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Résumé

L’endométriose est un trouble gynécologique qui touche généralement les femmes en âge de pro-

créer et qui est associé à des douleurs pelviennes chroniques et à l’infertilité. L’endométriose est

un exemple typique de pathologie qui nécessite l’utilisation de l’imagerie à résonance magnétique

(IRM) et l’imagerie ultrasonore (US) (appelée aussi échographie) pour le diagnostic préopératoire et

la chirurgie guidée. Ces modalités sont utilisées conjointement car elles contiennent des informations

complémentaires. Cependant, le fait qu’elles aient des résolutions, des champs de vue et des con-

trastes différents et qu’elles soient corrompues par des bruits de differentes natures rend la collecte

d’informations à partir de ces modalités difficile pour les radiologues. Ainsi, la fusion des images IRM

et l’échographie peut faciliter la tâche des experts médicaux et améliorer le diagnostic préopératoire

et le plan de l’intervention chirurgicale.

L’objet de cette thèse de doctorat est de proposer une nouvelle méthode de fusion automatique

des images IRM et US. Tout d’abord, nous supposons que les images IRM et US à fusionner sont

alignées, c’est-à-dire qu’il n’y a pas de déformation géométrique entre elles. Nous proposons alors dans

ce contexte idéal des méthodes de fusion pour ces deux images, qui visent à combiner les avantages

de chaque modalité, c’est-à-dire un bon contraste et un bon rapport signal/bruit pour l’IRM et

une bonne résolution spatiale pour l’échographie. L’algorithme proposé est basé sur un problème

inverse, réalisant une super-résolution de l’image IRM et un débruitage de l’image US. Des fonctions

polynomiales sont introduites pour modéliser les relations entre les niveaux de gris des images IRM

et US. Cependant, la méthode de fusion proposée est très sensible aux erreurs de recalage. C’est

pourquoi, dans un deuxième temps, nous proposons une méthode conjointe de fusion et de recalage
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pour ces deux modalités. La fusion d’images IRM/US proposée permet d’obtenir conjointement une

super-résolution de l’image IRM et un débruitage de l’image US, et peut automatiquement prendre

en compte les erreurs de recalage. Une fonction polynomiale est utilisée pour relier les images

ultrasonores et IRM dans le processus de fusion, tandis qu’une mesure de similarité appropriée est

introduite pour traiter le problème de recalage. Le recalage proposé est basé sur une transformation

non rigide contenant un modèle élastique local de B-spline et une transformation affine globale.

Les opérations de fusion et de recalage sont effectuées alternativement, ce qui simplifie le problème

d’optimisation sous-jacent. L’intérêt de la fusion et du recalage conjoints est analysé à l’aide des

images synthétiques et expérimentales.
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Abstract

Endometriosis is a gynecologic disorder that typically affects women in their reproductive age and

is associated with chronic pelvic pain and infertility. In the context of pre-operative diagnosis and

guided surgery, endometriosis is a typical example of pathology that requires the use of both magnetic

resonance (MR) and ultrasound (US) modalities. These modalities are used side by side because they

contain complementary information. However, MRI and US images have different spatial resolutions,

fields of view and contrasts and are corrupted by different kinds of noise, which results in important

challenges related to their analysis by radiologists. The fusion of MR and US images is a way of

facilitating the task of medical experts and improve the pre-operative diagnosis and the surgery

mapping.

The object of this PhD thesis is to propose a new automatic fusion method for MRI and US

images. First, we assume that the MR and US images to be fused are aligned, i.e., there is no

geometric distortion between these images. We propose a fusion method for MR and US images,

which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio

for the MR image and good spatial resolution for the US image. The proposed algorithm is based

on an inverse problem, performing a super-resolution of the MR image and a denoising of the US

image. A polynomial function is introduced to model the relationships between the gray levels of the

MR and US images. However, the proposed fusion method is very sensitive to registration errors.

Thus, in a second step, we introduce a joint fusion and registration method for MR and US images.

Registration is a complicated task in practical applications. The proposed MR/US image fusion

performs jointly super-resolution of the MR image and despeckling of the US image, and is able to
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automatically account for registration errors. A polynomial function is used to link ultrasound and

MR images in the fusion process while an appropriate similarity measure is introduced to handle the

registration problem. The proposed registration is based on a non-rigid transformation containing a

local elastic B-spline model and a global affine transformation. The fusion and registration operations

are performed alternatively simplifying the underlying optimization problem. The interest of the joint

fusion and registration is analyzed using synthetic and experimental phantom images.
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1.1 Medical image processing

Medical imaging consists in producing accurate images of interior tissues for scientific and medical

treatment. It includes functional and radiological modalities based on magnetic, sonography, thermal

and electromagnetic imaging [Sue17]. Since 1895 and after the discovery of X-rays, medical imaging

has become very crucial in the health care domain. With the increasing use of digital imaging systems

for medical diagnosis, computer science, in particular medical image processing and analysis become

more and more important in this domain. The idea is to support radiologists and surgeons in the

interpretation of these images and to help diagnosis or therapy. Studies related to medical image
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2 Chapter 1 - Introduction

processing reveal that these methods can not only improve the accuracy of the radiologist diagnosis

but also help to overcome the increasing data volume that challenges radiologist time. Also, the

decisions of radiologists can be affected by many factors like fatigue, distraction and experience

which is not the case of machines. There are several areas in which image processing techniques are

used to identify abnormalities or tumors in brain, heart, chest, lung, breast, prostate, colon, skeletal,

liver or vascular system [Ban08].

In the early 1980s, large-scale research on computer-aided diagnosis (CAD) started to take place

in the health care field [Doi07]. In 1982, M. Ishida [IKDF82] investigated the development of a

new digital radiographic image processing system. In 1985, M. L. Giger [GD85] examined the basic

imaging properties in digital radiography such as the effect of pixel size on signal to noise ratio (SNR)

and threshold contrast. In 1986, K. R.Hoffmann [HDC+86] proposed an automated tracking of the

vascular tree in digital subtraction angiography images using a double-square-box region-of-search

algorithm. In addition to these pioneer works, several studies have been conducted in order to help

radiologist in various clinical applications [IFDL83, IDLL84, GD84, LDM85, FDG85, GDF86]. The

concept of CAD was established in the 1960s [LHS+63, MNJB+64] but it was not effective until the

1980s due to the fact that computers were not sufficiently powerful.

Generally, medical image processing obtained from different imaging systems involves five prin-

ciple areas [Des09] (Fig. 1.2), depicted in the next subsections.

1.1.1 Image formation

The first step in the image formation is the acquisition, which consists in capturing physical details

about internal aspects of the body. There are different principles of acquisition for multiple physical

quantities: the photon energy for PET (positron emission tomography), the acoustic echoes in the

US images, the radio-frequency signal emitted by excited atoms for MR image (magnetic resonance

imaging) and the energy of incident photons for CT (computed tomography). All these modali-

ties require subsequent steps for image formation like the conversion into an electrical signal, the

preconditioning of this signal and finally its digitization.
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Figure 1.1: Medical image processing. Globally, image processing involves five major steps: image
formation, image enhancement, visualization, image analysis and management [Des09].

1.1.2 Image enhancement

The aim of medical image enhancement is to improve the interpretability of the information contained

in the image by applying an appropriate transformation to the image. Classical transformations are

defined in the spatial or frequency domains [MA10].

In the spatial domain, transforms are applied directly on image pixels, which is often used for

contrast optimization [KK16]. These methods generally rely on histogram [ATL14], logarithmic

[HAY10] and power law transforms [SS10]. In the frequency domain, standard methods capture the

spectral information contained in the image [YSS10], through filters [MM08], which can be used

to smooth or sharpen the images. These techniques allow for noise, artifacts and blur reduction,

enhancement of edges, contrast optimization and improvement of other fundamental properties that
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are important for an accurate interpretation.

1.1.3 Image analysis

Image analysis is an important step in image processing [DA00], it has several objectives such as:

image segmentation, image registration and image fusion.

Image segmentation is considered as an important step in CAD since it helps radiologists to

extract regions of interest (ROI) based on automatic or semi-automatic methods. It is the process

of dividing an image into homogeneous parts using specific attributes. Generally, the purpose of

segmentation is border detection, tumor detection and mass detection [PXP00].

Image fusion refers to assembling all the important information from multiple images and

including them in fewer images, e.g., in a single image. The purpose of image fusion is to reduce

the number of images and to build an enhanced image that is informative [JD14a], comprehensible

and accurate for the operator. The fusion of medical images is used for several studies of pathologies

and generally grants better medical decisions in clinical studies. Medical images that can be fused

efficiently include MR and single-photon emission computed tomography (SPECT) images [PHS+96],

MR and computed tomography (CT) [WB08], or positron emission tomography (PET) and CT

[VOB+04].

Image registration creates a common geometric reference frame across two or more image

datasets [OT14a]. It is a required task for the fusion and the comparison between images obtained

at different times or using different imaging modalities.

1.1.4 Image visualization

Image visualization refers to all types of matrix manipulations, resulting in an optimized output of

the image. Many applications require visualization and analysis of three-dimensional (3D) objects.

The aim of image visualization is to gain insight into the collected data through the process of

transforming, mapping, and view the collected data as images with high quality. This technology

provides crucial devices for diagnosis, research and instruction where the human body is interactively

explored. In order to visualize volumes, it is important not only to collect different viewpoints but
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also to respect subtle variations in density and opacity while displaying them. Extensive researches

are done in this field especially in 3D reconstruction [NTCO12].

1.1.5 Image management

Image management deals with all the tools that provide practiced storage (servers, clouds), commu-

nication, sharing, archiving, backup, and access to image data [RP04]. Medical images use DICOM

(Digital Imaging and Communication in Medicine) for storage, which may require several megabytes

of storage capacity, and compression techniques. Also, techniques used in telemedicine/telehealth

are part of image management [TKO96, MLM+01].

1.2 Endometriosis

Endometriosis is a disorder in which cells similar to those that form the lining of the endometrium,

the layer of tissue that normally covers the inside of the uterus, grows in sites different from the

uterine cavity [Giu10]. Most often, this misplaced tissue often attaches itself to the ovaries, fallopian

tubes, and tissues around the uterus and ovaries. Thus, in rare cases, it can spread to other internal

organs as well (Fig. 1.2 shows the most common location of the endometriosis). Endometriosis

is a very common pathology since one woman out of ten gets affected by endometriosis during its

reproductive years (ages between 15 and 49 years), which means that more than 176 million women

in the world have been subject to endometriosis [VSB+20].

There are various symptoms of endometriosis: pelvic pain and infertility are the most common

symptoms. More than half of women with endometriosis have chronic pelvic pain, especially during

menstruation (dysmenorrhea) [Ton02]. These pains are usually accompanied by lower back and

abdominal pain. Pain during and following sexual intercourse (dyspareunia) is also common [DM07].

Regarding infertility, one third of women with infertility problems have endometriosis and among

women with endometriosis 40% are infertile [BCBB10]. There are other less common symptoms like

urinary or bowel symptoms, ovary cancer, diarrhea, chronic fatigue etc [FBF+11]. About 25% of

women have no symptom and 85% of women with infertility have no pain. Therefore, the severity
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Figure 1.2: The important location of the endometrial tissue.

of the pain does not indicate the stage of the disease. Minimal, mild, moderate, and severe are the

four stages of the endometriosis. Several factors such as location, size, and depth of organ infiltration

help to determine the stage of the disorder [PFF+95]. Endometriosis can also affect these women

psychologically or socially: it may cause depression, anxiety, hopelessness since living and struggling

with agonizing pain without knowing the reason can be more stressful than a chronic known medical

condition. 73% of women with endometriosis have had their relationships affected by endometriosis

and 82% of women are unable to carry out day-to-day activities due to endometriosis [SdA09].

Each month during the menstrual cycle, endometrial tissue located outside the uterus named

implants, grow and bleed in response to hormones as for the tissue lining inside the uterus, resulting

in internal bleeding and inflammation. The body responds to inflammation and injuries by forming

scar tissue and adhesions as a part of the healing process. Adhesions (see Fig. 1.3) can cause tough

complications: it can attach for example the ovaries or cutting off the blood supply. These adhesions

explain the higher risk of infertility because it makes it difficult for an egg to travel to or to implant

the uterus [KOM+08].

The exact cause of endometriosis is not clear. There are many theories that have never been
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Figure 1.3: An example of the endometriosis adhesions that attach the fallopian tube to the uterus
[Anu20].

scientifically proved [VOCD01]: in 1924, Sampson proposed that endometriosis is due to retrograde

menstruation where the menstrual blood that normally exits the body through the vagina circulates

to the pelvic by the fallopian tube [Fal56]. Another hypothesis is that hormones alter the cells outside

the uterus and transform them into endometrial tissues. All experts seem to agree that there are some

common risk factors like having a family history of the condition [MM93], menstrual cycle disorder

like very short periods or very long cycles or menstruation starting at an early age [DVB+93]. Also,

women who have no children have a higher risk of developing the disease.

1.3 Endometriosis diagnosis and treatment

Unfortunately, the diagnosis of endometriosis is still a difficult task. In the UK, statistics show that

there is an average of 7.5 years between the woman first sees a doctor for symptoms and endometriosis

diagnosis [APABP03], which gives the endometrium tissue time to spread, impact several organs and

worsen the patient health.

Typically, the health history and the presence of many symptoms can lead the gynecologist to
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suspect endometriosis. Doctors generally start with a pelvic physical examination by feeling and

palpating the pelvis for abnormalities like cysts [BLR+09]. However, this technique is unable to

detect small areas with endometriosis and implants that are note located in the cervix, the vagina,

and the vulva.

Visual examination using laparoscopy [JRH+13] and different medical image modalities such as

transvaginal ultrasound (TVUS) [SBHU91] and magnetic resonance imaging (MRI) [ZDFZB03] are

the standard for the diagnosis of endometriosis. There is no consensus on the use of CT scanning

images due to a lack of contrast resolution [WJLS98].

Since there is no effective treatment, hormonal medication is used to decrease the pain in periods

and intercourse. However, depending on the disease stage, laparoscopic surgery reveals to be the

unique effective pain-relief [JDB+10]. TVUS and magnetic resonance (MR) images, besides being

used for diagnosis, are used to identify endometriosis and its depth of infiltration in organs before

performing surgery.

1.3.1 Laparoscopy

Laparoscopy (minimally invasive surgery) is an operation procedure performed in the pelvis and the

abdomen using tiny cuts (0.5cm-1cm) and a camera to look inside the abdominal cavity. Laparoscopy

is the most common way to officially diagnose endometriosis. A careful investigation of the pelvic

during laparoscopy permits lesion visualization. Sometimes a biopsy can be taken to confirm the

diagnosis. During a laparoscopy, various procedures can be performed in order to destroy or remove

the endometriosis cysts (Fig. 1.4), and release scar tissue. However, in the case of deep infiltrating

endometriosis [DAC+14], the accuracy of laparoscopy is limited. Indeed, laparoscopy does not allow

surgeons to detect the implants under complex adhesions or inside the organs. Thus, important

information for surgery as deep of infiltration, lesion contours, and the exact location of endometriosis

is not detected using laparoscopy only. Therefore, imaging techniques such as MR and TVUS images

are crucial for the assessment of endometriosis and for creating a preoperative map for surgery.
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Figure 1.4: Inspecting the pelvic cavity for severe endometriosis location and excision [Gyn15].

1.3.2 Imaging modalities

Diagnosing endometriosis requires a reliable diagnostic imaging exam. Additionally, preoperative

images such as MR and TVUS images are crucial for identifying the different locations of deep

endometriosis because in certain sites, such as the intestine or bladder, the surgery is particularly

difficult and carries greater risk.

1.3.2.1 Transvaginal ultrasound (TVUS)

Transvaginal ultrasound or endovaginal ultrasound, is an internal examination of the reproductive

female organs as the uterus, fallopian tubes, ovaries and cervix by introducing gently a high-frequency

transducer probe (10MHz) into the vagina, and exploring the pelvic cavity.

Vaginal ultrasound has clinical value in the diagnosis of the endometrioma (endometriosis cysts)

and before operating for deep endometriosis. This concerns the identification of the spread of disease

in women with well-established clinical suspicion of endometriosis. Vaginal ultrasound is inexpen-

sive, easily accessible, has no counter-argument, and requires no preparation. Experts conducting

ultrasound examinations need to be experienced. The sonographer can evaluate and look for deep

infiltrating endometriosis adhesions (Fig. 1.5) and implants noting the size, location, and if applica-

ble, the distance from the anus [HET+11]. TVUS images have also some limitations which are the
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huge amount of speckle reducing the signal to noise ratio, and also their limited field of view and

low contrast. An improvement in sonographic detection of deep infiltrating endometriosis would not

only reduce the number of diagnostic laparoscopies, but it will also guide management and enhance

the quality of life.

Figure 1.5: Example of 2D TVUS image that illustrates a deep infiltrating endometriosis [LC20].

1.3.2.2 Magnetic resonance imaging (MRI)

MR imaging is a non-invasive imaging technology that produces three-dimensional detailed anatomi-

cal images. It has an excellent tissue identification through several parameter sequences and contrary

to TVUS, it is not operator dependent. The broad field of view allows MR imaging to exhibit the

whole pelvis, which can facilitate the evaluation and the detection of lesions. MR images provide

a high contrast resolution helping to assess a precise map of endometrial implants. However, MR

image is not widely used due to its cost, limited availability, and low spatial resolution especially

at the millimetric scale. Thus, small lesions are often not visible by MR image because they are

tiny and flat, and therefore undetectable [KFBC06]. More precisely, only the lesions exceeding 5mm

or appearing as hemorrhagic cysts, showing high signal intensity on T1 and low signal intensity on

T2-weigthed images, can be detected (as shown in Fig. 1.6).

To conclude, MR and ultrasound images are highly useful in many diagnoses and guided surgery,

both helping to assess the condition of organs. However, these two distinct imaging modalities differ

by the technologies behind them and offer several advantages and limitations. In order to combine
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Figure 1.6: Coronal T2 and T1-Fatsat images: superficial serosal implants of endometriosis
[vWHB11].

their complementary properties, MR and US images are classically used side by side for endometriosis

analysis and medical intervention [CGM+04].

1.4 Endometriosis treatment

While there is no effective cure for endometriosis, there are two types of intervention to manage the

symptoms related to endometriosis especially infertility and menstrual pain. The treatment depends

on how severe the symptoms are and whether the patient hopes to get pregnant. Doctors generally

recommend conservative treatment such as pain medication or hormone therapy and opt for surgery

if the initial approach fails [VS03].

1.4.1 Pain medication and hormone therapy

There are many medications that doctors recommend to their patients as an over-the-counter pain

reliever. These medications include nonsteroidal anti-inflammatory drugs [AHPG09] or endorphins

to provide appropriate menstrual pain control. Endometriosis becomes inactive and gradually dis-

appears during menopause. Thus, producing the same conditions using hormone therapy can be

accurate for women who do not want to get pregnant [AKHAFH09]. The rise and the fall of hor-

mones during the menstrual cycle cause the bleeding and the thickness of the endometrial implants.
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Stabilizing hormones may stop or slow its growth and prevent new adhesions. Combined estrogen-

progestogen birth control (hormonal contraception) is a gold standard hormone therapy [VPDG+05]

because it can be used during long periods, is inexpensive, and easy to use. Other hormonal medica-

tions can be used as danazol [HCM+88] and gestrinone [DNPCR90] but their use is limited because of

their side effect: excessive hair growth, voice changes and masculinization, etc. Generally, hormone

therapy is combined with pain medication for a conservative treatment. However, these approaches

are not a permanent fix or a cure for endometriosis since patients can experience pain recurrence

after stopping treatment and they are not adapted for women who want to get pregnant.

1.4.2 Conservative surgery

After an accurate diagnosis that indicates the existence of endometriosis, the exact location of im-

plants, their size, and their depth of infiltration, a surgical plan is defined to remove or incise this

endometrial tissue. This procedure is usually done using laparoscopy surgery because it is considered

as minimally invasive [DAC+14, NCG86]: the surgeon inserts a laparoscope with an attached cam-

era (a viewing instrument) through a small incision and inserts through another incisions surgical

instruments for the ablation or the excision of the implants, the adhesions, the endometriomas in

order to restore the pelvic anatomy as normal as possible. The precision of this surgery depends on

the accuracy of the diagnosis which is difficult using the current imaging techniques. Thus, 21.5% of

patients at 2 years and 40−50% at 5 years experience endometriosis recurrence [Guo09], which is due

to part of implants that have not been removed during surgery because of their deep infiltration or

defective surgical planning. Laparoscopy helps to preserve ovaries and the uterus (which is important

for women who want to get pregnant) and reduces the probability of developing adhesions. However,

laparoscopy increases the risk of recurrence.

In many cases, hysterectomy (removal of the uterus) is considered as a cure of endometriosis for

women who do not want to conceive. However, it must be accompanied by endometriosis excision or

the pain will persist if the endometriosis is located in other sites [NHG+95].
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1.5 Motivation and objectives

As explained previously, endometriosis is a typical example of pathology that requires the use of MR

and US modalities in conventional clinical practice. Endometriotic lesions can be either superficial or

deeply infiltrating. Surgery is a cornerstone for endometriosis since disease removal positively impacts

quality of life and fertility [RCLB+18]. First line radiological assessment uses MR and pelvic US

imaging. MR image displays a higher sensitivity for endometriosis diagnosis compared to pelvic US

(0.94 versus 0.79) [NBF+16]. In contrast, pelvic US with transvaginal or transrectal route provides a

better specificity (0.94 versus 0.77) and is more accurate in the evaluation of infiltration depth when

compared to MR images. Considering the benignant nature of the disease and its high recurrence

rate, conservative management treatment involving limited invasive measurements is preferable to

surgery whenever feasible [DR17]. In the setting of deep infiltrating endometriosis, fusing the two

imaging techniques thus appears particularly promising. Indeed, the presence of information coming

from both US and MR modalities in a single image is expected to improve preoperative disease

mapping and subsequent definition of surgical modalities.

The fusion of MR and ultrasound (US) images is a challenging task because the two imaging

modalities have different resolutions and contrasts and are corrupted by different kinds of noise. To

the best of our knowledge, the fusion of MR and US images for endometriosis diagnosis has rarely

been considered in the literature. The primary goal of this work is to propose a fusion method that

considers MR and US image limitations and enhances image quality while gathering the information

from both of them. The US image can also show some deformations under certain conditions.

Introducing the transvaginal probe inside the vagina, full bladder, bowel, or gas inside the rectum

can deform the pelvic organs. Moreover, since the fusion method is very sensitive to the misalignment

between these two images, a joint registration and fusion method for MR and US images is interesting,

which is the second objective of this PhD thesis.
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1.6 Organization of the manuscript

The remaining of this thesis consists of 4 chapters and 2 appendices that are described below.

• Chapter 2: This chapter reminds the basic principles related to MR and US image forma-

tion. Moreover, MR and US advantages and limitations are reported and some post-processing

techniques are introduced with a brief state-of-art on MR super-resolution and US despeckling

techniques.

