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Abstract

The rise of social media has facilitated the diffusion of information to more easily

reach millions of users. While some users connect with friends and organically share

information and opinions on social media, others have exploited these platforms to

gain influence and profit through promotional campaigns and advertising. The exis-

tence of promotional campaigns contributes to the spread of misleading information,

spam, and fake news. Thus, these campaigns affect the trustworthiness and reliabil-

ity of social media and render it as a crowd advertising platform. This dissertation

studies the existence of promotional campaigns in social media and explores different

ways users and bots (i.e. automated accounts) engage in such campaigns. In this

dissertation, we design a suite of detection, ranking, and mining techniques. We

study user-generated reviews in online e-commerce sites, such as Google Play, to ex-

tract campaigns. We identify cooperating sets of bots and classify their interactions
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in social networks such as Twitter, and rank the bots based on the degree of their

malevolence. Our study shows that modern online social interactions are largely

modulated by promotional campaigns such as political campaigns, advertisement

campaigns, and incentive-driven campaigns. We measure how these campaigns can

potentially impact information consumption of millions of social media users.
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Chapter 1

Introduction

Social media is one of the most powerful influencing tools in modern marketing.

Studies show that over 88% of US companies1 are using social media for marketing

purposes and their spending is expected to increase in the next years [11]. Facebook

and Twitter are the leading social networks in advertising. For example, 95% of Face-

book’s revenue came from their advertising system; that revenue totaled 26.88 billion

US dollars [5]. This illustrates the effective role social media plays in the marketing

world which, as a result, led promoters to target these platforms to reach a large au-

dience. This encouraged the presence of spamming content [80], sponsored activities

[43], and the spread of automated accounts that distribute misleading information

and fake news [40].

Social media has created virtual communities that gather users with mutual inter-

est and provide them with a platform to share information and content. Users can

instantly interact within their community in various means by following (a user’s

content), retweeting or sharing content, and liking posts, all with minimal effort.

Recently, social media has become a great platform for promotional activities. Typ-

ically, promoters try to engage as a member in the community, then start pushing

1companies with more than 100 employees
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information and promotional activities to achieve a goal, which could be related to

influencing public opinion in political topics, popularizing an ideology, or promoting

products.

In this dissertation, we explore different campaign strategies used in social media

and show their role in destroying the reliability of the network. We propose a suite

of detection, ranking, and mining techniques to identify promotional campaigns and

quantify the maliciousness of bots.

In Chapter 2, we investigate the incentivized reviews on mobile apps, where

users write biased reviews for some incentives, and we show how these reviews affect

app popularity and the incentive’s drawbacks in the review system. In Chapter 3, we

propose a technique to discover interacting bot-driven campaigns and perform multi-

aspect (i.e. temporal, textual, and graphical) clustering of bot behavior. Chapter 4

studies bot malevolence in Twitter; we use a deep learned model to produce a ranking

score that successfully predicts malicious bots. In the last chapter, we conclude with

a discussion of results and future implications.

1.1 Referral Incentives on App Reviews

In an online review system, a user writes a review with the intention of helping fellow

consumers (i.e. the readers) to make informed decisions. However, product owners

often provide incentives (e.g. coupons, bonus points, referral rewards) to the writers,

motivating the writing of biased reviews. These biased reviews, while beneficial for

both writers and product owners, pollute the review space and destroy readers’ trust

significantly.

In this work, we analyze a new type of promotional campaign called incentivized

reviews and identify a wide range of anomalous review types, such as copying, spam-

ming, advertising, and hidden-beneficiary reviews. We find that there are groups of
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users that have been consistently taking part in writing such abusive reviews. We

further find that such incentivized reviews indeed help the apps in gaining popularity

when compared to apps that do not provide incentives. We also identify an increas-

ing trend in the number of apps being targeted by abusers, which, if continued, will

render review systems as crowd advertising platforms rather than an unbiased source

of helpful information. This work is published in the 2017 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining (ASONAM) and

the 2017 International Conference on Web Engineering (ICWE) [15, 16].

1.2 Bot-driven Interacting Campaign Detection

Bots are typically involved in social campaigns for two reasons: to inorganically

sway public opinion, and to build social capital, exploiting the organic popularity of

social campaigns. In the process, bots interact with each other and engage in human

activities (e.g. likes, retweets, and following). In this chapter, we study bot-driven

campaigns and analyze their various interactions.

We develop a technique to discover interacting bot-driven campaigns by combin-

ing existing bot detection and campaign detection systems. In general, we observe

similarity among the bots in a campaign in various aspects, such as temporal cor-

relation, sentimental alignment, and topical grouping. However, we also discover

bots compete to gain attention from humans, follow leads from human users, and

occasionally switch campaigns. Technically, we perform multi-aspect (i.e. tempo-

ral, textual, and graphical) clustering of bot behavior, and assemble the clusters to

identify co-operating sets of bots. Our empirical cases are on politics, sports, and

shopping domains. This work will be published in the 2019 International World

Wide Web Conference.
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1.3 Ranking Bot Malevolence in Twitter

Typically, bots are faster in exploiting social media than human users. While some

bots are benign in nature, others are malicious and invasive; they show suspicious

behavior and become involved in promotional activities that eventually lead to their

suspension. Therefore, there is a need to shift the focus from automated bots de-

tection to malicious bots detection since not all bots are bad; many of the bots are

created for entertainment and customer services purposes (e.g. chat-bot).

In this chapter, we propose a real-time ranking system to rank bots based on

the degree of their malevolence. We characterize bot behavior with different features

measuring their media bias, hate content, and suspicious URLs. We use a deep

learned model to produce a ranking score. The model is trained on a novel dataset

of suspended bots tracked over four months on Twitter. Our model achieves 94.29%

ranking-based average precision in ranking the bots and can predict malicious bots

successfully.
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Chapter 2

Referral Incentives on App

Reviews

2.1 Introduction

Online reviews help consumers to make informed decision with an assumption that

the review writers are an unbiased sample of past consumers. However, miscreants

have invented many ways to tamper with review systems to gain fake popularity for

certain products. Researchers have already found examples of fake reviews [63, 50],

omitted reviews [62], and user-review cliques [19]. Such reviews are almost always

caused by unethical activities outside of the hosting system, e.g. hiring black market

reviewers. In this work, we show a new form of tampering in the online review systems

which originates from many normal users writing reviews for rewards, points, and

bonuses, which we call incentivized reviews.

Providing incentives is a common marketing strategy. For example, in the Google

Play store, users are promised that if new users apply their referral codes, both new

and old users will get reward points to spend in that app or to redeem for cash or
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gift cards [24]. To increase the chance of success, users broadcast their referral code

by posting reviews, which is clearly not the intended purpose of a review system.

For example, Figure 2.1 shows a set of incentivized reviews in Google Play. The first

review is advertising a referral code of one app (i.e. Joy Rewards) in the review

space of another app (i.e. AppTrailers). The second row shows two reviews with

identical text and different referral codes. To understand the potential impact of such

incentivized reviews, let us consider the app com.tapgen.featurepoints. This app

has 6,037 reviews at the time of writing, and 2,147 (35.6%) of them are incentivized

reviews. The difference in the average rating between the incentivized reviews (4.73)

and the remaining reviews (4.08) suggests that the incentivized reviews and ratings

are creating an undesirable bias in the review system, which impacts the overall

trustworthiness of the reviews.

Figure 2.1: Top row: Referral reviews in Google Play found in an app called
AppTrailers. Note that the left review is advertising another app Joy Rewards.
Bottom row: two reviews with identical text, but different referral codes are shown.
Such incentivized reviews are growing in numbers.

Existing work on opinion and review mining focus on detecting fake reviews and

collaborative frauds. Incentivized reviews are different from fake reviews or paid

reviews. The incentive from spreading referral code via reviews is obtained from the
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product (i.e. app) owner, thus it is traceable. The fake and paid reviews are written

by abusers for untraceable incentives. All incentivized reviews are untrustworthy

for their monetary motivation, while some incentivized reviews are worse for their

spamming and adverse nature. Our goal, in this work, is to understand how abusers

are going beyond few random reviews to manipulating incentivized reviews, and thus

impact the trustworthiness of a review system. This study is one of the first to ask

the following questions: Are there anomalous/abusive/spamming reviews among the

incentivized reviews and how do we identify them? Are there collaborating groups

of users that are maximizing incentives by abusing the review system? Are there

apps that are targeted or benefited by the abusers? Answers to these questions are

extremely important for review systems, that can possibly take the following three

actions: delete abusive reviews, monitor abusive users and apps to prevent future

abuse, and protect target apps from the abusers.

To answer these questions, we collect and analyze incentivized reviews from the

Google Play store. We design a parsing pipeline that extracts app names and code

words mentioned in reviews with high precision. The key challenge in the extraction

process is that app names contain variable number of words of many forms (e.g. ab-

breviations, languages) and parts of speech. For example, it is hard to differentiate

the app name “Uninstall” from the phrase “uninstall”. Moreover, apps are added,

edited and deleted frequently in the Play store. We use a dictionary based tech-

nique to extract app names and code words in a highly precise manner. To identify

abusive incentivized reviews, we develop a novel relational ensembling technique for

outlier detection, that reduces bias in the resulting outliers by relating outliers from

multiple entities. Our method identifies a set of abusive incentivized reviews, such

as automated, spamming, targeting and hidden-beneficiary reviews. We further an-

alyze the review writers by applying graph mining techniques to identify groups of

users who are collaboratively targeting other apps to spread their referral codes. To

estimate the impact of incentivized reviews, we tracked the apps that provide incen-
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tives continuously for six months (October, 2015 - March, 2016). We discover that

the apps that employ a rewarding mechanism gain significantly high star-ratings and

downloads compared to those that do not.

Before going into further detail, we would like to emphasize that the Google Play

Marketplace is a huge ecosystem of reviews that is visited by over one billion Android

users. One may find our methods specialized to Google Play reviews, but we consider

this to be an acceptable specialization due to the sheer number of individuals using

this platform and facing the threat of incentivized review abuse. We would also

argue that identifying and analyzing incentivized reviews in other review systems

(e.g. iTunes) will require ad-hoc systems similar to ours, and are worth developing.

In the rest of the chapter, we first introduce in Section 2.2 the related work

and background. We describe the data collection and text processing algorithms in

Section 2.3. We describe our relational ensembling technique and resulting abusive

reviews in Section 2.4. We categorize the apps based on their parts in incentivized

reviews in Section 2.5. We analyze the users who write incentivized reviews in

Section 2.6.

2.2 Background and Related Work

A review is incentivized if the writer of the review gains any benefit in writing the

review. For example, the four incentivized reviews in Figure 2.1 are showing referral

codes, which, if used by some new users, can earn reward points for their writers.

Note that both the Android and iTunes platforms provide the functionality for in-

corporating a reward system in apps. In January 2016, Google began providing app

developers with lists of alphanumeric codes that can be used as promotional codes

[48], and Apple has been doing this for some time. This service encourages develop-

ers to use promotional codes. The apps we identified as rewarding apps were using
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these codes before Google provided the service; thus while we expect more apps to

start using this reward system, we have a snapshot of them in our dataset.

Current works focus on identifying fraud reviews and reviewers, while we focus

on understanding the (potentially abusive) impact of incentives on online reviews.

Existing work can be categorized based on the methodologies they adopt to detect

frauds. Fraud detection using graphical/ network structure is studied in [19, 26, 84,

36] where authors exploit network effects and clique structures among reviewers and

products to identify fraud. Text-based detection of fraud is studied to spot a fake

review without having the context of the reviewer and reviewed product[66, 51, 79].

