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Abstract 

Data mining techniques have been used widely in many areas such 
as business, science, engineering and more recently in clinical 

medicine. These techniques allow an enormous amount of high 

dimensional data to be analysed for extraction of interesting 

information as well as the construction of models for prediction. One 
of the foci in health related research is Alzheimer's disease which is 

currently a non-curable disease where diagnosis can only be 

confirmed after death via an autopsy. Using multi-dimensional data 
and the applications of data mining techniques, researchers hope to 

find biomarkers that will diagnose Alzheimer's disease as early as 

possible. The primary purpose of this research project is to 

investigate the application of data mining techniques for finding 

interesting biomarkers from a set of Alzheimer's disease related 

data. The findings from this project will help to analyse the data 
more effectively and contribute to methods of providing earlier 
diagnosis of the disease. 
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1 Introduction 

Dementia related diseases in general, and Alzheimer's disease (AD) 

specifically, are currently of great interest amongst various groups 

of researchers in the health areas. The number of people with AD 

has increased dramatically in  the last century (The Medical News, 
2007; Alzheimer's Disease International, 2008), probably owing to 

an increase in life expectancy as well as to the lack of effective 
treatments for AD. Patients with AD experience a progressive 

impairment of cognitive functions. The diagnosis of AD is difficult 

and is predominantly based on exclusion of other neurological 

illnesses. One of these difficulties is that symptoms associated with 

AD appear to develop only after substantial damage has occurred in 

the brain. Thus, a patient may have the onset of the disease for 

several years before receiving a diagnosis. 

Currently, there is no cure and no early diagnostic tests that are 

definitive for this disease. The need to detect AD via an "equivalent 

pregnancy test" has been repeatedly stated in the literature 
(Trojanowski, 2004, p. 32). The ideal diagnostic test is one that is 

inexpensive, has a high specificity and can be carried out as easily 

and accurately as a "pregnancy test"; enabling diagnosis as early as 
possible (Hooper, Lovestone & Sainz-Fuertes, 2008). In addition, 

such a test should have minimal side effects and methods of 

obtaining samples should be simple, non-invasive and cost 
effective. Although at this point in time, treatments only address 

the symptoms; it is still a matter of urgency that they are initiated 
as early as possible in the disease process, before neuro­

degeneration becomes too severe. 

An essential step in the development of approaches for early AD 
interventions involves the identification of a biomarker or a set of 
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biomarkers for early clinical diagnosis. The standardised definition 
of biomarkers is "a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic 

intervention" (EverythingBio, 2001, p. 1). 

Advantages associated with such biomarkers include: 
• a diagnostic tool that aids clinicians in the early detection of 

the disease, hopefully before substantial neuro-degeneration 
has occurred. This implies that treatment and monitoring of 

AD patients can be provided early in the disease process, 

preventing devastating damage to the brain. This aspect will 

become increasingly important when a cure become available. 
• ways for measuring progression of the disease and evaluating 

responses to clinical intervention. 

Furthermore, a set of biomarkers should be as small as possible and 
still have the highest possible diagnostic reliability (i.e. sensitivity 

and specificity), as a set involving a large number of biomarkers will 

naturally increase cost and complexity. 

Researchers have been developing various molecular tests and 

techniques (e.g. microarrays, mass spectrometry) to address the 
need of finding biomarkers and this has resulted in an exponential 

growth in data acquisition (Gilman, 2006). Traditional statistical 

approaches are not effective in analysing such data sets with a small 

number of samples that are characterised by a high-dimensional 

feature space. A fundamental problem in identifying biomarkers 
from this data involves how to systematically search for relevant 

features; to reduce the dimensionality of the data set to a small, yet 
highly reliable and discriminative subset that is representative. In 
order to effectively address this problem in a timely manner, 

2 



approaches involving data mining (DM) techniques (Witten & Frank, 
2005) need to be developed and employed. 

Following this direction, this research study will investigate the 

application of DM techniques to analyse multidimensional AD data, 

and to evaluate the results from these techniques, both in terms of 

the performances of the algorithms and the validity of the extracted 
information. 

1.1 The background to the study 

According to reports from The Medical News and statistics from 

Alzheimer's Disease International (2008), Alzheimer's Australia 

NSW (2009) and CSIRO (2008) the number of people having AD in 

the world and in Australia has increased considerably. In 1906, the 
first patient was diagnosed with AD by the physician Alois Alzheimer 

(Nuzzo, 2007). A century later, about 26 million people have AD in 

the world, and this number will grow to over 106 million by 2050 

(The Medical News, 2007). In Australia, 234,640 people have 

dementia and it is the fourth highest cause of death in Australia 
after heart disease, stroke and lung cancer (Alzheimer's Australia 
NSW, 2009). About 80°/o of dementia in Australia is AD and the 
number of people with dementia will be more than 730,000 by 2050 

(CSIRO, 2008). 

AD is a progressive neurological disease and according to the 

Alzheimer's Disease Education and Referral (ADEAR) Center (2008), 

diagnosis of AD can only be confirmed after death by autopsy or by 
cerebral biopsy. Current diagnostic approaches include cognitive 

testing, neuropsychological testing, physical testing, analysing 
answers to questions relating to a patient's memory and medical 
history, and using advanced technology such as Magnetic 
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Resonance Imaging (MRI), Positron Emission Tomography (PET) 

and Computerised Tomograph (CT) scans. Existing biomarkers for 
AD (Hooper et al, 2008) falls mainly into: 

111 those associated with Cerebrospinal fluid (CSF) 
• total Tau protein measured in CSF 
• Beta-amyloid measured in CSF 
• Neural thread protein/ AD7C-NTP measured in CSF and in 

urine. 

A reduced level of 42-amino-acid beta-amyloid and an increase 
level in tau protein in CSF are associated with AD patients (Jong, 

Jansen, Kremer & Verbeek, 2006). 

111 those associated with genetic traits 
• mutations in amyloid precursor protein (APP), presenilin-1 

(PS-1) and presenilin-2 (PS-2) (in the case of Familial 

Alzheimer's disease - cited in Hooper) genes 

• Presence of Apolipoprotein E 84 allele may lead to 

development of Sporadic AD 

11 those associated with neuro-imaging 
• volumetric MRI - brain volume; reduction to total volume 

and enlargement of the ventricular, 
• PET using Fluoro-deoxy-glucose - measuring a reduction in 

glucose metabolic rate in various parts of the brain 
• PET using radio-ligands (e.g. Pittsburgh Compound B (PiB) 

- monitoring amyloid plaques 

Currently, there are no established blood-based biomarkers for 

diagnosing sporadic AD in clinical use. 
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Limitations of existing biomarkers for Alzheimer's (Hooper et al, 
2008) are: 

• Not absolutely discriminative for diagnosing AD because 

similar pattern findings can be associated with other types of 

dementia. 
• High costs involved for individual or mass screening. 
• In the case of CSF collection, the procedure is invasive and 

potentially risky. 
0 Neuro-imaging can be distressing to those with dementia. 

Recently, Ray et al (2007) have developed a molecular test that 

involves detecting significant changes in the concentrations of 

signalling proteins in blood plasma. Using the technique, 

Significance Analysis of Microarrays (SAM) on the training set, 19 

proteins were identified as being expressed significantly different 
from the others. A separate process, using the technique Prediction 

Analysis of Microarrays (PAM) on the training data set, was also 

carried out and they successfully identify a group of 18 signalling 
proteins (from 1 20 proteins). These proteins are a subset of the 19 

proteins identified from SAM. The 18 protein signature can be used 

to classify AD samples from non-AD (NAD) samples. 

Blood samples, as an alternative source for biomarker assessments, 

have the advantage of being easily obtained, inexpensive and are a 
relatively safe procedure unlike a lumbar puncture. Increasingly, 

blood-based biomarkers are being investigated but none has yet 

been sufficiently validated for clinical use. Currently, there is no 

single and simple test that gives a definitive diagnosis for AD. The 

current gold standard associated with diagnosis of AD usually 

involved a series of tests; involving psycho-metric tests, CSF-based 

testing and neuro-imaging (Hooper et al, 2008). The accuracy of 
diagnosis using current approaches is up to 90°/o (Alzheimer 
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Society, 2005; ADEAR, 2008). A recent Biopharm Reports (2009) 
identified 60 candidate AD biomarkers - resulting from a significant 

effort into research for diagnostic tests for AD. This report further 

stated that while new and effective diagnostic tools and treatments 

for AD are urgently needed, advances in their development remain 

elusive. 

Mass throughput techniques in molecular biology ( e.g. gene 

expression microarrays and high resolution mass spectrometry) can 

produce enormous amounts of multi-dimens1onal data sets about 

cellular functions. Examples of such data sets include gene arrays 

with up to 500,000 genes and mass spectrometry data with 

300,000 values (Aliferis, Statnikov & Tsamardino, 2006). While the 

availability of such data sets can aid in the development of 

techniques/drugs that will improve diagnosis and treatment of 

diseases, a major challenge involves its analysis to extract useful 

and meaningful information. High dimensionality and limited sample 

sizes contribute to problems such as over-fitting and in building 
predictive models. 

The problem with having massive amount of high-dimensional data 
is the resulting increase in the complexity of analysis, as the 

structure and relationships amongst the data become a lot harder to 

understand and analyse (Witten & Frank, 2005). Traditional data 
analysis tools such as database query and statistics have problems 

in dealing with data sets that have a large number of variables (i.e. 

high dimensionality) and non-traditional data types (Gilman, 2006). 
These characteristics are typically found in biological data sets 

involving millions of variables (e.g. MRI data (Chen & Herskovits, 

2005)). In addition, with the introduction of techniques like 

microarrays, data are generated on a massive scale, of an order 
previously thought to be impossible. Examples of biological 
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databases included GenBank, SWISS-PROT for protein sequences 

(Bertone & Gerstein, 2001) and ADNI for AD (ADNI, 2007). In order 

to overcome the problem of finding trends and patterns hidden in 
enormous amount of high dimensional data, new approaches such 
as DM can be used (Witten & Frank, 2005) as traditional statistical 

tools are inadequate. New approaches are required for a 

comprehensive, systematic and valid analysis - to address, on one 

hand the large volume of data that are generated and on the other 

hand, the nature of the data (i.e. high dimensionality and small 
sample size). 

DM automates the process of going through a vast amount of high 

dimensional data to extract useful and relevant information such as 

correlations and patterns. DM is different from statistics as it 

supports the automation of statistical processes involving several 
techniques (from database technology, machine learning, statistics, 

etc). A hypothesis is formed and tested against data in statistical 
inference (i.e. assumption driven) where as DM is data discovery 

driven -- the hypothesis is automatically generated from the given 

data sets. It has been traditionally used in many areas such as 

business, science, engineering and in recent times, increasingly 
applied in the area of bioinformatics such as microarray analysis for 

classification, gene selection and clustering (Gilman, 2006). In 
terms of its use specifically in exploring AD related data, 

researchers like Ray et al, (2007), Chen & Herskovits (2005) and 

Walker et al (2003) have successfully used various approaches 

involving DM techniques to find interesting patterns. Drawing from 

these early successes, researchers hope to continue to apply DM 
techniques for exploration of high dimensional data sets. The aim is 

to identify other potential biomarkers for the detection of the 

disease as early as possible as well as to develop strategies to 

better manage and treat AD patients. 
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1 .2  Significance of study 

As mentioned previously, the number of people with AD on a global 
scale has increased dramatically, and especially in Australia the 

number of deaths resulting from AD has moved it from the 7th to 4th 

(Alzheimer's Australia NSW, 2009) leading cause of death. The rate 
of people contracting the disease is increasing and it is projected 

that "by 2050, . . .  1 in 85 persons worldwide will be living with the 

disease" (Brockmeyer, Johnson, Graham & Arrighi, 2007, p. 2). 
Therefore this research is important and significant because it will 

contribute to a better understanding of the applications of DM 

techniques and the effectiveness of its applications in the AD area. 
The findings from this study will provide insights into ways of 

improving/refining future analysis. 

Finding relevant biomarkers from the AD data set used in this 

project can contribute to the development of a method for an earlier 

diagnosis of the disease. An early diagnosis is a critical factor 

because once people have been diagnosed as "probable AD" then 

their subsequent life expectancy can be as short as 3-4 years 

(ADEAR center, 2008, p. 3). In addition, the earlier the confirmation 

of an AD diagnosis, the greater is the benefits in managing its 
symptoms through the use of pharmaceuticals. 

According to Brockmeyer and his co-authors " If interventions could 

delay both the disease onset and progression by a modest 1 year, 

there would be nearly 9. 2 million fewer cases of disease in 2050 . . .  H 

(Brockmeyer et al, 2007, p.4). 

Existing AD diagnostic techniques are either highly invasive or 

expensive and the development of techniques for blood-based 
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molecular biomarkers is very important as this can provide a simple 

test, an equivalent "glucose test commonly used to identify diabetic 
condition", for AD. This study is significant as it attempt to identify 

biomarkers associated with signalling proteins in blood samples via 
DM techniques. In addition, a diagnostic tool that requires a large 

number of biomarkers would increase cost as well as complexity. 

This study will also re-evaluate two existing studies, with the aim of 

investigating approaches for further reducing the number of 

biomarkers involved and yet, still maintained its classification 
capability. 

1.3 The purpose of the study 

The aims of the project are 
• to investigate and to evaluate a number of DM techniques and 

software tools for analysing AD related data to find 

biomarkers that can be incorporated in a diagnostic tool for 

AD. 
• to apply a number of DM techniques on an AD related data set 

and to extract relevant patterns. 
• to evaluate the validity of the extracted information from the 

DM perspectives. 
• to carry out an in-depth study of two existing studies (Ray et 

al, 2007; Ravetti & Moscato, 2008) and to explore the 
possibility of improving the existing results. 

• to investigate the applications of different feature selection 

(FS) techniques and their impact on the subsequent 
classification accuracy. 
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1.4 Research questions 

1.4.1 The main question that this research needs to answer is 

how can DM techniques be used effectively to analyse AD 
data for extraction of relevant information? 

In order to answer the main research question, two sub-questions 
need to be answered as follows: 

1.4.1.1 Can the experiment results associated with two case 

studies (listed below) be re-produced using the information 
provided in their respective papers, and can we further 

improve upon these results? 

• Classification and prediction of clinical Alzheimer's 

diagnosis based on plasma signaling proteins (Ray et al, 

2007). 

• Identification of a 5 protein biomarker molecular 

signature for predicting AD (Ravetti & Moscato, 2008). 

1.4.1. 2 What is the impact on the accuracy of the classification 

models generated using features obtained from different 

FS methods and used on the same dataset? 
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1.5 Contributions of this study 

The contributions of this study are: 
• An approach for systematic exploration of using DM 

techniques for mining interesting information from high 

dimensional AD data. 
• Carried out an in-depth study of Ray et al experiments 

involving SAM and PAM, providing more details and a finding 

of a 17  protein biomarker signature that can be used to 

produce a classifier with similar classification accuracy. 
• Carried out an in-depth study of the Ravetti and Moscato's 

experiments and subsequently obtained a 4 protein biomarker 

signature. The 4 proteins is a subset of the 18 protein 

signature from the Ray et al experiments. 23 Waikato 

Environment for Knowledge Analysis (WEKA) classifiers were 

trained using this 4 protein biomarker signature and the 

overall classification results on the test data were similar to 

the results of the 5 protein biomarker signature in Ravetti and 
Moscato's experiments. The finding is significant as having a 

smaller signature may lower the cost and complexity in 

making a diagnosis. 
• Produced initial findings associated with the use of different 

FS techniques and its impact on the accuracy of the resulting 
classifiers. 
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1.6 Structure of the thesis 

This thesis consists of 6 chapters. 

Chapter 1 provides a brief snapshot of the current status of AD; 

number of people having the disease is increasing dramatically and 

there is no early, simple and definitive test to diagnose it so far, 

only invasive and expensive methods are available for identifying 

people inflicted with the disease. The chapter also provides insights 

to the problems of high throughput technologies which generate 
tremendous amount of data, requiring new analytical approaches. 

DM techniques for analysing these data effectively is one possible 

solution that has been proposed. The significance and purpose of 

this study as well as research questions to be address are also 
clearly stated in this chapter. 

Chapter 2 describes a literature review, providing information 

about DM techniques and tools with a focus on those that have been 
previously used in bioinformatics. The chapter also examines 

existing work that have employed DM techniques for extracting 
information from health-related data in general and AD related data 

specifically. The remaining sections of this chapter detailed concepts 

related to FS. 

Chapter 3: This chapter provides general information of the data 

set and research method used for this study. The data format of 

training and test data sets were described in details. Limitations of 
the study were also stated in this chapter. 
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Chapter 4:  This chapter described an investigation to address the 

first aim of this study. Detailed descriptions associated with the in­
depth study of the work of Ray et al and Ravetti and Moscato's 

experiments are provided here. The chapter also provides 

information related to the experiment procedures and analysis in 
obtaining the 4 protein biomarker signature. 

Chapter 5:  This chapter detailed experimentations associated with 

the investigations of using different WEKA FS methods for 

generating relevant biomarker signatures. The aim is to investigate 

the impact of using different FS methods on the accuracy of the 

resulting classifiers that were trained using these sets of features 

signatures. The analysis is based on evaluating the performance of 

the resulting classifiers on the test sets. The chapter provides 

information of the experiment to be carried out as well as the 
results of these experiments. 

Chapter 6: This chapter is used to outline the conclusions of this 

thesis, highlight things that have been achieved, and discuss future 
work. 

1.7 Definitions of terms ( Witten & Frank, 2005 and Tan, 
Steinbach & Kumar, 2006) 

• Alzheimer's disease (AD) : a type of progressive non-curable 
neurological disease. 

• Amyloid precursor protein (APP) : "is found in many tissues 
and organs, including the brain and spinal cord" (Genetics 

Home References, 2008, p. 2). 
• Association: in DM, it is a method of finding relationships 

between attributes in databases. 
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• Bi clustering: is a DM algorithm which performs clustering on 

both dimensions of data (rows and columns) at the same 
time. 

• Classification: in DM, it is the task of assigning attributes to a 
predefined class. 

• Classification model: is known as a target function. It is used 

for predicting or describing a class. 
• Clustering analysis: in DM, it is a technique which groups data 

with similar features into clusters. 
• CT: Computerised Tomography is "a diagnostic procedure that 

uses special X-ray equipment to create cross-sectional 

pictures of your body" (Medline Plus, 2009, p. 1). It is used to 
produce images of the internal body. 

• Data: raw facts, numbers, letters and outputs from devices are 

collected and used for producing information. 
• Database: storage of data where data are stored and related 

in specific structures in a computer. 
• Data mining (DM): process of retrieving useful information 

from a large amount of data. 
• Dementia: a progressive impairment of cognitive functions. 
• MRI: Magnetic Resonance Imaging - a technique that is used 

mainly in the health area to scan patients for an analysis view 

of tissues. 
• MCI: Mild Cognitive Impairment - an early stage of AD. 
• Microarray: is an array that consists of many tiny dots of 

DNA, protein or tissues arranged in order on a small piece of 

glass. 
• NDC: Non-demented control, used as controllers for people 

without dementia disease. 
• PAM: Prediction Analysis of Microarrays - a software program 

that is used to classify microarray data. 
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• PET: Positron Emission Tomography is a "nuclear scanning 
uses radioactive substances to see structures and functions 

inside your body" (Medline Plus, 2009, p. 1). 
• Presenilin-1 (PS-1):  in human, it is a protein that is encoded 

by the PSl gene. 
• Presenilin-2 (PS-2): in human, it is a protein that is encoded 

by the PS2 gene. 
• SAM: Significance Analysis of Microarrays - a software 

program that is used to analyse significant differences in 

expressions of genes or signalling proteins. 
• Supervised learning: a type of DM techniques that uses 

training data to train the algorithm and to generate a 

classification model. 
• Test data: data that are used to test an algorithm for 

accuracy. 
• Training data: data that are used to train a supervised 

learning algorithm. 
• Unsupervised learning: a type of DM techniques that does not 

need to use training data to train the algorithm. No prediction 

involved. 
• Variable: an attribute or a feature of data 
• WEKA: Waikato Environment for Knowledge Analysis - is a 

DM software program to analyse data. 
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1.8 Summary 

This chapter provides the background and highlights some 
important aspects that lead to the use of DM techniques as 

necessary tools to analyse A D  data. In the next chapter, DM tools in 

bioinformatics, classification and clustering techniques, as well as 
FS techniques are described. 
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2. Review of the literature 

This chapter briefly describes DM techniques that are applicable to 

the project and briefly reviews existing work involving the use of 
DM techniques in extracting interesting information from health­

related data in general and AD data specifically. Typical 

characteristics associated with datasets in the biomedical area are 

very high dimensional relative to sample size, posing a challenge in 

terms of the application of traditional statistical approaches. 

Many DM techniques are available and in general, they are 

categorised in three types of DM techniques: supervised learning, 

unsupervised learning and association analysis. In this study, only 

supervised and unsupervised are discussed because they are used 

to analyse the AD data. 

