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Abstract 

Medical ultrasonography is an effective technique in traditional anatomical and 

functional diagnosis. However, it requires the visual examination by experienced 

clinicians, which is a laborious, time consuming and highly subjective procedure. 

Computer aided diagnosis (CADx) have been extensively used in clinical practice 

to support the interpretation of images; nevertheless, current ultrasound CADx still 

entail a substantial user-dependency and are unable to extract image data for 

prediction modeling. 

The aim of this thesis is to propose a set of fully automated strategies to 

overcome the limitations of ultrasound CADx.  These strategies are addressed to 

multiple modalities (B-Mode, Contrast-Enhanced Ultrasound-CEUS, Power 

Doppler-PDUS and Acoustic Angiography-AA) and dimensions (2-D and 3-D 

imaging). The enabling techniques presented in this work are designed, developed 

and quantitively validated to efficiently improve the overall patients’ diagnosis.  

This work is subdivided in 2 macro-sections: in the first part, two fully 

automated algorithms for the reliable quantification of 2-D B-Mode ultrasound 

skeletal muscle architecture and morphology are proposed.  In the second part, two 

fully automated algorithms for the objective assessment and characterization of 

tumors’ vasculature in 3-D CEUS and PDUS thyroid tumors and preclinical AA 

cancer growth are presented. 

In the first part, the MUSA (Muscle UltraSound Analysis) algorithm is 

designed to measure the muscle thickness, the fascicles length and the pennation 

angle; the TRAMA (TRAnsversal Muscle Analysis) algorithm is proposed to 

extract and analyze the Visible Cross-Sectional Area (VCSA). MUSA and TRAMA 

algorithms have been validated on two datasets of 200 images; automatic 

measurements have been compared with expert operators’ manual measurements. 

A preliminary statistical analysis was performed to prove the ability of texture 

analysis on automatic VCSA in the distinction between healthy and pathological 

muscles.  
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In the second part, quantitative assessment on tumor vasculature is proposed in 

two automated algorithms for the objective characterization of 3-D CEUS/Power 

Doppler thyroid nodules and the evolution study of fibrosarcoma invasion in 

preclinical 3-D AA imaging. 

 Vasculature analysis relies on the quantification of architecture and vessels 

tortuosity. Vascular features obtained from CEUS and PDUS images of 20 thyroid 

nodules (10 benign, 10 malignant) have been used in a multivariate statistical 

analysis supported by histopathological results. 

Vasculature parametric maps of implanted fibrosarcoma are extracted from 8 

rats investigated with 3-D AA along four time points (TPs), in control and tumors 

areas; results have been compared with manual previous findings in a longitudinal 

tumor growth study. 

Performance of MUSA and TRAMA algorithms results in 100% segmentation 

success rate.  Absolute difference between manual and automatic measurements is 

below 2% for the muscle thickness and 4% for the VCSA (values between 5-10% 

are acceptable in clinical practice), suggesting that automatic and manual 

measurements can be used interchangeably. The texture features extraction on the 

automatic VCSAs reveals that texture descriptors can distinguish healthy from 

pathological muscles with a 100% success rate for all the four muscles. 

Vascular features extracted of 20 thyroid nodules in 3-D CEUS and PDUS 

volumes can be used to distinguish benign from malignant tumors with 100% 

success rate for both ultrasound techniques. Malignant tumors present higher values 

of architecture and tortuosity descriptors; 3-D CEUS and PDUS imaging presents 

the same accuracy in the differentiation between benign and malignant nodules. 

Vascular parametric maps extracted from the 8 rats along the 4 TPs in 3-D AA 

imaging show that parameters extracted from the control area are statistically 

different compared to the ones within the tumor volume. Tumor angiogenetic 

vessels present a smaller diameter and higher tortuosity. Tumor evolution is 

characterized by the significant vascular trees growth and a constant value of vessel 

diameter along the four TPs, confirming the previous findings. 

In conclusion, the proposed automated strategies are highly performant in 

segmentation, features extraction, muscle disease detection and tumor vascular 

characterization. These techniques can be extended in the investigation of other 

organs, diseases and embedded in ultrasound CADx, providing a user-independent 

reliable diagnosis.   
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Chapter 1  

Introduction 

1.1 Ultrasound image-based-diagnosis  

Diagnostic ultrasound is a safe, effective, and non-invasive technique in the 

study of architecture, morphology and vasculature of soft tissues and organs in 

humans and animal models (from NIH: National Institute of Biomedical Imaging 

and Bioengineering https://www.nibib.nih.gov/science-education/science-

topics/ultrasound). Ultrasound imaging implies high-frequency mechanical sound 

waves (above the threshold of human hearing of 20 kHz) which interact with 

tissues, are reflected to and then detected by the ultrasound transducer. Images are 

obtained from the difference of adjacent biological tissue impedance, in a way that 

a large difference of impedance produce higher amplitude ultrasound waves, called 

echoes.  

Diagnostic ultrasound  can be sub-divided into anatomical and functional 

imaging. Anatomical ultrasound produces images of internal organs or other 

structures, whereas functional ultrasound combines information of movement and 

velocity of tissue or blood, softness or hardness of tissues, and other physical 

characteristics to create “visual information maps” and investigate 

changes/differences in function within a structure or organ. Ultrasound assessments 

https://www.nibib.nih.gov/science-education/science-topics/ultrasound
https://www.nibib.nih.gov/science-education/science-topics/ultrasound
javascript:;
javascript:;
javascript:;
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can be performed using a wide variety of external (linear, convex, phased array 

probes) and internal transducers (transesophageal transvaginal, transrectal probes).  

Thanks to its portability, convenience and the employment of non-ionizing 

radiations (FDA: https://www.fda.gov/radiation-

emittingproducts/radiationemittingproductsandprocedures/medicalimaging/ucm1

15357.htm), ultrasound imaging is generally used in clinical practice for the 

evaluation, screening, diagnosis and treatment of several medical conditions. 

Common ultrasound procedures can be performed in different modalities (such as 

B-Mode, Power/Color Doppler, Contrast Enhanced imaging) and include the 

visualization of abdominal tissues and organs [1], [2], neck [3], breast [4], skeletal 

muscles [5]. Moreover, medical ultrasonography is a real-time methodology, that 

allows the investigation of rapid events or organs’ movements, like in the case of 

fetal ultrasonography during pregnancy [6]–[8], fetal heart rate monitoring [9] , 

vessels blood flow visualization [10] and echocardiography [11], [12]. 

Since the last two decades, traditional 2-D ultrasound imaging has been 

extended to the 3-D (either performed in manual or automatic scanning procedure), 

and, more recently, to the 4-D, namely the 3-D motion. The introduction of 

visualization and measurements tools integrated within ultrasound devices has 

considerably eased the ultrasound diagnostic procedure, giving the opportunity to 

revise the exam, take annotations, provide a quantitative analysis or even navigate 

the 3-D volumes. Nevertheless, a considerable human interaction is needed in visual 

examination and manual measurements; both actions require experienced users, 

and, due to the scale and complexity of image data, are often laborious, time 

consuming, highly subjective and prone of errors. 

 

 

 



Chapter 1  3 

 

1.2 Computer-Aided Diagnosis in ultrasonography 

Since 1960s, the idea of developing a computerized scheme and quantitative 

analysis in medical imaging that could help the radiologists in medical images 

visual interpretation was known and discussed in routine practice and scientific 

research. At that time, it was generally assumed that computers could provide an 

“automated diagnosis”, replacing professionals in detecting abnormalities, thanks 

to their ability to perform faster and more complex analyses, better than human 

beings. However, despite some interesting results, computer were not sufficiently 

powerful, advanced image-processing techniques were not available, and digital 

images were not easily accessible.  

During 1980s, the concept of Computer-Aided Diagnosis (CADx) provided by 

systematic examination of large-scale data was initially introduced in relevant 

medical subjects, such as cardiovascular diseases [13], lung  [14], [15] and breast 

cancers [16], to be lately extended to all other diagnostic fields; in that case, the 

emerging approach assumed that computer output could not substitute the 

radiologist’ decision, but could be used as a primary diagnosis or a second opinion. 

 CADx systems are based on a fundamental concept, as stated in Computer-

Aided Diagnosis in Medical Imaging: Historical Review, Current Status and 

Future Potential  by Doi [17]: 

 

“Our basic strategy for development of methods and techniques for detection and 

quantitation of lesions in medical images has been based on the understanding of processes 

that would be involved in image readings by radiologists […] We assumed that computer 

algorithms should be developed based on the understanding of image readings, such as how 

radiologists can detect certain lesions, why they may miss some abnormalities, and how 

they can distinguish between benign and malignant lesions.” 

 

From this quotation, CADx development needs to meet three requirements: 

first, CADx should be developed following the user’s reasoning, which is based on 
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the experience in performing a series of supervised sequential or parallel tasks, such 

as information reduction, segmentation and features extraction. Second, CADx 

should be able to mimic the human cognitive function of recognition, with the 

advantage of being objective and un-biased.  Lastly, CADx systems should be able 

to classify and distinguish a lesion or a pattern based on innumerable pre-establish 

rules and criteria. Regarding this last requirement, CADx must provide a significant 

improvement in classification performance in terms of sensitivity and specificity to 

be a valuable decision-support tools.   

Under these assumptions, CADx have become one of the major research 

subjects in medical imaging and diagnostic radiology, including ultrasound 

imaging. While the field of medical image analysis was growing, image data sets 

size and methodologies/tools were developing exponentially. Several studies have 

suggested that the incorporating CADx into the diagnostic process can improve the 

performance of image diagnosis by decreasing inter-observer variation and 

providing the quantitative support for the clinical decision [18]. 

CADx are currently applied in the ultrasound detection and differential 

diagnosis of many different types of abnormalities in medical images, especially in 

the differentiation of malignancy/benignancy for tumors/lesions obtained in various 

examinations and in different ultrasound modalities. Ultrasound CADx have found 

application in liver diseases diagnosis [19], [20], in breast lesions [21], [22] 

thyroiditis [23]  and thyroid nodules detection [24], in coronary artery disease [25], 

3-D echocardiography [26] and in fetal volume measurement [27].  

Regardless of the proven accuracy of the cited methodologies, CADx are not 

very popular in ultrasonography; in fact, this modality is highly user-dependent 

(there are no standard acquisition protocols), and performing image segmentation 

and features extraction is an arduous and challenging task [28], due to the presence 

of ultrasound artifacts (tissues reverberation, shadowing, air hyper-reflecting 

echoes) and the lower spatial resolution (compared to other diagnostic image 

modalities, such as Computer Tomography and Magnetic Resonance).  
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Ultrasound CADx still present a considerable number of weak points. In fact, 

CADx systems are not scalable and are single result-oriented, meaning that are 

designed to investigate single organs or tissue along a specific projection. 

Moreover, all these methods required a substantial manual operation or 

initialization, such as the selection of a frame, a plane and the region (ROI) or a 

volume of interest (VOI) where to perform the analysis. Lastly, following 

radiologists’ lexicon, traditional CADx are unable to capture lesion heterogeneity 

and quantify the image “coarseness”, since they are specifically designed for the 

extraction of semantic attributes (Table 1.1), namely the geometrical descriptors 

such as shape, size, location and tortuosity. 

Table 1. 1: Examples of sematic attributes and agnostic texture descriptors according to the 

differentiation of Radiomics.  

 

1.3 Fully automated strategies in ultrasound diagnosis 

 In the last decade, technological and computational advances have leaded to 

the development of novel approaches in biomedical image analysis; the concept of 

fully automated techniques in  image diagnosis have become again very popular, 

thanks to the introduction of new segmentation techniques [29], sophisticate pattern 

recognition tools and feature extraction algorithms. Those approaches go under the 

name of strategies and are designed to overcome the major limitations of traditional 

CADx in terms of automation, accuracy, robustness, and not as last, single result or 

application design-orientation and semantic attributes extraction limitation.  

Semantic attributes Agnostic texture descriptors 

Shape 1st Order Texture Statistics 

Size 2st Order Texture Statistics 

Location High-Order Texture Statistics 

Tortuosity Local Binary Patterns 
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Image-based diagnostic strategies rely on the principle that image information 

can be extracted by means of a set of adaptive and scalable techniques. Each 

technique can be seen as a single block of processing, like an object featured by 

specific parameters and functions, that can be re-used in any image modality or 

dimension (2-D and 3-D)  [30].  

The usual framework is built with a sequence of blocks arranged in a pipeline 

and each strategy presents at least three blocks: pre-processing, segmentation, 

features extraction and classification. The final aim of this procedure is not only to 

excerpt the essential information from images, like in implicit human cognitive 

procedures, but also go beyond the surface and enable the conversion of images 

into data. 

The pre-processing steps, in ultrasound imaging, are the most critical part in 

building a strategy, because all the subsequent steps directly depend on them; these 

steps are usually devoted to data epuration and image information reduction, such 

as 2-D lines of 3-D frames downsampling. Further steps of pre-processing are 

dedicated to image adjustment, noise reduction and artifacts identification, provided 

by directional filters.  

Ultrasound image segmentation is then made possible with the application of 

single and multiscale filtering blocks, which are tailored to enhance particular 

structures’ shapes, dimension and color intensity.   This step of filtering has been 

shown to be extremely suitable in both 2-D and 3-D image processing because of 

its robustness to the residual noise. Usually, additional steps of thresholding and 

optimized cleaning are needed to provide the gross representation of final 

structures. Most of time, the segmentation needs to be guided by a heuristic 

procedure, namely “an exploratory problem solving-approach which utilizes self-

education techniques, such as the evaluation of feedbacks, to improve its 

performance” (source: Merriam-Webster online Dictionary).  Segmentation 

performance can be improved with a step of refinement, such as edges or centerline 

repositioning. In the case of 3-D segmentation, for example vasculature geometrical 
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characterization, is made possible by the application of additional steps of structure 

reduction, like thinning and skeletonization. 

The last step of features extraction is usually applied to complete an automated 

strategy: common sematic features are related to shape and size (such as length, 

thickness, angles) and vascularity (number of 3-D structures, branching points, 

tortuosity), but  with the high-throughput of nowadays computing, a larger number 

of image quantitative features can be extracted from a segmented ROI/VOI [31]. 

Lesions heterogeneity and coarseness can be described by the employment of 

agnostic texture descriptors (Table 1.1): these features are mathematically 

extracted from the image and are generally not part of the radiologists’ lexicon. 

Agnostic features can be divided into first-, second-, or higher-order statistical 

outputs. First-order statistics describe the distribution of values of individual 

pixels/voxels without concern for spatial relationships. These are generally 

histogram-based methods and capture a ROI in single values for mean, standard 

deviation, variance, skewness (asymmetry), kurtosis (flatness) and histogram of 

values uniformity/randomness (entropy). Second-order statistical descriptors, 

firstly introduced by Haralick et al. in 1973 [32], describe the statistical 

interrelationships between voxels with similar (or dissimilar) contrast values. 

Higher-order statistical methods are able to extract repetitive or nonrepetitive 

patterns, such as the Run Lengths patterns proposed by Galloway in 1975 [33] or 

the circular Local Binary Pattern proposed by Ojala from 1996 [34], [35]. 

In this context, automated strategies can become the bridge technology between 

conventional CADx and the new concept of mineable high-dimensional data 

extraction, that has recently been introduced with the name of radiomics, and 

already described in Radiomics: Images are more than pictures, they are data, 

by Gillies et al [31]: in this paper, the authors claim that “biomedical images contain 

information that reflects underlying pathophysiology” and that “it can be revealed 

via quantitative image analyses”. 
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Radiomics is a natural extension of CADx, but unlike those systems, it provides 

more than a single result (such as a geometrical semantic attribute) and it is 

explicitly designed to extract maximal information from standard care images. 

Radiomics is a databases building-oriented technique in the Big Data framework, 

meaning that image data of millions of patients as well as any relevant patients’ 

datum, will be stored, shared and subsequently mined with sophisticated 

bioinformatics tools to develop models that may potentially improve diagnostic, 

prognostic, and predictive accuracy; in few years, radiomics has already shown to 

be a powerful and promising tool towards the development in the field of 

personalized medicine. 

Radiomics has been firstly developed in oncology and supported by many 

instructions and initiative (The American National Cancer Institute and the 

Quantitative Imaging Network); moreover, it provides quantitative image features 

based on intensity, shape, size and texture on tumor and intra-tumoral heterogeneity 

[36], [37]. Radiomics has been initially applied in tomographic tumors’ studies, 

such as CT and MR image modalities, but it can be theoretically applicable to any 

kind of disease, organ and modality. So far, radiomics approach has never been 

extended in medical ultrasonography  

 

1.4 Objective 

The objective of this thesis is to present a set of multi-purpose and multi-modal 

automated strategies in the field of ultrasound based-diagnosis; the proposed 

approach aims to overcome the limitation of traditional CADx and become the 

bridge technology enabling the effective extraction of image data, in both semantic 

attribute and agnostic features. The described strategies can bring the radiomics 

discipline to be extended in medical ultrasound imaging.  

The automated strategies presented in this thesis have been applied in 2-D 

skeletal muscle ultrasound imaging, in the investigation of muscle skeletal disorders 
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with the extraction of geometrical parameters and image texture descriptors. In the 

present study, a distinction between healthy controls and pathological endocrine 

patients is explored. 

Other strategies have been applied in the 3-D Contrast-Enhanced, Power 

Doppler and Acoustic Angiography tumor the objective vasculature 

characterization in two tumor models (thyroid nodules and pre-clinical implanted 

fibrosarcoma). With the approach presented in this thesis it is possible to provide 

information on the overall vasculature in terms of architecture and tortuosity and to 

show how those features can reflect the tumor malignancy and stage. 

 

1.5 Outline of the Thesis 

Each chapter in this thesis consists of one or more published articles or a 

manuscript in preparation for a peer-reviewed journal. Chapter 4 is based on a 

conference paper and oral presentation at European Symposium on Ultrasound 

Contrast Imaging (ICUS) 2017.  Chapter 5 is based on a published proceeding of 

the IEEE International Ultrasonics Symposium (IUS) 2017. All the articles have 

been incorporated in the thesis with minimal modification and are therefore self-

contained. Further validations and supplementary research material complete each 

study. A list of publication can be found at the end of each chapter.  

The aim of this thesis is to propose a set of fully automated and robust image 

processing strategies in the field of medical ultrasonography.  All the proposed 

strategies are addressed to different ultrasound modalities (B-Mode, Contrast-

Enhanced Ultrasound - CEUS, Power Doppler and Acoustic Angiography-AA), 

dimensions (2-D and 3-D imaging) and are built following common approaches of 

image processing (such as denoising and artifacts recognition, single and multiscale 

enhancement filtering, segmentation heuristic procedures, objects identification, 

structures reduction). Features extraction techniques of sematic attributes (such as 

distance metrics, area similarity indices, tortuosity metrics) and agnostic descriptors 
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(such as statistical and morphological texture features) are proposed to provide 

high-dimensional image data.  The enabling techniques presented in this work are 

designed, developed and quantitively validated to efficiently improve the overall 

patients’ diagnosis and enable the creation of image features databases and 

diagnostic cut-off values. 

The thesis work can be subdivided in 2 macro-sections: in the first part, three 

automated algorithms for the reliable quantification of 2-D B-Mode ultrasound 

skeletal muscle architecture and morphology are proposed.  In the second part, two 

fully automated algorithms for the objective assessment and characterization of 

tumors’ vasculature in 3-D CEUS and PDUS thyroid tumors and preclinical AA 

cancer growth are presented. 

In Chapter 2, three fully automated algorithms, named MUSA (Muscle 

UltraSound Analysis), fascicles detection algorithm and TRAMA (TRAnsversal 

Muscle Analysis) are proposed in the architecture investigation of four skeletal 

muscles (rectus femoris, vastus lateralis, tibialis anterior, medial gastrocnemius).  

MUSA algorithm is specifically designed to measure, in longitudinal scans, the 

muscle thickness, the fascicles detection algorithm provides the fascicles length and 

the pennation angle, while TRAMA algorithm is proposed to extract and analyze 

the Visible Cross-Sectional Area (VCSA), in transversal scans, of the four skeletal 

muscles. MUSA, the fascicles detection and TRAMA algorithms have been 

validated on two datasets of 200 images each; automatic measurements of muscle 

thickness, pennation angle, fascicles length and VSCA have been compared with 

expert operators’ manual measurements and proven to be interchangeable. 

In Chapter 3, main findings on muscle quality assessment by means of Mean 

Echo Intensity (MEI) and agnostic texture descriptors in heathy controls are 

proposed.  In the last part of Chapter 3, VCSAs provided by TRAMA algorithms 

are used in the characterization of muscle patterns in endocrine disorders and in the 

comparison with healthy controls by means of quantitative statistical and 

morphological texture analysis.   
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 In Chapter 4, quantitative assessment of tumor vasculature is proposed in two 

automated algorithms for the objective characterization of 3-D Contrast-Enhanced 

(CEUS) and Power Doppler (PDUS) thyroid nodules ultrasound imaging.  

Vasculature analysis was performed extracting architectural parameters (such as the 

Number of vascular Trees – NT, Number of Branches – NB and the vascular 

volume density- VVD) and vessels tortuosity (Distance Metric - DM, Inflection 

Count Metric - ICM, Sum Of Angle Metrics - SOAM). Cut-off values between 

benign and malignant tumors are provided, showing that vascular features extracted 

from the 20 thyroid nodules in 3-D CEUS and PDUS volumes can statistically 

distinguish benign from malignant tumors with 100% specificity and sensitivity 

success rate for both the ultrasound techniques, in agreement with the 

histopathological findings. 

In Chapter 5, Vasculature parametric maps are extracted from 8 rats with 

implanted fibrosarcoma and investigated with 3-D AA along 4 time points (TPs), 

in both control and tumors areas. Results have been compared with manual previous 

findings in a longitudinal tumor growth study, showing that parameters extracted 

from the control area are statistically different compared to the ones within the 

tumor volume. Tumor angiogenetic vessels present a smaller diameter, higher 

values of NT, NB and tortuosity metrics.  Moreover, the analysis of tumor growth 

evolution is characterized by the significant raise of NT and NB, an almost constant 

value of vessel diameter and a considerable drop of VVD along the four TPs. These 

results give insight on tumor angiogenic evolution. 

Conclusions and final remarks on the work are reported at the end of the thesis. 
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2.1 Introduction  

In recent years, ultrasound imaging has been proven to be an effective 

technique in the study of normal and pathological skeletal muscles [1]–[3]. 

Musculoskeletal ultrasonography enables the complete, reliable and non-invasive 

investigation of skeletal muscles [4], [5] and has been extensively used in both 

architectural and morphological muscles characterization.   

The 2-D B-Mode sonographic appearance of superficial skeletal muscles is 

clearly distinctive and can be easily discriminated at the visual inspection [6]: in the 

longitudinal plane, along the principal axis, skeletal muscles are identified by the 

superficial and the deeper aponeuroses, two boundaries of highly reflective 

epimyisial connective tissue. The longitudinal muscle region looks relatively darker 

compared to the surrounding structures (such as the subcutaneous tissue layer and 

the bones) and featured by a characteristic pattern formed by the presence of muscle 

fascicles, a bundle of perimysial connective tissue fibers organized according to a 

specific macroscopic architecture.  Muscle fascicles are the contractile part of 

skeletal muscle and can be disposed in linear (i.e medial gastrocnemius), pinnate 

(i.e. tibialis anterior) or triangular structure (i.e. vastus lateralis).  

In the transversal plane, the perpendicular one to the principal muscle axis, the 

gross cross-sectional of skeletal muscles can be identified by an enclosed region 

with small homogeneous reflections of perymisial fibers surrounded by the 

echogenic epimysial layer (i.e. rectus femoris) or bone echo (i.e. biceps brachii).  

The shape and the dimension of this region can vary along the principal axis; in 

addition, on this projection, an internal fascia of connective tissue can be recognized 

in bi-compartmental (i.e. tibialis anterior) or bipenniform muscles (i.e. rectus 

femoris). 

Ultrasonography allows the objective quantification of anatomical muscle 

parameters, which highly reflect the overall muscle health, mass and strength [7]. 

The link between muscle structure and function has been discussed and proved 

since a century [8]. Four main representative parameters of the muscle geometry 
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are generally considered in clinical practice and in scientific literature [9] and 

extracted from the two principal scanning projections: 

1. muscle thickness, MT (longitudinal plane), defined as the distance between 

the superficial and the deeper muscle aponeurosis; 

2. pennation angle, PA (longitudinal plane), a global averaged parameter that 

takes into account the angle formed between the deeper aponeurosis and the 

direction on parallel fascicles, or more specifically the fiber angle relative 

to the force-generating axis [10]; 

3. fascicles length, FL (longitudinal plane), namely the linear measurement of 

muscle fibers between the superficial and deep aponeurosis; 

4. cross-sectional area CSA, (transversal plane), which is the muscle belly 

region delimited by the epimysium; this parameter has been proven to be 

directly proportional to the maximum tetanic tension generated by the 

muscle. In conventional skeletal ultrasound imaging, cross sectional area is 

usually measured using panoramic or Extended Field Of View (EVOF) 

tools [11]. 

In previous works, quantitative imaging has been applied in the assessment of 

muscle size in terms of MT and CSA [2], [11]–[14] in training adaptations (i.e., 

muscle hypertrophy [15], [16]), disuse atrophy [17],  ageing (i.e., primary 

sarcopenia, [9], [18]–[20]) and pathological conditions [21]. Moreover, muscle size 

has been used to predict the leg skeletal muscle mass [22], in the total body fat free 

mass [23], [24] and in the extremity and trunk muscle volume estimation [25]–[29]. 

Regarding the muscle architecture, the arrangement of muscle fascicles directly 

influences the function of the muscle in terms of force generation [9], [30]; higher 

values of PA and smaller values of FL in resting conditions predict higher level of 

muscle strength excursion. In particular, the Architectural Gear Ratio AGR was 

proposed to estimate the contraction speed as the ration of muscle fiber velocity to 

muscle belly velocity [31]. Muscle fascicles architecture can be quantitatively 
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investigated using ultrasound imaging in resting conditions [32] during isometric 

contractions [33]–[38] and during dynamic exercise [33], [39]–[43]. For a given 

muscle CSA and volume, an increased PA results in a reduced FL, compromising 

shortening velocity and excursion range, but also allows more contractile material 

to be placed in parallel, increasing maximum force generation [44], [45]. 

Skeletal muscle ultrasound quantification is generally performed manually in 

the clinical practice; hence, this operation is timely and subjected to the user’s 

experience.  MT is usually obtained as the average of three measurements 

performed in the proximal, central, and distal positions on a single scan [3], [9], 

[16], [19], [27], while FL and PA are measured considering a small number of short 

visible fascicles [11], since longer ones require multiple scans or trigonometric 

estimation due to the limited field of view of conventional US imaging [38].  

In recent studies, the overall muscle size, namely the Anatomical Cross-

Sectional Area (ACSA),  has been investigated by means of the panoramic or EFOV 

US imaging technique [46], [47] in hamstring muscle [48],  gluteus muscle [49], 

vastus lateralis [50], [51] in both resting and training conditions. This technique 

also enables the selection of large group of skeletal muscles [52], but the acquisition 

involves the use of guides and operating experience. Moreover, even though the 

ACSA measurement is a reliable way to assess muscle size, health and strength, it 

requires high level of precision in the manually tracing, dedicated software tools 

and  time. On the other hand, the analysis of muscle size and quality can be reduced 

to the extraction of the Visible Cross-Sectional Area (VCSA) which has been used 

in previous studies [21] in the assessment of skeletal muscle disorders.  