• Chapter 3: Since there is no existing method to fuse MR and US images, this chapter gives a

general review of medical image fusion, summarizing the most known and used medical image

fusion methods, which are classified into pixel-level image fusion and transform-based image

fusion. This chapter also introduces some metrics for performance evaluation that will be

used to evaluate the quality of image fusion. The chapter continues by introducing the image

registration framework and its components with a general survey in medical image registration.

The chapter is concluded by a state-of-the-art on the registration of MR and US images.

Main Contributions

The main contributions of this thesis are as follows.

• Chapter 4: This chapter introduces a new fusion method for magnetic resonance (MR) and

ultrasound (US) images [MBV+19, EMVB+20], which aims at combining the advantages of

each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial

resolution for the US image. The proposed algorithm is based on an inverse problem, performing

a super-resolution of the MR image and a denoising of the US image. A polynomial function

is introduced to model the relationships between the gray levels of the MR and US images.

The resulting inverse problem is solved using a proximal alternating linearized minimization

algorithm. The accuracy and the interest of the fusion algorithm are shown quantitatively and

qualitatively via evaluations on synthetic and experimental phantom data.
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• Chapter 5: This chapter introduces a joint fusion and registration method for magnetic res-

onance images (MR) and ultrasound (US) images. Fusion allows complementary information

from these two modalities to be captured, i.e., the good spatial resolution of US images and

the good signal to noise ratio of MR images. However, a good image fusion method requires

images to be registered, which is generally a complicated task in practical applications. The

proposed approach is based on two inverse problems, performing a super-resolution of the MR

image and a despeckling of the US image, and accounting for registration errors. A polynomial

function is used to link US and MR images in the fusion process while an appropriate similarity

measure is introduced to handle the registration problem. This measure is based on a non-rigid

transformation containing a local term based on B-splines and a global term based on an affine

transformation. The fusion and registration operations are performed alternatively simplify-

ing the underlying optimization problem. The interest of the joint fusion and registration is

analyzed quantitatively and qualitatively via synthetic and experimental phantom data.

Appendices

• Appendix A: This appendix presents an unexpensive and easy to make multi-modality

phantom for MR/US image fusion validated by Dr. Vidal. This phantom shows very similar

characteristics to an uterus infiltrated by endometrial tissue.
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Chapter 2

MRI and Ultrasound imaging

Contents
2.1 MR image formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Nuclear spin and magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Spatial encoding in MR images . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 MR super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 US image formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 US propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 US transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 US data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Speckle reduction for US imaging . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Other medical imaging modalities . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 MR image formation

MR image is a medical imaging technique used in diagnosis of several pathologies related to blood

vessels, heart, brain or spinal cord. The principle of MR is based on the nuclear magnetic resonance

(NMR) phenomenon, i.e., the coupling between the magnetic moment of the nucleus of atoms (pro-

tons) and the external magnetic field [MS18], described by Felix Bloch and Edward Mills Purcell in

1946,which made them obtain the Nobel prize in 1952. At the beginning of the 1970s, numerous

developments in NMR, particularly in spectroscopy, suggested new applications for this technique.

In this context, Raymond Vahan Damadian proposed in 1969 to use NMR for medical purposes

and supported his proposal with the demonstration that NMR spectroscopy allows the detection of

tumors [KD15].

19
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Figure 2.1: MR machine.

NMR is based on the spin magnetic moment caused by the nuclei of atomic isotopes such as

hydrogen (H); Hydrogen is found in large quantities in the human body via the water (H2O) contained

by the tissues and the organic molecules.

2.1.1 Nuclear spin and magnets

All nucleons (neutrons and protons) have the quantum property of spin quantified by the spin angular

momentum ~S. The spin depends on the number of neutrons and protons in the atom (in the case of

hydrogen, there is only one proton, thus the spin of this proton is the spin of the atom). A non-null

spin ~S is associated with a magnetic moment ~µ via the relation

~µ = γ~S (2.1)

where γ is the gyromagnetic ratio.

The hydrogen has two independent spin states: spin-up and spin-down. In the absence of magnetic

field, the numbers of nucleons in these two states are the same since these states are degenerated.

In this case, no magnetic moment can be detected. For the construction of MRI images, the atoms
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are placed in a large constant magnetic field (0.5 - 4.5T) created by a superconducting magnet (see

Fig. 2.1) and denoted as B0. The interaction between the nuclear magnetic dipole moment and the

external magnetic field results in Larmor precession, a rotation of the nucleons on themselves around

their axis with a rapid precession movement around the axis of the magnetic field. The angular

frequency of this rotation can be writing as follows:

ω0 = γB0. (2.2)

When exposed to magnetic fields, the magnetic dipole moments of protons can either align with the

direction of the external magnetic field B0 (the low energy state) or align with the opposite direction

of B0 (high-energy state). The magnetic field M0 produced by the entire volume is non-null and

represents a longitudinal magnetization aligned with the external magnetization because the slight

majority of protons align in the same direction as B0 (this mechanism is described in Fig. 2.2) as

predicted by Boltzmann theory. Note that the Larmor precession of a proton creates a magnetic

moment that has a non-zero component in the z direction and in the xy plane but considering the

volume, no magnetization is detected in the xy plane as the protons precess out of phase.

The M0 magnetization created by protons cannot form the MR image as B0 masks it. Indeed,

it is impossible to detect the magnetization M0 and produce the MR image as B0 is very large and

masks easily M0. The solution is to flip the magnetization M0 from the z-axis to the xy-plane, which

can be done by a precise excitation with radio-frequency pulses via an external coil. Note that this

excitation brings also protons into phase [MS18].

2.1.2 Relaxation

The following description occurs in a the classical xyz coordinates. After an excitation via RF pulses,

the longitudinal momentM0 flips to a certain angle and thus leads to both a momentMz in the z -axis

and a a transverse moment Mxy in the xy-plane. When the RF pulse is turned down, the protons

relax and begin to lose their energy and return to their states M0 before excitation (z-direction).

This phenomena is called relaxation. The main mechanisms of relaxation are T1 recovery and T2

decay [WMB+11]:
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Figure 2.2: (A) the spin moment of a proton ~µ, (B) The spin moments of protons ~µ are randomly
oriented, thus, the global moment is null, (C) when placed in external magnetic field, protons align
their spin in the direction or in the opposite of B0 and then, produced a global longitudinal moment
align with B0 [BB11].

Longitudinal relaxation T1: also called spin-lattice relaxation,
occurs when the protons dissipate their energy to return to their
equilibrium. The longer the duration the higher Mz is. This phe-
nomenon therefore follows an exponential dynamic [BB11] defined
as

Mz(t) = M0
(
1− e−

t
T1
)
. (2.3)

T1 recovery is the recovery of the longitudinal moment along z.
The value of T1 ranges from 200 − 3000ms and Mz recovers 63%
of its maximal value M0 after time T1.
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Transverse Relaxation T2: also called spin-spin relaxation is
due to the agitation of molecules which causes the decay of the
transverse magnetization in the xy-plane. T2 is the necessary
time to reduce the transverse moment by 37%. T2 relaxation also
follows an exponential dynamic defined as [BB11]:

Mxy = M0e
− t
T2 . (2.4)

A tissue in the body can be categorized by different times T1 and
T2, which depend on the hydrogen concentration in this tissue.
Thus, multiple images can be produced based on these relaxation
delays such as T1 and T2-weighted MR images.

Proton density PD: weighted image produces contrast due to a
long repetition time TR and a short echo time TE. It is the tissue
with higher density of protons who produces the strongest signal
and appear the brightest on the image.

2.1.3 Spatial encoding in MR images

For imaging, it is important to allocate a position to the received signals. In the case of MR images,

the majority of images are created using the two-dimensional Fourier transform (2DFT) method with

slice selection [Pip95]. The MR imaging is based on a formalism named k-space. It is a matrix where

MR signals are stored during the acquisition.

Slice selection is the first step of MR spatial encoding. The desired slice is selected by applying

a perpendicular gradient magnetic field (slice selection gradient GSS). GSS modified the precession

frequency of the protons such that an RF wave with the same frequency will cause them to shift,

therefore, create an RF signal received from the desired slice. Phase encoding is the second step in

the MR spatial encoding. It consists on applying phase encoding gradients to dephase the RF signal
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in the vertical direction. The final step is frequency encoding which consists on applying frequency

encoding gradient to modify the Larmor frequencies in the horizontal direction. All these signals are

recorded in k-space then processed to form an image of the slice plane.

2.2 MR super-resolution

Nowadays, MR images can provide sub-centimeter resolution. Sometimes, especially for early di-

agnosis, lesions can be very tiny and require a millimetric scale resolution. Thus, they are subtle

or undetected in MR images. Therefore, improving imaging resolution can improve the accuracy of

diagnosis.

Several methods can be used to enhance the MR spatial resolution. For example, hardware

solutions consisting in increasing the external magnetic field B0, or the number of coil receivers have

been largely explored in the literature [VRTTP12]. However, this approach can be rapidly expensive.

Another approach is a basic interpolation based on zero-padding which is used in most MR machines

to increase the size of MR images, or in other words to decrease the pixel size. This method yields

better visual results but also generates artifacts and blur to the images without introducing new

information [VRTTP12]. Thus, SR algorithms for MR images are widely used in many studies.

The first application of SR to MR images has been introduced in [TH80], which has been followed

by numerous studies in this domain. The purpose of image super-resolution is to estimate a high-

resolution HR image from a low-resolution LR image. There are three principal approaches dedicated

to SR [Zha16]:

1. Interpolation-based approaches: they are generally intuitive and consider SR as a nonuniform

interpolation problem [ZYL12]. Many algorithms are used in this context such as nearest

neighbor interpolation [MK14] or adaptive interpolation [DEDV19]. These methods have the

advantage of being simple and easy to implement but they generally smooth high frequency

details in MR images.

2. Learning-based approaches [CFK+18, CXZ+18]: they learn the relation between LR and HR

images using trained databases. The results of these methods can be very accurate if the model
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is well-trained.

3. Reconstruction-based approaches [Zha16, GEW10, GPOK02]: they use a data fidelity term

and a prior knowledge to model a relationship between the HR and LR images. The observed

LR image denoted as ymr can be modeled as a decimated and blurred version of the HR image

xmr contaminated by an additive Gaussian noise nmr:

ymr = SCxmr + nmr. (2.5)

Recovering the high-resolution MR image from its low-resolution counterpart is an ill-posed

problem. In order to obtain a realistic solution, many regularization φ can be added (i.e.,

gradient [Zha16] and self-similarity [MCB+10a] to name a few). The inverse problem considered

for these approaches can be defined as

min
xmr

1
2‖ymr − SCxmr‖22 + τ1φ(xmr) (2.6)

where φ is the regularization function.

There are many algorithms that have been proposed to optimize this kind of functions, for

example: gradient-based methods, soft thresholding algorithms, alternating direction method

of multipliers (ADMM) and the split Bregman (SB) methods.

This thesis will consider a reconstruction-based approach applied to a single image to enhance the

MR image during the fusion because of its adaptability with the proposed fusion model.

2.3 US image formation

A sound wave is a vibration that propagates by longitudinal motion as an acoustic wave. Its prop-

agation is caused by the variation of pressure (repeating oscillation between high and low pressure)

in a medium such as liquids or gas. The wavelength λ can be described as the distance over which

the wave shape repeats, i.e.,

λ = c

f
(2.7)
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where f is the wave frequency and c is the speed of sound. Note that c depends on the medium

through which the sound wave propagates and can be defined as

c = 1
√
ρκ

(2.8)

where ρ and κ are the density and the compressibility of the medium. Thus, the speed of sound is

higher in materials where the density and the compressibility is lower. Here are some examples of

propagation velocities: air (330 m/s), fat (1450 m/s), water (1480 m/s), liver (1550 m/s), kidney

(1560 m/s), blood (1570 m/s), muscle (1580 m/s) and bone (4080 m/s). An average value in human

tissues is c = 1540 m/s. Another more precise way to characterize the medium through which the

US wave propagates is to study the acoustic impedance Z defined as

Z = ρc. (2.9)

US imaging is a high-frequency sound wave-based modality. The used frequencies are higher than the

audible sound > 20000 Hz and range, in standard applications, from 0 to 50 MHz for most of medical

applications. US imaging helps radiologists to see through the body by detecting the reflected echos

of the emitted pulses using a US probe (as shown in Fig. 2.3).

US images are used in different fields: some examples of clinical applications that involve US

images include cardiology, obstetrics, emergency medicine, colorectal surgery and pelvic surgery.

2.3.1 US propagation

The US image is formed by transmitting pulses into the body and detecting the reflected echoes.

Other phenomena can occur during the US propagation such as scattering, refraction or attenuation

(shown by Fig. 2.4), which can contaminate the image by heavy speckle noise and artifacts. The

information that US images contain is due to the reflection and scattering of the emitted waves.

• Reflection: when the US wave passes between two mediums with different acoustic impedances

Z, a fraction of the wave is reflected which helps the image formation and highlights the organ

boundaries. The amplitude of the reflected wave depends on the difference between the acoustic
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Figure 2.3: Scheme of US wave propagation for US image formation [PL06].

Figure 2.4: Different physical phenomena that occur during US propagation [PL06].
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impedance between the two mediums. More precisely, the amplitude reflection R can be written

as follows:

R = Z2 cos θi − Z1cosθr
Z2 cos θi + Z1cosθr

(2.10)

where Z1 and Z2 are the acoustic impedances of the two mediums. The amplitude transmission

coefficient T is given by

T = 2Z1cosθt
Z2 cos θi + Z1cosθt

(2.11)

where θi, θr and θt are illustrated in Fig. 2.5.

Figure 2.5: Illustration of Descartes law for the optical geometry [Che16].

• Scattering is a special case of case of reflection which occurs when the size of the target (to

be imaged) is by far smaller than the incident wavelength. In this case, the incident wave is

’reflected’ (not in a single direction as in the case of reflection but) in all the directions of the

space. These targets are known as the scatterers such as red blood cells or the elementary cells

inside the tissues or organs. The scattered waves can also interact with each other causing

constructive and destructive interferences. This phenomenon is the principal cause of the

speckle noise in US images. The power of the scattered wave Is satisfies the following relation

Is ∝
d6c4

λ4 Ii (2.12)

where Ii is the incident wave power, d is the dimension of the diffuse reflector and λ is the

wavelength of the emitted pulse.
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• Attenuation is the lost of energy of the wave during propagation which is caused by two main

factors: the US wave frequency and the medium crossed by the wave. For a fixed propagation

distance, this phenomenon affects to a greater degree high frequencies compared to lower fre-

quencies. Thus, for deeper areas of interest, lower frequency 3− 5MHz transducers are used at

the expense of spatial resolution.

2.3.2 US transducer

US transducers or probes generate and sense the ultrasound energy through conversion between

electrical and mechanical energies. The ultrasound probe is composed of several quartz crystals

(piezoelectric crystals). These crystals vibrate when an electric current is applied and create sound

waves that travel through the tissues. Conversely, they emit an electrical signal when sound waves

hit them.

2.3.3 US data

2.3.3.1 Beamforming

Beamforming refers to the multiple techniques used to combine the signals received from elements

of an US array. The main objective is to obtain the most intense beam with the lowest sidelobes

and to be able to explore the medium in depth without important loss of information. In the

transmission phase, the elements of the transducer (actually the ultrasound sensor) are acted together

with previously delayed waves in order to get a summed beam at a focalization point. In the reception

phase, the reflected echos are delayed and averaged to create the radio-frequency (RF) signal. The

reader can refer to, for instance, [Dia13] for more information about beamforming techniques in US

imaging.

2.3.3.2 RF and IQ signals

The RF signal contains information on the tissues which reflected or backscattered the ultrasound

wave and is directly obtained after beamforming. Generally, an IQ-demodulation is applied on the RF

signals in order to reduce the amount of data without losing information. IQ demodulation consists
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of 3 main steps: downmixing, low-pass filtering and decimation. Finally, the IQ signal denoted as

rIQ (phase and quadrature signal) can be computed as follows [Zha16]:

rIQ =
(
rRF − iH(rRF)

)
e−iω0t, (2.13)

where rRF is the RF signal, H is the Hilbert transform and ω0 is the central frequency of the US

probe and i2 = −1.

2.3.3.3 US image modes

There are 4 modes that are classically used in US imaging:

A-mode: it is the simplest and the oldest mode providing one-
dimensional lines with echoes depending on the depth, as illus-
trated in the right figure. It is obtained by simply computing the
envelop of the RF signal rRF .

B-mode: it is a two dimensional image that displays the en-
velopes of the received RF signals after a logarithmic compression
operation defined as

yus = b log(rIQ) + g, (2.14)

where b and g are linear gain constants and yus is the B-mode
US image. Note that the rest of this work will concentrate on the
B-mode US image, which will be referred to as US image.
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M-mode: it is the motion mode defined as a rapid sequence of
B-mode scans associated with the movement of structures versus
time.

Doppler mode: it uses the Doppler effect for measuring and
visualizing whether structures are moving away or towards from
the probe.

There are many images that can be formed using the US waves. For more details about US

formation and data, one can refer to the book [Sza04].

2.4 Speckle reduction for US imaging

US imaging is characterized by its granular texture called speckle, which indirectly carries information

but which greatly affects the contrast and delineation of objects of interest such as organs or cysts.

Speckle occurs in areas of high concentration of very small scatterers. The received signal at the

transducer level is a combination of constructive and destructive interferences, which is the origin of

this mottled texture made of bright and dark areas.

The spatial distribution of the speckle in US images is directly related to the position of the

scatterers and the characteristics of the probe and can be used for motion estimation or tissue

characterization [Mor13]. In general, speckle makes visual observation difficult and corrupts the

diagnosis ability of the US image [Wag83]. In 1978, Burckhardt in [Bur78] described how speckle can

limit the contrast resolution in US images making the low-contrast lesions disappear. Since then,



32 Chapter 2 - MRI and Ultrasound imaging

many studies have considered speckle as a noise to be eliminated or attenuated using post-processing

techniques without affecting the image quality. The speckle is thus a random process. Due to high

number of scatterers in the acquisition volume, the Rf signal from the scatterers is assumed to have

a Gaussian distribution (Law of large numbers). Thus, the pdf of the envelop (image en mode B), is

assumed to have a Rayeigh pdf or a Rice pdf , if there exists a coherence component (deterministic).

US despeckling can be classified into four approaches:

1. Single scale filters: they are widely used in US despeckling and can be divided into spatial filters

(i.e., Gaussian averaging, Lee filter, diffusion filter and median filters [JS18]) and frequency

filters (low-pass and Butterworth filters [TGAH10]). However, these methods suffer generally

from loss of important information and can over-smooth the image.

2. Multi-scale enhancement [ABT01]: these methods use transforms based on wavelets [KKJ+10],

shearlets [AL19] or on the Laplacian pyramid [ZYKK07] to obtain a multi resolution hierarchical

representation of the image and then apply a threshold for denoising.

3. Soft computing methods like artificial neural networks (ANN) [KS20] and fuzzy logic [BS16].

4. Bayesian estimation methods: they consist in introducing a statistical model for speckle the

speckle and optimizing a cost function related to the posterior distribution of the image. The

cost function is generally a compromise between a data fidelity term that relates the noisy

US image to the noiseless image and a regularization term related to an appropriate prior

distribution for the image. The problem can be formulated using the envelop of RF signals

[GSA16, MT06],

rIQ = aussus (2.15)

where rIQ is the vectorized RF envelop, sus is the noiseless envelop and aus is the Rayleigh

multiplicative noise. B-mode images can be obtained by log-compressing the envelop (as seen

in Section 2.3), where b and g are linear gain constants. The resulting observation model can

be written as:

yus = xus + nus (2.16)
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where yus is the observed B-mode image, xus is the noiseless B-mode image and nus is an

additive noise, generally assumed to be independent from xus and distributed according to a

log-Rayleigh distribution.

2.4.1 Other medical imaging modalities

There are several types of medical images that are available for diagnosis and surgery treatment

and that are generally fused. Some examples include magnetic resonance imaging (MR), comput-

erized tomography (CT), positron emission tomography (PET), single-photon emission computed

tomography (SPECT) and US (US) imaging.

CT scan: it is an X-ray imaging technique used for the diagno-
sis of several pathologies. CT is usually used for broken bones,
tumors, heart diagnosis, blood vessels, and blood clots. CT scan
give salient information about structures based on their ability to
absorb the X-ray beam. However, the radiation used in CT can
damage the body and cause cancer which explains why it is not
used for the whole body contrary to MR images [QLD+90].

PET scan: it is a type of medical imaging that uses radioac-
tive substances to measure and visualize metabolic processes in
different parts of the body. It provides salient information when
it is used to detect or measure changes in physiological activities
like blood flow, regional chemical composition, metabolism, and
absorption. PET helps doctors to see how well the treatment is
working after diagnosis. However, it does involve exposure to ion-
izing radiation, and has an important operating cost [LMW+07].
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SPECT scan: it is a nuclear medicine tomographic imaging tech-
nique using gamma rays. SPECT can be used for several applica-
tions such as tumor imaging, infection imaging (leukocyte), bone
scintigraphy, or thyroid imaging. SPECT allows an accurate 3D
localization. Thus , it can be used to provide information about
the localized function in internal organs, such as functional car-
diac or brain imaging. SPECT is cheaper than high-resolution
PET scan. SPECT and CT scans are usually used side by side
because of their complementary information [Sch05].

2.5 Conclusion

This chapter introduced some background on MR and US imaging, including the physics behind the

formation of MR and US images. One can note that both modalities have limitations such as the bad

spatial resolution (at a millimetric scale) of MR images and the low-contrast caused by speckle for US

images (Table 2.1 presents a detailed comparison between MR and US images). Therefore, MR and

US images are two different modalities that have different advantages and limitations. Fusing these

two kinds of images can ease the task of radiologists and provide a more comprehensive visualization.

MR US

Expense Very expensive Cheap

Scan time Long Short

Availability Available in specialized unit Widely available

Contrast agents Gadolinium chelates (safe) None used

Contrast resolution Good Poor

Field of view Large Small

Contraindications Can’t be used with implanted metal No contraindications

Table 2.1: Detailed comparison between MR and US images [Sza04].
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Some post-processing techniques used for these images are also discussed. These techniques

include super-resolution for MR images and US despeckling. At this point, it is interesting to note

that the aim of image fusion is not only to gather information from the MR and US imaging modalities

but also to enhance them during the same process.

Generally, the diagnosis and the plan of surgery of endometriosis during the clinical routine are

based on:

• The B-mode transvaginal ultrasound image (TVUS): it is a pelvic scan that is performed by

a sonographer who records the static images and video clips. The information on the type

of machine used varies greatly and the only criteria to adopt the image is the “satisfactory”

quality stated by the radiologist and the gynecologist.

