system can be expressed as

[I J[.Yj"+,-Sry]-A[I+ " 1 (4.47a)

where
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.Aj+} = R -z _ _ (4.47b)

Aj+_ = diag(sgn(atj+_ )) (4.47c)

and

.Tj = Fj + RjGj (4.47d)

l
with Gj = (g_,...,g?)T where gj can be (4.34c)-(4.34g), and diag(z t) denoting a diagonal

matrix with diagonal elements z t. For (4.47), the eigenvector R is evaluated at Uj+ ½; i.e., Rj+ ½

is needed in both (4.32) and (4.47). Therefore scheme (4.32)is preferred over (4.47) since Rj

is not required in (4.32). In other words, for scalar cases (3.45a) and (4.45) are identical, but

in system cases (4.47) requires more work than (4.32). The same situation holds true for the
--VL

Roe-Sweby scheme in the system cases. The MUSCL numerical flux vector F+ ½ can be found

in (4.37a).

The numerical flux for the Osher-Chakravarthy scheme for a system can be written as

-OC
F', 1 l ,7)R5+ _A_+ _(1 - -- (I+_)Rj+-4- 4 ½Aj+ }

+ (I+_)RJ_½A_4 _+(1-_)R5 _,.-- - - --4- _½A_

Here the Hi÷ ½ is the first-order numerical flux

Hj+½ : _l[vi + r_-_l - R._+½@j+½]

where the /th element of _5+ ½ is ¢:+ ½ = laj+½

The/th elements of ,4 ±'s are

.A l- l- l=a. z_.,

._1+ : al+ ctl
5+½ j+_ 5+}

with a'±J__½---- 0-5(alj__]l _)- lal__l) _ ]), and a'_+½ is (4.5), and

A'- = minmod[A'- ¢vAt:_,]

AS+½ = minmod [Aj+ ,

(4.48a)

(4.48b)

(4.48c)

(4.48d)

(4.48e)

(4.48f)
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"At+ = minm°d[Alj+ ,wAtf] (4.48g)

"AI+ = minmod[-AIJ_ ,wAtf_, ]. (4.48h)

Collecting terms of R j+ ½, (4.48a) can be rewritten as

-oc 1 F ^ 1 + _A_: 5{ + Fj+,- nj+ + --U- - -- 4

(4.49)

The terms that are cormnon to the numerical fluxes ofHarten's FH Roe-Sweby _ns MUSCLj__!, 1,

_bf+L½and Osher-Chakravarthy's _c are Fj+,, Fj, Rj+ _ and oj+ ½. Both/_u and lb vL require

one matrix-vector multiplication R j+ ½_j+ ½ or R j+ ½_)+ ½. Comparing all four numerical fluxes,

the operations count between /_H _._S½ and _VL is very competitive. The first three terms on

the right hand side of _of; in (4.49)require similar operations count as _H, _ns½ and _VL.

The last two terms of (4.49) require approximately 2/5 of the computation of the numerical

flux _0+ c. They contain the extra computations that are not present in ib H, lw3/_s and /_VL.

Therefore, for _ 7_ -1, _,oc is approximately 40% more expensive to use than /_H or ._VL. For

= -1, _,oc is approximately 25% more expensive than the other two schemes.

4.7. Splitting Methods for Problems Containing Source Terms

The various methods discussed in section III for problems with source terms can be formally

extended to system cases. The extension is straightforward and only a splitting method is

described here. The corresponding form of (3.75) for the system case can be written as

un+l I"h/2 fh fh/2un"
= *'S _F""S (4.50)

A split version of the method studied in sections 3.6 and 3.7 for the system case can take the
form
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_h/2s : 1AtS'CUTt]AV;:

V; = U?+ AV;

U51) : U; + AU_ .1)

&US2 ) At- A_ [ F(rT(') F(I_I))]....j+l ) -

1

_** _ * -/it'% = t ')+ (R;+_¢;+,/_ 0-_¢;-,/,)

(4.51)

1AtS, { .*L_/2 : ;I - 4 £J'**)] Atr** = ?.1AtS{uj )

_"'3 1 = - al;**+ AU._*

Here S' is the Jacobian of the source term 5" and q* involves limited fluxes as before, based

on (o*)j+t ½ and (c**)tj_½. Alternativelv,o one can compute the linfited value based on U (2t and

replace _* by cI'(2). Note that one does not have to use a predictor-corrector type of method for

the homogeneous part of the PDEs.

Again, each of these methods could be replaced by other well-known methods for the respective

problems. For example, any explicit or implicit time differencing such as the explicit guler or

rh/2 and any of a wide variety of high-resolutionthe trapezoidal method could be used for "s ,

methods as discussed in sections 3.5 or 3.6 could be used for £_.
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V. EXTENSIONS OF NONLINEAR SCALAR TVD SCHEMES

TO HIGHER-DIMENSIONAL NONLINEAR SYSTEMS

This section describes the formal extension of higher than first-order TVD scalar schemes to

multidimensional nonlinear systems of hyperbolic conservation laws. Time-accurate as well as

steady-state calculations for two- and three-dimensional practical applications will be illustrated

when appropriate.

At the present stage of development, truly multidimensional schemes are still in the research

stage [60]. The available theory is too complicated for practical applications. Here the usual ap-

proach of applying the one-dimensionM scalar scheme and the Riemann solver for each direction

in nmltidimensional nonlinear problems is adopted. Therefore, highly skewed nonorthogonal

grids should be avoided. As will he illustrated in later subsections, this method of extending

one-dimensional schemes to multidimensional nonlinear systems is quite satisfactory.

In order to preserve the original second-order time-accuracy, the extension of the nonlinear

scalar second-order explicit schemes to multidimensional problems can be accomplished by a

predictor-corrector I1,27,951, Runge-Kutta multistage [33] or Strang-type of fractional-step [97]

(time-splitting) method. All tile time-accurate numerical examples illustrated in this section

utilize the time-splitting and predictor-corrector methods. Therefore, only these two methods

will be described here. For the implicit methods, only a simplified form will be briefly discussed,

since extensions to other forms follow the same idea. Noniterative relaxation implicit methods

other than alternating direction implicit (ADI) methods will not be discussed. Extensive work

in the area of relaxation methods in conjunction with van Leer flux-vector splitting for perfect

gases has been performed by Thomas, Walters and van Leer; see references I122,123,165] for

details. All of the examples in higher dimensions employ coordinate transformations, and the

schemes will be written in transformed coordinates. The formulation described here is valid for

both two- and three-dimensional systems of conservation laws. Only the two-dimensional case

will be described. For three-dimensional formulation, one only has to add an extra dimension

and the corresponding numerical flux.

It is emphasized here that the time and spatial order of accuracy pertains to the scheme for

nonlinear scalar hyperbolic conservation laws with uniform grid spacing, and the spatial accuracy

is for numerical solutions that are away from discontinuities. The algorithms are formulated in

a finite volume form which, for certain physical problems and grid distributions, can enhance

stability and convergence rates for highly clustered or skewed grids and require only a slight

modification from the form originally presented in Yee and Kutler [166] and Yee and Harten

[41] for generalized geometries. The various related pseudo-finite volume formulations will also

be discussed. However all of the two-dimensional calculations presented in this section employ

fairly uniform grid spacing and use the original pseudo-finite volume form presented in {41]. A

detailed comparison between the finite volume and the pseudo-finite volume fornmlations !41,66]

by T. Aki of the National Aerospace Laboratory in Japan is included in section 5.2.4.

A numerical study in reference [66] for hypersonic flows shows that for fairly uniform or mildly

clustered grids, the present finite volume and pseudo-finite volume forms behave the same as

in reference [41! for inviscid flows. This is in contrast to the study of Takakura et al. [167!

which claimed that their modified form is the correct finite difference formulation for generalized
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geometries.A comparison between the pseudo-finite volume formulation of Takakura et al. [167]

and reference [41] on the same fairly uniform curvilinear grid for a blunt-body computation shows

no noticeable difference in resolution.

Consider a two-dimensional system of hyperbolic conservation laws

ou + OF(U) OG(U)-- --+--=0. (5.1)
Ot Ox Oy

Here U, F(U) and G(U) are column vectors of m components.

A generalized coordinate transformation of the form _ ((x,y) and q = q(x,y) which main-

tains the strong conservation-law form of equation (5.1) is given by

__ OG(U)0A + OF(U) + - O, (5.2)
Ot O_ 0,7

where U = U/J, F = (_,F + _vG)/J, G = (q,F + _?vG)/J, and J = _-qv - _vqx, the Jacobian

transformation. See Anderson [3] for a basic discussion. Let A = cOF/OU and B = cOG/OU.

Then the Jacobians A and B of F and G can be written as

= ((xA + (vB) (5.3a)

= (q_A + quB). (5.3b)

1 ? m

Let the eigenvalues of .4 be (a_,a_,...,a_) and the eigenvalues of B be (a,,a,7,...,a , ). Denote

R_ and R,_ as the matrices whose columns are eigenvectors of .4 and B, and denole Rf 1 and

R_ 1 as the inverses of R_ and R,.

Let the grid spacing be denoted by A_ and Aq such that ( = jA_ and q kAq. Let Uj+_,k

denote some symmetric average of Uj,k and Uj+I ,k (for example, Uj. ½,k : 0.5 * (Uj÷1 ,k _ U_,k),

or the Roe average [48] for a perfect gas and generalized Roe average of Vinokur [1161 for

equilibrium real gases). Let a_+½, Rj+½, Rj+_ denote the quantities a_, R£, R_ 1 related to

- _ R_, relatedl R k denote the quantities a_, R,_ 1evaluated at Uj+ ½.k. Similarly, let ak+ ½, Rk+ ½, ) ½

to B evaluated at /_,k+ ½.

Let

= R -_ (Uj+_,k- Ujk)
a j+ ½ j+ __

be the difference of the characteristic variables in the local _-direclion, and

(5.4a)

be the difference of the characteristic variables in the local q-direction.

(5.4b)
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5.1. Description of the Explicit Numerical Algorithms

Fractional-Step Method: By using the Strang-type of fractional-step (time-splitting [97]) method,

the one-dimensional second-order TVD scheme in section 4.4.1 can be implemented for the two-

dimensional system (5.2) via the local-characteristic approach as follows:

^'_+= = £ h/2 fhrhfhrh/_i?" (5.5a)

where

£gUJ,k = ITzk = Uzk - _-_ +}.k - a-½,_ '

£h_,. ^. At(- -;. ),-j,k = Uj,k -

(5.5b)

(5.5c)

with h = At. The functions Fj+ ½,k and Gj,k+ _ (omitting the time superscript) are the numerical

', k) and (j, k + ½), respectively. Typically,fluxes in the _- and q-directions evaluated at (j +

Fj+ },k for a non-MUSCL approach in a finite volume formulation can be expressed as

Fj+- ½,k = _l[(_)j+½(FJ,k+Fy+_,k)+ (?)j+½(GJ,k+Gj+,.k)+Rj+½,J+½/JJ+½].

(5.6a)

The corresponding pseudo-finite volume formulation will be discussed shortly. The explicit form

of Rj+½ can be found in references [48,104,116,166]. To simplify the notation, the subscript
1

j + _ is used to mean j + ½,k. The quantities (_)j+½ and 1/Jj+½ are given by

= - ; - + . (5.6b)
( - 2 ( , + J'j+l,k aj+½ 2 ,]j+l,k ,

Also(J_'l)j+½ : [_/V/(j_-')2+ ({J)2 ]

R j+ ½ are defined, for example, as
J+½ j+½

G:

used in

(5.6c)

The values _:_, (u, _3_ and r/y are evaluated by three-point central differences. Here the symbol

Jj,k is the Jacobian transformation evaluated at (jA{, kAr/). The averaged Jacobians Jj+ } are
used here in order to preserve the free stream. Similarly, one can define the numerical flux

Gj,k+ ½ in this manner.

The l}j+½ function in the (-direction for the synunetric or upwind TVD schemes can be

expressed in the same way as equations (4.33) and (4.34) with the appropriate eigenvalues a_
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andoj+½definedabove.The situationis similarfor the TVB or high-resolutionLax-Friedrichs
schemesasdiscussedin sectionII1. Notethat for high-resolutionLax-Friedrichsschemes,there
is little savingsfor eachspatialdirectionvia thenon-MUSCLapproach.However,the savings
by the MUSCLapproach(to be describednext) in eachspatialdirectionis greater. For gas
dynamicsapplicationsthe limit.ercanbeappliedto the slopeof the conservativevariablesor
to theprimitivevariablesthemselves,thusmakingtheextensionto multidimensionalproblems
straightforwardsinceonedoesnot haveto usethelocalone-dimensionalcharacteristicvariables
assumptionandin manyinstances,onedoesnot haveto usethecomplicatedtruly multidimen-
sionalRiemannsolvers.Moreover,thereis anadditionalsavingsfrom not havingto computeo

in equation (5.4a) and (5.4b), and not having to compute R j+ _@j+ _ and Rk+{ @k+½-

The numerical flux function Fj+ ½,k for a MUSCL type approach, together with a Roe-type

approximate Riemann solver in a finite volume formulation, for an upwind scheme as described

in [39,66,95] can be expressed as

- 1{(_:_) [F(Uj_)4 F(U?+½)] + (_)
Fj+ ½,k = 2 -_ J+ ½ J+ _.

+hj+½ /JJ+½ }.

) + c( ,fi, )]5

(5.7)

The values F(U_½) and F(uL½) are the flux function F evaluated at l ;n)+_ and UL3+½ re-

spectively, with Uj_½ and uL+½ the same as in equations (3.38), (3.42)and (3.43)and section

4.4.2 for the _-direction. The matrix Rj+ ½ is the matrix whose columns are eigenvectors of ,4

and U L The vector _j4 _ is a function of UjR+½evaluated at the symmetric average of UjR+_ j+ _.

can be {4.37) for the TVD method (or TVB methodsand UjL }, and the corresponding ¢lj+_

using limiter (3.61)).

The numerical flux function F3+ },k for a MUSCL type approach, together with the high-

resolution Lax-Friedrichs method in a finite volume fornmlation can he expressed as

) 7 j+ (?) I / }, F(t :' ) + F(U _l 4, , 6(I j+ 12 ) } (;(l' 21 _-: _)j4 _ JJ-[- 1] "

(5.8a)

The values F(lr_ uL . respec-) and F( , ) are the flux function F evaluated at UR , and I rt
24 _ 3+ _ 34_

tivelv,, with U_ ½ and _rLj+½ the same as in equations (3.38). (3.42) and (3.43) and section 4.4.2

for the (-direction. The limiter function can beapplied to the slope of the conservative variables

or the primitive variables. The/th element of _ ½ is

:'- t: :')

Comparing (5.8) with (5.7) or (5.6), one can see (as discussed above) the dramatic savings by

using the Lax-Friedrichs numerical flux instead of the other two approaches.
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Thenumericalflux functionFj+ ½,k for a MUSCL-type approach, together with a flux-vector

splitting [77] referred to as the TVD flux-vector splitting method in this paper can be expressed
as

_R L
where F+(_ J+ _ ) are evaluated using either the Steger-Warm_ing type [114,117] or van Leer type

IllS,117] flux-vector splittings. The vectors Uff+ ½ and U L ½ are the same as in equations (3.38)

and section 4.4.2. The quantity F-(U_+ ½) is the portion of the flux F with negative eigenva]ues

evaluated at Uj_ ½.

The difference in operations count between (5.6a), and (5.7) and (5.9) is ]ess than 30%

for a perfect gas. However, due to an extra evaluation per dimension in the curve fit-

ting between the left and right states in an equilibrium real gas for (5.7) and (5.9), with-

out further approximations, additional computation is required for the MUSCL approach

(with the exception of the high-resolution Lax-Friedrichs method (5.8)). The slight advan-

tage of (5.7) and (5.9) over (5.6d) is that (5.7) and (5.9) can be spatially third-order ac-

curate. However, experiences with the third-order case do not show a very visible im-

provement over the second-order case for problems with discontinuities. Part of the rea-

son is that all TVD-type schemes reduce to first-order at points of extrema regardless of

the order of accuracy in smooth regions. Also, because of the similarity in shock resolu-

tion and yet higher operations count for equilibrium real gases and nonequilibrium flows of

the MUSCL over the non-MUSCL approach using a Roe-type approximate Riemann solver,

efforts are concentrated only on the non-MUSCL formulation both for explicit and implicit

computations. At present no outstanding advantages or disadvantages between these formu-

lations for a perfect gas have been observed. Further investigation is required along this line

before a clearer comparison can be drawn. The performance of (5.8) is yet to be investigated.

Although the finite volume formulation (5.6a) - (5.6c) is recommended, the results obtained

in this report used a slightly different formulation. In particular, three formulations (hereafter

referred to as the pseudo-finite volume formulations) for the non-MUSCL schemes were investi-

gated and are as follows

]/
with the corresponding quantities (_')9+ ½' JJ+ ½ and (kl)d+½ of equations (5.6b,c) expressed as

1
(_)j+_ = 21[(_)_+',_+ (_)j,_]; JJ+½ = _[J,i._+¢_,d, (5.10b)

(kl)J+ ½ = 2 2 ' (5.10C)

+
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and

,[ +_vG)j,k+(_F+_vG')j+I,k-_Rj+_¢j+_]/Jj+ ½ (5.11)

and

(5.12)

Here Jj+½ and kl in equations (5.11) and (5.12) are the same as (5.10b,c). These forms are
used by some practitioners in CFD. For highly skewed grids and nonuniform flows, equations

(5.6) and (5.10) are preferred over (5.11) and (5.12). However, (5.10) and (5.11) do not preserve
freestreain whereas equations (5.6) and (5.12) do. All of the results presented in this section

use (5.11 ). One of the blunt-body cases was rerun with equation (5.6) and (5.10)-(5.12)and no
noticeable difference was observed. We expect all of the conclusions on the behavior of (5.10)-

(5.12) to be carried over to equation (5.6), since all of the examples use mildly clustered yet

quite regular and nearly orthogonal grids.

In two dimensions the present pseudo-finite volume fornmlations can be made 'truly' finite

volume by a slight modification of equations (5.10)-(5.12); i.e., on the treatment of kl and 3j+ ½.

However, the situation is different in three dimensions where finite volume formulations depart

from finite difference formulations. See reference [1681 for a discussion.