To overcome the limits of the MT, FL, and PA manual measurements, several 

automatic or semi-automatic algorithms have been described in the last decays for 

the quantitative skeletal-muscle ultrasound imaging. For the MT measurements, 

muscle boundaries tracking has been proposed by Koo et al. [53] to track the 

locations of aponeuroses of the pectoralis major muscle. Wong et al. [54] identify 

the region of interest to measure the thickness of abdominal muscles using a 
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sequential quadratic programming approach (based on a novel log-Rayleigh 

likelihood function). In another work, The Revoting Hough Transform was applied 

to automatically estimate the gastrocnemius muscle thickness and the performance 

of  two preprocessing procedures was investigated by Han et al. [55].  Finally, Ling 

et al. [56] proposed a method based on the lower boundary of superficial 

aponeurosis and upper boundary of deep aponeurosis to calculate the gastrocnemius 

muscle thickness.  

Automatic fascicles detection has been performed, in the last years, in B-Mode 

ultrasound dynamic conditions. Rana et al. [57] proposed a multiscale filter 

approach to enhance muscle fibers structure followed by the application Radon 

transform and a wavelet analysis, and similar approaches have been used in other 

works  [58], [59] in the detection of gastrocnemius fascicles muscle without the use 

of edge maps. More recently, Zhou et al. [60] proposed a new method based on the 

Re-Voting Hough transform (RVHT) in order to detect the line-like structure in 

muscular-skeletal images; under the assumption of straight fascicles, the RVHT 

approach was proven to perform better in fascicles localization since it depended 

on the edge map of the image. The method was improved with the detection of 

muscle aponeuroses and the application of the Gabor wavelets analysis in Zhou et 

al. [61].  Although the previous cited works were applicable in the study of muscle 

architecture changes during contractions, they were all developed to be specifically 

addressed to the study of a unique muscle, the medial gastrocnemius; in addition, 

all these methods required a minimal, but still needed, manual initialization, in the 

position of the search ROIs inside the first frame, or marking the aponeuroses.  

Finally, the fascicles detection has never been extended, in an automatic fashion, 

from the automatic extraction of muscle aponeuroses.  

Besides their goodness, effectiveness and accuracy, all the previous cited 

methods for the MT, PA and FL measurements present a countless number of weak 

points, such as the manual initialization, the need of images storage for the offline 

processing, the low number of samples used in test and validation, and the design 
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oriented on a specific muscle or application, which make them unsuitable for the 

clinical use. Furthermore, so far, an automatic algorithm for the extraction of the 

ultrasound muscle ACSA or the VCSA in conventional B-Mode scans has never 

been proposed in literature.  Finally, the major limitation of these approaches 

consists in the absence of a fully automated tool able to completely measure, in real 

time and in a single conventional scan, the 4 main skeletal muscle parameters (MT, 

FL, PA, VCSA) described in the previous paragraphs. 

In this chapter, three innovative and robust automatic algorithms, named 

MUSA (Muscle UltraSound Analysis), TRAMA (Transversal Muscle Analysis) 

and a fascicles detection algorithm are proposed to completely characterize, with a 

single scan and in few seconds processing, the skeletal muscle geometry and 

architecture, both in longitudinal and transversal planes. MUSA algorithm and the 

fascicles detection algorithm are specifically designed for the geometrical muscle 

quantification, such as MT, PA and FL, whereas TRAMA is specifically designed 

for the VCSA extraction. To the best of our knowledge, these are the first validated 

algorithms that include the complete characterization of at least four skeletal 

muscles: rectus femoris, vastus lateralis tibialis anterior and medial gastrocnemius. 

In this context, an automatic strategy is built including scale and edge filters 

combined with heuristic approaches and applied in the detection of anatomical 

structures, such as aponeuroses and fascicles.  

 

 

2.2 Materials and Methods  

2.2.1 Longitudinal Muscle Ultrasound Analysis: MUSA algorithm 

The content of this section is dedicated to description of the MUSA algorithm, 

specifically designed to automatically detect the muscle aponeuroses and fascicles 

along the longitudinal projection.  The algorithm was developed using the Matlab 

(MathWorks, Natick, MA, USA) environment. The procedure is schematically 
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descripted in fig. 2.1 the detailed description of the steps is reported in the 

following. 

 

Subjects and acquisition settings  

A total of 50 healthy subjects without neuromuscular diseases (25 males and 25 

females, mean ± SD age: 31.0 ± 10.9 years; body mass index: 24.3 ± 4.7 kg /m2) 

took part as volunteers in this study.  Four skeletal-muscles were investigated on 

the dominant side during the ultrasound session: rectus femoris, vastus lateralis, 

tibialis anterior, and medial gastrocnemius. The detailed explanation of the 

ultrasound device settings and the acquisition protocol is reported in APPENDIX 

A and B. One scan of each muscle was taken in the longitudinal plan, and a total of 

200 images (50 subjects x 4 muscles) were captured and analyzed. The images were 

converted in DICOM format and then transferred to a workstation for offline 

processing.  
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Figure 2. 1: Schematic representation of MUSA algorithm steps. 
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Image preprocessing 

The original DICOM image (fig. 2.2.A) is automatically cropped (referring to 

the DICOM header tag “RegionLocation”) to maintain only the region containing 

the ultrasound data. The uppermost 2 mm of the image are then blackened to 

exclude the dead zone and the skin from further processing. The automatically 

cropped image can be seen in fig. 2.2.B. 

 

Automated search for the aponeuroses candidates 

This first processing step is devoted to automatically search for the possible 

position of the aponeuroses inside the image. The image is first downsampled by a 

factor of two (i.e., the number of rows and columns of the image is halved). To 

enhance all the structures inside the image that are possible aponeuroses we 

compute the vertical Sobel gradient of the image (fig. 2.2.C) The Sobel operator 

Figure 2. 2: MUSA algorithm first steps. Panel A - Original image of a representative medial 

gastrocnemius muscle. Panel B - automatically cropped image. Panel C - vertical Sobel of image; panel 

D - binary mask of the FODG filter. Panel D - FODG mask with inconsistent aponeurosis structures 

eliminated. Panel F - FODG mask with branch removal. In panels E and F, the arrow indicates the effect 

of the branch removal on the binary FODG mask. APOSUP = superficial aponeurosis; APOINF = deep 

aponeurosis 
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performs a 2-D spatial gradient measurement on an image and so emphasizes 

regions of high spatial frequency that correspond to edges.  

Subsequently, we apply a vertical First-Order Derivative Gaussian (FODG) 

filter to the processed image. The FODG filter is obtained by the convolution of a 

Gaussian kernel and a simple derivative filter [62].  This filter enhances all the 

structures bigger than the dimension of the FODG kernel and attenuates the others. 

Hence, the dimension of the FODG kernel is set to 9 pixels, to ease the aponeurosis 

highlighting.  

Finally, we threshold the FODG output to produce the binary FODG mask (fig. 

2.2.D). The threshold is set the 80% of the maximum gray level of the FODG 

output. 

The binary FODG mask represents the two muscle aponeuroses as well as other 

white regions representing different structures. A heuristic cleaning step is 

performed to remove all the structures that do not match specific conditions (i.e., 

that do not qualify as aponeuroses candidates). We label all the disconnected 

regions in fig. 2.2.D and we approximate them as ellipses. Since the structures 

corresponding to aponeuroses have a horizontal size similar to the size of the image, 

we remove all the regions with eccentricity lower than 0.995 and with a major axis 

shorter than 70% of the length (in pixels) of the image. The cleaned mask is shown 

in fig. 2.2.E. Branching and region filling is then performed to adjust the 

morphology of the remaining regions. The white arrow in fig. 2.2.F shows the 

correction made with respect to the irregularity of the superficial aponeurosis of fig. 

2.2.E. 

 

Selection of the actual aponeuroses 

The binary FODG mask fig. 2.2.F often contains more candidate aponeuroses. 

We check the presence of muscle fascicles between each pair of candidates in order 

to distinguish the two actual aponeuroses from the other candidates (i.e. we check 

that the two aponeuroses actually delimit the muscle region). We first equalize the 
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original image and then apply a global thresholding using the Otsu’s method [63] 

to obtain a binary mask (that will be indicated in the following as “binary fascicle 

mask”). Figure 2.3.A shows the binary fascicle mask where aponeuroses and 

fascicles are visible. The aponeuroses candidates (fig. 2.2.F) are then removed from 

this binary fascicle mask (fig. 2.3.B), together with all the regions having an area 

Figure 2. 3: Fascicle detection and heuristic. Panel A - Binary mask obtained with image equalization 

and Otsu thresholding; Panel B - cleaned fascicle mask; Panel C - Final fascicles mask overlaid on 

original image. The fascicles are portrayed in green, whereas the endpoints of the fascicles are in yellow; 

Panel D - sketch of the heuristic search. The fascicles are shown in green, the endpoints in yellow and 

three example ROIs are drawn in dotted rectangles. 



26 Automated architectural analysis in skeletal muscle ultrasound imaging 

 

lower than 10 pixels (which are likely to represent over segmentation due to 

speckles). 

Since the muscle fascicles can be approximated by a line with a specific 

orientation, we applied the Standard Hough Transform [64] on the binary fascicle 

mask. The Standard Hough Transform uses the parametric representation of a line 

in polar coordinates. The variable θ is the angle of the perpendicular projection from 

the origin to the line measured in degrees clockwise from the positive x-axis. The 

angle of the line itself is θ+90°, also measured clockwise with respect to the positive 

x-axis. The range of θ for our application is −90°≤θ≤85°. Fig. 2.3.C shows the 

original B-mode image (background) with overlaid the binary FODG mask (white) 

and the detected fascicles (green lines). The uppermost endpoint of each fascicle is 

marked by a yellow dot. 

The image is then considered column-wise. One column every ten is processed 

until reaching the total number of columns N, since, at this stage, we do not need 

the accurate profile of the aponeurosis, but only the correct aponeuroses among the 

possible candidates. On each i-th column, the candidates are considered starting 

from the deepest. We apply an iterative heuristic search made of the following steps: 

1. Considering a point of the deepest candidate (marked by Xi in fig. 2.3.D), we 

delineate a region of interest (ROI) (blue region in fig. 2.3.D). The vertical 

size of the ROI corresponds to the distance of the considered point Xi from 

the corresponding point on the same column belonging to the closest 

candidate aponeurosis upwards (marked by Yi in fig. 2.3.D). The horizontal 

size of the ROI is fixed to 41 pixels (corresponding to 3.8 mm). This 

horizontal size was selected in order to make sure that the region contained 

some fascicles. 

2. If the vertical size of this ROI is lower than 15 mm, the two candidates are 

too close and they cannot be the actual aponeuroses; hence, the point on the 

deepest candidate is discarded and the procedure goes back to point 1). 
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3. If the condition at point 2) is matched, the points Xi and Yi indicate the deep 

and superficial aponeurosis (that will be indicated in the following as APOInf 

and APOSup), respectively, only if muscle fascicles are present in between. 

Hence, we compute the number of fascicles endpoints (yellow dots in fig. 

2.3.C) falling into the ROI. If this number is lower than 20% of the overall 

number of endpoints in the whole image, we consider that there is no muscle 

in between Xi and Yi. The procedure then discards Xi and steps back to 1). 

4. If the number of fascicle endpoints is higher than 20% of the overall number 

of endpoints in the image, the point X1 is marked as the deep aponeurosis 

APOInf and the point Y1 as the temporary superficial one APOSup. 

5. A further control is made on the gray level of point Yi : if the gray level of 

Yi , in the original image, is lower than the 60% of the maximum gray level 

found along the i-th column, the index of Yi is iteratively updated proceeding 

from the bottom to the top along the column, until this condition is matched. 

6. The procedure iterates considering all the other columns of the image (fig. 

2.3.D). 

This heuristic search outputs a series of points Xi that delineate the position of the 

deep aponeurosis APOInf and a series of points Yi that delineate the superficial 

aponeurosis APOSup. The final result of the heuristic search is represented in fig. 

2.4.A. Spike detection and removal is applied to correct for possible inaccuracies 

and the APOSup and APOInf profiles (fig. 2.4.B). 

 

Final aponeuroses tracing 

As can be seen in fig. 2.4.B, the profile is roughly placed in correspondence of 

the aponeuroses, but refinement is needed. We adopt a Difference of 

Gaussians 𝐷𝑜𝐺 filter to detect the actual edges. The 𝐷𝑜𝐺 mask of an input image I 

can be defined as:  

𝐷𝑜𝐺 = 𝐼 · 𝐺1 −  𝐼 · 𝐺2 
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where 𝐺1 and 𝐺2 are low-pass Gaussian kernels. We set for each kernel the size 

S (dimension in pixel) and the corresponding standard deviation σ as follows: S1 = 

11 pixels, S2 = 81 pixels, 1 = 101 pixels, and 2= 21 pixels. The 𝐷𝑜𝐺 mask is 

represented in fig. 2.4.C. In the 𝐷𝑜𝐺 mask, the transitions from bright to dark (i.e. 

from APOSup which is bright to muscle which is dark) are positive, whereas the 

transitions from dark to bright (i.e. from muscle to APOInf) are negative. Thus, we 

could locate the exact position of the interface between muscle and aponeurosis in 

each column of the image. Figure 2.4.D reports the interpolated final profiles of the 

superficial and deep aponeuroses by a bicubic spline. 

Figure 2. 4: Final profile and correct aponeurosis determination. Panel A - Profile obtained at 

the end of the heuristic process. The white arrow indicates the presence of spikes. Panel B - spikes 

removal and final trace of profile on the binary mask of the FODG filter. Panel C - application 

of the DoG filter on the original image. Panel D - final interpolated profiles of the superficial and 

deep aponeuroses.  
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Tibialis anterior processing 

The tibialis anterior is a bicompartmental and bipennate muscle, meaning that 

the muscle fibers branch out at a specific angle (i.e., pennation angle), from a central 

intramuscular fascia to the superficial and deep aponeurosis [65]. As shown in fig. 

2.5.A, the fascicles of the two compartments present opposite pennation. Our 

MUSA architecture is adaptable to the processing of images of multi-

compartmental muscles, since its architecture can be repeated for every 

compartment of the muscle.  

In the specific case of the tibialis anterior muscle: 

1. Considering the FODG (fig. 2.5.B), the processing starts from the lower 

compartment. Among all candidates, the ones that are likely to correspond 

to the deepest aponeurosis and to the central fascia are traced (fig. 2.5.C) by 

applying the same strategy as described in the previous section. 

Figure 2. 5: Processing of tibialis anterior. Panel A: Example of tibialis anterior image. Panel B - binary 

mask of the of FODG filter for the tibialis anterior; Panel C: profiles of the deep aponeurosis and of the 

central aponeurosis which define the deep compartment; Panel D: profiles of superficial aponeurosis and 

of the central aponeurosis which define the superficial compartment; Panel E: final interpolated profiles 

of the superficial and deep aponeuroses for the tibialis anterior. 
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2. The central fascia of the tibialis anterior muscle defines the bottom limit of 

the upper compartment. MUSA is then applied from this profile upwards, 

to detect the superficial aponeurosis (fig.2.5.D). 

3. Once the deep and superficial aponeurosis are located, the final profiles are 

obtained by using the 𝐷𝑜𝐺 mask (fig. 2.5.E). 

Since the pennation changes between the two compartments, the range of θ for the 

Standard Hough Transform has been chosen as −90°≤θ≤85° for the upper 

compartment and as 95°≤θ≤260° for the lower compartment.  

 

2.2.2 Fascicles detection algorithm 

In this section, a fascicle detection algorithm is proposed, and a preliminary 

validation of the algorithm, based on a reduced dataset of images, is reported.  

 

Images data set 

Thirty images of test (10 of vastus lateralis, 10 of tibialis anterior and 10 of 

medial gastrocnemius) were selected from the previous dataset of 200 images used 

to test and validate the MT extraction of the MUSA algorithm. Rectus femoris 

images of MUSA dataset were excluded from the study because the pennation of 

this muscle in not visible in the projection used for the MT measurement.   We 

make sure that the selected images contained at least 3 fascicles at the visual 

inspection. Since the manual measurement of PA and FL requires, for each muscle, 

from 10 (vastus lateralis, medial gastrocnemius) to 15 minutes (tibialis anterior), 

the number of images was chosen to keep the validation study timely feasible.  

 

Fascicles detection algorithm 

The complete description of the algorithm is presented in the block diagram in 

fig. 2.6. The fascicles detection algorithm enables the pennation angle (PA) and 

fascicle length (FL) measurement of skeletal muscle with visible fascicles at the 
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ultrasound inspection: this method has been specifically implemented for the 

architectural characterization of vastus lateralis, tibialis anterior and medial 

gastrocnemius.  

From this point on, the searching area is reduced only to the region delimited 

by the aponeuroses, which contains fascicles (Fig 2.7.A).  The image is filter with 

an Absolute Difference of Gaussians (𝐴𝐷𝑜𝐺); The 𝐴𝐷𝑜𝐺 mask of the input image 

is defined as the DoG in the previous section as: 

𝐴𝐷𝑜𝐺 = |𝐼 · 𝐺1 −  𝐼 · 𝐺2| 

Figure 2. 6: Schematic representation of the Fascicles detection 

algorithm 
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where 𝐺1 and 𝐺2 are as before low-pass Gaussian kernels. In this case the size S 

and the standard deviation  where fixed as S1 = 9 pixels, S2 = 31 pixels,  1 = 2 

= 11 pixels. These dimensions where chosen as optimal to limit the search to 

specific elements dimension in any direction.  A threshold of 15 % of the maximum 

gray value is imposed to generate a new binary fascicles mask (fig 2.7.B).  A 

heuristic cleaning is applied on this mask to delete all the possible structures that 

have size and shape not referable to the anatomy of fascicles:  in this specific case 

structure with less than 15 pixels and eccentricity lower than 0.97 are deleted (fig 

2.7.C). Under the assumption that fascicles can be modelized as straight segments 

(fig. 2.8.A), the Hough transform is applied considering a range of possible angles 

between −80°-α ≤θ≤89°- α, where α is the angle between the muscle centerline and 

the absolute reference system: this choice as been made to prevent the detection of 

major axis structures with less than 10° slope respect to the muscle inclination in 

the image.  

For each segment identified by the Hough transform (in green), length, 

orientation, initial point (in yellow) and end point (in red) are considered (fig. 

2.8.B).  A collinearity set of rules is applied to perform the fascicles segments union. 

Two segments can be connected if all these conditions are satisfied: 

• one of the two segments is located in the upper left corner respect to the 

other; 

Figure 2. 7: Initial steps of the fascicles detection algorithm. Panel A: Selection of the muscle longitudinal 

area from MUSA algorithm. Panel B : Binary fascicles mask. Panel C: Structure cleaning on the binary 

fascicles mask. 
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• their extensions intersect each other within the image. Parallel segments on 

different axes are certainly not collinear; 

• The orientation of the two segments is similar and the difference in 

orientation between the two segments is smaller than 5°; 

• The straight line joining the segments has an orientation between the slope 

of the two.  

The single connective segment starts from the initial point of the upper segment 

and ends with the endpoint of the lower one.  This procedure is repeated iteratively 

till no more segments can be joined. An example of application of these criteria is 

shown in fig. 2.8.C. 

Subsequently, connected segments can be separate in two groups, the ones 

corresponding to muscle fascicles and the one due to the presence of multiple  

reflection of aponeuroses, big vessels walls or over-segmentation.  Fascicles 

and spurious structures have usually a clear different orientation. A deterministic 

clustering analysis is then implemented according to the following criterion:  two 

or more objects belong to the same cluster if they have similar orientation.  Two 

segments with bigger and smaller absolute angle slope are taken as reference 

elements of the two clusters, respectively. For each remaining segment, the 

difference between its slope and the two references is calculated: the segment is 

then assigned to the cluster whose difference is smaller. At the end of this 

procedure, the cluster with the higher number of collinear segments is chosen as it 

likely contains all the visible fascicles axis. The result of this selection is shown in 

fig. 2.8.D. 

Since two fascicles and their line extensions do not anatomically intersect each 

other within the muscle, a further step of processing is needed:  in this case, the 

segment whose orientation differs most form the median value of the group is 

discarded (fig. 2.8.E).  
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Figure 2. 8: Fascicles search processing- Panel A – Fascicles are modelized as straight lines with the 

application of the Hough transform. Panel B – First cleaning step. Panel C – Collinearity rules 

application for segments union. Panel D – Results after segments clustering. Panel E – Postprocessing 

and cleaning of intersecting fascicles. Panel F – Final result of the fascicles detection.  
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Finally, the fascicles segments are extended along the entire region of the 

muscle in order to measure PA and FL.  The final result is represented in fig 2.8.F. 

The fascicle detection algorithm has been also adjusted for the computation of 

PA and FL in tibialis anterior images, and more generically on image of bipennate 

skeletal muscle; in this case the two compartments are processed separately to 

identify the fascicles on both areas.   

Starting from the original image (fig. 2.9.A) the processing can be divided into 

five steps: 

1. The image is up-to-down flipped and clipped between the previously found 

superficial aponeurosis and intermediate fascia;  

2. Fascicle detection algorithm is applied on this region (fig. 2.9.B); 

3. The image is left-to-right flipped and clipped between the intermediate 

fascial and the deep aponeurosis  

4. Fascicle detection algorithm is run on this region (fig. 2.9.C);  

5. The image is recomposed and lines from the two compartments are merged. 

6. Specifically, for the image used as example, the result provided to the user 

is shown in fig. 2.9.D 
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Figure 2. 9: Panel A – Selection of the searching area for the tibialis anterior. Panel B – Fascicles detection 

algorithm applied on the upper compartment. Panel C - Fascicles detection algorithm applied on the 

deep compartment. Panel D – Final result of the fascicles detection algorithm on the tibialis anterior. 
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2.2.3 Transversal Muscle Ultrasound Analysis: TRAMA 

algorithm 

In the following section, an automated algorithm, named “TRansversal 

Architecture Muscle Analysis” (TRAMA) is presented: this method has been 

developed as an extension of the MUSA algorithm for the automatic segmentation 

of the Visible Cross-Sectional Area (VCSA), along the transversal plane, of four 

skeletal muscles (rectus femoris, vastus lateralis, medial gastrocnemius and tibialis 

anterior). 

 

Subjects and acquisition settings  

A total of 200 images (50 for each muscle) were acquired from 116 subjects 

(56 males and 60 females, mean ± SD age: 35.3 ± 14.4 years; body mass index: 

25.2 ± 5.4 kg /m2) 58 subjects were healthy, 58 patients present endocrine disorders 

or were under hormone therapy. Among the pathological patients, 17 were affected 

by Acromegaly, 16 by GID (Gender Identity Disorder), 9 by Cushing’s Syndrome, 

7 with GHD (Growth Hormone Deficiency), 5 by Diabetes and 4 by Obesity.  Four 

skeletal-muscles were investigated on the dominant side during the ultrasound 

session: rectus femoris (29 controls, 21 patients, 21 females, 29 males), vastus 

lateralis (36 controls, 14 patients, 21 females, 29 males), tibialis anterior (20 

controls, 30 patients, 28 females, 22 males), and medial gastrocnemius (29 controls, 

21 patients, 24 females, 26 males). The detailed explanation of the ultrasound 

device settings and acquisition protocol is reported in APPENDIX A and B. One 

scan of each muscle was taken in the transversal plan, and a total of 200 images 

were captured and analyzed. The images were converted in DICOM format and 

then transferred to a workstation for offline processing.  
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TRAMA algorithm for the VCSA segmentation 

The TRAMA algorithm follows the same approach used in the MUSA 

algorithm.  The procedure is depicted schematically in fig.2.10 and presented in the 

following.  

Figure 2. 10:Schematic representation of TRAMA algorithm. 
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After the original DICOM image cropping (fig 2.11.A), blackening of the first 

uppermost 2 mm of the dead zone (fig 2.11.B) and the column downsampling of a 

factor of two, the vertical Sobel gradient of the transversal image is calculated (fig 

2.11.C) to ease the aponeuroses search. The same vertical first order derivative 

Gaussian Filter (FODG) presented in the previous section is applied, with pixel 

dimension of 9, to enhance the aponeuroses.  From this point on, the computation 

of the VCSA differentiates between mono-compartmental muscles (rectus femoris, 

vastus lateralis and medial gastrocnemius) and bicompartmental, as the tibialis 

anterior. In the following, the mono-compartmental muscles processing is 

described.   

A final FODG mask is generate applying a threshold set at the 80% of the 

maximum FODG gray level to the FODG output. Figure 2.11.D shows the binary 

FODG mask in which aponeuroses as well as other structures are identified. 

Assuming that the aponeuroses have the horizontal size similar to the size of the 

image, the algorithm labels and approximates all the regions to ellipses to perform 

a heuristic cleaning; this procedure is applied to delete structures with eccentricity 

Figure 2. 11: Processing steps of TRAMA algorithm. Panel A –  Original DICOM image. Panel B – Image 

Cropping. Panel C – Vertical Sobel of the image. Panel D – Binary mask of the FODG filter. Panel E – 

Cleaned FODG mask. 
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lower than 0.995 and major axis length shorter than 60% of the image column 

width. The morphology of the remaining structures is then adjusted with a region 

filling and edges smoothing (fig 2.11.F).  

Since the final FODG binary mask can contain more than two candidate 

aponeuroses, we check the presence of hyperechoic spots or connective tissue fibers 

delimited by each pair of borders. The detection of fibrous connective structures is 

enabled by the application of a multiscale filter. The multiscale approach has been 

chosen for its intrinsic versatility in the detection of specific shapes and dimensions 

within an image, according to the choice of parameters values. The implementation 

of the filter has been taken from Frangi et al. [66] and defined as: 

𝑉𝜎 =  {

0 if     𝜆2 > 0 

𝑒
(−

𝑅𝑏
2

2𝛽2)
(1 − 𝑒

(−
𝑆2

2𝑐2)
) in all other case.

 

Figure 2. 12:  TRAMA heuristic process. Panel A – Fibers mask. Panel B – FODG mask merged with the 

fibers mask. Panel C – Lines (in yellow) where the heuristic process is performed. Panel D, E, F – Three 

steps the heuristic procedure, in which 2 ROIs are selected and compared.  
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where 𝜆1 , 𝜆2 are the eigenvalues extracted from the Hessian matrix parameters,  𝛽 

and 𝑐 are thresholds which control the sensitivity of the filter to the measure of 

𝑅𝑏 = 
|𝜆1|

√𝜆2
 (blob-like structure) and 𝑆 =  √𝜆1 + 𝜆2 (second order structureness). In 

this algorithm, the size of the second derivative Gaussian kernel is iteratively 

computed according to the chosen σ values as a 3𝜎 × 3𝜎 grid.  Possible values of 

sigma range between 6 – 10 with step size of 2, to reduce the computational cost 

and optimize the filter response to the structures scale of interest. For this 

application, 𝛽 was chosen equal to 0.5 and 𝑐 equal to 15. The output of the 

multiscale filtering, called “fibers mask” (fig 2.12.A), is subsequently merged with 

the FODG mask (fig. 2.12.B). 

The new image is processed column-wise and 7 columns between the 12% and 

88% with a step of 12% of the entire image width are considered (fig. 2.12.C). This 

choice has been made to avoid the bilateral 12% of the image where the probe-skin 

contact along the transversal plane is not usually optimal. Thanks to the goodness 

of the preprocessing, a quick heuristic search is performed as follows: 

1. Starting from the deepest candidate, the algorithm identifies and enumerates 

all the structures intersected by the corresponding column (fig. 2.12.D). 

Column points are labelled as 𝑋𝑚,𝑛, where 𝑚 = 1 : Number of candidates 

aponeurosis and 𝑛 = 1 : 7 according to the column position in the image; the 

distance between subsequent couples of points, defined as 𝑑 =  |𝑋(𝑚+1),𝑛 −

𝑋𝑚,𝑛| , is taken into account. 