Temporal patterns, such as bursts, have been identified as a fraudulent behavior

of businesses [87, 37, 88]. In contrast, our work looks at specific textual features

of incentivized reviews such as referral codes, app mentions, and keywords related

to a reward system. Our method also utilizes unique contextual features such as

the number of downloads, the number of reviews, and the average rating, which

help us gauge the impact of incentivized reviews. Our work is unsupervised, as we

do not have any ground truth or labeled data for anomalous incentivized reviews

(as ours is one of the earliest works). Many previous works employed unsupervised

techniques. In [86], hotels are ranked based on an unsupervised hedge algorithm. In

[38], hotels located in 21 big cities are analyzed to identify distributional anomalies.

In [51], reviews are analyzed using review-, reviewer-, and product-centric features.

In [36], authors have evaluated the crowdsourced manipulation of online reviews.

Our method is similar to those work on the broad theme of exploratory anomaly

detection.

The closest work to ours is finding fraud and malware apps in Google Play,

FairPlay [70]. The article discusses a method to automatically find such apps using

review-based features related to apps and their users. We focus more specifically on

incentivized reviews and consider finding abusive users and apps which are taking

part in this segment.
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2.3 Preprocessing

In this section, we describe our data collection process and the algorithms we use to

detect and parse incentivized reviews.

2.3.1 Data Collection

We have implemented a two-stage data collection process. In the first stage, we

searched in Google play store for apps that could potentially use incentives using

specific keywords. We have collected a set of 10,355 apps. For each app, we collect

up to 44801 of the most recent reviews. In the second stage, we develop an algorithm

to detect referral reviews and apps. We have identified 4,029 apps that have some

referral reviews. To understand how these apps benefit in gaining downloads and

positive ratings, we have monitored the apps continuously from October, 2015 to

March, 2016. For each app, we collect its metadata (e.g. app size, app description,

and rating) and developer information. The total number of reviews we have collected

is 14,555,502. Each review contains title, body, date, rating, and author. The total

number of unique users in our dataset is 10,327,089 users. In this stage, we have

collected 74,013 referral reviews with codes.

2.3.2 Extracting Codes

We develop an algorithm to detect incentivized reviews by identifying and extracting

codes from the reviews. Obviously other kinds of incentivized reviews may exist;

however, referral incentives are almost always implemented through promo codes,

which gives us a significant coverage on incentivized reviews.

1The limit is set by Google Play.
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To identify and extract codes from reviews, we first manually generate a blackList

and two whiteLists based on extensive examination of the dataset. The blackList

is used to identify reviews that likely contain an app code. Some example terms

from the blackList are: points, referral, free, and code. A whiteList is used to

identify reviews that may contain a string that could be confused for a referral code.

Note that we define two whiteLists: the first whiteList is for the ExtractCodes

algorithm which contains 35 words, and the second list is for the ExtractAppNames

algorithm, which contains 87 words. Some example terms from the whiteList include:

barcode, PayPal, and zip code. All lists are available at [9].

Our preprocessing step only retains English reviews that contain at least one

keyword from the blackList. In most development platforms, codes are random

sequence of numbers, alphabets, or combination of alphabets and numbers. We

develop ExtractCodes (shown in Algorithm 1) that extracts codes from reviews if

they exist. We first tokenize a review using whitespace and special characters and

extract these tokens from the review. We then perform three checks to test if a word

is a code. We first test if the word is a numeric word of length greater than 4. Such

numbers are almost always code words with exception of when they are game scores

or reward points.

We then check if the word contains both numbers and letters. In such cases,

we check if the digit(s) have been used as separators or short forms of words, e.g.

Pay2Park, Car4you and Pay2call. nexus6, mp3, galaxy4 and html5 are examples

of digits being used as parts of words. We tokenize the words further using digits as

separators, and check if the smallWords are in the dictionary or in the whiteList. If

so, the original word is labeled as valid. Note that, combinations of the smallWords

can be in the dictionary; however, we ignore such cases for simplicity.

We next check if the words contain only letters. Such words can be codes if

they are not in the dictionary and they are indicated as codes by some surrounding

symbols such as , [], (),−−, or a preceding symbol such as :,−. We identify such
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indicator symbols to avoid detecting misspelled words as codes. Since the word w is

already tokenized, we check for surrounding symbols in the original review.

Algorithm 1 ExtractCodes(a)

Require: a← a review

Ensure: c← extracted code if exists

1: words← Tokenize(a)

2: for each w ∈ words of length 5 to 13 do

3: if Numeric(w) then

4: return c← w

5: else if AlphaNumeric(w) then

6: smallWords← TokenizeDigits(w)

7: for each ww ∈ smallWords do

8: if ww ∈ Dictionary or ww ∈ whiteList then

9: flag ← 1

10: break

11: return c← w if flag 6= 1

12: else if Alphabetic(w) and w /∈ Dictionary and w has indicator symbol then

13: return c← w

14: return c← empty

2.3.3 Extracting AppNames

In addition to codes, abusive reviews also contain references to other apps. Knowing

the app that a review is referring to will help us to measure the impact of the reward

system in that referred app. We develop Algorithm 2 to extract apps names from

reviews.

Before extracting app names, our system generates a list of app identifiers from

the metadata (i.e. app title) collected from the Google Play website. Usually app
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names are long and app developers tend to put keywords in the title describing

functionality (e.g. Amazon for Tablets, AppCoins (How to make money), imo beta

free calls and text, Make Money - Earn Free Cash). When users refer to an app in

reviews they usually use the first couple of words without mentioning the whole title.

Algorithm 2 generates different app identifiers from each app’s title. In line 2, we

check if the title is in the dictionary. Sometimes apps are named by a single word

(e.g. Uninstall). Occurrences of such a word in review text are hard to classify as

reference to the app versus a normal use of the word. Therefore, we reject all single

word app titles, which form 17% of Google play store. It may seem large, however,

removing such names helps improving precision of the extraction process. In line 4,

we find words in the title by separated by whitespace and special characters. In line

5, we create an empty string and then, in line 9, we iterate over subsequent words

in the title. We keep appending the subsequent words to generate prefixes of the

title separated by spaces and add them to b. We discard non-English names and

too-short names (length less than 5) in line 10. We also consider special characters

in the title. Sometimes reviewers copy and paste app title in reviews. We ensure the

special characters are well represented in the identifier set for such pasting actions.

We do not show the steps in pseudo-code for simplicity. We have generated 20,682

app identifiers from 10,089 app titles. Each identifier is tagged with an appID that

connects the exact app with its identifiers. We use the identifiers in extracting app

names from reviews as described next.

Algorithm 3 takes the app identifiers and a review as input and outputs the app

name that appears first in the review. Line 1 uses a parser [67] that extracts the

nouns from a list of words. We exclude some nouns which appear more commonly

in reviews, but not in reference to other apps (line 2). For example, Lock screen,

SD Card and Ringtone are commonly used words which are also app names. The

algorithm iterates over reviews, extracts nouns and compound nouns, then appends

the same words after removing certain commonly used words (e.g. App, The, game).
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Algorithm 2 GenerateAppIdentifiers(a)

Require: a← a list of app titles

Ensure: b← a list of app identifiers

1: for each i ∈ a do

2: if i /∈ Dictionary then

3: b← i

4: t = Tokenize(i)

5: L← []

6: for next w ∈ t do

7: L← Append(L,w)

8: b← L if L /∈ Dictionary

9: for each j ∈ b do

10: if length(j) < 5 or Language(j) 6=′ en′ then

11: remove(j)

12: return b

Lines 3 through 7 iterates over the extracted nouns, and if any of these nouns is an

app identifier, the algorithm returns the identifier.

Algorithm 3 ExtractAppsNames(a, b)

Require: a← set of app identifiers, b← a review

Ensure: y ← app ID of the first app mentioned in b

1: n← Nouns(b)

2: n← RemoveWhiteNames(n)

3: for each word w ∈ n do

4: for each app identifier p ∈ a do

5: if w = p then

6: y ← getID(p)

7: return y

8: return empty
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Example: We give an example to demonstrate how the algorithm works. Let us

consider the review: Wow. just try Joy Rewards App and earnd points 4free

up to 500 points daily. use my referral code: X8YK67. First, the review

survives the preprocessing step because it has keywords from the blackList. The

identified keywords are: (points, referral, code). Then, we use ExtractCodes to

obtain the code. There are several possible codes to consider, which are (earnd,

500, 4free, X8YK67, 4, 8, 67). We first check the Numeric codes (500, 4, 8,

67), and since none of them satisfy the length requirement we ignore them. Next, we

look into AlphaNumeric codes; 4free will not be accepted since free is a meaningful

word in dictionary. Next, we check the other word, X8YK67, and produce three

possible words by TokenizeDigits method. Since none of the three words, (X,YK

or XYK), is a word in the dictionary, this code will be accepted and ExtractCodes

will return it. The algorithm will not consider the misspelled earnd as a code because

it does not have any surrounding symbols.

The next step is to look for AppNames in the review using the GenerateAppIden-

tifiers method. For the app Joy Rewards - Free Gift Cards, we will generate all

possible app identifiers, which are (Joy Rewards, Joy Rewards Free, Joy Re-

wards Free Gift, Joy Rewards Free Gift Cards, Joy Rewards - Free Gift

Cards). We will then extract the nouns and compound nouns from the review:

(Joy, Rewards, Joy Rewards, referral code, code, points) and match them

with the review. Here Joy Rewards App will be identified as an app name in this

review.

Evaluation: We evaluate the precision of our detection algorithms. We detect

promotional reviews with 91% precision and extract codes with 93% precision. We

detect and extract the app names with 95% precision. The precision values are

calculated over a unbiased sample of one hundred reviews evaluated by two judges.

Note that calculating the recall rate is impossible because there is no ground truth.

We also argue that our analysis does not depend on the recall rate as we have
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thousands of users, apps, and reviews, which are precise and large enough for accurate

statistical analysis.

Generalizability: The algorithms described in this section may appear to be

specialized for incentivized review mining in the Google Play store. However, the

high-level architecture of the system is easily generalizable with necessary domain

knowledge. For example, a domain expert can easily produce the whiteList, black-

List, and whiteNames lists for his domain. A similar identifier list for other entities

such as hotels, books, etc. are also available to domain experts. Thus, extracting

incentivized reviews in other systems can also be analyzed using our techniques.

2.4 Detecting Abusive Reviews

Incentives in writing reviews create a significant bias in the reviews, which results

in a distrust among the readers of the reviews. Yet, there are some incentivized

reviews that go beyond of being untrustworthy to being abusive, and require prompt

preventive actions. For example, there are apps that prompting users to submit pre-

written five-star reviews. Clearly, such reviews must not be counted in the average

rating or even shown to the readers. In contrast, many real users are posting just

one referral code in one review for one app, and sometimes such reviews contain

honest opinion (positive or negative). Our goal is to identify how the fraudsters are

manipulating incentivized reviews to maximize their interest.

To identify the abusive incentivized reviews, a simple approach is to find the

anomalous or outlying reviews by using an off-the-shelve outlier detection algorithm

on a sufficient set of features. The assumption that abnormal reviews are abusive

is generally true because writing a review is not an obligation, rather an optional

action. For the set of features, we can generate features related to a review’s title,

rating, body, author, app and posting date. For example, the length of the title, the
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number of words in the body and so on. We name such features as review-centric

feature following the convention described in [51].

The major challenge in the above naive approach is the absence of ground truth

data that can be used to train an outlier detection model. However, recent develop-

ment on the theory of outlier detection techniques discusses bias and variance of an

outlier detection method (as opposed to classification methods) and possible ways

to reduce them even in the absence of ground truth [18]. To reduce variance in

the outlier detection process, subspace-based methods are recommended. We adopt

the method described in [20], which uses subsets of features to evaluate outliers and

aggregate a score to rank the objects based on outlierness.