Predictor-Corrector Method: To preserve the original second-order time-accuracy, besides using

the time-splitting approach, one can employ a predictor-corrector method similar to the one
discussed in the nonlinear scalar case. With the same notation, a formal extension of the

scalar explicit second-order TVD method in predictor-corrector form (via the local-characteristic

approach for the nonlinear hyperbolic system (5.2)) in a pseudo-finite volume formulation can
be written as

j,k = U_,k -- _ Fjn, k -- F;-1,k _ _, j,k+l -- j,k '
(5.13a)

U(2) 1{ ,(1)_,, At[_,(1) ._!1)] At [_(q)_111 ]}V,k = _ bj,k +'J,_-5_[ j+,,k- 3,kJ- Aq[ j,k i,k-, ' (5.13b)

^,_+1 Tr(2) 1 [Rj+_d2j+_
Uj,k = "_ j,k Jr _ [ jj+ ½ dj-} + 2 t &+_

(5.13c)

Here the superscript (1) and the overbar designate the values of the function evaluated at the

intermediate solutions U (1) and U. The value of U can be I.U L_" _.U b_ 2_= _j or = . The lth element

¢lj+½ of the vector _j÷ _ has the same form as the scalar case (3.69d) except the aj__½ is replaced

by aZj+½ and the _j+½ is replaced by. o(j+_ of equation (5.4a). See sections 3.3, 3.6, 3.7 for a
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discussion of equation (5.13c) and the usage of the scheme (5.13) in general. A finite volume

formulation can be achieved by redefining (5.13a,b) and the definition of Jj±½ and Jk+_. The
discussion on the high-resolution Lax-Friedrichs methods earher in this section is also vahd here.

However, only the non-MUSCL formulation can be used in this case.

5.2. Time-Accurate Computations by Explicit Methods

Four time-accurate inviscid computations in the transonic and supersonic range for a perfect

gas are described here. Hypersonic computations will be presented in the next section. All of

the descriptions are summaries of the published works of references indicated in the subsection

headings. The first three computations are external flows and the last one is an internal flow

problem. Experimental data were available for three of the problems. In each of these three

problems, good agreement between the computations and the experimental data were observed.

All of the computations use the pseudo-finite volume form described in [41 i and use a fixed grid

without local grid adoptation or grid refinement.

5.2.1. Shock Wave Diffraction from an Obstacle [161]

There is a continuing interest in determining the diffraction loadings imposed on a stationary

object during a blast-wave encounter, since this knowledge is important in designing the structure

to survive such an event. The problein is especially suitable for numerical simulation, since

experimental setups for such studies are usually very expensive and sometimes impractical.

A generic configuration of a class of objects of interest is shown in figure (5.1). The configu-

ration has a broad base to maximize stability. To reduce the drag force acting on the body, the

top is rounded off to minimize vortex shedding and flow separation. The objective is to ensure

that the downward force is much larger than the lateral force generated on the body during a

blast-wave encounter so that the object would suffer only minimal lateral motion and would not

tip over.

Computational Domain and Grid Generation: For illustration purposes, a wedge angle of 40 °
and a rounded top with a radius of curvature of 0.17 times the base width was chosen for

the current study. Different wedge angles and top curvatures were also computed but are not

reported here. The flow features depend strongly on the wedge angle and top shape. The grids

used were generated by a generalized Schwarz-Christoffel transformation for curved surfaces, and

are orthogonal except at both ends of the body. Figure (5.2) shows the computational domain

and grid distribution. A CFL number of 0.99 and a normal incident shock of Math 2.0 in a

perfect gas with 3' - 1.4 and 61 = 0 (_/,(z) of equation (3.18)) were used in the computations.

Roe's average was used to evaluate R j+ ½ and a j+ ½.

Figure (5.3) shows a selected sequence of the diffraction process using the time-split second-

order upwind scheme (4.34a) together with limiter (4.34d) for the nonlinear fields and (4.34g)

for the linear fields. Limiter (4.34c) is the most dissipative limiter of the four limiters (4.34c)-

(4.34g) and the results are not shown here. Figure (5.3a) shows the distinct formation of the

triple point, with the Mach stern and the contact surface emanating from the triple point.
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Figures(5.3b)-(5.3d)showthe diffractionprocessas the shockwavetraversesthe rounded
top. The triple point and the contactsurfaceremain very distinct and the Math stem has

evolved into a curved diffracted shock. It remains almost perpendicular to the body surface at

the impingement point. The diffracted shock is actually travelling slightly ahead of the incident

shock. A careful examination of figures (5.3d)-(5.3f) reveals that the contact surface is beginning

to roll up to form vortices. Figure (5.3g) shows the instant when the diffracted shock leaves the

trailing edge of the body. Figure (5.3h) shows the fine resolution of the captured reflected shock

at the trailing edge of the body and the emergence of a Mach stem located near x = 0.8.

Figure (5.4) shows the same sequence of the diffraction process computed using the predictor-

corrector syrmnetric TVD scheme (5.13) together with limiter (4.33e). The shock resolution is

ahnost identical to that of figure (5.3) except with slightly more diffusive slipstreams. Figure

(5.5) shows the density contours comparing the upwind scheme (4.34a) using limiters (4.34d,f)

with the predictor-corrector symmetric scheme (5.13) using linfiters (4.33c)-(4.33e). The cut off

appearance of the incident shocks indicates that the incident shock has travelled slightly beyond

the right edge of the computational grid. Judging from the density contour plots of figures (5.4)

arid (5.5), it would appear that the result using (4.33e) is comparable to that of the upwind TVD

scheme with linfiter (4.34d) for the nonlinear fields and (4.34g) for the linear fields, although

the flow field is slightly smoother than the upwind method away from discontinuities. Results

from additional numerical experiments not shown here also indicate that the shock resolution

of linfiter (4.33e) is slightly better than the upwind scheme with limiter (4.34c). Considering

that the predictor-corrector variant requires a smaller operations count and allows a larger time

step, it offers a very attractive alternative to the upwind TVD scheme.

A comparison was also made between the time-splitting symmetric TVD scheme and the

predictor-corrector scheme (5.13) using the same linfiters ((4.33c) - (4.33e)). It was found

that the predictor-corrector formulation produced slightly sharper shock resolution than the

time-split synmletric form.

Numerzcal Results by the Explwit Mac('ormack Method: Using a Courant number of 0.99 and

the same fine grid of figure (5.2) for the explicit MacCormack method with a smoothing coeffi-

cient of 0.2 resulted in negative pressure even before the incident shock reached the top of the

body. The Courant number was reduced to 0.5 and the negative pressure did not show up until

the incident shock reached z = 0.182. A sequence of the results by the explicit MacCormack

method is shown in figure (5.6). Figure (5.6d) shows the instant when the negative pressure

first appeared. It is observed from the thickness of the shocks and oscillations associated with

them that the shock-capturing resolution of the explicit MacCormack method is inferior to that

of the TVD schemes.

5.2.2. Shock Wave Diffraction from a Cylinder

In Yee and Kutler [166], a time-split form of the modified-flux approach with added artificial

compression was used to simulate a planar moving shock wave impinging on a circular cylinder.

The results of Yee and Kutler revealed the need of a better flux limiter for capturing contact

discontinuities, and the need of fine enough grid resolution. In 1987, V.Y.C. Young of Martin

Marietta recomputed the same problem with an incident shock of Mach 2.81 on a finer grid

using the predictor-corrector sylmnetric TVD scheme with linfiter (4.33e) (unpublished work).
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Roe's average was used to evaluate Rj+½ and oj+½, and 61 was set to zero in ¢(z) (equation

(3.18)). This particular Mach number was chosen because experimental Schlieren photographs

were available from A. Bryson of Stanford University. The detailed description of the shock-tube

experiment can be found in Bryson and Gross [169].

Due to the symmetry of the problem, only the top half plane consisting of the semi-annular

region between the radii of 0.5 and 3.0 was considered. In the angular direction, 362 rays with

a uniform angular spacing of half a degree were used. The first and the second rays straddled

the symmetry plane, and sinfilarly for the last and the next to last rays. In the radial direction,

202 grid points were distributed with an exponential stretching. The first radial grid point was

imbedded into the body as the image point, with the second radial grid point serving as the
body grid point.

A Mach 2.81 normal shock wave was initially located at x = -0.75. The computation was

stopped at approximately the same position as the Schlieren photograph (x _ 2). The results

in figure {5.7) show that a fairly detailed flow structure was obtained, especially in the wake

region. The locations of the contact discontinuities emanating from the triple points were clearly

captured. The contact discontinuities close to the centerline inside the wake region were also

captured. The formation of vortices could also be spotted inside the wake. Overall, the result

closely duplicated the experimental Schlieren photograph. Because the computation was invis-

cid, the locations of the discontinuities appeared to differ slightly from those of the experiment.

5.2.3. Complex Shock Reflections from Airfoils at High Angle of Attack [160]

An interesting shock-tube experiment was conducted by Mandella [1701 and Mandella and

Bershader [171]. A schematic sketch of the experimental apparatus and the flow field are shown

in figure (5.9). After the diaphram ruptures, a planar-shock wave of Mach number Ms = 2

forms and travels down the shock tube. The shock tube has a 5cm × 5cm inner cross section

and its end is open to the ambient atmosphere. In order to keep the shock wave and its induced

flow two-dimensional, two parallel plexi-glass plates are attached to the end of shock tube. An

NACA 0018 airfoil is mounted between the plates at an angle of attack of 30 °. The airfoil is

located at a distance of 3 1/3 times the shock tube height away from the shock tube end. The

planar shock starts to diffract as soon as it leaves the shock tube, and forms a curved shock

wave which finally impinges on the airfoil. The curved shock wave loses its energy in time as it

diffracts and the Mach number decreases to approximately 1.5 at the instant of impingement.

Due to the positive angle of attack of the airfoil, an interesting feature of shock reflection is

observed. There is a transition from a short moment of compression to expansion on the upper

surface, and compression on the lower surface. Along the upper surface, the shock reflection

retains the regular reflection up to the compressive region and then makes a rapid transition

from regular to Mach reflection. A single Math reflection forms a triple point from which the

Mach stem, contact surface, and reflected shock emanate. Also a vortex starts to form and

grows very slowly at the upper nose due to the sudden but mild expansion. Meanwhile, the

transition process develops gradually but rather strongly from a regular to a Mach reflection on

the compressive lower surface. Eventually, the Math stem developed on the lower side wraps

around the trailing edge of the airfoil and a vortex is generated due to the sudden strong

expansion and the sharp trailing edge.
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At theexit of the shock tube, another interesting and equally complex flow pattern is observed

in the early stages of shock diffraction. The structure of flow fields behind the diffracting shock

behaves in a pseudo-stationary way on a 90 ° convex corner until the Mach wave hits the plane

of symmetry. A slipstream emanating from the convex corner rolls into a vortex-spiral. The

reflected Mach wave, the incident planar shock, and its diffracted part form a triple point from

which the contact surface emanates and ends at the slipstream encircling the vortex. The second

shock appears and forms a triangular configuration with the tail of the Prandtl-Meyer fan (tile

terminator) and the slipstream. After the Mach wave hits the plane of symmetry, most of the

features in the flow field retain their structures for some moments. The second shock grows with

time and forms a Mach disk after hitting the plane of symmetry.

In order to properly simulate the experiment, the curved shock solution before it reaches the

airfoil is required as an initial condition. Also time-dependent boundary conditions along the

outer boundary are required. These requirements are met by simulating the whole experimental

region from the shock tube to the airfoil. The computational domain would have to cover a

large area with a reasonably fine grid throughout the entire domain or with a time-dependent

local adaptive grid refinement in order to capture the complex shock structure as time evolved.

To avoid unnecessary computations, to confine the physical domain to be smaller with simple

fixed grid computations, and to make use of body-fitted coordinates around the airfoil, the

numerical simulation is broken into two parts: (a) simulation of the shock tube that contains a

90 ° convex corner (with a computational domain extended to cover the region where the airfoil

is supposed to be located but without the airfoil), and (b) simulation of a time-dependent curved

shock interacting with an airfoil. Figures (5.10) and (5.11) show the computational domain for

the two parts. The flow field solutions obtained in part (a) are stored and used with bilinear

interpolation to obtain the necessary initial and time-dependent boundary conditions for the

airfoil simulation. The time-dependent boundary conditions were obtained assunfing that the

presence of the airfoil had no effect on the flow at the outer boundaries.

The numerical simulation of the experiment is also conducted in a simpler way. The curved

moving shock impinging on the airfoil is modelled as a constant-velocity, planar incident shock

with approximately the same incident Mach number. Since the shock is planar, the implemen-

tation of the boundary condition along the outer boundary is easily handled with the known

solutions. The numerical simulations of the curved and planar shock waves interacting with the

airfoil will be discussed shortly. A better understanding of the difference in shock structure for

the planar and curved shock simulations is useful for the vortex-blade interaction parametric

study where a planar-shock wave is preferred. The second-order explicit upwind and symmetric

TVD schemes with the Strang-type of time-splitting were applied to these complex physical

problems solving the Euler equations of gas dynamics. Roe's average was used to evaluate Rj__

and aj+ ½, and 61 was set equal to 0 in all computations.

Shock Diffraction on a 90 ° Convex Corner:. Figure (5.12) shows three sequential instants of a

diffracting shock wave of Mach 2 on a 90 ° convex corner. The time intervals are 50 #sec and

100 #see. Computed density contours from the solution obtained with the second-order explicit

time-split upwind TVD scheme (4.34a) together with limiter (4.34g) for the linear fields and

(4.34c) for the nonlinear fields at a CFL number of 0.5 are shown in the right-hand column. The

computed results agree quite well with the interferograms at each corresponding instant. The

interferograms shown in the left column are missing in each corner of the photographs because
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of the configurationof the test-sectionwindow.Thediffractingshockandthe secondshockare
capturedwithin threeto four grid points.Thethicknessof the shocksin theregionfor x < 2.2

is twice that of those in the rest of the region because the grid spacing is 2 times coarser in

that area. The contact surface, slipstream, and the Prandtl-Meyer fan are also well captured.

Their interaction with the vortex is shown in the first two instants. In the current case of a

Math 2 shock wave, the vortex core is not clearly defined. In fact, as the Mach number of the

shock wave increases, the vortex core becomes more diffuse I1721. This appears in the numerical

computations as well as in the interferograms. Numerical experiments carried out for this case

show that a CFL number greater than 0.5 resulted in instability at the vortex core. Further

study on grid resolution and the proper use of linfiters for vortex-type flow fields is needed.

The third instant (in which the test-section window is shifted downstream) shows a Mach disk

formed after the second shock hits the plane of symmetry. The coinputed result also shows the

well-captured Mach disk within 3-4 grid points following the contact surface.

Curved Shock Interaction w_th an Airfoil: Figure (5.13) shows the numerical results at six se-

quential instants while the traveling curved shock is progressing over a NACA 0018 airfoil at

an angle of attack o = 30 °. The time intervals are 10 #sec except for the second interval which

is 20 #sec. Computed density contours are shown for the solution obtained using the second-

order explicit upwind TVD scheme (4.34a) together with linliter (4.34g) for the linear fields

and (4.34d) for the nonlinear fields with a CFL number of 0.98. It should be noted that if the

limiter given in equation (4.34g) is used for all of the fields, the solution diverges at a very early

stage of the interaction. The authors conjectured that limiter (4.34g) is too compressive for the

nonlinear fields. It was found that in general, the use of (4.34d) for the nonlinear fields produced

sharper shock resolution than (4.34c). The use of (4.34g) for the linear fields produced sharper

contact discontinuities than (4.34d). However, the use of (4.34d) for the nonlinear fields for the

computation of shock diffraction on a 90 ° convex corner will give divergent solutions near the

corner and the vortex core regions.

The Mach number of the time-dependent curved shock wave is approximately 1.5 at the

moment of impingement. A strong vortex and the dense contours of density around it appear in

figure (5.13e), since the Mach stem turns over an approximately 180 ° convex corner. The most

inclusive features of the shock interaction with the airfoil are contained in figure (5.13f). At

this instant, the foot of the Mach stem proceeds upstream and collides with the incident moving

shock on the upper surface. The experimental interferogram and computed density and pressure

contour plots at this time are shown in figure (5.14). It should be pointed out that the two little

bumps on both the upper and lower surfaces two thirds of the way along the airfoil and the very

thin layer wrapping all around the airfoil observed in the interferogram result from vibration of

the experimental setup. Also, because the airfoil used in the experiment is a hand-made NACA

0018 airfoil, a slight difference exists between the experimental and computed configurations.

The incident and reflected shocks, Mach stems, and contact surface on the lower surface are

captured within three grid points. Also the vortices at the upper nose and the trailing edge

of the airfoil are well captured. On the upper surface, the experimental results show a weak

contact surface, which is not captured in the simulation. By increasing the grid resolution

around that region, this slip surface is also expected to be captured. As expected, the contact

surfaces cannot be seen in the pressure contour plot because the pressure is continuous across
the contact surfaces.
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Planar Shock Interaction u,ith an Airfoil: For comparison, a planar incider_ shock of Mach 1.5

at the moment of impingement was used to approximately model the curved shock to study the

difference in the computed flow field structures. Figure (5.15) shows a schematic representation

of the physical plane with its boundaries and initial conditions. The same ('.-grid as in the

previous case is used. The initial condition is implemented in the same manner as in the shock-

tube section. Along the outer boundary, the analytic boundary condition is used to trace the

location of the moving planar shock as a function of time. The other boundary conditions

(along the body and the wake region) are also implemented in the same manner as was used

for numerical simulation of the curved incident shock. Figure (5.15) shows four sequential

instants of the interferograms compared with the density contour plots of the numerical results

obtained for both the curved and planar shocks. The time interval between the first and second

interferograms is 20 psec and the rest are 10 #sec apart. For both cases the numerical results

are computed using the time-split second-order explicit upwind TVI) scheme at a CFL number

of 0.98. The curved shock solutions agree quite well with the interferograms. The planar-

shock solutions also compare favorably with the experiment in terms of the shape and location

of the discontinuities. There is, however, a slight difference in density level between the two

simulations. The same format of comparison is shown in figure (5.16) using the second-order

explicit time-split synunetric TVD scheme (4.33a,e) for both the curved and planar shocks. The

shock resolution is similar to the upwind TVD scheme except that it is slightly more diffusive.

The shock resolution for the synmtetric TVD scheme (4.33a,e)is, however, sharper than (4.33a,c)

and (4.33a,d), and the upwind rI'VD scheme (4.33a,c).

The numerical experinaents show that both upwind and symmetric TVD schemes are quite

stable and accurate even for higher Mach number shocks. The study also shows that for higher-

Mach-number cases the synunetric TVD scheme is less sensitive to the numerical boundary

condition treatment than the upwind scheme. For M, _> 10, one has to use a characteristic

type of numerical boundary condition for the upwind TVD scheme. Aside from the difference in

numerical boundary treatments, olte advantage of synmletric TVD schemes over upwind TVD

schemes is that the synunetric TVD schemes require less CP|! time than the upwind schemes.