2. If there is only one point along the column, the line is discarded, and the 

analysis moves forward selecting the closest column, with at least two 

candidate points;  

3. If 𝑑 is higher than 15 mm, the two points are recorded to label all the possible 

candidate aponeuroses; if no points couple meets this condition, the column 

is discarded and the analysis steps back to 2); 
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4. If the condition at step 3 is met and there is only one pair of points, the two 

points are indicated the deep and the superficial aponeurosis (labelled as 

APOinf and APOsup in the following) and the analysis proceeds; 

5. If multiple couples of points have been considered at step 3, then a further 

control is performed. Since the candidate aponeuroses enclose muscle with 

visible spots of connective tissue, a set of regions of interest (defined as 

𝑅𝑂𝐼((𝑚+1) − 𝑚)and referred to each couple of points, is considered: each ROI 

has height equal to 𝑑 and width equal to the image width (fig. 2.12.D). The 

number of connective structures highlighted by the fibers mask and enclosed 

by the ROIs is then calculated and saved. 

6. The pair of points referred to the ROI with the highest number of connective 

structure indicates the candidate aponeuroses, for that column, as APOinf and 

APOsup. 

At the end of the heuristic process, a voting procedure identifies the highest 

number of structures occurrences indicated by the pairs of points, selecting the final 

superficial and deep aponeurosis, as showed in fig. 2.13.A. The final aponeuroses 

tracing is depicted in fig. 2.13.B and follows the same method described in the 

MUSA algorithm. 

 

  

Figure 2. 13: Refinement and VCSA segmentation. Panel A – Profiles obtained at the end of the heuristic 

process. Panel B – Final tracing of aponeuroses profiles, considering the artifact. Panel C – VCSA muscle 

result.   
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Once the interpolated aponeurosis profiles are recognized and traced, a further 

step of profiles union is needed for the automatically VCSA segmentation. In the 

case of processing of rectus femoris, vastus lateralis and medial gastrocnemius the 

segmentation is described in the following.   

As previously mentioned, the uppermost 2 mm part of the image, containing 

the dead zone, is usually discarded from the analysis; along the transversal 

projection, the anatomical curvature of limbs can reduce the probe-skin contact, and 

this region displays border effect artifacts, such as white multiple reflections due to 

air acoustic waves reverberation (fig. 2.13.B).  The underlying scanning region is 

then not suitable for VCSA tracing, since it is featured by an acoustic shadowing 

effect, impeding the correct shapes’ recognition.  Therefore, the uppermost 2 mm 

part of the original image is processed to identify the border regions limits to 

exclude the underlying scanning area from the computation of the VCSA. This 

operation is made possible using a simple global thresholding set at the 95% of the 

maximum gray-level of the uppermost region (fig 2.13.B): once the first artifact 

strip from the top is detected, all the columns crossed by the artifact are excluded 

from VCSA tracing and the correct extreme points of the superior profile are 

selected.  If the contact between probe and skin is good, the extreme points of the 

superior profile is fixed by default at 5% and 95% of the total width of image.  The 

final VCSA is illustrated in fig. 2.13.C. 

 

Tibialis anterior processing 

The VCSA extraction for the tibialis anterior muscle is based on a different 

processing and optimized search of muscle borders, as it will be presented in the 

following. The transversal ultrasound image of this muscle presents a specific shape  

that reminds a sector of a circular crown (fig. 2.14.A), whose limits are usually 

very clear at the ultrasound examination. For the description of this method a global 

XY coordinates reference system is taken into account according to the scheme 
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reported in fig.2.14.B After the application of the FODG filter, the FODG binary 

mask is obtained with an initial thresholding at the 80% of the maximum gray level 

FODG output (fig. 2.14.B); the mask is then split in two halves along the Y axis 

and the heuristic cleaning is applied separately on the top half and the bottom half 

of the image. Structures with major axis length shorter than the 60% and 20% of 

the image width for the top and the bottom parts respectively are deleted, in order 

to preserve the anatomic aponeuroses shapes of the tibialis anterior (fig. 2.14.C).   

Parallelly, the original image is processed with the same multiscale filter 

presented at the beginning of this session (fig. 2.14.D): in this case, the application 

of this kernel leads to the identification of the iper-reflective tibia bone interface.  

The multiscale filtering approach is particularly suitable in the detection of the 

interface’s thickness, which usually present an irregular profile.  

Since the tibia bone border is represented, for ultrasound scanning convention 

(see APPENDIX B), on the bottom left corner of the image, the first upper right 

Figure 2. 14: VCSA extraction of tibialis anterior. Panel A – Original Image. Panel B – FODG mask.  

Panel C - FODG mask after heuristic cleaning. Panel D – Multiscale filtering.  Panel E - L-shape mask – 

Panel F – Identification of the L-shape and extraction of its vertical profile (in red). 
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quarter of the filtered image is deleted. The filtered image is then globally 

thresholded and the cleaning structures step is applied. 

The thresholded image presents, in correspondence to the tibia bone interface, 

a L-shaped structure which also includes the deeper aponeurosis.  This mask is 

named “L-shape binary mask” (fig. 2.14.E). 

The L-shape structure is selected, firstly, considering the 3 biggest connected 

structures of the mask. Then, a second criterion is applied to find, among these 

remaining structures, the one with the biggest bounding box. Once the L-shaped 

structure is identified, the binary mask is processed row-wise to find its vertical 

profile, in fig. 2.14.F.  

Considering this profile in fig 2.15.A, the first point with the highest Y-

coordinate is labelled as C, while the last point, namely the interception between 

the interface and the deep aponeurosis, is marked as D. To ease the recognition of 

the aponeuroses profiles, the L-shape structure profile, points C and D are reported 

on the FODG mask. Y-coordinates of points C and D are projected on the central 

vertical axis of the image, identifying the points C’ and D’ (fig 2.15.A). 

A candidate aponeurosis can be identified as the deep aponeurosis if those two 

conditions are simultaneously met:  

• It is the closest structure to point C’ along the vertical axis; 

• It intercepts the L-shape structure along the horizontal axis. 

Once the deep aponeurosis is identified, point B is placed on its superior profile.  

Subsequently, the distance between C’ and B is computed and the search of the 

superficial aponeurosis is carried out along the vertical central axis. The superficial 

aponeurosis, labelled by point A (fig 2.15.A) is identified when two conditions are 

simultaneously met: 

• The distance between B and A is higher than 15 mm; 

• The distance between B and A is lower than 3/2 of the distance between C’ 

and B. 
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From the FODG mask, the right extreme point of the deep aponeurosis, called 

E, the left and the right extreme points of the superficial aponeurosis named F and 

G respectively, are considered (fig. 2.15.B).  

The lateral interface, the deep and the superficial aponeurosis profiles are 

interpolated with the application of the 𝐷𝑜𝐺 filter, The lateral and the deep 

aponeurosis profiles are prolonged to their interception at point H (fig. 2.15.C). To 

close the tibialis anterior VCSA, the same previously illustrated criteria with the 

use of the uppermost dead region are applied to find the superficial aponeurosis 

Figure 2. 15: VCSA segmentation of tibialis anterior. Panel A – Identification of point C, D ant their 

projection C’, D’. Selection of point A and B according to the distance rules.  Panel B – Identification of 

point E, F, G, on the upper and deep aponeuroses.  Panel C -Interpolation, extension of aponeuroses 

profiles, identification of point H and lines union (in red)- Panel D – Final VCSA selection.  
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extreme points: point F is connected to the point C on the lateral profile, while point 

G to point E of the deep aponeurosis, both with a straight line. The position of point 

F and G are both tuned by the position of the artifact in the dead zone, as previously 

described. The final result of segmentation is shown in fig.2.15.D. 

 

Performance metric and statistics of the MUSA algorithm 

MUSA was tested on the whole database of 200 B-mode ultrasound images. 

The automatic muscle thickness measurement was obtained by the centerline 

distance metric. This distance metric has previously been used for thickness 

measurements [67], [68] and consists in initially determining the centerline between 

two boundaries. Then, for each point of the centerline, a chord perpendicular to it 

is plotted. The length of this chord is the measure of muscle thickness in that point. 

The average distance for all the chords along the centerline is the final centerline 

distance metric.  

In addition to the automatic analysis of muscle thickness, three experienced 

operators independently and manually measured the muscle thickness in the same 

200 images. The manual measurements were performed using the software ImageJ 

(National Institutes of Health, Bethesda, MD): the operators manually placed five 

segments between the two muscle aponeuroses at around 10%, 30%, 50%, 70% and 

90% of the entire length of the muscle profile in the image. The Euclidean distance 

between the end points of each segment was calculated and the final manual 

measurement was obtained as the average of these five distances.  

The automatic muscle thickness measurements were compared to the manual 

measurements obtained by the three operators for each muscle. The comparison 

was performed by using the Kruskall-Wallis ANOVA (followed by Dunn’s post 

hoc test) and the intra-class correlation coefficient ICC(2,1). To assess the existence 

of a statistical dependence between manual and automatic measurements, a 

correlation analysis between the differences and averages of the two measurement 

methods was also performed using the Spearman test. 
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Performance metric and statistics of fascicles detection algorithm  

The entire set of 30 images was used to validate the fascicle detection algorithm 

for the extraction and computation of PA and FL.  Fascicle detection was applied 

on single-compartmental ultrasound muscle images (vastus lateralis and medial 

gastrocnemius) and bicompartmental muscle (tibialis anterior). An example of 

fascicles detection after the MUSA algorithm processing is presented in fig. 2.16.A.  

PA is measured as the angle between the fascicle and the deep aponeurosis, whereas 

FL is calculated as the length between the deep and superficial aponeuroses. To 

make the estimation of PA and FL reliable, at least 3 fascicles are automatically 

extracted from the image and the mean ± standard deviation (SD) values were 

considered. Moreover, in the automatic algorithm, only fascicles visible for more 

than the 40% of their entire length were considered in the computation of PA, while  

only fascicles visible for more than 20% of their length are considered for the 

estimation of FL.  
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An experienced blind operator manually extracted three fascicles from single-

compartmental muscles and six fascicles from bicompartmental (three for each 

compartmental); FL and PA measurements were performed using ImageJ.  No rule 

was imposed in the manual selection of fascicles, and the operator could extend the 

visible aponeuroses profiles on both side to find the “out of image” fascicle’s distal 

and proximal insertions, as shown in fig. 2.16.B.  

Mean values of the overall FL and PA were reported for each image for both 

the manual and the automatic measurement. The comparison was performed by 

using the Mann-Whitney U test and the intra-class correlation coefficient ICC (2,1). 

Manual and automatic measurements were compared performing a correlation 

Figure 2. 16: Examples and difference between fascicles length and pennation angle measurements in: 

Panel A - Automatic approach. Panel B - Manual approach. 
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analysis (Spearman test) between the differences and averages of the two 

measurement methods. 

 

Performance metric and statistics of TRAMA algorithm  

TRAMA algorithm was tested on a set of 200 B-mode ultrasound images of 

rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius.  To 

validate this method, two experienced operators manually traced the muscle VCSA 

profile with a custom written Matlab routine in the same dataset of 200 images.  

Mean values and standar deviation of the VCSA were reported for each image 

for both the manual and the automatic measurement. 

The automatic VCSA profiles and area were compared to the manual profiles 

obtained by the two operators for each muscle. The comparison was performed 

applying the Dice [69] and Jaccard [70] similarity coefficients for the areas 

overlapping and measuring the Absolute Error (AE).  

The existence of a statistical dependence between the two data sets was 

assessed by a correlation analysis between the differences and averages of the two 

measurement methods performing the Spearman test.  

  

2.3 Results 

2.3.1 Segmentation results of MUSA algorithm 

The MUSA algorithm detected the aponeurosis profiles, and therefore 

automatically calculated the muscle thickness, in the whole database of 200 images 

(100% segmentation success rate).  
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Figure 2. 17:  Examples of automatic thickness measurement (left panels, A, 

C, E, G) and manual thickness measurement (performed by one of the three 

operators - right panels, B, D, F, H) in the four investigated muscles (A and 

B: rectus femoris, C and D: vastus lateralis, E and F tibialis anterior, G and 

H medial gastrocnemius). 
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Performance evaluation of MUSA algorithm 

Fig. 2.17 shows a representative comparison between the automatic thickness 

measurement (left panels) and the manual thickness measurement (performed by  

one of the three operators - right panels) in rectus femoris (fig. 2.17.A – 2.17.B: 

18.55 mm vs 19.23 mm), vastus lateralis (fig 2.17.C – 2.17.D: 20.69 mm vs 21.36 

mm), tibialis anterior (fig 2.17.E – 2.17.F: 24.11 mm vs 23.96 mm), and medial 

gastrocnemius muscle (fig 2.17.G – 2.17.H: 18.33 mm vs 18.71 mm). The 

difference between the automatic and the manual measurement was in the range 

0.15 – 0.68 mm (respectively: 0.68 mm for rectus femoris, 0.67 mm for vastus 

lateralis, 0.15 mm for tibialis anterior, 0.38 mm for medial gastrocnemius).  

Table 2.1 showed comparable results obtained by manual and automatic 

measurements. In fact, no significant differences between the former and the latter 

measurement were observed for rectus femoris (P = 0.63), vastus lateralis (P = 

0.70), tibialis anterior (P = 0.85), and medial gastrocnemius (P = 0.23). 

The results of the ICC were excellent (range of ICCs: 0.98-0.99) for all muscles 

both among the three operators and between the manual and automatic 

measurements.  

Muscle 
Operator 1 

(mm) 

Operator 2 

(mm) 

Operator 3 

(mm) 

MUSA 

(mm) 

Rectus femoris 22.3 ± 3.8 22.4 ± 3.7 21.7 ± 3.7 21.8 ± 3.8 

Vastus lateralis 21.9 ± 4.0 22.0 ± 4.0 21.4 ± 4.0 21.3 ± 4.0 

Tibialis anterior 28.2 ± 3.6 28.0 ± 3.6 27.6 ± 3.5 27.9 ± 3.7 

Medial gastrocnemius 19.9 ± 3.1 20.0 ± 3.0 19.3 ± 3.1 19.4 ± 3.1 

Table 2. 1: Muscle thickness measurements (mean ± SDs) obtained by each of the three operators and 

by MUSA algorithm for the four considered muscles. 

Spearman correlation analysis shows that mean differences between the 

automatic and manual measurements in the range 0.06 – 0.45 mm and most of the 

differences between the 95% limits of agreement, thus suggesting that the two 

measurement methods can be used interchangeably; moreover, no significant 
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correlation between the differences and means of the two measurements in each of 

the four muscles (rectus femoris: R= -0.08, P=0.55; vastus lateralis: R= -0.006, 

P=0.96; tibialis anterior: R= -0.15, P=0.29; medial gastrocnemius: R= -0.09, 

P=0.55), thus indicating that the accuracy of the automatic measurement was not 

related to the magnitude of the thickness value. 

 

2.3.2 Segmentation results of fascicle detection algorithm 

Fig 2.18 shows a representative example of automatic and manual fascicle 

detection performed on medial gastrocnemius muscle (fig 2.18.A – 2.18.D: FL: 

51.4 mm vs 56.9 mm, PA:  26.4° vs 22.5°), tibialis anterior (fig 2.18.B – 2.18.E: 

FL: 111.3 mm vs 92.9 mm, PA: 3.3° vs 6.4°,  upper compartment, FL: 75.9 mm vs 

84.4 mm, PA: 12.5° vs 12.0° lower compartment), and vastus lateralis (fig 2.18.C 

– 2.18.D: FL: 73.0 mm vs 68.7 mm ,PA: 11.8° vs 12.9°). 

The analysis on the measurements of PA and FL showed, in Table 2.2, 

comparable results obtained by manual and automatic measurements for all the 

comparisons in the FL measurements (P > 0.5) while all the comparisons where 

significantly different for PA measurements (p < 0.05). The difference between 

manual and automatic measurements ranged between 2.30 - 35 mm for the FL and 

0.5 – 5.65° for the PA. 

The results of the ICC analysis demonstrate that the agreement was between 

medium and poor (range of ICCs for FL: 0.75 - 0.35, for PA: 0.56 – 0.2). This 

finding suggests that the automatic and the manual measurement are not 

interchangeable when fascicles are detected using different approaches; in addition, 

fascicles detected by the automatic system are always different from the ones 

detected by the operator.  
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Muscle 

Fascicles Length Pennation Angle 

Automatic 

(mm) 

Manual 

(mm) 

Automatic 

(°) 

Manual 

(°) 

Vastus lateralis 92.3 ± 15.1 86.5 ±16.4 13.3 ± 2.4  16.1 ± 2.8  

Tibialis anterior (sup) 87.4 ± 11.7 89.0 ± 18.3 11.6 ± 2.8  13.2 ± 2.7  

Tibialis anterior (inf) 85.5 ± 18.3 81.7 ± 15.8 5.5 ± 2.0 8.0 ± 1.8  

Medial gastrocnemius 60.6 ± 9.3 50.4 ± 9.3 19.8 ± 4.4 22.4 ± 2.8  
 

Table 2. 2: Fascicles length and pennation angle measurements (mean ± SDs) obtained by the manual 

operator and by the fascicles detection algorithm for the four considered muscles. 

  

Figure 2. 18: Examples of automatic (upper panels, A, B, C) and manual fascicles detection (lower panels, 

D, E, F) in the three investigated muscles (A and D: medial gastrocnemius, B and E tibialis anterior, C 

and F, vastus lateralis). 
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From the Spearman test, no significant correlation between the differences and 

means of the two measurements in each of the three muscles (vastus lateralis: PA,  

R = - 0.27, P =  0.44, FL,  R = 0.07, P = 0.83; tibialis anterior, inferior part : PA,  R 

=  - 0.10 , P =  0.49, FL,  R = - 0.03, P = 0.94; tibialis anterior, superior part : PA, 

R =   0.24, P =   0.78, FL,  R 0.07, P = 0.27; medial gastrocnemius: PA,  R = 0.17, 

P = 0.63, FL,   R = - 0.04, P = 0.91), indicating that the accuracy of the automatic 

measurement was not related to the fascicles of orientation. 

 

2.3.3 Segmentation results of TRAMA algorithm 

The TRAMA algorithm automatically calculated the VCSA, in the whole 

database of 200 images, with 100% segmentation success rate.  

Performance evaluation of TRAMA algorithm 

Fig 2.19 shows a representative comparison between the automatic VCSA 

tracing (left panels) and the manual tracing (performed by one of the two readers, 

on the right panels) in rectus femoris (fig. 2.19.A – 2.19.B: 865.5 mm2 vs 886.2 

mm2), vastus lateralis (fig 2.19.C – 2.19.D: 874.8 mm2 vs 912.3 mm2), tibialis 

anterior (fig 2.19.E – 2.19.F: 823.3 mm2 vs 853.03 mm2), and medial gastrocnemius 

muscle (fig 2.19.G – 2.19.H: 845.9 mm2 vs 868.8 mm2). The Absolute Error 

between automatic and the mean of the operators’ measurement was in the range 

26.6 – 41.1 mm2 (respectively: 30.6 mm2 for rectus femoris, 26.6 mm2 for vastus 

lateralis, 34.3 mm2 for tibialis anterior, 41.1 mm2 for medial gastrocnemius).  
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Table 2. 3 VCSA measurements (mean ± SDs) obtained by each of the two operators and the TRAMA 

algorithm. 

Comparable results can be found in the analysis of the group data (Table 2.3) 

between manual and automatic segmentations. In fact, no significant differences 

between the operators and TRAMA algorithm were observed for rectus femoris (P 

= 0.32), vastus lateralis (P = 0.34), tibialis anterior (P = 0.14), and medial 

gastrocnemius (P = 0.10). 

Muscle 
Operator 1 

(mm2) 

Operator 2 

(mm2) 

Mean of 

Operators 

(mm2) 

TRAMA 

(mm2) 

Rectus femoris 822.0 ± 159.1 796.5 ± 151.1 809.2 ± 154.8 839.8 ± 158.6 

Vastus lateralis 864.4 ± 148.3 871.5 ± 136.3 867.9 ± 141.4 894.5 ± 145.9 

Tibialis anterior 787.2 ± 144.2 782.5 ± 151.8 784.8± 147.0 819.1 ± 151.6 

Medial 

gastrocnemius 
771.5 ± 127.9 736.5 ± 124.7 754.0 ± 125.4 795.2 ± 123.1 
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Figure 2. 19: Examples of automatic VCSA measurement (left panels, A, C, E, G) 

and manual VCSA measurement (performed by one of the three operators - right 

panels, B, D, F, H) in the four investigated muscles (A and B: rectus femoris, C and 

D: vastus lateralis, E and F tibialis anterior, G and H medial gastrocnemius). 
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Muscle Op1 vs Op 2 Op1 vs TRAMA Op2 vs TRAMA 

 D J D J D J 

Rectus femoris 0,95 0,91 0,96 0,93 0,94 0,89 

Vastus lateralis 0,96 0,93 0,97 0,94 0,96 0,92 

Tibialis anterior 0,95 0,91 0,96 0,92 0,94 0,90 

Medial 

gastrocnemius 
0,95 0,92 0,96 0,93 0,95 0,91 

 

Table 2. 4: Dice (D) and Jaccard (J) indices calculated for the comparisons between the twoi perators 

and TRAMA algorithm. 

Dice and Jaccard similarity indices results are reported in Table 2.4 and show 

how manual and TRAMA automatic tracing were in excellent agreement (range of 

Dice’s index: 0.94-0.97, range of Jaccard’s index: 0.89-0.94) for all muscles and 

among the two readers. 

 Spearman test between the mean differences between the automatic and 

manual measurements suggests that the two segmentation methods can be used 

interchangeably, since no significant correlation between the differences and means 

of the two measurements in each of the four muscles (rectus femoris: R= - 0.20, 

P=0.30; vastus lateralis: R= 0.19, P=0.18; tibialis anterior: R= 0.12, P = 0.40; 

medial gastrocnemius: R= 0.15, P=0.28), indicating that the accuracy of the 

automatic segmentation does not depend on the VCSA size. 
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2.4 Discussion 

In this chapter, three fully automatic methods for the measurement of MT, PA, 

FL and VCSA in musculoskeletal images acquired in the longitudinal plane (i.e., 

with the probe aligned to the muscle fibers’ direction) and in the transversal plane 

(on the muscle belly) are presented. 

The proposed techniques did not require the user interaction and are able to 

automatically detect different muscles, defining their superficial and deep 

aponeuroses (MUSA algorithm), fascicles length and pennation angle and the 

visible cross-sectional area (TRAMA algorithm) in two databases of 200 images.  

Fascicles detection tool has been validated on a set of 30 longitudinal scans of 

vastus lateralis, tibialis anterior and medial gastrocnemius muscles (100% 

segmentation success rate).  

The automatic segmentation and quantification of muscle US parameters is a 

challenging operation, due to the muscle variable in shape and direction, different 

depth in the images, age and health status of the investigated subject.  

The observed robustness of MUSA and TRAMA in skeletal muscle US image 

segmentation and fascicle detection is mainly due to the use of scale and multi-scale 

filters (FODG, 𝐷𝑜𝐺, 𝐴𝐷𝑜𝐺). In fact, first-order derivative of the Gaussian kernels 

are able to selectively enhance muscles’ profiles without enhancing noise, with very 

low computational cost. The size and values of the kernel were optimized to match 

the anatomical size of muscle aponeuroses, fascicles and bone interface (in the 

tibialis anterior transversal projection).  

The comparison between the manual and automatic measurements in MUSA 

and TRAMA algorithms with the Absolute Error (AE) showed that the mean 

differences between the former and the latter was below 0.5 mm for MT (AE 2%), 

and below 42 mm2 for the VCSA (AE: 4%), also confirmed by the excellent results 

of Dice and Jaccard indices. From a clinical point of view, these AEs can be 

considered irrelevant. In fact, a percentage reduction of AEs in the range 5-10% is 

required to identify a condition of muscle hypotrophy, while a percentage reduction 
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above 10% is required to identify a condition of muscle atrophy [18]. 

Four superficial muscles (rectus femoris, vastus lateralis, tibialis anterior and 

medial gastrocnemius) were examined in this study as being the most informative 

for the investigation of neuromuscular disorders and sarcopenia [18], [21], [71]. 

Future studies are required to test the accuracy and reliability of the MUSA and 

TRAMA algorithm in the MT, PA, FL, and VCSA extraction for other skeletal 

muscles. However, from a technical point of view, both algorithms can be used to 

detect the aponeuroses and borders of any muscle.  

MUSA and TRAMA are the first fully-automated systems capable for 

processing images of muscles with multiple aponeuroses and specific transversal 

shape of muscles (e.g. tibialis anterior). Being totally automated, these methods 

could also be used in future works to initialize muscle architectural parameters 

measurements in dynamic conditions or the PCSA in EVOF acquisitions.  

In this work, a fascicles detection algorithm was also proposed, and, to the best 

of our knowledge, this is the first completely automated algorithm able to measure 

FL and PA on single and bi-compartimental skeletal muscles that has been 

manually validated. In previous papers, the validation of FL and PA was briefly 

conducted on synthetic images [57] and in dynamic conditions [61]; data were 

reported on Bland-Altman plot without showing the mean values of manual and 

automatic measurements. Our preliminary results suggest that the automatic and 

manual measurements are not interchangeable, since the ICC(2,1) show medium 

and poor values, with an absolute mean difference of 3.41° (AE: 24%) for PA and 

11.0 mm for FL (AE: 13%). Our preliminary findings lead to multiple remarks. The 

automatic fascicle detection is the most challenging task in ultrasound skeletal 

muscle segmentation. Fascicles show a fading and discontinuous pattern which can 

be recognized, not effortlessly, by the human perception. For this reason, the 

fascicle detection algorithm needs to be revised and retested on a higher number of 

images to improve the overall performance, in particular, in the PA computation. 

The variability between the automatic and manual measurements is affected by 
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many conditioning factors, in particular the number of detected fascicles, the 

portion of fascicles that needs to be prolonged out of the image and the interpolation 

of curved aponeuroses: a small variation of one of these factors can easily lead to 

an error of 3-4° in the computation of PA and up to 20 mm for FL. 

In the future, further improvements could be specifically addressed in the 

detection of curved fascicles, considering curvilinear Hough Transform model.  

 

2.5 Conclusion 

In this Chapter, MUSA, the fascicles detection algorithm and TRAMA are 

presented as first fully-automated algorithms that can process images of different 

skeletal muscles such as rectus femoris, vastus lateralis, medial gastrocnemius, and 

the tibialis anterior, which presents two compartments in longitudinal projection 

and a particular shape in the transversal plane. This work proves that the automatic 

and manual measurement methods could be used interchangeably, considerably 

reducing the user-dependency of measurements.  

Recently, MUSA algorithm has been coupled, by means of dedicated 

application programming interfaces (API), with a portable pc-based ultrasound 

device in real-time acquisition and processing of skeletal muscles images. SmartUs 

ultrasound device (Telemed, Vilnius, Lithuania) equipped with a linear-array 

transducer (code L12-5L40N) with a variable frequency band (5-12 MHz, selected 

preferred frequncy 9 MHz) was used for this purpose and enthusiastic feedbacks 

have been received during live DEMO sessions (EXPO Matlab 2016, Milan, Italy) 

  



62 Automated architectural analysis in skeletal muscle ultrasound imaging 

 

2.2 References 

[1] P. Fish, Physics and Instrumentation of Diagnostic Medical Ultrasound. Wiley, 1990. 

[2] N. D. Reeves, C. N. Maganaris, and M. V Narici, “Ultrasonographic assessment of human skeletal 

muscle size,” Eur J App Physiol, vol. 91, pp. 116–118, 2004. 

[3] C. Caresio, F. Molinari, G. Emanuel, and M. A. Minetto, “Muscle echo intensity: reliability and 

conditioning factors.,” Clin. Physiol. Funct. Imaging, vol. 35, pp. 393–403, 2015. 

[4] A. Pretorius and J. K. Keating, “Validity of real time ultrasound for measuring skeletal muscle size.,” 

Phys Ther Rev., vol. 13, pp. 415–426, 2008. 

[5] C. V Ruas, R. S. Pinto, C. D. Lima, and P. B. Costa, “Test-Retest Reliability of Muscle Thickness , 

Echo-Intensity and Cross Sectional Area of Quadriceps and Hamstrings Muscle Groups Using B-mode 

Ultrasound,” Int. J. Kinesiol. Sport. Sci., vol. 5, pp. 35–41, 2017. 