As hinted in [18], reducing bias is a difficult process unless prior information on

the set of features is known. Fortunately, in review data, there are three major enti-

ties whose relationships provide valuable prior information. In Figure 2.2, we show

the entity-relationship (E/R) diagram of our dataset. We exploit the relationships

among reviews, apps and users in two independent ways: generating novel features

to help the subspace anomaly detection methods reduce the variance, and creating

an ensemble of outlier detection methods to reduce the bias in the detection process.

2.4.1 Feature Generation

A simple way of generating features from a relational model is by aggregating on

various many-to-one or many-to-many relationships. Typically, in a review system,

the only relationship between the three entities is the Writes relationship which

describes “a user writing a review-text for an app.” In addition to the review-

centric features, we create aggregate features from the Writes relationship, such as

the average rating for a duplicated review text, number of users writing a review text

and number of apps receiving a review text. Aggregate features have been used to

detect anomaly independent of individual features [85], while our method generates
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Figure 2.2: Relationships among three entities: reviews, apps and users. Dark rela-
tionships are our novelty.

several aggregate features from the Writes relationship and use them in conjunction

with individual features. We also create app-centric and user-centric features, both

individual and aggregated, to detect abusive reviews. Examples include average

rating of an app and number of reviews written by a user. We name all of these

features as given-features to clarify that they are derived from the information

provided by Google.

In addition to the Writes relationship, our code and app name extraction tech-

niques enable two more relationships between the three major entities: Mentions and

Codes (shown in dark in Figure 2.2). Note that Codes is a many-to-many relation-

ship, which may appear unusual. However, we observe (code, user) pairs associated

with many review text and (review-text, code) pairs written by many users in our

dataset, validating the many-to-many cardinality. Similarly, the Mentions relation-

ship is a many-to-many relationship as many apps could be mentioned by many

review text. We create a set of aggregated features from these two relationships such

as the number of codes used per user and apps mentioned per review. We name these

features as novel-features to denote our contribution. Aggregate features based on
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Table 2.1: Novel Features of Review Entity.

Number of reviews Number of distinct apps
Standard deviation of review text rating Average of review text rating

Ratio of distinct apps Ratio of distinct codes
Ratio of distinct developers Number of distinct referred apps
Number of distinct codes Number of review referring apps
Number of distinct users Number of distinct dates

Code and Mentions capture the overall impact of a code word or app-name among

all the incentivized reviews.

We have generated a set of 23 novel features for reviews. In Table 2.1, we show

a subset of these features where we aggregate on review text. A set of 80 features is

included in the given feature set. A complete list of novel features developed in this

work is available at [9]. We normalize all features in the [0, 1] range and then apply

the Comprex algorithm [20] to find the anomalous score for each entity.

2.4.2 Relational Ensembling

To address the lack of ground truth and to reduce the bias in the outlier detection

system, we create an ensembling technique based on the relationship shown in Figure

2.2. We apply the subspace outlier detection method on the three entities indepen-

dently using disjoint sets of features. The process produces three ranked lists of

users, apps and reviews in order of their “outlierness.” We could define three dif-

ferent thresholds on scores to select top outliers from the three ranked list. Instead,

We define one parameter K as the number of top outliers that we suspect as truly

abusive. In effect, the choice matters very little as the order of the outliers are not

violated.

We define that an outlier review partially agrees with an outlier app if it was
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written in that app’s review page. Similarly we consider that an outlier review

partially agrees with an outlier user if the user has written that review. If a review

is in perfect agreement with both of its author and the app, it is more likely that

the review is a true outlier, and hence, an abusive one. In Figure 2.3(left), we

show the percentage of agreement between reviews, apps and users as we take top-K

abnormal instances from each of the lists. The key observation is that our novel-

features harness stronger agreement compared to the agreement produced by the

given-features among the three independently ranked lists of outliers. We also observe

that most outlier reviews (around 90%) have at least an outlier app or an outlier

user when we use our novel features.

Perspective reader may argue that larger agreement between independent meth-

ods shows a good reduction in bias, however, an agreement does not ascertain cor-

rectness. To evaluate the correctness we perform a manual investigation on the top-K

outliers by two human judges and calculate the average accuracy of our method. The

results are shown in Figure 2.3(middle). The precision of perfect agreement is higher

than the precision of partial agreement. In contrast, the recall of partial agreement is

higher than the recall of perfect agreement. This is just another form of bias-variance

trade-off in outlier detection, and is not surprising. We recommend a high precision

method (perfect agreement) for detecting and deleting abusive reviews. Thus, the

novel relational ensembling approach with our novel features, reduce the bias and

improves the precision in the outlier detection process.

2.4.3 Abusive Reviews

We perform a further analysis to categorize the top abnormal reviews and identify the

common abusive behaviors observed in incentivized reviews. We identify four forms

of abuse in incentivized reviews: copying, spamming, advertising and hidden-

beneficiary. We describe each of the categories below. In Figure 2.3(right), we show
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the percentages of these categories in the outlier reviews detected by our method.
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Figure 2.3: (left) Number of agreed outlier reviews using Given-features and Novel-
features for different sizes of the lists. (Middle) Recall and Precision for outlier
reviews against the parameter K. (right) Distribution of abusive review types in
detected outliers.

Copying Reviews: If an identical review appear in the same app by many users

promoting the same code, the most likely reason for such behavior is that a master

writer is copying or automatically posting the same review text from various user

accounts to increase his incentive. For example, we have found 117 almost identical

reviews that were written by 64 different users for the same app, com.ens.champcash,

promoting for the same code, 123900. The average rating is 4.9, and the reviews are

nearly identical with the following content: Please use our... REFER ID-123900

For 1.5$ Bonus ... & you just 1.5$ Bonus and refer us Friends to Earn

more and more. Clearly, these 64 users are all connected to each other to perform

such collaborative abuse, and the benefit belongs to a common master. Almost all

of these reviews rated the app 5-stars, improving the overall rating. We have found

727 (app, code) pairs where more than one user shared the same code.

Spamming Reviews: Typical spammers try to maximize earning from many apps

as opposed to repeatedly copying the same review in the same app. Such spamming

reviews are very common in Google Play reviews. We identify a user that reviewed

21 different apps with 21 different codes. Some spammers copy when spamming,

and show preferences for certain developer or type of apps. The user in this example



Chapter 2. Referral Incentives on App Reviews 22

wrote for 7 apps from NTT Solmare Corp. developer, 5 apps from Voltage, Inc.

developer, 4 from ＯＫＫＯ developer and the remaining 5 from アリスマティッ

ク developer. The average rating given by the user is high (4.62). Upon further

investigation we find 4983 users who have multiple codes in multiple apps.

Advertising Reviews: In both copying and spamming reviews, the code words used

in the reviews are valid in the app for which the reviews were written. However, to

maximize incentives miscreants have started abusing review pages of popular apps as

an advertisement board. For example, We find one of the outlier reviews repeating

288 times in 72 different targeted apps from 4 different users. The reviews have the

same content: Wow..... Just try Joy Rewards App Using this referral Code:

1816147 and earned points.. you can use the points for any games specially

The Clash of Clans.... This review is advertising for the app Joy Rewards. The

Joy Rewards app offers users rewards for downloading apps they recommend such as

The Clash of Clans, for sharing an invitation code with friends, and for running apps

and games for at least one minute. In exchange, the app promises to give users either

free PayPal Cash or free gift cards. In the app description, the developer requests

users not to spam their invitation code, however, it did not prevent miscreants to

advertise the app in other apps’ pages.

Advertising reviews generally rate the “targeted” app poorly with a hope to drive

people to the mentioned app. Target apps include Twitter, Amazon, Netflix, Google

and PayTM. We find at least 562 (user, code) pairs appearing in more than one

target apps.

Hidden-beneficiary Reviews: Some outlier reviews are mysterious because there

is no fixed beneficiary. For example, we find a user posting three different codes

(B7TJKQMN, BPJF65PY, S27QH315 ) for the same app named com.taskbucks

.taskbucks. We find 238 (app, user) pairs that have been associated with more than

one code. A user owning different code on the same app requires many downloads

from many devices. Even bots would not want to own many codes because gaining
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Table 2.2: Statistics for App Groups.

Benign Sources Targets Targets Non
-Promo -Promo -NonPromo -Promo

Number of Apps 3,408 25 126 361 6,328
Number of reviews 4,705,995 207,259 839,992 3,172,080 11,340,080

Number of Promotional Reviews 23,643 13,353 32,926 1,724 -
Average Rating 3.98 4.17 3.99 4.02 3.99

Standard Deviation Rating 1.46 1.39 1.48 1.45 1.45
Number of Unique Users 3,773,213 189,901 729,995 2,721,594 8,138,054

10¢ in 10 user accounts is not equivalent to a dollar in one account. A dollar can

buy an app while 10¢ cannot. An alternative explanation for this pattern is that the

reviewer is not necessarily trying to increase his earnings, but rather his goal is to

increase the average rating of the app, and, therefore, he re-posts the same 5-star

review, while only changing the code.

2.5 Comparing App Groups

In this section, we categorize the apps in five groups and perform a comparative study

to understand them better. The groups are: non-promoting, promoting, source, non-

promoting target, and promoting target apps. Below we formally define them.

Sources: Source apps are apps that have been mentioned in promotional or referral

reviews written on other apps’ review pages at least once. Source apps can have some

promotional reviews in their own pages. We find 25 such apps. In Figure 2.4(left)

we show the distribution of the source apps over various app categories in Google

Play. The most frequent source-type is entertainment, while source apps exist in six

other categories.

Promoting Targets: An app is “targeted” by a source app when users write reviews
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Figure 2.4: (left) Source Apps Categories. (right) Growth trends of three groups of
apps related to incentivized reviews.

in the target app about promotions in the source app. If a target app has a rewarding

system implemented, we call them promoting targets. A promoting target app can

also be a source app in some reviews. We use a threshold of minimum five targeted

reviews to separate a source from a promoting target. We find 126 apps in this

category.

Non-promoting Targets: Non-promoting targets are apps whose review page has

been abused by some reviewers and have not implemented a rewarding system. We

find 361 apps that are being targeted “by” source apps. These apps are mostly pop-

ular apps from top developers including Skype, Facebook, Twitter, Google, Amazon

and eBay.

Benign-Promoting Apps: Benign promoting apps a have rewarding system im-

plemented and have reviews with promotional or referral codes. However, they are

not sources or targets. We have 1150 apps in this category. We call the apps benign

to distinguish them from the sources and targets. In reality they are also abused by

the reviewers.

Non-Promoting Apps: A set of randomly selected 6,328 apps that have no referral

or promotional codes in reviews. We have collected the reviews for non-promoting

apps during the period between October 2015 to March 2016.
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Table 2.2 shows the summary statistics for the five app groups. Source apps

have the highest average rating with the lowest variance.

Figure 2.5: Comparison among the five app groups based on four features.

2.5.1 Feature Comparison

We compare the five groups of apps based on their total number of reviews, number of

downloads, burstiness and the number of promotional reviews. We show the results

in box-plots in Figure 2.5. We show the min, max, median, and quartiles in the

box-plots.

Based on the number of reviews, we see that the apps participating in reward

systems have more reviews than random non-promoting apps. We also observe that

the source and target apps have a greater median number of reviews than the benign

promoters (see Figure 2.5 left.).

Considering the number of downloads, target apps are more popular than source

apps, which explains why they are targets. Non-promoting and benign apps are

very similar in the number of downloads, while source apps have significantly greater

downloads than benign and non-promoting apps. This can be a demonstration of

their successful referral reward systems, which are earning them a large number of

downloads (see Figure 2.5 second-left).
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In [62][37], authors have shown that bursts of reviews indicate spamming activi-

ties. We measure the maximum and average number of reviews an app has received

in a day and take their ratio as a measure of “burstiness.” We see a relatively high

burstiness in source apps compared to the benign promoters. Non-promoting targets,

which are also popular apps, show similar burstiness as source apps. (See Figure 2.5

second-right).