Computations with the synunetric TVD scheme (4.33a,e) at a CFL number of 0.98 for a planar

incident shock of M, - 20 and _ -: 30 ° are shown in figure (5.17). The grid used is the same as

for the previous cases.

5.2.4. Shock Propagation in a Channel with 90 ° Bends (T. Akl [162,173,174])

This computation was performed by T. Aki of the National Aerospace Laboratory, Tokyo,

Japan. Detailed descriptions of the physical problem and numerical computations are reported

in his original papers [162,173,174!.

A shock wave transmitted through a bend in a channel modifies its shape as it travels around

the bend, although its initial shape is planar and the bend curves smoothly. The modification

of the shape results in an irregular force acting on the curved wall and nonuniform flow behind

the transmitted shock.

The physical processes taking place during the transmission were little known and only quali-

tative arguments based on investigations of the shock processes for isolated concave and convex

corners had been given. An experimental investigation of the shock process through 90" bends

was performed by Takayama el al. in 1977. One can find the details of the experimental setup
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in reference [175].

A Mach reflection established on the outer wall communicates to a diffracted wave around

the inner wall. The triple point moves successively toward the inner wall. The reflected wave

emanating from the triple point interacts with a contact surface appearing behind the diffracted

wave and eventually hits the ilmer wall and then proceeds along it.

The photograph (figure (5.18)) is an infinite fringe interferogram at this stage. The incident

shock Mach number (at the entrance of the bend) is 2.2 and the test gas is air. The inner

radius of curvature of the testing bend is 80 mm and its width is 40 nml. Therefore, the

nondimensional inner curvature of the bend based on the width is 2. Takayama et al. concluded

that the curvature of the bend must be equal to or greater than 2 in order to obtain a recovery

of the planar shock after transmission under their experimental conditions. Generally speaking,

the higher the incident shock Mach number is, the larger the curvature of the bend needed for

a stable shock transmission; i.e. a recovery of planar shock front. After the stage shown in the

photograph (figure (5.18)), the Mach reflected and diffracted shocks merge into one wave and

one can in this case observe recovery of a planar shape within the bend itself.

The numerical boundary condition treatments are as follows: Let j 1 be the inflow boundary.

If the flow behind the incident shock is supersonic, then the variables on j = 1 are fixed at those

obtained from the moving shock relations. If it is subsonic, then a procedure similar to that on

the wall is employed. The variables on j = 1 are updated by using the Riemann invariants for the

inconfing and outgoing characteristics. The Riemann invariants for the incoming characteristics

are postulated as those located far upstream; i.e. those behind the incident shock. At the

outflow, the computation terminates when the transmitted shock front or part of it arrives at

the outmost grid plane.

At the walls, let k = 1 be the grid plane on the inner wall. Initially, the first-order upwind

scheme is used to evaluate 1.7_ at the inner wall. Since this scheme contains only information for

the left-running characteristics, U[ must be updated to U_ .1 taking into account the effect of

the right-running or reflected characteristic. The Riemann invariant for this wave, the entropy

equation, and the boundary condition (vanishing normal velocity) are sufficient for updating U_.

Treatment on the outer wall (at k = 121 or 131 depending on the grid) is similar to reversing
the characteristics to be considered.

In the computation using the pesudo-finite volume formulation, a total grid size of 581 × 121 is

used with 450 × 121 of the grid located in the bent section. In the case of the time-split upwind

TVD schemes using limiter (4.34g), a 400 × 121 grid in the bent section was used. A CFL number

of 0.98, _1 - 0.1 and Roe's average were used in all computations. Figures (5.18) and (5.19)

show the pressure and density contours compared with experimental data for both the time-

split upwind and synmletric TVD schemes using three different limiters. For the upwind TVD

schemes, limiters (4.34d), (4.34d,f) and (4.34g) were used, corresponding to figure (5.18a,b,c).

For the symmetric TVD schemes, limiters (4.33c), (4.33d) and (4.33e) were used corresponding

to figure (5.19a,b,c). The overall performance compares very favorably with experimental data.

The symJnetric TVD scheme compares closely with the upwind TVD scheme, and with better

accuracy than in the airfoil problem discussed earlier [160}. If one sets 5_ = 0 (equation (4.33b)),

a slightly better shock resolution is expected (e.g. see reference !95,1181).
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Comparison Between the Finite Volume Formulatiol_ and th_ P,¢cudo-Finite Volume

Formulations: Recently, Aki 1174] did an extensive comparison belween the different pseudo-

finite volume formulations (equations (5.10a), (5.1]), (5.12) and equation 5 of reference [41])

and the finite volume formulation (5.6a,b,c) using the same problem with two different fairly

uniform grid sizes: (a) a 721 × 131 grid with 360 × 131 of the grid located in the bent section

and (b) a 701 × 151 grid with 540 × 151 of the grid located in the bent section. In all of the

computations, the same TVD method was employed; i.e., the second-order upwind TVD method

(4.34) using the time-splitting approach with the superbee linfiter (4.34g) for the linear field and

the minmod limiter (4.34c) for the nonlinear field.

Figure (5.20) shows the comparison between the finite volume formulation (5.6a) and the

various pseudo-finite volume formulations (5.10a), (5.11), (5.12) and equation (6.4) of reference

[41] at one instance of the diffraction process using the (701 × 151) grid. No noticeable difference

in resolution was observed among the five different formulations, independent of the two different

grid sizes.

The main difference in accuracy at the walls for the four time-accurate calculations here is

that each of these computations used slightly different outflow and wall numerical boundary

conditions. Moreover, a differenl computer, different computer implementalion, and a different

density in grid spacing were used in these examples.

5.3. Description of an Implicit Numerical Algorithm for Steady-State Applications

A one-parameter family of explicit and implicit TVD schemes for the two-dimensional system

(5.1) can be written as

6y+1 At 0 - 1 At0 ,-'"+'
, Ar I o,_'+ _. 3,k

^ At _'" ',_1 - At I_" - (;" (5.14)

Here F_ _ has the same form as (5.6a) and with the coressponding ,I,j__ in -'_, Fj+ ½.k has the same

form as in the implicit method defined in section 4.5. Here the high-resolution Lax-Friedrichs

method and Shu's TVB method as discussed in 3.5.4 can also be used here with similar CPU

savings per time step as for the two-dimensional explicit method discussed earlier. The same

numerical flux is also applicable for the two-parameter family of time differencings as discussed

in section (3.11).

The solution procedures for steady-state calculations in two-dimensional and three-

dimensional Euler and Navier-Stokes equations are as follows. For the explicit operator, the

convection terms are discretized by a TVD scheme, and the diffusion terms are approximated

by a central-difference method. For the implicit operator, a linearized conservative delta form

can be constructed. For efficiency, a spatially first-order implicit operator, as in equation (4.44),

was employed in most of the experiments. Algorithms for unsteady as well as viscous steady and

unsteady blunt body flows will be discussed in the next section. A second-order time-accurate

conservative noniterative ADI form will be discussed in section VI.
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For steady-stateapplications,the resultinglinearizeddelta form canbe solvedby someap-
propriaterelaxationmethodotherthanADI. This is thedirectionof current research. However,

only a conservative noniterative ADI form [74] for the homogeneous PDE's will be described

below. For steady-state applications, the numerical solution is independent of the time step.

The implicit operator has a regular block-tridiagonal structure and the resulting block tridi-

agonal matrix is diagonally dominant. One can modify a standard central difference classical

shock-capturing code by simply changing the conventional numerical dissipation term into the

one designed for the TVD scheme. The only difference in computation is that the current scheme

requires a more elaborate dissipation term for the explicit operator. No extra computation is

required for the implicit operator. A second-order time-accurate, noniterative, conservative ADI
form will be discussed in section VI.

.4 ('onse'rvative Linearized ADI Form for Steady-State Applications: A conservative linearized

ADI form of equation (5.14) used mainly for steady-state applications as described in detail in

reference [21,74], can be written as

I [ I [ 1I+ _ Hj+½,k _ Hj_},k A( j+½,k- a-½,k - _ aj,k. ½ ½ ,

(5.15a)

[ ]"At o " At OH_ E" = E', (5.15b)
1 + _ Hi,k4} A7 I j,k-

_+1 = _ + E,_ (5.15c)

where for the finite volume formulation (5.6a) or the pseudo-finite volume form (5.10a)

H_+½.kE, 1 ^ ,= 2[AJ+l'kEJ+l'k+ Aj'kEj'k- a+_, (5.15d)

(5.15e)

and Aj+l,k = Aj+l,k +

formulation (5.12) or reference [41]

Whereas for the pseudo-finite volume

H_+½,kE* = _[Aj+l,kEj+l,k- _5+_,#E*] (5.15f)

is used. A similar form for H ( *
j+ },hE for the pseudo-finite volmne formulation (5.11) can also be

obtained. Here fla+_,_'_ .E , j,k+½ E can be taken as (hereafter referred to as the full matrix form)

f_{ , E*=Rj+akdiag[¢(a )JR -1 .k(Ej+,,k Ej,k)

f2j, k+ ½E = Rj,k+ ½diag[_"( a;k+ ½)] RL'k+ _ ( E),k+ , Ej,t.).

(5.15g)

(5.15h)
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HereAj._ and Bj,k are Jacobians of F and G evaluated at (j. k) and .]1_41,_, BLk41 are 3acobians

. _n4 1 _nof F and G evaluated at (j 4 1, k) and (j, k -_ 1 ). The value Ej, a. j,k - ['3,k" The expression

diag(z z) denotes a diagonal matrix with diagonal elements z l.

The nonconservative linearized implicit form suitable for steady-state calculations [74] is also

considered. Numerical study indicated that the latter form appears to be slightly less efficient

in terms of convergence rate than the linearized conservative form (5.15). This conservative

linearized implicit operator as well as the nonconservative linearized implicit operator (both

suggested in reference [74]) for 0 = 1 was rediscovered two year later by Barth [176] as the

approximate Jacobian linearization. To compute (5.15g,h), a triple matrix multiplication of

dimension (4 x 4) has to be performed at every grid point. For steady-state applications, one

can simpli_" (5.15g,h) as (hereafter referred to as the diagonal form)

3 4 -_

f_],k4 _E = MnI(Ej,_.+1 - Ej,k),

(5. 5i)

(5.15j)

The scalar values M£ and .Mn are the spectral radii of ft_4
_k

= max )

and fl" :

(5. 5k)

M,, --max _/,{a,2_, ) (5.151)
I 2

and I is the identity matrix. Note that (5.15i,j)involve scalar multiplication only. The solution

using (5.1hi,j) is still second-order (or third-order) accurate after it reaches steady state. Other

linearized implicit forms can be found in references [21,41.747.

All of the inviscid calculations shown in this section use the diagonal form for the subsonic,

transonic and supersonic st eady-state applications. A t wo-paramet er fanfily of time differencings

with a sinfilar type of tinearized forms suitable for time-accurate calculations is reported in

references [21,66,74_ and is summarized in section VI. In section VI. both the full matrix form

and the diagonal form are used for hypersonic steady viscous blunt-body computations. Some

unsteady computations will also be described.

5.4. Subsonic, Transonic and Supersonic Steady-State Computations by an hnplicit

Method

The numerical experiments presented in this section were mainly performed on a NACA 0012

airfoil using the local-characteristic approach with t51 -- 0.125. For subsonic to low supersonic

perfect gas flows, the resolution of the shock waves was found to be quite insensitive to _il for

0.1 < 6_ _< 0.125 and a constant value seems to be sufficient. However, for hypersonic flows,

especially for blunt-body flows, a constant _1 was found to be insufficient and a variable _1

depending on the spectral radii of the Jacobian matrices of the fluxes is needed. Moreover,

a proper choice of the entropy parameter _1 for higher Mach number flows not only helps in

preventing nonphysical solutions but can act, in some sense, as a control in the convergence rate

and in the sharpness of shocks and slip surfaces (or shear layer in viscous flows). The smaller
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thenonzero_1beingused,the sloweris the convergencerate. Thelargerthe _1beingused,the
largeris the numericaldissipationbeingadded.Seereference[66]or sectionVI for numerical
examples.All the computationsdiscussedhereusethe pseudo-finitevohmleform describedin
reference[411.

Generally,for inviscidtime-accuratecalculations,thenon-MUSCLupwindTVD schemespro-
ducesharpershocksthansymmetricTVD schemes!8]. Forthecurrentimplicit symmetricTVD
schemewith limiter (4.33c)or (4.33d),this seemsto benot the casefor airfoil problemscon-
tainingshockwavesonly. The symmetricmethodappearedto produceresultsalmostidentical
to thosefrom anupwindTVD scheme(4.34a)-(4.34c).

Numericalstudiesalsoshowthat thereis nodifferencein resolutionin usinglimiter (4.33c)or
(4.33d)for the synunetricTVD scheme.Limiter (4.33e) produces slightly sharper shocks than

(4.33c) and (4.33d). This conclusion was based on a nmnerical study for flow-field conditions

ranging from subcritical to transonic and supersonic for the NACA 0012 airfoil. Also, since

these test cases consist of shock waves only, the same limiter was used for all characteristic fields.

Figures (5.21) and (5.22) show a comparison of the current method using limiter (4.33c) with

the upwind scheme (5.15) for two inviscid steady-state airfoil calculations. The two solutions

are almost indistiilguishable. For the current calculations, the upwind TVD scheme requires

approximately 35% more CPU time than the symmetric TVD scheme on a CrayX-MP computer.

Figures (5.23) and (5.24) show an inviscid comparison of the synunetric TVD scheme with the

widely distributed computer code ARC2D, version 150 [1771. The free stream Mach numbers

are M_ - 1.2 arid 1.8, and the angle of attack is c, = 7°. The pressure coefficient distributions

(not shown) are identical between the two methods and yet the flow field appears very different.

The syImnetric TVD scheme gives a very well-ordered flow structure and can still capture the

shocks with a coarse grid, especially near the trailing edge of the airfoil. On the other hand,

the ARC2D code did rather poorly. The ARC2D, version 150 computer code is based on the

Beam-Warming ADI algorithm [28], but uses a mixture of second- and fourth-order numerical

dissipation terms. These numerical dissipation terms contain adjustable parameters. The values

of the parameters on figures (5.23) and (5.24) are the same values as suggested in reference [177].

Other values of the parameters besides the one used in reference [1771 were also studied. What is

shown here is representative of the performance of ARC2D for this range of Math numbers and

angles of attack. For subsonic and transonic flow regimes the main advantage of TVD schemes

over ARC2D for steady-state calculations is that one can capture the shock in one to two grid

points without the associated spurious oscillations near shock waves as oppose to three to four.

The flow away from the shock looks very much like that calculated by ARC2D. Note that in

general, for two-dimensional blast wave calculations, the symmetric schemes usually can capture

the shock in two to three grid points, but the slip surfaces are slightly more diffusive than the

upwind TVD schemes as discussed in section 5.3.

The same problem was studied for the upwind TVD scheme, and the results and convergence

rates were found to be almost identical to those for the symmetric TVD scheme. For figures

(5.23) and (5.24), a residual of 10 -12 can be reached at about 400-600 steps. ARC2D, however,

required only 200-300 steps to converge to the same residual. The main reason for the faster

convergence rate of ARC2D is by the absence of flux limiters. However, the gain in accuracy is

more than compensated for the slower convergence rate.

Steady-state computations for higher Mach number flows in the hypersonic regime were re-

ported in reference !66] and a sunnnary can be found in lhe next section. Study shows that the
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ADI form of the implicit scheme is very sensitive to initial conditions and numerical boundary

condition treatments for blunt-body flows. The convergence rate is in general lower than for

subsonic and supersonic flows.

5.5. A Thin-Layer Navier-Stokes Calculation

For steady-state application, a simple algorithm utilizing the TVD scheme for the Navier-
Stokes equations is to difference the hyperbolic terms the same way as before, and then central

difference the viscous terms. The final algorithm is the same as equation (5.15) except that

the spatial central differencing of the viscous term is added to the right-hand side of equation

(5.15). To illustrate the performance of this numerical procedure, the scheme was tested on a

thin-layer Navier-Stokes airfoil calculation. The numerical solution shown below illustrates that

this algorithm produces a fairly accurate solution for the case of an RAE 2822 airfoil calculation.

Figure (5.25) is an example of the viscous case for the RAE 2822 airfoil using the implicit upwind

TVD scheme using linfiter (4.34c). The thin-layer Navier-Stokes equations with the algebraic

turbulence model of Baldwin and Lomax [178] are used, and the transition is fixed at 3% of
chord. The overall agreement with experiments is quite good. An L2-norm residual of 10 -7 can

be reached in about 900 steps.

5.6. A 3-D Steady-State Computation by a Point-Relaxatlon Implicit Method [79]

This section shows an application of the syrmnetric TVD schemes for a three-dimensional

steady-state computation. No evaluation or comparison with other techniques is given. Figure

(5.26) shows pressure contours and energy contours in the plane of symmetry of the Aeroassist
Flight Experiment (AFE) configuration at I'_ = 1429 m/s, po¢ = 60.136 N/m 2, T_ = 52.22°K,

T_, = 300°K, and Mo¢ = 9.86. The configuration is a raked, elliptic cone with a circular shoulder.
The body has a circular cross section when viewed perpendicular to the raked plane. The vehicle

is designed as a test platform for a comprehensive series of experiments to define the flow field

of an Aeroassisted Orbital Transfer Vehicle (AOTV) at high altitudes (above 75 kml returning

from a Geosynchronous Earth Orbit (GEO).

The numerical method employs a finite-volume, point-relaxation implicit procedure of the

synunetric TVD formulation (limiter (4.33d)) of the governing Navier-Stokes equations. Gauss-

Seidel iteration is employed across data planes in the sweep direction (from the body, across

the captured shock to the inflow boundary and back). Jacobi relaxation is used with respect

to discretization within a single data plane. At each cell interface, Roe's averaging is used to

define eigenvectors and eigenvalues, and _1 is set to a constant value of 0.2. Courant numbers

up to 40 can be used to accelerate convergence. But Courant numbers of 1 to 2 must finally

be used to damp high-frequency errors. In this computation, a coarse to fine grid sequence was

used. The relatively coarse grid size (at close to the converged solution) was 64 cells between

the body and the inflow boundary, 39 cells from the nose to shoulder, and 19 cells around the

axis from 0 ° to 180 °. The bow shock in this case is almost completely captured in two ceils.
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VI. NUMERICAL ISSUES FOR HIGH-RESOLUTION SHOCK-CAPTURING

SCHEMES FOR INVISCID AND VISCOUS HYPERSONIC FLOWS [66]

Most shock-capturing methods are either inefficient for practical computations or only valid for

transonic or supersonic perfect gas calculations. For hypersonic perfect gases, equilibrium real

gases or nonequilibrium flows, improvement and modification to existing methods are necessary

especially when a wide range of Mach numbers and a complex shock structure exist in the

entire flow field. In addition, viscous hypersonic and nonequilibrium flow problems are generally

stiff and implicit methods are often preferred over explicit methods. Some of the numerical

issues for steady inviscid hypersonic blunt-body flow computations were addressed in 166,179].