2.1 Data mining techniques 

2.1.1. Supervised learning analysis 

2.1.1.1. Classification 

Classification analysis is an example of supervised learning. Using a 

set of input data as examples, the algorithm learns a mapping 

between the attributes and the designated class label assigned by 

the user. This mapping function is known as the classification model 

and can be used for predictive modeling and descriptive modeling. 
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Consider the vertebrate data set below :  

Table 2- 1 :  The Vertebrate data set, adapted from Tan, Steinbach 

& Kumar (2006 ,  p . 1 06) 

N a m e  Body Ski n  G ives Aq u atic Aeria l Has H i bernates C lass 

!tem peratu re cover b i rth creatu re creatu re legs l a bel  

h u m a n  warm h a i r  yes no no  yes no m a m m a l  

b looded 

python  co ld  b looded sca l es N o  no  no  no  yes repti l e  

sa l m on col d  b looded sca les  N o  yes no no n o  fi sh 

bat warm h a i r  yes no  yes yes yes m a m ma l  

b looded 

. . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 
tu rt le Cold sca l es no  sem i no yes no  rept i l e  

b looded ' 

cat wa rm fu r yes no no yes no  m a m m a l  

b looded 

The vertebrate data set consists of names of animals with their 

attributes and designated c lass labels as shown in Table  2 . 1 .  The 
data types associated with the attributes could be discrete or 

continuous. However, the c lass label must be a discrete variab le .  

This data set is considered as a training data set. The c lassification 
algorithm uses the training data set to learn the association 

between each animal , with its attributes and the class to which it 

belongs to. The classification model is then generated and 

subsequently used on a test data set (data that has not been used 
previously in the training ) to evaluate the accuracy of the model 

before putting it in use to predict or to describe other unknown 
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creatures (Tan et al, 2006) . Tab le  2 -2 shows an example of a test 
data. 

Table 2-2 :  The Vertebrate test data, extracted from Tan et al 
(2006,  p . 106 )  

Name Body Skin Gives �qu atic Aerial H as Hibernates 

tem perature cover birth creatu re creature legs 

gi la  cold blooded scale  no no no yes yes 

monster 

The above table shows the features of a gi la monster. Its c lass is 

normally assigned a class label prior to pred iction by the classifier. 

However in the table  above, it  i s  label led with a question mark (? )  

with the purpose of  indicating that the class label wi l l  be predicted 
by the c lassif ier .  Therefore the classificat ion model needs to analyse 

the features of a gila monster, and based on what has been learned 

from the training data set, the c lassif ication model predi cts the c lass 
of the creature to which the gila monster belongs. The performance 

of the model is measured by the accuracy of its predict ion .  The less 
error and the higher the accuracy rate in prediction, the better and 

more rel iable, i s  the model . 
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The process of supervised learning associated with classification 

analysis may be illustrated by the following diagram : 

Training data set Test data set 

Classification ___ i_..,.. Classification ___ t ___ Classification 

Model model evaluated 

Figure 2- 1 :  The process of supervised learning in classification analysis 

When a classification model has been bu ilt, it n eeds to be evaluated 

to see whether it performs accurately and gives a correct 

classification result for a specific unseen data point. According to 

Tan et al (2006)  this can be done by using a confusion matrix table 

to record the number of correct and incorrect outcomes and then 

calculate the accuracy and error rate by the following formulae : 

Accuracy = 

Error rate = 

Number of correct predictions 

Total number of predictions 

Number of wrong predictions 

Total number of predictions 

Classification methods are most appropriate for problems where the 

data sets are associated with bi nary or nominal data types. They do 

not perform so well when ordinal data types or relationships such as 
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"superclass-subclass" (Tan et al, 2006, p. 107) differentiation are 

involved. 

Decision trees, Artificial Neural Networks (ANN) and Bayesian 

classifiers are examples of classification techniques. 

2. 1. 1 .2. Problems with Classification techniques 

According to Tan et al (2006), two problems are associated with 

classification. 

� A problem associated with classification techniques is missing 

values that happen when a certain data point collected is missing 

from a data set. The problem causes the algorithm to be 

confused when deciding which way to go if a node has a missing 

value. In order to overcome this problem, many solutions have 

been proposed in the literature. Example solutions assume the 
missing value to be just another possible value of the node or to 

omit the record with the missing value. 

� Another problem associated with classification techniques is 

model overfitting which happens when the classification has a 

low training error rate and a high test error rate, while model 

underfitting has a high rate for both types of errors. Overfitting is 

caused by mislabelled data (noise) or lack of training records. 
Two approaches used to overcome overfitting are pre-pruning 

(forward pruning) and post-pruning (backward pruning) (Han & 
Kamber, 2006; Tan et al, 2006; Witten & Frank, 2005) 

• With the pre-pruning approach, the tree is stopped early 

before reaching its full development. This would reduce the 
number of sub-trees created thus making the tree less 
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complex and hence not causing the problem of overfitting the 
training data. 

• With the post-pruning approach, the tree is first created 

completely and then is trimmed from bottom-up by using a 
class label node to replace a sub-tree. Figure 2-2 shows the 

sub-tree of node A3 in a fully unpruned tree which was then 

pruned and replaced by Class B, with the assumption that of 

the class B is the most common class for this sub-tree (Han & 

Kamber, 2006). 

The Post-pruning approach gives better results than the pre-pruning 

approach because the trimming of the tree is based on a fully 

created tree. In building a fully created tree, all possible 

combinations of features are constructed as part of the tree. 

However, this extra computation in building a complete tree could 

be wasted especially when infeasible subtrees are pruned (Witten & 

Frank, 2005; Tan et al, 2006). 
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(a) An unpruned decision tree ( b) a pruned version of 

decision tree 

figu re 2-2 :  An unpruned and pruned decision tree, extracted from 

Han & Kam ber (2006 ,  p .  3 0 5 )  

2. 1 . 1 . 3 .  Evaluation of a classifier 

According to Han and Kamber (2006)  and Tan et al (20 0 6 ) ,  the 

performance of a classifier is evaluated by using the holdout, 

random subsampling, cross-va l idation and bootstrap techniques. 

• Holdout technique : the data set is divided into training data and 

test data. The training data is used to buil d  a classification model 
and the test data is used to evaluate the accuracy of the 

classification model . 
• Random subsampling : is based on the holdout technique but the 

process is repeated a number of times. The accuracy of the 
classifier is then based on the average value of the iterations. 
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• Cross-validation: the data set is divided into a number (k) of 
subsets. For each run one subset is used as test data and the 

others for training data. This procedure is repeated a number (k) 
of times so that every subset has been used as test data once. 

The total error is calculated by adding up all errors generated by 

all the runs. 
• Bootstrap: "In the approach, the training records are sampled 

with replacement; i. e. , a record already chosen for training is put 
back into the original pool of records so that it is equally likely to 

be redrawn. " (Tan et al, 2006, p.1 37) 

2.1.1.4. Comparison of classifiers 

According to Han and Kamber (2006), the comparison of the 

classifiers is based on their accuracy, speed, robustness, scalability 

and interpretability. 

• Accuracy is measured based on the level of correction of a 

classifier for predicting a given unknown record data. The 

accuracy measures can be carried out by using different 

techniques such as cross validation and bootstrapping as 

described in the section 2.1.1. 3. 
• Speed is measured based on the time required by a classifier 

to generate the result. This involves the complexity of the 
computational algorithm. 

• Robustness is measured based on how well a classifier can 

predict in the cases where a given data set is noisy or have 

missing values. 
• Scalability is measured based on how well a classifier is able 

to deal with a large data set. 
• Interpretability is measured based on "the level of 

understanding and insight that is provided by the classifier or 
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predictor" (Han & Kamber, 2006, p. 291). - how easy it is to 
understand the results returned by the classifier. 

2.1.2. Unsupervised learning analysis 

Clustering analysis is an example of unsupervised learning (Groth, 

2000) as the training data is not labelled. The technique does not 

involve training and clustering depends upon whether the data are 

related or unrelated to each other. Clustering analysis is a method 

or process of separating data in a data set into different groups 
based on some measures of similarities of their features or 
functions. Each cluster contains data points that are similar to each 

other on the basis of a defined measure. Commonly used measures 

of similarity are distance measures such as Euclidean distance, 

Hamming distance and supremum distances (Tan et al, 2006). The 

ideal result from clustering analysis is to have groups that are 

completely different to one another. The more different the groups, 

the easier it is to distinguish between them, the better the 
understanding of the relationships between data and the stronger 

the conclusions that may be drawn from this process. Clustering 

analysis can be used in many areas such as biology (eg. groups of 

genes with similar functions), medicine (eg. different types of 

diseases), climate, information retrieval and business (Tan et al, 

2006). 

Categories of clustering algorithms include : Exclusive Clustering, 

Hierarchical Clustering, Overlapping Clustering and Probabilistic 
Clustering (Matteucci, n.d.).  
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2 . 1 . 2 . 1 .  Exclusive Clustering 

In exclusive clustering, a data p oint can only belong to one cluster, 

as shown in Figu re 2 . 3 .  The fo llowing diagram illustrates an 

example of the results from a cl ustering analysis technique used in 

business : 

Clu ster 2 

Clu ster 1 

C luster 4 

Cluster 3 

F ig u re 2-3 : Customer are c lust'ered into four segments, adapted 

f rom Groth (20 0 0 ,  p .  2 5 )  

An example o f  this type of clustering algorithm is the K-means 

algorithm. According to Tan et al (2006) ,  the K-means algorithm 

requires a number of ini tial target clusters centroids to be specified 

at the start of the algorithm and then each data point is grouped 

into one of the clusters defined by each of these centro ids .  The 

location associated with each centroid is then recalculated. The 

process of grouping data points into the clusters continues until all 

the data points are grouped. 
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According to Tan et al (2006), K-Means clustering has the following 
advantages and disadvantages: 

Advantages: 
• Simple, efficient, widely used in many applications and works 

well with many different data types. 

Disadvantages: 
• Clustering data with different sizes and densities can cause 

the K-means problems in finding sub-clusters. 
• Clustering data with outliers can cause the K-means problems 

in specifying cluster centroids and obtaining desired clusters. 

2.1.2.2. Hierarchical Clustering 

The data is normally clustered as a set of nested cluster in a tree 

structure. Except for the leaf nodes, each node is formed from 
merging its children. According to Tan et al (2006), hierarchical 

clustering works by calculating the distance between 2 clusters and 
then joining the 2 nearest clusters together to form a new cluster. 

The algorithm then recalculates the distance between the newly 

form cluster and the original clusters. The process of joining and re­

calculating continues until there is only one cluster left over. 

According to Tan et al (2006), hierarchical clustering has advantages 

and disadvantages: 

Advantages: 
• It is useful for hierarchical applications. 
• Clusters generated are more reliable and correct. 
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Disadvantages: 
• Once clusters have been combined together, that action 

cannot be reversed and may cause data to become noisy and 

extra but unnecessary dimensions of data to be created. 
• The algorithm is computationally more expensive and a 

higher memory requirement. 

2.1.2.3. Overlapping Clustering 

A data point may belong to more than one cluster as fuzzy sets are 

used to determine the clusters. Example of an algorithm in this 

category is Fuzzy C-means clustering (Matteucci, n.d.). 

The Fuzzy C-Means (FCM) clustering algorithm has advantages and 

disadvantages as follows: 

Advantages: 
" . . .  membership function and an object can belong to several 

clusteres [sic] at the same time but with different degrees. This 

is a useful feature for a facility location problem. H (Zalik, 2006, 
p. 1) 

Disadvantages (Amiri, 2003): 
• Computations take more time to perform. 
• Easily effected by noise 

2. 1. 2.4. Probabilistic Clustering 

Clusters are generated using a probabilistic approach via algorithms 
such as the Mixture of Gaussian technique (Matteucci, n.d.). 

According to Borman (2004, 2009) and Dellaert (2002), the 
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Expectation-Maximization (EM) algorithm is commonly used in this 
type of model-based clustering. This algorithm has two steps: 

Expectation step (E-Step) and Maximization step (M-Step). 

"In the Expectation or E-step, the missing data are 
estimated given the observed data and current estimate of 

the model parameters . . . .  In the M-Step, the likelihood 
function is maximized under the assumption that the 

missing data are known. The estimate of the missing data 
from the E-step are used in lieu of the actual missing 
data. " (Borman, 2004, 2009, p. 5) 

Advantages: 
• Be able to identifies various sizes and shapes of clusters; 
• "provides a disciplined way of eliminating some of the 

complexity associated with data" (Tan et al, 2006, p. 445). 

Disadvantages: 
• Slow, not handle well the data with a small number of 

samples but having a large number of features; 
• Not easy to deal with noise (Tan et al, 2006). 
• Problems with constraints where 2 clusters have the same 

equal probability but one belongs to both clusters and the 

other belongs to one cluster only, subsequently reducing the 

accuracy of the classification (Bodyanskiy, n.d.) 

2. 1.2.5. Evaluation of Clusters 

A key concept in the development of a clustering algorithm is the 

measure of similarity, commonly it is some form of a distance 

measure between data points (Matteucci, n.d.). After a data set has 
been clustered, results of the clusters need to be evaluated or 
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measured in order to find out whether the outcome derived from 
the data analysis is correct and val id, and that the employed 

technique is rel iable and suitable  for clustering a particular data set . 
According to Tan et al (2006) ,  the three categories of c lustering 
validation are unsupervised measures, supervised measures and 

relative measures. 

• Unsupervised measures are based on cohesion and separation of 

clusters . Cluster cohesion measures the "closeness" relationship 
between data within a cluster . Cluster separation measures the 

degree of separation of the data between clusters . 

The fol lowing diagrams i l lustrate a cluster cohesion and separation : 

(a) cohesion ( b) separation 

fig ure 2-4 : graph based view of cluster cohesion and separation, 

extracted from Tan et al (2006,  p .  402) 

• Supervised measures are based on 

o classification-oriented measures (with different types of 

measures such as entropy, purity, precision, recal l and F­

measure) to measure whether the class to be predicted 

matches up to the training class in the data set. 
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o Similarity-oriented measures to compare the ideal cluster 

similarity matrix and the ideal class similarity matrix. 

• Relative measures can be either unsupervised or supervised 
measures and they are used for comparison of different clusters. 

2. 1.2.6. Problems with clustering 

According to Matteucci (n.d. ), some problems associated with 

clustering techniques are: 

• "Current clustering techniques do not address all the 
requirements adequately (and concurrently); 

• Dealing with large number of dimensions and large 

number of data items can be problematic because of 

time complexity; 
• The effectiveness of the method depends on the 

definition of "distance" (for distance based clustering); 
• If an obvious distance measure doesn't exist we must 

"define" it, which is not always easy, especially in multi­

dimensional spaces; 
• The result of the clustering algorithm (that in many 

cases can be arbitrary itself) can be interpreted in 

different ways. " (Matteucci, n.d, p. 5) 
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2.2 Data mining tools in bioinformatics 

High throughput technologies in bioinformatics such as microarrays, 
MRI and PET scanning have been developed recently. These 

technologies have been used to generate a large amount of data 
with high dimensions and complexities. This challenges researchers 

and scientists in the area of bioinformatics as to how to make good 

use of these data and how to analyse them effectively. They require 

analytical techniques and tools that are capable of handling data 
sets which have only a small number of samples and yet at the 

same time, is of very high dimensionality (e.g. gene arrays with up 

to 500,000 genes and mass spectrometry data with 300,000 values 

(Aliferis, Statnikov & Tsamardino, 2006)). Many DM software 

programs have been developed and used widely in many areas to 

analyse and extract useful information from the data. Recently, 

more attention has been given to using DM in the area of health 

and AD, with the aim of analysing the data to find biomarkers that 

can be used in diagnosing the disease as early as possible, so that 
better management treatments can be provided to patients. Table 

2-3 provides a summary of some of the many DM software 

packages that are currently used for mining biomedical data. 
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Table 2-3 : DM software programs for mining medical 

data, adapted from Levy, Statnikov & Al i feris (2005 ,  p .  6-7) ; Chu, 

Narashihan, Ti bshirani & Tusher (200 1 ,  p. 1 4) ; WEKA 3 . 6 . 1 (2009) ; 

Tanagra 1 .4 . 31 (200 3 )  

Name Supervised Classification Cross-

validation for 

performance 

estimation 

A vadis Decision trees yes 
Prophetic Neural networks 

Support vector machines (SVM) 

BRB Nearest centroid yes 
ArrayTools K-Nearest Neighbor 

SVM 

Compound Covariate Predictor 

Diagonal Linear Discriminant 

caGEDA Nearest Neighbor methods Yes 

Nalve Bayes classifier 

GeneCluster 2 Weighted voting yes 
K-Nearest Neighbor 

GenePattern Weighting voting yes 

GeneMaths XT Neural network yes 

K-Nearest neighbours 
SVM 

Genesis SVM No 

GeneSpring K-Nearest neighbours Yes 
SVM 

PAM Nearest shrunken centroids yes 

SAM Unsupe;?rvised classif ication : 
K- Nearest neighbours Yes 
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Tanagra C .45  Yes 

Multi-layer perception 
Logistic regression 
Na"ive Bayes classifier 

Meta-learning techniques 

( Boosting, Bagging) 

WEKA K-Nearest neighbours yes 

Explorer Decision trees 

Rule sets 

Bayesian classifiers 

SVM 

Multi-layer perceptron 

Linear regression 

Logistic regression 
Meta-learning techniques 

{Boosting, Bagging) 

Decorate 

Multi-class classifiers 

The following sections describe DM software and techniques used in 

this study. 

2 . 2 . 1 S ig nificance Analysis of M icroarrays {SAM ) p rogram 

SAM is an unsupervised learning analysis program that can be used 

to find significant difference in gene expressions . SAM technique 

was initially  proposed by Tusher, Tibshirani and Chu ( 20 0 1 ) ,  and 
the SAM software program was created by Narasimhan and 

Tibshirani and distributed by Stanford University (Chu et  al, 

20 0 1 ) ; ) .  SAM is a MS- Excel plugin and it is a free licenced program. 
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According to SAM user guide and technical document (Chu et al, 
2001), input and output data formats for SAM are as follows: 

2. 2. 1. 1 Input data 

• The first row of the dataset contains response measurements, 

one per column, starting at column 3. 

• The remaining rows of the dataset contain gene expression 

measurements one line per gene with the following format: 

o Column 1 for gene Name 

o Column 2 for gene ID 

o Remaining column for gene expression 

measurements in numeric values. 

2.2.1.2 Output data 

• SAM plot shows positive significant genes (red colour) and 

negative significant genes (green colour) on the plot. 

• SAM output lists all positive and negative significant genes in 

the following format: 

Row number, gene name, gene ID, SAM score, denominator 
(S + S0),  q value and local False Discovery Rate (FDR) 
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2 . 2 . 1 . 3  Algorith ms 

SAM uses the following algorithm to f ind genes with significant 
differences in expression.  

1 .  Calculate a statistic score (d) : 

i = 1 ,2  . .  , p  
r; 

r1 is a score 

d; = 
S; + So 

s; is a sta n d a rd deviation 

so is  excha ngeab i l ity factor 

2. Calculate the order of score(d) : d1 ::; d2 ::; dp 
3. Take B set of permutations of the response value Yi, 

For each permutation b 

Calculate d/b 

*b *b *b Calculate order of d1 ::; d2 . . .  ::; dp 

Estimate the order of score(d) d; = (1/8) 'i.b d/b 

4. Plot d; values against the d; 

5. For a fixed threshold �' start at  the origin 

Mo ve up to the right 

Find first i=i1, where d; _ d; > � 
Label all genes past i1 as significant positive gene 

Move down to the left 

Find first i = i2 where d; _ d; > � 

Label all genes past fa as significant nega tive 
genes 

For each � 

Compute cutup � 

Compute cut1ow � 

6. For all � values 
Compute the total number of significant genes 

36  



Compute median number of falsely called genes 

7. Estimate the proportion of unaffected genes 

8. List significant  genes with specified L\ 
9. Compute False Discovery Rate {FOR) 

1 0. Compute q-value 

1 1 .  Compute local FOR 

Algorith m 2- 1 :  SAM algorithm for finding significant genes in a data 
set, adapted from Chu et al (200 1 , p .  27-29) and Wie (n .d . , p .2)  

SAM handles missing data from a data set by using a k- Nearest 
Neighbor algorithm. The following are steps for this algorithm : 

1 .  For each gene i having at least one missing value 

a .  Let Si be the samples for which gene i has no missing 

values. 
b.  Find k nearest neighbor to gene, using only sample Si to 

compute the Euclidean distance. When computing the 

Euclidean distance, other genes may ha ve missing values 

for some of sample Si; the distance is a veraged 
over the non-missing entries in each comparison 

c. Impute the missing sample values in gene I, using the 

averages of the non-missing entries for the corresponding 

sample from the k nearest neighbors. 
2. If a gene still has missing values after the above steps, 

impute the missing values using the a verage {non-missing) 
expression for that  gene. 

Algorith m 2-2 :  k-nearest neighbour algorithm, extracted from Chu 

et al (200 1 . ) ,  p1 4-1 5)  
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2.2.2 Prediction Analysis of M icroarrays ( PAM) program 

PAM is a supervised learning analysis program that was created by 

Tibshirani, Hastie, Narasimhan and Chu (2002) at Stanford 

University. PAM can be used for classification, survival analysis and 

regression tasks, on gene expression data using the nearest 

shrunken centroid algorithm. PAM is a MS-Excel plugin and it is a 

free licenced program. According to PAM user guide and manual 

(Hastie, Narasimhan, Tibshirani & Chu, 2002), input and output 

data formats for PAM are as follows: 

2.2.2.1 Input Data 

Input data format for PAM is similar to SAM but PAM can be used to 

handle a standard classification problem, survival analysis and 

regression. Therefore input data format for each type of 
classifications are different as follows: 

};,- Classification: 
• The first three rows of the dataset consist of class labels 

(required), sample and batch labels (optional). 

• The remaining rows of the dataset contain gene expression 
measurements one line per gene with the following format: 

o Column 1 for gene Name 

o Column 2 for gene ID 

o Remaining column for gene expression 

measurements in numeric values. 

38 



� Survival analysis and regression: 

Data format is similar to classification. But for survival analysis, 
class labels are replaced by Survival time and Censoring status 

label, and for regression, class labels are replaced by Outcome 
labels. 