If we only consider the number of promotional reviews, we identify that benign

apps have very few promotional reviews while source apps have a large number of

such reviews. This is a significant difference that motivates further analysis on the

source apps. Target apps, although having large number of total reviews, show much

less promotional reviews compared to the source apps because target apps mostly do

not have their own referral systems (Figure 2.5 right).

Although we categorize source and target apps separately based on the reviews

they have received, we have no evidence to say that the app owners have initiated

such reviews.

2.5.2 Trend Comparison

As we demonstrate significant difference between the app groups, we need to under-

stand if the number of apps in the source and target groups are increasing. We show

in Figure 2.4(right) the trends for each group over the six months period of data

collection. We observe that source apps are growing at a much smaller rate than the

target apps. Most alarming fact is that the non-promoting target apps have almost

doubled in six months. This suggests that we need to save non-promoting apps from

abusive reviewers of promoting apps.
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2.6 Discovering Abusive User Groups

In this section, we analyze the users who participate in writing incentivized reviews.

We apply graph mining techniques to discover user groups who are involved in collab-

orative abuse. We also perform temporal analysis to understand trends in the users

who are writing incentivized reviews. We create three different graphs connecting

the review writers: app-graph, text-graph and code-graph.

App-graph: Two reviewers writing reviews for the same source app are connected

by an edge. We expect a random graph to be formed in an unbiased review system

where the reviewers mention other apps randomly without any bias.

Text-graph: We use Levenshtein distance [82] as a metric to measure text similarity.

We set an error threshold of 6 for the distance function to allow an approximately

10% difference in a review as the average review length is 75 characters. An edge is

added between two users if at least one pair of promotional reviews between the users

has a distance less than or equal to the threshold. As shown in the Introduction,

there are near duplicate reviews in the app reviews. The major reason for near

duplicates is that writing an identical review to the most “helpful” review increases

the chance of being ranked highly in the review page. If a group of users are posting

similar text, we investigate further to identify if they are copying from each other.

We find 6237 reviews where only 401 unique templates are used by just changing the

code part. The templates range from 6 to 497 characters in length, not including the

code.

Code-graph: We add an edge between two users if they promote the same code.

Codes are generated at random in an unbiased system, such edges, therefore, should

not exist. However, we find many users who post the same code. Thus, code-graph

creates an opportunity to spot groups of abusive users.
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Table 2.3: 12 User Names from code-clique.

Shreya Gupta Shreya Gupta chetan sahu chetan sahu
Nancy Gupta samita sah Bhavna Sharma Harvey Dend
John Smith Faqat Khan Sagar Sharma Ankita Diwan

2.6.1 Clique Discovery

We use the igraph package for network analysis and visualization to create the graph

and find cliques [32]. We consider a clique only if it has at least 3 users and set a

minimum edge weight of 1 to find the cliques.

We describe the largest cliques we have found in the three graphs defined above.

In the app-graph, the largest clique was of size 346 users, which means all these users

were referring to some common apps (not necessarily the same). In the text-graph,

36 users form the largest clique, and in the code-graph, the largest clique contains 65.

we observe that the app-clique is disjoint to the code-clique and text-clique, while

text-clique is a subset of the code-clique.

We perform a qualitative check on the code cliques. A random subset of 12

users is shown in Table 2.3. 100% of the reviews these users have ever written are

promotional reviews, 82% have exactly 2 distinct codes and the remaining have one

codes and they all share the same codes (123900 and 201470). Three users have the

same name and profile picture and 72% users have changed their profile names at

least once.

2.6.2 Clique Properties

To perform more principled analysis on the cliques, we select a stricter edge weight

of 10 and find the extreme incentivized users. We find 317 cliques in the app-graph,

37 cliques in the code-graph, and 6 cliques in the text-graph. For each graph, we
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compare the users participating in any clique against the remaining users who did

not participate in cliques. We use the percentage of distinct codes over the number

of promotional reviews. If the percentage is 100%, it means the reviewers are not

reusing codes in their reviews. If the percentage is 20%, it means the reviewers are,

on average, writing five reviews per referral code. We show the CDF (cumulative

distribution function) of this metric over all the users who are in some clique (see

Figure 2.6). We also show the CDFs for users who are not in any clique. There is

a significant difference between the CDFs for all of the three cliques, demonstrating

that the users forming cliques are reusing promotional codes in multiple reviews.
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Figure 2.6: left: Size distribution of code-cliques over time, Remaining: Empirical
CDFs for the three graphs.

We show the size distribution of the cliques from the code-graph in Figure

2.6(left). Naturally we have large number of small cliques and a few large cliques.

We show three distributions for three datasets accumulated at two months interval.

We identify a trend in both number and size of the cliques. This is an alarming

indication that the number of abusers are growing rapidly.

2.7 Conclusion

We identify a new type of promotional campaigns in review systems. Mobile apps

support referral rewards, which create opportunities for users to write incorrect,

untruthful, and abusive reviews. In this chapter, we identify several anomalous
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usages of incentivized reviews, detect abusive users, and analyze them to reach the

following conclusion: ? Groups of abusive users are targeting popular apps’ review

pages to advertise non-popular apps. ? The number of such abusive users is rapidly

increasing, endangering the overall utility of a review system. ? Apps indirectly

benefit from incentivized reviews in terms of the number of reviews and downloads.

For future work, we will cross-match our results with other published lists of abusive

users.
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Chapter 3

Bot-driven Interacting Campaign

Detection

3.1 Introduction

Social networking sites bring people closer to each other and facilitate fast and conve-

nient information flow. However, modern social media sites suffer from user accounts

that work towards fast and automated building of social capital and exploiting the so-

cial influence to sway public opinion. Such user accounts (commonly named as bots)

perform scheduled posting [78], near-automated registrations [81], and chronological

deletions [29] among many other unsocial and non-human behavior.

To multiply the effect, instead of creating super smart bots, botmasters employ

a large number of naive bot accounts to attain their objectives. Not surprisingly,

humans tend to believe repeatedly encountered information from diverse sources

[68]. Thus, a swarm of bots can potentially run successful advertising campaigns to

promote products, election campaigns to win races, and organizational campaigns

to recruit for ideological groups. To understand the fullest potential of a swarm
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of bots, in this chapter, we perform an empirical study on bot activities in social

campaigns and develop a technique to detect and classify bot-driven interactions

in social campaigns. Quantifying bot-driven interactions in social campaigns can

be useful for political parties, advertising agencies, charitable organizations among

many others. Early detection and characterization of bot participation in campaigns

will help campaigns flourish organically.

Figure 3.1: An example of bot interactions. Politically motivated bots are discussing
trend manipulation.

An example of bot behavior in Twitter at the time of U.S. Presidential Election in

2016 is given in Figure 3.1. The user account @JaredWyand was an active supporter of

Trump campaign. The account has been detected by both DeBot [27] and Botometer
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[33] systems due to its high frequency of tweets and content similarity. The account

is currently suspended by Twitter. The tweet shown here has been retweeted 1.2K

times. The two other users copied the tweet shortly after that [17]. These users are

also detected as bots by DeBot 1 and Botometer2, however, they are not suspended by

Twitter at the time of writing. The content of the tweets shows that bot accounts are

promoting a specific topic in Twitters ranking system by frequently tagging relevant

hashtags. The content shows that bot accounts are tracking progress of competing

political campaign. Note that every bot account has a human owner who can post

in natural language in between scheduled posts.

The example demonstrates that bot accounts collaborate towards an objective

(i.e. making a topic trending). It also demonstrates that bots exhibit negative

sentiments towards competing campaigns.

In this work, we develop a system to detect bot-driven interaction in campaigns

categorized by general topics. For example, we have detected five major campaigns

interacting under the “U.S. Election 2016 topic”. Three of the bot-driven campaigns

are taking sides of the candidates. The objective of the two of the remaining bot-

driven campaigns is to gain human attention by adopting popular topics such as

U.S. Election. Our system, named BotCamp, continuously collects bots for a given

topic and detects bots using the DeBot system [27]. BotCamp identifies bots that

are posting similar content on the campaign topic, and accumulates such bots over a

long time to create graph structures on various aspects such as retweets, mentions,

shared media and hashtags. We develop a heuristic cluster ensembling approach to

combine communities detected from these graphs, which leads to discovering bot-

driven interactions.

In this work, we have collected bot activities related to social campaigns in three

different domains: politics, sports and e-commerce (see Table 3.1). We have detected

1www.cs.unm.edu/ chavoshi/debot/
2https://botometer.iuni.iu.edu
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Table 3.1: Summary of the three datasets.

U.S. Election Baseball Black Friday
Collection Duration 60 days 10 days 9 days
Number of bots 29,840 1,547 3,532
Number of tweets 75,512,952 1,457,054 2,195,790
Category politics sport shopping

several bot-driven campaigns in each of these domains. We analyze the campaigns

to understand their information flow, sentiment towards the topics and status after

campaigns are over. All data and code are made public [8].

The rest of the chapter contains a discussion section in related work and back-

ground (3.2), an overview section describing the framework (3.3), an experimental

section showing ensembling and interaction classifier evaluation (3.4), a section for

campaigns, interaction, and leaders (3.5) to discuss qualitative results, and the last

section concludes the work (3.6).

Disclaimer: We do not address the question, “who” create and operate bot

accounts. We define bots as the accounts that show signs of automation. We collect

empirical evidence of “how” bots are involved in social campaigns and reason about

“why” bots are involved. To the best of our knowledge, this work is one of the very

first to generalize bot interactions on social media.

3.2 Related Work and Background

3.2.1 Related Work

Our work combines two independent streams of research on social media: campaign

detection and bot detection. Campaign detection works mostly focus on finding
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campaigns based on one specific aspect of messaging, such as message similarity

[55][54][71], URL bursts [57], retweet structure [44]. We combine several other mes-

saging aspects such as mentions, hashtags, and media sharing. All of these works

detect clusters/communities in some messaging graphs. Such communities may in-

clude both bots and humans, hence existing work cannot separate the bot-driven

part of the campaign.

DARPA Bot Challenge suggests an estimated 15% of Twitter accounts are bots

[77]. Existing bot detection techniques are either supervised [33][39] and unsuper-

vised [27]. Since our goal is to identify campaign specific bots, we opt for an unsu-

pervised technique, DeBot [27].

Bot activities related to campaigns have been studied previously that associated

bot activities with political entities [42][14][76]. Our goal is to explore beyond politics

to sports, entertainment, marketing, etc., at a much larger scale of thousands of bot

accounts.

Bots have been categorized based on their roles as individual users, independent

of campaigns they take part in [65]. In contrast, we categorize bots based on their

type of interactions in social campaigns.

3.2.2 Social Campaigns

Definition of campaign has been diverse in the literature, mostly attributed as un-

ethical and illegal cases of social campaign. For example, coordinated campaigns

[55], spam campaigns [35], promoted campaigns [41], and fraud campaigns [25] are

some of the characterizations of campaigns.

In general, we define a social campaign as a group of concepts aligned to an ob-

jective that a group of people want to achieve. For example, #antivax and #autism

are concepts supported by people who want to abolish vaccination. Another example
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is a fund-raising campaign started by Peter Dunn (@PeterThePlanner) in Indiana to

support homeless people immediately before a blizzard hit Indianapolis. $41K was

raised organically from various organizations and individuals for @WheelerMission.

Therefore, a social campaign should not be perceived as purely inorganic or organic.

Instead, considering that both humans and bots are involved together, we propose

to quantify the level of bot and human participation in social campaigns. Quantify-

ing organic participation in campaigns can be useful for political parties, advertising

agencies, charitable organizations among many others.