• MRI image: the state-of-art MR imaging protocol includes T2 and fat suppressed T1-weighted

sequences. The T2-weighted sequences without fat-suppression are assumed to be the best

sequences for detecting pelvic endometriosis [BBH+17]. Note that a detailed MRI protocol for

endometriosis detection was presented in [FFP+18].
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3.1 Introduction

Image fusion has received much attention in the literature, in particular for medical imaging appli-

cations. These applications include diagnosis and imaging-guided surgery for which the efficiency of

experts can be improved for producing an unbiased and objective decision in a short time. However,

given the diversity of medical images, it is difficult to find a fusion method adapted to all medical

modalities.

37
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An important and fundamental step before medical image fusion is image registration. Indeed,

the spatial deformation between medical images cannot be always handled by a fusion method. Fig.

3.1 summarizes the two steps involved in image fusion: (1) image registration and (2) fusion of

registered images.

Figure 3.1: A chart summarizing the different steps involved in image fusion.

Since there is, to our knowledge, no state-of-the-art method for the fusion of MR and US images,

this chapter primarily provides an overview about medical image fusion/registration including recent

attempts to register MR and US images.
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3.2 Medical image fusion

Image fusion can be defined as gathering all the important information from multiple images and

including them into a fewer number of images, e.g., into one single image. This single image is usually

more informative than the images before fusion and contains all the necessary information for the

application of interest [ANA18]. Thus, the purpose of image fusion is to build an enhanced image

that is informative, comprehensible and accurate for the human. The fusion of medical images is

becoming very common for the study of a given pathology and generally allows for better medical

decisions in clinical studies. This problem requires solving several technical challenges because of

the limitations imposed by specific imaging modalities. A large and growing body of literature has

investigated techniques addressing these challenges [JD14b, LBCA10].

Medical image fusion can be mainly classified into three categories: pixel-level fusion, feature

level fusion, and decision level fusion. Pixel-level fusion has the advantage of preserving most of the

pertinent information in the fused image. Feature-level fusion extracts features from images, such

as edges, textures and builds a fusion method using these features. Decision-level fusion refers to

methods first segmenting the images of interest into homogeneous regions and use this segmentation

to define the fusion method. Medical fusion methods have their own advantages and limitations that

are summarized in Table 3.1. The aim of this section is to provide a global view of image fusion in

the medical field.

Considering the nature of input images to be fused, medical image fusion can be classified into

three main categories: multi-view fusion, multi-temporal fusion and multi-modal fusion (see Table

3.2). Note that multi-modal fusion is very complex and challenging compared to the other categories

because it deals with completely different images which makes it difficult to find a relation between

the image of interest and the observed images, especially when considering pixel-level fusion.
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Advantages Disadvantages

• Extraction of information from the
different images and including this
information into a single image facil-
itating image analysis for the medi-
cal experts.

• Facilitate identification and image
recognition

• Reduce the data storage require-
ment and facilitate its transmission

• Loss of information

• Noise sensitivity and creation of
artefacts

• Absence of a generic technique ap-
plicable to all modalities

• Expensive

Table 3.1: Main advantages and disadvantages of medical image fusion.
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Fusion category Image 1 Image 2 Fused image

Multi-view fusion refers to
the fusion of images having
the same modality and being
acquired from different views
or using different conditions,
e.g. see [RGN+11] for the fu-
sion of multi-view US images.

Multi-temporal fusion
refers to the fusion of images
having the same modality
acquired at different times,
e.g., see [PAJ16] for the fusion
of multi-temporal CT scans.

Multi-modal fusion refers
to the fusion of input im-
ages having different modali-
ties such as MR and CT im-
ages [BKGD17]

Table 3.2: Examples of image fusion considering the main categories of medical image fusion: multi-
view fusion, multi-temporal fusion and multi-modal fusion.

3.2.1 Multi-modal image fusion methods

The image fusion models generally assume that the input images (to be fused) are aligned and that

there is no geometric distortion between them, which can be obtained after an accurate registration

(see Section 3.3). In this section, we summarize the most known and used medical image fusion

methods. Generally, multi-modal image fusion follows three major steps:
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1. Input images are decomposed into sub-images or features using image decomposition algo-

rithms.

2. Fusion rules are used to combine information from these sub-images into fused sub-images.

3. The fused image is reconstructed from the fused sub-images using image reconstruction algo-

rithms.

Finally, quality measures are used to evaluate the quality of fused images. Fig. 3.2 summarizes

the stages of multimodal image fusion and illustrates each stage with examples of algorithms and

methods.

3.2.1.1 Image decomposition and reconstruction

Multi-resolution analysis has been extensively considered for the fusion of medical images. Several

decomposition and reconstruction algorithms have been introduced in the literature. In this section,

we introduce three different key methodologies that are widely used in medical image fusion: 1)

discrete wavelet transform, 2) Laplacian pyramid transform and 3) sparse representation.

Discrete Wavelet Transform (DWT)

The discrete wavelet transform is the most common transform used in image fusion. The image

X goes through two filters (with lowpass and highpass impulse responses) in both horizontal and

vertical directions whose outputs are decimated by 2 (dyadic decomposition). This process is repeated

depending on the desired decomposition level (as illustrated in Fig. 3.3). Generally, the level of

decomposition should depend on the input image resolution: images with high resolution require

higher level of decomposition than low resolution images. The filtering operation can be defined as

the convolution of the vectorized image and the impulse response l:

Y [n] = (X ∗ l)[n] =
∞∑

k=−∞
X[k]l[n− k]. (3.1)

where l ∈ {h, g}, h and g are the low and the high pass filters.
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Figure 3.2: Stages of multimodal image fusion [DLLX16].
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Figure 3.3: Block diagram for the discrete wavelet transform where g is a low pass filter and h is a
high pass filter [CZW09].
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Fig. 3.4 summarizes the framework of wavelet-based fusion methods. Fusion rules that are usually

used with wavelet transforms are introduced in Section 3.2.1.2.

Figure 3.4: Block diagram of wavelet-based fusion methods.

This technique originates at 1995 where Hui Li introduced in [LMM95] a multisensor image fusion

using the wavelet transform with an area-based maximum selection rule which consists in selecting

the largest wavelet coefficient to build the fused image. In 2001, Guihong Qu [QZY01] applied the

same technique with the same fusion rule to fuse MR and CT scans. In [GKMT06], a region-based

image fusion technique was introduced to fuse MR T1 and T2 images. Note that the discrete wavelet

transform was also used in other image processing applications. These applications include image

enhancement (denoising, super-resolution, etc) [ZTL+04], image segmentation [GKMT06] and image

visualization (color visualization, pseudo coloring, etc) [Cia10, KHN96].
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The DWT is known to suffer from a shift dependency. To overcome this limitation, Rockinger

[Roc97] studied an image sequence fusion method using a shift-invariant wavelet transform. This

approach improves the temporal stability and consistency of the fused image. Zhang [ZG09] investi-

gated an undecimated, shift-invariant contourlet transform for image fusion. An alternative based on

the directional curvelet transform (CVT) was proposed in [TLPP07] for image decomposition while

preserving the sparsity of the coefficient set. Wavelets were also combined to other transforms with

other approaches such as the contourlet transform [DV05], which combines the Laplacian pyramid

with a directional filter bank. Wavelets can also be used to fuse features constructed as the output

of a neural networks, as suggested in [LZG07, ZTL+04].

The Pyramid Transform

The pyramid transform is defined by a blurring and downsampling operators applied to the image

several times (defining several levels of downsampling). There are multiple kernels that can be used

to generate pyramids. Laplacian pyramid decomposition has been demonstrated to be accurate in

the fusion context. It uses a Gaussian filter as blur operator and uses the difference between images

at adjacent levels in the pyramid to enable the reconstruction of the high resolution image. Fig. 3.5

shows a three level Laplacian pyramid transform applied to a brain MR image. The base images are

b1, c1 and d1 and the difference images are b2, c2 and d2.

Figure 3.5: An example of a three level Laplacian pyramid transform applied to a brain MR image
[DLXN16].

An image I can be decomposed into a base image Bi and a difference image Di at the ith level
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using the following convolutions:

Bi = h ∗Li

Di = g ∗Li
(3.2)

where h and g are respectively low and high pass filters, and Li can be written as

Li =


I if i = 0

s ∗Li−1 otherwise
(3.3)

where s is a smooth Gaussian kernel with a downsampling operator.

Laplacian pyramid fusion consists of three phases (displayed in Fig. 3.6): image decomposition,

image fusion using accurate fusion rules and reconstruction of the fused image using inverse Laplacian

pyramid transform. One of the most common fusion rules in Laplacian pyramid fusion is the average

scheme for the base images and the maximum for the difference images as shown is Eq. (3.4)

Bf
i = B1

i +B2
i

2
Df
i = max

(
D1
i ,D

2
i

) (3.4)

where .f denotes the fused image, .1 and .2 are the images to fuse. Section 3.2.1.2 presents other

fusion rules that are used with the pyramid methods. Finally, the reconstruction of the fused image

is implemented using the inverse Laplacian pyramid transform.
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Figure 3.6: Block diagram of three level Laplacian pyramid based fusion method [DLXN16].

Multi-scale fusion methods based on the Laplacian pyramid transform became rapidly popular

because of their simplicity and accuracy. This approach is used for the fusion of different imaging

modalities such as MR and CT scans, MR and SPECT scans and MR and PET scans [DLXN16,

SBK+14, IP11, LDZL18]. However, multi-scale fusion methods are known to be expensive in terms

of time computation, data storage, and management, especially when it comes to processing large

images since the level of the transform depends on the resolution of input images. To overcome these

limitations, Ancuti proposed in [AAVB16] a single-scale fusion method where the subband images

obtained by the multi-scale decomposition at several levels are reduced to a single level process. This

approach provided insightful results for MR and CT fusion.

Sparse representation methods

Sparse representations (SRs) exploit the sparsity of signals, considering the physiological charac-

teristics in the human visual system. SRs can be viewed as transform-based methods, which have been

used in different image processing applications such as image enhancement [FTT14, FLM+13], im-

age classification [XWCY15, NBK14], image denoising [LYF12, HLZ+17], image debluring [LLS+13],

image recognition [MJ20] and multi-modal image fusion [ZQ17]. SRs were first considered in medical

image fusion by Li [LYF12].
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Different from the other transform-based fusion methods, SRs make the assumption that the

high and the low frequency images share the same set of sparse coefficients [YLF13, DLLX16]. The

procedure of SR fusion can be summarized as follows:

1. Vectorization of the input images I1 and I2.

2. Decomposition of the two images using an overcomplete dictionary D. The K-SVD method

is a classical dictionary learning method, which has been used intensively for image fusion

[ZFLZ13]. The decompositions of the two images I1 and I2 are defined as

I1 = DS1

I2 = DS2,

where S1 and S2 are the sparse representations of I1 and I2 and D is the common dictionary

for the two images.

3. Combination of the sparse coefficients using an appropriate fusion rule

Sf = f(S1,S2),

where Sf contains sparse coefficients (see Section 3.2.1.2 for examples of fusion rules).

4. Reconstruction of the fused image using the overcomplete dictionary D:

If = DSf .

However, the conventional sparse representations have two major limitations: 1) details, struc-

tures, and edges in the input images are often smoothed and 2) the fused image can suffer from

an important loss of information if the dictionary has not been constructed properly. In the few

past years, many studies considered a combination of multi-scale approaches and SR techniques to

overcome their limitations and to robustify the fusion method [LSH+18, Yin15, LLW15]. In partic-

ular Yu Liu studied in [LLW15] a fusion framework where the multi-scale transform is first applied

on the pre-registered input images to obtain low-frequency and high-frequency images. In a second
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step, the base images, i.e., the low pass components of the multi-scale transform, are fused using a

SR-based method, and the high-pass bands are merged using another fusion rule. Finally, the inverse

multi-scale transform was applied to reconstruct the fused image. Various multi-scale transforms

have been considered including the Laplacian pyramid and the discrete wavelet transform. Results

on MR and CT scan fusion show that the joint SR and MST techniques outperform the individual

SR and multi-scale transform (MST) methods (Fig. 3.7 summarizes the steps of this fusion method).

Figure 3.7: A diagram scheme of a joint SR and MST fusion method [LLW15].

3.2.1.2 Fusion Rules

Image fusion rules combine multiple images or sub-images into a single image/sub-image. Popular

coefficient combinations include maximum rules (MR) which consist in selecting the largest coefficient

to build the fused image, or average rules (AR) and weighted average rules (WAR) defined as

CFi = 1
2(w1

iC
1
i + w2

iC
2
i ) (3.5)



3.2 - Medical image fusion 51

where CFi is the fused coefficient, C1
i and C2

i are the coefficients of the input images and w1
i and w2

i

are appropriate weights.

In the following, image fusion rules that are widely combined with image decomposition methods

(Section 3.2.1.1) are introduced. Note that these fusion rules can be applied directly on image pixels

instead of the coefficients obtained after image decomposition as in [PM11, WMG10].

Principal Component Analysis

Principal component analysis (PCA) consists in transforming correlated variables into new decor-

related variables referred to as “principal components”. PCA allows the number of variables to be

reduced, which makes the information less redundant. The PCA fusion rule is a weighted average

rule where the weights (w1, w2) are computed by the eigenvalues (v1, v2) of the covariance matrice

cov(C1,C2), where C1 and C2 denote the vectorized coefficients of input images, i.e.,

w1 = v1
v1 + v2

w2 = v2
v1 + v2

.

Finally, the vectorized fused coefficients can be written as follows:

CF = w1C1 + w2C2.

Other fusion techniques based on PCA have been investigated in [WX09, AASAI09, HLLW10]. PCA

can be used side by side with other techniques for medical image fusion such as wavelet transforms

[CZW09]. Another fusion method is based on Hidden Markov Trees (HMT) [JLY, WLT14] which

assumes that the coefficients resulting from an HMT model come from a mixture of two Gaussian

distributions associated with the intra-coefficients and a quad-tree model for the inter-coefficients.

Visibility

The visibility is a human visual system that simulates the human process of image recognition to

evaluate the quality of an image. It is used in several studies as a fusion rule [AA15]. Fusion methods

based on the visibility provide better details that are conform to the human observer and reduce the

blurriness of the fused image. The visibility of an image denoted as vi can be expressed as:

vi = 1
N

N∑
j=1

|Ci(j)− µi(j)|
(µi(j))α+1 i ∈ 1, 2 (3.6)
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where C1 and C2 are the vectorized coefficients of the input images, N is the size of the vectors Ci,

µi is the mean vector of Ci and α is a constant that ranges from 0.6 to 0.7.

The fused coefficients can be written as:

CF = w1C1 + w2C2 (3.7)

where

w1 = v1
v1 + v2

w2 = v2
v1 + v2

Artificial neural networks

Artificial neural networks (ANN) are inspired by the human brain, where neuron nodes are

interconnected like a web. The human brain has hundreds of billions of cells called neurons, each

neuron being responsible for information processing. Similar to the human brain, an ANN needs a

set of learning rules called backward propagation of error for processing features and making global

decisions. An ANN goes through a training step where it learns to recognize patterns in data, which

can be oral, visual or textual. During this supervised step, the network compares its produced output

with the ground truth (the desired output). The difference between these outcomes is corrected using

backward propagation of errors. The basic ANN works backward, starting with the output unit and

goes to the input units to adapt the connection weights between the units in order to reduce the

difference between the output of the network and the desired output.

An example of ANN models that is usually used as a fusion rule is the pulse-coupled neural

network (PCNN). It is a feedback network composed by several neurons. Each neuron is composed

by branching trees, linking-field model and pulse generators. For more details, the reader can refer

to the detailed review [WWZM16]. Authors introduced the basis of statistical analysis and some

modified PCNN models.

An ANN is able to analyze, predict, and infer information from a given data without going

through rigorous mathematical models, which is an important advantage especially for image fusion.

This makes the neural network attractive for image fusion.

The ANN have been used successfully for several applications of medical imaging including breast
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cancer detection [LZW+11, WWN+06, WHMA04], medical image classification [HAA17, LF98], can-

cer diagnosis [SGD04, SKH+03] and micro-calcification diagnosis [SKH+03]. However, a fusion image

technique based on neural networks is limited by the quality of the training data and the convergence

rate of the algorithm. To overcome this limitation, ANN fusion can be combined with other strategies

such as the wavelet transform [ZTL+04, LZG07], fuzzy logic [WDLL07, TWZW10, MM09], support

vector machines, Gaussian mixtures [LZW+11] and the Laplacian pyramid transform [DK12].

3.2.1.3 Image fusion metrics

The assessment of image fusion quality is fundamental in multi-modal image fusion because it helps

to design the best algorithm. Metrics from several image processing fields can be used for medical

image fusion such as: root-mean square error (RMSE), mutual information (MI), structural similarity

(SSIM), image entropy (EN), peak signal to noise ratio (PSNR) and standard deviation (STD).

Some performance measures have also been specifically designed to assess the performance of image

fusion method such as: the universal image quality indexing (UIQI), the fusion factor (FF), the

feature similarity index metric (FSIM), Xydeas and Petrovic metrics. All these quality measures are

regrouped in this section.

3.2.1.4 Root-mean square error (RMSE)

RMSE [CD14] are based on arithmetic theory and quantify the difference between the fused image

and the reference image:

RMSE =

√√√√( M∑
i=1

N∑
j=1

[I(i, j)− If ]2
)

(3.8)

where I ∈ RM×N and If ∈ RM×N are the reference and fused images.

3.2.1.5 Peak signal to noise ratio (PSNR)

PSNR [KY12] is the ratio between the maximum possible power of a signal and the power of the

corrupting noise. It can be used in image fusion as an objective quality measurement. PSNR can be
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computed as follows:

PSNR = 20 log(max(I, If ))− 10 log(RMSE). (3.9)

3.2.1.6 Mutual information (MI)

The mutual information (MI) [CCB06] measures the mutual dependence between two variables. In

image fusion, MI quantifies the amount of information transferred from the input images to the fused

image using the following definition:

MI(I, If ) = H(I) +H(If )−H(I, If ) (3.10)

where H(I) and H(If ) are the marginal entropies of I and If and H(I, If ) is the joint entropy of

the pair (I, If ).

The normalized mutual information (NMI) [MVR+10] is also widely used to compare image fusion

methods and is defined by

NMI = 2
(

MI(I1, If )
H(I1) +H(If ) + MI(I2, If )

H(I2) +H(If )

)
(3.11)

where I1 and I2 are the two observed images.

3.2.1.7 Structural similarity index measure (SSIM)

SSIM [DY11] is another type of metric, which measures how well the salient information is transferred

from the input image to the fused image. SSIM is based on three quantities based on: luminance,

contrast and structure (denoted as l, c and s):

SSIM(I, If ) =
(
l(I, If )

)α(
c(I, If )

)β(
s(I, If )

)γ
(3.12)

where α, β, γ are weights chosen with respect to the application.

An advanced form of SSIM has been used in image fusion and is referred to as mean structural

similarity index measure (MSSIM) [KHC08]. MSSIM calculates the mean of the SSIM values over

small patches extracted form the input images which helps to reduce the loss of information about
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the local structure that can caused while applying SSIM to the whole image. MSSIM is defined as:

MSSIM = 1
M

M∑
m=1

SSIM(Im, Imf ) (3.13)

where the index .m indicates a patch extracted from the corresponding images and M is the number

of patches.

3.2.1.8 Image entropy (EN)

The Shannon entropy or information entropy for image processing [GP13] represents the average

level of information contained in the image and is defined as:

EN(I) = −
∑
x

pxlnpx (3.14)

where px is the number of pixels whose values are equal to x divided by the total number of pixels. In

image fusion, some metrics based on image entropy are widely used such as the difference of entropy

between images (DEN)

DEN = |EN(I)− EN(If )|. (3.15)

3.2.1.9 Universal image quality indexing (UIQI)

Universal image quality indexing (UIQI) [BLCL08] is based on the structural information in the

image. It combines the loss of correlation, luminance distortion and contrast distortion between

images. It can be mathematically writing as follows:

UIQI =
σIIf
σIσIf

×
µIIf

(µIµIf )2 ×
σIσIf

(σI)2 + (σIf )2 . (3.16)

where µ and σ denote the mean and the standard deviation of images.

3.2.1.10 Fusion factor (FF)

The fusion factor [CLBC] is an operator based on the mutual information defined as:

FF = MI(I1, If ) + MI(I2, If ) (3.17)
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where I1, I2 and If are the input images and the fused image. Large value of FF means that the

fused image contains a lot of amount of information from the input images.

Th fusion symmetry factor can also be calculated to indicates the degree of symmetry in the

information content from input images

FS = | MI(I1, If )
MI(I1, If ) + MI(I2, If ) − 0.5| (3.18)

where |.| is the absolute value. A low value of FS indicates a good symmetry in the fused image.

3.2.1.11 Feature similarity index metric (FSIM)

The feature similarity index metric (FSIM) [ZZMZ11] quantifies the feature similarity (e.g., for edges)

between the fused and input images. It can be computed as follows:

FSIM =
∑
x∈Ω SL(x)PCm(x)∑

x∈Ω PCm(x) (3.19)

where Ω is the image domain, Sl is the total similarity and PCm is the congruency value [ZZMZ11].

3.2.1.12 Petrovic metric

The Petrovic metric [CP00] associates the visual information to the edge information in each pixel.

Thus, a measure of fusion performance is obtained by evaluating the amount of edge information

that is transferred from the reference image to the fused image:

Q
I1I2/If
p =

∑N
n=1

∑M
m=1Q

I1If (n,m)wI1(n,m) +QI2If (n,m)wI2(n,m)∑N
n=1

∑M
m=1w

I1(n,m) + wI2(n,m)
(3.20)

where QI1If , QI2If are the edge preservation values weighted respectively by wI1and wI1 .

3.2.2 Conclusion

The fusion of MR and US images is a complex problem considering the different image formation

models, noises, resolutions, contrasts and also the nature of US images which can be seen as gradient

images due to their sensitivity to acoustic impedance changes between neighbouring structures. Thus,

transform-based methods are not specifically appropriate for the fusion of MR and US images. In
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Chapter 4, we will consider a wavelet-based method with an average weighted rule as in [LBCA10]

and a Laplacian-based method as in [AAVB16] for the fusion of MR and US images. Our results will

show the sensitivity of these methods to the presence of speckle noise: for low SNR, the multi-scale

fused image and the wavelet fused image contain distracting halos artefacts, especially in the regions

containing strong transitions between organs.

Note that the ANN-based fusion methods are difficult to apply to our fusion problem since

registered MR and US images are very hard to acquire which makes difficult the construction of a

rich training database.

3.3 Medical image registration

This section provides an overview of image registration methods that have been studied in the lit-

erature. Medical image registration can be defined as the task of estimating the optimal spatial

transformation in order to bring two medical images (reference image and moving image) into spatial

alignment. Image registration is a crucial phase for multiple image analysis problems that combine

information from different sources. The images to be registered may come from the same modal-

ity (same sensor), acquired at different times or from multiple modalities associated with different

sensors. Medical image registration has been used in several applications. These applications include:

• Multi-temporal image analysis, where images of the same scene are captured at different times

with different conditions. Registration of these images allows clinicians to follow disease pro-

gression.

• Multi-modal image fusion, where images acquired with different sensors are aligned to apply

image fusion techniques and improve the clinical diagnosis.