� PAM handles missing data from a dataset by using a k-Nearest 

Neighbor algorithm. The algorithm is the same as the one used 

in SAM. 

2.2.2.2 Output Data 

• PAM plots: plots for training errors, test errors, cross validation 

(CV), CV probabilities, shrunken centroids and test probabilities. 

• PAM output: a list for a subset of significant genes in the 

following format: 

Gene Name (column 1),  ID (column 2) and following columns for 

centroid scores of all the classes specified in the data set. 

• Prediction output: a confusion matrix that lists all actual and 

predicted class labels with their prediction probabilities. 
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2 . 2 . 2 . 3  Algorith ms 

PAM uses the nearest shrunken centroid as a technique for 

classification . The nearest shrunken centroid algorithm is described 

as fol lows : 

1 .  Let Xij be expression for genes i=1  . .  p and samples j = 1  . .  n 

2. Let Ck be indices of nk samples in class k 

3. Calculate the mean expression value in class k for gene i 
4. Calculate /h component of the overall centroid for class k 

Xi = 2
n

j = 1  Xij/n 

5. Let dik = (Xik - Xi )/S i  
6. Shrink each dik towards O:  

Apply K-fold cross validation to select � 
Calculate shrinkage by soft thresholding 

o'ik = sign (dik) ( l dik l - !::i) + where + means 

positive part 

7. Calculate new shrunken centroid 

Algorith m  2 . 3 : PAM algorithm, adapted from Prediction Analysis 

of Microarrays user guide and manual ( Hastie et al (20 02 ) ,  

p .  3 3 -37 ) ; Supervised learning ( Hastie & Tibshirani, 2002 ,  p .  32-

33 ) )  
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2.2.3 WEKA program 

According to KDNuggets (2006), 28 DM software programs were 

used in 2005 and one of them was the WEKA program, which was 
ranked 11 th. WEKA has been developed and maintained since 1994 

by the WEKA team (Markov & Russell, 2006). WEKA consists of 

learning algorithms that can be used to analyse data sets and to 

predict new classes (Witten & Frank, 2005). It provides three types 

of graphical user interfaces (refer to APPEN DIX B for screen shots of 

WEKA interfaces) 

• Explorer interface for accessing menu options and form filling. 
• Experimenter interface for automating the process of 

comparing different learning algorithms on data sets with 

different parameter settings. 
• Knowledge flow interface for configuring data sources and 

learning algorithms. 

WEKA is a free DM program with many features (Markov & Russell, 

2006) 
• many different algorithms are provided (e.g. logistics, 

decision tree J48, Bayes Net, Random Forests); 
• many different FS methods (e.g. best first, 

greedy, Forward sequential selection, backward 

sequential selection, wrappers, classifiers); 
• free open source; 
• platform independent; 
• easy to use 

The following section describes briefly classifiers from WEKA that 

are used in this study. 
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W E KA Classifiers 
23  WEKA classifiers have been used in this research study. Each of 

these is described briefly  in this section and papers detail ing more 

information relating to each of them can be found in APPENDIX C.  

These classifiers are categorised into 6 groups as shown in Table 2 -4 .  

Table 2-4 : 23 WEKA classifiers 

Type of c lassifiers Classifiers 

Function SMO 

Simple Logistic 

Logistic 

Multi layer Perceptron 

Bayes Bayes Net 

Na'ive Bayes 

Na'ive Bayes Simple 

Na'ive Bayes U pdatable  

Lazy ( Instance based learning) I B l  

I Bk 

KStar 

LWL 

Meta Ada Boost 

Classification Via Regression 

Decorate 

Multiclass classifiers 

Random Committee 

Ordinal classifier 

Rules PART 

Tree ]48 

NBTree 

LMT 

Random Forest 
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2.2.3.1. Function Classifiers 

SMO 

Sequential Minimal Optimization (SMO) was created by John Platt, 

1999. SMO algorithm is used to solve large mathematical 

programming optimization problems which are broken down into a 

number of smaller problems and subsequently are solved 

systematically (An & Slezak, 2008). SMO replaces all missing 

values, converts nominal attributes to binary attributes and 

normalizes all attributes automatically as a default option (Witten & 

Frank, 2005; WEKA 3.6.1,  2009). Advantages of SMO are: less 
computational time used to solve problems, only standard memory 

size is required to handle very large Support Vector Machine (SVM) 

training problems and are more tolerant to noise (Microsoft.corn, 
2009). 

Logistic 

This algorithm uses a two-class logistic regression model. As 

defined by An and Slezak (2008, p. 68): "Logistic regression is a 
regression model for predicting the value of binomially distributed 

response variable Y = {C1 , C2}". The logistic with pairwise 

classification is used for predicting the estimates of probabilities for 

multi-class problems (Witten & Frank, 2005). The pairwise 

classification is "a class binarization procedure that converts a 
multi-class problem into a series of two-class problems, one 

problem for each pair of classes" (Park & Furnkranz, n.d. p. 1). 

It is used to build logistic regression models, using LogitBoost. 

LogitBoost uses a simple regression procedure as a base learner for 

performing classification for multi-class problems, and selects 

attributes automatically based on the number of iteration to run 
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using cross validation. This algorithm can handle noise very well. 
(Witten & Frank, 2005; Cai, Feng, Lu & Chou, 2005). 

M ultilayer Perceptron 

"An MLP is a network of simple neurons called perceptrons. 

The basic concept of a single perceptron was introduced by 

Rosenblatt in 1 958. The perceptron computes a single output 

from multiple real-valued inputs by forming a linear 
combination according to its input weights and then possibly 

putting the output through some nonlinear activation 

function. "  (Honkela, 2001, p. 1 )  

According to Seung (2002) multilayer perceptron uses 

backpropagation as an algorithm to train and classify the neural 

network. The backpropagation algorithm consists 2 phases: 

>- Forward phase for transforming input vectors into output vectors 

and computing errors between the expected and actual outputs. 
>- Backward phase for propagating errors and updating the results 

from both forward and backward phases. 

2.2.3.2. Bayes Classifiers 

Bayes Network 

According to Tan et al (2006, p. 176), the network provides "a 

graphical representation of the probabilistic relationship among a 
set of random variables". It consists of a directed acyclic graph and 

a probability table for each node, where each node represents a 

random variable. The network makes classification by creating the 
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structure of the graph and calculating the probability values in the 

table for each node. 

According to Groth (2000), some advantages and disadvantages of 
using Bayesian networks as follows: 

Advantages: 
• Easy to understand the way of the network works. 
• The network is capable of classifying the data very well. 

Disadvantages: 

The prediction is bias toward outcomes that have high 

probabilities. 

Na'ive Bayes 

According to Witten and Frank (2005) and Mitchell (2005), Na'ive 

Bayes is based on Bayes's rule for probability which is, if there is a 

hypothesis H and observed data E based on H, then the probability 
of H holds over E will be Pr[ H  I E] = (Pr [ E  I H] Pr[H])  / Pr[ E] with the 

assumption that the attributes are independent. Na'ive Bayes uses 
density estimators to learn the mapping of attributes to the 

probability. 

Na'ive Bayes handles missing values very well because if there is a 
missing value, the algorithm does not count it and the probability 

will be calculated by using actual values which have been counted 

rather than on the total values. 
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Na"ive Bayes Simple 

This classifier uses a simple Na'i"ve Bayes classifier to model numeric 

attributes with the implementation of a normal distribution (Witten 
& Frank, 2005; WEKA 3.6.1, 2009) 

Na"ive Bayes Updateable 

This is an updateable version of Na'ive Bayes but it does not handle 

the discretization process in the same way as Na'ive Bayes; it only 

uses a density estimator for the mapping of attributes to the 
probability (Witten & Frank, 2005; WEKA 3.6.1, 2009). 

2.2.3.3. Lazy Classifiers 

IB1 

IBl  is a simple instance based learner that stores samples of the 

training set and uses Euclidean distance measures to work out 

which sample is the closest to the unknown sample of the test set. 

As a result, the first sample (if two or more samples have the same 

minimal value) of training set with a smallest distance is selected 

and its class is then used to predict the class sample of the test set. 

IBl is simple, effective but slow (Witten & Frank, 2005). 

IBk 

IBk is similar to IBl,  using the same Euclidean distance measures 
but the number of nearest neighbors (k) can be specified at the 
time of running the classifier. If two or more neighbors are 

associated with a prediction, IBk converts the distance between 

46 



neighbors into weightings and then makes the decision (Witten & 

Frank, 2005). 

KStar 

KStar also uses the nearest neighbor method to predict the class of 

an unknown sample based on the samples learned in the training 

set, but it uses entropy based distance measures (WEKA 3.6.1, 
2009) instead of Euclidean. 

According to Cleary and Trigg (1995, p. 4), the entropy approach is 
based on information theory and "the intuition is that the distance 

between instances be defined as the complexity of transforming one 

instance into another". The use of an entropy based distance 

measure has some advantages such as handling nominal and 

numeric attributes, and missing values consistently. 

LWL 

LWL is locally weighted learning classifier. It is also a type of 

instance based learner algorithm, thus the classifier is constructed 
based on the weighting of samples. A classifier (e.g. J48 classifier) 

needs to be specified at the time of running the LWL (Witten & 

Frank, 2005). 

2.2.3.4. Meta classifiers 

AdaBoostM 1 

AdaBoostM1 is a special classifier designed only for nominal class 

prediction. The way it works is that all the samples in the training 
data are given the same weighting at start. They are then re-
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assigned weights based on the results of the classification after 

each iteration in the training. As a result, some samples might have 

more weighting than others and some samples might have less. The 

process continues and at the end of each iteration, it reveals how 

often samples have been classified incorrectly. Only samples with 

correct classification will have their weights updated. All samples 

are nomalised and the weight is re-calculated for each sample. The 

weights of all the classes are summed up and the class prediction is 

based on the class with a highest total weight (Witten & Frank, 
2005) 

Classification Via Regression 

As indicated by its name, this technique uses regression methods 
for classification. 

Decorate 

According to Melville (2004), the decorate algorithm is designed for 

generating diverse ensembles by using artificial training data. At the 

end of each iteration, an ensemble is created, artificial training data 

are generated, and the algorithm learns a new classifier and adds it 

to its current ensemble. Both original and artificial data are used to 

train the classifiers. The class labels for the artificial data are 
selected so they are totally different from the current ensemble's 

prediction. The process continues until the size of the target 

committee is obtained or the number of iterations is completed. The 

aim here is to produce a larger ensemble as it produces a more 

accurate model. However, the disadvantages are higher model 
complexity and training time (Witten & Frank, 2005). 
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M ulticlass Classifier 

This algorithm uses a two class prediction to classify the datasets 

with more than two classes. In order to do that the algorithm uses 
two strategies for classification: 

• Voting is done by using a classifier to vote for a class and 

label an object to the class with the highest number of votes. 
• Combination of probability of classifier estimates, "the 

classifiers output an estimated class probability and assign a 

test object to the classifiers with maximal classification 
output" (Tax & Duin, 2002, p. 1). 

Random Committee 

The random committee algorithm constructs an ensemble of base 

classifiers in a random fashion by using a different seed number 

every time a base classifier is created. It then averages the 

predictions from all these classifiers to determine a final prediction 

(WEKA 3.6.1, 2009; Witten & Frank, 2005). 

Ordinal Class Classifier 

This is a Meta classifier that supports the application of standard 

classification algorithms for ordinal class problems (WEKA 3.6.1, 

2009). 
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2.2.3.5. Rules classifiers 

PART 

According to Witten and Frank (2005), the PART algorithm builds a 

partial decision tree to obtain a rule instead of building a complete 

tree. A split and conquer approach is used to build a rule and to 

eliminate the sample which has been covered, the cycle continues 
for the rest of the samples until all samples are removed. In order 

to make a rule, a temporary tree is created based on the current set 
of samples, the leaf node with the most number of samples is 

considered as a rule. The temporary tree is then deleted. 

2.2.3.6. Tree classifiers 

148 

J.48 is an updated version of C4.5. C4.5 is an extended version of 

the Iterative Dichotomiser (ID3) and is an algorithm for decision 

tree classifications (Han et al, 2006; Pujari, 2001 ). "C4. 5 is the 

most popular in the machine learning community" (Salzberg, 1994, 

p. 1 ). According to Kohavi and Quinlan (1999), C4.5 constructs 

decision trees based on training data sets. The way that C4.5 works 
is to look at all attributes and applies normalized information gain 

measures to each attribute to work out which one has the highest 

normalized information gain. An attribute with the highest 

normalized information gain is then selected. The algorithm uses 
the selected attribute to make a decision to split a node and 
continues to work in that way on the sublist of the node to create 

child nodes. A leaf node is a class and a test node is a node that 

consists of 2 or more child nodes, each with a subtree (Kohavi & 
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Quinlan, 1999). When comparing C4.5 with its earlier version ID3, 

C4.5 has a number of improvements such as 

• Working with data that consist of both continuous and discrete 

attributes. 
• Handling data with missing attribute values. 
• Pruning trees after they have been created. 

LMT 

LMT is an algorithm that constructs logistic model trees; a type of 

"classification trees with logistic regression functions at its leaves". 

(WEKA 3.6. 1 ,  2009). The logistic model tree to be built is based on 

a normal decision tree. The logistic regression model is built for 

each node, the trees are pruned based on certain conditions and all 

the logistic regression models are combined to make a single model 

(Landwehr, Hall & Frank, 2003). LMT handles binary and multiclass 
target variables. In terms of attributes it is able to deal with missing 

values as well as numeric and nominal data types. 

N BTree 

NBTree is a hybrid of a decision tree and NaYve Bayes classifiers. 

The Na"ive Bayes classifiers are created at the leaves of the decision 
tree. When a decision tree is created, the algorithm performs a 

cross validation to determine whether a node should be split further 

or it should be terminated as a leaf node comprising of a NaYve 
Bayes classifier (Witten & Frank , 2005). 
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Random Forest 

Random Forest is an algorithm for decision tree classif ication 

techniques. The algorithm constructs a forest of "random trees", 
hence the name. According to Tan et al (2006) , this algorithm 

consists of three steps : 

• First step is to create random vectors (data points) by 
randomizing the training data (Figure 2 - 5 ,  step 1 ) .  

• Second step is to use these random vectors to train multi p le 

decision trees (Figure 2-5 , step 2 ) .  
• Third step is to combine the predictions of a l l  trained decision 

trees to form a predictive model tree (Figure 2 . 5 , step 3) . 

The steps of the Random forest algorithm are i l lustrated in the 

fol lowing diagram : 

Step 1 Original training data (D) randomize random vectors created 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - t - - - - - - - - - - - - - - -

J l l l i 
Step 2 Data point 1 data point 2 data point 3 data point 11 

Step 3 

i i i i i 
Trained tree 1 trained tree 2 trained t3 trained tn 

i * * * i 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - J - - - - - - - - - - - - - - - - - - - - - - - - - - · 
Predictive model tree 

Fig u re 2-5 : Random Forests, adapted from Tan et al, 2006, p .  21 5 )  
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According to Breiman and Cutler (n.d.),  Random forests have the 

following features: 

• "It does not overfit. 
• It is unexcel/ed in accuracy among current algorithms. 
• It runs efficiently on large data bases. 
• It can handle thousands of input variables without variable 

deletion. 
• It gives estimates of what variables are important in the 

classification. " {Breiman & Cutler (n.d., p. 3)), 

2.3 Data mining approaches used to analyse data in health 

and AD area. 

DM techniques have been used to analyse data in health areas such 
as bioinformatics and AD. 

2.3.1. General health areas 

� DM has been used in bioinformatics and pharmaceutical 

industries to identify normal and abnormal structural patterns 

of genes. The gene structures are analysed to discover any 

related diseases and then the findings can be used for 

developing medicines for treatments (Rudjer Boskovic 

Institute, 2001; Christen, 2005) 

� DM techniques have also been used to analyse data in the 
metabolomic field. Classification techniques are used to 

generate models from metabolic data. The models are then 

used to diagnose patients with breast cancer (Kim, Park & 
Lee, 2007). 
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� O M  techniques using 103 and Na"ive Bayesian classifiers were 

implemented in approaches for diagnosing the localization of 

primary tumors, prognostics of breast cancer recurrence, 

Thyroid diseases and Rheumatology (Kononenko, 1993) 

� According to Ng and Pei (2007), O M  has been used to analyse 

a large amount of data generated through high-throughput 

biotechnologies e.g. DNA microarrays. O M  techniques have 
been used to: 

- analyse gene expressions for determining a certain 

disease condition, for example, lung cancer, 
- predict the response of the patient to a certain 

treatment, for example, cancer chemotherapy 

treatment, 
- predict how well patients recover from a certain medical 

intervention, for example, transplant operation, 
- understand a disease mechanism, for example, how a 

gene is expressed in a certain disease. 

2.3.2. Al:zheimer's disease areas 

At present, one of the existing biomarkers for diagnosing AD is the 

use of tau protein and �-amyloid peptide concentration in 

cerebrospinal fluid (CSF) (Park, Li & Kricka, 2006; Hoffman & 
Froemke, 2009; McCorquodale & Myers, 2008). By identifying the 

concentration level of these peptides in CSF, people can be 

diagnosed for AD with the accuracy of 83°/o (ScienceDaily, 2009). 

Magnetic Resonance Imaging (MRI) and Positron Emission 
Tomography (PET) scanning are also used to scan the brain of 
potential patients with AD to identify the presence of �-amyloid 
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deposits in the brain (Hoffman & Froemke, 2009; McCorquodale & 
Myers, 2008). People with AD can be diagnosed with 100°/o 

accuracy with MRI (Lee-Frye, 2009), "MRI reflects clinically defined 

disease stage better than the CSF biomarkers tested" (Vemuri et al, 

2009, p. 4). However these methods will only show that people 

have AD already and that neuro-degeneration has already occurred. 

In addition, these methods also have other limitations; collecting 

CSF is highly invasive and potentially dangerous, MRI and PET scans 
are very expensive and time consuming and may be distressful to 

people with dementia. Equipment associated with MRI/PET is very 

expensive and require highly skilled personnel to operate them -

thus limiting access to areas that have the means to support them. 

Thus the search is on for a diagnostic tool that's inexpensive, has a 

high specificity and can be carried out as easily and accurately as a 
"pregnancy test", thus enabling diagnosis as early as possible. 

A number of existing approaches have used DM techniques in terms 

of analysing AD data. The following sections will discuss three 

approaches in detail: analysing Magnetic Resonance Images (MRI) 

of Alzheimer's brain (Chen & Herskovits, 2005), diagnosing AD 

based on Plasma signalling protein (Ray et al, 2007) and 
identification of a 5 protein signature (Ravetti & Moscato, 2008). 

2.3.2.1. Analysing M agnetic Resonance Imaging brain 

approach (Chen & H erskovits, 2005). 

This approach involved using DM techniques in the process of 

detecting differences in the brain's structure and functions of AD 
people as compared with NAD people. This was done by analysing 

their MRI images from scans (Nuzzo, 2007). 
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Chen and Herskovits (2005) proposed a Bayesian Network Classifier 
with Inverse Tree structure (BNCIT) to work with MRI images. 

According to Chen and Herskovits, the BNCIT method was based on 

a Bayesian network (BN) but, having an inbuilt variable subset 
selection. With this feature, BNCIT overcomes problems with BN for 

handling high dimensional data in MRI images with millions of 

variables. 

The procedure involved with BNCIT is as follows : 
• obtain a training data set for a subject with MRI images; 
• apply BNCIT to the training data set to create the classifier; 
• predict AD for a new subject using his/her MRI images and the 

classifier. 

Results achieved by BNCIT were more accurate than other methods 

such as decision tree and Na'ive Bayes. 

2.3. 2. 2. Classification and prediction of clinical Alzheimer's 

diagnosis based on plasma signalling proteins 

approach ( Ray et al, 2007) 

Ray et al (2007) hypothesised that there would be characteristic 
changes in the signalling proteins during the process of developing 

AD. Ray et al proposed that if these changes can be detected then 

the disease can be detected based on the recognition of these 
changes. 

With the hypothesis above, Ray et al .applied DM techniques via 

SAM and PAM on an AD data set consisting of 259 plasma samples. 

They first successfully identified 19 proteins with highly significant 

gene expressions by using SAM; and subsequently an 18 protein 

biomarker signature was discovered by using PAM. The 18 protein 
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signature was evaluated by using the AD test set with the 
classification accuracy of 90°/o for AD and 88°/o for non-demented 

control (NDC). The biomarker was then tested on the mild cognitive 

impairment (MCI) test set to see how well the classifier can predict 

the A D  from MCI data. Based on the results, the approach 
predicted, with a classification accuracy of 9 1  °/o for MCI, patients 

who subsequently developed AD. This is significant because if MCI 

patients that can potentially developed AD can be identified early in 

the process, then steps can be put in place for their 
treatment/management. The dilemma here is that there is currently 

no cure for AD. 

The 18  protein signature is quite significant in terms of "finding a 

superior molecular test for an earlier diagnosis of Alzheimer's 

disease (AD) " (Ravetti & Moscato, 2008, p. 1). The findings from 

this paper contributed significantly to AD area in terms of 

advancements in the development of possible diagnostic tools for 

AD. 

2.3.2.3. Identification of a 5-protein biomarker for 

predicting AD ( Ravetti & Moscato, 2008) 

Subsequent to the publication of Ray et al (2007)'s experiments, 
which discovered the 18 protein signature, Ravetti and Moscato 

(2008), in light of recognising the importance of molecular 

biomarker signatures, carried out experiments involving biomarker 

signatures of 10, 6 and 5 proteins. Utilising the Ray et a/'s data 

sets, Ravetti and Moscato used an integrative data analysis method 

as their methodology to carry out their experiments. Their method 

comprised of 4 steps: abundance quantization, FS, literature 
analysis and classification selection. 
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As a result of the first 2 steps, together with literature analysis, the 

number of proteins selected out of the original 1 20 was 10, 6 and 5. 