A senti-implicit method arid a fully implicit method for steady-state nonequilibrium flows were

discussed in Yee and Shinn !951 and will be addressed in section VII. A basic study on numerical

methods for unsteady inviscid nonequilibrium flows was presented in LeVeque and Yee [86] and

in section 3.9. The objective of this section is to sunmmrize our study in reference [66]. The main

purpose is to discuss some of the numerical issues and show how one can extend and improve

the existing implicit high-resolution shock-capturing schemes [21,41,74,951 for multidimensional

compressible Euler and Navier-Stokes equations in the hypersonic, perfect and equilibrium real

gas flow regimes.

In particular the following numerical issues are addressed:

1. Some numerical aspects of TVD-type schemes that affect the convergence rate for hyper-

sonic Mach numbers and real gas flows but have negligible effect on low Mach number or perfect

gas flows are identified.

2. The performance of the various linearized implicit forms of the schemes sinfilar to the

transonic flow study [21,41,74] is reexamined for hypersonic flows.

3. The behavior of these schemes with various temporal differencing but similar spatial

discretization for inviscid and viscous flows is investigated. Studies indicated that their behavior

in terms of stability and convergence rate is quite different between viscous and inviscid flows.

However, with the proper choice of temporal discretization and suitable implicit linearization,

these schemes are fairly efficient and accurate for very complex two-dimensional hypersonic

inviscid and viscous shock interactions.

The behavior and performance of the schemes included in this section are based on numerical

experiments from four of our conference papers [150,179-181] and previous transonic and super-

sonic studies. Readers are encouraged to refer to these references for more details. Most of the

numerical solutions are compared with exact solutions or experimental data, or compared with

existing schemes.

6.1. Description of the Numerical Algorithm

The conservation laws for the two-dimensional Navier-Stokes equations can be written in the
forIn

OU OF OG 1 [OF_ OG_]
oN;+ + -oy - R, [ Oy J'

(6.1a)
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whereV= [p, m, n, j',e= iP", ""+P, """ J', r,,,,.,,,,+p, )',
IT. Here p is the density, u and v are theFv = [ 0, Txz, T_y, f]T, and Gv = [0, v_, Tyy, 9.

velocity components, m = pu and n = pv are the x- and y-components of the momentum per

unit volume, p is the pressure, e = pie ÷ _(u _"+ v2)] is the total energy per unit volume, and (

is the specific internal energy. For a perfect gas, we also have

rz_ = #(4u_ -- 2%)/3, (6.1b)

ruu = #(-2u, + 4vu)/3, (6.1d)

0(12

f = ur_ + vr_ u+pPr 1(,__ 1) I Ox ' (6.1e)

g = ur_y + vruu + ttPr ]('r - 1) -I Oa2 (6.1f)
Oy '

where, for example, u:_ is defined as Ou/Ox. The dynaInic viscosity tt is given by Sutherland's

formula. The Reynolds number is Re, the Prandtl number is Pv, tile sound speed is a, and the

ratio of specific heats is "_.

Under a generalized coordinate transformation, _ = _(x,y) and 7/ = rl(x,y), equation (6.1)

can be written in a form which maintains the strong conservation-law form as

where U U/J, b" (_F + _yG)/J, (; (_7_F + %G)/J, _', (¢_F¢. * _u(;_)j J, (';_,

(o_F, + qyGv)/J, and J -- _rlu - _q_, the Jacobian transformation. Let .4 _ 0F/0U and

B = OG/OU. Then the Jacobians .4 = 0F/0[ ,'_ and /3 0(_'/_" can be written as

,4 = (_A-_ _._B) (6.3a)

= (q_A + qyB). (6.3b)

]n this study the thin-layer Navier-Stokes approximation is assumed bv dropping all the

0(-)/0_ derivatives in the viscous terms. Also, stability and convergence rates for the viscous

results are for a perfect gas and lmninar flows with adiabatic wall conditions.

In the application of TVD-type schemes for viscous flows, the physical problems considered

here are assumed to be inviscid dominated in the sense that moderate or strong shock waves

are present in the flow field such that high-resolution shock-capturing techniques are required.

Thus the numerical procedures used here for the compressible Navier-Stokes calculations are a

second-order central difference approximation for the diffusion terms and TVD-type schemes for

the inviscid part of the Navier-Stokes equations. The question of whether the present numerical

dissipation term (due to the TVD-type terms) has an adverse effect on the true viscosity terms
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in theboundarylayerregionis not known at this point. What we can conclude from the current

study is that the portions of the solution slightly or far away from the boundary layer are quite

accurately simulated.

To make this section more self-contained, some of the discussion on a two-parameter family

of explicit and implicit high-resolution schemes is repeated here. This algorithm is based on a

semi-discrete methodology and on the one-parameter fanfily of TVD-type algorithms developed

in references [17,41,41,150. The idea is to use the same spatial discretization as in references

117,21,41,74] for the spatial derivatives and to use a two-parameter fanfily of linear multistep

methods for the time derivatives. The original one-parameter fanfily of TVD-type schemes is

a subset of the two-parameter fanfily of algorithms. Mathematical analysis sinfilar to that in

il 7,21,41,74] for the current larger fairdly of schemes requires further investigation. For the one-

parameter fanfily of time differencings, these schemes are TVD for the one-dimensional constant

coefficient hyperbolic equations. Also the MUSCL approach in conjunction with the Roe-type

approximate Riemann solver [95] and TVD flux-vector splitting methods [771 falls nicely into

the present framework.

Without loss of generality, the two-parameter family of implicit schemes for the Euler equa-

tions (F_, - G',, = 0) is presented here. For general Navier-Stokes equations, the appropriate

three-point central differences of the viscous Jacobian terms should be added to the implicit

operator and a central difference approximation for the diffusion terms should be added to

the explicit operator. For time-accurate Navier-Stokes calculations or for faster convergence to

steady state, the viscous Jacohian terms were found to be necessary.

Let A_ : at and An = a_" then a two-parameter family of explicit and implicit TVD-type
A_ A o , o

algorithms in generalized coordinates for two-dimensional systems (6.1) with F. = Gv = 0 can
be written as

A_0 [_+1
3," 1 _:_ _, 2

_(I-0)'X¢-F , -F" _kl

__ Fn4-I "_r/0 --n+l _,n+l 1 ]

(1-0)Av G? , ,-5 4 1+,_' 'i__Z i 3,k+ __. k _] _A_rjn_l (6.4)

Here AU_k = /7_+' - Uj',k- The functions _bj+ },k and Gj,k÷ } are the numerical fluxes in the _-

and rkdirections evaluated at (j + ½, k) and (j. k + 1• _ ), respectively. The numerical fluxes Fj+ },k

and (_j,k+_ have the same meaning and form as in section V. The MUSCL and non-MUSCL

approaches as discussed in section 4.5 for the implicit methods can be applied to each of the

local ( or r/characteristic directions. This two-parameter family of algorithms contains first- and

second-order implicit as well as explicit schemes. The scheme is temporally second-order if 0 =

1 and first-order otherwise. When 0 ¢ 0, algorithm (6.4) is an implicit scheme. In this paper,

only the temporally first-order backward Euler (0 = 1, w = 0) and the temporally second-order

three-point backward differentiation (0 = 1, w = 1/2) time differencing are investigated. The

trapezoidal formulation (0 = 1/2, w = 0) was tested on the same problem with an undesirable

convergence rate and a smaller time step than the other two time differencings for steady-state

computations and it is less stable for time-accurate computations. For the purpose of the current

study, the trapezoidal formulation was ruled out for these reasons.

Detailed formulation and numerical studies for algorithm (6.4) with w = 0 for transonic,

supersonic and hypersonic flows can be found in references [1,21,41,74,150,179-181]. The current
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studyusingthe symmetricandupwindTVD-type schemeof (4.42) and (4.43) shows that, for

viscous steady and unsteady flows, the temporally second-order implicit algorithm (0 = 1, w =

1/'2) appears to be slightly more stable and efficient than the temporally first-order implicit

algorithm (0 = 1, w = 0). Note that _,, in (6.4) is different from the ¢c in (3.38).

6.2. A Conservative Linearized Implicit Form for Unsteady and Steady-State Cal-
culations

To solve for U n+l in (6.4) one normally needs to solve a set of nonlinear algebraic equations

iteratively. One way to avoid this is to linearize the implicit operator and solve the linearized

form by other means. Following the same procedure as in references [21,41,74], a conservative

linearized (ADI) form of (6.4) for the numerical fluxes (5.6a) and (5.7) can be written as

where
Hi+ _,k

A_

l+w

A_O H_ A_O H_ E*--
...... 1I÷ l+w j+½,k 1 +_v j-_,k

..... G _ - Gn. _ _ _ A i'Tn-1

j+_,k 3-½,k l +w _,k+_ _" _j 1 +w _._,k ,

A'O H, 7 A'O H" E" : E*,I+
l+w j,k+{ l+w j,k-_

E" : aP'; : P° + E °

(6.5a)

(6.5b)

(6.5c)

and Hi,k+½n havethesame _rmasinsection V, equations(5.15d)-(5.15j).

6.3. General Assumptions and Limitations on the Numerical Studies

The present study is by no means an exhaustive investigation. There are additional elements

and parameters (other than the ones considered here) in the algorithm itself as well as in the

physical problem, such as flow type and geomelric complexity, that can affect or interfere with the

performance of the numerical scheme. Even within the numerical issues listed in the introduction

of this section, the study is limited to a sampling of the parameter range for the time-step size

or CFL number and the form of the entropy parameter 61 in (4.33b). In particular, various

strategies to speed up and stabilize the start-up solution from freestream conditions for steady

computations have not been investigated. What is discussed here is intended to give interested

readers some guidelines for the use of the algorithm. All of the numerical studies discussed in

the subsequent sections rely on the following assumptions and considerations:

1. The numerical results and conclusions are for the non-MUSCL approach and for the

particular flow type and geometry specified with a sampling of a narrow range of Mach numbers

and time steps. The study was concentrated on the implicit scheme (6.5) together with (4.42)

and (4.43). Results for viscous flow calculations are based on the shock wave dominated thin-

layer Navier-Stokes equations for lanfinar flows.

2. The numerical boundary condition treatments are lhe same as in references [41,75,177]

for the inviscid flow and as in reference [180] for the viscous flows. NormaJly a lower-order
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upwind schemeor extrapolationnear the boundarywasused. Studies[10,42]showedthat
proper treatmentof numericalboundaryconditionshasa major impacton the stability and
convergencerateof the scheme.Thereforethe boundarycondition treatmentusedhereaffects
theperformanceof the stability,accuracyand convergencerateof thepresentalgorithm.

3. For steady-statecomputations,the convergencerate dependsnot only on all of the ele-
mentsandparameters(to bediscussedshortly),but moreimportantlyalsoon thetype of grid
associatedwith the computation.Studiesshowthat, in general,the numericalsolutionfor a
coarsenearlyuniform orthogonalgrid converges1-3timesfasterthan similar finer grids,and
possiblyan order of magnitudeor more faster than highly clusteredor skewedgrids. What
will bepresentedin section6.7representsfairly uniform to mildly clusteredgrids.Most of the
gridsusedfor the numericalstudywerenot very coarse;thusthe numberof iterationsquoted
is naturallyhigherthan for the coarsegrid counterpart.

4. For the non-interferingblunt-bodyflows,the convergencerate and behaviorof the sym-
metricandupwindTVD-typeschemesareverysinfilar. However,for the interferingblunt-body
flowscontainingslip or shearsurfaces,the upwind schemeproducessharperweaksolutions.
Consequently,all of the illustrationsandconclusionsdiscussedin this sectionarefor theupwind
scheme(4.43)usinglinriter (4.34c).Otherlimiters canproducesharperdiscontinuitiesbut are
not asrobustas]imiter (4.34c).Seesection6.7 or reference [1] for a discussion.

5. Research on equilibrium real gas effecls on the performance of these schemes is only in

the preliminary stage. All of the illustrations and conclusions for equilibrium real gases are for

inviscid non-interfering blunt-body flows. Studies of viscous equilibrium real gas flows are in

progress.

6. For steady-state computations using the backward Euler time differencing (0 = 1, ,_ =

0), a local time-stepping procedure similar to [33,177] was used. However, in comparing the

convergence rate with the three-point backward differentiation time differencing (0 = 1, _,. =

1/'2) for the viscous flows, a constant time step was used.

Other issues such as reducing ADI factoring error, using multigrid, relaxation or conjugate

gradiei_t methods as an alternative to ADI, using local grid refinement to enhance resolution,

etc., which are also sources of consideration to algorithm (6.5), are not considered here. These

issues and the development of better algorithms are the subject of on-going research.

6.4. Enhancement of Stability and Convergence Rate for Hypersonic Flows

In reference I179] some elements and parameters which can affect the stability and convergence

rate in high Mach number cases but which have negligible effect in low Mach number cases for

steady-state inviscid blunt-body flows were identified. Further study 166] using scheme (6.5)

together with the Harten and Yee upwind scheme (4.43) and the Yee-Roe-Davis symmetric

scheme (4.42) indicated that the same elements and parameters can affect the stability and

convergence rate at hypersonic speeds for viscous computations as well. They are: (1) the choice

of the entropy-correction parameter ha, (2) the choice of the dependent variables on which the

linfiters are applied (related to proper scaling of the eigenvectors for high speed flows), and (3)

the prevention of unphysical solutions during the initial transient stage. Our study indicates
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that theseelementscanalsoimprovethestabilityofunsteadyaswellassteadyhypersonicflows.

1. For Machnumberrangingfrom 1.2to 15,numericalexperimentsfor one- and higher-

dimensional unsteady flows containing unsteady shocks show that the second-order explicit TVD

schemes (5.5) and (5.13) [1,75,150] are insensitive to the entropy correction for 0 5 61 < 0.1.

In most cases bl = 0 was used. For 0.1 < /_1 < 0.25, there is a possibility of improving

stability in the sense of allowing a higher CFL number at the expense of a slight smearing of

the discontinuities. However, for unsteady complex shock wave interactions, a small positive 6_

or a variable 6l (to be discussed) can help stabilize the time-accurate implicit algorithm (6.5).

For subsonic to low supersonic steady-state NACA 0012 airfoil computations [21,41], the

resolution of the shock waves was found to be quite insensitive to 0.1 < 61 < 0.125 and a

constant value seems to be sufficient. However, for hypersonic flows, especially for blunt-body

flows, a constant 61 or a variable bl suggested by Harten and Hyman [531 was found to be

insufficient, but a variable 61 depending on the spectral radius of the Jacobian matrices of the

fluxes is very helpful in terms of stability and convergence rate. In fact, a proper choice of the

entropy parameter bl for higher Mach number flows not only helps in preventing nonphysical

solutions but can act, as a control of the convergence rate and of the sharpness of shocks and

slip surfaces (or shear layer in viscous flows). The smaller the 61 that is used, the slower is the

convergence rate. The bigger the 61 that is being used, the larger is the numerical dissipation

being added. However, bi cannot be arbitrarily large.

For the present blunt-body steady-state calculations with Mach numbers M > 4, the initial

flow conditions at the wall are obtained using the known wall temperature in conjunction with

pressures computed from a modified Newtonian expression [182]. Also, for implicit methods a

slow startup procedure from initial conditions [1771 is necessary. Most importantly, experience

indicates that if one sets 61 in equation (4.33b) as a function of the velocity and sound speed,

i.e.,

(6.6a)

(6.6b)

with 0.05 _ _ < 0.25, then blunt-body flows for 4 _< M < 25 appear to be stabilized and

nonphysical solutions are less likely to occur. Equation (6.6) is written in Cartesian coordinates.

In the case of generalized coordinates, the u and v should be replaced by the contravariant

w_locity components, and one half of the sound speed would be from the _-direction arid the

other half would be from the q-direction. For implicit methods, it is very important to use (6.6)

in t;,(z) on both the implicit and explicit operators since in a two-dimensional hypersonic flow

field consisting of a nfixture of subsonic and supersonic regions with Mach number ranging from

0 to hypersonic speeds, an entropy parameter like (6.6) is nonzero in all of the regions. The

entropy parameter (6.6) seems to work well for blunt-body flows but whether this is also the

right choice for configurations other than a blunt-body shape is an open question.

Recently, Miiller [183] suggested a slightly different approach for viscous computation. At the

present stage of development, the entropy parameter seems still highly geometric and problem

dependent. A universal method is still yet to be discovered. Maybe the use of a high-resolution

Lax-Friedrichs method (see sections III and IV} might be more robust in this respect at the
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expenseof a slightdegradationin theshockresolution.Again,extensivenumericalexperiments
ona varietyof geometriesandflowconditionsareneededbeforea conclusioncanbe drawn.

Forunsteadyhypersonicblunt bodycomplexshockwaveinteractions,theentropyparameter
(6.6)canhelpstabilizethetime-accurateimplicitalgorithm.Formostoftheviscousandinviscid
calculationsshown,unlessotherwiseindicated,6 is set to 0.125.

2. Higher-order TVD schemes in general involve limiter functions. However. there are options

in choosing the types of dependent variables when applying limiters for systems of hyperbolic

conservation laws. in particular for systems in generalized coordinates. The choice of the de-

pendent variables on which linfiters are applied can affect the stability and convergence process.

In particular, due to the nonuniqueness of the eigenvectors Rje 3' the choice of the character-

istic variables on which the limiters are applied plays an important role in the stability and

convergence rate as the Mach number increases. This is directly related to proper scaling of

the eigenvectors for high speed flows. For moderate Mach numbers, the different choices of the

eigenvectors have a negligible effect on the stability and convergence rate. However, for large

Mach number cases, the magnitudes of all the variables at the jump of the bow shock are not

the same. In general, the jmnps are much larger for the pressures than for the densities or total

energy. Studies indicated that employing the form R)+_ such that the variations of the o are of

the same order of magnitude as the pressure would be a good choice for hypersonic flows. The

form sinfilar to the one used by Gnoffo [184] or Roe and Pike [1851 can improve the convergence

rate over the ones used in references [104,166]. In all of the computations shown the form R/+ ½

used is the same as in references [104,1661 except for an extra factor of 1/c_+ ½. With this extra

factor the variations of the o are in fact proportional to the pressure. Other forms of R j+ ½ have

not been investigated. With this type of scaling, the stability criterion is less restricted even for

unsteady hypersonic speeds.