3.2.3 Bot Detection

Automated accounts, a.k.a bots, are tweeting/re-tweeting always. Bots are controlled

by computer programs. There may exist automated accounts which are not harmful

such as @countforever, but most bots pretend to be human, entice people to follow

them, and/or share ideas. DeBot is a parameter-free unsupervised system [27], that

constantly collects data from Twitter and detects bots based on their synchronicity

at intervals of 180 minutes. Number of bots DeBot detects in an interval depends on

the topic, time of day, bot presence and sampling rate. Note that, Twitter streaming

API provides a 1% of sample. In a successful interval, DeBot detects few bot-clusters

containing tens of bots.

DeBot is a near real-time system that exploits highly unusual activity correlation

across users as an indicator of bot behavior. The authors show that even if millions of

active users interact at a time instance, human users are not likely to have more than

tens of synchronous postings at random [28]. Although we use DeBot as an integral

part of the detection system, we can replace DeBot by any other topic-specific near

real-time system.
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3.3 Bot Interactions in Campaigns

3.3.1 The Framework

Figure 3.2 shows the BotCamp framework. There are three components of the sys-

tem: Keyword Generator, Campaign Detector and Interaction Detector. We describe

each of the components below.

Keywords

Trending	Hashtags

yes
related	? Time	Synchronized

Bots
Content	
Matching

DeBot

Keyword	Generator Micro-campaign	Detector

Retweet Mention HashtagMedia Temporal
Graph	Clustering	and	Ensembling

Campaign	Detector

Interaction
Detector Boosted	Decision	Trees

Figure 3.2: BotCamp framework.

Keyword Generator: BotCamp continuously collects trending hashtags to main-

tain related keywords to a seed set of keywords. The motivation behind such a

keyword generator is to adapt with changing campaign dynamics. Trending key-

words related to a campaign can be changed frequently. For example, to monitor

the U.S. election, we started with a seed of twenty keywords including general top-
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ics such as election, Trump, Clinton, etc. After the U.S. election, the seed set

grew to 231 keywords including MAGA (“short form of Make America Great Again”),

PodestaEmails, and CrookedHillary. We collect the top 50 trends in twitter in

every three-hour interval. If more than 50% of the tweets containing a trend also

contains a seed keyword, we add the trend to seed set. In short campaigns, the

seed set remains almost identical for the lack of dynamics in the campaigns. In

long campaigns (i.e. election campaigns), keywords can be weighted based on their

recency. The keywords can be both in support or in favor of parties involved in a

campaign. We have labeled the sentiment associated with the keywords manually

for all datasets.

Campaign Detector: We use the keywords in an instance of DeBot system that

detects synchronized bots within an interval of three hours. We use the recommended

threshold of 0.99 correlation to detect bots. DeBot outputs clusters of bots that we

further analyze to detect clusters of bots that are both temporally synchronous and

textually similar. BotCamp accumulates bots for a duration that is sufficient for the

campaign to reach a stable state. We have accumulated at least one week of bots for

all of our experiments. After bots are collected, we produce five graphs capturing

various aspects of campaigns (e.g. retweet graph, hashtag graph, etc.). BotCamp

detects communities in these graphs based on modularity optimization algorithm

[21]. We develop a cluster ensembling technique that combines the communities

from different aspects into consensus communities representing campaigns.

Interaction Detector: BotCamp consists of a classifier that categorizes the inter-

action between pairs of campaigns. The classifier is trained on a manually labeled

set of interactions. We consider two types of interactions: agreeing and disagreeing

interactions. We produce a set of 94 novel features that are indicative to various in-

teraction types. The classifier is AdaBoost ensemble classifier, we use the classifier to

categorize all possible pairs of interacting campaigns, and quantify bot participation

in a campaign.
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In the next two sections, we elaborate on the the campaign and interaction de-

tectors.

3.3.2 Campaign Detector

Our campaign detection system is a two step process: Content matching and Graph

clustering.

Content Matching

DeBot produces a set of unusually synchronous bots. Although a group of unlikely

synchronous bots typically works towards a campaign, there can be spurious syn-

chronous groups that are just naively periodic. In this step, we detect bots that are

posting not only at close time instances, but also similar content. We consider each

synchronous cluster detected by DeBot, and calculate the text and hashtag similarity

among the bots in the cluster. Text similarity between two users u and v is defined

by the Jaccard similarity of their set of unigrams. More precisely, if G(u) is the set

of unigrams extracted from the tweets made by u, excluding the stop words, the text

similarity between u and v is:

SimText(u, v) =
G(u) ∩G(v)

G(u) ∪G(v)

The similarity within a cluster C is

SimText(c) =

∑
∀u,v∈C SimText(u, v)

|C| ∗ (|C| − 1)/2

Hashtag similarity between two users u and v is defined by the Jaccard similarity

of their set of hashtags. More precisely, if H(u) is the set of hashtags made by u, the

hashtags similarity between u and v is:
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SimHashtag(u, v) =
H(u) ∩H(v)

H(u) ∪H(v)

The hashtag similarity within a cluster C is

SimHashtag(C) =

∑
∀u,v∈C SimHashtag(u, v)

|C| ∗ (|C| − 1)/2

C
o
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n
t

Micro-Campaign Size

Figure 3.3: Micro-campaign size distribution for the three datasets.

We define a micro-campaign as a cluster of temporally synchronous bots, C,

having either SimText(C) ≥ 0.5 or SimHashtags(C) ≥ 0.5. Note that such micro-

campaigns are formed based on three hours of information. Figure 3.3 shows the

distribution of the micro-campaign sizes in the three datasets, the largest micro-

campaign is of size 109. The average cluster size is 2.3 and the median is 2. By

looking at the distribution of users participating in campaigns, we can notice that

75% have appeared in one campaign while the rest has participated in more than

one, almost 5% appeared in more than five campaigns and the maximum occurrence

of a user is 174 different campaigns.
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Graph Construction

Once BotCamp accumulates micro-campaigns detected in three hour batches for over

the duration of the campaign, the system creates five graphs namely: retweet, media,

hashtag, mention and temporal graphs. The objective is to study the underlying

interaction among micro-campaigns on various aspects over the duration of the cam-

paign. Since the graphs are based on three hour long captures, the graphs are crude

approximations of the graphs that we could produce if we had all data available. We

describe each of these graphs below.

1. Retweet Graph: Retweets usually mean endorsement. Hence, we create a

undirected retweet graph where nodes are bots, and we add an edge between

two bots when they retweet from each other at least once, encoding their mutual

endorsements. In contrast, we can create a directed retweet graph by adding

edges from the retweeting node to the original author node.

2. Mention Graph: In public conversations, bots mention (i.e. adding @ before

an account name) other accounts in tweets. Mentions are typically used to

draw attention of the person being mentioned. Thus, mentions are useful to

express agreement, disagreement, endorsement, promotion, etc. We create a

mention graph by adding an edge between two bots if they mentioned each

other.

3. Media Graph Bots in the same campaign proliferate the same information.

Memes, photos, and videos are typically more expensive to create compared

to tweets, however, such media are more attractive. Determined campaigns

spend resources to create media and employ automated accounts to share the

media. We create the media graph on bots by connecting two bots that share

the exact same URL media.

4. Hashtag Graph Hashtag is a powerful way to organize content for better

searching. Information seekers often use hashtags to learn discussion items
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about a topic. Competing campaigns fight for strong position on common dis-

cussion topics (e.g. #Oscars). Campaigns also want to make hashtags trending

(See Figure 3.1). Thus, tagging the same hashtag may mean either agreement

or disagreement; at weaker level than mentions. If two bots have more than

50% of their hashtags common (i.e. SimHashtags(u, v) = H(u)∩H(v)
H(u)∪H(v)

≥ 0.5),

we add an edge between them to create the hashtag graph.

5. Temporal Correlation Graph Synchronous bot activities indicate that bots

using the same scheduler (e.g. a random posting interval generator or a human

leader). We add an edge between two bots if they have been correlated at least

once in their campaign lifetime for three hours interval regardless of their con-

tent similarity. Since we are using Debot we know that all bots are temporally

correlated at least once with other bots, however, this graph exposes further

correlations that could happen along the campaign life duration.

Graph Clustering and Ensembling

We consider building larger campaigns from the micro-campaigns by clustering the

individual graphs mentioned in the previous section and ensembling the clusters

across various aspects.

To cluster the graphs, we use a state-of-the-art technique called Louvain Modular-

ity to cluster bots [21]. The algorithm uses greedy modularity optimization method

and has linear complexity, thus it run fast on large dataset. We run the algorithm on

the five graphs respectively. For each graph, we produce clusters of bots, therefore,

each bot will belong to five clusters of various aspects.

Ensembling clusters from the five graphs enable detection of interesting patterns

that independent aspect alone cannot reveal. We propose an ensembling method to

detect campaign. First, we define a dissimilarity matrix A between bots participating

in a campaign, where we compute the pairwise distance between two bots as:
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Ai,j = 1− ‖Community(i) ∩ Community(j)‖
‖Community(i))‖

Where Community(i) refers to the set of communities that user i belongs to. The

resulting distance matrix A contains normalized values range between 0 to 1. Where

0 indicates that the two bots appeared in the same cluster in all graphs, and 1

means the two bots did not appear in any common cluster. Next, we use average

linkage hierarchical clustering to cluster bots and choose a restrictive threshold to

stop unnecessary cluster merging. The merging starts with the most similar bots

and stop when threshold is 0.8. The selected threshold is chosen because it ensemble

bots in one community if all bots share one common community on average with all

other bots within the campaign. For verification, we conducted a small experiment

on a sample of labeled bots in the U.S. Election, where labels are either Trump or

Clinton supporter, we used different threshold and reported the Normalized Mutual

Information (NMI) with the labeled data. the largest NMI was reported at 0.8. In

the next section, we show the performance evaluation of the Ensemble cluster with

the selected threshold.

3.3.3 Interaction Detector

Once we find a set of campaigns, we are interested to study the interactions among

them. The simplest starting point is to consider pair-wise interactions. We con-

sider developing a machine learned classifier to automatically classify interactions in

agreeing and disagreeing categories.

We label interactions between a pair of campaigns by manually checking the

tweets, replies and retweets where bots from both campaigns participated. Such

interactions can be largely categorized in two classes: agreeing and disagreeing. The

example in the Introduction can be treated as a disagreeing interaction between the
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Trump and Clinton supporting bots. One may consider creating a full scale of classes

between -3 and 3, 0 being the neutral class, instead of a two-class problem. However,

the cost associated with labeling hundreds of pairs of campaigns is significant. In

contrast, any neutral interaction can also be thought of as weak agreement, and thus,

a two-class formulation is chosen. We manually labeled 80 campaign interactions

where 57.5% are disagreement interaction and 42.5% are agreement.

Feature Generation and Selection

We start with a set of 94 features. The features are from four categories: time-based,

sentiment-based, user-based features and network-based features. We describe a

subset of features from each category below.

1. Time-based Features: Temporal features help revealing bots that are collabo-

ratively working toward the same objective or operated by the same software.

Features such as the number of temporally correlated bots can be useful to un-

derstand the relation between a pair of campaign. Similarly, average interval

time between mentions and number of bots involved in conversational interac-

tion can indicate the interaction type. Usually, long conversations with small

intervals between mentions can be an indication for argument and disagree-

ment.

2. Sentiment-based Features: While retweet interaction almost always indicates

agreement, mention interaction is controversial in nature. Bots and cyborgs

could engage in arguments to support or attack a certain topic. To understand

the nature of these conversations, we investigate entities sentiment within each

conversation using IBM Watson Natural Language Understanding API [13].

For each conversation, we create various features describing the number of

sentiment disagreement and difference of average sentiment over all entities to

understand bots opinion polarity towards topics.