DM programs PAM and WEKA, with 23 classifiers, were selected to 

test the accuracy of the classifiers trained using these protein 

signatures. 

According to Ravetti and Moscato, the experiments have achieved 

several important findings: A 5 protein signature (a subset of the 

Ray et a/'s 18 protein signature) has the same overall classification 

performance as the 18. The 5 protein signature gives a smaller 

average prediction error when testing on 23 WEKA classifiers with 

the accuracy of 96°/o on AD. With some classifiers such as Simple 

Logistic and Logistic the accuracy is 100°/o for AD and 92°/o for NDC. 

Their findings are very significant in terms of reducing the number 

of proteins in biomarker signature, while the overall classification 

performance is still very robust. The 5 protein biomarker would be a 

simpler diagnostic technique for diagnosing AD at the early stages 

whilst subsequently reducing time and cost. 

2.4 H igh dimensional data reduction approaches 

As mentioned previously, data sets in bioinformatics are 

characterised by small sample size and very high dimensionality, 

and thus approaches for systematic selection of relevant features 

are important. A large number of attributes in a data set can create 

problems for clustering techniques, especially with a gene data set, 

which consists of a large number of variables, compared with the 

number of records (Bontempi, 2007). In addressing this problem, 

Bontempi proposed a blocking strategy. The key point of the 
proposed strategy is to increase the number of conditions applied to 

FS, hence reducing the dimensions of data. The results of their 

experiments (Bontempi, 2007) show that, with the blocking 
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strategy algorithms, the average accuracy of classification is better 
than the algorithm without the blocking strategy. 

Qi Tan et al (2008) asserted that Linear Discriminant Analysis (LDA) 

and Biased Discriminant Analysis (BDA) techniques have been used 

in microarray classification to address the problem of high 

dimensional data. Qi Tan et al (2008) proposed a new technique to 

reduce high dimensional data by combining LDA and BDA, known 

subsequently as Adaptive Discriminant Analysis (ADA). Results from 
this study shows that ADA is more efficient than LDA and BDA (Qi 

Tan et al, 2008).  

Biclustering algorithms have also been employed to find more 

subsets in a data set. The algorithm performs selections on both 

dimensions of the data matrix table at the same time. It applies 

local conditions to the data in the same cluster, resulting in more 

subsets being found, thus leading also to more patterns being found 

in the subsets (Madeira & Oliveira, 2004). Subsequently, Aguilar­

Ruiz and Divina (2005) reported that the Evolutionary Biclustering 

(EBI) approach is more efficient than the traditional biclustering 

algorithms. The key to this new approach was to find the biggest 
size clusters with lowest average residues. It gave better results in 

terms of finding more types of genes and overcame the overlapping 

problem in traditional clustering techniques. However, according to 

Christinat, Wachmann and Zhang (2008) there is a problem with 

biclustering algorithms when discrete data are involved. Information 

may be lost in the process of discretization. In order to address this 

problem, the combination of both algorithms on discrete and 

continuous data needs to be carried out one after another, using the 
result from discrete data as well as the input source for the 

algorithm on continuous data. The combination approach is a more 
effective way of clustering gene data (Christinat et al, 2008). 
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2.5 Feature selection techniques 

Another approach to address the dimensionality problem is to apply 
FS techniques. This is a process of selecting an optimal ( of minimal 

size) subset of features based on criteria defined by Dash and Liu 

(1997, p. 2): "classification accuracy does not significantly 

decrease" 

Many FS techniques have been developed and applied in a variety 

of fields such as DM and bioinformatics (Saeys, Inza & Larranaga, 
2007; Portinale & Saitta, 2007). In general these techniques fall 

into three categories: filter methods, wrapper methods and 

embedded methods. 

Filter methods are performed prior to the use of a learning 

algorithm. They select relevant attributes by looking at the data and 

giving scores to attributes. Attributes with low scores are removed 
from the list of attribute selection, as a result, only a number of 

high scoring attributes are retained and considered as relevant 

attributes. The learning algorithm is then trained, based on the 
relevant attribute subset. 

Wrapper methods are different from the filter methods described 

above. Instead of finding a relevant attribute subset by an 

independent process, the wrapper method has a search induction 

algorithm as part of the subset attribute selection algorithm. 
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The following diagram illustrates the wrapper method with "black 
box" in detail : 

Training set training set Induction 
I I Feature selection search Algorithm 

t 
Feature set 

Feature Performance 
,,, estimate 

I Feature evaluation I , .  
Feature set Hypothesis 

,, 
I faduction aI2:orithm I 

Test set 
� I  Final evaluation , I 

Estimated 
Accuracy 

1lr 

F igure 2-6 : wrapper method algorithm to feature subset selection 

with black box, extracted from Kohavi & John ( 1 996 ,  

p .27) . 

As in the diagram above, according to Kohavi and John, the 
induction algorithm is considered as a "black box" which consists of 

FS, feature evaluation and induction algorithm itself . The way the 

method works is that the "black box" runs on the training data set, 

as a result, a subset of highest ranking features is created, and is 

used as a final feature subset for the induction algorithm to perform 

on the training set. The final evaluation is carried out by using the 
test set to estimate the .accuracy of the classifier. 
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Embedded methods are methods that have a FS algorithm built into 

classif iers, so that the search for relevant attri butes can be done 
within the classif ier itself on the data set . 

According to Saeys et al (200 7 ) ,  advantages and disadvantages 

associated with each of these three methods are detai led in the 

fol lowing table : 

Table 2-5 : Advantages and disadvantages of filter, wrapper and 

embedded methods, adapted from Saeys et al (2007 ,  p .  2 5 08)  

Method Advantages Disadvantages 

Fi lter Simple and fast computation, No interaction with 
scalable, independent of classif iers, ignores 
classification a lgorithm feature dependencies 

Wrapper Interaction with the classif ier, Risk of overfitting, 
considering feature computational cost is 
dependencies higher than filter 

method 

Embedded Interaction with the classif ier, Classi f ier dependent 
computational cost is less than selection 
wrapper method 
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2.5.1 Overfitting, Accuracy, computational cost: and time 

High dimensional data are normally associated with a large number 

of attributes or features in bioinformatics (Yu et al, 2004). 

Irrelevant attributes can lead to problems in generating classifiers: 

overfitting, accuracy, time and computational cost (Deng & Moore, 

1998; Yang & Honavar, 2007; Saeys et al, 2007). 

In terms of overfitting, they can cause the classifiers to be confused 

in the classification process. Some irrelevant attributes might be 

taken into account for prediction and as a result, the classification 

may be determined by those irrelevant attributes, leading to poor 

classification results. 

In terms of computational cost to perform classifications, irrelevant 
features cause the classifiers to spend more time to compute the 

prediction. Irrelevant attributes would increase the size of search 
space that cause the algorithm to take more time to explore all the 

possible combinations of all the features selected (Yang & Honavar, 

1997). This can be illustrated by the formula to calculate a single 

prediction: O(m3 
+ m2 1ogN where N is the number of data points 

and m is the number of attributes used in the classification process 
(Deng & Moore, 1998). 

Therefore, with relevant FS, the performance of learning algorithms 
is improved on a given data set (Portinale & Saitta, 2007). 
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2 . 5 . 2  Generic Steps i n  a Feature selection method 

According to Dash and Liu ( 1997) ,  FS techniques include the 

fol lowing steps : 

- Find a feature generation scheme for obtaining candidate 
subsets. It involves a search strategy. 

- Use an evaluation measure to measure the candidate subset . 
- Pick a stop ping criterion for determining the end point to stop 

the process of selecting the subset. 

The fol lowing diagram il lustrates the above steps : 

Original feature sets i------------ Generation 

No 

Subset Evaluation 

Good ness of 

the subset 

Yes 

figure 2-7 :  FS process, adapted from Dash and Liu ( 1997)  
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2. 5.2. 1  Generation procedure 

This procedure uses a type of search strategies to generate 

candidate subsets of features. Attribute evaluation methods and 

search strategies available in WEKA 3.6.1 are listed in Table 2-6 and 
2-7 respectively. Please refer to Witten and Frank (2005, p. 420-

425) and WEKA 3.6.1 software package for more information. Some 

search strategies used in this study are briefly described as follows: 

• forward sequential selection (FSS) 

FSS starts with an empty subset, examines all the attributes 

provided in terms of their performance, one feature at the 

time and then selects the best one to add to the list of the 

subset. This procedure stops when there are no more "best 
attributes" to be added to the subset. 

• Backward sequential selection ( BSS) 

BSS is the opposite of FSS. BSS starts with the whole set of 

attributes and subsequently removes the worst one at a time 

and, eventually, a smaller subset of best attributes is created. 

• Greedy search 

According to Kohavi and John (1996), greedy search is also 

called hill-climbing search or steepest ascent and it is the 

simplest search technique. It can search forward or backward 

through attribute subsets. The number of attributes to be 

obtained at the end of the search can be specified at the start 

of the search. 
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• Ranker 

Ranker is a ranking scheme . It sorts and ranks attributes. 

Ranker can "perform attribute selection by removing the 

lower-ranking ones" (Witten & Frank, 2005, p. 425). The 

number of attributes to be obtained at the end of the ranking 
can be specified at the start of the ranking scheme. 

• Race search 

According to Witten and Frank (2005, 424), the search 

"calculates the cross-validation error of completing attribute 

subsets using race search. " The race search can search 

forward, backward, schemata and rank racing. Attributes 

selected are ranked in a list. The search keeps doing that until 

all attributes are selected. The number of attributes to be 

obtained at the end of the search can be specified at the start 

of the search. 

2.5.2.2 Evaluation measures 

According to Dash and Liu (1997), evaluation measures are as 
follows: 

• Distance measures: for 2 classes, select a feature X which has 

a greater different between the 2 class conditional 

probabilities than feature Y 

• Information measures: a feature X is selected based on the 
information gain from feature X is greater that feature Y. 
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• Dependence measures: select feature X which has a 

correlation with class C higher than feature Y which has a 
correlation with class C. 

• Consistency measures: "find out the minimum sized subset 
that satisfies the acceptable inconsistency rate, that is usually 

set by the user. " Dash and Liu (1997, p. 6) 

• Classifier error rate measures: use a classifier as a function 

evaluation to evaluate features selected. The classifier also is 
used to classify the class based on these features. 

As shown in Table 2-6, there are a number of attribute evaluation 

methods in WEKA. They can be selected with the search methods 

(Table 2-7) in different combinations. 

2.5. 2.3 Stopping criteria 

Stopping criteria are based on the generation procedure such as a 

number of features required, a number of iterations reached or 

based on an evaluation function such as when an optimal subset is 

found or no better subset are generated. 
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Table 2-6 : Attribute evaluation methods, adapted from Witten and 
Frank, (2005 ,  p .  42 1 ) ,  and WEKA 3 . 6 . 1 (2009)  

Name function 

CfsSubsetEval Consider the predictive value of each 

attribute individually, along with the 

degree of redundancy among them 

ChiSquaredAtributeEval Compute the chi -square statistic of each 

attribute with respect to the class 

Classifiers u bsetEva I Use a classifier to evaluate attribute set 

ConsistencySubsetEval Project training set onto attribute set and 

measure consistency in class values 

FilteredSubsetEval Run an arbitrary subset e valuator on data 

that has been passed through an arbitrary 

filter. 

GainRatioAtributeEval Evaluate attribute based on gain ratio 

InfoGainAtributeEval Evaluate attribute based on information 
gain 

OneAtributeEval Use OneR 's methodology to evaluate 

attributes 

PrincipalComponents Perform principal components analysis 

and transformation 

Relief AtributeEval Instance-based attribute evaluator 

SVMAtributeEval Use a linear support vector machine to 

determine the value of attributes 

symmetricalUncer- Evaluate attribute based on symmetric 

AtributeEval uncertainty 

WrapperSubsetEval Use a classifier plus cross-validation 
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Table 2-7 :  Search methods, adapted from Witten & Frank, (2005 ,  

p .  421 ) and WEKA 3 . 6 . 1  (2009)  

Name Function 

BestFirst Greedy hill-climbing with backtracking 

ExhaustiveSearch Search exhaustively 

GeneticSearch Search use a simple genetic algorithm 

GreedyStepwise Greedy hill-climbing without backtracking; 

optionally generate ranked list of 
attributes 

UnearForwardSelection Extension of BestFirst 

RaceSearch Use race search methodology 

RandomSearch Search randomly 

Ranker is a ranking scheme, rank individual 

attributes (not subsets) according to their 
evaluation 

RankSearch Sort the attributes and rank promising 

subsets using an attribute subset 

evaluator 

ScatterSearch Performs an scatte search through the 

space of attribute subsets 

2 . 6  S u m mary 

This chapter has described the DM techniques with different 

classification and clustering techniques, and DM software packages 
(SAM, PAM and WEKA) in bioinformatics. The chapter also described 

DM approaches in health area in general and in Alzheimer disease, 
specifical ly .  Previous case studies of MRI approach (Chen & 

Herskovits, 2005 ) ,  p lasma signal l ing protein approach (Ray et al, 

2007)  and the identification of the 5 protein signature approach 
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(Ravetti & Moscato, 2008) have also been described. High 
dimensional data reduction approaches with FS techniques have 
been discussed in this chapter as well. 

In the next chapter, research approach and data sets used in the 

study are described in details. 
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3. Research Approach. 

This chapter describes the approach and the data sets used in the 

study. Section 3.1 detailed the research method, namely the 

engineering method; while section 3. 2 and 3. 3 describe the data 

sets used throughout the study. Lastly, limitations of the study are 

stated in section 3.4. 

3.1 Research Method in this study 

Figure 3-1 shows the steps in the Engineering method that was 

employed in this study. 
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3 .  1 . 1  Identify exisiting solution 

3 .  1 .2 Experiments and proposed 
improvements 

3 .  1 .  3 Develop new proposed 
improvement 

3 . 1 .4 Evaluate the new proposed 
improvement 

Yes 

improvement ? 

No 

End 

F igure 3- 1 :  Engineering method used in this study adapted from 

Adrion ( 1 993 )  

3 . 1 . 1 .  Identify existing sol utions 

DM tools in bioinformatics : SAM, PAM and WEKA programs are 
some of the many DM techniques that have been used previously by 

researchers. These algorithms a nd FS methods were i nvestigated in 
terms of their a lgorithms, performances, application areas, 

strengths and weaknesses in the first step of this study. The two 
previous case studies (described in sections 2 . 3 .2 . 2  and 2 . 3 .2 . 3 )  
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were then examined thoroughly for their methods, procedures, 
materials involved, results and limitations as they form the basis of 

existing solutions --- the starting point for this study. 

3.1.2. Experiments and proposed improvements. 

As a proof of concept, this study attempts to carry out the same 

steps using the information provided in these two previous case 
studies to re-produce their associated results. Based on analysis of 

these results, a systematic approach was used in further 

explorations of the data; with the aim of identifying other 
interesting protein signatures. Experiments with various FS 

strategies were also carried out to examine the impact of different 

FS methods returning different subsets of selected features and how 

that then affects the accuracy of classification models trained using 
these corresponding set of features. 

3.1.3. Develop the new proposed improvements. 

Once new protein signatures have been identified, PAM and WEKA 

with 23 classifiers (Section 2. 2. 3, Table 2-4) will be used to 

investigate the performances of classification models trained using 
these selected signatures. The 23 classifiers used are the same as 

Ravetti and Moscato's, because one of the aims here is to be able to 

carry out a comparison of the obtained results to that of the Ravetti 

Moscato study. As the prote in signatures from this study are slightly 

different to those in Ravetti and Moscato, it is important to use the 
same 23 classifiers to ensure that any differences in the 

classification results are due to the prote in signatures. In terms of 

specifically addressing the research question 1.4. 1 .2, WEKA FS 

methods were also used to select different feature subsets which 
were subsequently evaluated via a WEKA classifier. 
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3.1.4. Evaluate the new proposed improvements 

Based on the analysis of the results from the previous step (3.1. 3), 

a subset of tasks associated steps 3.1. 2 and 3.1. 3 in Figure 3-1, 

were repeated for refinements of the results of the DM until no 

further improvements were observed 

3.2 Alzheimer's disease data sets used in the study 

The AD data set used in this study was obtained from Ray et al 
(2007). The following section describes them in detail: 

The AD data set has a total of 259 samples with 1 20 known 

signaling proteins in MS-Excel format. The plasma samples 

associated with these data points were collected from several 

academic centres specialising in neurological or neurodegenerative 

diseases (Ray et al, 2007). For full details of how the data were 

processed please refer to the information found on the Nature 

website listed below: 

http: //www.nature.com/nm/journal/v1 3/n 11/extref/nm 1653-Sl .pdf 

The data set is divided into a number of subsets as shown in Table 

3-1. 
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Table 3- 1 :  Description of subsets of the Ray et al data 

Clinical d iagnosis Number 

�lzheimer disease (AD) 85 

Non-demented control ( NDC) 79 

Training set 
AD : 43 

NDC : 40 

Test set 

AD : 42 

NDC :  3 9  

Other dementia (OD) 1 1  

Mild cognitive Impairment (MCI) 47 

MCI - >  AD : 22 

MCI - >  OD : 8 

MCI - >  MCI : 1 7  

Other neurological disease (OND) 21 

Rheumatoid arthritis (RA) 1 6  

B lood plasma from 2 5 9  individuals that were clinically diagnosed 

(via a Mini-mental state Examination) with pre-symptomatic to late 

stage AD were used in the Ray et  al study. There were 120 

signall ing proteins associated with each sample. 85 of  these 
samples are in the AD group and 79 into the NDC group. These two 

groups of samples were sub-divided equally into AD training set 

( 43)  and AD test set ( 40) ,  NDC training set ( 40)  and NDC test set 

(39 ) . Thus the training set consists of 83  (43 AD and 40 NDC . )  data 

points 

7 5  



In terms of separate test sets, there are two used in this study: one 

consisting of 42 AD, 39 NDC and 11 OD; making a total of 92 data 

points and the other consisting of 47 cases of MCI. An additional 

set, consisting of 21 OND and 16 RA were used by Ray et al to 

compare with AD data for distinguishing pattern of signaling protein 

expression in AD, via the use of the clustering package CLUTO 

2.1.1. This subset was not used in this study. 

The training set was used to generate the classification model. 

The AD and MCI test sets were used to evaluate the accuracy of 

classifiers for AD predictability. More specific details as follows: 

• The AD test set was used with the aim of evaluating the 

prediction of AD against NDC. 

• The MCI test set was used with the aim of evaluating the 

ability of the classifier to predict AD from MCI data. 

These data sets described above were originally used in the 

experiments carried out by Ray et al (2007) and subsequently in 

their analysis by Ravetti and Moscato (2008) 

For the full details of the 120 proteins, please refer to the 

information found on the Nature website listed below: 

http: //www.nature.com/nm/journal/v1 3/n11/extref/nm 1653-Sl .pdf 
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3 . 3  Data preparation 

All data sets had the same format as samples were arranged in 

columns and proteins were arranged in rows. Although the data sets 
did not require any data pre- processing, the format of the data 

needs to be modified in order to work with the different programs 

SAM, PAM and W EKA as they use different input formats. 

3 . 3 . 1 .  SAM data format 

The following screen shots of the original training data sets show 

their format :  

A J K L 

_____ ,_,, __ , ___ , _________ ,.AD _ 1AD JAD _JAD 
4.404305] 4.521486 2.9 1 1 354 3 . 8 

3 BDNF 1 ___ --- � 0.397225[6176861 -0.09201 1 . 6  
4 BLC 1 -0.24781 I -0 .56939j -0.75756 1 0 . 
5 BMP-4_1 1 .267004] 0 . 14041 -� 0.4 
6 BMP-GJ ___ ___ J).44781 6 [ -0 .50919 0.068396 � 
7 CK 0. 1 78844 [ -0. 1 398 -0. 1 8074 [ -( 
8 CNTF _1 ____ 0.151601

!
1 -0 .35846 -0.22 141 [ -0. 

9 -0. 3705 0_2682941 -0.3245 1 -0. 
10 Eotaxin 1 ____ ___ _ -U6075j_ -Oy1562r0.89623 _ -0 . 

I AT I AU I AV I AW I 
1 NDC 1NDC I NDC 1NDC 1ND i l I 

' 1 7 1 2 .696445 2.361 398 1 3.3072881 2.453262[ 3. ! 
166 1 .450837 0 .71 361 5 0.458636 -0. 00433 [0.: 
6 1  0.3190 1 3  -0.29892 -o . 633s6Fo.24035 -:o 
;a4 -1 .480106 1 . 878493 0 .406406 1 0 .221 639 0 . 1 

_2L
1J63023 1 . 0920

, 
·0 .32308 j  -0.26795 0 . 1 

1 1 6 [  0 . 1 6363 0.486715 -0.6 1 76 [  -0 .37735 -0 
'o3r0.632882 1 .330 1 87 -:0'T76]3}' -Q. 0344_9i Jl 
'45 1 . 520563 1 .778444 1 . 1 63 1 92 1  0 . 7447 1 1 .; 
i61[ 1 .201601 1 2.41 0608 J 2. 1 04258]�:o:-soGTIFo 

Figure 3-2 :  Original training data format . 