3. Due to the large gradients and to the fact that the initial conditions are far from the

steady-state physical solution, the path used by the implicit method can go through states with

negative pressures if a large time step is employed. A convenient way to overcome this difficulty

is to fix a minimum non-negative allowed value for the density and the pressure. With this

safety check, the scheme allows a much larger time step and converges several times faster.

In addition, since the Roe's average state allows the square of the average sound speed c 2

2 and 2 for equilibrium real gases, the average state c"to lie outside the interval between cj cj÷ 1 J+

might be negative even though c_ and c_+ 1 are positive during the transient stage when the

initial conditions are far from the steady-state physical solution. In this case, we replace 2c j+ ½

by max(c2._ rain( 2 2
3"t-_' Cj, Cj+ 1 )). This latter safety check is in particular helpful for the synunetric

TVD algorithm (4.42) but not necessary for the upwind algorithm (4.43).

6.5. Behavior of the Algorithm with Different Temporal Differencing

It is emphasized here that since the method (6.5) is written in the 'delta' formulation, both the

backward Euler (first-order) and the three-point backward differentiation (second-order) time

discretizations require the same amount of storage and a sinfilar operations count. Therefore,

the main consideration between the two time-differencing methods is their relative stability and
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convergence rate. The general behavior of the algorithm concluded here pertains to the explicit

and implicit upwind and symmetric scheme (6.5) of Harten and Yee, and Yee-Roe-Davis using

(4.33), (4.34), (4.42) and (4.43).

Inv*scid Unsteady Flows: For inviscid unsteady flows, the explicit TVD-type methods [1,75,150]

(section 5.1} are more efficient than tile second-order implicit method (6.5). Unless tile inviscid

problem is stiff, there is no advantage of employing an implicit method for inviscid unsteady

flOWS.

lnvzscid Steady Flows: The backward Euler implicit method has a better stability and conver-

gence rate than the three-point backward differentiation implicit method. Also a local time-

stepping procedure :18,1771 can speed up the convergence rate for tile former time-differencing

method whereas the same procedure has little effect on the convergence rate when compared

with a fixed time-step procedure for the latter time-differencing method.

Viscous Unsteady Flows: (iomputations of unsteady viscous flows mainly use the second-order

time differencing since a larger time step can be used (but still remain time-accurate at least

slightly away from the wall) compared with the temporally first-order implicit method. Due

to the highly clustered viscous grid used in contrast to their inviscid counterpart, solving a

viscous unsteady complex shock interaction using an explicit TVD-type method is no! practical

due to its inherent time-step restriction. In certain cases, the time step nfight be an order

of magnitude smaller than the implici! counterpart. A more detailed illustration of unsteady

viscous hypersonic blunt-body computations with an impinging shock is reported in reference

[1811.

Viscous Steady Flows: At present there is no detailed viscous steady flow study comparing the

first-order time differencing using a local time-stepping approach with the second-order time

differencing using a constant time-step approach. But the general trend is that the second-

order time differencing has slightly better stability and convergence rate than the first-order

one. In particular, a summary using a sequence of fixed time-step approaches comparing the

two time-differencing algorithms is discussed in section 6.6.

6.6. Numerical Results

The various numerical aspects discussed in the previous section_ are evaluated in part by ex-

perience gained from one-dimensional shock tube results [150], from two-dimensional subsonic,

lransonic, supersonic and hypersonic speed flows results !1.21.41,74,1791 and in part by a variety

of two-dimensional steady and unsteady, viscous and inviscid hypersonic blunt-body flow com-

putations in [66!. Some of the numerical studies are compared with shock-fitting computations

and some are compared with experiments when available. More detailed computation of the

physics of these problems can be found in references [180,181}. Six types of blunt-body test

cases are illustrated in figures 6.1 - 6.14. Test cases 1 and 2 are inviscid, perfect gases and

equilibrium real gases, non-interfering blunt-body flows. Test case 3 is a steady inviseid, perfect

gas blunt-body flow with an impinging shock. Test cases 4-6 are viscous, steady and unsteady
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perfectgasblunt-bodyflowswith and without impingingshocks.Unlessindicated,all of the
resultsand discussionsfor the viscouscomputationsarebasedon the conservativelinearized
full matrix form (6.5) together with (5.15g,h) and the Harten and Yee numerical flux (4.43).

From here on equation (6.5) means (6.5) together with (5.15g,h) and (4.43). ff (5.15i,j)is used,

it is referred to as the diagonal form.

('omp,_ri._on Among the Various Linearized Implicit Methods: For the implicit operator, numer-

ical experiments show that the linearized conservative form (6.5) converges slightly faster (while

requiring almost identical CPU time per time step) than the linearized nonconservative form

1186] for both viscous and inviscid flows. It appears also that when the freestream Mach number

increases, the convergence rate of the linerarized conservative form (6.5) is better than a simpli-

fied version which replaces f_( and Q' 1 of(5.15g,h)bv max1 t/:(a z 1 ) and maxt t/,(a_+ _ )

times the identity matrix (equation (5.15i,j)). This is especially true for viscous flow compu-

tations. Due to the experience gained from the transonic and the inviscid hypersonic study,

no detailed computations using the linearized nonconservative form were performed for viscous

steady flow. All of the results and discussions for the viscous computations are based on the

conservative linearized form.

Another area of investigation is that for viscous computations, the dacobians of the viscous

terms in the implicit operators are rather expensive to compute. For unsteady flows, these

terms are needed to maintain the spatial order of accuracy. Whether the omission of these

terms has a major impact on the stability and convergence rate of the algorithm for steady-state

calculations is not known. Therefore, an investigation has been made on the difference in the

convergence rate for the algorithm with or without the viscous terms in the implicit operator.

A brief smmnary is included in one of the following subsections.

Choice of Lirmters: Unlike flows with transonic and low supersonic shock waves, problems con-

taining strong hypersonic shock waves are more sensitive to the treatment of limiters. Using the

more diffusive limiter {4.33c) or (4.34c) turns out to be more stable than other more compressive

linfiters. In terms of shock resolution for both the symmetric and upwind TVD-type of schemes,

the sequences written in equations (4.33c)-(4.33e) and (4.34c)-(4.34g) are in order of increasing

accuracy. On the other hand, these sequences are in order of decreasing stability and conver-

gence rate. The more compressive limiters like (4.34f) and (4.34g) have a very low stability and

slow convergence rate for steady flows. The same conclusion applies for unsteady flows where the

more compressive lim_iters have a very restricted time-step limit. From our experiences, it is not

advisable to use (4.34f) and (4.34g) for complex steady shock wave interactions. In particular,

liufiter (4.34g) should be used only for the linear fields (i.e., for the u and v characteristic fields

in the x- and y-direction respectively). This study was conducted in reference [11.

Convev9ence Rate of Explicit and hnplicit TVD-type Schemes .for Equilibrium Real Gas Flows:

The five different second-order TVD methods previously studied [i50] in one dimension yield

very similar shock resolution for the blunt-body (non-interfering case) problem. In particu-

lar, for an inviscid blunt-body flow in the hypersonic equilibrium real gas range, the explicit

second-order Harten and Yee, and Yee-Roe-Davis type TVD schemes [8,9,17 i using a general-

ized approximate Riemann solver of Roe produce similar shock resolution but converge slightly
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faster{with comparableCPU-timeper time step) thanan explicit second-ordervanLeertype
schemeusingthegenerahzedvanLeerflux-vectorsplitting [150I.

Thefreestreamconditionsfor the current study are Mo_ = 15 and 25, p_ = 1.22 × 103 N/rn 2,

poo = 1.88 x 10 -2 kg/rn 3, and T_ = 226K. Figure 6.1 shows the upper half of the 61 × 33

grid used for the blunt-body problem. For the Mo, - 25 case, the shock standoff distance is

approximately fourteen points from the wall on the symmetry axis. The relaxation procedure

for the explicit methods employs a second-order Runge-Kutta time discretization [179] with a

CFL of 0.5 (solution not shown). The parameter b is set to a constant value of 0.15. Pressure

and Math nmnber contours (compared with shock-ftting solutions) converge and stabihze after

3000-4000 steps but the convergence rate is much slower for tile density (with a 2-3 order of

magnitude drop in the L2-norm of the residual). The bow shock is captured in two to three

grid points. Tile curve fits of Srinivasan et al. [164] are used to generate tile thermodynanfic

properties of tile gas.

The same flow condition was tested on the implicit scheme (6.5) and the convergence rate was

found to be many times faster. Figures 6.2 and 6.3 show the Mach number, density, pressure

and t¢ contours computed by tile linearized conservative ADI form of the upwind scheme (6.5)

with the first-order hackward Euler (0 - 1 and _ 0) for Mach numbers 15 and 25. Figure 6.,1

shows the slight advantage of tile convergence rate of the linearized conservative implicit scheme

(6.5) over the linearized nonconservative implicit scheme (with 0 1, _,' = 0 and a fixed CFL of

15) suggested in reference i1861. The convergence rate and shock resolution for the symmetric

TVDtype scheme (6.5) behave similarly. For M_ = 15 case, tile L2-norm residual stagnated

after a drop of four orders of magnitude.

In general, for a perfect gas with 10 _< Mo¢ < 25 and a not highly clustered grid, steady-

state solutions can be reached in 600-800 steps with 12 orders of magnitude drop in the L2-

norm residual. However, the convergence rate is many times slower for the equilibriunl real

gas counterpart. Figure 6.5 shows tile convergence rate for a perfect gas compared with an

equilibrium real gas computation with a fixed CFL of 50. Note that the scale of the ordinates

used in figure 6.5 for the perfect gas and an equilibrium real gas are not the same. The freestream

conditions for an equilibrium real gas study are the same as figure 6.3. An important observation

for tile behavior of the convergence rate for the Mach 15 equilibrium real gas case is that the

discontinuities of the thermodynamic derivatives which exist in the curve tits of Srinivasan et

al. [16,1] nfight be the major contributing factor. This is evident from figures 6.2d and 6.3d and

from a comparison with tile convergence rate for the perfecl gas. Another contributing factor

is that the curve fits are accurate only for temperatures up to 6000°K. Since the temperature

in this case is slightly above 6000°K, there is an uncertainty in the accuracy of the computed

resull s. Further improvement of the existing curve fitting procedure is needed in order to assess

the 'true' difference in convergence rate between perfect attd equilibrium real gases.

lnvtscid lmptng21t 9 ,_bock ('omputat_ons: Figures 6.6 and 6.7 show the schematic of the com-

putational domain, the Mach contours and L2-norm of the residual computed by the implicit

upwind scheme (6.5) (with 0 = 1, ,,' = 0) of an inviscid shock-on-shock interaction on a blunt

body with radius Rt and thickness D = 2Rt in the low hypersonic range 4 < Mo_ < 8. Higher

inviscid hypersonic Mach number 8 < Mo_ _< 30 computations using these scheme are also pos-

sible but are not shown here. Some viscous and inviscid studies on flow fields of this type were

reported in references [182,187-189]. This flog' field is lypical of what may be experienced by the
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inlet cowlof a hypersonicaerodynamicvehicle.Thefreestreamconditionsfor this flowfieldare
the freestreamMachnumberMoo = 4.6, the freestream temperature Too = 167K, and 7 = 1.4

for a perfect gas. An oblique shock with an angle of 20.9 ° relative to the free stream impinges on

the bow shock. Various types of interactions occur depending on where the impingement point is

located on the bow shock. As shown by the Mach contours ranging from 0 to 4.55 in increments

of 0.05, the impinging shock has caused the stagnation point to move away from its undisturbed

location at the synmletry line. The surface pressures at the new stagnation point can be several

times larger than those at the undisturbed location of the stagnation point. In addition, a slip

surface emanates from the bow shock and impinging shock intersection point and is intercepted

by a shock wave which starts at the upper kink of the bow shock. The interacting shock waves

and slip surfaces are confined to a very small region and must be captured accurately by the

numerical scheme if the proper surface pressures are to be predicted correctly. The 77 × 77 grid

used and the convergence rate computed by the implicit scheme (6.5) are shown in figure 6.7.

Though the flow pattern is significantly more complicated than for the previous cases, the con-

vergence rate remains quite satisfactory. The convergence rate is for a variable At with a fixed

CFL of 100. The scalloping of the L2 residual norm is the characteristic of that specific CFL

number. The shape of the scalloping seems to be a function of the CFL number. As shown in

figure 6.6 at the inflow, all of the inviscid and viscous interfering blunt-body colnputations start

with the appropriate freestream and oblique shock wave conditions as boundary conditions.

Vzscous Steady Computations With or Without Impinging Shock: To keep the study tractable

only two types of physical flow fields were chosen. The first is a viscous hypersonic ideal gas

blunt-body flow at Ms = 8.03 and T_ = 122.1K with a lanfinar Reynolds number of 387,750

based on the body diameter . The second problem (with the same flow conditions) is sinfilar to

the inviscid shock-on-shock interaction where an oblique shock impinges on the bow shock of a

blunt body at an angle of 19 ° relative to the free stream. A more detailed flow field computation

of the six types of shock patterns categorized by Edney I1861 is presented in reference [180]. For

the convergence study only one type of interaction, namely the so-called Type III interaction, is

considered. Also the study is restricted to only one type of time-stepping sequencing and only

one value of the entropy-correction parameter. The computational meshes (not shown) consist

of 181 points in the circumferential direction and 91 points in the direction normal to the body

and are highly clustered in the wall region to resolve the viscous layer.

At this point, it is important to point out that the time-step sequence used for the viscous

steady flows is very different from the inviscid study. Most of the inviscid computations use

the same initial time-step input or a fixed CFL together with a local time-stepping procedure

throughout the entire iteration process. The time-step sequence chosen for the viscous steady

calculations is based on experience with a wide range of hypersoafic flow simulations and consists

of a sequence of fixed time steps with the procedure of doubling the time step every 100-400

time steps until the specified time step is reached. The initial time step is At = 0.001 which

corresponds to a maximum Courant (CFL) number of 10 to 20 for the current problem and

grid size. Larger values of the initial time step usually prevent convergence. The four specified

time steps considered range from 0.001 to 0.008 with corresponding CFL numbers ranging from

20 to 200. Much larger maximum CFL (or specified time step) numbers are possible but do

not improve the convergence rates. The value of the entropy-correction parameter was fixed at

b" = 0.15, again based on experience with a wide range of hypersonic flow field simulations.
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The results of the blunt-body steady viscous flow obtained with the temporally second-order

accurate algorithm (6.5) together with (5.15g,h) (hereafter referred to as the full matrix form)

are shown in figure 6.8. Here algorithm (6.5) for the viscous computations means the appro-

priate three-point central differences of the viscous terms are added to the explicit and implicit

operators of (6.5). Depicted are Mach contours ranging from 0 to 8 in increments of 0.1 and

entropy contours normalized by the freestream value and ranging from 0 to 6.4 in increments

of 0.1. The final view in figure 6.8 is the history of the L2 norm residual. The residual drops

to machine accuracy (10 14) in less than 3200 steps. The corresponding results using the same

algorithm (6.5) together with (5.15i,j) (hereafter referred as the diagonal form) are illustrated in

figure 6.9. No noticeable difference in the numerical results is observed in the Mach number or

entropy contours. However, the residual curves are very different. The residual for the diagonal

scheme reached a plateau of 5 × 10 -6 at 1500 steps and stayed at that level.

A more complex flow field which is far more difficult to compute is depicted in figures 6.10 and

6.11. The results using the same second-order time accurate full matrix algorithm are shown

in figure 6.10. The convergence rate is slower than for the blunt body non-interfering case but

is still satisfactory. The residual dropped seven orders of magnilude in 3000 steps. In both

of the blunt-body flow cases with or without impinging shocks, steady state can be reached

within 1000-1500 iterations. The extra iterations are needed only to bring the residual to a

lower level but no change in the coutour plots or surface pressures at least to within 3-4 digits

of accuracy is observed. However, the results shown in figure 6.11 using tile diagonal scheme are

not satisfactory. The residuals dropped less than two orders of magnitude in 3000 sleps. The

noise in the Mach number and entropy contours in the upper portion of the bow shock using the

diagonal form of the scheme indicates that the algorithm has a problem reaching the converged

steady-st ate solution.

All of the computations for figures 6.8 - 6.11 have the viscous terms included in the implicit

operator. If the viscous terms are not included in the implicit operator, then the full matrix

scheme becomes unstable for At _> 0.004, whereas the diagonal scheme exhibits no change in

convergence rate.

In summary, from the point of view based on the L_-norm of the residuals, the best convergence

rates were achieved by the full matrix form with the viscous terms included since it allowed the

residual to drop to machine accuracy (10-14). The diagonal form (5.15i_) did not fare too

well. Although there is a substantial savings in operations count per iteration (_ 20_; less), the

L2-norm of the residual never dropped below 10 -6 for all the time steps considered, and for the

impinging shock case, the algorithm has a slight problem reaching the converged steady stale.

Moreover, the inclusion of the implicit viscous terms had little effect on the diagonal form of the

scheme but is important for the full matrix form of the scheme. One way of taking advantage

of the low operations count (--- 30% less) of the diagonal form (without the implicit viscous

terms) is to use the scheme as an efficient way of obtaining a rough solution (from freestream)

for the initial input to the full matrix algorithm. The temporally second-order time-differencing

scheme had a marginal but beneficial effect on the convergence rates when compared with the

temporally first-order scheme.

Viscous Steady and Unsteady Mach 15 ('omputat_ons with Impinging Shock: Figure 6.12 illus-

trates the shock resolution of unsteady and steady thin-layer Navier-Stokes computations by

the second-order time-accurate, full matrix algorithm (6.5). This steady test case is sinfilar to
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thepreviousimpingingshockstudyexceptthefreestreamMath numberis 15,the impingement
shockangleis 22.75°, the freestreamtemperatureis T_ = 255.6K, and the Reynolds number

based on the diameter is 186,000. Shown are the Math contours from 0 to 15 in increments of

0.1. For the unsteady computation, the impingement shock at an angle of 22.75 ° relative to the

freestream moves downward across the bow-shock of the blunt body. The impingement shock ve-

locity is 10% of the freestream velocity (Moo - 15). Although the impingement shock locations

for the unsteady and steady computations are similar, the shock patterns are very different. A

241 × 141 non-adaptive grid is used for both computations. A time step of 0.002 (equivalent

to a maximum CFL of 48) is used for steady-state computations whereas a time step of 0.0005

(equivalent to a maximum CFL of 10-12 at the vicinity of the boundary layer and a CFL of 1

at the rest of the flow field) is used for the unsteady computations. The steady-state solution

can be reached in 1200 steps with a three order of magnitude drop in the L2-norm residual.