• Construction of atlases: an atlas refers to a specific model for a population of images with

parameters that are learned from a training dataset. This dataset generally requires to be

registered.

• Dynamic image sequence analysis: it is used to capture and quantify motion of an anatomy
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such as the cardiac cycle of the heart or the motion of lungs.

Image registration methods can be classified into two main approaches: (1) intensity-based meth-

ods and (2) feature-based methods. Intensity-based methods compare the intensity of pixels/voxels,

the intensity of gradients or statistical information related to the intensity of pixels/voxels. Con-

versely, feature-based methods compare structures extracted from images such as contours, edges,

surfaces, set of points, graphs and volumes.

Any registration algorithm requires the following ingredients (see Fig. 3.8).

1. Cost function: it is defined as an image similarity measure that quantifies the degree of

similarity between the two images to be registered and a regularization term to use in the op-

timization process. The regularization is necessary since the similarity measure term generally

leads to an ill-posed problem according to Hadamard’s definition1. If F is the cost function,

Fs the similarity term and Rs the regularization term, the following relation is obtained

F (T, Ir, Im) = Fs(T, Ir, Im) + τRs(T ) (3.21)

where τ is a regularization parameter, Im denotes the moving image, Ir is the reference image,

T : Ωr → Ωm is the geometric transformation, Ωr and Ωm are the reference and the moving

image domains.

2. A model for the geometric transform T , which can be linear (e.g., affine) or non-rigid (also

called elastic) enabling images to be registered with local geometric differences.

3. An optimization technique that minimizes/maximizes the cost function (3.21) in order to

estimate the optimum transformation that aligns the images to be registered.

4. Interpolation: applying a geometric transform in images requires to construct new data points

within the range of a discrete set of known data points in the image.

1Hadamard believes that mathematical models of physical phenomena are well posed problems if :
• a solution exists,
• the solution is unique,
• and the solution behaviour changes continuously with the initial conditions.
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Figure 3.8: A general scheme of an image registration algorithm.

3.3.1 Image similarity measure

Generally, image registration methods are based on the distance between geometric primitives that

are extracted manually or automatically from images or use directly the information carried by the

gray levels of the images. Hybrid methods use both approaches to mitigate their limitations.

3.3.1.1 Feature-based methods

These approaches are based on the extraction of subsets of points or features and estimate a transfor-

mation that allows to points/features to be matched. Identifying the features to extract is a crucial

step and must be guided by number of properties: easy and precise detection, distribution of the

image, robustness to noise and artefacts. Three types of geometrical primitives can be distinguished:

points, curves and surfaces.

The features can be markers attached to the patient anatomy or anatomical features. Extrinsic

features are defined using some artificial markers attached to the patient. These markers can be

non-invasive such as skin markers. However, it is not realistic since the human skin is elastic and
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can be deformed easily. The non invasive markers such as stereotactic frames allow a robust and

accurate registration and are automatically detectable in images. However, they are uncomfortable

for patients and are difficult to be attached. Intrinsic features refer to points, curves or surfaces

extracted manually by experts or detected automatically using a feature detection algorithm. The

accuracy of this approach depends on the precision of these features and the salient information that

they carry. Alam and Rahman introduced two articles: the first one [AR16] is a detailed review

about the existing techniques for intrinsic image registration in a comprehensive manner and the

second one summarizes the extrinsic registration techniques existing in the literature for medical

images [ARU+16].

Several criteria and distances have been proposed in the literature for matching these extracted

features:

• To measure the distance between paired points, the standard Euclidean is classically used.

Thanks to its analytical properties, in the case of rigid or affine registration, it leads to an

analytical solution for the estimation of the transformed parameters:

Fs(T, Ir, Im) =
∑
i

‖pi − T (qi)‖2 (3.22)

where p and q are the two extracted sets of points.

• To measure the distance between two curves, two surfaces or two volumes, several approaches

are possible. ICP (iterative closest point) is the most frequently used algorithm: for each

point or a selection of points in the point cloud of the moving image, ICP matches the closest

point in the point cloud of the reference image. Then, it estimates the least square rigid

transformation relating these sets of points and continue until convergence to a local optimum.

Generally, ICP is applicable when a relatively good starting point for the initialization of the

algorithm is available. Otherwise, it will be trapped into the first local minimum and the

solution will not be reliable. ICP was introduced for the fist time for image registration by Besl

and McKay in [BM92]. Then, many studies have proposed variants of ICP such as EM-ICP

[GP02], fuzzy ICP [KSK96] and GO-ICP [YLCJ15]. The ICP algorithm has been used for the
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registration of multiple modalities: MR/US images [FAS+12, MJF+12], MR/mammography

images [KEBH13], MR/CT scans [SKHB18], CT/PET scans [MCS+07] and CT/SPECT scans

[KDM+02].

The major disadvantage of these approaches is that they are very depending on the precision

with which the features have been extracted. Another limit concerns the accuracy of the resulting

registration, which is guaranteed only in the vicinity of the features. Finally, the main problem with

these approaches is that the extraction of features is operator dependent. Note that many automatic

and semi-automatic methods have been investigated in the literature [KZW+12, MOM+10].

3.3.1.2 Intensity-based methods

Contrary to feature-based approaches, the intensity-based approaches do not use a preliminary data

reduction step. They use the dense information carried by all the pixels/voxels of the image, either

by directly comparing the intensity levels or by associating to each pixel/voxel a value determined

from gray levels and comparing these sets of values. It is possible to consider differences of pixel

intensities such as gradients. Thus, registration can be achieved automatically. Similarity measures

allow for the comparison of information carried by the gray level intensities of the image. Each

criterion makes an assumption about the relationship that link these intensities. One of the basic

alignment measures is the sum of squared intensity differences (SSD) between images defined as:

SSD =
∑
x

[Ir(x)− Im(T (x))]2 (3.23)

where x is a pixel/voxel coordinate. SSD is typically used for mono-modal image registration [RA10]

because it is very sensitive to the contrast difference that may exist between multi-modal images.

Another measure is the cross-correlation alignment [AEGG08], which assumes that there is an

affine relationship between the intensities of the moving and the reference images:

CC = 1
NσIrσIm

∑
x

(
Ir(x)− µIr

)(
Im(T (x))− µIm

)
(3.24)

where σIr , σIm are the standard deviation of the reference and moving images and µIr , µIm are the

mean of the reference and moving images. CC = 0 means that the two images are realizations of
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uncorrelated random variables and therefore are impossible to register. In the other cases, registration

can be obtained by maximizing CC. CC can be used for multi-modal registration such as MR and

CT scan registration for brain diagnosis [VdEMPV95, Sam09]. One of the well-known variant form

of cross-correlation is the local correlation (LC):

LC =

√√√√ 1
Ns

(∑
sj

CC2(sj)
)

(3.25)

where sj is the jth extracted patch from both images, CC2 is the square cross-correlation, Ns is

the number of extracted patchs. LC has been used successfully for rigid and non-rigid multimodal

registration [ZF03, WRN+99].

A common assumption is to consider that there is a functional relationship between the reference

and the moving images. Woods [WGH+98] has proposed an original criterion which proved itself to

be efficient for matching PET with MR defined as:

Woods =
∑
i

pi
σIr|j
µIr|j

(3.26)

where σIr|j and µIr|j are respectively the standard variation and the mean of the intensities observed

in the reference image Ir that corresponds to the pixels/voxels in the moving image Im with intensities

equal to j. Roche proposed in [RPMA01] another functional relationship between images for image

registration: the bivariate correlation ratio, which assumes that an unknown polynomial function

can link MR and US images.

A completely different approach is to consider a statistical dependency between images. The

mutual information was first introduced in [VWI97, CMD+95] to measure the dependency between

images. It has been widely used for image registration [MCV+97]. Based on Shannon definition, MI

can be written as follows:

MI =
∑
i,j

pi,j log pi,j
pipj

(3.27)

where pi, pj are respectively the probability of a pixel/voxel in Ir to have an intensity equal to i and

a pixel/voxel in Im(T ) to have an intensity equal to j and pi,j is the joint probability. Note also that

the transformation parameter can be estimated by maximizing the mutual information. Note that a

robust variant of the mutual information is the normalized mutual information (NMI) [XCT+08].
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3.3.2 Transformation models

After defining a similarity measure, a transformation model can be constructed. It should transform

the moving image to be superimposed to the reference image. The choice of a transformation model

depends on the assumed geometric deformation introduced during the image acquisition, and on the

required accuracy of registration. Transformation models can be divided into two main categories

based on global models and deformable or local models.

3.3.2.1 Global models

Global models include rigid, affine, similarity, and perspective transformations [OT14b]. A rigid

transformation can register objects that are related by a rotation (φ) and a translation (tx, ty):

u = x cos(φ)− y sin(φ) + tx

v = x sin(φ) + y cos(φ) + ty,
(3.28)

where x, y are the coordinate of a pixel i in the moving image before registration and u, v are the

coordinate of the same pixel after registration. A rigid transformation preserves distances between

all the pixel pairs in the image. It is one of the simplest transforms, which has mainly be used in

the context of medical imaging to register images of the same person acquired at different times or

in different imaging modalities. The number of degrees of freedom equals 3 for 2D images and 6 for

3D images.

Similarity models are built using a translation (tx, ty), a rotation (φ), and a scaling (s), i.e.,

u = s(x cos(φ)− y sin(φ)) + tx

v = s(x sin(φ) + y cos(φ)) + ty,
(3.29)

A similarity model is generally called shape-preserving because it preserves angles and curvatures.

The number of degrees degree of freedom is 4 for 2D images and 7 for 3D images.

An affine transformation is a linear combination of translation, rotation, scaling, and shearing

defined as:

u = a0 + a1x+ a2y

v = b0 + b1x+ b2y.
(3.30)
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An affine transformation preserves the parallelism of straight lines in the image. This model is

generally used in the context of medical imaging for inter-individual registration. However, its low

degree of freedom does not allow to accurately capture inter-individual anatomical variability. The

number of degrees of freedom is 6 for 2D images and 12 for 3D images.

The perspective transformation can be written as

u = a0 + a1x+ a2y

1 + c1x+ c2y

v = b0 + b1x+ b2y

1 + c1x+ c2y
.

(3.31)

It does not keep the parallelism but imposes that the image of a straight line is a straight line.

This type of transformation can be used in the context of medical imaging for the registration of

radiological images (for this problem, the radiation from a point source interacts with the object to

be imaged to form a projection image in a plane) or in virtual reality applications.

3.3.2.2 Non-linear models

Linear models allow only a small number of degrees of freedom and are therefore poorly adapted

to capture inter-subject anatomical variability or the morphological variability of certain organs. In

many applications, such as brain or abdominal organ registration, it is necessary to use transforma-

tions with a large number of degrees of freedom, capable of modifying the overall shape of structures.

For this purpose, different non-linear models (called also non-rigid models) can be considered.

Polynomials

A polynomial representation can be used to model the deformation field between the two images.

Polynomials of order 2 to 5 have been considered [RPMA01]. Beyond this order, significant oscil-

lations appear, which reduces the interest of this model. A disadvantage of polynomial models is

related to their field of application, which is global, making them unsuitable for taking into account

local variations in shape. This limitation can be overcome by using polynomial models piecewisely.

Radial basis functions

A radial basis function (RBF) is a function ψ : Rn → R whose value depends on the input and

m fixed points called the centers ci (where i ∈ J1,mK) that can be used as control points for
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registration. The centers must be all different from each other, in order for the interpolation matrix

to be non-singular. In the n dimensional Euclidean space Rn, one can define the RBF using the

Euclidean norm ‖.‖ as follows

ψ(x) =
m∑
i=1

wiρ(‖x− ci‖) (3.32)

where wi are the weight of the RBF and ρ : R+ → R is an appropriate kernel (see Table 3.3).

Table 3.3: Examples of RBF kernels.

Name of RBF Kernel ρ(r)

Gaussian exp(−ε2r2)

Multiquadric
√

1 + (εr)2

Inverse quadratic 1
1+(εr)2

Generalized multiquadratic (1 + (εr)2)β

Linear r

Cubic r3

Thin-Plate Spline r2 log(r)

In particulat, thin-plate splines (TPS) have received much attention for image registration (see

Tab. 3.3) [Roh01]. The TPS transformation between the two images to be registered can be modeled

as

u = a0 + a1x+ a2y +
m∑
i=1

wi‖x− ci‖2 log
(
‖x− ci‖

)
v = b0 + b1x+ b2y +

m∑
i=1

wi‖x− ci‖2 log
(
‖x− ci‖

)
.

(3.33)

TPS registration usually leads to very accurate results but is very time consuming, especially for large

images. Many studies in the literature considered TPS variants in order to decrease the computation

time while preserving its pertinence such as [BN92, PD92].
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Cubic B-spline

Another function from the spline family that is used for image registration is the cubic B-spline.

A spline can be defined as a piecewise polynomial function defined by knots (the points where the

polynomials meet) ki. The B-spline is a particular spline function that has minimal support with

respect to a given degree, smoothness, and domain partition. Cubic B-splines are B-splines of degree

3, which provide good compromise between simplicity and accuracy.

Denote as Ω = {(x, y) | 0 ≤ x < N, 0 ≤ y < M} the domain of the image-plane and consider an

nx × ny mesh of control points φij with identical spacing δ, denoted as Φ. The cubic B-spline local

transformation is defined as:

Tφ(x, y) =
3∑

m=0

3∑
n=0

Bm
( x
nx

)
Bl
( y
ny

)
φix+m,jy+n, (3.34)

where ix = b x/nxc − 1, jy = by/nyc − 1 and b.c is used for the integer part. The cubic B-spline

uniform functions are defined as:

B0(u) = (1− u)3

6

B1(u) = 3u3 − 6u2 + 4
6

B2(u) = −3u3 + 3u2 + 3u+ 1
6

B3(u) = u3

6 .

(3.35)

Once the grid of the B-spline has been constructed, it is used to deform the local neighborhood of

every control point in the moving image. Once the moving image has been deformed, it is compared

to the reference image using the similarity measure. The cubic B-spline model has been used for

different applications in medical imaging such as registration of CT scan and MR image of heart

[KSP07] and motion estimation applied to MR images of the brain [VHS+98].

Elastic body models

Another registration approach is a non-parametric deformation model. In this technique, the

object being deformed is modeled as an elastic body. This idea has been introduced by Bajcsy in

[BK89]. The image is considered as a rubber sheet where external and internal forces are applied to
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align images with minimum amount of bending and stretching. The spatial transformation T satisfies

the partial differential equation (the Navier Cauchy PDE):

µ∇2T + (µ+ λ)∇(∇T ) = S(T ) (3.36)

with certain boundary conditions such as T (z) = 0 for z located on the image boundary. S(T ) is the

body force that drives the registration (some examples of the body forces are given in [WS98]), ∇ is

the gradient, β and α are the Lamé coefficients. Elastic body models are simple to implement but

they are limited by their inability to model large and global deformation.

Viscous fluid Flow models

Viscous fluid Flow models are non-parametric models. The purpose of fluid registration is to

imitate a flow of fluid. Fluid registration has been used successfully in medical applications such as

brain image registration [DMVS03]. This kind of approach does not assume small deformations and

thus is able to model large and smooth deformations while maintaining continuity. The motion of

this transformation v is modeled by the Navier-Stokes equation and can be written as:

µ∇2v + (µ+ λ)∇(∇v) = S(v) (3.37)

where µ and λ are are the viscosity constants. The relationship between the transformation T and

the velocity v is given by

∂T (x, t)
∂t

= v(x, t) +∇T (x, t)v(x, t). (3.38)

Even if this model is interesting, it cannot be used in images containing non-fluid objects.

Other examples of non parametric models used for image registration are diffusion models [HS81]

and curvative models [FM04]. The diffusion models handle object contours and features, and estimate

the smoothness of the deformation field rather than mimicking physical properties as fluid and elastic

models.

3.3.3 Regularization in deformable registration

A regularization can be introduced to a transformation model in order to avoid discontinuities in

the estimated transformation. For instance, the estimated transformation can be constrained based
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on prior knowledge about image acquisition, physical conditions, Cartesian coordinate changes, spa-

tial distortion, etc. Two kinds of regularizations have been considered for image registration: (1)

competitive regularization, (2) iterative filtering approaches.

3.3.3.1 Competitive regularization

Competitive approaches consist in considering a cost function composed of a data fidelity term based

on the similarity measure (see section 3.3.1) Fs and a regularization term Rs that penalizes abrupt

variations in the deformation field. The solution obtained by minimizing Fs(T ) + τRs(T ) satisfies

a compromise between the data attachment and the regularity of the solution. The regularization

parameter τ make it possible to satisfy this compromise. The regularization term prevents the

appearance of small unrealistic deformations which would cause only a slight decrease in the similarity

criterion. Different regularization energies have been proposed in the literature, many of them having

an interpretation related to material or fluid mechanics. An example of regularization in 2D is

Rs(T ) =
∫

Ω

[∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂x∂y

]
dxdy. (3.39)

In practice, the integral (3.39) is approximated by standard numerical integration [RSH+99].

3.3.3.2 Iterative filtering approaches

Iterative filtering approaches [PHF+14] are based on two steps: the first step estimates the trans-

formation T without regularization and the second step is smoothing the estimated deformation

using filters. These two steps are repeated several times until convergence. Several filters have been

proposed in order to smooth transformations such as Gaussian or adaptive filters. The main disad-

vantage of these methods is that they do not take into account the information carried by the image

during the regularization step, which can lead to smoothing areas containing pertinent information.

To overcome this limitation, the filtering can be constrained by a map of weights in order to consider

the information in the image. These weights are generally computed using the norm of the gradient

image.
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3.3.4 Optimization

The aim of optimization is to estimate the optimal transformation that best aligns the reference and

source images according to a cost function defined using a data fidelity term (similarity measure)

and a regularization term. The choice of an optimization method can impact directly the quality of

the estimated transformation. Two categories of optimization methods were considered in [SDP13]

depending on the nature of the transformation T : (1) continuous methods and (2) discrete methods.

3.3.4.1 Continuous optimization

Continuous methods deal with variables that take real values and cost functions that are differ-

entiable. Generally, these methods update the unknown parameters (to be estimated) using the

following equation:

θk+1 = θk + αkgk(θk) (3.40)

where θ contains the parameters of the transformation, k is the iteration number, αk is the step size

at iteration k and gk is the corresponding search direction. The function gk depends on the similarity

measures and the regularization terms. The stepsize αk can be constant or may change during the

iterations via a line search that satisfies the Wolfe conditions or using the Barzilai–Borwein method.

The search direction can use the first order information such as the gradient descent method,

which is based on the negative gradient:

gk(θ) = −∇Es(θ) (3.41)

where Es(θ) = Fs(Tθ) + τRs(Tθ). Gradient descent methods are widely used in image registration.

They are used for different similarity measures and transformation models. Beg considered the

gradient descent method to register brain images using a least square distance as similarity measure

and the diffeomorphic model for the transformation [BMTY05], Klein used this method to register

images using mutual information and B-spline transformation [KSP07] and Huang proposed a shape

registration based on information theory and free form deformations [HPM06].

Conjugate gradient methods have better rates of convergence than the gradient descent. The
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search function conjugates the gradient to the previous direction using the following equation:

gk(θ) = −∇Es(θ) + βgk−1(θ). (3.42)

Some studies that use the conjugate gradient for image registration are [GVM04, PZF08, JSTL07].

Other continuous methods used in medical image registration are: Powell’s conjugate direction

method [PMV04], quasi-Newton methods [KSP07], Gauss-Newton methods [VPPA07], Levenberg-

Marquardt [GTN03] and stochastic gradient descent methods [BGSW07]. All these methods solve

unconstrained optimization problems. Constrained methods can be used when it is necessary such

as the log-barrier method [HM07].

3.3.4.2 Discrete optimization

Discrete optimization methods are used when the variables to estimate take discrete values. They can

be classified into three categories: (1) graph based methods [GPS89], (2) belief propagation methods

[YWA10] and (3) linear programming approaches [GKT+08].

A very comprehensive and detailed survey, presented by Klein, is available in [KSP07]. It com-

pares optimization techniques for image registration using mutual information as a similarity measure

and a B-spline transformation as a regularization.

3.3.5 Image registration metrics

The evaluation and comparison of registration methods, especially non-rigid registration methods,

are challenging problems due to the lack of ground truth. It is indeed difficult for experts to find a

consensus on what should be the transformation allowing the best matching of two images. The notion

of optimality of the registration seems to be closely linked to the application. The oldest method of

registration accuracy is based on visual assessment and is still used at least as complement of some

quantitative measures. Global linear registration methods can be evaluated using the mean square

error (MSE) [CEA00];

MSE = 1
N

N∑
i=1
‖T (pm,i)− pr,i‖ (3.43)
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where pm and pr are points extracted from the moving and the reference image and N is the number

of extracted points. The lower the MSE, the more accurate the registration.

The Dice Similarity Coefficient (DSC) is also a metric used for global registration. It was devel-

oped by Thorvald Sørensen and Lee Raymond Dice in 1948 [WCH+17]. It can be written as follows:

DSC = 2a
2a+ b+ c

. (3.44)

where a is the number of pixels shared by the moving and the reference images, b and c are the

number of pixels unique to the reference and the moving images. A high value of DSC indicates a

good overlap between images, thus, an accurate registration.

Concerning local image registration, a common quantitative metric is the target registration

error (TRE) [KKM+09]. It uses two sets of landmarks identified by clinical experts2 denoted as

pm = {pm,1, ..., pm,s} and pr = {pr,1, ..., pr,s} leading to the following measure:

TRE = 1
s

s∑
i=1
‖T (pm,i)− pr,i‖. (3.45)

A low TRE corresponds to a good local registration accuracy.

In some studies, the cross correlation CC and the median-absolute deviation metrics are used for

a quantitative evaluation of local/global registration methods.

3.4 MR and US registration: state of art

Because of the diversity of images to be registered and the complex deformations affecting medical

images, it is very difficult to design a general method that is adapted to all registration problems.

In the previous sections, we exposed some fusion and registration methods that have been used for

different medical imaging modalities. This section concentrates on the registration of MR and US

images, which can be considered under two angles (1) intensity-based methods and (2) feature-based

methods.
2These sets must not be used in estimating the deformation, which can be challenging
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3.4.1 Intensity-based methods

The registration of MR and US images using the intensities of these images is a very challenging task.

Indeed, US and MR images are very different modalities: a US image can be seen as an image of

tissue boundaries contaminated by speckle noise with a small field of view and MR is a large field of

view image that provides information on the tissue density (see Chapter 2). For these reasons, basic

similarity measures such as the mutual information MI, the cross-correlation ratio (CCR) and the

sum of squared distances cannot be used easily to align MR and US images [HHR+05]. Therefore,

more complex similarity measures have been proposed for MR and US images; which are summarized

in this section.