The class labels (row 1 )  AD and NDC were changed to 1 and 2 

respectively because the SAM program requires the class labels to 
be in numeric format. Protein IDs were entered as an extra column 

immediately after the protein column so that the actual data started 
at column 3 as required by SAM (refer to 2 .2 .2 . 1 for input data 

format) 
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The whole training data set was sorted by proteins. The following screen 
shots show the new format of the training data set: 

A B C D E I 

l9� l 1 _ o:�09i I .a::21 t[1. ::i · o :1J1 4 � i . . . ···-· · ···· - · ·-· ·-···· 
)211 . -o.69 1 01 L-o:941

1
6 1 -1 .4173§. :9:342!L: 1 .t 

717 1 2.69§44§1 2.361 398 3.307� 2.453262 !}.&E 
388 1 -0.74577f -0. 1771 9 _ -0.21 082 1� 

}��l- ��:����;tN{}K �j�1�]iQ�J � 
36sl

l 
1 .450J11 1 .  o.713s.1. 5 1  o.458. 636

1
1 
.
-. . o. oo433

1

t 0.2. s 
399 -0.48655 1  -0. 12749 1 0.405094 -0.13866 -0. 
1 6� 0.37901 3 !  -0.2989] -0.63356 1 -0.24036 1 -0 .E 
3B4 J  1 -4so106 ! . 1 . B78493J QJ0640§J .o.221639 [_o .oc 

Figure 3-3: New training data format for SAM. 

3.3.2. PAM data format 

The data format used for PAM was the same format as SAM's format, 

but the PAM program allows the class labels to be in both numeric and 

alphabetic format, therefore there was no need to change the original 
class labels (AD and NDC) to numeric values. In fact, labelling the class 
with AD and NDC are much better as they are more meaningful and 

easier for identifying the classes. The following screen shots show the 
new format of the training data set and test data sets. 

A B C D E I 
1 CLASS ± . IAD IAD iAD .. IAD 
2 Acr 30 1 -· 9370[2.287171] 5.471151[102420

l6
.24 

3 Ag8£:(ARDV1
. 
J ... ·

. 
· . .  1

.

8� 
.
. 

-0. 12484

·
1
t 
.

. 

1 

.
. 55450ITT

· 
.

... 

-9 

. 

.34

·

8

·

29
�
···

·

·

1.1 
4 ANG 1 I 3741 4.520104 4.430224[4�244593 2.9 
5 ANG-2 L ... L ___ 258j -0.50105 t03668 I .  -0.5937J 0.19 ---
6 AR 1 - J_ 2a1r _-0.2105I -0.15262 -0.6876�1 0.oo 
1 AXL 1 _ 1 .

.
. .  s¥1

1 
o.111. 041 1

1

.o.2111�i12t1fa.GJ . . .  1a 
8 BDNF 1 I 627 2.692648 0.9458�1� -0.2 
9 bFGF I 2247[-0.3334 [ -0.44087[ -0.16766 1 0.59 
10 BLC 1 �- _J 1Q!3j])�013j 1 .02963�:[6 

) I AT I AU I AV 
-· I NDC j NDC -- . C -
1926 1 1 .397392 1 1 . 072092 -0.7921 3 .  
843L: t080Zll�O.fi!101 . =0�94 t46 .. _. 

:��I, .. �o�}i���/ �l�:�fi �b��i���}� 
628 --�o.72659 -1 . 01331

��

0_16801r o. 
,76 9 1 0 . 1 80605 -0. 86989 -0.22586 0. 

-=j15r1.657866 -1 .450837 o .. _713s1s . o . . 
,801 j -0.22899 -0 .48655 -0. 1214� o. 
0951 -0.001 61L0.37901 3L.-0.2989ZI_ -1 

Figure 3-4: New training and test data format for PAM. 
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3 . 3 . 3 .  WEKA data format 

The o rig i na l  data suppl ied with rows for protei ns  (features)  and 
columns for samples .  This format works fine with SAM and PAM, but 

it is not suitab le  for WEKA because WEKA requires the data in the 

format of rows for samples and columns for features, and the class 
labels must be i n  the last co lumn . Therefore the data need to be 

converted to the WEKA required format . The fol lowing are screen 
shots of the new data format. 

A B C 
1 AN� BDNF 1 , BL�-1-. __ 
2 4.5201 04 2.692648 0 .788355 
3 4.430224 1 0. 94586 0.243013  
4 .. 4.244593 1_2.9 16 182 -1.029638 
5 2.90625 -0 .26235 -0.65143 - ···-
6 3. 1 06781 0 . 084827 -0.53014 
7 _ 1 .96661 1 _-0. 02477[�:0.4665 1 
8 3 .670303 0.691213 -0.20747 
9 3.36581 8 ,  -0.3061 9 ··· ·· -0.59858 
10 4.404305 /  0.397225J_ -0.24781 

ON DO DP I DQ 
I 1CLASS _, 

IAD -·· · --J 
1 AD ---- -- - --1 
AD 

· uPAR 1 fEGF-B ' VEGF-D 
f=o.25394 -0 .05796�- -0.3t5f 
f �0 . 1 6785] -0 .06098 -0.73985 1 

AAD_ .. ... ·. __ j 
AD __ J 

� -0 .78449[ -0 .73179 -0 .43054 1 
[0;[85075]' -0 .09547 . 0.6_01§1§

1 

� 
0.642871 0 .389534 0.2983 1 1  I 
0 .49224 0.441505 0.429353 I AD 

fAi}----1 · --·--1 
! -0.25675 L -0. 76956 1 __ -o . 161 011��- ----- J 

l -0 .33735 -0 .48366 -1 . 05555 
0 .035654 -- 0 . 88726f ' 0.779165 1 

Figure 3-5 : The new data format for WEKA 

3 . 4  Lim itation of using the data set 

The limitation of this study is that only one data set from Ray et al 

(2007)  was used but other studies such as Ravetti and Moscato 
(2008)  have also j ust used this data set in their experiments . Owing 

to the fact that AD data col lection is often a tedious (many 

diagnostic tests) and expensive process, there are not many 
existing data sets of this nature in the pub lic domain . In addition 

given that the research is stil l in its infancy in terms of identifying 
b l ood plasma- based biomarkers, the Ray et al data set is the most 

easi ly  availab le  one at this point .  Often , the data col lection are 
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funded by commercial companies and the collected data are 
considered as having commercial potential, therefore they are not 
made available for public use. 

3.5 Summary 

Research method used in this study and the details of data sets 

were described. The investigations in chapter 4 and 5 employ the 

research method and use the data set in the experiments. 

4. In-depth study of two existing approaches and mining for 

the interesting biomarkers 

This chapter addresses the first aim of this study, which is to carry 

out an in-depth study of Ray et al (2007) and Ravetti and Moscato's 

(2008) experiments and to investigate if any further improvements 

can be made in terms of the results. A secondary aim here was to 

see whether the information provided in the Ray et al and Ravetti 
and Moscato's papers is sufficient in terms of being able to repeat 

their experimentations and results. The investigations carried out by 

both Ray et al and Ravetti and Moscato have focused on the 

classification and prediction of clinical diagnosis of AD based on 
plasma signaling proteins. 

4. 1 Classification and prediction of clinical Alzheimer's 

diagnosis based on plasma signaling proteins ( Ray et 

al, 2007). 

Ray et al used the DM programs Significance Analysis of Microarrays 

(SAM) and Prediction Analysis of Microarrays (PAM) on the data sets 

described in section, 3. 2 and 3. 3. 
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Ray et al first used an unsupervised learning analysis program, SAM 
to identify 1 9  proteins in the training set with significant differences 

in the expression of the signaling protein for AD and NDC samples. 

A supervised learning classification program, PAM was next applied 

to the training set to discover the 1 8  protein signature. The 

resulting classifier associated with this signature was used to 

classify the test data . 

Their general approach is illustrated in Figure 4-1 : 

(a) 

SAM 

1 
Cluster 
analysis 

(b) (c) 
Predictive Analysis of Microarrays (PAM) 

Predictor d iscovery 
In training set 

Training set 
(43 AD , 40 NDC) 

Classifier 
training 

Ten fold 
Cross validation 

C lassify 
AD and NDC 

Class prediction in test sets 

Test set AD 
42 AD 
39 NDC 
1 1  OD 

Test set  MCI  
47 MCI 

1 8  predictors -> PAM algorithm 

l 
Classify 
Diagnosed AD 
as AD 

Classify MCI ->AD 
Converters as AD 

fig u re 4- 1 :  Prediction Analysis of Microarrays, extracted from Ray 
et al (2007 ,  p . 2 )  
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As shown in Figure 4-1 (a), SAM was applied to the training data set 

to find signalling protein with significant differences in 

concentrations followed by the clustering program CLUTO 2.1.1 

which was used to cluster the training data in to AD and NDC 

groups. In Figure 4-1 (b), PAM was employed to analyse the training 

data set and to obtain the classification model of 18 protein 

signature which was then used with 10 fold cross validation to 

classify A D  and NDC. The classification model was evaluated by 

using the test AD set to classify AD from NDC and subsequently also 
on the MCI test set to see the classifier can predict AD from MCI 

(Figure 4-1 (c)).  

From these experiments, Ray et al reported that they achieved an 

overall 89 °/o accuracy with 90 °/o positive (sensitivity) for AD and 
88°/o negative (specificity) for NDC samples . .  

4. 1 .1 .  Implementation of the Ray et al  study 

4. 1. 1. 1 Using SAM 

Data set used in this study was described in section 3. 2 

Steps carried out in this study to recreate the original analysis using 
SAM: 

• Run MS Excel program 
• Load the training data set 
• Select entire data including protein ID and protein name 
• Activate the SAM program from MS Excel by clicking on the 

SAM add-in component as shown in Figure 4-2. 
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aye a - ra1n 1ngse - or  
Q.ata Window RExcel Stanford Tools Hel p  Ado.b_e PDF 

l: • ! l 1 

' Reply with Changes . . .  E d r ,_ · 
I 

- Invokes SAM on h i gh l i ghted data 

D E F G H J 
1 1 1 1 1 1 

5_411 1 5 1  3.024205 6.241606 5.965083 7.308389 o.398244 0_32n59 
1 . 554506 -0 . 34829 -1 . 15565 -1 .08015  -1 . 141 0 1  0.262278 -0. 84829 
4.430224 4.244593 2.90625 3 . 1 06781 1 .96661 1 3.670303 3. 36581 8  

1 . 03668 -0.59374 0 . 1 92356 -0. 06693 0 . 1 23216  0 . 02508 0.275702 
-0. 15262 -0.68768 o . oono1 -0.1 8406 -0_42221 0.151029 -0 .32835 
0.2771 97 -0 .34 146 0.186427 0 . 1 52715  -0.20732 0.063176 0.289334 
o .94586 2.9 1 61 82 -0 .26235 0 . 004021 -0.024n o.691213 -0.3061 9 

-0 .44087 -0. 1 6766 0.599456 0 .921695 0 .421405 0-24559 1 .252732 
0.24301 3  1 . 029638 -0.65 143 -0.53014 -0.4665 -0.20747 -0.59858 

fig u re 4-2 :  Screen shot of a ct ivati ng SAM p l u g i n  com po nent 

• Se lect u n l ogged  opt i o n  and leave other o ptions as d efa u l t and 
cl ick O K  as s h own in  F i g u re 4- 3 .  

• Ex peri m ent with d i ffe rent  th resho l d va l ues . 
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Significance Analysis of Miaoa"ays 

(C) Trustees of Leland 51:i!nford .>..riCI< Llnlven,ty 

Choose Response Type 

Analysis type 

Al Riltats Reserved 

Survivlll 
M.Jltidass 
On� dass 
Two dass paired 

/o' Standard 
�) 

A.re data in  loo scale? r Logged 

Ten mitistic 

... 

r ··· � · . . . · · -� 
• .. ' .  • • • • •  II-

• • ii • • • • • . . . . . - . . . .. . . . .. . . . . - . . . . . . . . . . . . . . . - -. . . . . ' . . . • •  • o I o . . . . . . . . . . 

. . . ·. · . · . · . �· . . . � . . 

Median center the ana)'S'? 

r- No r v� 

Web Unk Option (' Clone ID (o' Name r Ace� No. (' UnGene C1,ster ID r lOCl.1$ Ulk ID 

Number of Permutations 

Effimate of sO factor 
for denominator 

Imputation Engine 

Random Number Seed 

OK 

" 
200 
300 

r; Automatic 

123�567 

... SAM Work (Do not edi 
Additional Sheets SAM Sample Size Plots 

SAM C>.Jtput 

(' Use fixl!d perceitile (1!9 SO} 

� ofNel!t,bors 

�ate Random Seed 

Cancel 

Fig u re 4-3 : Scree n s h ot of se lecti ng u n logged o pt io n .  

Resu lts: 

Afte r some exper i mentat io n w ith  the th res ho l d  va l u es ,  a t h resho ld 

va l u e  of 0 . 5 6 prov ided  1 9  prote i ns th at has s ig n i fica nt changes i n  

the i r co ncentrati ons .  The  SAM p lot o f  th i s  ex peri ment i s  shown as 

Fig u re 4-4 .  

8 4  



(b)  

Signi ficant: 1 9  

Median number o f  false positives: 1.2 

F a\se Oiscoueri Rate (X): 6.32 

SAM Plotsheet  

E1pl'cted Searl' 

Tail strength (:!.): 43.1 
se (X): 19.3 

Fig u re 4-4 : SAM p lot sheet fo r 1 9  prote ins  s i gn if ica nt  d ifferences i n  
e x p ress ion  

As  see n i n  the  p l ot d i ag ra m  a bove, a l l  the d ots i n  to p r ight  wh ich  fa l l  
o uts i de  the  di agona l  l i n e ( a )  a re pos i t ive ly  ex pressed p rote i n s ( 1 2) 
w i th s ig n i fica nt  d i ffe re nces i n  conce ntrat io n s  co m pared with othe rs .  
A l l t h e  dots i n  the  botto m l eft, o u ts ide the  d iagona l l i ne ( b ) ,  i nd icate 

the n egative ly  exp ressed p rote i ns ( 7 ) ,  w i th  s i g n if ica nt  d i ffere n ces i n  

co n ce ntrat ions . 

Th e 1 9  p rote ins  i d ent i fi ed were the  sa m e  as those identi fied by th e 
Ray et al  pa per .  Th ese p rote i ns a re l i sted i n  Ta b l e  4- 1 .  

85 

(a) 



Ta ble 4- 1 :  1 9  prote ins  o bta i ned v ia  t he  ana lys is  us ing  SAM 

12 positively expressed 

proteins 

P D G F- B B_l 

I L- la 1 -

RA NTES 1 

TN F-a 1 -
EGF_1 

M -CS F_ 1 

I L-3 1 

GCSF _1 

G D N F  _1 

M I P- l d  1 

M CP-3 1 -
M DC_l 

7 negatively expressed 

p rote ins 

I L- 1 1  1 

ICAM - 1  1 -

AN G - 2_ 1  

TRAIL  R4 1 

I L-8 1 

PA RC_1 

IGFBP-6  1 
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4. 1 . 1 . 2  Us ing PAM 

Classification on the tra i n i ng data set. 

Steps ca rried o u t  i n  th i s  stud y : 

• Ru n M S  Exce l p rog ra m  

• Se lect t he  ent i re d ata set . 

• Act ivate PAM fro m M S  Exce l by c l i ck i ng  o n  the PAM p lug i n  

com po nent, s i m i la r  to how to a ctivate SAM ( Fig u re 4 - 2 ) . 

• Ente r 1 fo r C l ass l a be l  i n  select i o n  row to i nd icate that  the  

c lass l abe l sta rts at  row 1 .  E nte r 2 i n  the "Ex press io n data 

sta rts i n  se lect ion  row" to i nd icate the  d ata sta rt at  row 2,  a n d  

acce pt oth e r  defa u l t  o pti o n s ,  as  i nd icated i n  t h e  screen  shot 

be l ow : 

PAM Version 2 . 1 G � 

Prediction Analysis of Microarrays 

r(l\.�_:��.. 
(C) TruS!ees of lelond Stanford lU11lo r  UnNernty. All nghts re served. 

� 
r.- Claniflcation Proble m r Su rvlval Probl� 

usnp M�l $NtJIM:en antro,t/s r R.e-gre:Hlon proh�m 

u,;;,p ,u;,,rltUtf JW>D(W_,,, 

CIH1 Ulibels In s.eleci:lon row 

Sa m ple Labe:11 In 1-elecUon row 

Batch Labe:li In selectio n  row 

f>c- pre:11lon Oat.a 1brts In M-lectkrn row r TrtlllOfonn bV c.t>e rool1 

r c ... 1or """""'1 r Sa, c.um.? 
R.!indom Humbe r Ge,nerator se�d 

Jmp utat:Jon EnQ l ne r. +�·Nt!r!:St � � of t e:� f""'io'" r o. ] -- ::'°9 -

Vlt:b Unk Option re' H r 0:ltle lO r N!Me: r A.ca:i:� t�o. (" �trt: d.d.cet I!) r U.lD 

Tro,v,g S. t-"111-l) 
T!-�t Set .i\O 
T� t Sti: A0..00 

Add,Uona. l Sheets �t =et  MCl·AO et'C, MCI-0) 
T«t So: ,-.a.A!) "'111 �1CH,!CJ 
?AM Setl>n9> 
?r'!&cbOt'I output 

OK Cancel  I 

Fig u re 4-5 : PA M c lass i f icat io n entry screen d i a log 

• Press O K  to p roceed . 
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• Press Tra i n  b u tto n to p roceed with the tra i n i ng as show n i n  
F igu re 4- 6 

• Experi m ents with d i ffe rent th resho l d  va l u es .  

PAM Menu ["8J 
1r-··-· Restart -·- ····11 
1--·-··· ·· ···-··· 

Exit Menu I 
Training I Cross Validation J Test Set Prediction I Settings J 

Train 

Plot Centro,  _ I 
------�I _o_isii_l"-----� 

List Gene S<:ores I 
Es m a  e FOR. I 

PI FOR 

Fig u re 4-6 :  PAM tra i n i n g  screen  w ith m e n u  o pt io n s  

The n u m b e r  o f  spec i fic  prote ins  fo r a b i o ma rker s i g natu re retu rned 

by PA M depends o n  the  cen tro i d  th resho ld  va l u e .  Decrea s i n g  the 
th resho l d  res u l ted in  i ncreas ing  the  n u m ber of p rote i ns i n  a 
b io marker  s ig n atu re a n d  v i ce versa . The idea l th resh o l d  va l u e  to be 

se l ected is  to obta i n  a m i n i m u m  n u m b e r  of prote i n s  w ith the l east 
n u m be r of c lass if icat i o n  erro rs g e n e rated fro m the co nfu s io n m atrix . 

Results : 

W ith  a th res h o l d  va l u e  of  1 . 2 2 ,  th e n u m ber of p rote ins  o bta i ned was  
18 .  The  PAM p lot o f  t h i s  expe riment  is  s h own as Fi g u re 4-7 .  
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Tra in ing Confusion Matrix (Threshold=1 .22) 
True Predictec AO me Class Er ror r t 
AD 41  2 0 0465 1 1 628 
rmc 1 33 o 175 

' t t 
Train ing Error Plot 

0 . 7  
Q � : � ; � � � � � � - � 8 : ; �  � � • • " � N - -

0 6  

... 0. 5 
: 0.4 • 

• • • • • 

'E 0. 3 
. .  • ii O 2 

� · � · � � � � � • • �  • • • • •  0 1 ' 
0 

0 0.5 1 1 .5 2 2.5 
Threshold 

Threshold = 1 .22 with 1 8  prote ins 

• • 

3 

Fig u re 4-7 : Res u lts of PAM c l ass i ficati o n  on  the  tra i n i ng data set. 

t 

. 

As s h own i n  the res u l ts i n  F igu re 4-7 ,  the tra i n i n g  erro r  p lot shows 
th at w ith  the th reshold va l ue  of 1 . 2 2 ,  18 p rote ins were se lected o u t  

of  120  p rote i n s  with a least n u m ber  o f  tra i n i ng  errors fo r A D  a n d  
NAD . 

The 1 8  prote i ns  i de nt ified here were the same as those i d e nt ified i n  

th e Ray e t  a l  paper .  These 1 8  prote i ns i s  a su bset of the 1 9  p rote i n s  

o bta i ned v i a  SAM .  These prote i n s  a re l i sted i n  Ta b l e  4-2 .  
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Table 4-2 :  1 8  protein signature from PAM with threshold of 1 .22 

Proteins 

PDGF-BB_l 

IL- la_l 

RANTES 1 -
TNF-a_l 

EGF_l 

M-CSF_ 1 

IL-3_1 

GCSF _1 

GDNF _1 

MIP- l d_l 

MCP-3_1 

IL- 1 1_1 

ICAM-1_1 

ANG-2_1 

TRAIL R4 1 

IL-8_1 

PARC_l 

IGFBP-6 1 -
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The training confusion matrix associated with the training is shown 

in Figure 4-7  as demonstrated the results obtained in this study is 

the same as those of Ray et al. 

AD NAD 
Clinical Diagnosis 43  40 

AD 41 7 
Ray et al 

NAD 
2 3 3  

AD 41 7 
This study 

NAD 2 3 3  

F igure 4-8 : Classification results ( on training data) : from this 

study and Ray et al with 1 8  protein signature. 

As shown in Figure 4-8 ,  the classifier generated in this study can 

predict correctly 41 AD out of 43 and 3 3  NAD out of 4 0 .  These 
results are the same the Ray et a/'s results. 

Eval uat ing  the classification model usi ng  the test data set. 

Classification model obtained via PAM is evaluated using 2 test data 
sets (described in section 3 .2) . This model is based on a 1 8  protein 

signature. 

� The aim of the first test is to see if the classifier can distinguish 
AD from NDC.  