3. Content-based Features: Usually, campaigns that share common objective tend
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to have more agreement than disagreement towards specific topics, and vice

versa. We create features that characterize the relationship between two inter-

acting campaigns. Examples include number of common topics, hashtags and

media between two campaigns.

4. Network-based Features: In addition to these three categories, we summarize

bots and campaign connectivity using features that describe network topology

such as the ratio of friends to followers.

Although indirect interactions are possible, we consider only direct interactions

in the forms of retweets and mentions between campaigns. We obtain 94 features

from four categories. We perform feature selection to identify the best features based

on their importance weights in a decision tree model using Gini importance. After

feature selection, the set is reduced to 15 features. Most informative features are

content-based, temporal-based and sentiment-based features. The complete list of

features is available in the supporting webpage [8].

Training the Classifier

We employ an AdaBoost model trained on decision tree classifier (CART) with ten

weak learners. Information Gain is used to measure the quality of splits, then predic-

tions from different learners are combined using weighted majority vote to produce

the final prediction. Our choice for Adaboost is a result of lack of labeled data.

Quantifying the sentiment of an interaction needs significant effort because of short

length of tweets (The character limit for tweets is 280) and many alternative usages

(emoji, abbreviation, etc.). Boosting the decision tree helps tackle these challenges.
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3.4 Experimental Evaluation

3.4.1 BotCamp by Numbers

We describe the BotCamp framework in numbers for the U.S. Election campaigns.

First, we start with 20 seed keywords, the keyword generator component expands

the set to 231 keywords in 60 days. Using the campaign detector, we collect a set

of 75 million tweets from 6 million users talking about the election. The number

of bots detected is 120K. We exclude clusters that are not matching in content and

identify 29K bots from different micro-campaigns. We construct five graphs: retweet

(7162 bots with 30811 edges), mention (1137 bots with 785 edges), hashtags (4122

bots with 731687 edges), media (954 bots with 10385 edges) and temporal (29840

with 73623). Graph clustering and ensembling are performed to obtain clusters of

29K bots and ensemble them into 231 campaigns. From the interaction classifier, we

identify 87 disagreement interactions and 2700 agreement interactions between bot

campaigns. Table 3.1 shows a summary of the BotCamp in numbers for the three

datasets.

The above set of numbers are reproducible using the dataset provided in our

supporting webpage [8]. However, U.S. Election 2016 has already happened, which

limits comparison to alternative methods. To facilitate experimental comparison, we

made our code public in the supporting webpage, it only requires a set of keywords

to run for days to weeks, and produce interacting campaigns.

3.4.2 Evaluation of Ensembling

One of the known techniques to ensemble clusters is Cluster Ensembles [74]. The

method combines multiple clusters into a consensus cluster, by using three heuristics:

Cluster-based Similarity Partitioning Algorithm (CSPA), HyperGraph Partitioning
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Table 3.2: Comparison between our method and Cluster Ensemble.

Mutual Information
U.S. Election Baseball Black Friday

BotCamp Ensemble 0.814 0.915 0.910
Cluster Ensemble Failed 0.893 0.832

Average Rand Index
U.S. Election Baseball Black Friday

BotCamp Ensemble 0.279 0.282 0.241
Cluster Ensemble Failed 0.223 0.224

Maximum Rand Index
U.S. Election Baseball Black Friday

BotCamp Ensemble 0.625 0.897 0.617
Cluster Ensemble Failed 0.817 0.747

Algorithm (HGPA) and Meta-CLustering Algorithm (MCLA). The method evaluates

the three heuristics using the weighted average of the mutual information with the

known labels of initial clusters, and pick the one with the highest score. We use the

implementation provided in Python package Cluster Ensembles [45] to compare

with our ensembling technique and measure the goodness of our proposed ensemble

method.

We compare the predicted labels from both ensembling approaches using three

metrics:

1. Weighted average of the mutual information.

2. Average adjusted Rand index.

3. Maximum adjusted Rand index.

Normalized mutual information between two label assignments is defined as:

NMI(U, V ) =
MI(U, V )√
H(U)H(V )
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Where H is the entropy for the amount of uncertainty for a partition set, and MI

is the mutual information between two sets. We compute the weighted average of

the mutual information with the known labels from the graph clustering labels, the

weight is proportional to the fraction of known labels of a cluster, as some clusters

could have unassigned labels for some entities.

For the adjusted Rand index, we compare the predicted labels with the graph

clustering labels. The adjusted Rand index is defined as:

ARI = (RI − Expected RI)/(max(RI)− Expected RI)

Where RI is the Rand index. Table 3.2 shows the three metrics evaluation.

Our method outperforms the Ensemble Clusters. For the Rand index, we find that

retweets and temporal clusters score the highest agreement with the predicted labels.

This shows the importance of these graphs in detecting campaign.

To find the best threshold for hierarchical clustering, we test the mutual infor-

mation against different values to find the best cutoff that merges the clusters while

maximizing mutual information score.

3.4.3 Evaluation of Interaction Classifier

We evaluate the boosted decision tree classifier using a 10-fold cross-validation tech-

nique. The average and standard deviation of classification performance is described

in the Table 3.3. The results strongly suggest that the feature set can capture the

manually labeled training data. The low standard deviation suggests consistency

across random samples.

We consider applying the classifier to the unlabeled pairs of campaigns that have

some form of interactions (i.e. retweet, mentions, etc.) between them. The results
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Table 3.3: Model Performance.

Accuracy Precision Recall
Average 87.5% 98% 83.6%
Variance 0.025 0.003 0.049

are shown in the Table 3.4.

We have identified 87 disagreeing pairs of campaigns during U.S. election that

include disagreement over debate results, email controversy, etc. We have not identi-

fied any disagreement in Baseball and Friday datasets, which suggests that the cam-

paigns are not competing each other, rather they support and promote by interacting

through retweets, mentions, etc. The result suggests that while some campaign do-

mains are non-competitive in nature, others are controversial leading to disagreement

interactions.

Table 3.4: Campaign Interactions Summary.

U.S. Election Baseball Friday
Number of interactions 2790 33 140
Interactions agreement 96.88% 100% 100%

Interactions disagreement 3.11% 0.0% 0.0%

3.5 Qualitative Results

In this section, we discuss the qualitative results of BotCamp model. Section (3.5.1)

shows examples of campaigns with bot participation, for each campaign we explain its

objective and provide sample of participating bots. Section (3.5.2) demonstrates how

bots involve in different types of campaign interactions. We exploit the BotCamp

model in section (3.5.3) to extract campaign leaders and show examples of leaders.



Chapter 3. Bot-driven Interacting Campaign Detection 50

3.5.1 Example Campaigns

This project has identified several small to large campaigns with bot participation

in Twitter. Are they meaningful campaigns? - is the natural follow up question. We

have investigated the campaigns manually to identify their objectives. Tagging all

accounts in all campaigns is labor intensive. We take a 10% random sample of bot

accounts to identify the objective, by navigating through their profile and rendering

the last 15 tweets. In this section, we first show examples of a few campaigns from

all three datasets (see Table 3.5). We name the campaigns based on the objectives

we identified.

1. Trump Supporters: In this campaign, all bots supported candidate Trump

in U.S. presidential election in 2016. Their names, profile pictures and tweets

show that they mostly care about politics. The bot accounts show strong

retweet interactions among them.

2. Clinton Supporters: All bots in this interaction are supporting Clinton. All

their tweets are mostly political tweets. Number of Clinton supporting bots is

Table 3.5: Example campaigns in the three domains (the bot accounts may be sus-
pended currently).
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less than that of Trump supporting bots.

3. 100kfollowers: All bots share the same head photo template which is adver-

tising to a website called 100kfollowers.net (Figure 3.4). The bots use different

URLs that redirect to the same website to prevent detection 3. At the time of

writing they are all suspended, However, some new bots with the same behavior

and head photo started appearing after a week from old campaign suspension.

Figure 3.4: Three header photos for bots in the 100Kfollowers campaign, they all
promote to the website www.100Kfollowers.net.

4. Venezuelan Politics: All bots in this campaign are speaking in Spanish about

Venezuela politics, and hijacking popular trends of baseball games. These bots

do not retweet from each other, however, their media and hashtags interactions

have contributed to their detection.

5. Fashion: This campaign is advertising products and promotional deals. The

bots do not promote the same hashtags, however, their coordinated retweeting

3http://cs.polissocials.ml/
http://mg.elangsocial.ml/string/
http://ka.elangsocial.ml/from/
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interactions revealed their collaboration.

To provide a comprehensive picture, we show all the campaigns detected by Bot-

Camp in the U.S. election dataset on an undirected retweet graph (see Figure 3.5).

In addition to the supporters of three prominent candidates, several other small cam-

paigns exist. The two loosely connected campaigns that we labeled as Entertainment

campaigns are consisted of bots interested in variety of topics including politics, but

mostly celebrity news. We explain the weak communication between the campaigns

as an artifact of partially complete dataset. Note that Twitter API provides 1% of

tweets.

Trump

Sanders

Clinton

Entertainment

News agency

called ‘’The Hill’’

Figure 3.5: (left) Detected campaigns are shown on an undirected retweet graph (red
for Trump supporters, blue for Clinton supporters, green for Sanders supporters).
(right) Campaigns found by considering a directed retweet graph. Node in the middle
is a news agency called The Hill. Colors indicate strong sentiment polarity towards
different candidates based on hashtags.

The Figure 3.5(left) shows that politically motivated bots rarely retweet mutually

across parties. This is not surprising, however, the directed retweet graph in the

Figure 3.5(right) shows that the campaigns retweet from a common news source.
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As loyal bots mutually retweet from within the same campaign, how strongly

the bots are supporting the campaigns. To estimate that, we need to measure the

sentiment of the tweets from the bots with respect to their political polarity.

Assessing keyword sentiment for keywords such as SheWon, ImWithHer using

NLP techniques is still a challenging research problem. Instead, we manually classify

the keywords based on their sentiment towards specific party. For example, in the

U.S. Election dataset we identify 231 trends that have either negative, positive or

neutral sentiment towards specific parties (Democrats or Republicans) or products.

While some topics are controversial in nature, enforcing strong sentiment, others are

usually neutral keywords, for example, Cyber Monday.
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Figure 3.6: Histogram for labeled keyword sentiment for all the datasets.

Figure 3.6 shows the keyword sentiment for the campaigns in the three datasets.

Political campaigns show strong difference in sentiment as they can have conflicting

objectives. One can imagine conflicting objectives in sports campaigns, however, our

analysis shows that sports campaigns are still neutral in nature. The e-commerce

campaigns are mostly advertising campaigns. One observation is worth noting that

both candidates in U.S. Election dataset are discussed with more negative sentiments
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Figure 3.7: 12 bots were detected participating in three different campaigns, the bots
are plotted in the retweet graphs (colored in yellow and enlarged). Left: Baseball,
middle: Election, right: Black Friday.

than positive.

Looking at the Entertainment campaigns in the Figure 3.5, one may ask if these

bots are also interested in Black Friday or Baseball. In other words, how many bots

does BotCamp find in common across the three domains? We found only twelve

bots that appear in all the data domains. In the Figure 3.7, the common bots are

shown. These bots are all in the periphery of the graphs indicating that these bots

are not part of any campaign. Also, we compare our bots campaign with Debot

archive and found that many of these bots were detected by Debot multiple times,

which confirms their malicious behavior (see Figure 3.8).

3.5.2 Campaign Interactions

Disagreeing interactions among campaigns happen in some form of conversation be-

tween bots participating in the campaigns. Natural language conversation from bots
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Figure 3.8: Bots found at DeBot archive with their number of detections.

is surprising and unusual. However, every bot account has an owner who can post

anything (s)he likes by taking control of the automated bots. BotCamp identifies

the accounts as bots based on automated tweeting behavior, while the interactions

between bots are classified based on some turns in a conversation.

