90 research outputs found

    Network Analysis on Incomplete Structures.

    Full text link
    Over the past decade, networks have become an increasingly popular abstraction for problems in the physical, life, social and information sciences. Network analysis can be used to extract insights into an underlying system from the structure of its network representation. One of the challenges of applying network analysis is the fact that networks do not always have an observed and complete structure. This dissertation focuses on the problem of imputation and/or inference in the presence of incomplete network structures. I propose four novel systems, each of which, contain a module that involves the inference or imputation of an incomplete network that is necessary to complete the end task. I first propose EdgeBoost, a meta-algorithm and framework that repeatedly applies a non-deterministic link predictor to improve the efficacy of community detection algorithms on networks with missing edges. On average EdgeBoost improves performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook. The second system, Butterworth, identifies a social network user's topic(s) of interests and automatically generates a set of social feed ``rankers'' that enable the user to see topic specific sub-feeds. Butterworth uses link prediction to infer the missing semantics between members of a user's social network in order to detect topical clusters embedded in the network structure. For automatically generated topic lists, Butterworth achieves an average top-10 precision of 78%, as compared to a time-ordered baseline of 45%. Next, I propose Dobby, a system for constructing a knowledge graph of user-defined keyword tags. Leveraging a sparse set of labeled edges, Dobby trains a supervised learning algorithm to infer the hypernym relationships between keyword tags. Dobby was evaluated by constructing a knowledge graph of LinkedIn's skills dataset, achieving an average precision of 85% on a set of human labeled hypernym edges between skills. Lastly, I propose Lobbyback, a system that automatically identifies clusters of documents that exhibit text reuse and generates ``prototypes'' that represent a canonical version of text shared between the documents. Lobbyback infers a network structure in a corpus of documents and uses community detection in order to extract the document clusters.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133443/1/mattburg_1.pd

    Investigating data mining techniques for extracting information from Alzheimer\u27s disease data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and more recently in clinical medicine. These techniques allow an enormous amount of high dimensional data to be analysed for extraction of interesting information as well as the construction of models for prediction. One of the foci in health related research is Alzheimer\u27s disease which is currently a non-curable disease where diagnosis can only be confirmed after death via an autopsy. Using multi-dimensional data and the applications of data mining techniques, researchers hope to find biomarkers that will diagnose Alzheimer\u27s disease as early as possible. The primary purpose of this research project is to investigate the application of data mining techniques for finding interesting biomarkers from a set of Alzheimer\u27s disease related data. The findings from this project will help to analyse the data more effectively and contribute to methods of providing earlier diagnosis of the disease

    Preference Neural Network and its Applications

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This thesis proposes a novel network for label ranking and classification problems. The Preference Neural Network (PNN) uses spearman correlation gradient ascent and two new activation functions, namely positive smooth staircase (PSS) and smooth staircase (SS) that accelerate the ranking by creating deterministic preference values. PNN is proposed in two forms, fully connected simple layers and Preference Net (PN), where the latter is the deep ranking form of PNN to learning feature selection using a novel ranker kernel to solve images classification problem instead of convolution. PNN achieves state-of-the-art for label ranking, and PN achieves promising results on CFAR-10 with high computational efficiency and open a new research direction in terms of image recognition. This thesis also introduces Novel new network architecture called the subgroup preference neural Network (SGPNN) that combines multiple networks that have different activation functions, learning rate, and output layer into one network to discover the hidden relation between the subgroups’ multi-labels. The SGPNN propose a novel type of neuron called multi-activation function neuron (MAFN) where the neuron has more than one activation function. Each activation function serve a subgroup of labels. The PNN many applications in image recognition and BCI where the data is ambiguous

    Detecting Political Framing Shifts and the Adversarial Phrases within\\ Rival Factions and Ranking Temporal Snapshot Contents in Social Media

    Get PDF
    abstract: Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Feature selection to increase the random forest method performance on high dimensional data

    Get PDF
    Random Forest is a supervised classification method based on bagging (Bootstrap aggregating) Breiman and random selection of features. The choice of features randomly assigned to the Random Forest makes it possible that the selected feature is not necessarily informative. So it is necessary to select features in the Random Forest. The purpose of choosing this feature is to select an optimal subset of features that contain valuable information in the hope of accelerating the performance of the Random Forest method. Mainly for the execution of high-dimensional datasets such as the Parkinson, CNAE-9, and Urban Land Cover dataset. The feature selection is done using the Correlation-Based Feature Selection method, using the BestFirst method. Tests were carried out 30 times using the K-Cross Fold Validation value of 10 and dividing the dataset into 70% training and 30% testing. The experiments using the Parkinson dataset obtained a time difference of 0.27 and 0.28 seconds faster than using the Random Forest method without feature selection. Likewise, the trials in the Urban Land Cover dataset had 0.04 and 0.03 seconds, while for the CNAE-9 dataset, the difference time was 2.23 and 2.81 faster than using the Random Forest method without feature selection. These experiments showed that the Random Forest processes are faster when using the first feature selection. Likewise, the accuracy value increased in the two previous experiments, while only the CNAE-9 dataset experiment gets a lower accuracy. This research’s benefits is by first performing feature selection steps using the Correlation-Base Feature Selection method can increase the speed of performance and accuracy of the Random Forest method on high-dimensional data