However, extra iterations are needed to bring the residual to a lower level but no change in the

coutour plots or surface pressures at least to within 3-4 digits of accuracy is observed. More

detailed study of the surface pressure and heat transfer rate of these types of shock-on-shock

steady and unsteady numerical simulations were reported in references [180,181]. Figures 6.13

and 6.14 show the comparison between the steady and unsteady Mach 15 flows for six types of

shock patterns where the flow conditions are the same as figure 6.12. Although no experimental

data are available for tile Mach 15 case, these figures serve as an example on the capability

of these implicit schemes for steady and unsteady hypersonic viscous flows containing complex
shock structures.

6.7. Concluding Remarks on the Numerical Study

A two-parameter family of implicit time-accurate shock-capturing algorithms has been shown

to be applicable for hypersonic viscous flow computations. These algorithms are formulated

in finite volume and pseudo-finite volume form and have been shown to be quite efficient and

accurate for steady-state as well as unsteady viscous and inviscid hypersonic complex shock

interactions. Some numerical aspects of these TVD-type algorithms that affect the convergence

rate for hypersonic Mach numbers or equilibrium real gas flows but have negligible effect on

low Mach numbers or perfect gas flows are identified. Improvements have been made to the

algorithms to speed up the convergence rate in the hypersonic flow regime. Even with the

improvements, though, the convergence is in general slower for equilibrium real gases than for a

perfect gas. The nonsmoothness in the curve fits of Srinivasan et al. may be a major contributing

factor in slowing down the convergence rate for equilibrium real gas flows. Also, the convergence

rate is, in general, slower for viscous flows than for inviscid steady flows.
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VII. EFFICIENT SOLUTION PROCEDURES

FOR LARGE SYSTEMS WITH STIFF SOURCE TERMS [76,86,95]

In the application of modern shock-capturing methods like TVD-type of schemes to chemically

reacting flows, Carofano [99] was the first to introduce the formalism that enabled full coupling

in Harten's explicit TVD scheme for a two-species, two-dimensional unsteady flow in (',artesian

coordinates. However, due to the system size and the varying multiple time-scale nature of the

problem, the operations count increases nonlinearly as the number of species and/or the number

of reactions increases. To avoid solving a large system, Gnoffo and McCandless [184] and Gnoffo

et al. [79] uncoupled the species equations from the fluid dynamics equations and solved these

two sets of systems of nonlinear partial differential equations in a time-lag fashion (loosely

coupled method) by using a point-relaxation technique with a second-order synmic-tric TVD

scheme of Yee [21,163] and an upwind TVD scheme of Osher-Chakravarthy [221. Eberhardt and

Brown [1901 attempted to use the eigenvalues and eigenvectors of the fluid dynamics equations

alone to obtain a "fully coupled" first-order explicit TVD scheme for a one-dimensional flow. The

results of Eberhardt and Brown showed excessive smearing at the shock when compared with the

true, fully coupled explict TVD result. Their motivation for designing such a coupling procedure

was to optinfize the operations count by avoiding nmltiplication of large matrices. However, as

was demonstrated in [951 and summarized in this section, if one makes use of the unique structure

of eigenvectors and eigenvalues for fluid flow of this type, the fully coupled formulation can be

simplified even for a large number of species, thus providing a more efficient solution procedure

thml one nfight have anticipated. Moreover, using the eigenvalues and eigenvectors for the

fully coupled equation set allows one to have the freedom of controlling the proper amount of

numerical dissipation for the individual waves [21]. In particular, for the type of two-dimensional

chelnically reacting flows that are considered here, the number of linear waves is n5 + 1 in each

spatial direction where ns is the number of linearly independent species. Note that in order to

capture contact discontinuitie,, accurately, it is very important to apply the proper amount of

numerical dissipation to the linear waves.

As discussed in sections 3.3, 3.6, and 3.7, the TVD property is only valid for homogeneous

scalar hyperbolic conservation laws. Certain types of source terms might preserve the origi-

nal TVD property of the homogeneous PDE and others might not. However, disregarding the

type of bounded source terms, one is not precluded from the application of TVD schemes when

source terms are present. But extreme precaution has to be taken in the procedure of including

the source terms. This applies particularly to stiff source terms of the types in thermally and

chenfically nonequilibrium flows. Numerical difficulties associated with time-accurate computa-

tions for problems with stiff source terms were discussed in section III. However, in the use of

time-accurate methods as relaxation procedures for steady-state computations, the senti-implicit

algorithm discussed in section 3.7 appears to work quite well.

Three types of schemes are described. If the stiffness is entirely donfinated by the source

term, two semi-implicit TVD-type shock-capturing methods (as discussed in section III) are

proposed for steady-state calculations provided that the Jacobian of the source terms possesses

certain properties. One of the semi-implicit schemes can be viewed as a variant of the Bussing

and Murman point-implicit predictor-corrector scheme [96] with a more appropriate numerical

dissipation which provides for the computation of strong shock waves in the hypersonic regime

and a speedup in the convergence rate for steady-state applications. The predictor-corrector
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schemeof BussingandMurmanin turn is theexplicitMacCormackschemewith thesourceterm
treatedimplicitly. Anothersemi-implicitschemeis a splittingmethodas discussedin section
3.9 in whichthe homogeneouspart of thePDEsand the sourceterm arehandledin separate
steps.Formultidimensionalproblems,thehomogeneouspart of the PDEscanbediscretizedin
a varietyof ways(predictor-corrector,time-splitting,or linearmuhistepmethods).In the case
of the time-splittingapproach,theMUSCLformulationin conjunctionwith the Lax-Friedriehs
numericalflux will resultin anefficienthigh-resolutionalgorithmwithout the use of Riemann
solvers.

However, if the stiffness is not solely dominated by the source terms (e.g., stiffness due to

highly irregular grid and/ior viscous flows), a fully implicit method would be a more efficient

procedure. The situation is complicated by problems in more than one space dimension, and the

presence of stiff source terms further complicates the solution procedures for alternating direction

implicit (ADI) methods. ]n fact, there seems to be no straightforward way of efficiently treating

general stiff source terms implicitly with ADI procedures. Several alternatives will be discussed.

The fully implicit relaxation algorithm can be viewed as a variant of a full), coupled form of the

algorithm proposed by Gnoffo and McCandless [184!.

In the simplest case -- the use of the MUSCL formulation and the Lax-Friedrichs numerical

flux - one has the advantage of allowing the use of a larger time step and al the same time

obtaining high resolution without the use of any Riemann solver [76]. The operations count per

time step would be less than the loosely coupled method using a Riemann solver. The operations

count per time step would be comparable with the Beam-V_;arnfing [28] type ADI method using

a mixture of second- and fourth-order numerical dissipation terms i177.

An implicit algorithm with explicit coupling between fluid and species equations proposed

by the author !11 will also be stressed here. Many existing perfect-gas or equilibrium real-gas

computer codes can easily be modified to include this algorithm, which is a compronfise between

the loosely coupled implicit method of 11841 and the fully coupled, fully implicit TVD method

described here. To make lifts section more self-contained, some of the variables that were defined

earlier will be repeated.

7.1. An Explicit Predictor-Correetor Algorithm for Systems with Source Terms

In this section, all the terms that are required for the basic TVD scheme for the compressible

inviscid nonequilibrium reacting flow equations are derived. For simplicity, only chemically

reacting flows are discussed. More general equation sets such as thermally nonequilibrium flows

have similar properties and can be extended in a straightforward manner.

The Governing Equatwns: Consider a two-dimensional system of nonhomogeneous hyperbolic

conservation laws,

ou OF(V) Oa(U)
-07 + 07 + Oy - S(U). (7.1i

Here U, F(U), G(U), and S(U) are column vectors of k components. Let A = OF/OU and

a ., k 1 2 ..,a_) being the eigenvalues of A and B. DenoteB = OG/OU, with (a_,a_, .... a_) and (ay,a_,. .

R_ and R u as the matrices whose columns are eigenvectors of A and B, and denote R_ -I and
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tt v" as the inverses oi R_ and E v. in the case of the compressible mviscid itow equations with
chemical reactions, the global continuity equation is replaced by the individual species continuity

equations,

.pl .
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(7.2)

Here m- pu, n = pv, and s i represents the production of species from chenfical reactions• The

variables are the velocity components u and v, the pressure p, tile lt)tal energy per unit volume

c, and the density of the ith species p_. Also, p = V_'_p _ and c'p p', where ns is the lmmber

of species in the model and c i is the species mass fraction. Equation (7.2) assnmes the pi are

linearly independent•

The eigenvalues of A and B are

(a',...,a'; = (,, ,, + a), (7.3a)

Here the so-called "frozen sound speed" a is

a2 =Po+P_(H-u 2 v _'),

with

(7.3}))

(7.4)

(7.5)pp = C pp, ;
i=1

OP l (7.7)
/)pt Z -- - I

0pi!

Op (7.8)
P_ := (i( irn,rt,pl " _

H = (7.9)
P

The frozen sound speed a for the PDEs (7.1) (a without subscript or superscript and should not
i i

be confused with the a= or au) defined in (7.4) has no physical meaning. It is defined here for
the convenience of notation for the basic scheme.
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The superscript n is used for the time-index and should not be confused with n -- pu in

; Rz, Rz -1 evaluated at somel -1 denote the quantities a_,equation (7.2). Let aj+½, Rj+_, Rj+_

synmletric average of Uj.k and Uj+l.k. Similarly, let at+ ½, Rk+__, R_-+I _ denote the quantities

au,t R u, R-y 1 evaluated at some svrnmetric, average of Uj,k and Uj,k+l. In the case of chemically

reacting flows, a I Rj+ _, R -1 a; Rk+_ and R -1j+ 1, 2 j+½' k+½' _, _+ ½ are defined in ways similar to the

ones described in [192] or used by Huang [51], Carofano [99], Shirm &: Yee [118], or Gnoffo

[79 i. All of the calculations in this section use a variant of the symmetric average of Huang and

Carofano. Whichever synmaetric average one decides to use, it is best to choose the averaged

state such that the quantities in (7.3) remains real.

In case one keeps the global continuity equation plus ns - 1 species continuity equations, the

form and structure of the eigenvalues and eigenvectors set are very similar. Form (7.2) has the

advantage of avoiding machine round off errors in the event the magnitude of one of the species
densities is very small compared with the rest.

Fbr thermally and chenfically nonequilibrium flows, the eigenvalues and eigenvectors have a

similar structure. For the two-dimensional system (7.1). if nt is the number of thermal energy

variables, then the eigenvalues in the ,,-direction will have (ns + nt + 1) "u" characteristics

plus u 4 a and u a characteristics. Here the values "a" will reflect the added thermal energy
variables .

R_emann Solver for Nonequilibrium Flows: Extensions of the exact Riemann solver of Godunov

to certain types of nonequilibrium flows have been obtained by Glaz et al. [191 I. Extensions of

the Osher-Solomon Riemann solver are not known at this point.

Basically, if one assume each species of the gas mixture behaves as a thermally perfect gas,

the flux function again possesses the homogeneous property. The Steger-Warming flux-vector

splitting carries over to nonequilibrium flows. However, the van Leer flux-vector splitting and

Roe's approximate Riemann solver are no longer valid for nonequilibrium flows. Various approx-

imations to van Leer and Roe's Riemann solvers have been proposed [192-195]. Basically their

generalization for nonequilibrium flows are almost identical to the equihbrimn real gas cases.

They all still involve arbitrary constants. In the case of the generalized Roe average, there exist

ns - 1 arbitrary constants instead of only one for the equilibrium real gases. See [192] for details.

The basic difference in the formulations between references [192], [193] and [195] remains the

same as for the equilibrium real gases discussion in section IV. Reference [194] basically discusses

even more restricted flows than references [192] and [193].

Exp!icit Predzctor-Corrector TVD Scheme: With the above notation, a formal extension of the

scalar explicit second-order TVD method (section 3.6) in predictor-corrector form via the local-

characteristic approach for the nonlinear hyperbolic system (7.1) with nonzero source terms can
be written as

AUJ'I)k - -Ax .k- Fj_-,,k - _ Gj,k+, j.k + AtSj.k, (7.10a)

U( 1) + (7.10b)j,k _ ," j,k'
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_,?-(2)j,h -" '-_U'5_k ) at- [-/ j,k''(l)' (7.10d)

(7.lOc)

- ]'E trTn+l IT(2 ) 1 Rj-' ' + Rk+ '_I'k+ ' - -Rk '_k '. (7.10e)

The elements of the vector ,I,j+ _ are the same as equations (3.69d) and (3.69e), with aj+

replaced by ata+ --_' Aj+_ replaced bv_ o tJ___" and 0j+'_ replaced by 0 to+½" --Ra+ _' and --el'j+_ can

be evaluated at U" or /7 {2) as discussed in sections 3.6 - 3.9. The situation is sinfilar for the

the TVB method or the high-resolution Lax-Friedrichs method as discussed in section 3.5.4.

Here Ay is the grid spacing with yk = kAy. Numerical experiments in reference [86] indicated

that linfiting based on U" (for the second and third terms of (7.10e)) is preferable for nonstiff

source terms, but that linfiting based on U (=) may be more robust for stiff source terms. For

steady-state calculations and for a contractive type of source term S({r), it appears that (7.10e)

nfight help improve the convergence rate by using the most updated informat ion in the relaxat ion

procedure. Other procedures are currently under investigation.

7.2. More Efficient Solution Procedures for Large Systems

The extra computation in (7.10) compared with a classical central-difference shock-capturing

scheme such as the Lax-Wendroff method is due to the vectors (R_).i _ _. At first glance, the

vectors aj+_. and (RcI')j:½ involve matrix and vector multiplication of dimension ns + 3 for

every grid point, and thus tend to discourage their adoption in problems other than ideal gas

flows. Researchers such as Gnoffo and McCandless [1841, and Eberhardt and Brown [190 i were

motivated to pursue other avenues to solve the complicated chenfically reacting flow problems.

However, as was illustrated in 1951, if one makes use of the unique structure of the eigenvectors

and eigenvalues for fluid flow of this type, the fully coupled formulation can be simplified even

for a large number of species, and thus becomes a viable approach.

With straightforward manipulations, the computation for scheme (7.10) can be simplified

tremendously. The corresponding vector (_ in equation (4.12c) for system (7.1)-(7.2), for exam

pie, can be expressed as

Ap 1 - c l aa

Ap 2 - c=aa

o=a 2

Ap ns _ cnSaa

I (aa _bb + A'v-)

_. --_i-

(7.11)
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with

aa = _ i=lpp, Ap' - pe(uAm + vAn- Ac , (7.12)

bb = _ Ap *. (7.13)
i=l

i i
Here.. for example, (Api)j÷ 1_ " -- Pj÷I k - Pj,k, and it. is understood that the spatial indices in,k , ,

1 k). Similarily, R_ also has a very simple form. For instance, the R_(7.11)-(7.13) are at (j 4 _,

associated with the z-direction flux can be expressed as

1

cns 4_ cnskt

uk2 4- k3

vk2 + a¢ '_ 2

1 v--_ (a,)2¢i av¢_,+_Hk2 - _,,:-.,i=l + 4 uk3

(7.14a)

with

]t_l _ _)n,-_l + (_n,+3, (7.14b)

_--,,_,+ 3 ¢i, (7.14c)
]_'2 = l"'_i=l,i_ns+2

k3 = a(O n'+l - Cn,+a). (7.14d)

where (a i)2 is the square of the frozen sound speed of the ith species. Here the spatial indices on

(7.14) are at (j+l _,k). As one can see, the terms in equations (7.11) and (7.14) due to the species
equations are simple and do not require many operations. To be precise, for each additional

species, only two operations contribute to the a or the R6 operations. Therefore. the increase

in the number of species equations is not as CPU-intensive as one might have anticipated. The

inclusion of the thermally nonequilibrium flow analysis was later extended by Liu and Vinokur

!192]. The property of the corresponding o and R_ remains unchanged except nxore equations
than (7.2) are involved.

7.3. A Senti-implicit Predictor-Corrector Algorithm and a 3-D Example

As mentioned in section 3.6 for the scalar schemes, the explicit TVD scheme (7.10) can

be used for either time-accurate or steady-state calculation. It can be second-order accu-

rate in time and space. However, if the source term is stiff, the restriction on the time step

due to stabihty requirements is prohibitively small and (7.10) is not practical, especially for

steady-state applications where a large system such as (7.2) is involved. In this section, a

semi-implicit method for steady-state applications is described. Another alternative is a fully

implicit method. The basic implicit scheme and the related difficulty in efficiently extending the
implicit method to two dimensions with stiff source terms will be discussed in the next section.
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If one follows the idea of Bussing and Murman [9¢;] in treating the source term implicitly,

a semi-implicit predictor-corrector TVD algorithm for steady-state computations can easily be

obtained. It can be written as a one-parameter family of time-differencing schemes for the source

term; i.e., the following formulation includes scheme (7.10). The scheme for system (7.1) can be

written as

Dy'kA - Ax Fj_'k - Fjn-l'k - _ GJ'k+' - Go._. + AtSy, k, (7.15a)

D: (;- ate- s)0U "
(7.15b)

2 1[ ]1[ ]"a,_'l_'+l:: Ij,_. +. _ R:/ ,_(l'a_, - Rj -_'°_i-" _' -_ 2 Rt..,_7]) k+:,_ h'_. _'(1'k , . (7.15d)

Here, D is assumed to be invertible; i.e.. only source terlns with .lacobians such that D is

invertible at each grid point are pernfissible. Again, 0 has the same meaning as in the scalar

case. For 0 _ 0, the source terms are treated implicitly. If 0 - 1, the time differencing for the

source term is first-order and (7.15) is best suited for steady-state calculat ions. See sections 3.3,

3.6 - 3.9 and 7.1 for the discussion of equation (7.15d) and the usage of the scheme {7.15) in

_-" r- the method is second-ordergeneral. When 0 = 1/2 and Sj,k in D and S),k are evaluated al l.j ,

, I;(1) the scheme wouht only be second-orderin time and space while Sj k and Sj,k evaluated at "j.k,

for steady-state calculations (i.e., first-order in time and second-order in space for unsleady

problems). See reference [86] for a proof.