Roche et al. in [RPMA01] presented an automatic method to rigidly register US and MR im-

ages. The similarity measure, used in their work, is based on a bivariate version of the generalized

correlation ratio [RMPA98]. In addition, the similarity measure relies on a polynomial function that

correlates the US image to the MR and the gradient of MR images in order to model the intensity

variations in tissue boundaries. Powell’s optimization algorithm was used to implement the bivariate

CCR. This approach outperforms the classical CCR and the mutual information. This technique

has been designed for image-guided neurosurgery and applied to brain images, which explains the

accuracy of a rigid transformation, since the brain is mostly rigid.

Arbel et al. in [AAM+04] proposed an automatic non-linear registration for the same application

as Roche et al. (image guided neurosurgery). The technique first predicts the appearance of the US

image based on a segmented MR image, providing a so-called pseudo US image. Once a pseudo-

US has been generated, the system computes a nonrigid registration based on a piecewise linear

deformation using the ANIMAL algorithm [CE97]. This method provided some insightful results for

the recovery of deformations due to brain shift and operative manipulations.

Craene et al. in [DCdBdM+04] studied a non-rigid MR/US registration algorithm based on a finite

element elastic deformation model to capture the deformation in the liver ablation and the prostate

biopsy. The similarity measure used in this study was a mix between mutual information and linear

elastic energy. The optimization was performed using a new method referred to as Perturbation

Stochastic Approximation (PSA). The use of volumetric meshes applied to the surfaces of organs to
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build the deformation showed promising results.

Mitra et al. in [MMO+12] proposed a 2D deformable registration that aligns a pre-biopsy MR

image and a transrectal ultrasound image (TRUS). TRUS imaging is used to guide prostate biopsy.

A combination with pre-biopsy MR may help to improve the detection of early stage malignancy.

The method studied in [MMO+12] involves B-spline free-form deformations and a similarity measure

based on the normalized mutual information between the two images. Their main contribution was

to compute the NMI from the texture images obtained from the amplitude responses of directional

quadrature filters. The entropy between MR and TRUS intensity images is more than the entropy

between texture images because of the variations of gray levels. Using the texture images helps

NMI to better catch the (dis)similarities between MR and TRUS images. The optimization of the

resulting cost function was performed with a quasi-Newton algorithm. The results clearly outperform

a B-spline registration relying on NMI based on gray level intensities.

A different approach is based on the modality neighborhood descriptor (MIND) [HJB+12] and

its variant based on a self-similarity context (SSC) [HJP+13, RKC14]. These methods do not rely on

global intensity relations but use the difference of pre-defined neighborhood maps. [RKC14] proposes

a self similarity α-MI (SeSaMI) metric as a similarity measure to deal with B-spline MR and US

registration. This method showed robustness against signal nonstationarity and intensity distortions

and yielded insightful results for image-guided neurosurgery.

Fuerst et al. proposed in [FWMN14] another similarity measure to deal with MR and US regis-

tration. A linear correlation of linear combination (LC2) was first designed to register the US image

and a CT scan [WBK+08]. Fuerst et al. adapted this idea to MR-US registration. They assumed

that the US intensity is either correlated with the MR intensity or with the gradient of MR which

leads to a first order polynomial function that relates the US image to the MR image and its gradient.

A free-form deformation based on cubic B-splines was used to build the transformation between the

two images. This technique showed some accurate results for image guided neurosurgery using 14

clinical cases.
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3.4.2 Feature-based methods

The registration of MR and US images using feature-based methods can be very accurate, easy to

implement and not expensive. This kind of registration generally relies on data reduction performed

by an expert and segmentation. However, if MR image can be automatically segmented and features

can be easily extracted from these images, it is more difficult for US images because they are highly

contaminated by speckle noise. Thus, generating an automatic feature-based registration of MR/US

images is very difficult.

Singh et al. proposed in [SKX+08] a manual registration method for real-time transrectal ultra-

sonography (TRUS) and previously acquired MR image to guide prostate biopsies. The sequence

of MR images was registered manually to the US using custom software for real-time navigation

and feedback. However, this approach relies significantly on the pertinence of the choice of control

points and their correspondence in both images. In order to decrease user interaction, automatic and

semi-automatic methods were also presented in [KZW+12].

Kadoury et al. investigated in [KZW+12] an approach to rigidly register the preoperative MR and

the intraoperative US to allow pertinent needle placement during the ablation of liver metastases.

Their contribution consists of training a deformable model for unsupervised segmentation of the

liver in the MR image and extracting automatically the liver boundaries from the US image. The

registration was performed using a weighted ICP algorithm with internal energy as a penalization.

Yavariabdi et al. considered in [YSB+13] a variational approach to map endometrial implants

from transvaginal ultrasound (TVUS) and MR images. Images were first segmented by experts.

A novel variational one-step deformable ICP method was used to estimate the deformation. This

variant of ICP was then used to compute the deformation field based on a curative transformation

and also to establish point correspondences automatically. Thus, it allows one to decrease the expert

error and the interaction time while selecting manually point correspondences.

Mitra et al. presented in [MOM+10] an automatic deformable method for MR and US registration

for prostate biopsy. The deformation model was based on radial basis functions, more specificaly

on a thin-plate spline TPS. One contribution was to estimate the spline knots using a triangulation

technique with the axes of the segmented prostate in MR and TRUS images. The two images
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were segmented using the method of [GOM+10]. A Shepard interpolation was used to overcome

interpolation artefacts caused by the inverse TPS transform.

3.4.3 Other approach

Atehortúa et al. presented in [AGS+20] a novel 3D multimodal registration strategy to fuse 3D

real-time echocardiography images with cardiac cine MRI images. This alignment was performed

in a saliency space, which was designed to maximize similarity between the two imaging modalities.

This fusion improves the quality of the available information. The used method performs in two

steps: temporal and spatial registrations. A temporal alignment was firstly achieved by non linearly

matching pairs of correspondences between the two modalities using a dynamic time warping. A

temporal registration was then carried out by applying nonrigid transformations in a common saliency

space where normalized cross correlation between temporal pairs of salient volumes was maximized.

3.4.4 Conclusion

In our joint fusion and registration method presented in Chapter 5, we will consider a registration

step in order to correct registration errors during the fusion process. We will adopt the intensity-

based approach with a polynomial function fc as a similarity measure. We choose this similarity

measure because it is also used in the fusion process to match the pixel intensities from MR and

US images. The adopted transformation model is composed of a global transformation based on an

affine operator and a local transformation based on B-splines, since free form B-spline have been

widely used for non-rigid MR/US registration.

3.5 Global Conclusions

Since there is, to our knowledge, no state-of-the-art method for the fusion of MR and US images, this

chapter proposed basic survey of medical image fusion. We can note that medical image fusion is a

hard task and the challenging part is to estimate the link relating medical images especially when

using multiple modalities. Transforms or feature extraction may be used to overcome this challenge

but they are limited and sensitive to the low SNR of input images.



76 Chapter 3 - Fusion and Registration in Medical Imaging

The second part of this chapter presented the image registration framework and its components

with a general survey on medical image registration . This chapter was concluded by a state-of-the-

art on MR and US registration. Note that intensity-based and feature-based registration methods

have their own limitations and challenges. Intensity-based methods require to find an appropriate

similarity measure that links information in images whereas feature-based methods are operator-

dependent and rely excessively on the pertinence of features extracted by medical experts . At this

point, we would like to mention that the few automatic studies in MR/US feature-based registration

cannot handle important deformation between the images to be registered.
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Fusion of MRI and US images

Part of this chapter has been adapted from the journal paper [EMVB+20]
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4.1 Introduction

This chapter studies a new fusion method for MR and US images, based on two image formation

models gathering the advantages and drawbacks of each modality. More precisely, the MR image

formation model accounts for the low spatial resolution of the observed image using a standard

linear model with blurring and downsampling operators. The US image formation model takes into

consideration the high amount of speckle noise, which is assumed to be Rayleigh-distributed as in

many works including [AB07a, GCS05a, GSP05]. Given the different physical phenomena involved

in each imaging modality, we propose to model the correspondence between gray levels of MR and

US images using a polynomial function. This polynomial model can be theoretically motivated by

the Weierstrass approximation theorem, which states that any continuous function on a closed and

bounded interval can be uniformly approximated on that interval by polynomials with any degree of

77
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accuracy [MS00]. A more practical reason for using this kind of relationship between MR and US

images is its successfull application to MR and US image registration [RPMA01]. Another variant to

link MRI and US images, based on a patch-wise polynomial model, is also presented. The non-linear

cost function considered to solve the fusion problem is constructed using the observation models

associated with the MR and US images and the polynomial transformation relating the two images.

Its minimization is challenging and is handled by a proximal alternating linearized minimization

(PALM) algorithm. The proposed image fusion method is evaluated on simulated data with available

ground truth, and on experimental data acquired on a phantom with imaging characteristics close

to endometriosis. Both qualitative and quantitative results show the interest of fusing MR and US

images, compared to restoring independently the images with each modality.

The remainder of this chapter is organized as follows: Section 4.2 introduces the statistical models

for MR and US image fusion including a non-linear relation between the two modalities. The different

steps of the proposed MR/US image fusion algorithm are detailed. Results obtained on simulated

data and on an experimental allow the performance of the proposed method to be evaluated. Section

4.3 proposes a patch-wise polynomial model to link MRI and ultrasound images and compares results

with the global polynomial function of Section 4.2. Conclusions are reported in Section 4.4.

4.2 MR/US fusion using a global polynomial function

4.2.1 A statistical model for the fusion of MRI and US images

The image fusion model introduced in this section assumes that the MR and US images to be

fused are aligned, i.e., there is no geometric distortion between them, which can be obtained after

an appropriate pre-registration. Thus, the registration potentially required in practical applications

(see Chapter 3, Section 3.4) is considered herein as a pre-processing step and the possible registration

errors are ignored hereafter. Note that despite this hypothesis, the fusion task is challenging because

the two imaging modalities have different resolutions and contrasts and are corrupted by different

kinds of noise.
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4.2.1.1 Observation models

As stated in Chapter 2, MRI has the advantage of acquiring images with a large field of view, at

the expense of a relatively low spatial resolution. In contrast to MRI, depending on the choice

of the central frequency of the probe, US imaging can offer well-resolved images. However, US

images are contaminated by a high level of speckle noise and have a reduced field of view. Based on

these observations, many existing works aimed at improving independently the quality of MR and US

images. In the case of MRI, the loss of resolution is classically modelled by a downsampling operation

and a low pass filter [SCW+15]. In US imaging, speckle noise is usually considered as additive when

considering the log-compressed envelope mode (also called B-mode) with a log-Rayleigh distribution

[KR05, TSP88a]. This study assumes that the US noise sequence is independent and identically

distributed (i.i.d) as in [C+02, BNB03]. Note that modelling the spatial correlation of noise samples

would increase the complexity of the fusion method and is left for future work. These observations

lead to the following image formation models

ym = SCxm + nm

yu = xu + nu

(4.1)

where xm ∈ RN is the non-observable high-resolution vectorized MR image, ym ∈ RM is the observed

low-resolution vectorized MR image and nm ∈ RN is the independent and identically distributed

(i.i.d.) noise vector corrupting the MR image, assumed to be Gaussian as in [GP95]. Note that

C ∈ RN×N is a block circulant with circulant blocks matrix modelling the blurring effect of the MRI

by a point spread function (PSF) and that S ∈ RM×N (with N = s2M) is a decimation operator

with a decimation factor s. On the other hand, yu ∈ RN is the observed vectorized B-mode US

image, xu ∈ RN is the noise-free vectorized US image and nu ∈ RN is an i.i.d. additive log-Rayleigh

noise with localization parameter γ. Note that the speckle noise affecting US images is mainly

caused by diffusion, i.e., by the constructive and destructive interferences between echoes originated

by small (with respect to the US wavelength) point targets called scatterers. Note also that all

the vectors in (4.1) are obtained by vectorizing the corresponding images using the lexicographical

order. Finally, we assume that xm and xu have the same spatial sampling, which can be obtained in
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practical applications by adjusting the decimation factor d in the MRI model, so that pixels in the

super-resolved MR and US images have the same size.

4.2.1.2 Relation between US and MR images

MR and US imaging systems exploit different physical phenomena. Consequently, when imaging the

same tissues, even in the virtual case of a perfect acquisition (without noise) allowing xm and xu to

be directly observable, these two systems would not provide the same measurements. Thus, images

xm and xu in (4.1) are not equal, even if they correspond to the same tissue. For solving the fusion

task, we propose to link these two images by a parametric model. More precisely, we adopt the model

originally proposed in [RPMA01] for MR/US image registration. This model is motivated by the

fact that US image formation is essentially based on the gradient of the acoustic impedance between

neighbouring tissues and is thus able to highlight the interfaces between anatomical structures. For

US imaging, US waves (short pulses) are transmitted by the transducer, propagate through the

tissues, and return to the transducer as reflected echoes. The reflected echoes correspond to US

wave reflection at the interfaces between tissues with different acoustic impedances. Thus, the most

important features in US images correspond to regions with gradient of impedance. The noise-free

US envelope image (after amplitude demodulation of beamformed RF signals) can be expressed as

au = ∇ZHu (4.2)

where au is the speckle-free US envelope image, Z is the acoustic impedance map, u is the scan

direction, H stands for Hermitian transpose and ∇ is the discrete gradient operator. The B-mode or

log envelop of au, denoted by xu in (4.1) is

xu = b log[∇ZHu] + g (4.3)

where b and g are linear gains.

Exploiting the previous US image model relating US and MR pixel amplitudes turns out to finding

a relationship between the MRI amplitude and the acoustic impedance Z, denoted by φ such that

Z = φ[xm]. (4.4)
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Computing the gradient of (4.4) leads to

∇Z = φ′[xm]∇xm (4.5)

where φ′ is the derivative of the unknown function φ. By plugging (4.5) into (4.3), the following

relation between the US and MR images is obtained

xu = b log
[
φ′(xm)∇xHmu

]
+ g (4.6)

where b and g are constants. Note that the amplitude of one pixel in xu not only depends on the

value of its counterpart in xm, but also on the gradient of the MR image. To simplify the notations,

this functional mapping between the US and MR images is defined as

xu = f(xm,∇xHmu) (4.7)

where f : RN × RN → RN is an unknown function and ∇xHmu ∈ RN contains in its ith line the inner

product between the ith local gradient xm and the US scan direction u.

We propose in this thesis to approximate the unknown function f in (4.7) by a polynomial (as in

[RPMA01]) such that

xu,i =
∑

p+q≤d
cpqx

p
m,i(∇xHmu)qi (4.8)

where cpq are the unknown polynomial coefficients, index i stands for the ith coefficient of a vector

and d is the degree of the polynomial.

Remark 1. For simplicity, one might consider that the unknown function f can be approximated by a
linear function that links directly the US image to the MRI and the gradient of MRI (see [MBV+19]).
However, due to the complex relation between MRI and US gray-level intensities, a linear function is
not sufficient to model this relationship.

4.2.1.3 A Bayesian approach for MR and US image fusion

Using the relationship between MR and US images in (4.7), the image formation models in (4.1) can

be rewritten as

ym = SCx+ nm

yu = f(x,∇xHu) + nu

(4.9)
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where x ∈ RN is the unknown image to be estimated, containing relevant information from both

MR and US data. The conditional distributions of ym and yu can be determined using the noise

distributions

ym|x ∼ N (SCx, σ2
mIN )

yu|x ∼ LR(γ)
(4.10)

where N (µ,Σ) denotes the normal distribution with mean vector µ and covariance matrix Σ, and

LR(γ) is the log-Rayleigh distribution with parameter γ1. Using Bayes rule and the independence

between the noise vectors nm and nu, the posterior distribution of x can be computed

p(x|ym,yu) ∝ p(ym|x)p(yu|x)p(x) (4.11)

where p(x) is the prior probability distribution of x and ∝ means “proportional to”. Finally, the

log-posterior distribution can be written as

− log p(x|ym,yu) = K + 1
2‖ym − SCx‖

2︸ ︷︷ ︸
MRI data fidelity

− log [p(x)]︸ ︷︷ ︸
regularization

+
N∑
i=1

[
exp(yu,i − fi(x,∇xHu))− γ(yu,i − fi(x,∇xHu))

]
︸ ︷︷ ︸

US data fidelity

(4.12)

where yu,i and fi(x,∇xHu) are the ith components of yu and f(x,∇xHu) and K is a constant.

Different prior distributions p(x) have been considered in the literature to solve ill-posed problems.

In this study, we propose to use the classical total variation (TV) promoting piece-wise constant fused

images. Estimating x in the sense of the maximum a posteriori principle using this TV regularization

leads to the following minimization problem

x̂ = argmin
x

1
2‖ym − SCx‖

2 + τ1‖∇x‖2 + τ3‖∇f(x,∇xHu)‖2+

τ2

N∑
i=1

[
exp(yu,i − fi(x,∇xHu))− γ(yu,i − fi(x,∇xHu))

] (4.13)

1The probability density function (pdf) of a variable distributed according to a log-Rayleigh distribution denoted as
z ∼ LR(γ) is p(z) = (ez)2

γ
exp
[
− (ez)2

2γ

]
IR+ (z), where IR+ is the indicator on R+.
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where τ1, τ3 and τ2 are hyperparameters balancing the weights of the data fidelity and TV regu-

larization terms. Note that the cost function in (4.13) depends on the polynomial parameters cpq
relating US and MR pixel amplitudes, that need to be estimated before solving (4.13).

4.2.2 Algorithm for MR/US fusion

This section studies an optimization algorithm dedicated to solve (4.13). The presence of the non-

linear polynomial function f in (4.13) prevents the use of algorithms based on the alternate direction

method of multipliers (ADMM) [BPC+11] (as in [MBV+19]). Consequently, we propose hereafter an

algorithm based on the proximal alternating linearized minimization (PALM), adapted to nonconvex

and nonsmooth functions [BST14].

4.2.2.1 PALM summary

The PALM algorithm was originally designed to minimize functions of two vectors x and v that can

be decomposed as

min
x,v

ψ(x,v) := l(x) + g(v) +H(x,v) (4.14)

where l and g are continuous convex functions and H may be non-linear. Moreover, these three

functions must respect the following conditions to fit the PALM framework [BST14]

1. l and g are inf-bounded
(
infRN

(
f
)
> −∞ and infRN

(
g
)
> −∞

)
.

2. For any fixed v, the function x 7→ H(x,v) is C1,1, and the partial gradient ∇xH(x,v) is

globally Lipschitz.

3. For any fixed x, the function v 7→ H(x,v) is C1,1, and the partial gradient ∇vH(x,v) is

globally Lipschitz.

4. ∇H is Lipschitz continuous on bounded subsets of the image domain.

PALM can be viewed as a minimization of the sum of the two functions l and g with a linearization

of H around a given point xk. The alternate minimization with respect to the two blocks x and v

proposed in [BST14] generates a sequence {(xk,vk)}k∈N using the following steps
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Step 1: Choose γ1 > 1, set ck = γ1Lx(vk) and update xk as follows

xk+1 = proxlck
(
xk − 1

ck
∇xH(xk,vk)

)
= argmin

x
(x− xk)H∇xH(xk,vk) + ck

2 ‖x− x
k‖2 + l(x)

where Lx(vk) is the Lipschitz constant of x 7→ ∇xH(x,vk) and vk is the value of v at iteration #k.

Step 2 : Choose γ2 > 1, set dk = γ2Lv(xk) and update vk as folllows

vk+1 = proxgdk
(
vk − 1

dk
∇vH(xk,vk)

)
= argmin

v
(v − vk)H∇vH(xk,vk) + dk

2 ‖v − v
k‖2 + g(v)

where Lv(xk) is the Lipschitz constant of v 7→ ∇vH(xk,v) and xk is the value of x at iteration #k.

Note that this iterative scheme requires to compute the Lipschitz constants Lx(vk) and Lv(xk).

4.2.2.2 PALM for MR/US fusion

In order to respect the constraints mentioned above and to adapt our image fusion minimization

problem to the PALM framework, we propose the following parametrization

l(x) = 1
2‖ym − SCx‖

2
2 + τ1‖∇x‖2 (4.15)

g(v) = τ2
∑
i

[exp(yu,i − vi)− γ(yu,i − vi)] + τ3‖∇v‖2 (4.16)

H(x,v) = τ4

N∑
i=1

(
vi −

∑
p+q≤3

cpqx
p
i (∇xHu)qi

)
(4.17)

where

v = f(x,∇xHu).

Remark 2. With this choice of functions l, g and h, the four assumptions stated previously are
satisfied, as explained hereafter.
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1. Assumption 1 ensures that the PALM algorithm is well defined, which can be easily verified in

our case.

2. Assumptions 2 and 3: Since x 7→ ∇xH(x,v) and v 7→ ∇vH(x,v) are polynomial functions,

they are globally Lipschitz and their domains are bounded.

3. Since H is C2, Assumption 4 is satisfied as a consequence of the mean value theorem.

We denote hereafter by {(xk,vk)}k∈N the sequence generated by the PALM algorithm.

4.2.2.3 Lipschitz constants

Before going into the details of the PALM algorithm used to solve Problem (4.14), this section

explains how the Lipschitz constants Lx(v) and Lv(x) of x 7→ ∇xH(x,v) and v 7→ ∇vH(x,v) can

be computed. Eq. (4.17) leads to

∇vH(x,v) = 2τ4

(
v −

∑
p+q≤3

cpqx
p(∇xHu)q

)
. (4.18)

The computation of the Lipschitz constant 1 Lv(x) is straightforward and leads to Lv(x) = 2τ4, ∀x.

The Lipschitz constant of x 7→ ∇xH(x,v) is more complicated to evaluate. We therefore use PALM

with a backtracking stepsize rule as suggested in [BT09]. Note that one of the pillars of PALM’s

convergence proof is the following lemma for smooth functions.

Lemma 1. Let h : Rn → R be a continuously differentiable function with Lipschitz continuous
gradient and Lipschitz constant Lh. Then for any L ≥ Lh and ∀x, y ∈ Rn

h(x) ≤ h(y) + (x− y)H∇xh(x) + L

2 ‖x− y‖22. (4.19)
1For function f : Rn 7→ R, Lipschitz constant denotes the smallest constant M > 0 in the Lipschitz condition,

namely the nonnegative number

sup
x 6=y

|f(x)− f(y)|
‖x− y‖

where ‖.‖ is the associated norm to the Euclidean space.
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Using simple algebra, one can show that the function ψ defined in (4.14) satisfies the following relation

ψ(x,v) ≤ QL(x, y, v) (4.20)

where

QL(x, y, v) = l(x) + g(v) +H(y, v) + (x− y)H∇xH(y, v) + L

2 ‖x− y‖2.

In order to ensure the convergence of the PALM algorithm, the backtracking rule consists of verifying

that the inequality (4.20) is satisfied at every step. To estimate the Lipschitz constant, at each

iteration k, we search for the smallest nonnegative integers ik such that Lk+1 = λikLk verifies

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk)

with

pL̄(xk) = proxlLk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
.

Remark 3. The sequence of values ψ(xk,vk) computed by PALM is decreasing for all xk and vk.
The proof is straightforward. For every k ≥ 1

ψ(xk+1,vk) ≤ QLk+1(xk+1,xk,vk)

and
QLk+1(xk+1,xk,vk) ≤ QLk+1(xk,xk,vk) = ψ(xk,vk).