[6] S. Pillen, “Skeletal muscle ultrasound,” Eur. J. Transl. Myol., vol. 1, pp. 145–155, 2010. 

[7] C. Gans and W. Bock, “The functional significance of muscle architecture – a theoretical analysis.,” 

Ergeb Anat Entwicklungsgesch, vol. 38, pp. 115–142, 1965. 

[8] T. Kardel, “Willis and Steno on muscles: rediscovery of a 17th-century biological theory.,” J Hist 

Neurosci, vol. 5, pp. 100–107, 1996. 

[9] R. a Atkinson, U. Srinivas-Shankar, S. a Roberts, M. J. Connolly, J. E. Adams, J. a Oldham, F. C. W. 

Wu, O. R. Seynnes, C. E. H. Stewart, C. N. Maganaris, and M. V Narici, “Effects of testosterone on 

skeletal muscle architecture in intermediate-frail and frail elderly men.,” J. Gerontol. A. Biol. Sci. Med. 

Sci., vol. 65, pp. 1215–1219, 2010. 

[10] R. Lieber, Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports 

Medicine. Williams & Wilkins, 1992. 

[11] M. Noorkoiv, A. Stavnsbo, P. Aagaard, and A. J. Blazevich, “In vivo assessment of muscle fascicle 

length by extended field-of-view ultrasonography,” vol. 109, pp. 1974–1979, 2010. 

[12] R. R. Scholten, S. Pillen, and A. Verrips, “Quantitative ultrasonography of skeletal muscles in 

children: normale value,” vol. 27, pp. 693–698, 2003. 

[13] I. M. P. Arts, S. Pillen, H. J. Schelhaas, S. Overeem, and M. J. Zwarts, “Normal values for quantitative 

muscle ultrasonography in adults,” Muscle and Nerve, vol. 41, pp. 32–41, 2010. 

[14] J. G. Rosenberg, E. D. Ryan, D. Ph, E. J. Sobolewski, J. Michael, B. J. Thompson, G. E. King, and E. 

D. Ryan, “Reliability of Panoramic Ultrasound Imaging to Simultaneously Examine Muscle Size and 

Quality of the Medial Gastrocnemius,” Muscle and Nerve, vol. 49, pp. 736–740, 2014. 

[15] M. V. Narici, M. Flueck, A. Koesters, M. Gimpl, A. Reifberger, O. R. Seynnes, J. Niebauer, J. 

Rittweger, and E. Mueller, “Skeletal muscle remodeling in response to alpine skiing training in older 

individuals,” Scand. J. Med. Sci. Sport., vol. 21, pp. 23–28, 2011. 

[16] O. R. Seynnes, S. Kamandulis, R. Kairaitis, C. Helland, E.-L. Campbell, M. Brazaitis, A. Skurvydas, 

and M. V Narici, “Effect of androgenic-anabolic steroids and heavy strength training on patellar 

tendon morphological and mechanical properties.,” J. Appl. Physiol., vol. 115, pp. 84–9, 2013. 

[17] M. D. de Boer, O. R. Seynnes, P. E. di Prampero, R. Pišot, I. B. Mekjavić, G. Biolo, and M. V. Narici, 

“Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing 

and non-weight bearing muscles,” in European Journal of Applied Physiology, 2008, vol. 104, no. 2, 

pp. 401–407. 

[18] M. A. Minetto, C. Caresio, T. Menapace, A. Hajdarevic, A. Marchini, F. Molinari, and N. A. 

Maffiuletti, “Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older 

Adults,” PM R, vol. 8, pp. 453–462, 2016. 

[19] M. V Narici, C. N. Maganaris, N. D. Reeves, and P. Capodaglio, “Effect of aging on human muscle 

architecture.,” J. Appl. Physiol., vol. 95, pp. 2229–2234, 2003. 



Chapter 2  63 

 
[20] S. M. Agyapong-Badu S, Warner M, Samuel D, Narici M, Cooper C, “Anterior thigh composition 

measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: 

a potential biomarker for musculoskeletal health,” Physiol. Meas., vol. 35, p. 2165, 2014. 

[21] S. Pillen, I. M. P. Arts, and M. J. Zwarts, “Muscle ultrasound in neuromuscular disorders,” Muscle 

and Nerve. pp. 679–693, 2008. 

[22] Y. Takai, M. Ohta, R. Akagi, E. Kato, T. Wakahara, Y. Kawakami, T. Fukunaga, and H. Kanehisa, 

“Validity of ultrasound muscle thickness measurements for predicting leg skeletal muscle mass in 

healthy Japanese middle-aged and older individuals.,” J. Physiol. Anthropol., vol. 32, p. 12, 2013. 

[23] T. Abe, J. P. Loenneke, K. C. Young, R. S. Thiebaud, V. K. Nahar, K. M. Hollaway, C. D. Stover, M. 

A. Ford, M. A. Bass, and M. Loftin, “Validity of Ultrasound Prediction Equations for Total and 

Regional Muscularity in Middle-aged and Older Men and Women,” Ultrasound Med. Biol., vol. 41, 

pp. 557–564, 2015. 

[24] Y. Takai, M. Ohta, R. Akagi, E. Kato, T. Wakahara, Y. Kawakami, T. Fukunaga, and H. Kanehisa, 

“Applicability of ultrasound muscle thickness measurements for predicting fat-free mass in elderly 

population,” J. Nutr. Heal. Aging, vol. 18, pp. 579–585, 2014. 

[25] T. Abe, J. P. Loenneke, and R. S. Thiebaud, “Ultrasound assessment of hamstring muscle size using 

posterior thigh muscle thickness.,” Clin. Physiol. Funct. Imaging, vol. 36, pp. 206–210, 2016. 

[26] R. Akagi, Y. Takai, E. Kato, T. Wakahara, M. Ohta, H. Kanehisa, T. Fukunaga, and Y. Kawakami, 

“Development of an equation to predict muscle volume of elbow flexors for men and women with a 

wide range of age,” Eur. J. Appl. Physiol., vol. 108, pp. 689–694, 2010. 

[27] J. I. Esformes, M. V. Narici, and C. N. Maganaris, “Measurement of human muscle volume using 

ultrasonography,” Eur. J. Appl. Physiol., vol. 87, pp. 90–92, 2002. 

[28] M. Ogawa, N. Mitsukawa, M. G. Bemben, and T. Abe, “Ultrasound assessment of adductor muscle 

size using muscle thickness of the thigh.,” J. Sport Rehabil., vol. 21, pp. 244–8, 2012. 

[29] Y. Takai, Y. Katsumata, Y. Kawakami, H. Kanehisa, and T. Fukunaga, “Ultrasound method for 

estimating the cross-sectional area of the psoas major muscle,” Med. Sci. Sports Exerc., vol. 43, pp. 

2000–2004, 2011. 

[30] R. Lieber and J. Fridén, “Functional and clinical significance of skeletal muscle architecture.,” Muscle 

and Nerve, vol. 23, pp. 1647–1666, 2000. 

[31] E. Azizi, E. Brainerd, and T. Roberts, “Variable gearing in pennate muscles,” Proc Natl Acad Sci U S 

A, vol. 105, pp. 1745–1750, 2008. 

[32] M. V Narici, T. Binzoni, E. Hiltbrand, J. Fasel, F. Terrier, R. Fisiologia, T. Biomediche, and C. 

Nazionale, “In vivo human gastrocnemius architecture with changing joint angle at rest and during 

graded isometric contraction,” vol. 496, pp. 287–297, 1996. 

[33] M. Ito, Y. Kawakami, Y. Ichinose, S. Fukashiro, and T. Fukunga, “Nonisometric behavior of fascicles 

during isometric contractions of human muscles.,” J. Appl. Physiol., vol. 85, pp. 1230–1235, 1998. 

[34] Y. Kawakami, T. Abe, and T. Fukunaga, “Muscle–fiber pennation angles are greater in hypertrophied 

than in normal muscles.,” J. Appl. Physiol, vol. 74, pp. 2740–2744, 1998. 

[35] C. N. Maganaris, V. Baltzopoulos, and A. J. Sargeant, “measurements of the triceps surae complex 

architecture in man : implications for muscle function,” J. Physiol., vol. 512, pp. 603–614, 1998. 

[36] T. Fukunaga, Y. Ichinose, M. Ito, Y. Kawakami, and S. Fukashiro, “Determination of fascicle length 

and pennation in a contracting human muscle in vivo.,” J. Appl. Physiol., vol. 82, pp. 354–358, 1997. 

[37] T. Fukunaga, Y. Kawakami, S. Kuni, K. Funato, and S. Fukashiro, “Muscle architecture and function 

in humans.,” J. Biomech, vol. 30, pp. 457–463, 1997. 

[38] A. J. Blazevich, N. D. Gill, and S. Zhou, “Intra- and intermuscular variation in human quadriceps 

femoris architecture assessed in vivo,” J. Anat, vol. 209, pp. 289–310, 2006. 

[39] M. Ishikawa, T. Finni, and P. . Komi, “Behaviour of vastus lateralis muscle during high intensity SSC 



64 Automated architectural analysis in skeletal muscle ultrasound imaging 

 
exercise in vivo.,” . Acta Physiol. Scand., vol. 178, pp. 205–213, 2004. 

[40] S. Kurokawa, T. Fukunaga, and S. Fukashiro, “Behavior of fascicles and tendinous structures of 

human gastrocnemius during vertical jumping.,” J. Appl. Physiol, vol. 80, pp. 1349–1358, 2001. 

[41] Y. Ichinose, Y. Kawakami, M. Ito, H. Kaneshia, and T. Fukunga, “In vivo estimation of contraction 

velocity of human vastus lateralis muscle during ‘“isokinetic”’ contraction.,” . J. Appl. Physiol., vol. 

88, pp. 851–856, 2000. 

[42] T. Muraoka, Y. Kawakami, M. Tachi, and T. Funkunga, “Muscle fiber and tendon length changes in 

the human vastus lateralis during slow pedaling.,” J. Appl. Physiol., vol. 91, pp. 2035–2040, 2001. 

[43] J. Wakeling, K. Uehli, and A. Rozitis, “Muscle fibre recruitment can respond to the mechanics of the 

muscle contraction.,” J. R. Soc. Interface, vol. 3, pp. 533–544, 2006. 

[44] R. M. Alexander and A. Vernon, “The dimension of knee and ankle muscles and the forces they 

exert.,” J. Hum. Mov. Stud., vol. 1, pp. 115–123, 1975. 

[45] C. Gans, “Fiber architecture and muscle function.,” Exerc. Sport. Sci. Rev., vol. 10, pp. 160–207, 1982. 

[46] J. Ahtiainen, M. Hoffren, J. Hulmi, M. Pietika¨inen, A. Mero, J. Avela, and K. Ha ̈ kkinen, “Panoramic 

ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area,” Eur J 

Appl Physiol, vol. 108, pp. 273–279, 2010. 

[47] J. M. Scott, D. S. Martin, R. Ploutz-snyder, T. Matz, T. Caine, M. Downs, R. Buxton, J. W. Ryder, 

and L. Ploutz-snyder, “Panoramic ultrasound : a novel and valid tool for monitoring change in muscle 

mass,” J. Cachexia. Sarcopenia Muscle, vol. 8, pp. 475–481, 2017. 

[48] K. D. Seymore, Z. J. Domire, P. Devita, P. M. Rider, and A. S. Kulas, “The effect of Nordic hamstring 

strength training on muscle architecture , stiffness , and strength,” Eur. J. Appl. Physiol., vol. 117, pp. 

943–953, 2017. 

[49] K. Tayashiki, K. Hirata, K. Ishida, and H. Kanehisa, “Associations of maximal voluntary isometric 

hip extension torque with muscle size of hamstring and gluteus maximus and intra ‑ abdominal 

pressure,” Eur. J. Appl. Physiol., vol. 117, pp. 1267–1272, 2017. 

[50] R. R. Estes, A. M. Y. Malinowski, M. Piacentini, D. Thrush, E. Salley, C. Losey, and E. Hayes, “The 

Effect of High Intensity Interval Run Training on Cross- sectional Area of the Vastus Lateralis in 

Untrained College Students,” Int. J. Excersise Sci., vol. 10, pp. 137–145, 2017. 

[51] M. N. M. Blue, A. E. Smith-Ryan, E. T. Trexler, and K. R. Hirsch, “The effects of high intensity 

interval training on muscle size and quality in overweight and obese adults,” J. Sci. Med. Sport, pp. 1–

6, 2017. 

[52] S. Sipilä and H. Suominen, “Ultrasound imaging of the quadriceps muscle in elderly athletes and 

untrained men.,” Muscle and Nerve, vol. 14, pp. 527–533, 1991. 

[53] T. K. K. Koo, C. Wong, and Y. Zheng, “Reliability of Sonomyography for Pectoralis Major Thickness 

Measurement,” J. Manipulative Physiol. Ther., vol. 33, pp. 386–394, 2010. 

[54] A. Wong, K. M. Gallagher, and J. P. Callaghan, “Computerised system for measurement of muscle 

thickness based on ultrasonography,” Comput. Methods Biomech. Biomed. Engin., vol. 16, pp. 1–7, 

2012. 

[55] P. Han, Y. Chen, L. Ao, G. Xie, H. Li, L. Wang, and Y. Zhou, “Automatic thickness estimation for 

skeletal muscle in ultrasonography: evaluation of two enhancement methods.,” Biomed. Eng. Online, 

vol. 12, p. 6, 2013. 

[56] S. Ling, Y. Zhou, Y. Chen, Y. Q. Zhao, L. Wang, and Y. P. Zheng, “Automatic tracking of aponeuroses 

and estimation of muscle thickness in ultrasonography: A feasibility study,” IEEE J. Biomed. Heal. 

Informatics, vol. 17, pp. 1031–1038, 2013. 

[57] M. Rana, G. Hamarneh, and J. M. Wakeling, “Automated tracking of muscle fascicle orientation in B-

mode ultrasound images,” J. Biomech., vol. 42, pp. 2068–2073, 2009. 

[58] N. J. Cronin, C. P. Carty, R. S. Barrett, and G. Lichtwark, “Automatic tracking of medial 



Chapter 2  65 

 
gastrocnemius fascicle length during human locomotion standing balance Automatic tracking of 

medial gastrocnemius fascicle length during human locomotion,” JJ App Physiol, vol. 111, pp. 1491–

1496, 2015. 

[59] J. Darby, E. F. Hodson-tole, N. Costen, and I. D. Loram, “Automated regional analysis of B-mode 

ultrasound images of skeletal muscle movement Automated regional analysis of B-mode ultrasound 

images of skeletal muscle movement,” J Appl Physiol, vol. 112, pp. 313–327, 2015. 

[60] Y. Zhou, J. Li, G. Zhou, and Y. Zheng, “Dynamic measurement of pennation angle of gastrocnemius 

muscles during contractions based on ultrasound imaging,” Biomed. Eng. Online, vol. 11, pp. 9–11, 

2012. 

[61] G. Zhou, P. Chan, and Y. Zheng, “Automatic measurement of pennation angle and fascicle length of 

gastrocnemius muscles using real-time ultrasound imaging,” Ultrasonics, vol. 57, pp. 72–83, 2015. 

[62] L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Scale and the 

differential structure of images,” Image Vis. Comput., vol. 10, pp. 376–388, 1992. 

[63] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern., 

vol. 9, pp. 62–66, 1979. 

[64] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” 

Comm. ACM, vol. 15, pp. 11–15, 1971. 

[65] C. N. Maganaris and V. Baltzopoulos, “Predictability of in vivo changes in pennation angle of human 

tibialis anterior muscle from rest to maximum isometric dorsiflexion.,” Eur. J. Appl. Physiol. Occup. 

Physiol., vol. 79, pp. 294–297, Feb. 1999. 

[66] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. a Viergever, “Multiscale vessel enhancement 

filtering,” Medial Image Comput. Comput. Invervention - MICCAI’98. Lect. Notes Comput. Sci. vol 

1496, vol. 1496, pp. 130–137, 1998. 

[67] F. H. Sheehan, E. L. Bolson, H. T. Dodge, D. G. Mathey, J. Schofer, and H. W. Woo, “Advantages 

and applications of the centerline method for characterizing regional ventricular function.,” 

Circulation, vol. 74, pp. 293–305, 1986. 

[68] L. Saba, F. Molinari, K. M. Meiburger, M. Piga, G. Zeng, U. Rajendra Achraya, A. Nicolaides, and J. 

S. Suri, “What is the correct distance measurement metric when measuring carotid ultrasound intima-

media thickness automatically?,” Int. Angiol., vol. 31, pp. 483–489, 2012. 

[69] L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,” Ecology, vol. 26, 

pp. 297–302, 1945. 

[70] P. Jaccard, “The distribution of the flora in the alpine zone,” New Phytol., vol. 11, pp. 37–50, 1912. 

[71] T. Abe, R. S. Thiebaud, J. P. Loenneke, M. Loftin, and T. Fukunaga, “Prevalence of site-specific thigh 

sarcopenia in Japanese men and women,” Age (Omaha)., vol. 36, pp. 417–426, 2014. 

 

 

  



66 Automated architectural analysis in skeletal muscle ultrasound imaging 

 

 

 

 

 

 



  

 

Chapter 3 

Quantitative skeletal muscle 

ultrasound imaging 

 

Part of this chapter has been published as: 

C. Caresio, F. Molinari, G. Emanuel and M.A. Minetto, Muscle echo intensity: 

reliability and conditioning factors., Clin Physiol Funct Imaging, 2015;35: 393–

403. 
 

 and  
 

F. Molinari, C. Caresio, U.R. Acharya, M.R.K. Mookiah and M.A. Minetto, 

Advances in Quantitative Muscle Ultrasonography Using Texture Analysis of 

Ultrasound Images., Ultrasound Med Biol, 2015, 41: 2520–2532. 

 

 

 

 



68 Quantitative skeletal muscle ultrasound imaging 

 

  



Chapter 3  69 

 

3.1 Introduction  

As previously mentioned in Chapter 2, B-Mode ultrasonography is an enabling 

diagnostic technique for the architectural characterization of skeletal muscles. 

Muscle ultrasound is a convenient, for its cost and safety, in the study of both 

normal healthy and pathological muscles tissue [1].  

Along the transversal projection, where the cross-sectional area is visible, 

normal healthy muscles appear darker, i.e. have low echo intensity, compared to 

the aponeuroses and the subcutaneous tissue layer. Skeletal muscles exhibit an 

internal characteristic pattern of fibrous endomysial tissue, which appear white at 

the ultrasound examination. The interaction between the ultrasound beam and the 

endomysium generates hyperechoic reflections, caused by the difference of 

acoustical impedance.  Healthy muscle usually contains only little fibrous tissue 

and few reflections, which can be qualitatively evaluated in the clinical practice.   

The normal muscle structure can be disrupted in myopathic and neuropathic 

diseases and muscle disorders [2]–[7] by the presence of fat and fibrous 

infiltrations, resulting in the increase of muscle reflections. Infiltrations can present 

a specific distribution within the muscle [1], [4]. According to recent studies, the 

muscle overall echogenicity appears homogenous in myopathies and 

inhomogeneous in neuropathies [2], [5], but this evaluation can only be performed 

visually. 

Fat infiltrations within the muscle is better known, in clinical practice, with the 

name of myosteatosis [8], [9]: body fat accumulation during weight gain (obesity) 

or for metabolic disorders (diabetes, hormone deficit or excess), sedentary and 

aging [10] are related to the increase of ectopic storage of adipose tissue within 

skeletal muscle, with a consequent functional impairment.    

Muscle quality can be assessed quantitatively through the gray-scale analysis 

of a given region of interest (ROI) with the extraction of the Mean Echo Intensity 

(MEI). Upper and lower limbs muscles are usually investigated in the study of 

skeletal muscle disorders.  The ROI is usually manually placed by an expert 
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operator, selected to include as much of the muscle as possible avoiding the 

surrounding epymisium and bones, and it often corresponds to the visible cross-

sectional area (VCSA) displayed by the ultrasound transducer in conventional B-

mode ultrasonography and already discussed in Chapter 2 [3], [6], [11].    

However, the use of muscle echo intensity in the characterization of muscle 

quality presents a considerable number of limitations. First of all, there is no 

specific state of art in the computation of MEI in terms of ROI size, shape and 

location. In fact, MEI obtained by the VCSA can by biased by the presence of 

internal fasciae (as in the case of the tibialis anterior or the rectus femoris); besides, 

the choice of the ROI plays a fundamental role in the muscle inhomogeneity 

investigation.  Moreover, MEI computation is critically influenced by the 

ultrasound system settings in terms of gain [12]–[14], making difficult data 

comparisons in multicenter trials.  This aspect impedes the creation of a standard 

MEI values database for healthy controls and limits the comparison with myopatic 

and neuropatic patients only to stand-alone US device-dependent studies.  

Finally, the characteristic generated by the presence of intramuscular fat and 

fibrous tissue in endocrine, myopatic or neuropathic diseases cannot be fully 

described using a mean luminance gray level value, since this parameter is unable 

to detect the fine “coarseness” also called texture, of the US muscle images.  

Compared to first order descriptors, as MEI, which are extracted from the 

luminance histogram of the image, higher-order texture features offer better 

characterization performance [15], [16], since they are intensity invariant [17]–[19] 

and proven to be informative in the investigation of animal intramuscular fat 

content [20], in  human studies of  arterial surface roughness [21], [22], breast 

[23]and ovarian tumors [15], [24], thyroid lesions [17], [25] and liver images [26], 

[27].  

Few previous works have attempted to develop quantification methods to 

overcome the limitation of MEI in measuring the image texture. Maurits et al. 

proposed quantitative variables, obtained by density analysis able to characterize 
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the presence of patches of high echogenicity, to differentiate between myopathies 

and neuropathies [2] and to distinguish between healthy muscles and 

neuromuscular diseases [28]. Gdynia et al. used the muscle echo intensity, the first 

order entropy, and the fractal dimension to analyze the ultrasound images of tibialis 

anterior and medial gastrocnemius muscles of healthy patients and patients affected 

by myopathies and motor neuron disorders to distinguish between healthy and 

pathological muscles [29]. 

To the best of our knowledge, in previous studies, only linear and first-order 

descriptors are used to characterize the texture of different skeletal muscles.  

Moreover, no previous study has been proposed in the characterization of muscle 

texture between healthy subjects and pathological patients.  

In this chapter, an initial study on skeletal muscle quantification with MEI in 

healthy subjects with the use of different size and location of manual ROIs selection 

is reported [30]. In a second study, we characterized the image texture of five 

skeletal muscles of healthy men and women using different texture features.  

In the last part of the chapter, a preliminary study on automatic muscle VCSA 

characterization by texture analysis is proposed in the differentiation of healthy and 

pathological muscles. 

 

3.1 Muscle echo intensity reliability assessment on healthy 

controls  

3.1.1 Materials and Methods 

Twenty volunteers (10 females, 26.0 ± 2.3 years, body mass index: 20.7 ± 2.2 

kg/m2 and 10 males, age 30.2 ± 5.6 years; body mass index 23.3 ± 2.6 kg/m2 ) whose 

status was assessed by clinical examination, were examined to assess the reliability 

of MEI on healthy controls.  Both sides of the following five muscles were 

investigated: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and 
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medial gastrocnemius.  For each muscle, three consecutive scans were acquired. 

Detailed description of the ultrasound setting device and protocol are reported in 

APPENDIX A and B. 

 A VCSA ROI, called hereinafter “maximum ROI”, was chosen in each scan to 

include as much as the muscle as possible, without bone and perimysial layer.  

In Fig. 3.1 maxima ROIs examples are shown in the medial gastrocnemius 

(panel A) and tibialis anterior (panel C) for a representative subject. Furthermore, 

Figure 3. 2: Example of extraction and MEIs computation on 4 ROIs of tibialis anterior muscle.  

A: inferior ROI; B: superior ROI; C maximum-squared ROI; D maximum ROI. 

    

Figure 3. 1: Examples of maxima ROIs extracted from medial gastrocnemius (panel A) and tibialis 

anterior (panel C) compared with maxima ROIs and the 9 concentric ROIs automatically obtained 

(panel B and D).  
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a rectangular ROI was chosen in each scan to include as much of the muscle as 

possible without any bone or surrounding fascia. We named this ROI as “maximum 

rectangular ROI”. A series of nine rectangular concentric ROIs to the maximum 

were obtained by progressively decreasing the side by 10%. Figure 1 reports 

examples of all rectangular ROIs (n=10) considered in the medial gastrocnemius 

and tibialis anterior muscles (panels B and D). Additionally, two other ROIs were 

chosen in the tibialis anterior to compare the MEI among the following four ROIs 

presenting different shape, size, and position, as reported in Fig. 3.2: square-shaped 

ROI positioned in the lower muscle portion vs rectangular-shaped ROI positioned 

in the upper muscle portion vs maximum rectangular ROI vs maximum ROI.  

 

Figure 3. 2: Example of extraction and MEIs computation on 4 ROIs of tibialis anterior muscle. Panel 

A: square-shaped ROI positioned in the lower muscle portion; panel B: rectangular-shaped ROI 

positioned in the upper muscle portion; panel C maximum-squared ROI; panel D maximum ROI. 
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Using the same approach, MEI of two different portions of the rectus femoris 

was also assessed: lateral portion of the muscle vs median portion of the muscle, 

compared with the bigger ROIs previously described in Fig. 3.3. The dimension of 

70 mm2 and 165 mm2 and the position of the former two ROIs for tibialis anterior 

and rectus femoris respectively were chosen to be the same in all subjects. Echo 

intensity reliability across the different sized ROIs (n=11: 10 rectangular ROIs + 1 

maximum ROI) considered in each scan was assessed using ICC(2,1) since it 

estimates the intra-image reliability (agreement). The coefficient of variation (CV 

%) was also calculated. Echo intensity reliability across the three scans acquired 

from each muscle was assessed using ICC(3,1) since it estimates the inter-image 

reliability (consistency). Further details in the choice of the sampling size can be 

found in [30]. 

All the statistical analysis was conducted applying non-parametric tests: the 

Mann-Whitney U test was used for comparisons between the two genders and 

Figure 3. 3: Example of extraction and MEIs computation on 4 ROIs of rectus femoris muscle.  

Panel A: lateral ROI; panel B: medial ROI; panel C maximum-squared ROI; panel D maximum ROI. 
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between maxima ROIs (maxima ROIs vs maxima rectangular ROIs), while the 

Kruskal-Wallis ANOVA (followed by Dunn’s post-hoc test) was adopted for 

comparing muscle echo intensity among the five muscles and among the four ROIs 

considered in the tibialis anterior and rectus femoris muscles. 

3.1.2 Results 

ICC(2,1) agreement among different sized ROIs ranged from 0.542 to 0.860 

and CV values ranged from 6-7% to 11-5 % (Table 3.1).  ICC(3,1) consistency 

among equal sized ROIs of the three scans was function of the ROI size. As shown 

in Fig. 3.4, MEI consistency across different scans and ROI size present a non-

linear relationship for all muscles. In general, a ROI dimension of 9-6 % of the 

maximum ROI (or 16% of the maximum rectangular ROI) is sufficient to obtain 

ICC(3,1) higher than 0.7 (considered good). MEI reliability between rectangular 

ROIs and maxima ROIs was confirmed by the CV (< 10% in all muscle). 

Since no significant differences in MEI were observed between the dominant 

and non-dominant sides (P > 0.05, data not reported), pooled data for the two sides 

were used in the comparison between ROIs and genders. 

