74 research outputs found

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Detection of Myofascial Trigger Points With Ultrasound Imaging and Machine Learning

    Get PDF
    Myofascial Pain Syndrome (MPS) is a common chronic muscle pain disorder that affects a large portion of the global population, seen in 85-93% of patients in specialty pain clinics [10]. MPS is characterized by hard, palpable nodules caused by a stiffened taut band of muscle fibers. These nodules are referred to as Myofascial Trigger Points (MTrPs) and can be classified by two states: active MTrPs (A-MTrPs) and latent MtrPs (L-MTrPs). Treatment for MPS involves massage therapy, acupuncture, and injections or painkillers. Given the subjectivity of patient pain quantification, MPS can often lead to mistreatment or drug misuse. A deterministic way to quantify the pain is needed for better diagnosis and treatment. Various medical imaging technologies have been used to try to find quantifiable and measurable biomarkers of MTrPs. Ultrasound imaging, with it’s accessibility and variety of modalities, has shown significant findings in identifying MTrPs. Elastography ultrasound, which is used for measuring stiffness in soft tissues, has shown that MTrPs tend to be stiffer than normal muscle tissue. Doppler ultrasound has shown that bloodflow velocities differ significantly in areas surrounding MTrPs. MTrPs have been identified in standard B-mode grayscale ultrasound, but have varying conclusions with some studies identifying them as dark hypoechoic blobs and other studies showing them as bright hyperechoic blobs. Despite these discoveries, there is a high variance among results with no correlations to severity or pain. As a step towards quantifying the pain associated with MTrPs, this work aims to introduce a machine learning approach using image processing with texture recognition to detect MTrPs in Bmode ultrasound. A texture recognition algorithm called Gray Level Co-Occurrence Matrix (GLCM) is used to extract texture features from the B-mode ultrasound image. Feature maps are generated to emphasize these texture features in an image format in anticipation that a deep convolutional neural network will be able to correlate the features with the presence of a MTrP. The GLCM feature maps are compared to the elastography ultrasound to determine any correlations with muscle stiffness and then evaluated in the presence of MTrPs. The feature map generation is accelerated with a GPU-based implementation for the goal of real-time processing and inference of the machine learning model. Finally, two deep learning models are implemented to detect MTrPs comparing the effect of using GLCM feature maps of B-mode ultrasound to emphasize texture features for machine learning model inputs

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    On motion in dynamic magnetic resonance imaging: Applications in cardiac function and abdominal diffusion

    Get PDF
    La imagen por resonancia magnética (MRI), hoy en día, representa una potente herramienta para el diagnóstico clínico debido a su flexibilidad y sensibilidad a un amplio rango de propiedades del tejido. Sus principales ventajas son su sobresaliente versatilidad y su capacidad para proporcionar alto contraste entre tejidos blandos. Gracias a esa versatilidad, la MRI se puede emplear para observar diferentes fenómenos físicos dentro del cuerpo humano combinando distintos tipos de pulsos dentro de la secuencia. Esto ha permitido crear distintas modalidades con múltiples aplicaciones tanto biológicas como clínicas. La adquisición de MR es, sin embargo, un proceso lento, lo que conlleva una solución de compromiso entre resolución y tiempo de adquisición (Lima da Cruz, 2016; Royuela-del Val, 2017). Debido a esto, la presencia de movimiento fisiológico durante la adquisición puede conllevar una grave degradación de la calidad de imagen, así como un incremento del tiempo de adquisición, aumentando así tambien la incomodidad del paciente. Esta limitación práctica representa un gran obstáculo para la viabilidad clínica de la MRI. En esta Tesis Doctoral se abordan dos problemas de interés en el campo de la MRI en los que el movimiento fisiológico tiene un papel protagonista. Éstos son, por un lado, la estimación robusta de parámetros de rotación y esfuerzo miocárdico a partir de imágenes de MR-Tagging dinámica para el diagnóstico y clasificación de cardiomiopatías y, por otro, la reconstrucción de mapas del coeficiente de difusión aparente (ADC) a alta resolución y con alta relación señal a ruido (SNR) a partir de adquisiciones de imagen ponderada en difusión (DWI) multiparamétrica en el hígado.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Automated Strategies in Multimodal and Multidimensional Ultrasound Image-based Diagnosis