Surprising bot interactions have been discovered by BotCamp. In Figure 3.9, we

demonstrate three cases of interactions between the supporters of the candidates.

Figure 3.9(left) shows an Agreement interaction, while the remaining are Disagree-

ment interaction among bots (see Figure 3.9(middle and right)). Note that in all

of the cases, the conversations are performed by accounts that use automation to

increase their social influence. In our limited dataset, we have observed thousands

of such interactions among bot accounts.
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Figure 3.9: (left) Agreement interaction among bots. (middle and right) Disagree-
ment interactions.

3.5.3 Campaign Leaders

Bots are evolving even though social networks try their best to eliminate and sus-

pend suspicious accounts. Bots are consistently changing their behavior by picking

on human information generator. We define campaign leaders as accounts that are

responsible for leading the bots to spread certain information. We detect such ac-

counts by using the five graphs we defined earlier. We mine star structures from

these graphs and ensemble them. Star consists of one or few hub nodes connected

to spokes. We follow [53] method to decompose the graph into candidate subgraphs

using graph compression algorithm [52] then label the generated subgraphs to find

the best structure that locally minimizes the encoding cost for a given graph using

Minimum Description Length (MDL). We consider only one of the four types of

subgraph namely cliques, Bipartite Cores, stars and chains that were described in

[53].

We only consider star subgraphs as we are interested in detecting hub nodes that

act as leaders in a given graph. Table 3.6 shows the statistics for the three dataset

and their generated subgraphs. we find that the majority of political bots tend to
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adopt re-tweeting behavior for information propagation.

Table 3.6: Statistics for the subgraphs.

U.S. Election Baseball Friday
Number of stars 3,313 53 191

Number of cliques 2,076 250 642

Miami4trump StopStopHillary

Figure 3.10: Two star subgraphs identified in the U.S. Election dataset.

Traditional techniques to find influential users is not applicable in campaign

graphs. For example, betweenness centrality examine node’s important across the

whole network [22]. While this is true to detect influential nodes sharing same topic

and interest among users, campaign graphs are more complicated as they contain

several communities which are competing each other. Thus, influential nodes are

locally influencing some users with the same interest but globally considered non-

influential for other users with opposing viewpoints. The introduced method allows

us to locally identify influencers within the same community.

For example, some nodes with the highest betweenness centrality in the retweet
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graph are bots supporting other candidates (e.g. Sanders) in the green colored com-

munity in Figure 3.5. These bots are retweeting from the two opposite campaigns

(red and blue colored communities) which made them in the center of graphs to

connect different campaigns. While they are reaching many bots from different com-

munities, their contribution to their community is insignificant. We show statistics

of the extracted leaders from the three datasets below.

1. U.S. Election 1,942 bots were identified as leaders from different graphs, 135

of them have appeared in more than one graph with an average number of

spokes equals to 26. Figure 3.10 shows example of two star subgraphs.

2. Baseball 28 leaders were identified from retweet and hashtag graphs with an

average 13 spokes.

3. Friday 173 leaders identified from different graphs, 18 of these bots are found

as hubs in both retweet and temporal graphs with 15 spokes per hub on average.

While some campaigns rely on leaders to propagate their information, others use

cliques where each node acts as a hub and spoke. For example: in the U.S. Election

dataset, we find that all communications in the retweet graph are in a clique form,

which indicates roles of bots vary among different campaigns.

3.6 Conclusion

Online social media is tremendously important for the future of democratic gover-

nance. Automated activities on social media create opportunities for manipulation,

misinformation and distrust. This chapter demonstrates that social campaigns can be

corrupted by inorganic interactions among bots and develops a technique to classify

inorganic interactions among and within campaigns. We show empirical evidence

of various interactions among campaigns. However, this work is merely one step
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towards better monitored social media, significant effort must be made to protect

human users from inorganic interruptions.
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Chapter 4

Ranking Bot Malevolence in

Twitter

4.1 Introduction

Social networks connect users around the globe. People use social networks to con-

nect with friends, follow recent updates of their favorite celebrities, share their opin-

ions, and consume news. The high impact of social network on people’s lives made

the social networks vulnerable to inappropriate usage by malevolent users.

Studies suggest that 15% of Twitter users are bots [77]. With 319 million ac-

tive Twitter users, this translates to nearly 48 million bots [64]. Bot existence has

threatened the trustworthiness of social networks. Bots cause problems ranging from

spreading spam and inappropriate content to affecting democracies by manipulat-

ing mass opinion. This urged decision-makers to look for solutions to minimize bot

growth in their platforms and eliminate their negative influence.

Suspending all bots is not possible for the hosting sites because bots are very

inexpensive to create (or to buy unethically). Bots also evolve in their purposes and
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types of actions. Moreover, bots have important usages for news media, celebrities,

politicians, etc. Social network hosts, who also sell data, do not consider suspending

all bots because bots generate content and participate in activities that increase the

overall traffic to the host sites, which leads to higher profits. Therefore, many social

sites take an approach to moderate automated behavior by limiting their activities

and by suspending only the malicious ones. For Instance, Twitter guidelines allow

automated behavior as long as it complies with their policies, such as automated

tweets and replies [2].

Existing tools [27, 61, 33] detect automated accounts on Twitter including celebri-

ties, news agencies and organizational accounts. Automation is not always an indi-

cator for malicious accounts; there are many known bots that users enjoy following

for the services they provide. @Pentametron is a bot with more than 25K followers,

which posts rhyming pairs of tweets. Botormeter reports that @Pentametron ac-

count is 64% likely to be a bot. This indicates that there is a need to shift the focus

from generalized bot detection to malicious bot detection. It’s inaccurate to assume

that all bots are bad; some bots are created for entertainment, such as @countfor-

ever account that is counting forever to entertain followers. Other bots are created

to provide certain services, such as chat-bot accounts that are widely used in social

media to answer queries and help users. In contrast, some bots are malicious, such as

the Russian account @AmelieBaldwin1 that was meddling in the U.S. election 2016

[1].

An example of a benign bot that turned into a malicious one is Tay (i.e. @TayandYou),

the Microsoft millennial AI bot that was released via Twitter in 2016. Tay was cre-

ated to mimic a 19-year-old American girl and interact with users. In less than 24

hours of its release, it started misbehaving and began tweeting racist and sexually-

charged messages after responding to users tweeting politically incorrect information.

Figure 4.1 shows how Tay’s tweets changed from positive to negative sentiments.

1 The account has been detected by Debot
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Figure 4.1: The tweets of the AI chat-bot Tay. Note the tweet messages changing
from positive to negative.

Quantifying the maliciousness is a hard task because it’s subjective and there is

no ground truth for validation. For this work, we do not quantify bots’ maliciousness

as an absolute score, but rather we address the question: how can we rank a list of

bots based on their maliciousness. We use Twitter automation rules and policies to

generate a set of features of various aspects that indicate abuse in twitter services [2].

Therefore, we rely on Twitter policies to define malicious bots as bots that misuse

the services provided by the Twitter platform and deploy them against the existing

rules and policies. We use Twitter suspension as an indicator of malicious behavior.

To the best of our knowledge, this is the first work that studies maliciousness of

automated users in Twitter and ranks them in order of their malevolence.

Ranking social bot malevolence has various applications; it can be deployed as a

recommendation system to advise users to unfollow the most malicious bots. Also, it

can help in evaluating different bot detection techniques based on their effectiveness.

Hence, instead of quantifying the goodness of detection techniques based on the

number of detected bots, we can quantify it by the percentage of malicious bots
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detected. The more malicious the detected bots are, the more efficient the detection

technique is since it allows us to take further action on these accounts (e.g. temporal

suspension).

In this work, we propose a real-time ranking system for bots on Twitter. The

goal of this work is to answer the following questions:

1. How can we rank bots based on their maliciousness?

2. Can we differentiate between benign and malicious bots?

3. How do we estimate the utility of existing bot detection techniques?

4.2 Background and Related Work

4.2.1 Learning to Rank

Learning to Rank algorithms (LTR) are widely used in the Information Retrieval

field. The formal definition of the ranking problem is as follows: given a query

with a list of documents, sort the list of documents based on the degree of relevance

and similarity with the query. LTR is used in various applications (e.g. documents

retrieval and online advertisement) and is at the core of many search engines. In

general, ranking models are divided into three main approaches: pointwise, pairwise,

and listwise [59]. The simplest approach is pointwise where we predict the numer-

ical/ordinal value for each document, then the list is sorted based on the ranking

score. This enables the problem to be approximated by a regression problem to pre-

dict the list order. In pairwise, the ranker is trained on pairs of documents rather

than single documents to predict the most relevant one, with the goal to minimize

the number of inversions in the ordered list. In listwise, the query and list are treated

as a single learning instance, where the learning function tries to learn the order by
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considering the whole list of documents. This approach can be fairly complex to train

as it needs to find the ranking proprieties for a given list. In this work, we follow

the pointwise approach for bots ranking, where the ranking function is learned by

training a deep neural network to learn the ordinal score for bot maliciousness.

4.2.2 Bot Detection

Detecting bots on social media has gained a lot of attention lately, especially after

the U.S. Presidential election in 2016 [6, 12]. Bot detection techniques are helpful

tools for measuring bot growth on social networks. However, detecting bots alone is

not enough to evaluate their impact on the platform as we cannot assume all bots

generate similar traces; bots vary in their nature, objectives, and maliciousness.

Therefore, some existing research has focused on profiling bots to differentiate

their types and objectives. For example, political bots trying to sway public opinion

and affect democracies is incomparable to chat-bots that aim to answer customer

service and provide a better experience for the users. Most of the existing work in

the literature has focused on classifying bots into predefined categories and profiling

bots based on some aspects of abusive behavior without taking into consideration

the benign bots [65].

4.2.3 Related Work

Bot Detection. There have been several proposed bot detection techniques, most

are either supervised or unsupervised methods. Botornot [33] is an unsupervised

bot detection framework that extracts features from meta-data and information to

determine whether an account is a bot or not. Debot [27] and BotWalk [61] are

unsupervised models, the first uses temporal activities correlation, and the latter is

based on the ensemble of outlier detection algorithms in multi-dimensional behavioral
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space.

Researchers have studied bot types to better understand their motivation. In

[65], bots have been categorized based on their behavior which includes broadcast,

consumption, and spam bots. The work, however, does not distinguish between

benign and malicious bots. Other studies have focused on studying one aspect of

bot maliciousness, such as spamming [83, 75].

Learning to Rank. Ranking has been used in hashtag recommendations for hy-

perlinked tweets [72] and the assessment of tweet content credibility [49]. In [69],

authors propose a supervised ranking model to rank social accounts based on the

degree of their bot relevance by using learning to rank algorithms. Authors combine

features from well-known bot detection methods (e.g. Debot and BotorNot) to gen-

erate static and query-based features for each query. While their work examines bot

relevance, our work focuses on ranking the malicious degree of bots to help differen-

tiate between benign bots (e.g. customer service) and malicious bots (e.g. political

campaigns). Our work is unique because it can be exploited as a recommendation

system to help users clean their followee lists, and help in evaluating the existing

bot detection algorithms for a better assessment of the bot’s utility. Ranking bots

based on their maliciousness score has not been studied before to the best of our

knowledge.

4.3 Framework

Figure 4.2 shows the overall framework of our system. In the first step, we collect

bot activities using the filter method in the Twitter API. Then, we form the time

series of each feature at every window. Next, we label each feature time series into

four categories: Aggregated features (fwi
j ); AvgChange features (∆fwi

j ); Successive

features (∆f
wi|wi−1

j ); and Change of change features (∆2fwi
j ). We refer to this step as
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Feature Transformation. For the ranking model, we train a Deep Neural Networks

using multiple hidden layers to predict the maliciousness score for each bot at a

given time, then we sort the list where the top bots in the list have the highest

maliciousness scores in a given query. In the next subsections (4.3.1 to 4.3.4), we

describe the details of each step and evaluate the proposed ranking model.
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Figure 4.2: The overall framework for our ranking model.