Comparisons between maxima rectangular ROIs and maxima ROIs for pooled 

data from males and females (data reported in [30]) shows that MEIs of only biceps 

brachii and tibialis anterior were significantly higher for the maxima rectangular 

ROIs (no significant comparison were found for rectus femoris, vastus lateralis and 

medial gastrocnemius ROIs) 
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In Table 3.2, MEI appears to be comparable between maxima ROIs and 

maxima rectangular ROIs for all the muscles. Moreover, females’ MEI was higher 

than males for rectus femoris, tibialis anterior and medial gastrocnemius, while 

comparable for biceps brachii and vastus lateralis.   

In the comparison of muscle compartments, the analysis of the whole group of 

twenty subjects showed that the MEI was comparable (P > 0.05) among three 

portions of the tibialis anterior (inferomedial portion, maximum rectangular ROI, 

maximum ROI), while it was significantly lower (P < 0.05) for the ROI positioned 

in the upper portion compared to the maximum rectangular ROI. In the same way, 

the analysis extended to the whole group of subjects proved that the rectus femoris 

MEI was comparable (P > 0.05) among three portions of the rectus femoris (lateral 

Scan 
Biceps 

brachii 

Medial 

gastrocnemius 

Rectus 

femoris 

Tibialis 

anterior 

Vastus 

lateralis 

 R L R L R L R L R L 

1  
0.73 

(7.7) 

0.79 

(6.7) 

0.67 

(8.7) 

0.54 

(7.1) 

0.82 

(8.6) 

0.86 

(10.7) 

0.74 

(9.6) 

0.76 

(11.5) 

0.76 

(9.5) 

0.68 

(7.8) 

2 
0.72 

(7.9) 

0.72 

(7.1) 

0.68 

(9.6) 

0.70 

(7.4) 

0.84 

(9.5) 

0.78 

(7.9) 

0.62 

(10.4) 

0.68 

(10.3) 

0.71 

(9.2) 

0.72 

(8.0) 

3 
0.76 

(6.7) 

0.72 

(7.4) 

0.76 

(9.5) 

0.72 

(7.7) 

0.86 

(9.2) 

0.82 

(8.0) 

0.70 

(8.9) 

0.68 

(10.7) 

0.69 

(8.3) 

0.70 

(7.7) 

Table 3. 1: ICC(2,1) values calculated for each scan acquired from the two sides of the five muscles and 

respective CV (%). 

Figure 3. 4: ICC(3,1)  values among equal sized ROIs of the three scans as a function of the ROI size for 

the two sides and for all the muscles. 
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portion.; maximum rectangular; maximum ROI), while it was significantly higher 

(P < 0.05) for the ROI positioned in the median portion compared to both the 

maximum rectangular ROI and the maximum ROI.  

 

3.1.3 Discussion 

In this first sonographic study, the relationship between muscle MEI and ROI 

size, shape and location was quantitatively investigated in five muscles (biceps 

brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius) 

in twenty healthy subjects. 

This is the first study showing that muscle echo intensity reliability was 

function of the ROI size and that MEI was comparable between maxima ROIs and 

Muscle 

Males Females 
Max 

ROI 

vs. 

Max 

rect ROI 

(P 

value) 

Males vs 

Females  

(P values) 

Max 

ROI 

Max rect 

ROI 

Max 

ROI 

Max 

rect ROI 
Max ROI 

Max 

rect ROI 

Biceps brachii 
63.6 

 (5.7) 

65.7 

(6.7) 

65.5 

(7.9) 

69.0  

(9.2) 
0.10 0.25 0.14 

Rectus femoris 
48.9 

 (6.9) 

48.7 

(7.2) 

53.3 

(5.5) 

53.6 

 (5.1) 
1.00 0.05 0.01 

Vastus lateralis 
48.2 

 (5.5) 

48.8 

(6.6) 

53.3 

(9.9) 

54.9 

(10.1) 
0.58 0.12 0.08 

Tibialis anterior 
58.7 

 (7.9) 

61.0 

(8.3) 

64.5 

(8.8) 

65.8 

 (9.0) 
0.31 0.03 0.07 

Medial 

gastrocnemius 
50.8 

 (6.5) 

51.6 

(6.6) 

53.8 

(6.5) 

54.8 

 (6.6) 
0.48 0.05 0.05 

Table 3. 2:  MEI (a.u.) for maxima ROIs: comparisons between ROIs and genders. 
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maxima rectangular ROIs chosen to include as much of the muscle as possible while 

avoiding bones or surrounding fasciae.  

We found that the agreement between different sized ROIs ranged from 

moderate (ICC: 0.54) to high (ICC: 0.86) and that MEI consistency across the three 

scans acquired from each muscle ranged from high (ICC: 0.77) to very high (0.91) 

for maxima rectangular ROIs and maxima ROIs. These results were in line with 

previous findings and large groups of patients [11], [31]–[35]. 

The main implication of our findings is that a minimum dimension of the ROI 

(~10% of the maximum ROI or ~15% of the maximum rectangular ROI) is required 

for a reliable analysis of the muscle echo intensity. Nevertheless, we also observed 

a nonlinear relationship between MEI consistency and ROI size as well as a lack of 

differences in MEI between maxima ROIs and maxima rectangular ROIs. These 

findings imply that the selection of a ROI including the entire VCSA of a muscle 

through a manual or an automatic segmentation of the ultrasound image is not 

required for a reliable and valid estimation of the muscle MEI. 

Comparisons between the five muscles and between the two genders showed 

that: 

• the echo intensity was different between different portions of the rectus 

femoris and tibialis anterior muscles, probably due to the different 

proportion of fibrous tissue;  

• MEI of the biceps brachii and tibialis anterior muscles was higher than that 

of rectus femoris, vastus lateralis and medial gastrocnemius muscles, 

probably resulted from different architectural features within the muscles; 

• females had higher echo intensity than males, in line with previous 

observations [36]. The increase of MEI for females could be due to the 

higher degree of fibrous and adipose tissues content.  

In the same article [30] a positive correlation between MEI an and subcutaneous 

tissue layer thickness was found in three (rectus femoris, vastus lateralis and medial 
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gastrocnemius) out of five investigated muscles, as it was proved in previous works 

[8], [37], suggesting that muscle adaptations of cellular mechanisms regulating lipid 

storage play a role in determining the accumulation of fat in the intramuscular 

depots. On the other hand, it can be hypostatized that MEI does not accurately 

represent the ROI coarseness (since the distribution shape is lost and the 

lower/higher values are not very well represented) and/or it is not a valid marker of 

fibrous and adipose tissue content. Therefore, other descriptors may be required to 

unravel (in biceps brachii and rectus femoris) and improve (in the other muscles) 

the correlation between amount of subcutaneous fat and intramuscular fat deposit. 

In the following section, an advanced quantitative method based on texture analysis 

is proposed to find fine differences in muscles ultrasound architecture, ROI shape 

location and gender.  

 

3.2 Quantitative muscle ultrasonography using texture 

analysis in healthy subjects  

3.2.1 Materials and Methods 

In the current section built upon Molinari et al. [38], the same dataset of healthy 

patients, ultrasound procedure and investigated skeletal muscles already described 

in the previous section were taken into account. In this study, first order texture 

features based on the histogram of gray levels, Second Order (Haralick features, 

[39]) and High-Order statistical features (Galloway’s features, [40]) and Local 

Binary Patterns [41], [42] descriptors  have been used in the analysis of ultrasound 

texture of the five previously mentioned skeletal muscles, in female and male 

subjects.  
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To conduct the texture analysis, the following ROIs were manually placed in 

each image as shown in Fig. 3.5. ROIs dimensions were chosen to be the same for 

each subject. One ROI was chosen in the median portion of the biceps brachii (286 

mm2), vastus lateralis (338 mm2) and medial gastrocnemius (338 mm2), whereas 

two equal sized ROIs were chosen in the rectus femoris (named medialis RFmed and 

lateralis RFlat, 144 mm2) and tibialis anterior (named superior TAsup and inferior 

TAinf, 68 mm2) to include the largest part of the muscle without the central 

aponeurosis and the internal fascia. The mean of six measurements (one 

measurement per ROI for both sides) was used for comparison among muscles and 

Figure 3. 5: Examples of ROIs positioning for the 4 investigated muscles. Panel A: Rectus femoris, medial 

ROI (RFmed) – lateral ROI (RFlat); panel B: vastus lateralis; panel C: tibialis anterior, superior ROI 

(TAsup) – inferior ROI (TAinf); panel D: medial gastrocnemius.  
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between genders. From each ROI, a total of 53 features were extracted:  seven First 

Order Features (IOD, MEI, Standard Deviation, Variance, Skewness, Kurtosis and 

Energy1) six Haralick features repeated along the four principal directions 

(Symmetry, Contrast, Homogeneity, Entropy, Energy2 and Correlation), five 

Galloway’s features repeated along the four principal directions (Short Run 

Emphasis, Long Run Emphasis, Gray-level Non-Uniformity, Run-length Non 

Uniformity and Run Percentage) and two Local Binary Pattern parameters 

(LBPEnergy and LBPEntropy). Further details about the implementation of these texture 

parameters can be found in the APPENDIX C. Considering four muscles and two 

sides, a total of 742 features were extracted for each subject.  

Since the Shapiro-Wilk test for normal distributed variables failed, Mann-

Whitney U test and Kruskall-Wallis ANOVA (followed by the Dunn’s post hoc 

test) were used to compare features’ values among the different muscles.  The 

equality of the means among groups was tested conducting a Multivariate Analysis 

of the Variance (MANOVA). We tested the texture feature values against gender 

and against the muscle type. Collinear variables were removed by computing the 

Wilks’ lambda to avoid singularities in the observation matrix (further details of the 

statistical analysis can be retrieve in [38]). 

The optimal lambda value for our data set was found to be 0.35, since higher 

values lead to insufficient removal of collinear variables, whereas lower values 

discarded an excessive number of variables [43]. The number of groups the data 

belong can be obtain from the MANOVA’s dimension increased of 1.  Linear 

regression in the classification of subjects according to gender or muscle type was 

performed on the most significant features.  

3.2.2 Results 

The MANOVA analysis was not significant when the side dominance was the 

dependent variable, since dominant side texture features were correlated to the non-
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dominant side (p < 0.001).  Hence, variables of the two side were averaged and a 

total number of 371 features for each subject were considered.  

When the gender was considered as a dependent variable, 38 features were left 

after the collinear variable removal.  The MANOVA dimension was equal to 1 (p 

< 0.001), implying that, in the canonical variables hyperplane, the first canonical 

variable (CV1) is sufficient to separate the dataset in 2 groups according to gender, 

as shown in Fig. 3.6 (blue circles are males, red circle are females). The left column 

of Table 3.3 reports the 10 most discriminant image features between the two 

genders. First order and Galloway features were not significant (p > 0.2). Haralick 

features (Energy2, Entropy and Correlation), LBP Energy and Entropy were 

significantly higher (Haralick Energy2, p < 0.01) and lower (all other features, p < 

0.001) in men compared with women (data reported on [38]). By using those 10 

most discriminant features, we performed a classification of the patients based on 

the linear regression. All the patients were correctly classified, with sensitivity and 

specificity of 100% and an Area Under the Receiver Operating Curve (AUROC) 

equal to 1. 

Figure 3. 6: Representation of the patients in the plane of the first two canonical variables obtained by 

MANOVA. Texture features showed a clear separation of the patients based on the gender. 
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The MANOVA statistics was repeated, keeping 43 features after removing the 

collinear variables, considering the muscle as a dependent variable.  The MANOVA 

dimension was equal to 6 (p < 0.02), hence samples can be separated in 7 distinct 

groups and are represented in Fig. 3.7 in a plot showing CV1 vs. CV2 (panel A) 

and CV1 vs. CV3 planes (panel B).  The second column of Table 3.3 shows the first  

10 most significant discriminant features.  Galloway’s features (Gray-level 

Non-Uniformity, Run Length Non-Uniformity, Run Percentage, Short Run 

Emphasis), the Haralick’s parameters (Entropy and Symmetry) and the LBPentropy 

are the most important. No significant difference in the texture features was 

observed between the different ROIs of rectus femoris and tibialis anterior for all 

comparison (p > 0.05). Galloway features (Gray-level Non-Uniformity and Run 

Length Non-Uniformity) and the Haralick Entropy resulted higher (p < 0.05 for all 

comparisons) in biceps brachii, medial gastrocnemius and vastus lateralis muscles 

compared with rectus femoris and tibialis anterior muscles. The performance in 

classifying different muscles using the linear regression showed that the average 

sensitivity was equal to 76.4 ± 21.9%, the specificity to 97.7 ± 1.9%, and the 

AUROC to 0.976 ± 0.026. The two ROIs of the tibialis anterior were perfectly 

classified (AUROC = 1), and the worst performance was obtained in classifying the 

rectus femoris (AUROC = 0.936). 

Most discriminant features 

for gender 

Most discriminant features 

for muscle type 

Haralick energy ( = 0°, 45°, 90°, 135°) GLNU ( = 0°, 45°, 90°) 

Haralick entropy ( = 90°, 135°) Haralick entropy ( = 135°) 

LBPenergy LBPentropy 

Haralick correlation ( = 45°, 90°) RLNU ( = 135°) 

LBPentropy Haralick symmetry ( = 90°) 

 RP ( = 90°) 

 SRE ( = 0°, 90°) 

Table 3. 3 Texture features most discriminant between the two genders and among the five muscles in 

the MANOVA analysis; features listed in descending weight of the first canonical variable. 
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A further comparison between higher order features (Galloway’s and 

Haralick’s features) and first order descriptors was made conduction MANOVA 

analysis and the classification 7 first-order parameters. From our analysis, when 

gender is considered the independent variable, the males and females are still 

separated in the hyperplane of canonical variables but not that evidently as using 

also high order descriptors. The classification performance was excellent (100% 

sensitivity and specificity and AUROC of 1), suggesting that Haralick and LBP 

features did not improve the description of patients on the basis of gender. In the 

same way, Conducting the MANOVA when the muscle type is the independent 

variable and using the seven first-order descriptors leaded to an unclear separation 

among muscles; even if the dimension of the MANOVA was equal to 6 (p < 0.05) 

the classification performance was significantly lower compared to the complete 

high-order set of features (average sensitivity of 46.4 ± 32.3%, the specificity of 

97.3 ± 1.92% and AUROC of 0.907 ± 0.081). 

 

Figure 3. 7: Representation of the patients (A) in the plane of CV1 and CV2, and (B) in the plane of the 

CV1 and CV3 obtained by MANOVA. Different symbols and colors are used for the different muscles. 

The full symbols represent the males, the empty symbols the females. BB = biceps brachii; MG = medial 

gastrocnemius; VL = vastus lateralis; RF = rectus femoris; TA = tibialis anterior. 
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3.2.2 Discussion 

In this section, quantitative ultrasonography was performed in five muscles 

(biceps brachii, rectus femoris, vastus lateralis, tibialis anterior, medial 

gastrocnemius) of 20 healthy patients to assess the characterization performance of 

higher-order texture descriptors in the differentiation between genders and among 

muscles. 

This work shows that first-order descriptors, Haralick features (Energy2, 

Entropy and correlation measured along different angles), LBPenergy and LBPentropy 

were highly linked to the gender, whereas Haralick Entropy and Symmetry, 

Galloway texture descriptors and LBPEntropy where useful in the differentiation of 

muscles. It can be noticed that the texture descriptors considered alone do not have 

a very high discriminatory power. 

The main findings of the present study are listed in the following: 

• First-order and texture descriptors are comparable to the dominant and 

non-dominant side of each muscle (confirming the reliability of MEI, 

reported in [30]). 

• First-order features help to distinguish genders.  

• Galloway features quantify the coarseness of an image along a given 

direction and enable to distinguish different types of muscles. 

• Haralick and LBP features (in particular, Haralick Entropy and 

LBPEntropy) quantify the overall (Haralick Entropy) and local (LBP 

entropy) image homogeneity and distinguish both gender and muscle 

types. 

The first and second findings are confirmed by previous publications [6], [30], 

in particular, women MEI resulted to be higher than in men.  Therefore, the original 

contribution of this work is the observation that image homogeneity is lower in 

women compared with men (quantified by Haralick and LBP features) and 
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directional coarseness (quantified by Galloway features) enables the differentiation 

of skeletal muscles.  Difference in texture parameters are probably related to 

different portion of fibrous tissue and/or from different architectural features of the 

fascicles.  

The relationship between textural features and adipose and fibrous tissue 

content and distribution still need to be investigated in the detection of differences 

between healthy and pathological muscles; combination of different texture features 

could in the future in the prediction, diagnosis, monitoring and prognosis of 

myopathic disorders. A preliminary study regarding the possible detection of 

muscles texture disruption is proposed in the following section. 

 

3.3 Quantitative muscle ultrasonography using texture 

analysis in healthy subjects and pathological patients 

 In the present section, a further study on ultrasound muscle texture analysis is 

proposed.   The conclusive aim of this work is to provide a set of preliminary results 

in the comparison between healthy subjects and patients with endocrine disorders 

and myopathy (Acromegaly, GHD, Cushing’s syndrome, Obesity, Diabetes, 

Gender Dysphoria patients under hormones therapy), to assess the texture analysis 

capability in the distinction of healthy and pathological muscles, coupled with the 

automatic VCSA extraction provided by the TRAMA algorithm and described in 

Chapter 2.  Compared to the previous study, in the current work the VCSA texture 

of the four previously considered muscles has been extracted, without separating 

the compartments of rectus femoris and tibialis anterior muscles. With this study, 

we want to find out if the VCSA texture can, without any further processing on 

areas, differentiate between healthy and pathological bicompartmental muscles.    
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3.3.1 Materials and Methods 

In this study, the same control subjects and pathological patients already 

presented in Chapter 2 were considered; four skeletal-muscles were investigated on 

the dominant side during the ultrasound session: rectus femoris (29 controls, 21 

patients, 21 females, 29 males), vastus lateralis (36 controls, 14 patients, 21 

females, 29 males), tibialis anterior (20 controls, 30 patients, 28 females, 22 males), 

and medial gastrocnemius (29 controls, 21 patients, 24 females, 26 males). One 

scan of each muscle was taken in the transversal plan, and a total of 200 images 

Figure 3. 8: Examples of automatic VCSA performed by TRAMA algorithm in rectus femoris (panels 

A-B), vastus lateralis (panels C-D), for healthy (panels A-C) and endocrine pathological patients 

(panels B-D). 
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were acquired and the automatic VCSA provided by the TRAMA algorithm was 

extracted as shown in Fig. 3.8 for both healthy and pathological subjects.  Following 

the same procedure reported in the previous section, a total of 53 texture parameters 

were extracted from each VCSA:  seven First Order Features (IOD, MEI, Standard 

Deviation, Variance, Skewness, Kurtosis and Energy1) six Haralick features 

repeated along the four principal directions (Symmetry, Contrast, Homogeneity, 

Entropy, Energy2 and Correlation), five Galloway’s features repeated along the four 

principal directions (Short Run Emphasis, Long Run Emphasis, Gray-level non 

uniformity, Run-length Non-Uniformity and Run Percentage) and two Local Binary 

Pattern parameters (Energy and Entropy).  Compared to the previous study [38], 

VCSA were not divided in the corresponding superior and inferior tibialis anterior 

ROIs and medial and lateral rectus femoris ROIs, respectively.  

Since the previous work [38] demonstrated the ability of texture analysis in the 

differentiation of muscles according to the gender and type, two studies were 

conducted on the texture features capability in the distinction of pathological 

muscles from healthy ones:  considering, as an dependent variable, the presence of 

the myopathy, we firstly tested the difference between healthy vs pathological 

females and healthy vs pathological males; subsequently, we tested the difference 

between healthy vs pathological subjects for each muscle.  

Non-parametric Mann-Whitney U tests were used to compare paired features’ 

values.  As before, the equality of the means among groups was tested conducting 

a Multivariate Analysis of the Variance (MANOVA) and collinear variables were 

removed by computing the Wilks’ lambda to avoid singularities in the observation 

matrices. 

The optimal lambda value for our data set was found to be 0.56 for the 

comparisons between healthy and pathological patients according the gender and 

0.14 according to the muscle type, since higher values lead to insufficient removal 

of collinear variables, whereas lower values discarded an excessive number of 

variables. The number of groups the data belong can be obtain from the 
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MANOVA’s dimension increased of 1.  Linear regression in the classification of 

subjects according to gender or muscle type was performed on the most significant 

features. 

 

3.3.2 Results 

When the presence of myopathy was considered as a dependent variable and 

pooled data for the four muscles were considered, 25 features were left after the 

collinear variable removal for both the females and males groups.  The MANOVA 

dimension was equal to 1 (p < 0.05 for the females group, p<0.01 for the males 

group), implying that, in the canonical variables hyperplane, the first canonical 

variable (CV1) is sufficient to group the two datasets in healthy and pathological 

subjects, as shown in Figure 3.9 (diamonds markers are pathological, circles are 

healthy). Table 3.4 reports the 10 most discriminant image features for the two 

genders in the distinction between healthy and pathological patients.  

No First order variables were reported as significant for the comparisons, 

Haralick descriptors and Galloways features were the most discriminant.  Common 

features for both genders are 0°Energy and Short Run Emphasis 0° (for both gender 

Figure 3. 9: Representation of the controls and pathological patients, for female and male subjects, in 

the plane of the first two canonical variables (CV1 and CV2) obtained by MANOVA. The features do 

not allow for a clean-cut separation between the two groups. 
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significantly higher in patients group) and 0° Homogeneity (for both genders 

significantly higher in control group). Galloway’s Run Percentage in all directions 

are also significant higher in both patients’ groups, suggesting that texture changes 

in myopathies may occur along preferential directions for both female and male 

subjects. Haralick Correlation, along different directions, is significative different 

for both genders (90° higher and 45° lower for females, 0° higher and 135° lower 

for males). Nevertheless, the MANOVA classification performance was poor for 

the females group (sensitivity 44,3%, the specificity of 53.2% and AUROC = 0.40) 

and males group (sensitivity 43,2%, the specificity of 39.5% and AUROC = 0.41). 

 Taking as dependent variable the presence of myopathy, a further set of tests 

was conducted with males and females pooled data, for each muscle separately. 

 To perform the MANOVA, after the collinear variables removal, 43, 36, 20 

and 29 features were left for rectus femoris, vastus lateralis, tibialis anterior and 

medial gastrocnemius respectively. The dimension of the MANOVA was equal to 

1 for all muscle types (p < 0.05). Fig. 3.10 shows in four panels the results of the 

MANOVAs plotted in the canonical variables plane (CV1 vs CV2) for the 

considered muscles.  For all the four investigated muscles, MANOVA performance 

classification was excellent (AUROC = 1). In table 3.5 the first 10 most 

discriminant features for the four muscles in the separation between controls and 

patients are presented (p-value threshold fixed at 0.05).  The first 4 variables 

Most discriminant features 

for females group 

Most discriminant features 

for males group 

Haralick Energy ( = 0°) 

RP ( = 0°, 45°, 90°, 135°) 

SRE ( = 0°) Haralick Homogeneity ( = 0°, 45°) 

LBPentropy SRE ( = 0°) 

Haralick Correlation ( = 45°, 90°) Haralick Symmetry ( = 90°) 

Haralick Homogeneity ( = 0°) Haralick Correlation ( = 0°, 135°) 

Table 3. 4: Image features that are the most discriminant between healthy and pathological subjects for 

the two genders in the MANOVA analysis.  
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(Energy 0°, 45°, 90°, 135°) are common for all muscles, indicating that these 

variables are generally highly discriminant between healthy and pathological 

muscles. LBPentropy is significantly higher in healthy controls for vastus lateralis, 

tibialis anterior and media gastrocnemius; in the same way, LBPenergy is 

significantly higher in heathy control for rectus femoris, vastus lateralis and medial 

gastrocnemius; these findings suggest that the architectural aspect of healthy 

muscles can be detected and described by morphological operators.    Correlation 

0° for vastus lateralis, tibialis anterior and medial gastrocnemius and Correlation 

45° for rectus femoris are higher for normal subjects, reflecting the property of 

healthy muscles of being better organized and with a less chaotic texture, also 

confirmed by higher values of Homogeneity in different directions (90°, 135° for 

Figure 3. 10:  Representation of pooled healthy and pathological patients in the hyperplane of the canonical 

variables obtained by MANOVA. The texture features allowed the clear separation of the two groups for 

all the four muscles. 
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rectus femoris, 0°, 90°, 135° for the vastus lateralis and 0°, 45°, 90° for the medial 

gastrocnemius).  Galloway Short Run Emphasis 0° also presents higher values in 

healthy controls for rectus femoris, vastus lateralis and tibialis anterior, 

strengthening the hypothesis of higher pattern uniformity. On the other hand, both 

rectus femoris and tibialis anterior, whose two compartments have not been 

separated in the analysis, present a discriminant characteristic feature: Long Run 

Emphasis (45°) for rectus femoris and for tibialis anterior Haralick Entropy (45°, 

90°) present higher values in the pathological population. 

 From the reported results, a common texture features set for the discrimination 

between healthy and pathological muscles can be identified: the Haralick Energy 

parameter, computed along the 0° direction, shows significantly higher values in 

the control subjects both for genders and muscle type. 

Most discriminant 

features for 

rectus femoris 

Most 

discriminant 

features for 

vastus lateralis 

Most 

discriminant 

features for 

tibialis anterior 

Most 

discriminant 

features for 

medial 

gastrocnemius 

Haralick Energy ( = 0°, 45°, 90°, 135°) 

LRE ( = 45°) LBPentropy 

SRE ( = 0°) 

Haralick 

Homogeneity 

( = 0°, 90°, 135°) 

Haralick 

Homogeneity 

( = 0°, 45°, 90°) 

LBPenergy SRE ( = 0°) LBPenergy 

Haralick  

Correlation ( = 45°) 
Haralick Correlation ( = 0°) 

Haralick 

Homogeneity 

( = 90°, 135°) 

Haralick Entropy 

( = 45°, 90°) 
  

Table 3. 5: Most discriminant features between healthy and pathological patients for all the four muscle 

in the MANOVA analysis. 
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3.3.3 Discussion 

In the conclusive study on ultrasound skeletal muscle investigation, 

quantitative texture analysis was performed in five muscles (rectus femoris, vastus 

lateralis, tibialis anterior, medial gastrocnemius) of 116 subjects and to assess the 

characterization performance of higher-order texture descriptors in the 

differentiation between healthy and pathological for genders and among muscles. 

This work shows that a subset of texture descriptors can be used in the 

differentiation between healthy and pathological muscles.  

The main findings of the present work are listed in the following: 

• First-order descriptors are not significant in the differentiation between 

healthy and pathological subjects; 

• The clouds of healthy and pathological patients cannot be clearly 

separated in the hyperplane of canonical variables for both females and 

males;  

• Higher-order texture descriptors have higher weight in the classification: 

in particular, Haralick Energy, Correlation and Homogeneity, Short Run 

Emphasis, and LBP entropy are common for both gender and muscle 

type studies; 

• Haralick Energy is the most discriminant feature in all the performed 

classifications; 

• Classification of healthy and pathological subjects for bicompartimental 

muscles, such as rectus femoris and tibialis anterior, is made possible 

considering a further characteristic parameter (Long Run Emphasis of 

rectus femoris and Haralick Entropy for tibialis anterior).  

Compared to the previous findings [38], this analysis confirms that texture 

analysis performed on  muscle VCSA extraction can be used in the differentiation 

of healthy and pathological muscles. In particular, this study shows how texture 
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descriptors can have different weight in the classification procedure; nevertheless, 

texture descriptors have a small power, if taken as single entities. Some muscles, 

such as bicompartmental ones, need the extraction of at least one more descriptor 

compared to mono-compartmental muscles.  

In a recent medline of 2017, only three published works have applied texture 

analysis in skeletal muscle ultrasound diagnostic procedures. Sogawa et al. [44] 

have demonstrated the ability of MEI in the differentiation between healthy and 

pathological medial gastrocnemius muscles; moreover, they have demonstrated that 

high texture descriptors (Haralick and Galloway features) are effective in the 

distinction between neurogenic and myogenic groups. The present study partly 

confirms these findings, showing that a clear separation between healthy and 

pathological medial gastrocmenius is achieved extracting Haralick and LBP 

features.  