Thus
ψ(xk+1,vk) ≤ ψ(xk,vk)

and
ψ(xk,vk+1) ≤ ψ(xk,vk)

which concludes the proof.

Remark 4. Since inequality (4.20) is satisfied for L ≥ Lx(v), ∀v, where Lx(v) is the Lipschitz
constant of x→ ∇xH(x, v), the following inequalities can be obtained

Lx(vk) ≤ Lk+1 ≤ λLH(vk). (4.21)
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Note that the inequality Lx(vk) ≤ Lk+1 is sufficient to ensure the convergence of PALM. However,
the second inequality Lk+1 ≤ λLH(vk) allows the convergence rate to be controlled by an appropriate
choice of λ.

In the following subsections, the updates of each variable within PALM algorithm are described in

details.

4.2.2.4 Update of x

The update of x is achieved by minimizing the sum of quadratic functions, leading to

xk+1 = proxlLk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
= argmin

x

1
2‖SCx− ym‖2 + τ1‖∇x‖2 + Lk+1

2 ‖x− (xk − 1
Lk+1

∇xH(xk,vk))‖2

where l is defined in (4.15) and Lk+1 is the Lipschitz constant at iteration k + 1. This minimization

problem admits an analytical solution, which can be computed efficiently in the Fourier domain.

The practical tractability of this solution is possible for large images using the decomposition of the

decimation matrix S proposed in [ZWB+16b], since the convolution operator is diagonalizable in the

Fourier domain. The update of x at the (k + 1)th iteration is then obtained as follows

xk+1 =
[
CHSHSC + 2

(
τ1D + Lk+1

2 IN
)]−1

R (4.22)

with

R = CHSHym + 2Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
D = DH

h Dh +DH
v Dv

where Dh and Dv are the horizontal and vertical finite difference operators.

The direct computation of the solution (4.22) requires the inversion of high dimensional matrices.

To overcome this problem, we adopt herein the solution proposed in [ZWB+16b], which is recalled

hereafter. Based on the circulant boundary conditions, the blurring matrix C is a block circulant

with circulant blocks matrix (BCCB) that can be decomposed as

C = FHΛF
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where F and FH are 2D Fourier and 2D inverse Fourier operators, Λ = diag(Fh), with h the first

column of the matrix C. Taking into account this property and using the Woodbury inverse formula

[ZWB+16b], the update of x can be rewritten as

xk+1 = 1
τ1Lk+1

FHψFr − 1
τ1Lk+1

FHψΛH(2τ1sIN + ΛψΛH)−1ΛψFr (4.23)

where

r = CHSHym + Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)

and the matrix Λ is a block diagonal matrix denoted as

Λ = [Λ1, ...,Λd]

where the blocks Λi are the diagonal matrices of Λ, and where

ψ = F (τ1(DH
h Dh +DH

v Dv) + Lk+1
2 IN )−1FH .

4.2.2.5 Update of v

The vector v is updated using a gradient descent algorithm with backtracking line search, given

that the function to minimize in this step is differentiable and convex. More precisely, the following

update has ben considered

vk+1 = argmin
v

τ2
∑
i

[exp(yu,i − vi)− γ(yu,i − vi)]

+ τ3‖∇v‖2 + dk
2 ‖v − (vk − 1

dk
∇vH(xk+1,vk))‖2

= proxgdk
(
vk − 1

dk
∇vH(xk+1,vk)

) (4.24)

where g is defined in (4.16) and dk = Lv(xk) is the Lipschitz constant of ∇vH at iteration k.
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4.2.2.6 Estimation of the global polynomial function

For a given order d, the unknown polynomial function f relating xm to xu is defined by Nd =

(d + 1)(d + 2)/2 coefficients gathered in the vector cd = {cpq | p + q ≤ d}. To estimate these

coefficients, we assume that the observed MR and US images are related as follows

yu,i =
∑

p+q≤3
cpqy

p
m,i(∇yHmu)qi + εi i = 1, ..., N

or equivalently, in algebraic form

yu = Amcd + ε (4.25)

where Am ∈ RN×Nd is a matrix whose elements are ypm,i(∇yHmu)qi for p+ q ≤ d and ε = (ε1, ..., εN )T .

The least-squares estimator of cd (which is also the maximum likelihood estimator for i.i.d.

Gaussian errors εi) is defined by

ĉd = A†myu (4.26)

where A†m = (AT
mAm)−1AT

m is the pseudo-inverse of the matrix Am. This estimator will be used

to estimate the coefficients of the polynomial function f in our experiments.

4.2.2.7 Algorithm summary

Algo. 1 summarizes all the steps of the proposed MR/US image fusion method.

4.2.3 Simulation results

4.2.3.1 Simulation setup

This section demonstrates the efficiency of the proposed MRI/US fusion method using two sets of

synthetic images with controlled ground truth. The observed MR images were generated from the

high resolution MR images displayed in Figs. 4.1(a) and 4.2(a), after blurring, decimation and

contamination by an additive i.i.d. white Gaussian noise leading to Figs. 4.1(c) and 4.2(c). The

blurring kernel was a 2D Gaussian filter of size 9× 9 with variance σ2
m = 4. The decimation factors

were set to s = 4 for the first dataset and s = 2 for the second dataset. A Gaussian noise was finally
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Algorithm 1: Proposed MR/US image fusion algorithm.
Input yu, ym, S, C, τ , λ, µ
0 - Estimate the polynomial function f (see Section 4.2.2.6)
Repeat
1 - Find the smallest nonnegative integers ik such that

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk)

with L̄ = γikLk. Set Lk+1 = γikLk and update x using (4.23)
2 - Set dk = Lv(xk+1) = 2τ4 and update v using (4.24)

Until stopping criterion is satisfied
Output: Fused image x

added to the blurred and decimated MRI images with signal-to-noise ratios equal to SNR = 23.26

dB for the first image and SNR = 20.73 dB for the second image. Note that the sizes of the observed

MR images were 64 × 64 and 75 × 75 for the two datasets. A third order polynomial (d = 3) was

used to generate the clean US images from the corresponding clean high-resolution MR images, as

shown in Figs. 4.1(b) and 4.2(b). To generate the observed US images, log-Rayleigh noise was added

to the B-mode US images yielding the images displayed in Figs. 4.1(d) and 4.2(d). Note that the

SNRs for the Rayleigh noise affecting the US images were SNR = 13.72 dB for the first dataset and

SNR = 13.80 dB for the second dataset. A linear normalization was finally applied to the observed

MRI and US images in order to have pixel values in the interval (0, 1). It transforms a grayscale

image with intensity values in the range (min,max) into a new image with intensity values in the

range (0, 1) according to

In = I −min(I)
max(I)−min(I)

where I is the grayscale image and In is the normalized image. This normalization ensures that MRI

and US pixels have a comparable gray level scale and has been used successfully in many application

such as [Chr03].
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4.2.3.2 Performance evaluation

The performance of the proposed fusion algorithm was evaluated for synthetic data using four quan-

titative metrics: the root mean square error (RMSE), the peak signal to noise ratio (PSNR), the

improved signal-to-noise ratio (ISNR) and the mean structural similarity (MSSIM) [HZ10]. These

metrics are defined explicitely in (4.27), where x denotes the ground truth image, x̂ is the estimated

image and y is the bicubic interpolated MR image:

RMSE =
√

1
N
‖x̂− x‖22

PSNR = 20 log10
max(x̂,x)
RMSE

ISNR = 10 log10
‖y − x‖
‖x̂− x‖2

MSSIM = 1
M

M∑
j=1

SSIM(xj , x̂j). (4.27)

The metric MSSIM is implemented blockwise, where M is the number of local windows, x̂j and xj
are local regions extracted from x̂ and x and SSIM is the structural similarity index computed for

each window as in [WBSS04]. Note that the different metrics were computed using the fused image

and the US and MRI ground truth images. The proposed algorithm was compared to two existing

image restoration algorithms:

• An MR restoration algorithm proposed in [ZWB+16b] to estimate a high-resolution MR image

from the observed low resolution MR image.

• A denoising algorithm adapted to US images proposed in [GSA16].

4.2.3.3 Simulation results

The fused images obtained using the proposed algorithm are displayed in Figs. 4.1(g) and 4.2(g).

The first interesting result is that for both datasets, the fused image contains information from

both MR and US modalities in an enhanced image compared to the two observed MRI and US

images. The fused images are compared visually in Figs. 4.1 and 4.2 to the despeckled US image
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(a) Ground truth MRI (b) Ground truth US (c) MRI observation

(d) US observation (e) Estimated HR MR image (f) Despeckeled US image

(g) Fused image

Figure 4.1: US and MRI fusion: (a) True high resolution MR image, (b) Simulated US image using
a polynomial function applied to the MR image (a), (c) MR low-resolution and blurred image, (d)
noisy US image, (e) high resolution MR image estimated using the fast super resolution algorithm of
[ZWB+16b], (f) despeckled US image using TV regularization, (g) fused image obtained with Algo
1.
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(a) Ground truth MRI (b) Ground truth US (c) MRI observation

(d) US observation (e) Estimated HR MR image (f) Despeckeled US image

(g) Fused image

Figure 4.2: US and MRI fusion: (a) True high resolution MR image, (b) Simulated US image using
a polynomial function applied to the MR image in (a), (c) MR low-resolution and blurred image, (d)
noisy US image, (e) high resolution MR image estimated using the fast super resolution algorithm in
[ZWB+16b], (f) despeckled US image using TV regularization, (g) fused image obtained with Algo
1.
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(obtained by solving the denoising problem using a gradient descent algorithm, with a log-Rayleigh

noise hypothesis and TV regularization) and to the super-resolved (SR) MR image obtained using the

algorithm in [ZWB+16b] (that accounts for Gaussian noise and TV regularization). The quantitative

results reported in Table 4.1 confirm the interest of fusing images of two different modalities, when

compared to the images restored from each imaging modality separately. Considering MR and US

data jointly allows both spatial resolution and image contrast to be enhanced.

Table 4.1: Quantitative results on simulated data.

Dataset 1 (Fig. 4.1)

Fused image vs MRI SR MRI Fused image vs US Despeckeled US

RMSE 0.060 0.081 0.18 0.29

PSNR [dB] 24.37 21.08 15.78 10.67

ISNR [dB] 5.25 2.11 4.1 0.98

MSSIM [dB] 0.70 0.69 0.68 0.64

Dataset 2 (Fig. 4.2)

Fused image vs MRI SR MRI Fused image vs US Despeckeled US

RMSE 0.052 0.071 0.3 0.37

PSNR [dB] 15.7 11.37 7.34 5.38

ISNR [dB] 4.25 1.98 3.01 1.29

MSSIM [dB] 0.74 0.61 0.58 0.24

4.2.3.4 Polyvinyl Alcohol Phantom

MRI experiments were performed using a 3T clinical imaging system (Philips Achieva dStream,

Inserm/UPS UMR1214 ToNIC Technical Platform, Toulouse, France). Axial fat-suppressed T1-

weighted sequences (multishot mode, 4mm slice thickness, voxel matrix 4 × 1 × 4 mm) and axial,

sagittal and coronal T2-weighted sequences (multishot mode, 2 mm slice thickness, voxel matrix

0.8×2×2 mm) were acquired. For the image fusion, only the T2-weighted image was used (see Table
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4.2).

Sagittal T2W Coronal T2W

MRI observation

Voxel matrix(mm) 0.8× 2× 2 0.8× 2× 2

Matrix 320× 320 320× 320

Repetition time (ms) 4641 4843

Echo time (ms) 100 100

Section thickness (mm) 2 2

Acquisition time 1min45s 1min44s

Table 4.2: MRI protocol

For US image acquisition, the experimental model was immersed in a bucket full of water. A US

examination was performed using a Voluson S9 system (General Electrics). All images were acquired

with a 10-MHz linear array transducer (for more details see Appendix A).

In all the experiments below, the degree of the polynomial relating US and MR pixel intensities

was set to d = 4, which implies that the number of coefficients in cd is Nd = 15. This choice was

motivated by our results on experimental data showing that d = 4 is the smallest degree ensuring a

good fit between US and MR images, as highlighted in Fig. 4.3. The estimation of the vector cd was

considered in a preprocessing step using (4.26). Fig. 4.4 shows the effect of applying the estimated

polynomial function onto one MR image, which can be compared to the corresponding US image.

The same structures can be observed in the two images. In particular, the glue that is not visible in

the MRI can be clearly seen in the transformed image displayed in Fig. 4(b). Finally, it is interesting
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to mention that the regularization parameters were fixed to their best values by visual inspection of

the fused images, leading to τ1 = 10−2, τ2 = 3.10−6, τ3 = 2.10−4 and τ4 = 10−5. Interestingly, these

values were not modified for the two experimental datasets considered in this study. Section 4.2.3.5

detailed the influence of the hyperparameters on the fused image.

Figure 4.3: Error norms between experimental US and MR images versus the polynomial degree d.

(a) yu (b) f(ym,∇ym
Hu)

Figure 4.4: (a) US image, (b) MR image obtained after applying the estimated polynomial function,
representing the same imaged medium. The original MR image is shown in Fig. 4.5(b)
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(a) MRI observation (b) US observation

(c) MRI observation cropped (d) US observation cropped

(e) Fused image

Figure 4.5: Image fusion results. (a,b) Full view and cropped MR images, (c,d) Full view and cropped
US images, (e) fused image with the proposed method.
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(a) MRI observation (b) US observation

(c) MRI observation cropped (d) US observation cropped

(e) Fused image

Figure 4.6: Image fusion results. (a,b) Full view and cropped MR images, (c,d) Full view and cropped
US images, (e) fused image with the proposed method.
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(a)

(b)

Figure 4.7: (a) shows normalized pixel intensities of extracted lines from MRI, US and the fused
image in 4.5. The MRI observation is in blue, the US observation is in green and the fused image is
in red. The vertical straight lines indicate the delimited regions depicted in (b).
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Table 4.3: CNR comparison for the phantom images.

CNR

MRI US Fused image

SET 1 (Fig. 3) 48.76 dB 20.64 dB 37.73 dB

SET 2 (Fig. 4) 54.71 dB 15.72 dB 45.85 dB

The MRI and US observations displayed in Figs. 4.5(a-d) and 4.5(a-d) clearly contain comple-

mentary information. MRI provides a wide field of view and a good contrast between the beef steak

and the polyvinyl alcohol phantom, but with limited spatial resolution. The lack of spatial resolution

prevents, for example, the observation of the glue between the slice of meat and the Polyvinyl Alcohol

Phantom (PVA) phantom. On the other hand, US images have a limited field of view but provide a

better spatial resolution, allowing for example the glue structure to be imaged very precisely. Figs.

4.5(e) and 4.6(e) show the fused images obtained with the proposed algorithm. The benefit of fusing

the two imaging modalities can be observed, yielding a fused image having the good contrast of MRI

and the fine spatial resolution of US. In addition to the visual inspection of the different images, the

performance of the proposed fusion method was evaluated using two quantitative measures. The first

measure is the contrast-to-noise ratio (CNR) [WR13], which can be used to evaluate the contrast

between two different structures in MR, US and fused images. The CNR is defined as

CNR = |µi − µj |√
σ2
i + σ2

j

where µi, µj , σ2
i and σ2

j are the means and standard deviations of two blocks of pixels extracted

from two different structures. The two regions considered in this study were chosen inside the PVA

phantom and the beef steak, respectively (see Fig. 4.5(b)). The CNR values associated with these

two regions are reported in Table 4.3. They clearly demonstrate that image fusion allows the image

contrast to be improved for both experiments (by factors of 82.1% and 191.67% for the two datasets)

compared to US images.

The objective of the second quantitative measure is to evaluate the spatial resolution of MR,
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US and fused images. It is based on the image profiles crossing the boundary between different

structures. The slope of these profiles at the interface between two structures was computed and is

used as an indicator of spatial resolution [MBBK15]. Fig. 4.7 and Table ?? highlight the improved

spatial resolution resulting from the fusion of the two modalities. We observe that the fused image

can differentiate neighbouring structures and highlight small structures as the glue, contrary to MRI

images. For example, the second interface in Fig. 4.7, between the PVA phantom and the glue is not

distinguishable in the MRI, while it is clearly visible in the US and fused images. This observation

is confirmed by the slope coefficients reported in Table ??. These two measures confirm the benefit

of fusing the two imaging modalities, yielding a fused image having a good contrast (better than the

contrasts of US images) and a fine spatial resolution (better than the low spatial resolution of MRI).

4.2.3.5 Hyperparameters

Similarly to most of the existing image reconstruction algorithms, the quality of the fusion algorithm

investigated in this chapter depends on the values of the hyperparameters. The proposed algorithm

requires to adjust 4 hyperparameters:

• τ1: this hyperparameter balances the weight between the MRI data fidelity term and the total

variation regularization. Considering that TV promotes a piece-wise constant fused image, in-

creasing τ1 decreases the resolution of the fused image, which is measured using slope interfaces

(see Fig. 7 in the paper). This remark has been highlighted in Fig. 4.8 below: when τ1 exceeds

5.10−2, the slope 2 interface starts to decrease and the fused image is blurred.

• τ3: this hyperparameter has the same effect as τ1 on the fused image.

• τ4: this hyperparameter is essential in the proposed fusion algorithm. The choice of τ4 is based

on the quality of MRI and US images. Different values of τ4 provide different fusion results.

When τ4 has a low value, the fused image is close to the high-resolution MRI image. Conversely,

when τ4 has a high value, the fused image is a despeckled US image as shown in Fig. 4.9.

• τ2: this hyperparameter has the same effect as τ4 on the fused image.
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Figure 4.8: Influence of the hyperparameter τ1 on the fused image. (a) shows the CNR evolution
whereas (b) shows the evolution of the interface 2 slope.

Figure 4.9: Influence of the hyperparameter τ4 on the fused image. (a) shows the CNR evolution
whereas (b) shows the evolution of the interface 2 slope.

The values of the regularization parameters can also be chosen after visual inspection of the fused

image using the performance measures studied in this section. However, it would be interesting to

investigate some methods to tune these hyperparameters automatically from the data as the SURE

algorithm [PSC+16] or other Bayesian methods.

4.2.3.6 Comparison between several fusion methods for MRI and US images

Qualitative comparison results

This section demonstrates the efficiency of the proposed MRI/US fusion method, and presents

some comparative results with different fusion techniques. We have considered a multi-scale Laplacian

method [AAVB16] and a discrete wavelet transform [LBCA10] whose outputs are displayed in Fig.
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4.10 (for more details about these fusion techniques, see Chapter 3). In order to make a more fair

comparison, we have denoised the US image before fusion since our proposed strategy also performs

denoising. The figures displayed below show the effect of noise on the fused image. For low SNR,

the multi-scale fused image and the wavelet fused image contain distracting artifacts, especially in

the regions containing strong transitions between organs.

Quantitative comparison results

The performance of the proposed fusion algorithm was evaluated using a quantitative metric,

namely the Petrovic fusion metric [Pet07]. This metric associates important visual information with

the edge information in each pixel. Thus, a measure of fusion performance is obtained by evaluating

the amount of edge information that is transferred from input images to the fuse image. Fig. 4.11

clearly demonstrates that for higher noise levels the fusion becomes more complicated.
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SNR = 40dB

SNR = 25dB
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SNR = 10dB

SNR = 5dB

Figure 4.10: Influence of SNR of the ultrasound image on the fused images, (a) and (b) are the MRI
and US images, (c) and (d) show the fused images using the Laplacian pyramid and the discrete
wavelet methods without denoising the US image, (e) shows the fused image using the proposed
method, (f) and (g) show the fused images using the Multi-scale Laplacian pyramid and the discrete
wavelet methods after denoising the US image.
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Figure 4.11: Influence of SNR on the Petrovic metric for the fused images. The proposed fusion
method is in blue, the Multi-scale Laplacian method is in green and the discrete wavelet transform
fusion is in red.



4.2 - MR/US fusion using a global polynomial function 107

4.2.3.7 PALM initialization

The PALM algorithm alternates between two optimization problems estimating x and v alternatively.

The two vectors x and v are supposed to have the same size. All algorithms were initialized using a

high resolution (HR) MRI image for x and the observed US image for v. The HR MRI image was

computed using the nearest-neighbor interpolation.

We introduce other sets of images to initialize Algo 1. For the initialization of x, we consider two

methods:

1. MRI1: HR MRI using the nearest-neighbor interpolation method.

2. MRI2: HR MRI using Fast Single Image Super-resolution method with an analytical solution

[ZWB+16a].

For the initialization of v:

1. US1: The observed US image.

2. US2: Denoised US image using deep neural network (MATLAB pretrained neural network that

identifies and removes artifacts and noise from images).

3. US3: Denoised US image using wavelet image denoising [AO12]

Some examples obtained using different initializations are presented below. As we can see, the

obtained solutions are very similar for all these initializations.
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Figure 4.12: Figure 1 :Fusion results with different initializations: (1) x0 = MRI1 and v0 = US1,
(2) x0 = MRI2 and v0 = US1, (3) x0 = MRI2 and v0 = US2, (4) x0 = MRI2 and v0 = US3.
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4.3 MR/US images fusion using a patch-wise polynomial

MR/US image fusion using a patch-wise polynomial model is based on observation model presented

in Section 4.2 but presents a variant of the function f to model the relationship between MRI and

US images. The function f was represented by a global polynomial in the previous section, and in

[RPMA01] for multimodal image registration. However, the relationship between MR and US images

may depend on tissue acoustic and magnetic properties, and thus may change from one image region

to another. Thus, considering a global polynomial model may lead to inaccurate gray level matching

in specific image regions. To overcome this issue, this section introduces a more general patch-based

polynomial model, fitting independently low-order polynomial functions to each overlapping patch

extracted from MR and US images. This patch-based polynomial model is defined as

P pxus = fp(P pxmr,P p∇xHmru), (4.28)

where P p ∈ Rn×N is a binary operator that extracts the pth patch of size n from an image of size N .

In the following, Np will denote the total number of patches. Replacing fp by a polynomial function,

the relation between patches from the US and MR images becomes

P pxus =
∑

l+k≤dp
cl,k,p P px

l
mr � (P p∇xHmru)k, (4.29)

where p = 1, ..., Np is the patch number, dp and cl,k,p are the order and the coefficients of the

polynomial function fp corresponding to patch #p, � is the Hadamard product (element by element

multiplication) and the power operations applied to vectors are element-wise. The final function f is

obtained by averaging patch-wise polynomials, since each pixel of the image is contained in several

overlapping patches. More precisely, the transformation of the ith pixel denoted as fi : RN×RN → R

is the average of all the polynomials associated with the patches containing this pixel.

4.3.1 Estimation of the polynomial functions fp

For a given degree dp, the polynomial function fp relating patches P pxmr and P pxus is defined by

(dp + 1)(dp + 2)/2 coefficients assembled in the vector cd,p = {ck,l,p | k + l ≤ dp}. To estimate these



110 Chapter 4 - Fusion of MRI and US images

coefficients, we consider that the pth observed MR and US patches are related according to

P pyus =
∑
k+l≤3

ckl,pP py
l
mr � (P p∇yHmru)k + εp,

or in a matrix form

P pyus = Amr,pcd,p + εp, (4.30)

where Amr,p is a matrix whose elements are P py
l
mr � (P p∇yHmru)k for l + k ≤ dp, and εp is the

measurement error.