    Managing tail latency in large scale information retrieval systems

    Get PDF
    As both the availability of internet access and the prominence of smart devices continue to increase, data is being generated at a rate faster than ever before. This massive increase in data production comes with many challenges, including efficiency concerns for the storage and retrieval of such large-scale data. However, users have grown to expect the sub-second response times that are common in most modern search engines, creating a problem - how can such large amounts of data continue to be served efficiently enough to satisfy end users? This dissertation investigates several issues regarding tail latency in large-scale information retrieval systems. Tail latency corresponds to the high percentile latency that is observed from a system - in the case of search, this latency typically corresponds to how long it takes for a query to be processed. In particular, keeping tail latency as low as possible translates to a good experience for all users, as tail latency is directly related to the worst-case latency and hence, the worst possible user experience. The key idea in targeting tail latency is to move from questions such as "what is the median latency of our search engine?" to questions which more accurately capture user experience such as "how many queries take more than 200ms to return answers?" or "what is the worst case latency that a user may be subject to, and how often might it occur?" While various strategies exist for efficiently processing queries over large textual corpora, prior research has focused almost entirely on improvements to the average processing time or cost of search systems. As a first contribution, we examine some state-of-the-art retrieval algorithms for two popular index organizations, and discuss the trade-offs between them, paying special attention to the notion of tail latency. This research uncovers a number of observations that are subsequently leveraged for improved search efficiency and effectiveness. We then propose and solve a new problem, which involves processing a number of related queries together, known as multi-queries, to yield higher quality search results. We experiment with a number of algorithmic approaches to efficiently process these multi-queries, and report on the cost, efficiency, and effectiveness trade-offs present with each. Ultimately, we find that some solutions yield a low tail latency, and are hence suitable for use in real-time search environments. Finally, we examine how predictive models can be used to improve the tail latency and end-to-end cost of a commonly used multi-stage retrieval architecture without impacting result effectiveness. By combining ideas from numerous areas of information retrieval, we propose a prediction framework which can be used for training and evaluating several efficiency/effectiveness trade-off parameters, resulting in improved trade-offs between cost, result quality, and tail latency

    Novel feature selection methods for high dimensional data

    Get PDF
    [Resumen] La selección de características se define como el proceso de detectar las características relevantes y descartar las irrelevantes, con el objetivo de obtener un subconjunto de características más pequeño que describa adecuadamente el problema dado con una degradación mínima o incluso con una mejora del rendimiento. Con la llegada de los conjuntos de alta dimensión -tanto en muestras como en características-, se ha vuelto indispensable la identifícación adecuada de las características relevantes en escenarios del mundo real. En este contexto, los diferentes métodos disponibles se encuentran con un nuevo reto en cuanto a aplicabilidad y escalabilidad. Además, es necesario desarrollar nuevos métodos que tengan en cuenta estas particularidades de la alta dimensión. Esta tesis está dedicada a la investigación en selección de características y a su aplicación a datos reales de alta dimensión. La primera parte de este trabajo trata del análisis de los métodos de selección de características existentes, para comprobar su idoneidad frente a diferentes retos y para poder proporcionar nuevos resultados a los investigadores de selección de características. Para esto, se han aplicado las técnicas más populares a problemas reales, con el objetivo de obtener no sólo mejoras en rendimiento sino también para permitir su aplicación en tiempo real. Además de la eficiencia, la escalabilidad también es un aspecto crítico en aplicaciones de gran escala. La eficacia de los métodos de selección de características puede verse significativamente degradada, si no totalmente inaplicable, cuando el tamaño de los datos se incrementa continuamente. Por este motivo, la escalabilidad de los métodos de selección de características también debe ser analizada. Tras llevar a cabo un análisis en profundidad de los métodos de selección de características existentes, la segunda parte de esta tesis se centra en el desarrollo de nuevas técnicas. Debido a que la mayoría de métodos de selección existentes necesitan que los datos sean discretos, la primera aproximación propuesta consiste en la combinación de un discretizador, un filtro y un clasificador, obteniendo resultados prometedores en escenarios diferentes. En un intento de introducir diversidad, la segunda propuesta trata de usar un conjunto de filtros en lugar de uno sólo, con el objetivo de liberar al usuario de tener que decidir que técnica es la más adecuada para un problema dado. La tercera técnica propuesta en esta tesis no solo considera la relevancia de las características sino también su coste asociado -económico o en cuanto a tiempo de ejecución-, por lo que se presenta una metodología general para selección de características basada en coste. Por último, se proponen varias estrategias para distribuir y paralelizar la selección de características, ya que transformar un problema de gran escala en varios problemas de pequeña escala puede llevar a mejoras en el tiempo de procesado y, en algunas ocasiones, en precisión de clasificación

    Promotional Campaigns in the Era of Social Platforms

    Get PDF
    The rise of social media has facilitated the diffusion of information to more easily reach millions of users. While some users connect with friends and organically share information and opinions on social media, others have exploited these platforms to gain influence and profit through promotional campaigns and advertising. The existence of promotional campaigns contributes to the spread of misleading information, spam, and fake news. Thus, these campaigns affect the trustworthiness and reliability of social media and render it as a crowd advertising platform. This dissertation studies the existence of promotional campaigns in social media and explores different ways users and bots (i.e. automated accounts) engage in such campaigns. In this dissertation, we design a suite of detection, ranking, and mining techniques. We study user-generated reviews in online e-commerce sites, such as Google Play, to extract campaigns. We identify cooperating sets of bots and classify their interactions in social networks such as Twitter, and rank the bots based on the degree of their malevolence. Our study shows that modern online social interactions are largely modulated by promotional campaigns such as political campaigns, advertisement campaigns, and incentive-driven campaigns. We measure how these campaigns can potentially impact information consumption of millions of social media users
    • …
    corecore