Data set used i n  th is study:  
AD test data set. 
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Steps ca rried out i n  th is study : 

• Act ivate the  Test Set Pred ict i o n  o pt ion  as s hown i n  F i g u re 4-9 

Restart Exit Menu Threshold 1 . 22 

Train.ing j Cross Validatio�ttings I 

I Train I Plot Training Error I Display Confusion Hatrilc 

Plot Centroids I List Gene Sa>res 

Estimate FOR 

Plot FOR 

Fig u re 4-9 :  PAM d ia l og tra i n i ng me n u  screen  with test set 

p red ict i on  o pt ion  

• S p ecify th e AD test data set a nd a ra nge  of d ata to test as 

s h own in  F i g u re 4- 1 0 .  

PAM Prediction Dialog (EJ 
Drag out test dauz r<utge by clickiltg on die 1mderscore at die right comer oftlie 
ffrstjiel.d. Go to die .,.o,·k.sheet comaining the test dara and sel.ea: d,e ,•egi.ou as 
rou did for tlu1 trai.ning dara. Dien cl.id� 011,:,e agai.n 011 die spl'ead.s/1eet u:011 in 
du1field to come back to tltls d.ialog. n1e defaulz ,·ab.lesfor otl,er fields 4l'e 
dto•e d1atyo11 spedfiedfo,· du1 training da.ra. 

Class label row I l 

Sa mple la bels row 

Expression data row 2 

OK Cancel  

Fig u re 4- 1 0 :  I n put d i a log sc reen to s pec i fy t he  test data 
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Results: 

According to the test results from this study, the classifications for 

AD, NDC and OD with the threshold value of 1 .22 , the resul ts are 

similar with the resul ts stated in the paper for AD test data sets as 

Figure 4-11 . 

C l inical Diagnosis 

Ray et al 

This study 

AD 

NAD 

AD 

NAD 

AD 

42 

38  

4 

39 

3 

NAD OD 

39  1 1  

5 1 

34 1 0  

5 1 

34 1 0  

Fig ure 4- 1 1 :  AD test set classification results of study experiment 

For 1 8  protein signature compared with Ray et al and 

clinical diagnosis. 

As results shown in Figure 4-11 , the classifier generated in this 

study can predict correctly  3 9  AD out of 42, 34 NAD out of 39  and 

1 0  OD out of 1 1 . These results are a lmost the same the Ray et al's 
results.  

� The aim of the second test is to see if the classifier can predict 

AD from MCI .  

Data set used in  th is  study:  

MCI test data set . 

Steps carried out were s i m ilar to that of the first test. 
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Results : 

According to the test results from this study, the classifications for 

AD, OD and MCI with the threshold value of 1 .22 , the results are 

similar with the results stated in the paper for MCI test data sets as 

Figure 4-12 . 

AD OD MCI 
Cl inical Diagnosis 22 8 1 7  

AD 20 0 
Ray et a l  

2 8 1 0  
NAD 

AD 
This study 

1 9  0 8 

NAD 3 8 9 

Fig ure 4- 1 2 :  MCI test set classification results for 1 8  protein 

signature compared with Ray et al and cl inical 

diagnosis. 

As shown in Figure 4-12,  the classifier generated in this study can 

predict correctly  1 9  AD out of 22 , 1 0 0 °/o OD and 9 MCI out of 11 . 

These results are similar to Ray et a/'s results .  

4. 1 . 2. Further experimentation 

Further experimentation with PAM was carried out in this study to 
see if we can find a biomarker signature with less than 1 8  proteins 

and sti l l  similar classification results .  

Steps carried in this experiment are similar to those previously 

described for using PAM. 
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Results : 

Experiments with different threshold values found that, with a 
threshold value of 1 . 29 ,  the number of proteins obtained were 1 7  as  

shown in Table 4- 3 .  

Table 4-3 : 1 7  protein signature from study experiment 

Ray et al ( 1 8  protein signature) Study experiment 
( 1 7  protein signature) 

PDGF- BB 1 PDGF-BB 1 
RANTES 1 RANTES 1 
IL- l a  1 IL-la  1 
TNF-a 1 TNF-a 1 
EGF 1 EGF 1 
M-CSF 1 M-CSF 1 
ICAM- 1 1 ICAM - 1  1 
IL- 1 1  1 IL- 1 1  1 
IL-3 1 IL-3 1 
GCSF 1 GCSF 1 
ANG-2 1 ANG-2 1 
PARC 1 PARC 1 
GDNF 1 GDNF 1 
TRAIL R4 1 TRAIL R4 1 
IL-8 1 IL-8 1 
MIP-ld 1 MIP- ld 1 
IG FBP-6 1 IG FBP-6 1 
MCP-3_1 

As results shown in Table 4 -3 ,  the new 1 7  protein signature is a 

subset of the 1 8  proteins from Ray et al. The protein MCP-3_1 is not 

included in the 1 7  protein signature. 
The results of training classification are listed in Figure 4- 1 3 .  
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Clinical Diagnosis 

Ray et al 

This study 
with 1 7  
proteins 

AD 

NAD 

AD 

NAD 

AD 

43 

4 1  

2 

4 1  

2 

NAD 

40 

7 

3 3  

8 

32 

f igure 4- 1 3 :  Learning classification results from study experiment 
with the 1 7  protein signature. 

As results shown in Figure 4-1 3 ,  the classifier generated in this 
study can predict correctly 4 1  AD out of 43 and 32 NAD out of 40 . 

These results are similar the Ray et a/'s results .  

The classification model of the 1 7  protein signature was evaluated 

with the test AD data set and the classification results are the same 

results as shown in Figure 4- 1 1 . 

The classification model of the 1 7  protein signature generated was 

tested with MCI test data set and the classification results are the 

same results as shown in Figure 4- 12 . 

Fol lowing information provided in the Ray et al paper, the study is 

able to reproduce similar results stated in the paper. The finding of 
the 1 7  protein signature was a su bset of 1 8  protein signature . It 

also gives classification results as good as the 18  protein signature 

on the test data. 

The next experiment to be carried out is the Ravetti and Moscato 

(2008)  experiment. 
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4.1.2 Identification of a 5-protein signature for 

predicting AD { Ravetti & Moscato, 2008) 

This investigation used the Ray et al (2007) data sets. In terms of 
O M  software, PAM and 23 WEKA classifiers were also used. 

According to Ravetti and Moscato (2008), the identification of a 

protein molecular signature is significant and important in terms of 

providing the accurate form of diagnosis to identify the disease as 

early as possible. They identified a 5 protein signature, namely, IL­

loc, IL-3, EGF, TNF-oc and G-CSF. This is a subset of the Ray et al's 

18 protein signature. 

The method used in their experiment consists of 4 steps which were 

applied on the training data set: 

1 .  Abundance quantization 

2. Feature selection 
3 .  Literature analysis 
4. Classification analysis using 23 WEKA classifiers. 

In the first 2 steps, Fayyad and Irani's algorithm (Fayyad & Irani, 

1993) was used to quantize and select attributes. The Ravetti and 
Moscato study experimented with 18, 10, 6 and 5 protein 

signatures. The protein associated with these protein signatures are 

shown in the Table 4-4. 
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Table 4-4 : 1 8 ,  1 0 ,  6 and 5 protein signatures 

protein 1 8  protein 1 0  protein 6 protein 5 protein 
name signature signature signature signature 

ANG 2 v 
EGF v v v v 
G-CSF v v v v 
GDNF v 
ICAM 1 v 
IL-oc v v v v 
IL-3  v v v v 
IL-6 v v 
I L-8 v 
IL- 1 1  v v 
IGFBP-6 v 
MCP-3 v v 
M-CSF v 
MIP- ld v v 
PARC v 
PDGF- B B  v v 
RANTES v 
TNF-oc v v v v 
TRAIL R4 

As shown in the Table 4-4, the smal ler signature is a subset of the 

bigger signature . 

C lassifiers were then obtained by training with each of these 

signatures. The test sets were used to evaluate the inf luence of the 
different biomarker signatures using 24 different c lassifiers (PAM 
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program and 23  WEKA classifiers) . In terms of parameters 

associated with training invol ving WEKA classifiers, default settings 

were used. The results obtained by Ravetti and Moscato (20 08)  are 

shown in Table 4- 5 .  

Table 4-5 :  Classification results average over 24 classif iers for each 

biomarker signature, adapted from Ravetti and Moscato 

(2008) . 

Protein AD ( 64)  NAO ( 7 5 )  
signature 

1 8  86 °/o 80 °/o 

1 0  88 °/o 76 °/o 

6 87°/o 79 °/o 

5 88°/o 79 °/o 

The results in Table 4-5  were based on the AD test data set and the 

MCI test data set . The AD data set ( 64) consist of 42 AD from the 

AD test data set and 22 of those diagnosed with AD from MCI test 
set. In terms of the NAO test set ( 7 5 ) ,  it consists of 50  NDC ( 3 9  

NAO + 1 1  OD) from AD test data set and 2 5  NAO (8  OD + 1 7  MCI) 

from the MCI test data set . The percentages for each biomarker 

signature shown in this table were calculated over the 64 AD and 7 5  

NAO . 
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4. 1 . 3  Im plementation of Ravetti and Moscato's experi ment 
in this study. 

According to M.  Ravetti (personal communication, August 18,  2009) ,  

the f irst 2 steps used in  their study were implemented by using a 

commercial software, Mixed Integer Problem (CPLEX) ,  which 

implemented Fayyad and Irani 's algorithm. This commercial software 
is not avai lable for use in this study, thus the decision was made to 

use WEKA's implementation of Fayyad and Irani 's algorithm instead . 

Steps carried out in this study : 

• In conjunction with Fayyad and Irani , various FS strategies 

from WEKA were then used to obtain biomarker signatures of 

size of 1 8 ,  1 0 ,  6 and 5 .  Tab le 4-6  shows the signatures 

obtained from this step. 

Table 4-6 : WEKA FS of 1 8 ,  1 0 ,  6 and 5 protein 

signatures. 

1 8  protei n 1 0  protei n 6 protei n 

s ig nature s ig nature s ig nature 

IL- la 1 IL-la 1 IL- la  1 -
PDGF-BB 1 IL-3 1 IL-3  1 

Fractalkine_l PDG F-BB -1 BMP-6 1 

IL-3  1 IGFBP-2_1 GCSF _1 

ANG 1 ANG-2_1 TNF-a -1 

sTN F RI 1 GM-CSF_l AN G_l  

BDNF _1 I -309_1 

BLC_l IGF- 1 1 

1 0 0  

5 prote in  

s ignature 

BMP-6 1 -
IL-la 1 

IL- 3  1 

TNF-a 1 

GCSF _1 



BMP-4 1 IL-1 5 1 

BMP-6 1 IL-2 1 - -

CNTF 1 

EGF_l 

Eotaxin 1 -

Eotaxin-2 1 -
Eotaxin- 3  1 -
FGF-7 1 

Fit-3 Ligand_l 

GCP-2 1 

• Each signature is used for training with the 23  WEKA 

classifiers and this is followed by the evaluation of the 

classifiers using the test sets. 

Results : 
The classification results from classifiers trained using the 1 8 ,  1 0, 6 

and 5 protein signatures are summarised in Tables 4-7 ,  4-8 , 4 -9  

and 4-1 0 .  
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Table 4-7 : Report of the results of the 23 classifiers when using 18 

protein signature from WEKA FS. 

Test Set MCI 

As shown in Table 4-7, firstly, the error results of each classifier 

were calculated separately for the "Test set AD" and the "test set 

MCI" (third and fourth column of table). Within each of these 

categories, there are two sub-groups: "AD errors" and "NAO 
errors". For example, in terms of SMO, from a total of 42, there are 

4 classification errors in the subgroup of "AD errors" in the column 

for "Test set AD". Next, these individual errors were summed up to 
make up the total errors (i.e. the column with heading "Overall (AD 

+ MCI)". Again, using the row associated with SMO as an example, 
the AD errors under the column "Overall (AD + MCI)" is 9 

(comprising of 4 from "Test Set AD" and 5 from "Test Set MCI"). 
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Finally the total error of AD and NAD were summed up together to 

make the grand total error for each classifier (e.g. for SMO - the 
value of 29 is made up of 20 and 9 in the "Overall (AD + MCI)" 

column. 

The average error in the "Total" column was calculated by summing 

up all the total errors of 23 classifiers in the column "Total" (from 

SMO down to Ordinal Classifier) to get the grand total error, and 

then divide the grand total error over 23 (a total number of 

classifiers) to get the average error of 23 classifiers ( e.g. for 

average "31.11" (Table 4-7) - sum up the total errors of 23 

classifiers from SMO down to Ordinal classifier, which gives the 
grand total of 715.6 and then divide 715.6 over 23 to get 31.11) 

The agreement 0/o in the "Total" column was calculated by dividing 
the average error of 23 classifiers over the total samples (1 39) and 

then multiply 100 to obtain overall error percentage. Finally 

subtract the overall error percentage from 100 to get an agreement 
0/o (e.g. for agreement 0/o "78°/o" (Table 4-7) - divide average error 

"31.11" over 1 39, which gives 0.22 and then multiply 0.22 to 100 

to obtain the overall error percentage 22°/o. Finally subtract 22°/o 
from 100 to get the agreement 0/o of 78°/o). These calculations were 
also similarly applied in Tables 4-8, 4-9, 4-10 and 4-14. 

PAM classifier was not included in this study because PAM did not 
select the same biomarker signatures of 10, 6 and 5 as WEKA did. 

The idea of using the same biomarker signatures is to train and test 
all the 23 classifiers so the results obtained are more stable and 
less likely to be biased towards any specific classifiers. 
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Table 4-8:  Report of the results of the 23 classifiers when using 10 
protein signature from WEKA FS. 

Test Set AD 

Agreement(%) 81 % 85% 77% 90% 

104 

Test Set MCI 

errors AD errors NAD errors 

50 22 25 

88% 76% 54% 



Table 4-9 : Report of the results of the 23 classifiers when using 6 

protein signature from WEKA FS. 
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Table 4-10 : Report of the results of the 23 classifiers when using 5 

protein signature from WEKA FS. 

Table 4-7, 4-8, 4-9 and 4-10, show the breakdown in terms of the 

classification results of the test data sets which is associated with 
each signature and within that, each classifier. With the non­

deterministic classifiers: Multilayer Perceptron, Decorate, Random 

Committee and Random Forest, the results are associated with 10 
runs, each with a different seed and then obtained an average from 
the results of the 10 runs. 
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Table 4-11 shows the overall results of 23 WEKA classifiers for each 

biomarker signature. It also shows a comparison to the results the 
Ravetti and Moscato (i.e. values listed in the column heading 

"paper"). For example, in the case of SMO in the case of the 18 

biomarker signature, the value obtained in the experiments carried 

out in this study is 29 while Ravetti and Moscato have a value of 20. 

Table 4-11:  Overall errors for each biomarker signature over the 
test sets (1 39 samples) compared with the results 

from the paper. 

The overall "average errors" and agreement percentages of the 23 
classifiers for each protein signature, which was selected from 

WEKA FS, are similar (but not exactly the same) to those in the 

original paper. These variations are due to the fact that this study is 

not using the same implementations of the FS technique (CPLEX vs. 
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implementation in WEKA) and thus there wil l  be differences in the 
sets of selected features used for training the classifiers. This 
finding also re-enforces the bel ief that different FS techniques wil l 

l ikely impact the final c lassification results as this case only  involved 

a different implementation of the same algorithm. 

4 . 2  Exploration for obtaining biomarker signature with a 

s ize less than 5 

Further experiment was carried out in this study to see if we can 

find a biomarker signature with less than 5 proteins and stil l can be 

used to train a classifier that produces similar classification results 
as the 5 biomarker signature. Using a systematic approach we 

analysed the 5 protein signature from this study and compared it to 
that obtained by Ravetti and Moscato. As shown in (Table 4-12) ,  

there are 4 common proteins between the two sets. Only one 

protein differs - BMP-6 instead of EG F .  

Ta ble 4- 1 2 :  Five protein signature from paper and WEKA FS 

P roteins ( pa per) Proteins (WEKA) 

EGF BMP-6 

G-CSF G-CSF 

IL-1a_1 IL-1a_1 

IL-3 IL-3  

TNF-a 1 TNF-a 1 

108 



The decision then was to use a 4 protein signature (shown in Table 
4-1 3 )  for further investigations. 

Table 4- 1 3 :  Four protein signature. 

Protein s  (an alysis) 

G-CSF 

IL-1a 1 

IL-3 

TN F-a 1 

The new 4 protein signature was used to train 23  classif iers with the 
training data set. The classification model from each classif ier was 

evaluated with the AD test set and then tested with the MCI test 

set, i n  a similar manner to the Ravetti and Moscato study. The 

results associated with these classif iers are shown in Tables 4-14 

and 4-1 5 .  
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Table 4-14: Report of the classification results of the 23 classifiers 
trained using the proposed 4 protein signature. 
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Table 4-15: Overall errors for the 4 protein signature over the test 

sets (1 39 samples) compared with the results of the 5 

protein signature from the Ravetti and Moscato paper. 

The table 4-15 compares the classification results on the test data 

set by using the classifiers from the 5 protein signature against the 

classifiers from the 4 protein signatures. The results show that 

although only a 4 proteins signature was used, the performance of 

the classifiers generally improved in their prediction of A D  and NAD 
for both test sets, as compared with those associated with the 

previous 5 protein signature from WEKA selection, and are similar 

to those in the Ravetti and Moscato paper. 
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4.3 Summary 

This chapter has described the steps involved in carrying out an 
in-depth study of the works of Ray et al (2007), and Ravetti and 

Moscato (2008). By using the information provided in their 

respective papers, the investigation involved: firstly to re-produce 

the associated experimental results and secondly, to explore if any 
improvements can be achieved. 

With Ray et al (2007) study, it was very easy to repeat their 

experiments and to reproduce their results. A small improvement of 

finding a 17 protein signature which is a subset of the 18 protein 

signature and its classification results on the test sets are similar to 
those associated with 18 protein signature. 

With Ravetti and Moscato (2008) study, it was not so easy to 

reproduce the same experimental steps and results because a 

different software implementation was used in the Ravetti and 

Moscato's steps for FS and that software was not available to use in 

this study. In addition, there were insufficient details in some areas 
of the paper and various assumptions had to be made in this study. 

In terms of results, similar classification results were obtained for 

protein signature of 18, 10, 6 and 5. Further improvement of finding 
of a 4 protein signature which is a subset of the 5 protein signature 

and the results obtained are similar to those of the 18 and 5 protein 

signatures. 

In the next chapter, the investigations associated with the second 
aim of this study will be described. 
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5. The exploration of feature selection techniques on the 

accuracy of the classifiers 

Different FS techniques are likely to return different subsets of 

features because of the different types of algorithms incorporated in 

them. The aim of the study is to investigate which FS techniques 

will return subsets that are used for training classifiers, which are 

able to differentiate AD from NDC or predict AD from MCI with high 

sensitivity and specificity. For the basis of comparison, the 18 

proteins signature from Ray et al (2007) will be used in this study. 

The details of the investigation of the various WEKA FS techniques 

used in this study and the results of the investigation are described 
in the following sections. 

5.1 Feature selection Analysis 

Steps carried out in this study: 
• Run different FS techniques to obtain 10 subsets of features, 

each consisting of 18 proteins. Analyse and compare them 

with the Ray et al's 18 proteins signature (Table 5-2) 
• Use WEKA classifier J4.8 and the 10 subsets of features to 

generate the corresponding classifiers. Use these classifiers to 

evaluate the test data set. 
• Analyse the results. 
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5 . 1 . 1  Featu re selection tech n iq ues used to obtai n  su bsets of 

featu res 

Data set used i n  th i s  study : AD tra i n i ng data set .  
Steps ca rried out in this study:  

Step 1 :  
Load the  A D  tra i n i n g  data set as show n i n  Figure 5- 1 .  

.. _ .. Weka Exp lorer 

Preprocess l ClasS1fv' jj�jj ASSOciate jQ 
r·· · ·· ·open .file . . . · ·········1 [ Open URL . . . 

Filter � 

[ Choose Jl�No_n_e 
_____ _ 

Current relation 
Relation: None 

Instances: None Atb 

Fig u re 5 - 1 :  Screen  shot of  ope n fi l e  i n terfa ce i n  W E KA E x p l orer. 

Ste p 2 :  

Se l ect " Se l ect Attri butes" opt i o n  fro m m e n u  as  show n i n  F igure 5 - 2 . 

. .-_. Weka Exp lorer 
Preprocess ! Classify j[�II Associate jj Select attributes II Visualize j 
r·-·· ····· ·-······ ·····open· file:. :····-····· ·· ····---··-1 [ Open�RL. . .  

Fig u re 5 - 2 :  Scree n s h ot of  se l ect a ttr i butes o ptio n .  
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Step 3 : 

Se lect va rious FS strategi es from W EKA to g enerate 1 0  p rote ins  

s ig natu res of  s i ze of  18  show n i n  Fig u re 5-3 .  

Attribute Evaluator 

weka 
El" - attributeSelection 

i" • rf#jffllffl1 
'."" • ChiSquaredAttributeEval 
; . . • ClassifierSubsetEval 
f ·· • ConsistericySubsetEval 
f . . . .  • CostsensitiveAttributeEva! 
( . .. • CostsensitiveSubsetEval r 
;

0
•• • Filt:eredAttributeEval 

l-· • FllteredSubsetEval 
; .... • GainRalioAttributeEval 
[ .... • InfoGamAttributeEval I 
f .. .  • LatentsemanticAnalysis 
f" • One�AttributeEva! 
i"" • Prinapa!Compone:nts t "  • ReliefFAttributeEval 
' ·· • SVMAttributeEval 1 .... • SymmetricalUncertAttributeEval 
f .... • SymmetricalUncertAttributeSetEval 
L.. • WrapperSubsetEval 

Fig u re 5-3 :  Scree n shot of attr i bu te se lection l i st 

Ta b l e  5- 1 out l i nes the  te n FS strateg ies ,  co n s isti ng of d i fferent  

co m b i n at i ons  of sea rch methods w i th  featu re s u bset eva l uato rs .  