    Get PDF
    Medical ultrasonography is an effective technique in traditional anatomical and functional diagnosis. However, it requires the visual examination by experienced clinicians, which is a laborious, time consuming and highly subjective procedure. Computer-aided diagnosis (CADx) have been extensively used in clinical practice to support the interpretation of images; nevertheless, current ultrasound CADx still entails a substantial user-dependency and are unable to extract image data for prediction modelling. The aim of this thesis is to propose a set of fully automated strategies to overcome the limitations of ultrasound CADx. These strategies are addressed to multiple modalities (B-Mode, Contrast-Enhanced Ultrasound-CEUS, Power Doppler-PDUS and Acoustic Angiography-AA) and dimensions (2-D and 3-D imaging). The enabling techniques presented in this work are designed, developed and quantitively validated to efficiently improve the overall patients’ diagnosis. This work is subdivided in 2 macro-sections: in the first part, two fully automated algorithms for the reliable quantification of 2-D B-Mode ultrasound skeletal muscle architecture and morphology are proposed. In the second part, two fully automated algorithms for the objective assessment and characterization of tumors’ vasculature in 3-D CEUS and PDUS thyroid tumors and preclinical AA cancer growth are presented. In the first part, the MUSA (Muscle UltraSound Analysis) algorithm is designed to measure the muscle thickness, the fascicles length and the pennation angle; the TRAMA (TRAnsversal Muscle Analysis) algorithm is proposed to extract and analyze the Visible Cross-Sectional Area (VCSA). MUSA and TRAMA algorithms have been validated on two datasets of 200 images; automatic measurements have been compared with expert operators’ manual measurements. A preliminary statistical analysis was performed to prove the ability of texture analysis on automatic VCSA in the distinction between healthy and pathological muscles. In the second part, quantitative assessment on tumor vasculature is proposed in two automated algorithms for the objective characterization of 3-D CEUS/Power Doppler thyroid nodules and the evolution study of fibrosarcoma invasion in preclinical 3-D AA imaging. Vasculature analysis relies on the quantification of architecture and vessels tortuosity. Vascular features obtained from CEUS and PDUS images of 20 thyroid nodules (10 benign, 10 malignant) have been used in a multivariate statistical analysis supported by histopathological results. Vasculature parametric maps of implanted fibrosarcoma are extracted from 8 rats investigated with 3-D AA along four time points (TPs), in control and tumors areas; results have been compared with manual previous findings in a longitudinal tumor growth study. Performance of MUSA and TRAMA algorithms results in 100% segmentation success rate. Absolute difference between manual and automatic measurements is below 2% for the muscle thickness and 4% for the VCSA (values between 5-10% are acceptable in clinical practice), suggesting that automatic and manual measurements can be used interchangeably. The texture features extraction on the automatic VCSAs reveals that texture descriptors can distinguish healthy from pathological muscles with a 100% success rate for all the four muscles. Vascular features extracted of 20 thyroid nodules in 3-D CEUS and PDUS volumes can be used to distinguish benign from malignant tumors with 100% success rate for both ultrasound techniques. Malignant tumors present higher values of architecture and tortuosity descriptors; 3-D CEUS and PDUS imaging present the same accuracy in the differentiation between benign and malignant nodules. Vascular parametric maps extracted from the 8 rats along the 4 TPs in 3-D AA imaging show that parameters extracted from the control area are statistically different compared to the ones within the tumor volume. Tumor angiogenetic vessels present a smaller diameter and higher tortuosity. Tumor evolution is characterized by the significant vascular trees growth and a constant value of vessel diameter along the four TPs, confirming the previous findings. In conclusion, the proposed automated strategies are highly performant in segmentation, features extraction, muscle disease detection and tumor vascular characterization. These techniques can be extended in the investigation of other organs, diseases and embedded in ultrasound CADx, providing a user-independent reliable diagnosis