The least-squares estimator of cd,p is defined by

ĉd,p = A†mr,pP pyus, p = 1, ..., Np,

where A†mr,p = (AT
mr,pAmr,p)−1AT

mr,p is the pseudo-inverse of the matrix Amr,p.

In order to estimate the polynomial degree of the pth patch, we minimize the least square distance

between P pymr and P pyus, i.e., solve the following problem

argmin
dp

‖P pyus − fp(P pymr,P p∇yHmru)‖2, (4.31)

where we highlight that the polynomial degree dp depends on the patch size. In the results provided

in this paper, patches of size 30×30 were extracted from images containing 600×600 pixels, with an

overlap of 25%. The degree of the polynomial relating the patches was constrained to dp ∈ {1, ..., 3}.

Note that the same algorithm (Algo. 1) can be used for this fusion method with a function f

estimated using Eqs. 4.30 and 4.31 instead of Eqs. 4.25 and 4.26.

4.3.2 Experimental results using a patch-wise polynomial function

To mitigate the relatively good SNR obtained due to the phantom design, the US image was further

degraded by log-Rayleigh noise as shown in Fig. 4.13(c). Figs. 4.13(a,b,c) highlight the differences in

gray levels, spatial resolution, contrast, and noise between the two MR and US images. Three main

structures can be observed in these images: a PVC phantom (bright structure in the MR image), a

piece of beef meat (gray structure in the MR image), and the glue used to attach them, only visible
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(a) MRI (b) US image

(c) Noisy US image (d) Global polynomial fused image

(e) Patch-wise polynomial fused image

Figure 4.13: Original MR image (200 × 200 pixels) and US image (600 × 600 pixels) and fusion
results: (a) observed MRI, (b) original US image, (c) noisy US image, (d) fused image using a global
polynomial model, (e) fused image with the proposed path-based polynomial model.
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(a) (b)

(c)
Figure 4.14: (a) and (c) show normalized pixel intensities of extracted lines from the MR, US and
fused images (using the global polynomial fusion and the proposed patch-based fusion). (a) shows
the vertical straight lines in (b) whereas (c) displays the horizontal straight lines in (b).
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Table 4.4: CNR results

CNR

MRI US Fused image with [EMVB+20] Proposed

48.76 dB 20.64 dB 37.73 dB 41.72

Table 4.5: Slope values at the interface between different regions of interest in the MR, US and fused images,
corresponding to the vertical profile in Fig. 4.14.

Slope MRI US Fused image with [EMVB+20] Proposed

#1 2.89 7.42 7.42 7.42

#2 -0.10 8.89 6.86 7.15

#3 3.57 5.47 4.61 5.24

#4 -1.35 -1.95 -2.05 -2.05

in the US image. Figs. 4.13(c,d) show the fused images obtained using a global polynomial and

the local approach. Both fused images gather information from MR and US images (with a small

preference to the local method): they provide a good contrast between the PVC and the beef tissue

(similar to MRI), a good spatial resolution (similar to US) allowing small structures such as the glue

to be distinguished, and good SNR. Moreover, the image obtained after fusion seems to carry more

information than MRI, especially in the beef tissue.

In addition to visual inspection, the performance of the proposed patch-wise method was evaluated

using two quantitative measures and compared to the global fusion method of [EMVB+20]: 1) the

contrast-to-noise ratio (CNR) [WR13] between the PVC and the beef meat, and 2) the slope between

two neighboring structures as an indication of the spatial resolution [MBBK15]. As reported in Tables

4.4 and 4.5, the patch-wise approach offers a good compromise between MR and US images with

a CNR close to that of the MRI and a slope close to that of the US image. Fig. 4.14 confirms

these results, showing that the patch-wise fused image captures more details from the MRI than the

global model-based fused image. However, we would like to mention that the patch-wise approach is
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more time consuming compared to the global polynomial. Thus, the choice of the adapted method

depends on the application.

4.4 Conclusion

This chapter studied new fusion methods for magnetic resonance (MR) and ultrasound (US) images.

The proposed methods were able to reconstruct a fused image containing information from both

observations, by solving a super-resolution inverse problem for MRI and a despeckling problem for

US images. These two problems were solved jointly by using appropriate statistical models and

polynomial relationships between the images of interest. A PALM algorithm was finally investigated

to solve the resulting fusion problem. Results obtained on simulated and real images clearly showed

the interest of combining the information contained in these two imaging modalities, instead of

restoring them independently.

To the best of our knowledge, this work is a first attempt for fusing MR and US images. It

opens several interesting perspectives. A natural progression of this work is to combine the proposed

framework with multimodal image registration, which would allow the proposed MR/US image fusion

to be robustified, which is the aim of the next chapter.
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5.1 Introduction

This chapter presents a joint registration and fusion method for MR and US images. Considering the

limitations of each modality, we have constructed in the previous chapter two observation models to

115
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enhance the quality (in terms of resolution and contrast) of both images. A first model is introduced

for the MR image based on a linear model formed by blurring and downsampling matrices. This

model has been used for super-resolution in several studies [GEW10, GPOK02, MCB+10b]. A

denoising model is considered for the US image in order to mitigate the effect of speckle noise

[AB07b, TSP88b, GCS05b]. Since US and MR modalities are different by their nature and content,

there is no simple correspondence between gray levels in these images. A polynomial function was

used in [RPMA01, EMVB+20] and in the previous chapter to link intensities of MR and US images.

However, in order to consider the possible misalignment between MR and US images, we consider

an MR/US registration step in order to estimate the non-linear transformation relating these two

images. This transformation is composed of a local transformation based on B-splines and a global

transformation based on an affine operator. This leads to a sophisticated and complex optimization

problem, which is handled via a PALM algorithm [BST14]. The main contribution of this chapter

with respect to Chapter 4 is a fusion algorithm able to mitigate the mis-registration errors between

the MR and US images. The possibility of handling mis-registration errors is essential for clinical

applications since MR and US images are not aligned because of the differences in acquisition setups,

while their alignment is a crucial requirement for the fusion process. Simulated data with controlled

ground truth are used to evaluate the proposed fusion/registration method. Experimental data

collected on a phantom with some similar characteristics to endometriosis are then considered.

5.2 MR/US image fusion and registration

5.2.1 Observation models

As explained previously, MR and US images are two medical modalities that have their specific

strengths and weaknesses. The main purpose of obtaining a fused image from these two modalities

is to take benefit from their strengths and mitigate their weaknesses. In the following, ym ∈ RM

and yu ∈ RN denote the observed MR and US images, which are the inputs of the proposed fusion

algorithm. Both observed images are related to the ideal fused image through two models accounting

for the degradation affecting the two modalities. In particular, the limited spatial resolution of the
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MR image is classically modelled using a blur, a down-sampling operator and additive white Gaussian

noise [GEW10, GPOK02, MCB+10b]. The speckle noise contaminating the US image is modelled as

an additive log-Rayleigh noise [AB07b, TSP88b, GCS05b]. The resulting joint observation models

associated with the MR and US images (introduced in Chapter 4) are:

ym = SCxm + nm

yu = xu + nu,
(5.1)

where xm ∈ RN is the MR high-resolution image and xu ∈ RN is the despeckled US image,C ∈ RN×N

is a BCCB matrix (block circulant with circulant blocks) that models the blur in the MR image and

S ∈ RM×N (with N = s2M) is a decimation matrix (with a decimation factor of s in each spatial

direction). The two observation equations in (5.1) are used to estimate the fused image of interest

by taking benefit from both MR and US measurements. The first equation in (5.1) has been used

in many super-resolution methods to recover the high-resolution MR image xm from its noisy low-

resolution counterpart ym [GEW10, GPOK02, MCB+10b]. The second equation in (5.1) has been

considered in denoising methods for US images [AB07b, TSP88b, GCS05b]. The proposed approach

combines both observation equations to improve the resolution of the MR image and denoise the US

image. An additional model, detailed in the next section, is also considered to link xm and xu that

are different even in the ideal noiseless case, because of the different physical phenomena behind each

imaging modality.

5.2.2 US/MR dependence model

The proposed joint fusion and registration method is a pure intensity-based approach that does not

require any feature extraction. It relies on the assumption that the differences between xm and xu
are due to two properties: i) the MR and US images are not perfectly aligned. This misalignment is

modelled by a geometric transform denoted as T , and ii) the relation between the pixel intensities

in the two images can be well approximated by a deterministic non-linear function denoted as fc.

Combining these two properties, the principle of the proposed algorithm is to search for a spatial

transformation T and an intensity mapping fc, in order to match xu to T (xm). Note that the
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function fc does not relate the pixel intensities from the two images directly, but it uses the fact that

the US image is mainly sensitive to interfaces between anatomical surfaces with different acoustic

impedances. As explained in the previous chapter, the mapping fc relates the US gray levels to the

gray levels and the gradients of the MR image calculated in the direction of US wave propagation

(see [RPMA01] for more details). Plugging T and fc into (5.1) results into the following observation

models:

ym = SCx+ nm

yu = fc(T (x),∇T (x)Hu) + nu,
(5.2)

where x ∈ RN is the fused image to be estimated, which contains information from both MR and US

modalities. The function fc : RN×RN → RN allows the gray level intensities of MR and US images to

be matched, and T (.) is a geometric transformation due to possible mis-registration. Note that the

ith component of ∇T (x)Hu ∈ RN contains the inner product between the ith local gradient of T (x)

and the US scan direction u. Note also that the proposed fusion model (5.2) reduces to the model

investigated in the previous chapter when T (x) = x, which corresponds to the ideal case where the

MR and US images are perfectly aligned.

As shown in [RPMA01, EMVB+20], the unknown function fc in (5.2) can be efficiently approxi-

mated by a polynomial of order d. This approximation consists of decomposing the ith component

of xu = fc(T,xm,u) as:

xu,i =
∑

p+q≤d
cpqT (xpm,i)(∇T (xm)Hu)qi , (5.3)

where c is a vector containing all the unknown polynomial coefficients cpq and the index i ∈ {1, ..., N}

is used for the ith coefficient of a vector. From the observation model (5.2) and the polynomial model

(5.3), the objective of the proposed algorithm is to estimate the fused image x (with better spatial

resolution, contrast and signal-to-noise ratio (SNR) than the original images xm and xu, the geometric

transform T (accounting for a possible mis-registration between the MR and US images) and the

polynomial coefficients cpq from the MR and US images (ym,yu) associated with the same tissue.
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5.2.3 Proposed inverse problem

Based on some noise assumptions, i.e., additive Gaussian and additive log-Rayleigh noises for the

MR and US images, an inverse problem was introduced in [EMVB+20] for the fusion of registered

MR and US images. This problem was defined as

x̂ = argmin
x

1
2‖ym − SCx‖

2︸ ︷︷ ︸
MR data fidelity

+ τ2

N∑
i=1

exp [yu,i − fi(x,u)− γ(yu,i − fi(x,u))]︸ ︷︷ ︸
US data fidelity

+ τ1‖∇x‖2 + τ3‖∇f(x,∇xHu)‖2︸ ︷︷ ︸
regularization

,

(5.4)

where τ1, τ2 and τ3 are hyperparameters that balance the weights of the total variation (TV) regular-

ization and the data fidelity term, and yu,i, fi(x,u) are the ith components of yu and f(x,∇xHu).

Note that the two regularizations in (5.4) ensure some smoothness in the MR and US terms.

The fusion method based on (5.4) requires an accurate registration between MR and US images, as

well as the knowledge of the pixel intensity mapping function fc. Of course, in practical applications,

these two geometric and gray level transformations are not known and have to be estimated jointly

with the fused image x from the data. Note that the perfect alignment between MR and US images is

an important requirement for the success of most fusion algorithms. Thus considering the estimation

of the geometric transform T jointly with the fused image is still an important challenge. This chapter

proposes to tackle the joint fusion and registration problem by solving the following optimization

problem

(x̂, T̂ , ĉ) = argmin
x,T,c

1
2‖ym − SCx‖

2︸ ︷︷ ︸
MR data fidelity

+ τ2

N∑
i=1

exp [yu,i − fc,i(T,x,u)− γ(yu,i − fc,i(T,x,u))]︸ ︷︷ ︸
US data fidelity

+ τ1‖∇x‖2 + τ3‖∇fc(T,x,u)‖2 + τ5Rs(T )︸ ︷︷ ︸
regularization

,

(5.5)
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where the optimization is conducted with respect to the transformation T , the polynomial coefficient

vector c and the image of interest x, fc,i(T,x,u) is the ith component of fc(T,x,u) and Rs(T ) is

an additional regularization whose objective is to constrain the geometric transform T , as explained

in the next section.

5.3 Proposed registration

5.3.1 Similarity measure

Most of the existing image registration methods can be classified into two categories: area-based and

feature-based methods. In this chapter, it is more accurate to use an intensity-based technique be-

cause MR and US images are two distinct modalities from which it is difficult to extract automatically

the same features. In general, any registration algorithm requires the following ingredients:

• An image similarity measure that quantifies the degree of similarity between the two images

to be registered. The most common similarity measures (in particular for multi-modal image

registration) are the mutual information (MI), the normalized mutual information (NMI) and

the cross-correlation (CC). However, the mapping defined by the function fc in (5.5) that

matches the pixel intensities from the two image modalities was shown to be more appropriate

to MR and US images in [RPMA01] and in the previous chapter. The proposed fusion algorithm

estimates the function fc, which allows us to take advantage of this polynomial mapping

xu = fc(T (xm),∇T (xm)Hu) (5.6)

• A model for the geometric transform T , which can be linear (e.g., affine) or non-rigid (also

called elastic) enabling images to be registered with local geometric differences. Non-rigid

registration, which is preferred in medical applications, can be defined using radial basis func-

tions (thin-plate or surface splines, multiquadrics, and compactly-supported transformations

[CR03, CHH04, RSH+99]), physical continuum models, and large deformation models (diffeo-

morphisms) [RVW+11]. The model used in this work is detailed in the next section.
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5.3.2 Spatial transformation

The geometric transform used for MR/US image registration has to be sufficiently general to account

for local non-rigid deformations, but also for large global affine deformations that occur because of

the different acquisition setups. Therefore, we consider a transformation T built as a combination

of a global affine transformation Tθ and a local B-spline-based transform Tφ, in order to map the

points in the target MR image to those in the reference US image, i.e.,

T = Tφ ◦ Tθ,

where ◦ denotes the operator used for the composition of two functions. Note that this combination

has been used successfully in many applications, see, e.g., [RSH+99, SKS10]. The two transforms Tθ
and Tφ are detailed in the next sections.

1) Affine transformation Tθ

A 2D affine model is parametrized by 6 parameters describing the rotation, translation and scaling

factor of the reference image compared to the target image. These parameters define the following

matrix (homogeneous coordinates) 
θ11 θ12 θ13

θ21 θ22 θ23

0 0 1

 (5.7)

where θij are the parameters to be estimated.

2) Non-rigid local transformation Tφ

The affine model only captures the global deformations between the two images and is thus not

sufficient for MR and US images. Therefore, in this work, we also consider a local non-rigid transfor-

mation, denoted as Tφ, defined as a B-spline deformation mesh (see, e.g., [RSH+99] for motivations).

The basic idea of this model is to deform a pattern by manipulating a mesh of control points, that

control the shape of the deformation pattern and ensure smooth and continuous deformation fields.

Fig. 5.1 shows a schematic representation of the deformation field generated from the displacement

of local control points.
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Figure 5.1: Overview of B-spline deformation mesh.

Denote as Ω = {(x, y) | 0 ≤ x < N, 0 ≤ y < M} the domain of the image-plane and consider an

nx×ny mesh of control points φij with identical spacing δ, denoted as Φ and shown in Fig. 5.1. The

B-spline local transformation is defined as:

Tφ(x, y) =
3∑

m=0

3∑
n=0

Bm
( x
nx

)
Bl
( y
ny

)
φix+m,jy+n, (5.8)

where ix = b x/nxc − 1, jy = by/nyc − 1 and b.c is used for the integer part. The cubic B-spline

uniform functions considered in this work are defined as:

B0(u) = (1− u)3

6

B1(u) = 3u3 − 6u2 + 4
6

B2(u) = −3u3 + 3u2 + 3u+ 1
6

B3(u) = u3

6 .

Once the grid of the B-spline has been constructed, it is used to deform the local neighborhood of

every control point in the MR image. Once the moving image has been deformed, it is compared to

the reference image (here, the US image) using the similarity measure defined by the polynomial fc.
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5.3.3 Regularization

This work considers a regularization to smooth the estimated transformation Tφ. Indeed, since the

registration of MR and US images requires a small spacing mesh, it may lead to B-spline functions

that are not sufficiently smooth. The regularization considered in this work is composed of second-

order derivatives of Tφ:

Rs(Tφ) =
∫

Ω

[∂2Tφ
∂x2 + ∂2Tφ

∂y2 + ∂2Tφ
∂x∂y

]
dxdy. (5.9)

In practice, the integral (5.9) (a scalar) is approximated by standard numerical integration providing

a discrete time regularization, which will be used in this chapter.

Note that there is no need to regularize the global transform Tθ and that the regularization (5.9)

reduces to zero for an affine transformation, therefore, penalizing only non-affine transformations.

5.4 Optimization algorithm for joint fusion and registration

This section details the proposed optimization algorithm used to minimize the cost function (5.5).

For a fixed transformation T and a fixed vector c, this minimization is clearly easier and can be

solved using an algorithm similar to the one developed in Chapter 4. Thus, in order to decouple

the optimizations with respect to x and (T, c), we introduce a latent vector v = (v1, ..., vN )T =

f
(
T (x,∇T (x)Hu

)
leading to the following optimization problem equivalent to (5.5):

(x̂, T̂ , ĉ, v̂) = argmin
x,T,c,v

1
2‖ym − SCx‖

2

+ τ2

N∑
i=1

[exp(yu,i − vi)− γ(yu,i − vi)]

+ τ1‖∇x‖2 + τ3‖∇v‖2 + τ5Rs(T )

+ τ4‖v − fc(T,x,u)‖2,

(5.10)

where τ4 is an additional hyperparameter. The proposed algorithm alternates between optimizations

with respect to the fused image x, the geometric transformation T and the polynomial coefficient

vector c, which are summarized below and detailed in the following sections.
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1. Estimation of the fused image x and the latent vector v for a fixed (T, c)

min
x,v

1
2‖ym − SCx‖

2

+ τ2

N∑
i=1

[
exp(yu,i − v)− γ(yu,i − v)

]
+ τ1‖∇x‖2 + τ3‖∇v‖2

+ τ4‖v − fc
(
T (x,∇T (x)Hu

)
‖2.

(5.11)

2. Estimation of the transformation T for a fixed (x, c,v) (multimodal registration)

min
T

‖v − fc
(
T (x,∇T (x)Hu

)
‖2 + λRs(T ). (5.12)

where λ = τ5
τ4

3. Estimation of the vector c associated with the polynomial fc for a fixed (x, T,v)

min
c

‖v − fc
(
T (x,∇T (x)Hu

)
‖2. (5.13)

5.4.1 Estimation of the fused image for known (Tc)

Inspired from [EMVB+20], the fusion algorithm is based on the PALM algorithm [BST14], adapted

to nonsmooth and nonconvex functions such as the objective function (5.11). The PALM algorithm

is designed for minimization of cost functions with two variables x and v that can be written as:

min
x,v

ψ(x,v) := l(x) + g(v) +H(x,v), (5.14)

where l and g are convex and continuous functions and H is a non-linear function. In order to apply

the PALM algorithm, we introduce the following notations:

l(x) = 1
2‖ym − SCx‖

2
2 + τ1‖∇x‖2 (5.15)

g(v) = τ2
∑
i

[exp(yu,i − vi)− γ(yu,i − vi)] + τ3‖∇v‖2 (5.16)
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H(x,v) = τ4

N∑
i=1

(
vi −

∑
p+q≤3

cpqT (xpi )(∇T (x)Hu)qi
)
. (5.17)

Note that this choice of functions fulfills all the assumptions required by PALM [BST14]:

1. l and g are bounded
(
infRN

(
f
)
> −∞ and infRN

(
g
)
> −∞

)
.

2. For any fixed v, the function x 7→ H(x,v) is C1,1, and the partial gradient ∇xH(x,v) is

globally Lipschitz.

3. For any fixed x, the function v 7→ H(x,v) is C1,1, and the partial gradient ∇vH(x,v) is

globally Lipschitz.

4. ∇H is Lipschitz continuous function in the image domain.

The alternate optimization with respect to the two vectors x and v proposed in [BST14] generates

a sequence {(xk,vk)}k∈N using the following steps:

Step 1: Choose γ1 > 1, set ck = γ1Lx(vk) and update xk

xk+1 = proxlck
(
xk − 1

ck
∇xH(xk,vk)

)
, (5.18)

where Lx(vk) is the Lipschitz constant of x 7→ ∇xH(x,vk) and vk is the value of v at iteration #k.

The proximal operator providing xk+1 in (5.18) can be computed using straightforward computations

(minimization of the sum of quadratic functions), that is,

xk+1 = argmin
x

1
2‖SCx− ym‖2 + τ1‖∇x‖2 + Lk+1

2 ‖x− (xk − 1
Lk+1

∇xH(xk,vk))‖2, (5.19)

where l has been defined in (5.15) and Lk+1 is the Lipschitz constant of x 7→ ∇xH(x,vk+1) at

iteration #(k+ 1). This minimization problem can be solved using an analytical solution, computed

in the Fourier domain.

Step 2 : Choose γ2 > 1, set dk = γ2Lv(xk) and update vk as follows

vk+1 = proxgdk
(
vk − 1

dk
∇vH(xk,vk)

)
,
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where Lv(xk) is the Lipschitz constant of v 7→ ∇vH(xk,v) and xk is the value of x at iteration #k.

A gradient descent algorithm with backtracking line search is used to update v, since the function

to minimize is convex and differentiable. More precisely, vk+1 comes:

vk+1 = argmin
v

τ2
∑
i

[exp(yu,i − vi)− γ(yu,i − vi)]

+ τ3‖∇v‖2 + dk
2 ‖v − (vk − 1

dk
∇vH(xk+1,vk))‖2,

(5.20)

where g has been defined in (5.16) and dk = Lv(xk) is the Lipschitz constant of ∇vH at iteration

#k. Note that the hyperparameter τ4 has been included in the function H.