B ri ef d escri pti o n s  o f  t h e  tech n iq u es i n  both categories,  sea rch 
methods and  featu re su bset eva l uators ,  a re fou nd i n  Sect i o n  

2 .  5 .  2 . 1 ,  Ta b l e  2 -5  a nd Ta b le 2 - 6 .  
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Table 5-1 : WEKA FS strategies appl ied in this study 

FS strateg ies Sea rch Featu re subset eva l uator 
method 

FS 1 Ranker Fi ltered attribute evaluator 

FS 2 Greedy Consistency subset evaluator 
Stepwise 

FS 3 Ranker Symmetrical uncertainty 

attribute evaluator 

FS 4 Race search Classifier subset evaluator 

( logistic c lassifier) 

FS 5 Greedy Filtered attribute evaluator 
stepwise 

FS 6 Ranker Gain ratio feature evaluator 

FS 7 Greedy Classifier subset evaluator 
stepwise ( logistic c lassif ier) 

FS 8 Ranker OneR feature evaluator 

FS 9 Ranker Rel ief attribute evaluator 

FS 1 0  Greedy Wrapper subset evaluator 
stepwise (J48 c lassi fier) 

Step 4 :  Analyse the 1 0  FS of 18 proteins signature against the 1 8  

proteins signature i n  the obtained in the Ray e t  a l  paper. 

Results :  

The results of subsets generated and the analysis are shown in 

Tab le  5 -2 .  
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Table 5-2 :  Comparison of the 1 0  proteins signature of size 1 8  with Ray et ars 

Protein Name Ray FSl FS2 FS3 FS4 FSS FS6 FS7 FS8 FS9 FS 
et 1 0  
al  

AN G-2_1 v v 
EGF_1 v v v v v v v v 
GCSF_1 v v v v v v v v 
GDNF _1  v v v v 
ICAM-1_1 v 
IGFBP-6_1 v 
IL-1a_1 v v v v v v v v v v v 
IL-3_1 v v v v v v v v v 
IL-8_1 v 
IL-11_1 v v v v v v v v v 
MCP- 3_1 v v v v v v v v 
M-CSF_1 v v v v v v 
MIP-1d_ 1  v v v v v v v 
PARC_1 v 
PDGF-BB_1 v v v v v v v v 
RANTES_1 v v v v v v v v 
TNF-a_l v v v v v v v v 
TRAIL R4_1 v v 
IL6_1 v v v v v 
BMP- 6_1 v v v v v v 
BDNF _1  v v v v v v v 
BLC_1 v v v v v 
MCP-4_1 v y y 

BM P-4_1 y y y y y v 
LIGHT_l y 

ANG_l y y y 
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CK b8-1_1 v v v v 
CNTF_l v v v v 
Eotaxin_l v v v v 
Eotaxin - 2_1 v v v 
Eotaxin-3_1 v v 
MDC_l v v 
LEPTIN(OB)_ v v v v 
1 

NT-3_1 v v v 
Lymphotactin v 

1 -
TGF-b_l v 
IL-l b_l v 
sTNF RI_l v 
GITR_l v 
IL-1 R4 v 
IL-1 5_1 v 
IGF-1 SR v 
IGF- 1_1 v v 
PIGF _1 v 
IL-1 2p70_1 v 
GCP-2_1 v v 
IL-7_1  v 
FGF-6_1 v 
Fit- 3 v 
Ligand_l  

TIMP-1_1 v 
MIG_l v 
u PAR_l v 

IL- lra_l v 

IL-1 0_1 v v 
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ArRP(ART)_l v 
HCC-4_1 v 
FGF-9_1 v 
TECK_l v 
PARC 

IGFBP-1 1 

I-3 09_1 

IGFBP-2 1 

MCP-2_1 

GM-CSF _1 

As shown in Table 5 -2 different FS strategies returned different 
subsets of proteins. Refer to APPENDIX A for detai led information 

associated with the outputs from the 1 0  WEKA FS techniques. 

v 
v 

The first column of Table 5 -2 l ists the name signal l ing proteins, the 

second column relates to the 18  proteins stated in the Ray et al 

paper, and columns 3 (FS 1 )  to 12 (FS1 0)  relate to the subsets of 

proteins selected from the app lication of WEKA FS techniques in this 

study. For the ful l  details  of the 1 20 proteins, p lease refer to the 

information found on the Nature website l isted below : 

http : //www.nature.com/nm/journal/vl 3/n 1 1/extref /nm 1 6 5 3 -S 1 .  pdf 
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5 . 1 . 2  Eva luate th e 1 0  su bsets of 1 8  proteins  s i g nature us ing 

J .48 

Data set used to eva luate : AD test d ata set and M CI test data set . 

Data set u sed to tra i n  each c lass i fi e r :  FS 1 to FS 1 0  as shown i n  
Ta b le  5- 2 .  

Steps ca rr ied ou t  to eva l uate 1 0  FS se lected w ith  the A D  test d ata 
set : 

Step 1 :  

Load  the fi rst 1 8  p rote i n s ignatu re ( FS 1 )  se l ected from FS 

tech n iq ues as shown i n  Figu re 5 - 1 .  In th is  case FS 1 is load ed . 

Ste p 2 :  

Load the test AD data set as s h own i n  F i g u re 5 -4 .  

dassifier Relation: None 
Instances: None Attributes: None 

[ Choose I Zero r---oi)en-fiie:-:�-,, Open URL . .  

Test options aose J 
Q Use trainlng set __________ .,. 

0 Supplied test set SeL . .  

0 cross-validation c. 

0 Percentage split 

More options. , . 

] 
I 

Fig u re 5-4: Screen shot  of o pen test fi l e i nterface i n  W EKA 

Exp lorer .  
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Ste p 3 :  
Se l ect - J48 as a cl ass i fier  to eva l u ate the p rote i n s  s i g natu res 

show n in F igu re 5 - 5  . .  

� Weka Exp lorer 

I Preirocess j dassify � Aswoote i Select attributes I V 

Classfier 

dassmers 
{'.:I b3yes 

. ei functions 
· • Jvthondassafi.,. 

lazv 
met& 
ml 

- ml 
tr'"5 

i • 
. • N3Tree 

!-• RandomForest 
i • RandomTree 

• REPTree 

... 

I Fite,. . .  I ! Remove lil ter 1 1  Clos� I 

Fig u re 5-5 : Scree n shot of se l ect i n g  c lass i fi e r  J48 i nte rfa ce i n  

W E KA Ex p l o rer . 

Step 4 :  Tra i n  the fi rst prote i n  s i g natu re by se l ect i ng "tra i n "  o pt i o n  

fro m W EKA Exp lore c lass i ficat io n  i nterface a n d  "sta rt" button a s  

show n i n  F igure 5 - 6 .  
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I Preprocess j Classify l�u Associate ll�ttril 
Classifier 

I Choose f1J48 -C 0 .25 -M 2 

Test options 

et . . .  

@ Use trainlng set 

0 SUpplied test set 

0 Cross-validation 

0 Percentage split 

;:� d� l -
o :::::I =====: 

More options . . .  

I (Nom) CLASS 

Start 

Result list (right-dick fo starts the c lassification 

F igure 5-6:  Scree n s hot of open test fi l e  i nte rface i n  W EKA 

Exp l o rer . 

Step 5 :  Perform 1 0  fold  cross va l i d at i o n  by se l ect i n g  "c ross 
va l id at ion " o pti o n  fro m W EKA Exp l o re c lassif icat i o n  i nterface as 

s h own i n  F i g u re 5 -7 . 

[ Preprocess j dassify I duster II Associate lf"se 
aassifier 

l Choose JIJ48 -C 0 . 25 -M 2 

Test options 

0 Use training set 

0 Supphed test set 

@ i:ross-validatiorl 

0 Percentage split 

Folds j 10 
::==:::; " ..... 1�_- _ _, 

More options . . .  

I (Nom) CLASS 

Start 

F ig u re 5-7 : Screen s h ot of 1 0  cross va l idat i on  i nterface i n  W EKA 

Exp l o rer .  
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Step 6: Perform the test on the test AD data set by selecting 
"supply test set" radio button and "start" button to commence the 
test. 

Results: 

Confusion matrix was generated to show a number of prediction 

errors for AD and NDC as shown in Figure 5-8 

=== Confusion Matrix === 

a b <-- classifi€d as 

37 5 I a = AD 

2 48  I b = NDC 

Figure 5-8: Screen shot of confusion matrix results 

Results from the confusion matrix above show 5 AD errors (5 AD 

were predicted as NDC) and 2 NDC errors (2 NDC were predicted as 

AD) 

Repeat step 1, and step 3 to step 6 for evaluating the accuracy of 

classifiers trained using FS2 to FS10. 

In terms of testing the MCI test data set, all the steps are the same 

as described above for evaluating with the AD test data set, the 

ONLY difference is in step 2: load the test MCI data set instead. 
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5 . 1 . 3  Results : 

The results of the analysis for using the 1 0  sets of 1 8  proteins 
signatures are shown in table 5 - 3 . 

Table 5-3 : Classification results over 1 0  FS of 1 8  protein 

signature with the WEKA classifier J48 . 

Overall Total 
Test set AD Test set MCI (AD+MCI)  (AD+MCI)  

42 50  22 2 5  64 7 5  1 39 

AD NAD AD NAD AD NAD Total 
errors errors errors errors errors errors errors 

FS 1 5 2 9 8 14 10 24 

FS 2 9 1 8  8 1 4  1 7  32 49 

FS 3 5 7 7 8 1 2  1 5  27 

FS 4 9 1 3  8 1 0  1 7  2 3  40 

FS 5 9 7 6 9 15  16  3 1  
FS 6 5 7 7 8 12 1 5  27 

FS 7 3 2 8 9 1 1  1 1  22 

FS 8 6 12 8 1 0  14 22 36 
FS 9 5 2 9 8 14 10 24 

FS 1 0  3 2 8 9 11 11 22  

With the different FS strategies the features selected are also 

different and subsequently different proteins signatures are used for 
training the classifiers . As shown in Table 5-3 , the column 

"Total errors" list the total number of errors for each FS strategies. 

The total number of errors for the 1 0  different signatures that 
resulted from the application of different FS strategies range from 

22 to 49 ,  indicating that with different proteins signatures, the 
accuracy of the classification is affected and the level of impact on 
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the accuracy is considerable when performing classification on the 

same data set. For example, the set FS2 has 49 errors which are 

more than double the errors associated with training with FS1, FS7 

and FS10. This shows the importance of selecting the most 

appropriate FS strategy for finding features to be incorporated for 

training classifiers. 

5.2 Summary 

This chapter described an investigation of using different FS 

strategies to show the importance of selecting the right strategy to 

obtain a subset of features for classification analysis. The results 

showed that there are vast differences in the accuracy of the 

classifiers trained using features selected by different strategies, 
thus addressing the second aim of this study, which was to 

investigate the impact on the accuracy of classification models when 

different FS strategies are employed. 
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6. Conclusion and Future work 

Research into AD is an area of great interest in recent times. A lot 
of effort, research and money are being spent, in the hope of 

finding biomarkers, which can be used to diagnose the disease early 

as well as to develop better means to monitor treatment and a cure 

for the disease. The search is on for an ideal diagnostic test that is 

inexpensive and can be carried out easily and accurately. In 

addition, methods of obtaining samples for diagnosis should be 

simple. Researchers have been developing various molecular tests 

and techniques (e.g. microarrays, mass spectrometry) to address 

the need of finding biomarkers, resulting in many data sets which 

have a small sample size but are highly dimensional. 

Overall, the project completed an in-depth study of both the Ray et 

al, and Ravetti and Moscato investigations. The project also 

improved existing results by showing that, the classification results 
of using 4 biomarkers obtained in this study were very similar to 

that obtained by using 5 biomarkers in the Ravetti and Moscato 

investigations. In addition, the project also investigated the 
applications of different FS techniques and demonstrated the 

importance of selecting an appropriate FS strategy for classification 

analysis of AD data. 

Chapter 1 provided the background information, the current status 

of AD and the need for a simple and definitive test to diagnose the 
disease. The chapter also provides insights to the problems of high 

throughput technologies which require new analytical approaches. 
DM techniques is one possible approach to address this need. The 

significance and purpose of this study as well as research questions 
to be address were also clearly described. 
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Background and important aspects that led to the use of DM 
techniques as well as appropriate DM tools for analysing AD data 

have been discussed in Chapter 2. DM approaches used in health 

related area in general and AD specifically, together with the 2 

previous case studies: Ray et al (2007) and Ravetti and Moscato 
(2008) have been examined in detail in this chapter. 

Chapter 3 has provided descriptions for the data sets and research 

method. The data format of training and test data sets were 
described in detail, followed by a brief discussion about the 

limitations of this study. 

The investigation to address the first aim of this study is described 

in Chapter 4. It provided information related to the experimental 

procedures, analysis and results associated with the in-depth study 

of the work of Ray et al and Ravetti and Moscato's experiments. 

Overall, the study has been able to re-create these experiments 
with similar results. The chapter also described work in obtaining 

the 4 proteins signature which is a subset of Ravetti and Moscato's 
5 proteins signature. The classifiers generated using the 4 proteins 

signature performed as well as those trained using the 5 proteins 

signature. 

Chapter 5 described the approached taken to address the second 
aim of this study. WEKA's FS strategies have been successfully used 

to generate 10 different sets of protein signatures. These were 

evaluated by using J48 and training data to produce classifiers and 

then to evaluate the performances of the classifiers using the test 

sets. The results obtained with J48 showed that there are vast 

differences in the accuracy of the classifiers trained using features 

selected by different FS strategies, thus demonstrating the 
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importance of selecting an appropriate FS strategy for classification 
analysis. 

The primary purpose of this research project was to investigate the 

application of DM techniques for finding interesting biomarkers from 

a set of AD related data. The findings from this project will help to 

analyse the data more effectively and contribute to methods of 

providing earlier diagnoses of the disease. 

Future Work 

This study can be considered as a preliminary study into the 
applications of DM for mining information from health related data 

sets such as A D. Future work would involve: 

• Using the sets of features generated in Chapter 5 and 

different WEKA classifiers (besides J48), produce classification 

models and evaluate their performances on the test data sets. 
In the work in Chapter 5, the sets have only been applied to 

J48. By evaluating with more classifiers, this will remove any 

bias associated with specific classification algorithms. 

• Use different FS strategies, generate protein signatures of 

different sizes (besides 18 - obviously selected first in chapter 
5 as it is the number in Ray et a/'s paper) and then use these 

to train classifiers and to evaluate their classification 

performances on the test data sets. 

• Develop specific DM algorithms tailored specifically to address 

characteristics of data sets in bioinformatics. 
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APPENDIX A 

feature selection set 1 (FS 1) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection. FilteredAttributeEval -W 
"weka.attributeSelection. InfoGainAttributeEval " - F  
"weka.filters.supervised.instance.SpreadSubsample - M  0.0 - X  0.0 -
S 1 "  
Search: weka.attributeSelection.Ranker -T -
1.7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances : 83 
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 1 21 CLASS): 
Filtered Attribute Evaluator 
Filter: weka.filters.supervised.instance.SpreadSubsample - M  0.0 -X 
0.0 -s 1 
Attribute evaluator: weka.attributeSelection.InfoGainAttributeEval 

Ranked attributes: 
0. 322 
0.171 
0.166 
0.165 
0.155 
0.15 
0.1 34 
0.1 33 
0.1 31 
0.1 3  
0.1 24 
0.112 

29 IL- l a_l 
36 IL-6_1 
77 GCSF _1 
42 MCP-3_1 
59 TNF-a_l 

90 IL-11_1 
53 RANTES_l 
33 IL-3_1 
8 EGF _1 

47 MIP- ld 1 
52 PDGF- BB_l 
5 BMP-6_1 
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0 2 BDNF _1 
0 3 BLC_l 
0 44 M-CSF _1 
0 43 MCP-4_1 
0 4 BMP-4_1 
0 39 LIGHT_l 

Selected attributes: 
29 ,36, 77 ,42,59, 90,53,33,8,47 ,52,5,2, 3,44,43,4,39 : 18 

Feature selection set 2 {FS2) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection. ConsistencySubsetEval 
Search: weka.attributeSelection.GreedyStepwise -R -T -
1. 7976931348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83 
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
Greedy Stepwise (forwards). 
Start set: no attributes 

Attribute Subset Evaluator (supervised, Class (nominal): 1 21 
CLASS): 

Consistency Subset Evaluator 

Ranked attributes: 
0.819 
0.867 
0.904 
0.916 
0.94 
0.94 
0.94 
0.94 
0.94 
0.94 

29 IL-la_l 
33 IL-3_1 
5 BMP-6_1 

77 GCSF_l 
59 TNF-a_l 
1 ANG_l 
2 BDNF_l 
3 BLC_l 
4 BMP-4_1 
6 CK b8-1 1 
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0.94 
0.94 
0.952 
0.964 
0.988 
0.988 
0.988 
0.988 

7 CNTF _1 
8 EGF _1 
47 MIP-ld 1 
42 MCP-3_1 
90 IL-11 1 
9 Eotaxin_l 

10 Eotaxin-2_1 
11 Eotaxin-3_1 

Selected attributes: 29, 33,5,77,59,1,2,3,4,6,7,8,47,42,90,9,10,11 : 
18 

Feature selection set 3 (FS3) 

= = =  Run information = = =  

Evaluator: 
weka.attributeSelection.SymmetricalUncertAttributeEval 
Search: weka.attributeSelection.Ranker -T -
1. 7976931 348623157 E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83 
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 1 21 CLASS): 
Symmetrical Uncertainty Ranking Filter 

Ranked attributes: 
0. 322 
0. 215 
0.199 
0.17 
0.167 
0.165 
0.162 
0.15 

29 IL-la_l 
36 IL-6_1 
59 TNF-a_l 

77 GCSF _1 
52 PDGF-BB_l 
42 MCP-3_1 
53 RANTES_l 

90 IL-11_1 
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0. 15 
0. 149 
0. 1 36 
0. 1 34 
0 
0 
0 
0 
0 
0 

5 BMP-6_1 
33 IL-3_1 
47 MIP-ld_l 
8 EGF _1 

4 BMP-4_1 
45 MDC_l 
43 MCP-4_1 
44 M-CSF _1 
38 LEPTIN(OB)_l 
6 CK b8-1 1 

Selected attributes: 
29 ,36,59, 77 ,52,42,53, 90,5,33,47 ,8,4,45,43,44,38,6 : 18 

Feature selection set 4 (FS4) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection.ClassifierSubsetEval -B 
weka.classifiers.functions. Logistic -T -H "Click to set hold out or test 
instances" -- -R 1.0E-8 -M - 1  
Search: weka.attributeSelection.RaceSearch -R O - L  0.001 0  -T 
0.0010 -F O -Q -N 18 -J -1.7976931348623157E308 -A 
weka.attributeSelection.GainRatioAttributeEval --
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83 
Attributes: 1 2 1  

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
RaceSearch. 
Race type : forward selection race 
Base set : no attributes 
Cross validation mode : 10 fold 
Merit of best subset found : 0. 347 

Attribute Subset Evaluator (supervised, Class (nominal): 1 2 1  
CLASS) : 

Classifier Subset Evaluator 
Learning scheme: weka.classifiers.functions. Logistic 
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Scheme options: -R 1.0E-8 -M -1 
Hold out/test set: Training data 
Accuracy estimation: classification error 

Ranked attributes: 
0. 387 
0. 296 
0. 263 
0. 256 
0. 221 
0. 201 
0. 202 
0.191 
0.164 
0.1 35 
0.103 
0.109 
0.1 2  
0.113 
0.115 
0.1 32 
0.164 
0.112 

29 IL-1a_1 
90 IL-11_1 
50 NT-3_1 
99 Lymphotactin_l 
57 TGF-b_l 
44 M-CSF _1 
77 GCSF_l 
30 IL-1b_1 

110 sTNF RI_l 
78 GITR_l 
94 IL-1R4 /ST2_1 
27 IL-15_1 

86 IGF-1 SR 
2 BDNF _1 

53 RANTES_l 
21 IGF-1_1 

108 PIGF _1 
9 Eotaxin 1 

Selected attributes: 
29 ,90,50,99 ,57,44, 77,30, 110, 78,94,27,86,2,53,21, 108,9 : 18 

Feature selection set 5 (FS5) 

= = =  Run information = = =  

Evaluator: weka. attributeSelection. FilteredSubsetEval -W 
"weka. attributeSelection. CfsSubsetEval " -F 
"weka.filters.supervised. instance.SpreadSubsample -M 0.0 -X 0.0 -
S 1 "  
Search: weka. attributeSelection.GreedyStepwise -R -T -
1. 7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83 
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

146 



= = = Attribute Selection on all input data = = = 

Search Method: 
Greedy Stepwise (forwards). 
Start set: no attributes 

Attribute Subset Evaluator (supervised, Class (nominal): 1 21 
CLASS): 
Filtered Attribute Evaluator 
Filter: weka.filters.supervised.instance.SpreadSubsample -M 0.0 -X 
0.0 -s 1 
Attribute evaluator: weka.attributeSelection.CfsSubsetEval 

Ranked attributes: 
0. 322 
0. 368 
0. 392 
0.4 1 3  
0.428 
0.44 
0.45 1 
0.458 
0.467 
0.472 
0.475 
0.479 
0. 317 
0. 25 
0. 2 1 1 
0. 185 
0. 165 
0. 15 