In another work, Martinez-Payà et al. [45], first order descriptors and Haralick 

features combined with muscle architectural parameters were used and considered 

as biomarkers in the classification of amyotrophic lateral sclerosis in biceps 

brachialis, forearm flexor, quadriceps femoris, and tibialis anterior muscle groups.  

Lastly, Matta et al. [46] used Haralick descriptors in the assessment of biceps 

brachii muscle damage induced by eccentric-exercise, finding that Haralick 

Correlation significantly increased few hours after training.   Even if muscle 

damage is related to an inflammatory process and has been proven to increase the 

muscle ultrasound MEI, in the present study healthy patients have higher values of 

Haralick correlation compared to pathological subjects. These findings may suggest 

that correlation itself can highlight differences between inflammation and muscle 

disorders and should be considered together with a larger number of descriptors to 

provide a better classification performance. 
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3.4 Conclusions 

In this Chapter, a complete quantitative characterization in skeletal muscles 

ultrasonography is proposed, starting from the MEI state-of-the-art muscle quality 

to the application of a fully automated strategy in the assessment of healthy and 

pathological muscles by high-dimensional agnostic texture descriptors. 

The presented study shows how automated segmentation coupled with texture 

analysis can provide information “beyond the surface” of an image, and how image 

data can improve the muscle disorders diagnosis; this approach could be find 

application in automatic diagnosis on ultrasound scanners.  

In the future, semantic and agnostic attributes on ultrasound skeletal muscles 

could be stored in databases and mined with dedicated bioinformatic algorithms to 

provide prognostic and predictive results for personalized medicine. 
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4.1 Introduction  

Tumor vasculature plays a fundamental role in cancer growth and evolution 

[1]–[2]. At any evolution stage, cancers are highly oxygen and nutrients demanding 

[3]; consequently, they produce a considerable quantity of angiogenic growth 

factors (i.e. Ang-1 and VEGF) that stimulate neo-vessels formation, which rapidly 

branch out from the existing vasculature through a process called angiogenesis [4]. 

Compared to healthy tissues, tumor angiogenesis usually incurs excessively dilated, 

malformed, and chaotic blood vessels [5]. In particular, malignant tumors present a 

dense, tortuous and usually incomplete vascular network [6], which needs to be 

better understood in the clinical practice for the assessment and characterization of 

tumor malignancy and for monitoring vascular abnormalities.  

Several imaging techniques are currently used within the clinical practice in the 

assessment of tumor vascularity, such as contrast-enhancement computed 

tomography (CT) [7] and magnetic resonance imaging (MRI) [8]. Both techniques 

present excellent spatial and contrast resolution and are specifically optimized in 

the detection of blood vessels morphology, but they present a few downsides, such 

as the CT ionizing radiations and the MRI high cost and highly toxic contrast agents 

[9], [10].  

In recent times, Power Doppler UltraSound (PDUS) and Contrast-

Enhancement UltraSound (CEUS) have been used in the investigation of cancer 

vasculature development, taking advantage of the ultrasound imaging safety and 

convenience [11], [12].  

CEUS imaging implies the use of Ultrasound Contrast Agents (UCAs), able to 

increase contrast within the vessels compared to the parenchymal surrounding 

tissue. Given the size of the bubbles (smaller than red blood cells), this technique 

can depict details with an excellent spatial resolution (10 µm). On the other hand, 

the Doppler imaging, even though with lower resolution (200-300 µm), encodes the 

strength of the Doppler signal which directly subjects to the amount of blood 

flowing in the tumor vascular network. 
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In the past years, previous works have already been proposed in the 

quantification of tumor vasculature. Hoyt et al. developed a volumetric strategy for 

real-time monitoring and characterization of tumor blood flow using CEUS 

imaging [13]. They found that CEUS imaging is a promising modality for 

monitoring changes in tissue perfusion and may prove clinical feasibility for 

detecting and monitoring the early antitumor effects in response to cancer drug 

therapy. Gerst et al. performed a study to determine whether preoperative CEUS 

imaging can be used to differentiate benign renal tumors from carcinoma [14]. They 

found that ultrasound features of gray-scale heterogeneity and perfusion curve 

parameters can be used in the differentiation carcinoma and non–clear cell renal 

tumors. Wu et al. [15] quantified the Power Doppler signal on cervical 

lymphadenopathy and calculated the vascular voxels’ density to assess the tumor 

vascularity. In this study several types of vascular patterns both benign and 

malignant were recognized, and the main conclusion was that higher values of 

vascular density may be related to higher malignancy grade. Finally, Huang et al. 

extracted several quantitative features from 3-D PDUS imaging of breast cancer, 

demonstrating a correlation between the morphology of blood vessels and tumor 

malignancy [16]. Moreover, CEUS and PDUS techniques have been both applied 

in the vascular features extraction and computation of vascularity indices of 

malignancy [17][18].  However, quantification is often limited to the count of the 

visible vessels number (VN) or the computation of the Micro Vascular Density 

(MVD). Since both benign and malignant tumors may present the same values of 

VN and MVD, these parameters may be insufficient for the accurate differentiation 

of benign and malignant thyroid tumors. Vascular features quantification can 

objectively and completely characterize the chaotic patter the cancerous 

vasculature, and enables the differentiation between benign and malignant tumors.  

Among the tumor formations investigate in clinical practice, thyroid nodules 

are particularly suitable for ultrasound imaging [19], [20], since thyroid is a 

superficial organ with no superimposed dense (i.e. highly-attenuating) structures. 
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Thyroid nodules are abnormal growths of thyroid cells that form a lump within the 

thyroid gland and are commonly diagnosed in clinical practice (up to 50% of the 

worldwide population). Even if the number of new thyroid cancers has considerably 

risen in the last decade, only 5% of thyroid nodules are malignant (incidence: 2.1%, 

mortality 0.5%, [21]).  

Although the great majority of thyroid nodules are benign (noncancerous), a 

small proportion of thyroid nodules contain thyroid cancer [22]. Differential 

diagnosis is, therefore, of extreme importance for a correct treatment of the nodule. 

Conventional ultrasound imaging has a moderate diagnostic accuracy (sensitivity: 

68-100%, specificity: 67-94%, [23]) in the differentiation of thyroid nodules, and it 

must be coupled to fine needle aspiration (FNA) biopsy. However, FNA biopsy is 

an invasive procedure subjected to inconclusive diagnosis in about 25% of the 

cases, possibly leading to overtreatment and unneeded surgery. 

PDUS imaging and CEUS imaging techniques have a consolidate clinical 

background in thyroid cancer diagnosis and in functional imaging studies for their 

spatial and temporal resolution [24]. Both techniques evaluate the specific 

characteristics of the vascularity associated with thyroid nodules. 

In previous works, quantitative 2-D CEUS imaging has been proven to be 

effective in the assessment of thyroid nodules [17],[25]–[27] ; all the cited methods 

are based on perfusion curves, enhancement patterns, signal intensity and nodules 

area measurements.  Quantitative 2-D PDUS imaging found application in  the 

detection of malignant lesions by means of the computation of a Doppler Vascular 

Index [28].  To the best of our knowledge, 3-D  CEUS quantitative geometrical 

analysis of thyroid nodules has only proposed by Molinari et al. [29] and this study 

represents a further step in the characterization of thyroid lesions, extending the 

analysis to the 3-D PDUS imaging.  

In this work, a volume processing and geometrical features extraction algorithm 

are described to study the correlation between thyroid tumors vascularity and 

malignancy; moreover, a performance comparison between 3-D PDUS and 3-D 
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CEUS techniques in malignancy characterization is proposed. Since both imaging 

modalities provide images in which the functionality of the tumor is more 

outstanding rather than the morphological aspect, we adopted a pipeline-steps 

strategy to transform the original volumes into a set of interconnected single-voxel 

skeletons. The tumor vasculature is assessed by the automatic extraction of 7  

vascular features, partly reported in previous works [16], [29]. Extracted features 

are the number of vascular trees (NT), number of branching (NB), vascular volume 

density (VVD), and three tortuosity measures, namely Distance Metric (DM), 

Inflections Count Metric (ICM) and Sum Of Angles Metric (SOAM). One further 

parameter, called Spatial Vascular Pattern (SVP) and related to the geometrical 

location of tumor vessels, has been automatically detected from the vasculature 

[30].  For each feature, we compared the value extracted from CEUS and PDUS 

volumes to prove its statistical significance. Finally, the diagnosis using these seven 

features in classification of benign and malignant tumors was performed using 

MANOVA. The implemented strategy enables the objective assessment of tumor 

vasculature, and suggest that the proposed morphological features can have clinical 

impact in thyroid nodules classification, for both the PDUS and the CEUS 

techniques. 

 

4.2 Materials and Methods  

Subjects and acquisition settings  

Twenty patients (3 Males, age 43.0 ± 10.4, range 31 – 49 years, 17 Females, 

age 46,0 ± 13.2, range 31 – 75 years) with a previous diagnosis of solitary solid 

thyroid nodule were enrolled to participate to the study; 10 patients were recruited 

from the Division of Endocrinology, Diabetology and Metabolism of the “Città 

della Salute e della Scienza” Hospital of Torino, Italy, and 10 patients were 

recruited from the Endocrinology Section of the “Umberto I” Hospital of Torino, 

Italy. Inclusion criteria were: age ≥ 18 years and maximum diameter of the thyroid 
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nodules ≤ 4 cm. Exclusion criteria were: multi-nodule goiter, thyroiditis, and other 

generic inflammatory process. The experimental protocol for this multi-center 

study was approved by the ethical committee of both hospitals. The patients signed 

an informed consent before participating in the experiment. 

All subjects underwent clinical examination, hormonal profiling, and Fine 

Needle Aspiration (FNA) biopsy. Longitudinal diameter (LD), anteroposterior 

diameter (AD) and transversal diameter (TD) were measured by ultrasound B-

Mode examination.  From the FNA result, ten patients presented benign nodules, 

and ten had malignant lesions. 

The 10 benign nodules (LD: 16.75 ± 4.32 mm, AD: 20.33± 4.11 mm, TD: 15.00 

± 5.35 mm) were classified as THY2 (9 single goiter nodules) and THY3a (1 

nodules with architectural atypia) according to the cytological criteria [20], [21]. 

The malignant nodules (LD: 19.50 ± 7.89 mm; AD: 25.67 ± 9.66 mm; TD: 19.50 ± 

7.25 mm) were classified as THY3f (4 suspected follicular neoplasms), THY4 (2 

suspicious malignant nodules), and THY5 (4 positive malignant nodules). All the 

subjects with diagnosis of malignancy from FNA underwent surgical treatment. The 

histopathological report after thyroidectomy confirmed the malignancy for all the 

ten subjects (7 papillary carcinomas, 2 follicular carcinomas, 1 Hurtle cells 

carcinoma).  

Ultrasound Equipment and Image Acquisition  

3-D PDUS and 3-D CEUS scans were performed for all patients during the 

same experimental session. The 3-D volumes were acquired using a MyLab™ 

Twice (at the “Città della Salute e della Scienza” Hospital) and a MyLab70 (at the 

“Umberto I” Hospital) ultrasound devices (Esaote, Genova, Italy), both equipped 

with the same linear-volumetric array transducer (code BL433) with 4-13 MHz 

variable frequency. The main feature of this transducer is that the piezoelectric 

elements are mounted on a moving array which enables 3-D scan of tissues without 

moving the probe [33], [34]. We used a fixed scanning angle of 50 degrees and a 
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scanning step variable between 0.24 – 0.30 degrees, which was automatically 

selected according to the scanning depth. The average frame-rate was equal to 15 

frames/s. For all the 3-D acquisitions, the B-Mode gain was set at the 50% and the 

Time Gain Compensation was kept in a neutral position. The Pulse Repetition 

Frequency (PRF) at 1 kHz and the wall filter at 4 Hz. To acquire CEUS volumes, 

2.4 ml of ultrasound contrast agent (Sonovue, Bracco, Italy) were administrated 

intravenously and a 3-D volume containing the lesion was acquired after 40 seconds 

from the injection, to avoid the blooming artefact. The 3-D volumes were 

transferred offline to an external workstation for subsequent processing. 

Vascular segmentation algorithm  

Fig. 4.1 sketches the overall processing pipeline of our analysis technique. The 

entire processing framework was developed in the Matlab (The MathWorks, 

Natick, MA, USA), by custom-made software. The detailed description of the 

single steps is reported in the following. 

Volume preprocessing  

PDUS and CEUS volumes were converted in grayscale format (gray levels 

ranged between 0 – black to 1 – white). For PDUS, we extracted the color map 

containing the vascular information. Two different thresholds of 50% and 70% of 

the maximum gray level of each image were applied to PDUS and CEUS volumes, 

respectively, to highlight signal from vessels. Fig. 4.2.A and fig. 4.2.B show two 

representative slices of the original PDUS and CEUS volumes of the same nodule 

are reported. The thresholding step results are depicted in fig. 4.2.C and fig.4.2.D 

respectively.  
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Vessel enhancement filtering 

In PDUS and CEUS images, due to resolution and signal-to-noise ratio 

limitations, the representation of the vascular network is suboptimal. Hence, we 

proposed a vessel-enhancement filter to improve the representation of the vascular 

structure of the nodules. The filter was designed partly following the formalism of  

the multiscale enhancing filter proposed by Frangi et al. [23]. 

Figure 4. 1: Schematic representation of the processing steps for PDUS and CEUS 

volumes. 
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 In our study, four different scale dimensions equal to σ = 1,2,3,4 were chosen 

in the computation of four respective 3-D Gaussian kernels.  This choice was made 

to tune the filter dimension on the width and length of tumor vessels (between 1-4 

voxel, where 1 voxel approximately corresponded to 0.05 x 0.05 x 0.05 mm). Each 

Gaussian kernel was applied to the Volume V (size L x M x N) to obtain four 3-D 

Hessian matrices. For each single voxel of i, j and k coordinates, the three 

eigenvalues 𝜆  were computed and sorted in a way that 

 

|𝜆1(𝑖,𝑗,𝑘)
| ≥  |𝜆2(𝑖,𝑗,𝑘)

| ≥ |𝜆3(𝑖,𝑗,𝑘)
| 

  

Figure 4. 2: Preprocessing steps and vessel enhancement filtering for the 3-D 

PDUS and CEUS volumes in a malignant tumor. Panels A, B - Original PDUS 

in and CEUS slices. Panels D, E - Preprocessing step for the PDUS and CEUS 

slices. Panel F, G -Vessel enhancement filtering for the PDUS and CEUS slices. 
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The volumetric response of the voxel 𝑉𝑅  at a specific σ is computed as 

𝑆(𝑖, 𝑗, 𝑘) = √𝜆1(𝑖,𝑗,𝑘)

2 + 𝜆2(𝑖,𝑗,𝑘)

2 + 𝜆3(𝑖,𝑗,𝑘)

2  

𝑉𝑅𝜎(𝑖, 𝑗, 𝑘) =  {

0 if   𝑆(𝑖, 𝑗, 𝑘) = 0  and   𝜆1(𝑖,𝑗,𝑘)
= 0 

 𝐴(𝑖,𝑗,𝑘) = 
𝜆1(𝑖,𝑗,𝑘)

𝑆(𝑖, 𝑗, 𝑘)
in all other case.

 

The value of  𝐴(𝑖,𝑗,𝑘) is the local measurement of the Signal-to-Noise Ratio 

(SNR) of the volumetric image, namely the vessels flux power compared to the 

background. For each of the four 𝑉𝑅𝜎 matrices created, the candidate Winning 

Factor 𝑊𝐹𝜎 is computed as 

𝑊𝐹𝜎 = ∑ 𝑉𝑅𝜎
𝐿,𝑀,𝑁
1=𝑖,𝑗,𝑘 . 

The four 𝑊𝐹𝜎 are sorted in ascending values of σ and the maximum value 

among these elements is the final Winning Factor for each voxel, corresponding to 

the chosen value of σ. Examples of the vessels enhancement filtering are reported 

in fig. 4.2.E and fig 4.2.F for PDUS and CEUS slices. 

 

Vascular network extraction: skeleton and centerline 

Two cascaded algorithms were applied to optimize the tumor vascular 

representation. Since tumor vascular patterns are featured by both vessels shape 

(vascular trees and branches) and the blood flow intensity, morphological and 

functional information can be extracted from the PDUS and CEUS volumes. This 

extraction was made possible combining two techniques, namely a skeletonization 

of the 3-D vessels followed by the centerline extraction.  
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An initial non-minimal skeletonization processing step was applied to obtain a 

morphological thinner representation of vessels, highlighting the vascular 

pathways, without loss of connectivity.   

In the beginning of the skeletoning process, the 3-D volumes were globally 

thresholded to create a 3-D binary mask with the vascular component set to 1 

(white) and background at 0 (black). From this step on, a morphological thinning 

algorithm was applied frame by frame and along each axis in order to find the 

minimal skeleton of the vascular network.   

The skeleton algorithm considers each pixel P belonging to a single frame of 

the binary mask and the respective 8-connected neighborhood according to the 

following scheme: 

 

 

 

The pixel P was eroded if and only if the following two conditions were 

simultaneously met: 

• 𝑃 = 1, hence it belongs to a vessel structure; 

• 2 ≤  𝑁(𝑃)  ≤  3, where 

 𝑁(𝑃) = ∑ 𝑋2𝑖−1˅𝑋2𝑖 = ∑ {𝑋1, 𝑋3, 𝑋5, 𝑋7}˅{𝑋2, 𝑋4, 𝑋6, 𝑋8}
4
𝑖=1

4
𝑖=1 . 

X4 X3 X2 

X5 P X1 

X6 X7 X8 

Figure 4. 3: 3-D rendering of the vascular architecture obtained from the skeleton algorithm. The same 

thyroid nodule is shown, acquired with PDUS in Panel A and with CEUS in Panel B. Panel C - Overlap 

of the two renderings. 
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The algorithm preserved branches connectivity and deleted non-physiological 

spurious branches shorter than the threshold of 70 voxels. Example of 3-D vascular 

skeletons obtained from this processing are reported in fig. 4.3.A for PDUS volume 

and fig 4.3.B for CEUS volume. The overlaid skeletons are represented in fig. 

4.3.C. 

The second methodology applied in this work is the centerlines algorithm; 

compared with the skeleton algorithm, the centerline computation is performed on 

the blood flow intensity information. This algorithm is partly inspired by a common 

explicit approach based on the intensity of Height Ridge Transversal and multiscale 

extraction [24] and depicted in fig. 4.4.  

Starting from the non-minimal skeleton mask overlaid on the original volume, 

a specific number of candidate points, named seeds, are selected according to the 

Figure 4. 4: Main steps of the centerline algorithm.  Panel A - representation of initial seed points. Panel 

B -  identification of the 1-D maximum candidates. Panel C - selection of the ridge points. Panel D -

forward (in yellow) and backward (in cyan) path of search. 
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intensity threshold, equal to the 20% of the maximum gray-level of the image (fig 

4.4.A). 

The 26-connected neighborhood of each seed point is considered, and the 

search of the ridge is performed along the line that joins the seed point and the 

maximum intensity voxel in the neighborhood.  If the intensity difference between 

the seed point and the maximum intensity voxel of the neighborhood is higher than 

0, the direction is saved for the following iteration, otherwise the seed point is 

defined 1-D maximum candidate and the search ends. This operation allows to get 

closer to the central part of the vessel, where the blood flow is maximum (fig 4.4.B). 

All the candidate 1-D maximum voxels are required to meet all the criteria that 

are presented and cited in [24] in order to be considered as ridge points; the results 

of this search is presented in fig 4.4.C. 

After all the ridge points are detected, an intensity-based search of the 

centerline is performed. Starting from the first ridge point, the maximum intensity 

voxel in its 26-connected neighborhood is labelled as the first voxel of the centerline 

and defines the forward path of search (fig. 4.4.D). From this new voxel, another 

maximum intensity voxel is identified in its neighborhood and the process is 

iteratively repeated along the forward path. 26-connected neighborhood already 

visited in the previous iterations are forbidden. This process is needed because, in 

bifurcation or stenosis regions, where the hypothesis of laminar flow becomes less 

substantial and the blood flow could be higher in peripheral regions of the vessel, 

the centerline could deviate from its real location. Forbidding these kernel positions 

does not allow the centerline to deviate from its central path. The specific 3-D 

masks of the forbidden positions are shown in the APPENDIX D. 

 The search of the forward path ends when one of the following conditions is 

matched: 

• the search reaches another ridge point; 

• the current path crosses itself or another previously traced path; 
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• the search reaches a single point onto the volume boundary or in the 

background.  

When the forward path of search ends, the search is repeated, starting from the 

first voxel opposite of the first point found near to the considered ridge point. The 

search continues in the opposite direction, along the backward path of search, 

following the same criteria of the forward path of search.  

When all the forward and backward paths of search are found, a post-processing 

algorithm links the split centerlines whose distance between their closest endpoints 

is lower than 5 voxels. In fig. 4.4.D ridges, forward and backward path of search 

are highlighted. The final result after the application of the centerline algorithm is 

shown in fig. 4.5 (panels A – C PDUS volume, panels B - D CEUS volume). 

 

Figure 4. 5: 3-D centerline extraction. Panel A, B - Centerline pattern (in red) overlapped to the original 

3-D PDUS and CEUS volumes. Panel C, D - 3-D rendering of the centerline for PDUS and CEUS volumes. 
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Automatic features extraction for vascular quantitative analysis 

Once the centerlines were obtained, a quantitative vascular features extraction 

was performed in order to characterize the tumor malignancy. 

 In our study, 7 blood vessels-related features were calculated: three of them 

were tortuosity metrics, and the remaining four were related to the tumors vascular 

architecture. In the computation of vascular features, the centerline was mapped 

using an iterative procedure which isolated vascular trees 𝑇 according to the 

position of the nodes: 

𝐶𝑇𝑟𝑒𝑒 = { 𝑇1, 𝑇2, … , 𝑇𝑁} 

where 𝑁 is the number of vascular trees. Each vascular tree  𝑇𝑖 can be thought 

as the sequence of  𝑚 nodes  𝑇𝑖 = {𝑝1, 𝑝2, … , 𝑝𝑚}. 

The three tortuosity metrics, already introduced by [25]  and reported in 

APPENDIX E are: 

1. Distance Metric (DM), which computes the ratio of the length of the vessel 

and the linear Euclidean distance between its endpoints; 

2. Inflections Count Metric (ICM), which is obtained by the product of the 

number of inflection points 𝑁𝐼𝑛𝑓𝑃 and the 𝐷𝑀, plus 1. The 𝑁𝐼𝑛𝑓𝑃 value is 

obtained using the geometrical representation of the Frenet frame already 

described [26], [27]. This parameter is an estimation of the average number 

of time the vascular tree changes its shape from convex to concave and vice-

versa in a 3-D framework; 

3. Sum Of Angles Metric (SOAM), which calculates the total angles of the 

curve as a sum for each point and normalizes the result by dividing by the 

total curve length.  

4. Vascular Volume Density (VVD, %), which is obtained by the ratio of the 

total space occupied by the blood vessels and the total tumor size, expressed 

in voxels; 
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5. Number of vascular Trees (NT), which is the number of the vascular 

networks; 

6. Number of vascular Branches (NB), which is the branches of the tumor 

vascular pattern identified by branchpoints. 

7. Spatial Vascularity Pattern (SVP), which evaluates whether the vascular 

patterns are more concentrated peripherally (perilesional vascularization) or 

inside the tumor (intranodular vascularization).  

This last feature is calculated as follows: 

• three intensity profiles of the entire volume were calculated, summed 

and normalized along the three principal axes X, Y and Z. The resulting 

normalized vascular intensity profile was an indicator of how 

vascularity was distributed into the entire volume of the tumor; 

• from this vascular intensity profile, the second order polynomial was 

interpolated; 

• the first order derivative of such a polynomial was calculated; 

• the tumor presented a perilesional vascularization if this first derivative 

was either always positive, or always negative, or simply monotonically 

increasing; 

• in case the previous requirements were not met, the tumor was classified 

as intranodular. 

Since benign nodules are frequently associated with a perilesional architecture, 

while a malignant lesions commonly present a intranodular vascularization, the 

final SVP score was reported as a fraction of positive perilesional benign on the 

total benign nodules or positive intranodular malignant on the total malignant 

tumors [38]. 

All the features, except for the VVD and the SVP, which were calculated on 

the entire volume, were computed in 3 Volumes of Interest (VOIs) automatically 

generated around the highest gray-level intensity voxels, i.e. in those points where 

the density of blood vessels is higher.  The size of the three VOIs was 5 times 
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smaller than the original 3D image along the x and y axes, while along the z axes it 

was kept as the half of the image size (this is due to limited number of slices along 

the z direction). The final value for each feature was obtained as the average of the 

three values calculated in each VOI.  

Statistical Analysis and Classification 

In this work, 20 thyroid tumors (10 benign and 10 malignant) were analyzed 

and the features extraction was applied on both PDUS and CEUS volumes. For the 

two group of tumors, mean values ad standard deviation for the first six continuous 

features (DM, ICM, SOAM, VVD, NT and NB) and the discrete fraction of SVP 

parameter were reported. Since the Shapiro-Wilk test failed for both the techniques, 

the comparison between benign and malignant nodules was performed using a non-

parametric Mann-Whitney U-test.   

Multivariate Analysis of Variance (MANOVA) was used to test the equality of 

the means between benign and malignant nodules. Before conducting the 

MANOVA analysis, collinear variables were removed to avoid singularities in the 

observation matrix. The collinearity of variables was checked by computing the 

Wilks’ lambda. The dimension of the MANOVA was used to assess the number of 

groups the data belong to. Classification of the tumor as benign or malignant was 

obtained by linear regression analysis performed on the most significant features, 

as revealed by the MANOVA. The statistical significance is set to p ≥ 0.05. 

Statistical analyses were performed in Matlab. 
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4.3 Results  

In table 4.1 and table 4.2 mean values ± standard deviations of the six 

continuous features and the discrete parameter SVP previously described are 

reported for PDUS and CEUS volumes respectively. The two tables show that 

CEUS Benign Tumors Malignant Tumors p-value 

DM (a.u.) 13.91 ± 8.31  82.93 ± 49.38 << 0.05 

ICM (a.u.) 35.78 ± 18.63  227.62 ± 93.97 << 0.05 

SOAM (a.u) 4.28 ± 3.19  26.51 ± 21.19 << 0.05 

VVD (%) 30.30 ± 11.40 60.30 ± 7.11 << 0.05 

NT (a.u.) 5.30 ± 1.34  8.40 ± 2.79 << 0.05 

NB (a.u.) 18.30 ± 5.83  53.70 ± 17.72 << 0.05 

SVP (a.u.) 6/10  10/10  << 0.05 

Table 4. 1: Mean values ± standard deviation and p-value of the 6 vascular features analyzed for CEUS 

volumes. The SVP is reported as a fraction of perilesional benign tumor and intranodular malignant 

tumors on the total number of tumor of the respective group. 

 

PDUS Benign Tumors Malignant Tumors p-value 

DM (a.u.) 6.37 ± 4.98 31.12 ± 24.14 << 0.05 

ICM (a.u.) 23.95 ± 16.93 153.80 ± 132.49 << 0.05 

SOAM (a.u)  1.93 ± 1.19 11.31 ± 10.15 << 0.05 

VVD (%) 25.7 ± 11.83 43.00 ± 14.57 << 0.05 

NT (a.u.) 4.70 ± 2.00 8.50 ± 2.27 << 0.05 

NB (a.u.) 9.80 ± 7.06 28.20 ± 12.95 << 0.05 

SVP (a.u.) 9/10 10/10 << 0.05 

Table 4. 2: Mean values ± standard deviation and p-value of the 6 vascular features analyzed for PDUS 

volumes. The SVP is reported as a fraction of perilesional benign tumor and intranodular malignant 

tumors on the total number of tumor of the respective group. 
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vascular continuous parameters are all higher for malignant tumors than benign 

ones for both techniques.  