5.4.2 Estimation of the spatial transformation

The estimation of the parameters defining the transformations Tθ and Tφ in (5.7) and (5.8) (multi-

modal registration) is achieved by minimizing the cost function (5.12) in two steps:

1. In the first step, the local transform Tφ is assumed to be the identity and we estimate the 6

parameters of the global affine transformation Tθ by solving the following optimization problem

(with respect to θ) with respect to θ:

θ̂ = argmin
θ

‖vk − fc
(
Tθ(xk),∇Tθ(xk)Hu

)
‖2. (5.21)

2. Once the global transform Tθ has been estimated, the second step estimates the local transfor-

mation Tφ by solving the following problem (with respect to φ):

φ̂ = argmin
φ

‖vk − fc
(
Tφ ◦ Tθ(xk),∇Tφ ◦ Tθ(xk)Hu

)
‖2 + λRs(Tφ). (5.22)

Both optimizations are conducted using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm [HZ85] (a quasi-Newton method using an approximation of the Hessian matrix).
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5.4.3 Estimation of the polynomial function

For a known degree d, the polynomial function fc to be estimated is defined by Nd = (d+1)(d+2)/2

coefficients collected in the vector cd = {cpq | p + q ≤ d}. We estimate these coefficients, by solving

the problem (5.13) which leads to the least-squares estimator:

ĉd = (AT
mAm)−1AT

mv, (5.23)

where Am ∈ RN×Nd is a matrix whose elements are T (xi)p(∇T (x)Hu)qi for p+ q ≤ d.

5.4.4 Proposed algorithm

The proposed MR and US image fusion and registration method is summarized in Algo. 2.

Algorithm 2: Proposed MR and US image fusion algorithm.
Input yu, ym, S, C, τ , λ, µ
0 - Initialization of x, v, T and c
Repeat
1 - Find the smallest nonnegative integers ik such that

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk)

with L̄ = γikLk. Set Lk+1 = γikLk and update x using (5.19).
2 - Set dk = Lv(xk+1) = 2τ4 and update v using (5.20).
3 - Update Tθ using (5.21).
4 - Update Tφ using (5.22).
5 - Update ĉd using (5.23).

Until the number of iteration k reaches k = 30
Output: Fused image T (x)

5.4.5 Performance measures

The performance of the proposed joint registration and fusion algorithm is evaluated by visual in-

spection and by using the following quantitative metrics: the root mean square error (RMSE), the
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peak signal-to-noise ratio (PSNR), the improved signal-to-noise ratio (ISNR) and the mean struc-

tural similarity (MSSIM). The mutual information (MI) is also used to evaluate the accuracy of the

registration. The definitions of the different metrics are provided as follows:

RMSE =
√

1
N
‖x̂− x‖22, PSNR = 20 log10

max(x̂,x)
RMSE

ISNR = 10 log10
‖y − x‖
‖x̂− x‖2

, MI =
∑
i,j

pyŷ(i, j) log pyŷ(i, j)
py(i, .)pŷ(., j)

MSSIM = 1
M

M∑
m=1

SSIM(xm, x̂m),

(5.24)

where x is the ground truth MR image, x̂ denotes the estimated image, the index m in the

definition of MSSIM indicates a patch extracted from the corresponding images, y and ŷ are the US

image and the registered MR image, and py, pŷ are the marginal distributions of y and ŷ, and pyŷ
is the joint bivariate distribution of (y, ŷ). Note that the distributions py, pŷ and pyŷ are practically

obtained by computing the corresponding normalized histograms. Note also that the aspect of the

fused image is compared to both a high-resolution enhanced MR image (estimated using the algorithm

of [GEW10]) and a despeckled US image (estimated using the algorithm of [AB07b]). To ensure a

fair comparison, the algorithms studied in [GEW10] and [AB07b] were adapted to be used with the

forward models in (1) and the noise assumptions detailed in Section I.

The performance of the proposed method is also evaluated using two quantitative measures that

do not require the knowledge of the ground truth images, which is interesting for experimental data:

the contrast to noise ratio (CNR) and the slope of image profiles [MBBK15]. The CNR is classically

used to evaluate the contrast between two patches extracted from two different structures in the

examined tissue. It is defined by

CNR = |µ1 − µ2|√
σ2

1 + σ2
2

(5.25)

where µ1, µ2, are the means of the two patches, and σ1 and σ2 are their standard deviations. The

second metric evaluates the spatial resolution of the different restored images. It considers image

profiles crossing the boundaries between distinct interfaces. The slope of these profiles at the interface

between two structures can be used as an indicator of the spatial resolution.
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Table 5.1: Quantitative performance measures for simulated data (F, SR and D stand for fused,
super-resolved MR and despeckled images).

Computed from images in Fig. 5.2

F vs MR SR vs MR F vs US D-US vs US

RMSE 0.24 0.30 0.17 0.29

PSNR [dB] 17.51 15.84 20.74 16.17

ISNR [dB] 1.67 1.21 7.64 3.07

MSSIM [dB] 0.93 0.89 0.94 0.29

5.4.6 Simulation results on synthetic data

To demonstrate the efficiency of the proposed joint fusion and registration method, this section first

considers a set of synthetic images with known ground truth. The MR observation image in Fig.

5.2(b) corresponds to a deformed, blurred, decimated and noisy version of the ground truth MR image

in Fig. 5.2(a). The MR image was contaminated by an additive white Gaussian noise with variance

σ2
m = 4 (SNR = 24dB), the decimation factor was s = 6 in each spatial direction and the blurring

kernel is a Gaussian filter of size 9× 9 with standard deviation σ = 5. Finally, a spatial deformation

combining elastic B-spline and global affine transformations was used to obtain the observed MR

image in Fig. 5.2(b). The simulated US image in Fig. 5.2(c) was generated by applying a polynomial

of degree 4 to the gray levels of the MR image and by adding a log-Rayleigh noise with an SNR of

13.80 dB.

The fused image obtained using the proposed method is presented in Fig. 5.2(d). This result

clearly shows the interest of the fused image (compared to the MR and US images), which contains

all the significant information from both MR and US images. Specifically, the fused image is not

affected by US speckle and MR blur, provides well-defined contours and good contrast compared to

the native MR and US images. Note that it is not possible to observe registration errors in the fused

image, which confirms the success of the multimodal registration. The estimated local transformation

Tφ and the corresponding ground truth deformation field are superimposed in Fig. 5.2(e), confirming
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(a) Ground truth MR (b) MR observation

(c) US observation (d) Fused image

(e) B-spline transformation (f) Local transformation field

Figure 5.2: Joint fusion and registration of simulated US and MR images: (a) ground truth MR
image, (b) observed MR image, (c) US image, (d) fused image obtained using the proposed method,
(e) ground truth elastic deformation field (in red) and B-spline estimated transformation (in blue),
(f) to be compared with the estimates using the B-splines (local transformation).
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the accuracy of this registration.

Quantitative results corresponding to the images in Fig. 5.2 are shown in Table 5.1 and confirm

the interest of the proposed fusion method. Table 5.2 shows quantitative results in terms of mutual

information, computed between the US image and the registered and non-registered MR images.

The mutual information increases significantly after registration, confirming the efficiency of the

registration step.

Table 5.2: Mutual information between the US image xu and the registered T (xm) and non-registered
(xm) MR images.

Mutual Information

MI[xu, T (xm)] MI[xu,xm]

Simulated image (Fig. 5.2) 0.82 0.16

EXP 1 (Fig. 5.3 ) 4.59 2.01

EXP 2 (Fig. 5.4 ) 1.81 0.83

5.4.7 Experimental results on phantom data

The proposed MR/US image fusion and registration algorithm was validated on experimental phan-

tom data. The phantom was made of a beaf steak glued to a cryogel (PVC) structure and designed

to mimic uterus and endometrium responses to MR and US imaging. More details about the exper-

imental model design and image acquisition can be found in [VMKB19]. Figs. 5.3(a,b) and 5.4(a,b)

show two different views of the observed MR and US images. To mitigate the relatively good SNR

obtained due to the phantom design, the US image was further degraded by log-Rayleigh noise as

presented in Figs. 5.3(d) and 5.4(d). The MR image in the first experiment referred to as exp. 1

(Fig. 5.3(c)) was cropped and deformed. The MR observation in the second experiment referred to

as exp. 2 (Fig. 5.4(c)) is only cropped since we can already distinguish a non-rigid transformation

caused by the image acquisition. Three main structures can be observed in these images (as shown

in Fig. 5.3(b)): a PVC phantom (bright structure in the MR image), a piece of beef meat (gray
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(a) Ground truth MR (b) Ground truth US (c) MR acquisition

(d) US acquisition (e) Fused image (f) Fused image using Algo. 1

(g) Local transformation field (h) Registered MR using [RSH+99]

Figure 5.3: Joint fusion and registration of US and MR images: (a) Ground truth MR image, (b)
Ground truth US image, (c) Deformed MR image, (d) US image, (e) Fused image using the proposed
method, (f) Fused image using Algo. 1, (g) B-spline estimated transformation field, (h) Registered
MR minimizing the cost function (5.1) (without performing any fusion).
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(a) MR acquisition (b) US acquisition (c) MR observation

(d) US observation (e) Fused image (f) Fused image using Algo. 1

(g) B-spline transformation (h) Local transformation field

Figure 5.4: US and MR joint fusion and registration: (a) Ground truth MR image, (b) Ground truth
US image, (c) Deformed MR observation, (d) US observation, (e) Fused image using the proposed
method, (f) Fused image using Algo. 1, (g) B-spline estimated transformation field, (h) Mesh-grid
B-spline transformation.
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(a)

(b)

Figure 5.5: (a) displays normalized pixel intensities of extracted lines from MR, US and fused images
that are estimated with the proposed algorithm (Fig. (5.3) (e)) and with the algorithm of the previous
chapter (neglecting registration errors) in (Fig. (5.3) (f)). The MR observation is in blue, the US
observation is in green, the fused image using the proposed algorithm is in red and the fused image
using Algo. 1 is in black. The vertical straight line in (b) indicates where the profiles were extracted
from.
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structure in the MR image), and the glue used to attach them, only visible in the US image (thin

bright structure).

Figs. 5.3(e,f) and 5.4(e,f) show the fused images obtained using the proposed method and the

algorithm in Chapter 4 (Algo. 1). The fused images in Figs. 5.3(e) and 5.4(e) gather information

from MR and US images: they provide a good contrast between the PVC and the beef tissue (similar

to MR), a good spatial resolution (similar to US) allowing small structures such as the glue to be

distinguished, and good SNR. Moreover, registration errors are significantly reduced in the fused and

registered images when compared to the fused and unregistered images of Figs. 5.3(f) and 5.4(f)

obtained using the Algo. 1 . The performance of the proposed algorithm compared to Algo. 1

confirms the interest of a joint fusion and registration. Figs. 5.3(g) and 5.4(g) display the estimated

B-spline local transformation, which has been compensated in the proposed algorithm. Fig. 5.3(h)

was obtained using the same multimodal registration algorithm as the one embedded in the proposed

method. It clearly fails to register MR to the US image, because of its sensitivity to noise and to

mismatching between the gray levels in the two imaging modalities. Finally, the efficiency of the

registration step included in the proposed algorithm is confirmed by the values of MI shown in Table

5.2. Figs 5.3(a-d) and 5.4(a-d) show the MR and US observations, which clearly highlight the

complementarity between the two imaging modalities: MR has a large field of view with excellent

contrast between the polyvinyl alcohol and the beef steak with a limited spatial resolution especially

at millimetric scale (it is impossible to observe the glue among the steak and the PVA). On the other

hand, the US image has a good resolution that allows the glue to be imaged very precisely (mimicking

the endomotrium depth of inflitration), but has a reduced field of view. The fused images obtained

using Algo. 2 are presented in Figs. 5.3(e) and 5.4(e). The interest of fusing the two images can be

appreciated, in particular the ability of the fused image to gather the good contrast of MR and the

good spatial resolution of US. In addition to the visual examination of the different images, CNR

was used to assess the contrast between two different structures of the images. The two patches

considered to compute the CNR are extracted from the PVA phantom and the beef steak. Table 5.3

clearly demonstrates that the joint registration/fusion process improves the image contrast in both

experiments compared to US images.
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Table 5.3: Contrast to noise ratio (CNR) for experimental data.

CNR

MR image US image Fused image

EXP 1 (Fig. 3) 40.25 dB 7.34 dB 33.31 dB

EXP 2 (Fig. 4) 58.20 dB 4.83 dB 30.92 dB

The spatial resolution of MR, US and the fused images was evaluated using the slope (see Fig.

5.5), of the image profiles crossing the boundaries between different structures. Table 5.4 summarizes

the improvement of the resolution resulting from the fusion compared to the MR image.

Table 5.4: Profile slopes of the boundaries between different regions of interest in the MR, US and
fused images (FI), that correspond to the vertical line in Fig. 5.5.

MR (×10−2) US (×10−2) FI (×10−2)

Slope #1 2.29 4.40 3.28

Slope #2 -0.03 8.71 6.51

Slope #3 2.62 3.44 3.71

Slope #4 -0.61 -1.05 -0.76
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5.4.8 Hyperparameters

The proposed algorithm requires to adjust 5 hyperparameters denoted as τi for i = 1, ..., 5:

• τ1 balances the weight between the MR data fidelity term and the TV regularization. Consider-

ing that TV promotes a piece-wise constant fused image, increasing τ1 decreases the resolution

of the fused image, which is measured using slope interfaces (see Fig. 5.5). When τ1 exceeds

5.10−2, Fig. 5.6 shows that the slope of the interface #2 starts to decrease and the resulting

fused image is blurred. Thus, hyperparameter τ1 should belong to the interval
[
5× 10−3, 10−1]

for this example.

• τ3 has the same effect as τ1 on the fused image and should be adjusted similarly see Fig. 5.8.

• τ5 is a regularization parameter that defines the compromise between the similarity of the

registered MR and US images and the smoothness of the B-spline transformation.

• The choice of hyperparameter τ4 can be conducted as follows: when τ4 has a low (resp. high)

value, the fused image is close to the high-resolution MR image (resp. the US image). Thus,

τ4 should be fixed between these two values in order to ensure appropriate denoising (via the

value of CNR) and a good resolution (via the values of interface slopes). Fig. 5.9 shows that

τ4 = 10−5 is a reasonable value for this hyperparameter.

• τ2 has similar effect as τ4 on the fused image (see Fig. 5.7).

The values of the regularization parameters can also be chosen after visual inspection of the fused

image using the performance measures studied in Section 5.4.5. All the experiments presented in

this chapter were obtained with τ1 = 10−2, τ2 = 3.10−6, τ3 = 2.10−4, τ5 = 1.62 and τ4 = 10−5.

5.5 Conclusions

This chapter presented a new joint registration and fusion method for MR and US images. This

method estimates the transformation relating the two images allowing registration errors to be miti-

gated. It also provides an enhanced image with respect to MR and US images containing significant
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Figure 5.6: Influence of the hyperparameter τ1 on the fused image. (a) CNR versus τ1 (b) Slope of
interface #2 versus τ1.

Figure 5.7: Influence of the hyperparameter τ2 on the fused image. (a) CNR versus τ2 (b) Slope of
interface #2 versus τ2.
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Figure 5.8: Influence of the hyperparameter τ3 on the fused image. (a) CNR versus τ3 (b) Slope of
interface #2 versus τ3.

Figure 5.9: Influence of the hyperparameter τ4 on the fused image. (a) CNR versus τ4 (b) Slope of
interface #2 versus τ4.
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information from both modalities. The key ingredients of the proposed method include the resolution

of two inverse problems, ensuring a despeckling of the US image and a super-resolution of the MR,

the use of a polynomial function relating the noiseless US and MR images and the consideration of

local and global transformations in order to correct the registration errors. All these ingredients are

incorporated in PALM algorithm, allowing the joint fusion and registration problem to be solved.

Quantitative and qualitative results obtained with different datasets show very promising results for

synthetic and phantom data. Future work will be dedicated to confirm the encouraging phantom

results on in vivo data.



Chapter 6

Conclusions and perspectives

6.1 Conclusions

The objective of this PhD thesis was to investigate algorithms for the fusion of MRI and ultrasound

images for the pre-operative diagnosis and the imaging guided-surgery of endometriosis. This fusion

is a difficult task since MRI and US images are very different modalities that are contaminated by

different kinds of noises. Our main contributions concerning the fusion of MRI and US images are

summarized below:

The first work studied in Chapter 4 proposed a new fusion method for registered magnetic res-

onance (MR) and ultrasound (US) images. The proposed method was able to reconstruct a fused

image containing information from both observations, by solving a super-resolution inverse problem

for MRI and a despeckling problem for US images. These two problems were solved jointly by using

appropriate statistical models and a polynomial relationship between the images of interest. The

relation between MR and US images was modeled locally by two types of polynomial functions : a

global polynomial function and a low-order polynomial functions associated with the image patches.

A PALM algorithm was finally investigated to solve the resulting fusion problem. Results obtained

on simulated and real images clearly showed the interest of combining the information contained in

these two imaging modalities, instead of restoring them independently.

Results show that the patch-wise fusion method captures more details than the global polynomial

fusion. However, it is more time consuming. Thus, the choice of the adapted method depends on

the application. We would like to mention that these methods suppose that MRI and US images

are perfectly registered, otherwise it is necessary to use the algorithm of Chapter 5 which is more

efficient but at the price of a higher computational cost.

141
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Chapter 5 presented a new joint registration and fusion method for MR and ultrasound images.

This method estimates the transformation relating the two images allowing registration errors to be

mitigated. It also provides an enhanced image with respect to MR and ultrasound images containing

significant information from both modalities. The key ingredients of the proposed method include also

the resolution of two inverse problems, ensuring a despeckling of the US image and a super-resolution

of the MRI, the use of a polynomial function relating the noiseless ultrasound and MR images and

the consideration of local and global transformations in order to correct the registration errors. All

these ingredients are incorporated in PALM algorithm, allowing the joint fusion and registration

problem to be solved. Quantitative and qualitative results obtained with different datasets show

very promising results for synthetic and phantom data.

6.2 Future work

To the best of our knowledge, this work is a first attempt for fusing MR and US images. It opens

several interesting perspectives.

6.2.1 Short-term perspectives

• Observation models: As a matter of simplicity and since the fusion is a complex and non-

linear task, we choose the hypothesis of an independent identically distributed noise in both

MRI and US images. A natural progression of this work is to take into account the possible

correlation of noise samples especially for the US image, to take into account the presence of

potential artifacts and to adapt the algorithm to not-fully developed speckle as in [DJ08].

• Regularizations: It is well known that inverse problems are ill-posed, which is a reason why

we proposed to use an l2-TV regularization to smooth MRI and US images. Other regularizers

have been proposed in the literature that might improve the proposed fusion: [BEGR09] intro-

duced a novel regularization adapted to MRI that combines an l1-TV and Gaussian mixture

regularization, [JB18] proposed a non-local total bounded variational (TBV) regularization to

restore US images corrupted with data-correlated speckles and linear blurring artifacts. Such
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regularizations may lead to significant improvement of edge definition for the fused image com-

pared to l2-TV regularization that can over-smooth the edges.

• Hyperparameters: As explain in Chapters 4 and 5, hyperparameters play an important role

in the obtained fused images. The choice of hyperparameters was done manually based on

visual inspection of images and using appropriate metrics. However, it would be interesting to

investigate some methods to tune these hyperparameters automatically from the data as the

SURE algorithm [PSC+16] or other Bayesian methods.

• MRI and US relationship: The key of an accurate image fusion is the choice of an adapted

function that can model a realistic relationship between images. In this work, we choose global

or patch-wise polynomial functions to link MRI and US images. An interesting prospect would

be to introduce more general transformations resulting for instance from kernel methods (see

[MZY15] for an example on point clouds) or to learn the functional dependence between MR

and US images using machine learning algorithms as in [KS19].

• 3D image fusion and registration: All the methods studied ion this work are restricted

to 2D images. In order to use these techniques clinically would be important to adapt these

methods for the fusion of 3D-MRI and 2D/3D US images.

6.2.2 Long-term perspectives

• Augmented reality: The fusion of 2D MRI and US images is a first step in a long study that

aims to create a virtual navigator based on augmented reality for endometriosis surgery. The

purpose of this study is to combine the fused MRI/US images that can provide a see-through

organs and the videos collected during laparoscopy using a small camera that shows only the

wall of organs. Combining these information can help to build an augmented reality of real-time

organ states. Augmented reality can help surgeons to become more efficient and would change

the life of many women.

• Other medical applications: There are other applications that use MRI and US images such

as prostate biopsy [NKS+09], tumor detection in the liver [KZW+12] and brain shift correction
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[GLP01]. It would be interesting to investigate the potential use of the methods studied in this

PhD thesis to these new applications.
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Appendix A

Design of a pelvic phantom for
MR/US fusion

This appendix is adapted from the conference article [VMKB19]

A.1 Phantom design

The purpose of this phantom is to imitate the uterus tissue that is infiltrated by an endometrioma,

it eases the registration of MRI and ultrasound images and unable the fusion method (proposed in

chapter 4) to be directly tested in real data. Fig. A.1 shows the layers that compose the uterus: the

endometrium, myometrium, and serosa. The myometrium is the thicker layer and mostly consists

of smooth muscle fibers. In order to mimic this uterus, a piece of beefsteak of size 17 × 10 × 1.5cm

seems to be adapted because of its muscular component.

Figure A.1: Uterus specimen demonstrating successive layers of the wall [VMKB19]
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Ovarian endometriosis or endometrioma is richly supplied with blood. To imitate this cyst, one

can use cryogel based on a mixture of 10% of polyvinyl acid, 89% of deionized water, and 1% silica

powder. PVA is boiled in hot water 100 gradually at intensive magnetic stirring (500 to 700 rpm).

Then, after its dissolution, the silica is added. The preparation of this mixture takes approximately

one hour.

The mixture rest of another hour in room temperature and then transferred into a spheroidal

plastic mold that measures 4.3× 3× 1.5 cm.

Figure A.2: Representation obtained from MRI 3D reconstruction of the customized phantom

Finally, after solidification of the prepared mixture, it is stuck to the beefsteak using cyanoacrylate

glue (as shown in Fig. A.2). Then, the phantom is stored at −20C in order to use it for image

acquisition.

A.2 Imaging techniques

For MRI acquisitions, a Philips Achieva dStream (Inserm/UPS UMR 1214, ToNIC Technical plat-

form, Toulouse, France) is used with a magnetization equal to 3T. Many sequences are acquired such

as axial fat-suppressed T1-weighted sequences (multishot mode; 4 mm slice thickness; voxel matrix

4 × 1 × 4 mm) and T2-weighted sequences (multishot mode; 2 mm slice thickness; voxel matrix

0.8× 2× 2 mm).
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Figure A.3: US and MRI image acquired using the proposed customized phantom, showed by com-
parison with uterus and endometrioma images acquired in vivo

For Ultrasound acquisition, the phantom is immersed in water and then a 10-MHz linear array

transducer (Voluson S10 system) is used to capture the image. The US acquisition of US image was

done just after the acquisition of MRI to avoid a loss of information.

A.3 Imaging results

Myometrium is very well imitated by the beefsteak in the phantom as shown in the MRI image see

Fig A.3 Also the PVA based mixture shows a homogenous low-level echogenicity content and well

present the endometrioma The glue used that appears in the US image as a high-intensity line that

separates the muscular part from the inclusion is very informative sing it represents a deep infiltration

of endometrioma in the uterus.
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