    Fusion of magnetic resonance and ultrasound images for endometriosis detection

    Get PDF
    Endometriosis is a gynecologic disorder that typically affects women in their reproductive age and is associated with chronic pelvic pain and infertility. In the context of pre-operative diagnosis and guided surgery, endometriosis is a typical example of pathology that requires the use of both magnetic resonance (MR) and ultrasound (US) modalities. These modalities are used side by sidebecause they contain complementary information. However, MRI and US images have different spatial resolutions, fields of view and contrasts and are corrupted by different kinds of noise, which results in important challenges related to their analysis by radiologists. The fusion of MR and US images is a way of facilitating the task of medical experts and improve the pre-operative diagnosis and the surgery mapping. The object of this PhD thesis is to propose a new automatic fusion method for MRI and US images. First, we assume that the MR and US images to be fused are aligned, i.e., there is no geometric distortion between these images. We propose a fusion method for MR and US images, which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial resolution for the US image. The proposed algorithm is based on an inverse problem, performing a super-resolution of the MR image and a denoising of the US image. A polynomial function is introduced to modelthe relationships between the gray levels of the MR and US images. However, the proposed fusion method is very sensitive to registration errors. Thus, in a second step, we introduce a joint fusion and registration method for MR and US images. Registration is a complicated task in practical applications. The proposed MR/US image fusion performs jointly super-resolution of the MR image and despeckling of the US image, and is able to automatically account for registration errors. A polynomial function is used to link ultrasound and MR images in the fusion process while an appropriate similarity measure is introduced to handle the registration problem. The proposed registration is based on a non-rigid transformation containing a local elastic B-spline model and a global affine transformation. The fusion and registration operations are performed alternatively simplifying the underlying optimization problem. The interest of the joint fusion and registration is analyzed using synthetic and experimental phantom images

    An image processing decisional system for the Achilles tendon using ultrasound images

    Get PDF
    The Achilles Tendon (AT) is described as the largest and strongest tendon in the human body. As for any other organs in the human body, the AT is associated with some medical problems that include Achilles rupture and Achilles tendonitis. AT rupture affects about 1 in 5,000 people worldwide. Additionally, AT is seen in about 10 percent of the patients involved in sports activities. Today, ultrasound imaging plays a crucial role in medical imaging technologies. It is portable, non-invasive, free of radiation risks, relatively inexpensive and capable of taking real-time images. There is a lack of research that looks into the early detection and diagnosis of AT abnormalities from ultrasound images. This motivated the researcher to build a complete system which enables one to crop, denoise, enhance, extract the important features and classify AT ultrasound images. The proposed application focuses on developing an automated system platform. Generally, systems for analysing ultrasound images involve four stages, pre-processing, segmentation, feature extraction and classification. To produce the best results for classifying the AT, SRAD, CLAHE, GLCM, GLRLM, KPCA algorithms have been used. This was followed by the use of different standard and ensemble classifiers trained and tested using the dataset samples and reduced features to categorize the AT images into normal or abnormal. Various classifiers have been adopted in this research to improve the classification accuracy. To build an image decisional system, a 57 AT ultrasound images has been collected. These images were used in three different approaches where the Region of Interest (ROI) position and size are located differently. To avoid the imbalanced misleading metrics, different evaluation metrics have been adapted to compare different classifiers and evaluate the whole classification accuracy. The classification outcomes are evaluated using different metrics in order to estimate the decisional system performance. A high accuracy of 83% was achieved during the classification process. Most of the ensemble classifies worked better than the standard classifiers in all the three ROI approaches. The research aim was achieved and accomplished by building an image processing decisional system for the AT ultrasound images. This system can distinguish between normal and abnormal AT ultrasound images. In this decisional system, AT images were improved and enhanced to achieve a high accuracy of classification without any user intervention

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases
    corecore