The result of the Mann-Whitney U-test shows a significant difference between 

the benign and malignant nodules for both PDUS and CEUS techniques for all the 

continuous features (DM, ICM, SOAM, VVD, NT, NB). 

For the SVP feature, 9 out of 10 and 6 out of 10 benign nodules were labelled 

as perilesional for the PDUS and CEUS volumes respectively, while malignant 

nodules were all classified as intranodular (10/10) for both the techniques.   

Fig. 4.6 shows an example of 3-D vascular rendering of two benign and 

malignant thyroid tumors for both PDUS (fig. 4.6.A and fig 4.6.C) and CEUS (fig 

4.6.B and fig 4.6.D) techniques. It is evident that the benign nodule (fig. 4.6.A and 

fig 4.6.B) displays a lower peripheral vascular density than the malignant one (fig. 

4.6.C and fig 4.6.D).  The respective normalized vascular intensity profiles (fig. 

4.6.E and fig. 4.6.F), indicates that the SVP parameter classifies the benign nodule 

as perilesional and the malignant tumor as intranodular for both PDUS and CEUS 

techniques.  

Figure 4. 6: 3-D vascular rendering of a representative benign tumor (top panels) and malignant tumor 

(bottom panels). Panels A, C - 3-D PDUS reconstructions. Panel B, D - display 3-D CEUS volumes.  Panels 

(E - benign) and (F - malignant) show the normalized vascular intensity profile obtained by summing the 

three x, y, and z intensity profiles for PDUS and CEUS volumes. 
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After this first step of statistical processing, the MANOVA is applied on data 

considering all the significant 9 features of this study: patient age, patient gender, 

ICM, DM, SOAM, VVD, NB, NT, SVP. For each subject, the parameter SVP was 

reported as a binary value of 0 if the tumor was perilesional or 1 if it was 

intranodular. 

When the tumor type (benign or malignant) was considered as a dependent 

variable, after removing the collinear variables in common for both the PDUS and 

CEUS volumes, 5 features were left (ICM, VVD, NT, SVP and patient age). The 

optimal Wilks’ lambda values for our data set were found to be 0.03 for the PDUS 

and 0.13 for the CEUS techniques. The MANOVA dimension of the group means 

was equal to 1 (p << 0.001 for both PDUS and CEUS). The dimensionality of the 

MANOVA was important to understand how samples were distributed on the 

hyperplane of the canonical variables. We plotted the first and second canonical 

variable for each subject for PDUS (fig. 4.7.A) and CEUS techniques (fig. 4.7.B), 

and we indicated the benign tumors by an empty symbol (circle) and malignant 

tumors by a full one. The graph indicates that the first canonical variable was 

discriminant for the tumor type. The most discriminant feature was ICM, followed, 

in the order, by VVD, NT, SVP and patient age. By using these features, a 

classification of tumors based on the linear regression was performed. All the 

thyroid nodules were correctly classified, with sensitivity and specificity of 100% 

and an area under the receiver operating curve (AUROC) equal to 1. 
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4.4 Discussion 

Tumor vasculature plays fundamental role in tumor invasion and has gained 

critical importance in the assessment of benign or malignant lesions. However, 

challenges remain on how to outline blood vessels features that can serve as 

clinically useful markers to help clinicians in the diagnosis and to guide the 

treatment. Vascular ultrasound imaging like 3-D PDUS and CEUS techniques are 

valuable tool in the differential diagnosis, although they are mainly used as 

functional imaging techniques in perfusion and blood flow studies rather than 

showing the morphological tumor vascular network. In this work, we developed 

and presented a systematic and versatile method for reconstructing the thyroid 

tumor vascular network for the subsequent automatic computation of seven 

morphological vessel-related features. Our algorithm can extract morphological 

details to vascular ultrasound volumes, making them suitable for a vasculature 

quantitative analysis. 

To address this task, we first used a vessel-enhancement filter to overcome 

signal-to-noise ratio limitations and therefore to improve the representation of the 

Figure 4. 7: Representation of patients in the plane of the first two canonical variables obtained by 

MANOVA. The vascular features ICM, VVD, NT, SVP and patient age allow for a clear separation of 

the patients according to the tumor type (benign or malignant). The empty circles represent the benign 

nodules and the full symbols the malignant lesions. 
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vascular network, automatically tuning the scale parameter σ of the filter on the 

local vessels’ dimension. The main advantage obtained by using this filter is a 

denoising effect, which allows to keep only the vascular information on the images 

and to correct intensity inhomogeneities. Subsequently, a skeleton and a centerline 

extraction algorithm are applied. The former is useful to add morphological 

information to the images, while the latter relies on blood flow information, which 

is outstanding in vascular ultrasound images. Since tumor vascular patterns are 

featured by both vessels shape (vascular trees and branches) and blood flow 

intensity, the combination of the two algorithms can provide an accurate 

representation of angiogenic blood vessels and quantitative analysis based on 

vascular features extraction. 

Vascular features were quantified by the measurements involving three 

tortuosity metrics (DM, ICM and SOAM), number of trees and branches (NT, NB), 

vascular volume density (VVD) and spatial vascularity pattern (SVP). 

These features (except for the last two) are computed within three VOIs 

automatically created around the maximum intensity voxels of tumor vascularity. 

This choice has been made to capture highly concentrated blood vessels areas and 

to avoid vessels-free areas. 

Finally, the latter two features, VVD and SVP evaluate the global information 

of the tumor. The vascular volume density assesses the grade of vascularization of 

the nodule, while the spatial vascularity pattern, a parameter inspired by the clinical 

practice which has not been previously proposed in literature, gives an estimation 

on where, within the tumor volume, blood vessels are more concentrated. 

The numerical values of these features were reported in terms of mean and 

standard deviation for the two techniques (PDUS and CEUS) adopted in this study. 

Exploiting all the morphological features, high accuracy in the description of tumor 

vascularity can be achieved. Furthermore, the statistical analysis resulted in very 

low p-values (p << 0.05), indicating that all these features can be used to 

significantly discriminate benign from malignant tumors. 
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The MANOVA analysis shows that a minimum set of common vascular 

parameters can be used to distinguish benign from malignant tumors for both PDUS 

and CEUS techniques. Following the discriminant features’ weight order, only one 

out of three tortuosity metrics, the ICM, is needed to discriminate nodules. This 

finding suggests that malignant thyroid nodules present vessels with evident higher 

degree of inflection and this characteristic is dominant compared to the simple 

computation of curvature of DM and the presence of coil shapes detected by 

SOAM. Furthermore, the features related to the tumor volume, the NT and the 

VVD, demonstrate to be more discerning in the classification, in line with the 

previous findings [27]. In the canonical variables hyperplane, the newly introduced 

parameter SVP proves to be effective in the separation of groups, even though some 

benign tumors could present the intranodular pattern typical to the malignant ones 

in both ultrasound techniques; this result highlights the reliability of the 

multiparametric approach, able to combine different aspects of geometry and 

morphology, such as radiomics can combine semantic attribute to agnostic features 

to improve diagnostic and prognostic results.  

Few comparisons arise from our results regarding the performance and the 

diagnostic accuracy of the two ultrasound modalities adopted in this study. As 

expected, the tumor vascular network reconstructed from the CEUS volumes shows 

much more vessels than the 3-D rendering obtained from the PDUS volumes. This 

is true for all the patient images in our dataset. These different results are due to the 

intrinsic limitations given by the spatial resolution of the two techniques. In fact, 

CEUS employs microbubbles as contrast agent. This allows to improve the 

resolution and therefore to detect also angiogenetic neo-formed blood vessels. 

These latter are not detectable by the PDUS, whose resolution constraints make this 

technique suitable to detect only major tumor vascularity [19].  

Despite this difference, the quantitative analysis of tumor images from the two 

imaging techniques shows comparable results. This suggests that it could be 

sufficient to compute the vessel-related features only on tumor major vessels 
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(detected both with PDUS and CEUS) and not on angiogenetic vessels (detected 

only with CEUS). Moreover, PDUS could be sufficient for a proper analysis of 

thyroid tumors vascular networks as a diagnostic indicator, with the advantage of 

being fully non-invasive, as no contrast medium is required, and less expensive. 

Avoiding the use of a contrast agent could also allow to include a higher number of 

patients in future clinical trials, since the examination would be totally cost-

effective. 

Our study reveals a correlation between the morphology of vascularity in 

thyroid lesions and malignancy. Furthermore, it reveals a strong correlation 

between the PDUS and the CEUS in terms of accuracy in diagnosis. However, the 

system still has limitations. In fact, some malignant thyroid nodules in advanced 

stage could present a high rate of necrotic tissue, thus completely non-vascularized. 

Such nodules, due to the absence of blood vessels, could be misclassified as benign 

nodules with perilesional vascularization. This is not an overwhelming limitation, 

since usually these malignant nodules show other non-vessels-related biomarkers 

of malignancy which are apparent to the clinicians (nodule size, growth rate, 

singularity, hypothyroidism). The proposed method is instead accurate in 

classifying highly-vascularized thyroid tumors, and therefore can provide a 

valuable tool for helping physicians in clinical decisions with suspicious lesions. 

The images were processed using a 2.4 GHz CPU, 12 GB RAM workstation. 

The total time for a complete evaluation of a thyroid nodule (including all steps of 

the algorithm) is about 45 minutes, although the computational time much depends 

on the image size and on the amount of blood vessels evaluated. The algorithm can 

still be optimized in order to reduce the computational time. Furthermore, it can be 

speeded up by using lower level languages like C++ and/or parallel processing, 

especially using Graphic Processing Units (GPU). 
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4.5 Conclusion 

Power Doppler UltraSound (PDUS) and Contrast-Enhancement UltraSound 

(CEUS) imaging techniques can be used in the assessment and differential 

diagnosis of thyroid nodules vasculature. The proposed strategy provides the tumor 

vascular network visualization in full anatomy and enables the extraction of many 

numerical morphological features. With the presented algorithm, it is possible to 

estimate the thyroid nodule’s malignancy, providing a fast and non-expensive 

diagnostic tool able to reduce the number of biopsies and overtreatments, helping 

physicians in clinical decisions and improving the diagnostic process with a higher 

level of accuracy. 

The quantitative shows comparable results between CEUS and PDUS, 

suggesting also that PDUS can be potentially effective in the diagnosis of thyroid 

tumors malignancy. 

Future work includes the evaluation of the performance of the algorithm using 

a bigger and more heterogeneous patients’ dataset. A CAD system could also be 

built upon the proposed methods, including other non-vessels-related features to 

provide a more comprehensive analysis of thyroid tumors. This method could be 

used for a quantitative evaluation of other emerging ultrasound modalities, like 

high-resolution photoacoustic imaging and acoustic angiography.  
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5.1 Introduction  

Ultrasound is a popular modality for imaging animal models of human diseases 

because of its portable, relatively low cost, and present a real-time modality [1].  

In the past decade, Contrast-Enhanced UltraSound imaging (CEUS) has 

demonstrated to be reliable in the quantification of blood vessels architecture in 

thyroid and breast tumor [2]–[5].  Conventional CEUS imaging relies on receiving 

the acoustic signal scattered from microbubbles of the ultrasound contrast agents 

(UCAs) at the fundamental frequency [6], however, frequencies ranges (1-12 MHz) 

and image reconstruction techniques (such as harmonic imaging, subharmonic 

imaging, phase inversion, contrast pulse sequence, and contrast harmonic imaging) 

limit the spatial resolution and the background signal scatter suppression.  

High-resolution ultrasound imaging has been demonstrated to be effective in 

non-invasive preclinical studies, in which rodents are extensively used in the 

assessment of tumor development or to therapy’s response studies [7]–[10].  

The recent design of ultra-broadband, multi-frequency ultrasound transducers 

has enabled high sensitivity, high-resolution contrast imaging, with very efficient 

suppression of tissue background using a technique called Acoustic Angiography 

(AA) [11]. 

AA is a significant development in CEUS imaging, based on the application of 

dual-frequency ultrasound transducer, but still only available as prototype devices 

in preclinical protocols [12]. In AA imaging, the UCA lipid-encapsulated bubbles 

with a diameter in the range of 0.8 – 4 μm, are excited at the resonance by a low 

frequency ultrasound transducer element in a range between 2-4 MHz, while the 

echoes are received with a second transducer at a much higher frequency (25-30 

MHz).  

The high frequency receiver can detect the broadband super-harmonic signal 

emitted by the excited UCA, filtering the negligible energy background tissue 

scatters at this frequency [13].  
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The dual frequency approach improves substantially the resolution, though it 

limits the penetration depth due to attenuation of high frequency signals from the 

microbubbles [14]. Therefore, AA is an extremely efficient in the visualization of 

superficial micro-vessels structure and is an ideal tool in the representation of 

abnormal vascular morphology in cancer angiogenesis. Specifically, AA has 

demonstrated to be considerable advanced in ultrasound imaging technology and 

enables the meaningful quantification of vascular architecture in angiogenetic 

networks [6], [11], [12]. Moreover, the analysis of abnormal vascular network’s 

morphology within a diseased tissue volume provides a methodology in the 

assessment of the therapy’s effects, which is essential in the design of personalized 

medical treatments [15].  

 Tumor vasculature results in an abnormal network with disorganized, twisted 

and tortuous blood vessels, with uneven diameters and irregular branching patterns, 

density, and permeability [16].  The accurate quantification of tumor vessels 

tortuosity is particularly challenging in large volumes and in case of complex and 

chaotic structures. In several past works, automatic algorithms for the primary 

vascular path extraction based on the Breadth First Search [17] were proposed and 

applied in CEUS and photoacoustic imaging [2], [18]. Though the BFS approach is 

computationally convenient for the analysis of a selected Volume of Interest (VOI), 

the investigation is reductive, in case of large intricate structures, since it relies on 

values extracted from a unique vascular path, without ramifications, which might 

not represent the overall tumor tortuosity; in addition, the main disadvantage 

consists in the absence of local information within the considered VOI.  

Recent AA studies have characterized the tortuosity of tumor vasculature and 

found it significantly higher than that of control tissue [19], in spatial comparisons 

[20], and according to the tumor dimension [11]; in all these works implemented in 

AA, a manually-defined individual vessel segmentation and analysis method, based 

on the Aylward-Bullitt multiscale centerline extraction algorithm, were applied 

[21].  Moreover, the tortuosity characterization of vessels was made possible by 
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means of the tortuosity metrics described in Bullitt et al. [22]. Although this 

methodology has been proven to be effective in the assessment of control and 

abnormal vasculature, it still requires the manual selection of centerline seed points, 

which is time consuming and user-dependent. Moreover, in recent studies, only few 

visible vessels were selected by an experienced operator [11], reducing the analysis 

to a small set of samples.  

In this chapter, a novel, fully automated strategy for vessel segmentation and 

vascular features extraction for high-spatial-resolution high-contrast imaging is 

proposed. This methodological approach is applied on 3-D AA acquisitions of 8 

rats implanted with fibrosarcoma tumor, imaged at 4 time points (TPs) with a 3-

days interval. The analysis is conducted on the manually traced cubic VOIs which 

include all the tumor lesion and on the surrounding control region of each 3-D scan. 

 Global vascular parameters, such as the global number of trees (GNT) , global 

number of branches (GNB) and the vascular volume density (VVD) are extracted 

from a specific VOI, whereas vascular parametric maps of local architectural 

parameters, such as local number of branching nodes (LNB), number of trees 

(LNT), local diameter (LD) and tortuosity metrics (DM, ICM, SOAM) are 

calculated to completely characterize and quantify the angiogenetic tumor 

architecture of  tumor and control areas VOIs, overcoming the major limitations of 

the manual selection or the use of sub-optimal automatic approach.  

A preliminary study on pooled data of tumors vs surrounding control areas is 

carried out in order to confirm the previous findings on quantitative AA [19]; a 

further longitudinal study on vascular tumor VOIs and control areas VOIs evolution 

along 4 time points of AA acquisitions are carried out in order to verify if there are 

significant differences, for each parameter,  in time for both tumor and control area 

VOIs; finally, a comparison between an ideal control VOI and the 4 TPs tumor 

VOIs is investigated in order to discover which are the parameters more sensitive 

in the differentiation of the tumor stage.  

 



132 Quantitative assessment of cancer growth in acoustic angiography 

 

5.2 Materials and Methods  

5.2.1 Rats preparation and AA acquisition 

Fibrosarcoma tumor models were implanted from propagated tumor tissue 

provided by the Dewhirst Lab at Duke University. Rats (Fischer 344) were 

anesthetized with isoflurane and a 2 mm incision was made above the quadriceps 

muscle and a piece of tumor tissue (approximately 1 mm3) was implanted 

subcutaneously. This procedure was performed on 8 rats, which were operated on 

the same day. When the tumors were palpable, AA acquisitions of the tumor-

bearing flank were performed while the animals were anesthetized with vaporized 

isoflurane in oxygen. For all animals, imaging started on day 8 from the operation, 

with subsequent acquisitions every 3 days, amounting to 4 time points (TPs). All 

experiments were approved by the Institutional Animal Care and Use Committee at 

the University of North Carolina at Chapel Hill [23]. 

AA images were acquired with a prototype dual-frequency transducer, 

transmitting at 4 MHz and receiving at 30 MHz [11], [20]. A continuous infusion 

of UCA was administered using a syringe pump (PHD 2000, Harvard Apparatus) 

at a rate of 1.5 x 108 microbubbles per minute. The 3-D images were acquired with 

a linear motion stage using an inter-frame step of 100 µm [14], then linearly 

interpolated to obtain an isotropic form of 50 µm voxels using Matlab (The 

MathWorks Inc., Natick, MA). 
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5.2.2 Tumor microvasculature 3-D mapping and analysis 

Volume processing  

In this section the algorithm of the tumor angiogenetic vessel segmentation and 

vascular skeleton extraction in AA volume is presented.  The complete pipeline of 

processing is sketched in fig. 5.1. 

 

Figure 5. 1: Schematic representation of the AA volume processing steps. 
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Although the signal-to-noise ratio in AA imaging is considerably higher 

compared to CEUS conventional imaging, the AA volumes need to be preprocessed 

in order to reduce the background scatter and uniform the gray level intensity within 

vessels. Starting from the original volume (fig 5.2.A) regularization along the 

elevation plane and volume equalization for contrast improvement are initially 

applied (fig 5.2.B).  

The AA volume is subsequently filtered with a multiscale vessel enhancement 

filter [24], already named Vesselness filter, which is particularly suitable for 

“angiographic” image [25]. Vesselness filter parameters are adjusted to highlight 

specific vessels’ shape and dimension. Since the voxel dimension is equal to 50 µm 

and AA volumes show tumor’s vessel diameters ranging between 50 – 250 µm, the 

Vesselness filter  𝜎 value is set in the range of 1-5 voxels, in a way that 25 equally 

spaced dimeter sizes, with an in-between-step of 10 µm, are calculated. 

The implementation of the 3-D filter has been taken from Frangi et al. [24] and 

defined as:  

𝑉𝜎 = {

0 if     𝜆2 > 0 or 𝜆3 > 0

(1 − 𝑒
(−

𝑅𝑎
2

2𝛼2)
)𝑒

(−
𝑅𝑏

2

2𝛽2)
(1 − 𝑒

(−
𝑆2

2𝑐2)
) in all other case.

 

 

where 𝜆1, 𝜆2, 𝜆3 are the eigenvalues extracted from the Hessian matrix 

parameters,  𝛼, 𝛽 and 𝑐 are thresholds which control the sensitivity of the filter to 

the measure of 𝑅𝑎 = 
|𝜆2|

|𝜆3|
 (line-like structure),  𝑅𝑏 = 

|𝜆1|

√𝜆2
 (blob-like structure) 

and 𝑆 =  √𝜆1 + 𝜆2 (second order structureness). 𝛼 is set to 0.1 and 𝛽 to 9 in order 

maximize the detection of vessel-like structures and minimize the blob-like 

structures [25]. 𝑐 value is set adaptively to the half the value of the maximum 

Hessian norm. The final result is reported in Fig 5.2.C.  

After the application of the Vesselness filter, the AA volume is converted in 

the binary format and a heuristic cleaning of residual 3-D structures smaller than 
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10 voxels and with eccentricity lower than 0.5 is applied, generating the Vesselness 

Binary Mask (Fig 5.2.D). This step of cleaning is fundamental for the subsequent 

detection of big vascular trees and the computational time and cost reduction.  

The Vesselness binary mask is processed to obtain the vascular skeleton 

according to the parallel medial axis homotopic thinning method proposed by Lee 

[26]. The maximum intensity projection of the final result is depicted in fig. 5.2.E.  

The vascular skeleton is computed to enable the extraction the vascular features 

already discussed in Chapter 4.  Due to the complexity of the vascular exanimated 

structures, two different approaches in the extraction of vascular parameters are 

proposed in the following: global architectural parameters referable to a specific 

volume are directly computed from the skeleton, while tortuosity measurements are 

locally computed within a moving 3-D window.  In addition, local vascular 

architectural parameters are also mapped as in the case of tortuosity measurements.  

 

Figure 5. 2: Panel A – Original volume. Panel B -  Volume with adjusted contrast. Panel C – Vesselness 

binary mask.  Panel D – Skeletonization.  Panel E - Original volume and overlaid skeleton (in red).   
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Volumetric architectural features extraction 

From each 3-D vascular skeleton, a Volume of Interest (VOI) enclosing the 

tumor is manually selected and measured. In absence of a contralateral AA 

angiography acquisition as previously reported in [6], [11], [12], we assumed as a 

control area the surrounding visible tissue section of each tumor VOI.  

Four vascular architectural global parameters are extracted from both the 

Tumor VOI and the Control VOI; they are the global number of vascular trees 

(GNT), the global number of branches (GNB) the vascular volume density (VVD, 

%), which is the percentage of space occupied by vessels within a specific volume.  

Vascular features mapping 

In order to locally map the tumor vasculature captured by the AA acquisition, 

the vascular network represented by the 3-D skeleton are quantitatively analyzed 

applying, iteratively, a moving 31 pixels width 3-D window centered on each voxel 

of the skeleton; for each 3-D window considered, the Breadth First Search (BFS) 

algorithm [17],[18] is applied and five vascular parameters, both architectural and 

tortuosity measurements,  are automatically computed as follows in order to locally 

map the vascular network on each point of the skeleton (APPENDIX E): 

1. Local Number of Trees (LNT), which defines the number of connected s 

decomposes the skeleton volume; 

2. Local Number of Branching nodes (LNB), ramification of each tree;  

3. Distance Metric (DM): defined as the ratio between the actual path length 

of the curve and the linear distance between the first and last point of the 

curve, where each curve represents a vessel; 

4. Inflections Count Metric (ICM): defined as the DM multiplied by the 

number of inflection points found along the vessel path; 

5. Sum of Angles Metric (SOAM): defined as the sum of all the angles that a 

curve has in space. This tortuosity measurement is used to handle tight coils. 
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All the computed parameters were already mathematically descripted and 

discussed in previously published works [22] and in APPENDIX E.  A further map, 

the Local Diameter (LD) map is obtained according to the values locally extracted 

from the Vesselness binary mask using the vascular skeleton voxels points as a 

guide. LNT and LNB maps were specifically computed for qualitative evaluation,  

  

Figure 5. 3 Vascular parameters maps. Panel A – Local number of Branches (LNB) map, for 

qualitative evaluation. Panel B – Inflections Count Metric (ICM) map.  
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while tortuosity maps were calculated for further statistical analysis. Two 

significant examples of vascular maps are presented in Fig. 5.3.A for the LNB and 

Fig. 5.3.B the ICM tortuosity.  

 

5.2.3 Statistical Analysis 

From each AA volume, a tumor VOI and the complementary control area VOI 

are extracted and global architectural vascular parameters (GNT, GNB and VVD), 

local averaged tortuosity measurements (DM, ICM, SOAM) and local vessels 

diameter (LD) are calculated within the two VOIs for each rat and each TP.  

 Regarding each vascular parameter, three studies are made on the 8 rats AA 

data and on each TP.  

First, a tumor vs control area comparison with pooled data, with all the TPs, is 

conducted to prove the statistical differences between the two regions, applying a 

non-parametric Mann-Whitney U-test.  

Then, a longitudinal study to prove the statistical differences between the four 

TPs both for tumor VOIs and control area VOIs are performed with a repeated 

measurements Friedman’s test followed by a Fisher’s post hoc test for paired data. 

Finally, a Kruskal-Wallis test followed by a Dunn’s post hoc test established 

the differences between the TP2 point control area, taken arbitrary as the global 

control, and the four tumor VOI TPs. This comparison was made to establish which 

parameter(s) is/are more sensitive in the recognition of tumor vasculature at 

different stages. All the data are expressed as average ± standard deviation and all 

the statistical analysis was performed in Matlab.  
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5.3 Results 

The first column of Table 5.1 resumes the results of the Mann-Whitney U-test 

between tumor regions and control areas for all the vascular parameters. Pooled 

data from tumor dimension VOIs (expressed in mm3) are statistically higher that 

the control VOIs.  

From the comparison between tumor VOIs and control area VOIs, it is evident 

that all the vascular parameters are significantly different between the two regions. 

In particular, GNB, GNT, VVD, DM, ICM and SOAM appear to be significantly 

higher whereas LD is significantly lower in tumor VOIs comparted to control VOIs. 

These results are in line with all the previous findings [23]. Representative 

examples of tumor evolution are shown in fig 5.4. where the 4 TPs of the same 

tumor are depicted and the two maps of LD and SOAM are reported. 

Considering only the significant comparisons, the Fisher’s post hoc test after 

Friedman’s test conducted on multiple repeated measurements (4 TPs) reveals, 

among the main findings, that tumor Volume raises considerably along the 4 TPs, 

while it is kept almost constant for all the control areas VOIs; in addition, GNT and 

GNB tumor TP1 is statistically lower compared to TP3 and TP4 respectively,  

GNT tumor TP4 is significantly higher than TP1, TP2 and TP3; moreover, 

VVD of tumor TP1 is statistically higher, in descending order, compared to TP2, 

TP3, and TP4. VVD is slightly reduced along the control area TPs, while it 

drastically decreases along the 4 tumor TPs.   On the other hand, GNT of control 

area TP1 is statistically higher than TP4, while GNB does not change in time. In 

the case of LD, control area TP1 appears significantly lower, in ascending order, to 

TP2, TP3 and TP4. LD appears almost constant for all the tumor VOIs TPs, while 

it raises on the control area VOIs.  All the tortuosity measurements do not change 

significantly along the four TPs for both tumor VOIs and control area VOIs. 
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From the Dunn’s post hoc test after the Kruskal-Wallis test for comparison 

between a reference control (TP2) and the four tumor TPs, a statistical difference is 

found for GNB and GNT on TP4, VVD (higher) in TP1 and TP2 while the LD is 

significantly smaller in tumor TP1, TP3 and TP4.  Considering the three tortuosity 

metrics, the highest number of significant comparisons is obtained with SOAM 

 p-value TP1 TP2 TP3 TP4 

Volume 

(mm3) 

T 
< 0.05 

738.1 ± 449.4 1262.1 ± 627.8 1749.1 ± 584.0 2581.± 730.7 

C 1246.4 ± 436.1 1061.8 ± 252.1 1034.2 ± 313.6 984.8 ± 371.3 

GNB 
T 

< 0.01 
1044 ± 611 1445 ± 970 1779 ± 1225 2737 ± 1898 

C 894 ± 486 774 ± 290 653 ± 385 414 ± 232 

GNT 
T 

< 0.01 
54 ± 34 77 ± 39 104 ± 44 160 ± 62 

C 81 ± 25 49 ± 19 44  ±  16 37 ± 26 

VVD 

(%) 

T 
< 0.01 

20.8 ± 6.1  13.7 ± 2.1 10.2 ± 3.7 10.0 ± 2.8 

C 7.4  ±  1.3 6.9  ±  1.6 6.6  ±  2.5 4.3  ±  1.7 

LD 

(µm) 

T 
< 0.01 

109 ± 9 110 ± 3 108 ± 6 108 ± 3 

C 111 ± 7 121 ± 8 120 ± 6 118 ± 8 

DM 
T 

< 0.01 
3,0 ± 0.6 2,6 ± 0.5 2,7 ± 0.4 2,9 ± 0.5 

C 2,2 ± 0.4 2.0 ± 0.3 2,2 ± 0.3 2,3 ± 0.5 

ICM 
T 

< 0.01 
15,3 ± 1.9 14,4 ± 1.5 14,4 ± 1.5 14,8 ± 1.8 

C 12,5 ± 1.2 11,9 ± 1.1 13,2 ± 1.1 13,4 ± 2.0 

SOAM 
T 

< 0.01 
1,5 ± 0.2 1,4 ± 0.2 1,4 ± 0.1 1,4 ± 0.2 

C 1,2 ± 0.1 1,1 ± 0.1 1,2 ± 0.2 1,2 ± 0.3 

Table 5. 1:Results of the vascular parameters extraction and mapping. The first column represents the 

results of the statistical comparison between tumor (T) and control (C) VOIs, along the 4 TPs.  GNT = 

Global Number of Trees. GNB = Global Number of Branches. VVD = Vascular Volume Density. LD = Local 

Diameter; D = Distance Metric. ICM = Inflections Count Metric. SOAM = Sum of Angles Metric.  
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metric which is statistically higher in all the four tumor TPs.  Fig 5.5 shows boxplot 

diagrams of all the seven parameters for the comparison between the control area 

VOI and the four tumor TPs. Boxplots of tumor VOIs put in evidence the presence 

of ascending (GNT, GNB) and descending (VVD) trends or constant behavior (LD, 

DM, ICM, SOAM) of vascular parameters along the four TPs.  