One can simplify equation (7.15)by partitioning the vectors U,F,G,S, and D in equation

(7.2) as follows:

_r :.: [ _71 ] _:1 _711 ,ttrls_2

l_j, ,. J ; , = . (7.16a)t

,U rl._

[ $I ] S;S = SH ; =

[::,]F= FH , G= , (7.16}))

.S 1

, .S'L_ = , (7.16c)
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[D I1 D 12 ]D= [D21 D22 . (7.16d)

Here D 21 is a null matrix and D 2_ is an identity matrix. With the above definitions, the scheme

can be greatly simplified. The procedures are as follows: taking the predictor step, for example,

one first solves for (AUH) (1) by

[ ,n j-- (Gj,k+ 1 -- (Gj,k) ,-(r}'l (7.17a)

D I1 in(AUI)(j12 = ( r.h.s )1- D '2 'AU 't'(')j,k] , j,k_ )j,k, (7.17b)

where (r.h.s) I is the right-hand side of (7.17a) with all the indices "II" replaced by 'T', and with

the term At(SJ, k)" added. In other words, one only has to invert the D li matrix of dimension

(ns, ns) instead of (ns -_ 3, ns 4 3). Similarly, one can simplify the corrector step in the same

way. The solution obtained from the above procedure is used in (7.15d). Or, to explain it in

another way, one solves the predictor step of the fluid equations

OU II OFH(U) OGll(U)
-- + + 0 (7.18a)

Ot Ox Oy

explicitly, then uses the result to solve the predictor step of the species equations

OUi OF_(U) OGI(U) - S I (7.18b)
O_ + Oz + Oy

explicitly, with the exception that the chemical reaction terms are treated implicitly in (7.18b).

One then repeats the same procedure for the first corrector step. The solution obtained from the

first corrector step is then used to solve for a and R_' in equations (7.11)-(7.14)for the complete

system (7.1) so that one can solve for the second corrector step. Here, the first corrector step

means the step to obtain U (2) from U (_), and the second corrector step means the step to obtain

U '_+1 t¥om U (2) in (7.15). Note that the second corrector step is the important part of the

algorithm that deviates from the Bussing and Murman method. This step, which ensures that

the method will have the TVD-type properties, is designed to capture shock waves without the

associated spurious oscillations.

In the case where S _1 is not a null vector and it is not stiff, equation (7.17) is still applicable,
II n

except one has to add the term At(Sj.k) to the right-hand side of (7.17a). In steady-state

calculations where body-fitted coordinates are used, one can filrther speed up the convergence

rate by using a local time-stepping approach [33,177].

To verify the current approach and to make a fair comparison with a known method, the senti-

implicit scheme (7.15) together with (4.33) was implemented into an existing three-dimensional

code [196]. This existing full Navier-Stokes code, originally developed by A. Kumar at NASA

Langley Research Center, contains the explicit MacCormack scheme with source terms treated

implicitly. A detailed description of a numerical experiment and the extension of (7.15) to

three-dimensional, chemically reacting flows in generalized coordinates is given in Shinn et al.

[118]. Only partial results from reference [118] are presented here to illustrate the performance
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oi the smni-implicitscheme.In reference[118[,threesynunetricaveragesfor tile eigenvalues
and eigenvectorswerestudied.Asidefroma slightdifferencein convergence history, no visible

differences in resolution were observed among the different averages. The computations shown

employed _51= 0.1 for the entropy-correction function V'(z) in equation (3.18).

Figures (7.1)-(7.3) show a preliminary test result for a three-dimensional, five-species viscous

reacting flow using the semi-implicit TVD scheme (7.15) together with (4.33), as compared

with an existing classical shock-capturing method which supplies numerical dissipation linearly

[196]. The numerical result for the semi-implicit TVD method is shown to be oscillation-free

around the shock, while the time spent per iteration is approximately double when compared

with the method used in [196]. The configuration of the numerical experiment with one of the

computation station : = 0.29cm is shown in figure (7.1). Although this is a two-dimensional

flow, to check out the three-dimensional code it is computed as a three-dimensional flow with

the appropriate boundary conditions in the y-direction. A uniform grid consisting of al points

in the a.-direction, 6 points in the y-direction and a viscous grid consisting of 51 points in the

---direction was used. The inflow conditions are: pressure p - 1 atm, temperature T = 1200 K,

and Mach number M = 4 for a premixed air and hydrogen fuel. The species considered are He,

0_, OH, H_O, and N2, with the two reactions (N, being inert)

H2 +02 _ 2OH,

20 H + H_ _ 2H, O.

The reaction rates for the above are given in reference [196 t .

7.4. An Operator Splitting Algorithm

An alternative to the previous senti-implicit algorithm is a splitting method as discussed in

section 3.9 in which the homogeneous part of the PDEs and the source term are handled in

separate steps. For nmltidimensional problexns, the homogeneous part of the equations can be

discretized in a variety of ways (predictor-correcter, time-splitting, or linear multistep meth-

ods). Take for example the time-splitting method as discussed in section 5.1 using the MUSCL

approach based on the Lax-Friedrichs numerical flux. In this case, fi_r problems containing large

number of species ns, a very efficient algorithm will result since a Riemann solver is not nec-

essary. The resulting algorithm would only be slightly more expensive than the Lax-Wendroff

type method. The main reason of using the MUSCL approach with time-splitting over the non-

MUSCL approach (both employing the Lax-Friedrichs numerical flux) is that when generalized

to nonlinear system cases, there is no need for the MUSCL approach to use any type of Riemann

solver. For gas dynanfics applications the linfiter can be applied to the slope of the conservative

variables or to the primitive variables themselves, thus making the extension to multidimensional

problems straightforward, since one does not have to use the local one-dimensional characteristic

variables assumptions or the complicated truly multidimensional Riemann solvers. A splitting

(dimensional splitting and splitting of the source term) algorithm can be written as

[_n,;2 ph/2phFhl',hFhr'hrh/2trn (7.19)

where /Z_ , £_ and /Z_ have the same meaning as in section 5.1. A more expensive approach

compared with the use of the Lax-Friedrichs numerical flux is to use a predictor-corrector form
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(5.13)for the homogeneouspart of the PDEs.Thiswill resultin thefollowing

where,for example,£h_?,_+l! j,k can be (5.13). However, in this case one cannot make use of the

MUSCL approach in conjunction with the Lax-Friedrichs nmnerical flux. The stability, effi-

ciency and accuracy of using the Lax-Friedrichs numerical flux in conjunction with the MUSCL

or non-MUSCL approaches for steady-state nonequilibrium flows remains an open question until

extensive numerical experiments are performed on some practical nonequilibrium flow applica-
tions.

7.5. A Fully Implicit TVD Method and 3-D Examples

Another type of shock-capturing scheme that might be applicable to (7.]) for steady-state

applications is a one-parameter family or a two-parameter family (6.4) of explicit and implicit

TVD-type of schemes (section IIl). For the nonequilibrium equation (7.1), the one-parameter

fanfily of schemes can be written as

[ fan+, ) _ s so, 1l;,_,_ _' f_.+l _ f_,l ] + -_J,_-_ _,_ J

= [j,k - (1 - 0) _ j_ },k - Fj _,k + _ j,k+ _ 5 (7.21)

Here 0 has the same meaning as before. The numerical fluxes Fj± _ ,k and Gj,k: L_ have the same

meaning and form as for the scheme for the homogeneous PDEs (5.1). Again, the MUSCL

or non-MUSCL approaches as discussed in sections 4.5 and 5.3 for the implicit method are

applicable here. The savings on operations count by using the MUSCL approach and the Lax-

Friedrichs numerical flux are even greater for the implicit method than for (7.19), since for

time-accurate calculations, an ((ns + 3) × (ns ! 3)) triple matrix multiplication per time step at

each grid point and in each direction is involved for the implicit operator using the full matrix

conservative linearized form such as (6.5) together with (5.15g,h).

7.5.1 A Conservative Linearized Form for Steady-State Applications

Following the same procedure as in section (3.10) and in Yee [21,741, a conservative linearized

form of (7.21) can be wrilten as

I 4 0 _ _ H y H y - At(A s E _+ _ - .i,k-_ kJ,k+ 5

(7.22a)

E n = U n+l _ _;'_ (7.22t))
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wherethe H)+½,k,x H_,,k+ ½, /-)+ ._1,k and Gj,k+ _1 have the same form a_ llI equation i5.15) and

section (4.5) except all the vectors are in Cartesian coordinates. The value 4 s is the Jacobian

of the source terms S evaluated at (j, k)

7.5.2. Stiff Source Terms, ADI Approaches and Relaxation Methods

The stiffterms (AS)" in the implicit operator (7.22) complicate the solution procedures forj,k

the commonly used ADI approaches. Normally, if (AS)" j,_, are not stiff, one can reformulate

(7.22) by an ADI procedure like the Beam-Warnfing [28 i algorithm for an efficient solution

process. Unfortunately, the (A s)_*,_, considered here are stiff: consequently the additional higher
order terms due to the ADI formulation can no longer t)e ignored. In a different context,

Van Dalsen and Steger [197! suggested a remedy if (AS)_'_. is a diagonal matrix with identical

diagonal elements. However, for chenfically reacting flows, the matrix (A_S)_'3,. is flfll for the

upper (ns, ns + 3) entities and no straightforward efficient way of utilizing ADI approaches for

nonlinear system cases with general stiff source terms can be fimnd.

The straightforward way of iteratively solving (7.21) as a set of nonlinear system of equations,

or solving the linearized form (7.22) or sinfilar non-ADI forms, appears to be quite expensive flJr

large systems. Recently, Gnoffo et al. [79] successfully demonstrated the usefulness of a point-

relaxation method on the implicit sylmnetric TVD scheme similar to (7.22) for a loosely coupled

chenfically nonequilibrium flow. ttere a similar point-relaxation or line-relaxation method is

reconunended for the fully coupled system (7.21) or (7.22). Despite the fact that a larger equat ion

set is involved than in [79], the extra operations are nfininfized by making use of the simplification

procedure of section 7.2. For a point-relaxation method, the size of the matrix inversion for (7.22)

is (ns + 3,ns + 3) as opposed to the loosely coupled method of [79 I, where the size is (ns, ns).

The gain in the freedom of controlling the appropriate amount of numerical dissipation for each

individual wave more than compensates for the extra expense. More importantly, solving the

fully coupled system is believed to lead to a better convergence rate than solving the loosely

coupled approach. This is evident from the study by Gnoffo [119J. All of the necessary terms

required for the implicit scheme (7.22) are derived in section 7.1. The implicit operator of
S n

(7.22a} is diagonally dominant for (A)j.k :: 0. Therefore, one has Io make sure that the source

term does not destroy the diagonally donfinant property which is required for some relaxation

methods. In the following subsection, an even simpler form than (7.22) is described 11,95!.

7.5.3. An hnplicit Algorithm with Explicit Coupling between Fluid and Species

Equations [1,95]

To avoid the inversion of large matrices, one can further simplify (7.22) bv requiring that the

coupling between the fluid and species equations be explicit. With this relaxed requirement, one

effectively solves the fluid and species equations separately. Unlike the loosely coupled method

used in [79] or the chenfistry-split technique used in [198!, the eigenwdues and eigenvectors of

the fully-coupled equations are coupled explicitly between the fluid and species equations. This

can be accomplished by partitioning U, F, G, S, A s in the same was' as in (7.16) and part it toning

7_ and - , similarly. For example, thethe Jacobians A and B, and the numerical fluxes _j:L ½,k ("j,_.± _

Jacobian A and the numerical fluxes Fj_: ½,k can be partitioned as
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IA 11 A 12 ]A-- LA_ A__ , (7.23)

F_±- [/_I]= J,_ ½,k½,k /___ • {7.24)
./i½,k

The dimensions of the subvectors and submatrices are the same as (7.16) if equation set (7.2) is
chosen, and the A 11 , Ale, A 21 , and A 22 in this case are

A ll

A 21 _-

_(1 - c1)
-- UC 2

_ ,llC rts

I pp x -- it 2

--UU

u(pp_ - H)

-- UC 1 --,l_C 1

u(1 - c2) - uc2

_UC ns

ii°i)c 2 0

A 12

c s 0

pp2 -- It 2

U(pp2 - H)

2it -ttpe --Vpe

A 22 = v tl

H - u2p_ -- uvp_

Similarly, ELk and fU can be partitioned as

E_

k "-'j,k J

u(1 - cn"

(7.25a)

(7.25b)

]pp,_, - It"

-uv , (7.25c)

u(p,,., - H)

0 . (7.25d)

.(a + p,)

(7.26)

£_= [(fU)" (fU)12]. (7.27)

Recall that two choices of equation sets are available: namely, equation set (7.2), or the full

fluid equations (i.e., keeping the global continuity equation) plus the ns - 1 species equations.

The procedure suggested here is best suited for the latter equation set, since modification of

many existing implicit solver computer codes (perfect gases or equilibrimn real gases) would be

minimal. The dimensions of subvectors and submatrices for the latter equation set would be

slightly different. For example, the dimensions for A ll , A 12, A 21, mad A 22 would be (ns - 1) ×

(ns- 1), (ns- 1)x4, 4x (ns- 1), and4x4, respectively.

The procedures for either equation set are as follows. One solves the fluid equations (e.g.,

(7.1Sa)) implicitly, and then uses the result (UH) '_+_ to solve the species equation (e.g., (7.18b))

implicitly. In other words, one solves (UH) '_+1 from the following:
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1]( t "' '" t 't°; o[At )" (n_ k) I; -_ (Hx I - 1 l (Hi, k_

[ I [ /'1(rh_)" At -'_ ' k)"-(F_- 1 k)" At ,. - _,,,

= (rhs) II,

(7.28a)

(7.28b)

(H_ + _,k) H 1 _ _ )22]. (7.28c)

The explicit coupling between the fluid and species equations is imbedded in 7.28b). After

obtaining (UIt) n+lj,k from (7.28), the solution is used to solve the species equation as follows:

= (rhs) I - (lhs) 12,

with

(7.29a)

(lhs) 12 -- _ (Aj+I,_.) " - (_j+5,k)_ - (A)-I,_) 12 ÷ (Q_'3--_,k)12

÷--( 1 _ + ftv )12 r 4s," _1:At )12 _tt )12 (B3,k_1)12 ( ./,k-_ OAti(" lj,kl EI1
' Ay (b'J'k+l -( j,k-_5 " (7.29b)

and

(H _ t' 1 )11 UU, )11] (7.29c)j. ½,_.) -- _[(Ai+l,k - ( j_,k •

The term (rhs) t is the right-hand side of (7.28b) with all the indices "II" replaced by "I" and

the source terrn At(S'_) t added. Here the quantities in equation (7.29) are evaluated with up-

dated information from equation (7.28). To simplify the procedure even further, one can drop

the second term on the right-hand side of {7.29a) entirely: i.e.. one can set the second term

in equation (7.29b) to zero. In other words one can solve fl)r (Ux) _41 without using the most

updated information from (7.28a); thus E H in (7.29b) in this case is zero. This method is espe-

cially attractive for the MUSCL formulation in conjunction with the Lax-Friedrichs numerical

flux i76].

With this simplified procedure, one only has to solve two reduced systems of dimension 3 and

ns (or 4 and ns - 1). For line-relaxation methods, this procedure can provide a large savings

in operations count. Although nmnerical experiments on this simplified procedure have not

yet been done, one would expect that the current method will give a faster convergence rate

than the method of Gnoffo et al. [791 which was demonstrated to be applicable to many three-

dimensional blunt-body problems. If point relaxation were used, the only difference between

the two methods is that reference [791 uses the eigenva]ues and eigenvectors of the individual
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subsystems(fluid and species)alone,whereasthe currentmethodcouplesthe eigenvaluesand
eigenvectorsof the full systemexplicitly. The useof the full eigenvalueand eigenvectorset
for the currentmethodis believedto enhancethe couplingbetweenthe two systemswithout
imposingadditional conditionsasemployedin referenceI79!. A viscoushypersonicnumerical
computationby Gnoffo et al. [791 using a loosely-coupled point relaxation method and the

symmetric TVD scheme (4.42) will be presented in section 7.5.4. A different viscous hypersonic

numerical computation by Gnoffo [119] using a fully coupled point relaxation method and the

syImnetric TVD scheme (4.42) compared with a loosely coupled method will be presented in
section 7.5.5.

For steady-state application, an algorithm utilizing the TVD scheme for viscous flows is to

difference the hyperbolic terms the same way as before, and then central difference the viscous

terms. The final algorithm is the same as equation (7.22) (or (7.28)-(7.27)), except that the

spatial central differencing of the viscous term is added to the right-hand side of equation (7.22)

(or (7.28)-(7.29)). Numerical tests, comparison with other approaches, and recommendations

will be reported in a future publication. Some viscous results for a perfect gas with hypersonic

speed can be found in reference [66] and of the previous section.

7.5.4. A Numerical Example for a Loosely Coupled Point-Relaxatlon Implicit

Method [79]

To illustrate the performance of a point-relaxation implicit algorithm using the syrmnetric

TVD scheme (4.33) for three-dimensional chemically noneqnilibrium flows, Gnoffo eta]. ap-

plied the scheme to solve a configuration similar to the ones used in section 5.6. However,

a free stream Mach number of 32 was used in this computation. The free stream conditions

for this case were 1_ = 8917 m/sec, poo = 1.54 N/rn 2, and Too = 197°K. The maxi-

mum body diameter was 14 ft., corresponding to the full-scale Aeroassist Flight Experiment

(AFE) vehicle. The kinetic model of Dunn and Kang [199] was used which involves 11 species,

(N,O, N20,,NO, N-_,O + N + O+,NO+,e) and 26 reactions.

Figure (7.4) shows contour plots of electron number density. The global contour plot in figure

(7.4a) serves only to define the shock layer. The blowup of the shock layer near the far shoulder

in figure (7.4b) shows that conlour lines run nearly parallel with the body and shock. Number

densities vary from 2 × 10_3/cm 3 at the body to lO15/crn 3 at the shock. Initial conditions for this

nonequilibrium chenfistry test case were taken from a converged fine-grid perfect-gas solution.

The same relaxation procedure and limiter as described in section 5.6 were used, except now

the species equations are solved separately from the fluid equations. Roe's averaging is used to

define eigenvectors and eigenvalues for the fluid and species subset of equations separately (i.e.

the full eigenvectors and eigenvalues of the fully coupled system were not used). Other thermo-

dynanfic derivatives' average values were defined in reference [79]. Other details and procedures

which allow a good control of this loosely coupled procedure were discussed in reference [791.

The next section illustrates a fully coupled point-relaxation method computation.
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7.5.5. A Numerical Example for a Fully Coupled Point-Relaxation Implicit

Method [119]

Future plans for space transportation and exploration call for mission trajectories with sus-

tained and/or maneuvering hypersonic flight in the Earth's atmosphere at altitudes greater than

70 km and velocities greater than 9 km/s. Aeroassisted orbital transfer vehicles will use this

domain in returning from geosynchronous Earth orbit to low Earth orbit for rendezvous with the

space station. Lunar, planetary, and comet sample return nfissions will utilize the Earth's upper

atmosphere for aerobraking as well. Hypersonic, air-breathing cruise vehicles may ultimately

be called on to fly through this domain. Substantial portions of these mission trajectories, in

the transitional regime between free molecular and continuum, will carry the vehicle through

conditions resulting in chemical and thermal nonequilibrium within the surrounding shock layer.