29 IL-la_ l  
36 IL-6_1 
52 PDGF-BB_l 
59 TNF-a_l 
77 GCSF _ 1  

9 0  IL- 1 1_1 
5 BMP-6_1 

42 MCP-3_1  
53 RANTES_l 
8 EGF _1  

33  IL-3_1 
47 MIP-ld_l 
1 ANG_l 

2 BDNF_l 
3 BLC_l 
4 BMP-4_1 
6 CK b8- 1_1  

7 CNTF _1 

Selected attributes: 29,36,52,59, 77,  90,5,42,53,8, 33,47, 1 ,2,3,4,6, 7 
: 18 

Feature selection set 6 (FS6) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection.GainRatioAttributeEval 
Search: weka.attributeSelection.Ranker -T -
1.7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83 
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Attributes: 1 21 
[list of attributes omitted] 

Evaluation mode: evaluate on all training data 

= = =  Attribute Selection on all input data = = =  

Search Method: 
Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 121 CLASS): 
Gain Ratio feature evaluator 

Ranked attributes: 
0. 322 
0. 288 
0. 275 
0. 251 
0. 226 
0. 204 
0.173 
0.168 
0.166 
0.15 
0.143 
0.1 37 
0 
0 
0 
0 
0 
0 

29 IL- la_l 
36 IL-6_1 
59 TNF-a_l 
52 PDGF- BB_l 
5 BMP-6_1 

53 RANTES_l 
77 GCSF _1 
33 IL-3_1 
42 MCP-3_1 

90 IL-11_1 
47 MIP- ld 1 
8 EGF _1 

4 BMP-4_1 
6 CK b8-1 1 

45 MDC_l 
43 MCP-4_1 
44 M-CSF _1 
38 LEPTIN(OB)_l 

Selected attributes: 
29 ,36,59,52,5,53, 77,33,42, 90,47,8,4,6,45,43,44,38 : 18 

Feature selection set 1 (FS7) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection.ClassifierSubsetEval - B  
weka.classifiers.functions. Logistic - T  - H  "Click to set hold out or test 
instances" - - -R 1.0E-8 - M  -1 
Search: weka.attributeSelection.GreedyStepwise -R -T -
1.7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
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Instances: 83 
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = =  Attribute Selection on all input data = = =  

Search Method: 
Greedy Stepwise (forwards). 
Start set: no attributes 

Attribute Subset Evaluator (supervised, Class (nominal): 1 21 
CLASS): 

Classifier Subset Evaluator 
Learning scheme: weka.classifiers. functions. Logistic 
Scheme options: -R 1.0E-8 -M -1 
Hold out/test set: Training data 
Accuracy estimation: classification error 

Ranked attributes: 
-0.1807 
-0.1566 
-0.1 205 
-0.0964 
-0.0964 
-0.0843 
-0.0723 
-0.0602 
-0.0482 
-0.0482 
-0.0482 
-0.0482 
-0.0482 
-0.0482 
-0.0361 
-0.0241 
0 
0 

29 IL-1a_1 
52 PDGF-BB_l 
92 IL-1 2 p70_1 
33 IL-3_1 
16 GCP-2_1 
2 BDNF _1 

90 IL-11_1 
8 EGF _1 

37 IL-7 _1 
9 Eotaxin 1 

1 2  FGF-6_1 
7 CNTF _1 

14 Fit-3 Ligand_! 
17 GDNF _1 

113 TIMP-1_1 
59 TNF-a_l 

3 BLC_l 
1 ANG_l 

Selected attributes: 
29 ,52, 92, 33, 16, 2, 90 ,8, 37, 9, 1 2, 7, 14, 17,113 ,59 ,3, 1 : 18 
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Feature selection set 8 (FS8) 

= = =  Run information = = =  

Evaluator: weka.attributeSelection. OneRAttributeEval -s 1 -F 10 -
B 6  
Search: weka.attributeSelection.Ranker -T -
1. 7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83  
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = =  Attribute Selection on all input data = = =  

Search Method: 
Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 121 CLASS): 
OneR feature evaluator. 

Using 10 fold cross validation for evaluating attributes. 
Minimum bucket size for OneR: 6 

Ranked attributes: 
79.5181 
71.0843 
69.8795 
69.8795 
68.6747 
67.4699 
67.4699 
67.4699 
67.4699 
62.6506 
62.6506 
62.6506 
62.6506 
62.6506 
61.4458 
61.4458 
61.4458 
61.4458 

29 IL-1a_1 
53 RANTES_l 
44 M-CSF _1 
46 MIG_l 
42 MCP-3_1 

118 uPAR_l 
31 IL-1ra_1 
25 IL-10_1 
90 IL-11_1 
38 LEPTIN(0B)_1 
47 MIP-1d_1 
62 Ag RP(ART)_l 
11 Eotaxin-3 1 
82 HCC-4_1 
76 FGF-9_1 

117 TRAIL R4_1 
112 TECK_l 
63 ANG-2_1 
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Selected attributes : 
29 ,53,44,46,42, 1 18, 31 ,25,90,38,47 ,62, 1 1,82, 76, 1 17, 1 1 2,63 : 18 

Feature selection set 9 ( fS9) 

= = =  Run information = = =  

Evaluator : weka.attributeSelection.ReliefFAttributeEval -M - 1  -D 1 
-K 10 
Search : weka.attributeSelection.Ranker -T -
1. 7976931 348623157E308 -N 18 
Relation : Rayetal-trainingset R&C reversed-CVS 
Instances : 83  
Attributes : 121  

[list of attributes omitted] 
Evaluation mode : evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal) : 1 2 1  CLASS) : 
ReliefF Ranking Filter 
Instances sampled : all 
Number of nearest neighbours (k) : 10 
Equal influence nearest neighbours 

Ranked attributes : 
0.0826 
0.0755 
0.0722 
0.0486 
0.0453 
0.0377 
0.0357 
0.0326 
0.0325 
0.0316 
0.0296 
0.0283 
0.0266 
0.0248 
0.0244 
0.0242 

29 IL-la_l 
17 GDNF _1  
59  TNF-a_l 
77 GCSF_l 
5 3  RANTES_l 
2 BDNF _1  

44 M-CSF _1  
52 PDGF-BB_l 
38 LEPTIN(OB)_l 
8 EGF _1  

10 Eotaxin-2_1 
33 IL-3_1 
5 1  PARC_l 
22 IGFBP-1 1 
36 IL-6_1 
25 IL-10_1  

151  



0.0237 50 NT-3_1 
0.0233 42 MCP-3 1 

Selected attributes: 
29, 17 ,59, 77,53, 2,44,52,38,8, 10 ,33 ,5 1 ,22,36,25, 50,42 : 18 

feature selection set 10 (FS 10)  

= = =  Run information = = =  

Evaluator: weka.attributeSelection. WrapperSubsetEval -B 
weka.classifiers.trees.J48 -F 5 -T 0.01 -R 1 -- -c 0. 25 -M 2 
Search: weka.attributeSelection.GreedyStepwise -R -T -
1. 7976931 348623157E308 -N 18 
Relation: Rayetal-trainingset R&C reversed-CVS 
Instances: 83  
Attributes: 1 21 

[list of attributes omitted] 
Evaluation mode: evaluate on all training data 

= = = Attribute Selection on all input data = = = 

Search Method: 
Greedy Stepwise (forwards). 
Start set: no attributes 

Attribute Subset Evaluator (supervised, Class (nominal): 1 21 
CLASS): 

Wrapper Subset Evaluator 
Learning scheme: weka.classifiers.trees.J48 
Scheme options: -c 0. 25 -M 2 
Accuracy estimation: classification error 
Number of folds for accuracy estimation: 5 

Ranked attributes: 
-0. 205 
-0.157 
-0.118 
-0.116 
-0.116 
-0.116 
-0.116 
-0.116 
-0.111 
-0.108 

29 IL-la_l 
52 PDGF-BB_l 
33 IL-3_1 
16 GCP-2_1 
19 1-309_1 
21 IGF-1_1 
23 IGFBP-2_1 
9 Eotaxin_l 

41 MCP-2_1 
50 NT-3 1 
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-0.108 
-0.108 
-0.108 
-0.108 
-0.108 
-0.108 
-0.108 
-0.108 

3 BLC_l 
2 BDNF _1 
4 BMP-4_1 
5 BMP-6_1 
7 CNTF_l 

10 Eotaxin-2 1 
17 GDNF _1 
18 GM-CSF _1 

Selected attributes: 
29 ,52,33, 1 6, 19 , 21, 23, 9 ,41,50 ,3  , 2,4,5, 7, 10, 17, 18 : 18 
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AP PEN DIX B 

The fo l low i ng a re so me screen sna pshots of  W E KA to i l l ustrate the 

p rogra m  has m a ny men u o pti o ns ,  c l ass i fi e rs ,  featu re select ion  

method s,  test o pti o n s  a nd outp u t  resu l t  form ats ava i l a b l e  i n  
differe nt u ser i nte rfaces. 

· -·> Weka Exp lorer 

Preprocess dassify Ouster Associate Select attributes Visualize 

Open URL. . .  !!""""""'""""""""""" " ·open· file .·. ·.· · ··· ·  · ···· · ····· · ···· · ····n [ 
• M CC · tmctttll-1 - -· ----------

Filter 

[ Choose j Attribute5election -E "weka. attributeSelection . CfsSub 

Current relation 
Relation : Rayetal -trainingset R&C reversed-CVS 

Instances: 83 

Attributes 

AttribL 

_____ AJ_I ___ J I ___ N_o_ne ___ j C 
Fig u re 1 :  Ex p l o rer  i nte rface with d i ffere nt  m e n u  o pt io n s  
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I Preprocess I dassify l�f��ll�t attributes II� 
Classifier 

weka 
El- dassifiers 

$·· . bayes !· · .. · • .. E. 
>· • 
f . . ... • BayesianLogistic:Regression 
> .. • BayesNet 
\ . ... • ComplementNaiveBayes 
/ ... . DMNBtext 
, . .. . F 
i . . . l ... . . 
J, .. . . . 
>·• 
J ... . . . 

NaiveBayes 
NaiveBayesMultinomial 
NalveBayesMultinomialUpdateable 
NaiveBayesSimple 
NaiveBayesUpdateab\e 

L.. . • - .. E 
$.. functions 
f .. . . • Jythondassifier 

lazy 
meta 
mi 
misc 
-
trees 

Fig u re 2 :  Ex p l o rer  with many c lassifi e rs p rovid ed . 

-·:> Weka Exp lorer 

I Preprocess II Classify II Cluster II Associate r Select attributes l 
Attribute Evaluator 

weka 
attributes election 

t - -· • taffl.t@!ffli 
/"· • ChiSquaredAttributeEval 
f . . .  • ClassifierSubsetEval 
f"" • ConsistencySubsetEval 
f .. • CostsensitiveAttributeEval 

1 .... • CostsensitiveSubsetEval 
; . . . . • FilteredAttributeEval 
f" ' • FilteredSubsetEval 
f · • GainRatioAttributeEval 
f . . • InfoGainAttributeEval 
f" · • LatentsemanticAnalysis 
/ · .. • OneRAttributeEval 
I .. • PrindpalComponents 
f . . .. • ReliefFAttributeEval 
f . . .. • SVMAttributeEval 
; . ... • SymmetricalUncertA ttributeEval 
( . ... • SymmetricalUncertAttributeSetEval 
L .. • WrapperSubsetEval 

Fig u re 3 :  Featu re se l ection  with many attr i b ute eva l uators 
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- -� Weka Exp lorer 
[ Preprocess JI dassify JI Cluster II Associate ] Select attributes 

Attribute Evaluator 

Choose JlcfsSubsetEval 

Search Method 

weka 
El· attributeSe.lection 

l ·· · · • j:ffll@I 
t · · · · • ExhaustiveSearch 
f ···· • FCBFSearch 
\ · · · · • GeneticSearch 
; .... • GreedyStepwise 
}- - - - • LinearForwardSelection 
f ···· • RaceSearch 
r · - - · • RandomSearch 
}--·· • Ranker r·--· • RankSearch 
�-- - · • ScatterSearchV l 
L.. • SubsetsizeForwardSelection 

Fig u re 4 :  Featu re sel ecti on  w ith m a ny sea rch m ethods 

=== Evaluation on training set === 
= Summary = 

Correctly Classified Instance s 
Incorrectly Classified Instances 
Kappa statistic 
Meen absolute e r ror 
Root mean squared error 
Relative absolute error 
Root re lative squared e r ror 
Total Number of Instances 

=== Detailed Accuracy By Clas s  

TP Rate FP Rate 
0 . 95 3  
1 

!\1eighted Avg . 0 . 976  

= Confusion Matrix === 

a b 
4 1  2 
0 4 0  

<-- classified as 
a = AD 
b = NDC 

0 
0 . 0 4 7  
0 . 022  

8 1  
2 
0 . 95 1 8  
0 . 039 5 
0 . 140 5 
7 . 9045 

2 8 . 115 4 
8 3  

Precision 
1 
0 . 9 5 2  
0 . 977  

\ 
\ 

Recall 
0 . 953 
1 
0 . 97 6 

97 . 5904 i 
2 . 4 0 9 6  i 

F-Measure 
0 . 976  
0 . 97 6  
0 . 97 6  

Fig u re 5 :  V iew o utput of c l a ss i fi catio n i n text  fo rm 
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ROC Area 
0 . 988  
0 . 988  
0 . 988  

Cl ass  
AD 
NDC 



<= -0. 1 45045 

<= 0.1 1 3499 > 0.1 1 3499 

> -0 . 1 '5045 

<= -0.425538 • -0.425538 

<= - 0 .656446 > -0.656'46  <= -0 . 596838 > - 0 . 5 96838 

F i g u re 6 :  Vi ew output of c lass i ficat i o n  i n  g ra p h i cs fo rm 

--�· Weka Experi ment Envi ronment 
Setup J�U Analyse I 

Experiment Configuration Mode : 

r····· ····- ··· ·· · ···· · ···· · ···· · ·· · · ···· · ···· ···· · ···-···-··· · · ··· ···-····-········-··open·:·::· ...... ... ···-··· · ······· ······· ...................... ..... _ .. ·· ···· · ···· ·i �-----
Results Destination 

IL..�_FF_fi_le __ --=v::.11 Filenam e :  C :  'Program Files\Weka • 3-6\experiment\experiement 1.arff 

Experiment Type 

I Cross-validation 

Number of fold s : I 
... 2 _____________________________ _ 

@ Classification 0 Regression 

Datasets 

Add new . . .  Edit  selected . . .  Delete se1e 

D Use relative paths 

F: \Semester 2-09\,Research Project 2\WEKA \WEKA • working datasets\ARFF fi les\,Rayetal-trainingset.arff 
F : \5emester 2-09\,Research Project 2\WEKA\WEKA - working datasets\ARFF fi les\Test Set AD - WEKA . arff 
F : \Semester 2-09\,Research Project 2\WEKA\WEKA - working datasets\ARFF fi les\Test Set MCI WEKA . arff 

Fig u re 7 :  Experiment  Env i ro n m e nt with m u lti p l e  data sets setu p 
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Iteration Control 

Number of repetitions:  1 �--------------------
@ Data sets first 

0 Algorithms first 

Algorithms 

�---Ad_d_n_ew_._ . . ___ �] l� ____ Ed_it_sel_e_c_te_d_ . . .  ___ -----.JJ C 
SMO -C 1 .0  -L 0.00 10 ..P 1 .0E ·l2 -N O  ·V · l ·W 1 -K "v.reka .dassifiers .functions . supportVecto 
Simpletogistic -I O -M 500 -H 50 -W 0 .0  
Logistic -R 1.0E-8 -M ·l 
MultilayerPerceptron -L 0.3 -M O. 2 -N SOO ·V O ·S O -f 20 -H a  
BayesNet -0 -Q weka . dassifiers . bayes. net. search. local .K2 - ..P 1 -S BAYES -f weka .dassifie 
NaiveBayes 
NaiveBayesSimple 
NaiveBayesUpdateab!e 
IB l 
IBk -K 1 ·W O -A "v.reka . core.neighboursearch .LinearNNSearch -A \"v.•eka . core.EudideanDisti 
KStar -8 20 -M a  
LWL -U O -K - 1 -A "weka . core .neighboursearch.LinearNNSearch -A \"weka. core .EudideanDis· 
AdaBoostM l ..P 100 -s 1 -I 10 -W weka.dassifiers . trees .DedsionStump 
C!assificationViaRegression -W weka . dassifiers . trees .MSP - -M 4. 0  
Decorate -f 1 0  -R 1.0 - s  1 ·I 1 0  ·W weka.dassifiers . trees . J48 - -C O . 25 -M 2 
MultiClassClassifier -M O  -R 2. 0 -s 1 -W weka.dassifiers . functions .Logistic - -R 1 .0E-8 -M · 1  
RandomCommittee -S 1 -I 1 0  ·W weka. dassifiers .  trees .RandomTree - -K O  -M 1 . 0  - s  1 
J48 -C 0. 25 -M 2 
LMT ·I - 1 -M 1 5  -W 0 .0  
NBTree 
PART -M 2 -C 0 . 2 5  -Q 1 
RandomForest ·I 10 -K O -s 1 
OrdinalClassdassifier -W weka .dassifier s .trees. J48 - -C 0 . 25 -M 2 

Fig u re 8 :  Experi m ent E nv i ro n m ent with m u l t i p le c l a ss i fi e rs setu p 
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APPENDIX C 

The following references are extracted from WEKA 3.6. 1 (2009): 

SMO 

"J. Platt: Machines using Sequential Minimal Optimization. In B. 

Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel 

Methods - Support Vector Learning, 1 998. " 

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, K. R. K. Murthy 

(2001). Improvements to Platt 's SMO Algorithm for SVM Classifier 
Design. Neural Computation. 13(3) : 637-649. " 

Logistic 

"le Cessie, S. , van Houwelingen, J. C. (1 992). Ridge Estimators in 
Logistic Regression. Applied Statistics. 41 (1) : 1 91 -201 . "  

Simple Logistic 

"Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. 
Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model 

Tree Induction. In: 9th European Conference on Principles and 
Practice of Knowledge Discovery in Databases, 675-683, 2005. " 

Bayes Net 

"http://www. cs. waikato. ac. nz/rvremco/weka. pdf" 

Na'ive Bayes 

"George H. John, Pat Langley: Estimating Continuous Distributions 
in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in 

Artificial Intelligence, San Mateo, 338-345, 1 995. " 
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Na"ive Bayes Simple 
"Richard Duda, Peter Hart (1 973). Pattern Classification and Scene 

Analysis. Wiley, New York. " 

Na"ive Bayes Updatable 

"George H. John, Pat Langley: Estimating Continuous Distributions 
in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in 
Artificial Intelligence, San Mateo, 338-345, 1 995. "  

IB1 

"D. Aha, D. Kibler (1 991). Instance-based learning algorithms. 
Machine Learning. 6 :  37-66. " 

IBk 

"D. Aha, D. Kibler (1 991). Instance-based learning algorithms. 

Machine Learning. 6 :37-66. " 

KStar 

"John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner 
Using an Entropic Distance Measure. In: 1 2th International 

Conference on Machine Learning, 1 08-1 1 4, 1 995. "  

LWL 

"Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive 

Bayes. In: 1 9th Conference in Uncertainty in Artificial Intelligence, 

249-256, 2003. 

C. Atkeson, A. Moore, S. Schaal (1 996). Locally weighted learning. 

AI Review. " 

160 



AdaBoost 
"Yoav Freund, Robert E. Schapire: Experiments with a new boosting 

algorithm. In: Thirteenth International Conference on Machine 

Learning, San Francisco, 1 48-1 56, 1 996. " 

Classification Via Regression 

"E. Frank, Y. Wang, S. Inglis, G. Holmes, I. H. Witten (1 998). Using 
model trees for classification. Machine Learning. 32(1) : 63-76. " 

Decorate 
"P. Melville, R. J. Mooney: Constructing Diverse Classifier Ensembles 

Using Artificial Training Examples. In: Eighteenth International Joint 

Conference on Artificial Intelligence, 505-51 0, 2003. 

P. Melville, R. J. Mooney (2004). Creating Diversity in Ensembles 

Using Artificial Data. Information Fusion: Special Issue on Diversity 

in Multiclassifier Systems. " 

Ordinal classifier 
"Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification. 

In: 12th European Conference on Machine Learning, 1 45-1 56, 
2001. " 

PART 
"Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without 

Global Optimization. In: Fifteenth International Conference on 

Machine Learning, 1 44-1 51 ,  1 998. " 

]48 

"Ross Quinlan (1 993). C4. 5: Programs for Machine Learning. 
Morgan Kaufmann Publishers, San Mateo, CA. " 

161 



LMT 
"Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. 
Machine Learning. 95(1 -2) :  1 61 -205. 

Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model 
Tree Induction. In: 9th European Conference on Principles and 

Practice of Knowledge Discovery in Databases, 675-683, 2005. " 

NBTree 
"Ron Kohavi: Scaling Up the Accuracy of Naive-Bayes Classifiers: A 

Decision-Tree Hybrid. In: Second International Conference on 
Knoledge Discovery and Data Mining, 202-207, 1 996. " 

Random forest 
11Leo Breiman (2001). Random Forests. Machine Learning. 45(1) :5-
32. " 

162 


	Investigating data mining techniques for extracting information from Alzheimer's disease data
	Recommended Citation

	Copyright warning for theses pdf
	20151202074836297
	20151202075358319
	20151202075855614
	20151202080319221
	20151202080745447
	20151202081006982
	20151202082908523
	20151202082941965
	20151202083004241
	20151202083405270
	20151202083619806
	20151202083656498
	20151202083803454
	20151202083849762
	20151202084347148
	20151202084620723
	20151202084721040
	20151202084813712