Figure 5. 4: Example of the same fibrosarcoma tumor investigated with AA imaging along the 4 TPs of 

invasion and growth. Parametric maps for Local Diameter (LD, panels A-C-E-G) and Sum of Angles 

Metric (SOAM, panels B-D-F-H) are reported in the 3-D representation.  
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Figure 5. 5: Boxplot diagrams of all the seven parameters for the comparison between the control area 

VOI and the four tumor TPs in 8 rats. 
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5.4 Discussion 

In this chapter, a quantitative analysis on vascular architecture captured by the 

AA acquisitions has been proposed. 8 rats with implanted fibrosarcoma tumors 

underwent ultrasonic high-resolution examination in a 3-days interval study (a total 

of 24 days between the last acquisition and the tumor implantation); the novelty of 

this study consists in the application of a new automatic strategy based on 

multiscale filtering and vascular skeleton computation for vascular features 

extraction. Vascular architectural parameters (GNT, GNB, VVD, and LD) and 

tortuosity measurements (DM, ICM and SOAM) have been calculated using the 

same approach proposed in previous works [2], [3], [18], [22]. The analysis of 

tortuosity and architecture has been extended to the computation and local mapping 

(LNT and LNB) by means of the application of the BFS extraction on a moving 3-

D window.  Statistical analysis has been carried out on tumor and control areas 

VOIs at different levels of detail and diverse research questions have been 

answered.  

Firstly, a pooled data comparison between tumor and control area VOIs has 

been made to prove the significant difference of vascular parameters between the 

two regions; table 5.1 shows how architectural parameters and tortuosity metrics 

are higher for tumor VOIs compared to the control area, while MR is significantly 

smaller. These findings confirm the results of previous works in the field of 

preclinical AA [11], [19] in which VVD, DM and SOAM appeared to be higher in 

tumor VOIs. Furthermore, this study completes and extends the analysis of tumor 

angiogenic network to the objective quantification of vascular trees and branches, 

enabled by the vascular skeleton extraction, and the computation of the local vessel 

diameter, made possible with the use of a Vesselness scale filter and already used 

and discussed in [18].   

The separate analysis of tumor and control areas VOIs along the TPs shows that 

the tumor evolution and growth is characterized by the significant raise of GNT and 

GNB, an almost constant value of LD and a considerable drop of VVD along the 
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four TPs. These results suggest that tumor angiogenic process, under the vascular 

endothelia growth factors (VGEFs) stimuli, starts immediately after the 

implantation [27], [28] and involves a rapid creation of intricate neo-vessels, which 

branch out from current tumor trees and develop at small constant diameter (108,6 

± 5 µm). Since implanted fibrosarcoma tumors in rat models triplicate their volumes 

in only 12 days (from around 700 mm3 up to around 2500 mm3), but VVD (namely 

the percentage of space occupied by vessels within the tumor) diminishes constantly 

along the four TPs (already observed, in a similar ways with the Microvascular 

Volume Density, MVD, in [23]), we can presume that cancer ischemia and 

ultimately necrosis, occurring inside out from the first TP and fragmenting the 

current vascular network in a higher number of trees, progresses constantly as the 

tumor continues to grow [29], [30], and leads the aggressive angiogenesis to expand 

around the tumor shell.  Similar results were already discussed in Shelton et al. [11], 

where the authors report an increase of tumor vascular heterogeneity in a 

longitudinal study with tumors binned according to the size, and within this thesis, 

in Chapter 4, where malignant thyroid nodules mainly presented a peripheral 

vasculature. For the architectural parameters, the Fisher post hoc test, conducted on 

multiple repeated measurements statistics, finds significant comparisons only 

between tumor VOIs TP1 and the others. This finding might indicate that, for this 

cancer type, a critical change in tumor evolution occurs less than 12 days from the 

inoculation.  

Considering the vascular architecture of the control area VOIs, we observe that 

the GNT diminishes in time, GNB and VVD are constant, and LD raises 

considerably between the first and the subsequent three TPs. These results are in 

agreement with previous finding on the behavior of tumor’s surrounding areas, 

which are expected to undergo, at the same time of tumor growth, a significant 

vascular remodeling [29]. As the tumor volume increases, a smaller number of 

control trees are visible, and vessels mean diameters raises to ease and intensify the 
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blood flow in carrying oxygen and nutrients towards hyperproliferating cancerous 

tissues. 

Considering the vessels tortuosity inside tumor and control areas VOIs, it has 

been observed that averaged values of DM, ICM and SOAM metrics do not change 

significantly in time within the two regions.   This result suggests two possible and 

mutual conclusions: first, tumor and control areas were correctly manually 

identified, and they maintain a characteristic vascular arrangement, in terms of 

tortuosity, along the four TPs.  Secondly, regarding the tumor VOIs, we can suppose 

that, with the only availability of fibrosarcoma tumors, that tortuosity is intrinsically 

related to the cancer type and malignancy grade [31], as it was observed for the 

characteristic number of vessels and MVD in a previous study [32] and in the 

assessment of the angiogenic progression in breast cancer stages [33]. 

The comparisons between the reference control area VOIs and the four tumor 

VOIs TPs reveals that, although there is only one statistical difference in GNB and 

GNT between the reference and TP4, VVD shows higher values in tumor TP1 and 

TP2, as well as the value of LD in reference area is statistically greater compared 

to tumor TP1, TP3 and TP4.  Since this preliminary study was conducted on a small 

sample set, selecting complementary volumes that changed considerably along the 

TPs (see Mann Whitney test, first column of table 5.1) and in absence of a ground 

truth control region (such as the contralateral flank), there is poor scientific 

evidence supporting the ability of global architectural parameters, as GNB and 

GNT, in the identification of cancer stages. In fact, global architectural parameters 

are highly dependent on the VOI size and can be compared only on pared equal 

sized VOIs, while LNB and LNT maps can be used in qualitative comparisons to 

identify local regions with higher value of vascular trees and branches (fig. 5.3.A). 

On the other hand, early cancer stages exhibit substantially higher values of VVD 

compared to the reference, which fall severely in TP3 and TP4 (fig. 5.5) as soon as 

the tumor spreads. In the same way, significant differences between the reference 
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control VOI and three out of four tumor TPs are observed in LD, proving that it can 

help the detection of cancerous areas in almost every stage.  

Finally, table 5.1 and fig 5.5 illustrate that tumor evolution can be characterized 

better by the tortuosity metrics: even if ICM identifies differences only between the 

reference and TP1 and TP4, DM adds a significant comparison with TP3 and 

SOAM values are significantly higher for all the TPs compared to the control area 

[11]. This result unveils the capability of tortuosity metrics to recognize cancer from 

the control region at different stages; in particular, SOAM metric has been proven 

to be the most reliable feature, among the computed seven and for this dataset, in 

the identification of cancer at any tumor TP.  

 

5.5 Conclusion 

In the present study, tumor vasculature in preclinical models investigated with 

3-D Acoustic Angiography have been quantitatively analyzed by means of an 

automated strategy, partly inspired by previous findings in Chapter 4. The proposed 

strategy enables the objective description of tumor and control area, providing cut-

off values for each parameter and malignancy grade at every stage.  

In the future, 3-D parametric maps can offer a unique qualitative and 

quantitative evaluation to the clinician, becoming a ready-to-use technology in new 

generation CADx systems. Moreover, multi-features extraction can provide 

minable data useful for prognosis and cancers grow evolution in the worldwide 

population. 
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Conclusions and Final Remarks 

As stated in the Introduction, scientific research and medical routine practice 

are continuously seeking for computer-aided schemes that can offer fast, non-

invasive and reliable image-based diagnosis. Moreover, looking at the 

technological trends, future diagnostic procedure will be able to provide 

personalized medicine based on quantitative semantic and agnostic features, 

mineable high-dimensional data and prognostic models. Due to its portability, 

safety and convenience, huge investments are currently made on innovative 

ultrasound image technologies (such as 3-D/4-D/5-D, ultrafast and super-resolution 

imaging).  

The aim of this work is to present a set of automated strategies in the field of 

ultrasound image-based diagnosis that can become the “bridge” groundbreaking 

technology between the state-of-art CADx and the extension of radiomics discipline 

to the ultrasound imaging. 

The strategies proposed in this thesis are scalable, oriented to a wide range of 

applications, modalities, and dimensions and can effectively lead to the conversion 

of medical images into data.  These automated strategies can provide quantitative 

and qualitative description of many complex anatomical structures, such as the 

texture pattern of a skeletal muscle or the 3-dimensional tortuosity parametric map 

of a tumor. 
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The work presented in this thesis can have a wide range of applications in 

clinical and preclinical practice: skeletal muscle ultrasound imaging and the related 

proposed strategies in architecture and morphology characterization can be applied 

in rehabilitation and sport medicine to faster the diagnosis process, providing real-

time results and muscles progress/evolution. In the future, thyroid tumor assessment 

via quantitative 3-D CEUS and PDUS imaging can be extended to any other 

superficial tumors and introduced in cancer screening programs, being rapid, 

automatic and unexpansive. Acoustic Angiography and 3-D tumor vasculature 

reconstruction can be improved in future applications to better understand the 

cancer origin and evolution in other anatomical locations and models. 

The automated strategies combine the human cognitive procedures of 

segmentation and recognition with image information revealed via quantitative 

high-dimensional features extraction, with the final aim to significantly improve 

patient’s diagnosis, pathologies treatments, and prognosis. 
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APPENDIX A  

 

Esaote Twice Ultrasound device settings  

 

In the proposed studies, the MyLab™ Twice ultrasound device (Esaote, 

Genova, Italy) was equipped with a linear-array transducer (code LA533) with 

variable frequency 3-13 MHz. The gain was set to 50% of the range, dynamic image 

compression was turned off, and time gain compensation was maintained in the 

neutral position for all depths. All system-setting parameters were kept constant 

throughout the study and for each subject, except depth (initially set at 44 mm) that 

was modified during the examination (range: 44 -59 mm) to visualize the entire 

muscle thickness.  The study was conducted at the Division of Endocrinology, 

Diabetology and Metabolism, Department of Medical Sciences, University of Turin 

and the same experienced user performed all the acquisitions. All images were 

visually inspected and analyzed by the same experienced operator. 
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APPENDIX B 

 

Ultrasound procedure in skeletal muscle ultrasound imaging  

 

Ultrasound B-mode images of the following five muscles were acquired in each 

subject during a single experimental session: biceps brachii, rectus femoris, vastus 

lateralis, tibialis anterior, and medial gastrocnemius.  These superficial skeletal 

muscles have been chosen since they are the most informative in the assessment of 

neuromuscular disorders and sarcopenia. 

The optimal representation of the different muscles was ensured complying 

with the following criteria: i) biceps brachii and tibialis anterior: we maximized the 

representation of the bone boundary and of the muscle fascicles ii) rectus femoris: 

we optimized the representation of the superficial and deep aponeuroses; iii) vastus 

lateralis and medial gastrocnemius: we optimized the representation of the 

superficial and deep aponeuroses and of the muscle fascicles. 

Images of the medial gastrocnemius were acquired with the subjects in the 

prone position, whereas for all other muscles subjects were positioned supine.  

In all measurements, the lower and upper limb joints were extended and the 

subject was asked to completely relax his/her muscles. Ultrasound coupling gel was 

used to ensure optimal image quality and to minimize the transducer pressure on 

the skin. All scans were performed by placing the transducer in correspondence of 

the largest muscle diameter at the following anatomical sites: the biceps brachii was 

measured at two-thirds of the distance from the acromion to the antecubital crease; 

the rectus femoris was measured half-way along the line from the anterior-superior 

iliac spine to the superior border of the patella; the vastus lateralis half-way along 

the line from the anterior-superior iliac spine to the superolateral border of the 

patella; the tibialis anterior at one-quarter of the distance from the inferior border 



154 APPENDICES 

 

of the patella to the lateral malleolus; the medial gastrocnemius from the mid-

sagittal line of the muscle, midway between the proximal and distal tendon 

insertions. For ultrasound scanning convention, the probe was placed in a way that 

the left part of the image was always pointing to the center of the subject body.  
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APPENDIX C 

 

Agnostic texture features  

First Order Statistic features  

First Order texture features are extracted from the 1-D gray histogram of image 

luminance. 

Feature Description 

Integrated Optical Density 𝐼𝑂𝐷 =  ∑ ∑ 𝐼(𝑥, 𝑦)

𝑁

𝑦=1

𝑀

𝑥=1

 

Mean Echo Intensity  𝑀𝐸𝐼 = ∑ ∑
𝐼(𝑥, 𝑦)

𝑀 × 𝑁

𝑁

𝑦=1

𝑀

𝑥=1

 

Standard Deviation  𝜎 = √
∑ ∑ [𝐼(𝑥, 𝑦) − 𝑚]2𝑁

𝑦=1
𝑀
𝑥=1

𝑀 × 𝑁
 

Variance 𝜎2 =
∑ ∑ [𝐼(𝑥, 𝑦) − 𝑚]2𝑁

𝑦=1
𝑀
𝑥=1

𝑀 × 𝑁
 

Skewness 𝑆𝑘 =
1

𝑀 × 𝑁

∑ ∑ [𝐼(𝑥, 𝑦) − 𝑚]3𝑁
𝑦=1

𝑀
𝑥=1

𝜎3
 

Kurtosis 𝐾𝑡 =
1

𝑀 × 𝑁

∑ ∑ [𝐼(𝑥, 𝑦) − 𝑚]4𝑁
𝑦=1

𝑀
𝑥=1

𝜎4
 

Energy 𝐸1 = ∑ ∑ 𝐼(𝑥, 𝑦)2

𝑁

𝑦=1

𝑀

𝑥=1
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Second Order Statistic Features (Haralick features) 

Second Order Statistic Features (Haralick features) are based on the Gray Level 

Co-occurrence Matrix (GLCM). Let the image be represented by a M×N gray-scale 

matrix I(x,y), where each element of the matrix indicates the intensity of a single 

pixel in the image. The co-occurrence matrix 𝐶(𝑖, 𝑗|Δ𝑥, Δ𝑦) is the second-order 

probability function estimation. This matrix denotes the rate of occurrence of a pixel 

pair with gray levels 𝑖 and 𝑗, given the distances between the pixels are Δ𝑥 and Δ𝑦 

in the x and y directions, respectively. The co-occurrence matrix 𝐶(𝑖, 𝑗|Δ𝑥, Δ𝑦) is 

defined as  

 

𝐶(𝑖, 𝑗|Δ𝑥, Δ𝑦) = |{(𝑝, 𝑞), (𝑝 + Δ𝑥, 𝑞 + Δ𝑦) 

   : 𝐼(𝑝, 𝑞) = 𝑖, 𝐼(𝑝 + Δ𝑥, 𝑞 + Δ𝑦) = 𝑗}| 

 

where (𝑝, 𝑞)(𝑝 + Δ𝑥, 𝑞 + Δ𝑦) ∈ 𝑀𝑥𝑁, 𝑑 = (Δ𝑥, Δ𝑦), and || denotes the 

cardinality of a set. The probability that a gray level pixel 𝑖 is at a distance (Δ𝑥, Δ𝑦) 

away from the gray level pixel 𝑗 is given by 

    


C(i,j)

C(i,j)
P(i,j)

      

An element of the GLCM matrix (𝑖, 𝑗, 𝑑, 𝜃) is defined as the joint probability of 

the gray levels 𝑖 and 𝑗 separated by distance d and along angular direction θ. To 

reduce the computation burden, we have considered θ as 0º, 45º, 90º, and 135º, and 

d is defined as the Manhattan or city block distance (i.e. the number of pixels that 

must be crossed) based on this GLCM. These second order features are 

mathematically defined in the following table. 
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Feature Description 

Symmetry 𝐼𝑠𝑦𝑚 = ∑ ∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

Contrast  𝐼𝑐𝑜𝑛 = ∑ 𝑛2 {∑ ∑ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

}

𝑁−1

𝑛=0

 

Homogeneity  𝐼ℎ𝑚𝑔 = ∑ ∑
1

1 + (𝑖 − 𝑗)2

𝑁−1

𝑗=0

𝑁−1

𝑖=0

𝑃(𝑖, 𝑗) 

Entropy 𝐼𝐸𝑛𝑡𝑟 = − ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

log(𝑃(𝑖, 𝑗)) 

Energy 𝐼𝐸𝑛𝑟𝑔 = ∑ ∑ 𝑃(𝑖, 𝑗)2

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

Correlation 𝐼𝑐𝑜𝑟*=
∑ ∑ 𝑃(𝑖,𝑗)𝑃(𝑖,𝑗)2−µ𝑥

𝑁−1
𝑗=0

𝑁−1
𝑖=0 µ𝑦

𝜎𝑥𝜎𝑦
 

 

* 𝜎𝑥, 𝜎𝑦, µ𝑥, µ𝑦 are the standard deviations and means of  𝑃𝑥, 𝑃𝑦  which are the 

partial probability density functions. 𝑝𝑥(𝑖) =  𝑖𝑡ℎ    entry in the marginal–

probability matrix obtained by summing the rows of 𝑃(𝑥, 𝑦). 
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High-order Statistic Features (Galloway features) 

High-order texture Statistic features (Galloway features) are based on the run 

length matrix (RLM) R. In a RLM, the pixel 𝑅(𝑖, 𝑗) contains the number of pixels 

with run length 𝑗 and intensity 𝑖 in a given direction. The RLM has a number of 

rows equal to the number of gray levels in the image and a number of columns equal 

to the maximum length of the run length. Mathematical description of the Galloway 

features. 𝑁𝑔 represents the number of gray values in the image (i.e. the number of 

rows of the matrix 𝑅). 𝑁𝑟 represents the number of runs (i.e. the number of columns 

of the 𝑅 matrix). 

 

Feature Description 

Short Run Emphasis 𝑆𝑅𝐸 = 

∑ ∑
𝑅(𝑖, 𝑗)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑅(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

Long Run Emphasis 𝐿𝑅𝐸 =  
∑ ∑ 𝑗2𝑅(𝑖, 𝑗)

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑅(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

Gray Level Non-Uniformity 𝐺𝐿𝑁𝑈 =  
∑ (∑ 𝑅(𝑖, 𝑗)

𝑁𝑟
𝑗=1 )2𝑁𝑔

𝑖=1

∑ ∑ 𝑅(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

Run Length Non-Uniformity 𝑅𝐿𝑁𝑈 =  
∑ (∑ 𝑅(𝑖, 𝑗)

𝑁𝑟
𝑖=1 )2𝑁𝑔

𝑗=1

∑ ∑ 𝑅(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

Run Length Percentage 𝑅𝑃 =  
∑ ∑ 𝑅(𝑖, 𝑗)

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑔𝑁𝑟
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Local Binary Pattern features 

The LBP is computed by using the following method:  

A circular neighborhood of radius R pixels is considered around a pixel. The 

pixel is the center of the circular neighborhood and it has intensity equal to 𝐼𝑐. 

𝑃 points are chosen on the circumference of the circle with radius R such that 

they are all equidistant. Let 𝐼𝑝(𝑃 = 1, … , 𝑃) be the intensities of the 𝑃 points on the 

circumference.  

These P pixels are converted into a circular bit-stream of zeros and ones 

according to whether the gray value of the pixel is less than or greater than 𝐼𝑐. 

We considered 𝑃 equal to 24 pixels and R equal to 3 pixels, in order to consider 

a relatively large neighborhood. The created neighborhood is then assigned with a 

uniformity measurement 𝑈 that counts the number of bit transitions (from 0 to 1 

and viceversa) in the circular domain (with reference to fig. 3, the 𝑈 value would 

be equal to 4). We assigned to the LBP code only the patterns with 𝑈 ≤ 2, so that: 

𝐿𝐵𝑃(𝑥) = {
∑ 𝑠(𝐼𝑝 − 𝐼𝑐)

𝑃
𝑝=1 𝑈(𝑥) ≤ 2

𝑃 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

where s(x) is the step function that equals 1 if x  0 and is null for x < 0. Let’s 

fi be the relative frequency of the histogram derived from the LBP values of all the 

image pixels. The LBP energy is defined as: 

𝐿𝐵𝑃𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑓𝑖
2

𝑖  

The LBP entropy can be defined as: 

𝐿𝐵𝑃𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑓𝑖 ∙ 𝑙𝑜𝑔2(𝑓𝑖)

𝑖
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APPENDIX D 
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APPENDIX E 

 

Vascular features extraction  

The computation of vascular parameters is performed applying an iterative 

procedure which can isolate vascular trees 𝑇 according to the position of the nodes: 

 

𝐶𝑇𝑟𝑒𝑒 = { 𝑇1, 𝑇2, … , 𝑇𝑁} 
 

where 𝑁 is the number of vascular trees. 

The vascular architecture parameters are:  

1. Number of vascular Trees (NT), which is the number of the vascular 

networks of the tumor. Since 𝐶𝑇𝑟𝑒𝑒 = { 𝑇1, 𝑇2, … , 𝑇𝑁} denotes the set of all 

vascular trees, then 
  

𝑁𝑇 = 𝑁 . 

 

2. Number of vascular Branches (NB), which takes into the number of branches 

of the tumor vascular pattern; they are identified by branchpoints. 

3. Vascular Volume Density (VVD), which is obtained by the ratio of the total 

space occupied by the blood vessels and the total tumor size. 

Considering each vascular tree  𝑇𝑖 as the sequence of  𝑚 nodes  𝑇𝑖 =

{𝑝1, 𝑝2, … , 𝑝𝑚}, the tortuosity metrics are: 

4. Distance Metric (DM), which computes the ratio of the length of the vessel 

and the linear Euclidean distance between its endpoints: 

 

𝐷𝑀 = 
|𝑝𝑚 − 𝑝1|

∑ |𝑝𝑘𝑘 − 𝑝𝑘+1|
𝑚−1
𝑘=1

. 
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This is the simplest tortuosity metric and in case of a perfectly straight vessel 

the DM value is 1, while it increases as much as the vessel curves. It is 

suitable for slowly curving vessels which do not change direction along their 

path. 

5. Inflection Count Metric (ICM), which is obtained by the product of the 

number of inflection points 𝑁𝐼𝑛𝑓𝑃 and the 𝐷𝑀, plus 1 (in case of a curve 

which does not change its curvature direction, the ICM value would be equal 

to 1):  

 

𝐼𝐶𝑀 =  𝐷𝑀 ∗ 𝑁𝐼𝑛𝑓𝑃 + 1. 

 

The 𝑁𝐼𝑛𝑓𝑃 value is obtained using the geometrical representation of the 

Frenet frame. Along the centerline path, each point 𝑝𝑖 is considered, in a way 

that 𝑝𝑘−1 and 𝑝𝑘+1 are the neighboring nodes. Defining the velocity vector  

𝑽⃗⃗ =  𝑝𝑘+1 − 𝑝𝑘−1 and the acceleration vector  𝑨⃗⃗ =  𝑻⃗⃗ 𝟐 − 𝑻⃗⃗ 𝟏,  where 𝑻⃗⃗ 𝟏 =

 𝑝𝑘 − 𝑝𝑘−1 and  𝑻⃗⃗ 𝟐 = 𝑝𝑘+1 − 𝑝𝑘,  the principal normal vector 𝑵⃗⃗  can be 

expressed as  

 

𝑵⃗⃗ =  
𝑽⃗⃗  ×  𝑨⃗⃗  ×  𝑽⃗⃗ 

|𝑽⃗⃗  ×  𝑨⃗⃗  ×  𝑽⃗⃗ |
 

 

An inflection point can be recognized if  𝜟𝑵⃗⃗ ∙  𝜟𝑵⃗⃗ > 1, where 𝜟𝑵⃗⃗  represents 

the difference of the normal axes 𝑵⃗⃗  associated with point 𝑝𝑘 and 𝑝𝑘+1. 

This parameter is an estimation of the average number of time the vascular 

tree changes its shape from convex to concave and vice-versa. It is 

particularly suitable for vessels with high-frequency and high-amplitude 

curvature changes (inflection points). 

6. Sum Of Angles Metric (SOAM), which computes and sums point by point 

along the vessel’s centerline the total curvature angles. This metric is suitable 

in case of tortuous high-frequency and low-amplitude coils. As before, for 
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any point 𝑝𝑘, 𝑻⃗⃗ 𝟏, 𝑻⃗⃗ 𝟐 and 𝑻⃗⃗ 𝟑 = 𝑝𝑘+2 − 𝑝𝑘+1 are defined. The in-plane angle 

at point 𝑝𝑘 (𝐼𝑃𝑘) and the torsion angle 𝑇𝑃𝑘 are given by the following 

equations: 

 

𝐼𝑃𝑘 = 𝑐𝑜𝑠−1 (
𝑻𝟏
⃗⃗ ⃗⃗  

|𝑻𝟏
⃗⃗ ⃗⃗  |

 ∙  
𝑻𝟐
⃗⃗ ⃗⃗ 

|𝑻𝟐
⃗⃗ ⃗⃗ |

) 

 

𝑇𝑃𝑘 = 𝑐𝑜𝑠−1 (
𝑻𝟏
⃗⃗ ⃗⃗ ×  𝑻𝟐

⃗⃗ ⃗⃗  

|𝑻𝟏
⃗⃗ ⃗⃗ ×  𝑻𝟐

⃗⃗ ⃗⃗  |
 ∙  

𝑻𝟐
⃗⃗ ⃗⃗ ×  𝑻𝟑

⃗⃗ ⃗⃗ 

|𝑻𝟐
⃗⃗ ⃗⃗ ×  𝑻𝟑

⃗⃗ ⃗⃗ |
) 

 

The total angle 𝐶𝑃𝑘 at point 𝑃𝑘 is then  

 

𝐶𝑃𝑘 = √(𝐼𝑃𝑘 × 𝐼𝑃𝑘) + (𝑇𝑃𝑘 × 𝑇𝑃𝑘)  

 

The SOAM metric calculates the total tortuosity of the curve as  

 

𝑆𝑂𝐴𝑀 =
∑ 𝐶𝑃𝑘

𝑛−3
𝑘=1

∑ |𝑝𝑘 − 𝑝𝑘−1|
𝑛−1
𝑘=1
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