Nonequilibrium processes in the shock layer and near wake of hypersonic vehicles alter the

flowfield in three important, ways. Radiative energy transfer rates are sensitive to the electron

temperature. Shock standoff distances and potential shock-body interactions are sensitive to

the degree of dissociation. Local sound speeds, which influence pressure levels over aerody-

namic expansion and compression surfaces, are sensitive to the partition of energy arnong the

translational, rotational and vibrational modes.

The modeled system includes 11 species continuity equations. 3 nlomentum equations, and

3 energy equations describing the conservation of vibrational, electronic, and total energies.

Species 1 through 5 are the neutral components of air consisting of N,O,N2,02, and NO.

Species 6 through 10 are the ions corresponding to species 1 through 5, in which one electron

has been removed. Species 11 is the free electrons. The thermal nonequilibrium is modeled using

a three-temperature approximation (i.e., three energy equations) and can be found in reference

[120]

The simulation employed a point-implicit relaxation algorithm for fully coupled three-

dimensional, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm

is derived using a finite volume formulation in which the inviscid components of the numerical

flux across cell walls are based on the symmetric TVD-type scheme (4.42) together with limiter

(4.33d). The relaxation strategy is well suited for computers employing either vector or parallel

architectures. The exact relaxation procedure and discussion of efficient intplementation for

either vector or parallel supercomputer architectures can be found in the full paper [119].

Hypersonic Flows Over the Aeroass*st Flight Experiment (AFE) Configuration: Pressure con-

tours over an AFE model, including the sting, for Math 10 flow at 0 ° angle of attack are

shown in figure 7.5. The four-domain grid used for this case is presented in figure 7.6. Com-

parisons with experimental data for pressure and heat transfer are shown in figure 7.7 on the

forebody and for heat transfer on the sting in figure 7.8. (Experimental data are unpublished

results of investigations by John Micol and William Wells at NASA Langley Research Center.)

Differences between numerical predictions and experiments are generally very small and within

experimental accuracy except for the heat transfer in the stagnation region. These differences

ar_ , believed to be caused by increased numerical dissipation associated with the required entropv

fix in art extensive region of near zero eigenvalues {i.e., very small velocites).

A four-dolnain grid (not shown) is also used for the investigation of the hypersonic flow in

both chemical and thermal nonequilibrium at 8917 m/'s and 78 km altitude. The multi-domain

grid allows for better resolution of the free shear layer coming off the shoulder as compared
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with the resolution achievable using a single-domain structured grid. Note that a hexagonal

carrier vehicle replaces the sting in the base for the flight case. Contours for translational

temperature, vibrational temperature, Mach number, and electron number density are shown

in figures 7.9 - 7.12. The free shear layer structure is well defined in these figures. Note

that contour lines continue smoothly over domain boundaries. The gaps between domains is

an artifact of the cell centered structure of the data sets. The boundaries of the domains

coincide, but there is a gap between cell centers. The CFL number used over most of the

relaxation process was varied between 1 and 20. Estinlated CPU time for the forebody domain

(39 × 24 × 64) starting from uniform initial conditions is approximately 10 to 15 Cray-2 hours.

Additional cases involving changes in free stream conditions or in the chenfical model require

5 to 10 Cray-2 hours for the forebody. Another 10 hours is required for the 3 base domains

(31 × 24 × 32, 31× 24 × 19, 26× 24 × 10).

All of the results presented here for flow in chenfical and thermal nonequilit_rimn use a fully

coupled relaxation algorithm. That is to say that, relaxation procedure for all conservation

laws are simultaneously and implicitly coupled. This procedure is in contrast to a loosely

coupled relaxation algorithm used in earlier work [200] in which the solution of the equations

for mixture continuity, momentum, and energy conservation was alternated with a solution

for species continuity. Coupling of the solutions utilized a variable effective gamma (ratio of

enthalpy to internal energy) and renormalization of mixture density as described in [200]. The

loosely coupled scheme exhibited satisfactory convergence rates on coarse grid, inviscid problems

but failed to achieve acceptable convergence on fine grid, viscous problems. Direct comparisons

between the two algorithms on exactly the same problem were never made. The loosely coupled

algorithm was not maintained once the superior convergence characteristics of the fully coupled

algorithm became apparent. A very rough estimate of computational savings based on Gnoffo's

personal experience with the two algorithms is that the fully coupled solution algorithm can

achieve the same drop in error norm as achievable using the loosely coupled algorithm in about

half the CPU time. More importantly, the fully coupled algorithm can be driven to acceptable

convergence levels whereas the loosely coupled algorithm "thrashed" at unacceptably high values

of the global error norm.
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VIII. Concluding Remarks

A unified and generalized formulation of a class of high-resolution explicit and implicit shock-

capturing methods for perfect gases, equilibrium real gases and nonequilibrium flows containing

complex shock waves has been presented. These methods were formulated for the purpose of

ease and efficient implementation into new or existing computer codes. Some of the schemes

were presented in a more convenient form for the generalization to systems via approximate

Riemann solvers. They were written in a manner such that there is a smaller CPU operations

count than other equivalent forms for their scalar counterparts. The various high-resolution

constructions fall nicely into the present framwork. All of these methods can be implemented

into the same computer code sharing many of the coimnon operations.

This unified formulation was accompanied by practical fluid dynamics computations for one-

and higher-dimensional problems containing complex shock waves, including hypersonic speed

flows. In time-accurate computations where experimental data were available, good agreement

between the numerical results and the experimental data were observed. Steady-state compu-

tations performed well for subsonic, transonic, supersonic and hypersonic flows. However, the

convergence rate for hypersonic, and in particular viscous flows is in general slower than the

inviscid counterpart, and improvement in this area is the current pacing item.

Three interrelated special topics were emphasized:

(1) Some issues concerning the applicability of these methods, which were designed for

homogeneous hyperbolic conservation laws, to problems containing stiff source terms and shock

waves were discussed and were illustrated with steady and unsteady examples. It is important to

investigate finite difference methods for nonhomogeneons hyperbolic PDEs since nonequilibrium

fluid flows contain coupled stiff source terms and this is an area of vital interest for hypersonic

flows and combustion.

(b) The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing

schemes was generalized. This method can be extended to nonlinear systems of equations

without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large

savings for multidimensional, equilibrium real gases and nonequilibrium flows computations.

(c) The importance of "asymptotic analysis of finite difference methods by the nonlinear dy-

namic approach" was briefly discussed. Many existing results on nonlinear dynamical systems

such as chaos, bifurcations, and limit cycles have a direct application to problems containing

nonlinear source terms such as the reaction-diffusion or the reaction-convection-diffusion equa-

tions. With the advent of increasing demands on numerical accuracy, stability, efficiency, and

uniqueness of numerical solutions in modeling such equations, an interdisciplinary fertilization

for the analysis of these types of systems is needed.

The applicability of these high-resolution shock-capturing methods for equilibrium real gases

was studied. Preliminary results for one-dimensional shock-tube and two-dimensional steady-

state blunt body problems show that the shock and contact discontinuity resolution were not

affected by the state equation for a wide range of flow conditions.

Three numerical algorithms for hyperbolic conservation laws that are suitable for large systems
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of fully coupled thermally and chemically nonequilibrium steady-state flows in the hypersonic

regime were proposed. The specific properties of the governing equations for fluid flow of this

type were taken into consideration for more efficient solution procedures. The main areas of

consideration were to minimize the operations count, increase the allowable time-step constraint

imposed by the stiff source terms, and expand the shock-capturing capability beyond classical

approaches. Details of all these considerations were described. Preliminary test problems showed

certain advantages of the high-resolution shock-capturing scheme over the classical ways of

supplying numerical dissipation. In general, the fully coupled method converges faster than the

loosely coupled method and at the same time no additional constraints are involved (section

7.5.5). More numerical testing and study will be pursued in the inmlediate future.

In sulmnary, the performance of the schemes presented for one- and two-dimensional gas-

dynanfics problems in conjunction with the various Riemann solvers can be divided into the

following aspects.

Looking at the Riemann solvers, in general the advantages of the generalized van Leer flux-

vector splitting over the generalized Steger-Warming formulation remain for an equilibrium

real gas, with slightly less dissipation at the discontinuities. The local-characteristic approach

(approximate R iemann solver) gives results very sinrilar to the generalized van Leer flux-vector

splitting formulation.

For one-dimensional problems, the difference in computational effort required by the three

Riemann solvers is small. The main difference lies in the MUSCL and non-MUSCL approaches.

The operations count between the non-MUSCL and MUSCL is within 30% for a perfect gas.

However, due to extra evaluation in the curve fitting between the left and right states in an

equilibrium real gas for the MUSCL formulation, without further approximations, additional

computation is required for the MUSCL approach. The amount of additional computation

increases nonlinearly as the spatial dimension increases.

Looking at the numerical schemes, the main difference seems to occur between the upwind and

the symmetric approaches. The upwind schemes give better results for contact discontinuities.

On the other hand, synmletric schemes have better stability and produce shock resolution similar

to that of the upwind schemes; yet they require less CPU time per time-step and are less sensitive

to numerical boundary condition treatments.

In the case of a non-MUSCL approach, linfiter (4.33e) is the most accurate among (4.33c) -

(4.33e) for the sy_mnetric TVD scheme. As for the upwind schemes, limiters (4.34d) and (4.34e)

are very sinfilar, whereas linfiters (4.34f) and (4.34g) give very accurate results for contact

discontinuities but are too compressive, causing slight oscillations in smooth regions for high

Mach number cases. A combination of linfiters such as (4.34d) or (4.34e) for the nonlinear fields

and (4.34g) for the linear field seems to be a good compromise. In the ease of the MUSCL

approach, only limiters (4.34c) and (4.34e) were studied. Between the two limiters, (4.34e)

produces better shock resolution than (4.34c).

None of the differences for the various approaches observed for the explicit schemes seems to be

decisive in one-dimensional tests, but factors such as stability or computational efficiency need

further investigation in multidimensional tests. The main differences between the methods lie

in their versatility in extending to implicit methods with efficient solution procedures, especially

for multidimensional steady-state computations. This study shows certain advantages of the

local-characteristic approach over the flux-vector splitting approaches.
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There is an important distinction between the flux-vector splittings and the local-characteristic

approach for implicit methods. Unlike flux-vector splitting approaches, implicit methods employ-

ing the local-characteristic approach (non-MUSCL or MUSCL with first-order implicit operator

such as (4.44f)) do not require the Jacobian of the F + fluxes. In many instances, the Jacobian

of F ± is relatively difficult to obtain. A similar difficulty applies to the MUSCL formulation via

the exact Riemann solver or local-characteristic approach (if a second-order implicit operator is

desired).

Another important fact for equilibrium real gases computations is that flux-vector splittings

make use of the sound speed only, whereas the local-characteristic approach of the Roe-type

makes use of the thermodynamic dervatives X and t_ of equation (4.2). These thermodynamic

derivatives put more stringent requirements on the curve fit that represents the thermodynamic

properties of the gas. In this regard, the curve fits of Srinivasan et al. may be deficient for the

approximate Riemann solver as can be seen from figure (4.1), case D. One probably needs more

improved curve fits than those of reference [164] before a definite conclusion can be drawn about

the accuracy of the different Riemann solvers and schemes for equilibrium real gases.
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Fig. 5.5 Comparison of density contour plots from different T\:I) schemes
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(c) prcdictor-corrcctor symmetric TVD with limitcr (4.33¢,);

(d) time-split second-order upwind TVD, non-MUSCL with limiter (,1.:'-1,1.¢)

170



(a)

-1.0 -.5 0 .5
X

I

1.0

(b)

-1.0 -.5 0 .5
X

1.0

(c)
I

-1.0
I

-.5 0 .5
X

I

1.0 -1.0 -.5 0 .5
X

I

1.0

f I I

-1.0 -.5 0 .5
X

I

1.0

Fig. 5.6 Density' contours computed by the explicit MacCormack method

using the grid in Fig. 5.2.

171



(a) (b)

Fig. 5.7

(c)

OR1G !,",;/_L P.&GE

Bt.ACK AND WHtTE P.;-_OTOGRAPH

Density contours (a) and pressure contours (c) computed by a predictor-corrector
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Notes: T.P. -- triple point; M.S. - Math stem, V - vortex, C.D. - contact discontinuity:

R.S. - reflected shock, I.S. - incident shock.
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Fig. 5.15 Density contours computed by the time-split upwind TVD scheme (4.34a,d,g) using a

curved shock (middle) and a planar shock (right) compared with the interferograms

at approximately the same time instants.
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Density contours computed by the time-split symmetric TVD scheme (4.33a,e) using a

curved shock (middle) and a planar shock (right) compared with the interferograms

at approximately the same time instants.
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Fig. 5.18 Pressure contours (left) and density contours (right) computed by the time-split

upwind TVD scheme (4.34) compared with experiment.

(a) Limiter (4.34d); (b) limiters (4.34d,g); (c)li_tfiter (4.34g)
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Fig. 5.19 Pressure contours (left) and density' contours (right) computed by the time-split

symmetric TVD scheme (4.33) compared with experiment.

(a) l,irniter (4.33c); (b)limiters (4.33d); (c)limiter (4.33c)
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Fig. 5.20Comparison between the finite volume formulation (5.6) and the pseudo finite volume

formulations (5.10)- (5.12)and equation (5) of reference [24] respectively on a (701 /,

151) grid.
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Fig. 5.20. Continued
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Fig. 5.21. Comparison of a symmetric TVD (SYMTVD) scheme with an upwind TVD (UPTVD} scheme for the
NACA0012 airfoil with Moo = 0.8, c_ = 1.25 using a 163 x 49 C grid.
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Fig. 5.22. Comparison of a symmetric TVD (SYMTVD} scheme with an upwind TVD (UPTVD) scheme for the
RAE2822 airfoil with Moo = 0.75, a = 3 using a 163 x 49 C grid.
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Fig. 5.23. Comparison of a symmetric TVD (SYMTVD) scheme with ARC2D (version 150) for

the Mach contours, pressure contours and entropy contours of the NACA 0012 airfoil

with Moo z 1.2,a = 7 using a 163 × 49 C grid as shown in figure 5.21.
188



SYMTVD ARC2D

Y

Y

Y

1.5

.5

-.5

1.5

.5

Y

-.5'

-1.5 "" -1.5
-.5 .5 1.5 2.5 -.5

X
1.5

.5

-.5

.,z

115

1.5

.5

Y

-.5

-1"5.5 .5 2,5 -1"5-.5
X

1.5

, i_ r,,,¸,
, ,,.,,

' ' nr_,

.5

-.5

1.5

.5

Y

-.5

-1"5,5 .5 1.5 2.5 -1"5.5
X

i, ,

.5 1.5
X

Fig. 5.2,4. Comparison of asymmetric TVI) (SYMTVI))scheme wigh ARC2I) (version 150) for

the Mac'h contours, pressure corlt,()urs and el_trol)y* contours of the NA('.A 0012 airfoil

with :'tl_, 1.8,a - 7 using a 163 _: 19 C grid as shown in figure 5.21.

189



GRID PRESSURE COEFFICIENT

1.0 -1.5

.5

Y 0 Cp

.5

/:. ....

f
t

b

J
i

.2

+ EXPERIMENT,
' """ COOK et al., 1979

'I .... COMPUTED

_.'.°

--.t.

C*p

f_

.6 1.0
X

1.0

.5

Y 0

-.5

MACH NUMBER CONTOURS

' i

PRESSURE CONTOURS

-1.0
-.5 0 .5 1.0 1.5 0 .5 1.0

X X

1.5

Fi_. 5.'27). A thin layer Navier-Stokes calculation for the RAE2822 airfoil using an upwind

TVD scheme with a 249 x 51 O grid, Moo -- 0.73,a = 2.79, Re = 6.5 x l06,

190



\

I

L_

r-
ILl

d

(D
i_

13.

©

0

0

0

E
E

©

t-,

0

0

0

_2

191



l"i_. (i,I The 31 × 33 grid.

192



2

1.7"3

1.50

1.25

1

0.75

0.50

0.25

0

-2 -1 -0.75 -0.50 -0.25 0 -2 -1.75 -I.$0 -1.25 -1 -0.75 -0.50 -0.25

X X

2

1.75

1.501.25

y 1

0.75

0.50

0.25

0

-2 -1.75 -I.50 -1.25 -1 -0.75 -0.50 -0.25

X

1.7=,

1.50

1.25

y ,

0.75

0.50

0.25

0

(d)
I

-1.75 -1.50 -1.25 -1 -0.75 -0.50 -0.25 0

x

Fig. 6.2 The Mach contours (a), density contours (b), pressure contours (c) and _ (d) computed

by the implicit scheme (6.5) (0 = 1, w = 0) for an equilibrimn real gas with M_ = 15.
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Fig. 6.5 Comparison of tile L2-norm residual of a perfect gas and real gas computed by the

scheme (6.5) (0 = l, _v :- 0) with M_ = 25. Note that tile scale of the ordinate fi)r

the perfect gas and the real gas is not the same.
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NON-INTERFERING TYPEI TYPE II +

Mo_= 15

TYPE III TYPE IV TYPE V

(

Fig. 6.13 The Mach contours of a two-dimensional steady viscous hypersonic perfect gas com-

putation by algorithm (6.5) (0 = 1, _v = 1/2, full matrix form) with M_ = 15 and

ReD : 186,000.
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t* = 9.0 t* = 10.5 t* = 12.0

TYPE III TYPEIV TYPE V

t" = 18.5
t* = 21.0 t* = 26.0

Fig. 6.14 The Mach contours of a two-dimensional unsteady viscous hypersonic perfect gas

computation by algorithm (6.5) (0 = 1, w -- 1/2, full matrix form) with Moo = 15
and ReD -- 186,000. The indicated time (t*) of each frame are normalized with the

freestream velocity and the cowl lip thickness.
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pRESSURE

Fig. 7.5 Pressure contours in the near wake region of Aeroassist Flight Experiment (AFE)
model, including sting al Mach 10.
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Fig. 7.6 Multidomain grid defining the surface and plane of synmletry for AFE tes|. The

domains are approximately divided inlo forehody, ouler wake, shear layer behind the

shou]der, and inner wake core surrounding the sting.
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Fig. 7.9 Tran_lational temperature contours for flow over AFE a! 8917m/sand 78kmaltilude.
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Fig. 7.10 Vibrational temperature contours for flow over AFE at 8917 In/s and 78 km altitude.

216



MACH NUMBER

Fig. 7.11 .Math nun,bet c_,ntour,, _howing the su_onic region fi)r flow over AFE at 8917 m/'s
and 7_ km ahitude.
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Fig. 7.12 Electron number density contours for flow over AFE at 8917 m/s and 78 km altitude.
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