4.3.1 Data Collection

In this work, we use the most recent bot detection methods to capture different

behavioral patterns to expand both the quantity and types of detected bots. The

three bot detection methods we used are BotOrNot, Debot, and BotWalk [33, 27,

61]. We collected a list of bots from each method by continuously listening to the

set bots from May 2018 to September, 2018 and collecting their tweets over the
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Table 4.1: Dataset Statistics.

Dataset Name Number of Accounts Annotation Method
Debot 15,628 dynamic time wrapping

BotOrNot 3,604 classification
BotWalk 2,396 outlier detection
Humans 926 human annotators

four-month period. The data was collected using Twitter API and Tweepy Python

library. Simultaneously, we checked every two hours to see if any bots got suspended

during the listening time. To study benign behavior, we use the dataset provided by

this work [30] where they collected a set of organic human accounts using Amazon

Mechanical Turks. We use human users to study benign behavior since human nature

does not carry malicious behavior. Therefore, many benign bots, such as chat-bots

are built based on mimicking human behavior. Table 4.1 shows the statistics for the

four datasets used in this work.

4.3.2 Feature Selection

In this section, we study various reasons for Twitter suspension and create a set

of features that characterize malicious behavior for bots that do not comply with

Twitter guidelines and most often result in account suspension [2]. Our features

can be divided into four categories: Spam behavior, Fake and biased news, Hate

speech, and Metadata. For each category, we describe a subset of the features and

the intuition behind their importance.

4.3.2.1 Spam Behavior

Spam is defined by an aggressive behavior that attempts to drive users’ attention

to certain products or services. This includes posting misleading links, duplicate
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mentions, and hijacking trends.

To shed light on this undesired behavior, we create a list of features that captures

this type of abuse. For each user, we find features related to four types of spams.

The feautes are:

1. URL Spam

Several existing works have identified suspicious URLs for phishing, spam, and

malware distribution by looking at lexical, redirect chains and landing URL

features of a given URL [56, 60]. Therefore, we created a set of 35 features

that characterize the URLs such as the number of distinct URLs, landing URLs,

and the length of redirect chains.

2. Hashtag Spam

Another form of spam is taking advantage of trending hashtags and related

topics. To quantify the hashtag usage in spamming behavior, we measure bot

participation in hashtags by computing the number of hashtags within a tweet

and across all tweets.

3. Mention Spam

Some bots try to attract random users by mentioning the users in tweets, hoping

that the mentioned users will respond and interact with their tweets. According

to Twitter automation rules and policies for automated mentions, “The reply

and mention functions are intended to make communication between Twitter

users easier. Automating these actions to reach many users on an unsolicited

basis is an abuse of the feature, and is not permitted.” [2]. Thus, we look for

users who send a large number of mentions to other users and measure their

average number of mentions per tweets and across all tweets.

4. Retweet Spam
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Engaging in randomly or aggressively retweeting acts does not comply with

Twitter rules [10]. Hence, we create features related to the number of retweets

a bot is involved in, and whether the retweets are from a certain user or random

users.

4.3.2.2 Fake and Biased News

Distributing false and misleading information has been the center of attention in

recent years. Therefore, social media platforms are under continuous pressure to

tackle this kind of abuse and provide a reliable environment for their users. Study-

ing Fake and biased news is controversial in nature, thus, for the scope of our work

we only measure user’s interaction with news sources that are labeled as fake or

biased based on existing datasets. We use Opensources2 database, which is a pro-

fessionally curated list of labeled online information sources. We only consider news

sources that are labeled as Fake, extremely Biased, or Unreliable. Also, we use two

other databases, Mediabiasfactcheck 3 and Allsides4 that have extremely biased news

sources. We used the three datasets to measure users’ interaction with fake/biased

news sources by tweets, re-tweets, and shared links.

4.3.2.3 Hate Speech

According to Twitter rules and policies for automation: “You may not engage in any

automated activity that encourages, promotes, or incites abuse, violence, hateful

conduct, or harassment, on or off Twitter” [2]. Yet, some users have disrupted this

platform to disseminate hate targeting people or groups, Tay is an example of a bot

that tweeted hate speech on Twitter (see Figure 4.1).

2www.opensources.co
3www.mediabiasfactcheck.com
4www.allsides.com
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Previous work has used sentiment analysis as a feature for hate speech detection

since hate speech has negative polarity [47, 58, 34]. Therefore, we use VaderSen-

timent, a lexicon and rule-based sentiment analysis tool, to measure sentiment ex-

pressed in social media [46]. We evaluate the bots’ sentiment polarity and intensity

expressed in tweets, and measure their overall sentiment.

4.3.2.4 Metadata

Metadata are features that characterize user profiles and reveal their identities. Ma-

licious bots often attempt to hide their identity. We investigate bot features that

reveal bots pretending not to be automated, such as geo-enabled tweets and location

change via the Twitter REST API. Some bots use unethical approaches to increase

their followers [4, 3], so we consider features like the number of followers and follow-

ing.

From the above discussed features, we use the Twitter API and the Tweepy

Python library to listen to bots and collect a set of 113 features. For each feature,

we create a time series of the value of the feature at every second for all of the bot

accounts. The full list of features is made public in the supporting webpage [7].

4.3.3 Feature Transformation

Bot behavior can be rapidly changed by the botmasters based on their current objec-

tive. Bots can be switched to another campaign group [27], which results in different

levels of maliciousness for the same bot; a benign bot could become malicious and

vice versa. Hence, we take the duration into consideration and divide the time series

of each feature into intervals (w) where wi is a non-overlapping sliding window at

time i. For each window, we compute the average aggregated features over the inter-

val [i− 1, i]. This allows us to rank bots over sliding windows instead of an absolute
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rank for their whole life.

Studying the change of features along with the feature values is important when

studying bot behavior. In general, the features described in section 4.3.2 can be either

increasing/decreasing or static. However, to capture sudden changes, we expand the

feature space to measure the percentage change and change of change (i.e. second

order differences) for different intervals as follows: For each feature, we divide its

time series into t intervals where wi is a sliding window at time i. Let fwi
j be feature

j at time window wi, then we compute AvgChange(fwi
j ), SuccessiveChange(fwi

j )

and ChangeOfChange(fwi
j ) as follows:

AvgChange
(
fwi
j

)
= ∆fwi

j =
fwi
j − 1

t

∑t
i=1 f

wi
j

1
t

∑t
i=1 f

wi
j

× 100 (4.1)

SuccessiveChange
(
fwi
j

)
= ∆f

wi|wi−1

j =
fwi
j − fwi−1

j

f
wi−1

j

× 100 (4.2)

ChangeOfChange
(
fwi
j

)
= ∆2fwi

j

=
∆f

wi|wi−1

j − 1
t

∑t
i=2 ∆f

wi|wi−1

j

1
t

∑t
i=2 ∆f

wi|wi−1

j

× 100 (4.3)

Where AvgChange(fwi
j ) finds the overall percentage difference for wi with the aver-

age windows, SuccessiveChange(fwi
j ) measures the percentage change of wi with the

previous window, and ChangeOfChange(fwi
j ) computes the percentage change of wi

with the average SuccessiveChange for all windows.

Figure 4.3 shows the distribution of AvgChange of the last window before the

suspension for a set of bots. For each category, we show the top three features

with the highest average increase. Note that while spam and fake features do not
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Figure 4.3: Distribution of AvgChange of the last window before the suspension for
different features categories.

show significant increase in the features, both hate and metadata features show

higher increase right before the suspension. This shows how time is a key element to

consider when studying the behavior (i.e. bots’ maliciousness score at time t is not

necessarily the same at t + 1 nor t− 1).

Thus, instead of treating bots as a one learning instance to estimate the mali-

ciousness score, we treat the sliding window as an instance of learning. This means

a bot will have multiple scores depending on the time window, and will enable con-

sideration of a bot’s behavioral change when studying their degree of maliciousness.

We generate four sets of features for each window wi using features defined in

section 4.3.2 as follows:

1. Aggregated features over time.

2. Average change features (∆fwi
j ) [Equation 4.1].

3. Successive change features (∆f
wi|wi−1

j ) [Equation 4.2].

4. Change of change features (∆2fwi
j ) [Equation 4.3].
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We create a comprehensive feature space to better understand behavioral changes.

The total number of features for a given window after transformation is 565.

4.3.4 Ranking Model

In this section, we describe the training and validation data and discuss the proposed

model design and architecture.

Training and Testing Data. One of the main challenges to this work is that we

have no ground truth to train a model. Moreover, human users often unknowingly

follow bots on Twitter; thus, human annotators perform imperfectly when creating

ground truth labels. In addition, the level of malevolence is dynamic over time,

which makes it a very expensive and inefficient task to annotate bots at every time

interval. Therefore, we rely on Twitter’s suspension mechanism as an indicator of

behavioral change with the assumption that suspended bots have higher likelihood

of being malicious than active bots. This is intuitive since most account suspensions

occur due to user reports, failure to reply to challenge questions, or violations of

Twitter rules [2].

We use the data described in Table 4.1 to build our training and validation data

using suspended bots and humans. For suspended bots, we find a set of bots that

were suspended during data collection from the three datasets BorOrNot, Debot, and

BotWalk [33, 27, 61], which has a total of 749 bots. We filter out bots that do not

have sufficient tweets and keep 676 bots that have at least four days of data. For

those bots, we give the final window before bot suspension a score of 1 and label

it as Malicious, and the remaining windows a score of 0.5 with the label Medium.

This ranking complies with the assumption that the final window for bots before

suspension should have higher maliciousness scores than other windows during their

lifetime. For the Humans dataset, we assign all windows in a score of 0 and label

them as Benign since random humans generally are not malicious.
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Table 4.2: Training and validation data statistics.

Label Name Value Number of Bots
Malicious 1 676
Medium 0.5 15, 197
Benign 0 3, 863

Table 4.2 shows the statistics for the training and validation data. We use 5-fold

cross validation using stratified sampling to ensure the percentage of samples for

each fold are equal. Then, in the training set, we follow the random oversampling

technique to create an equal distribution for all classes. For each sample in the

majority class, we randomly select with replacement a sample from the minority

class.

Note that our training and validation data are on windows rather than bot in-

stances since bots have different ranking scores at different times. We set the window

size to two days. This parameter is an estimation based on the fact that Twitter API

has restrictions on the number of tweets and we need enough accumulated tweets to

classify abusive behavior.

Multilayer Perceptron Model. In order to rank bots, we employ a Multilayer

Perceptron Model (MLP) for linear regression prediction. MLP is a class of feed-

forward artificial neural network which is a stack of linear layers. There are three

layers of nodes types: input layer, hidden layer, and output layer. We use Keras

MLP implementation for running the experiments [31].

Model Architecture. The first layer is the input layer which takes the transformed

features of a bot window instance. The input layer is fully connected to four hidden

layers. Each hidden layer is followed by a dropout layer of values (0.4, 0.3, 0.2,

0.2), respectively to prevent overfitting and ensure the model is learning more robust

features during the training [73]. We use ReLu as an activation function for all
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hidden layers to ensure the output values are always positive:

Relu(x) = max(0, x)

The output layer has a sigmoid activation function to predict the probability

between the range [0, 1] and is defined as follows:

Sig(x) =
1

1 + e−x

The output of the model represents bot maliciousness scores at a given time. Each

bot will have different maliciousness scores at different times, with the expectation

that the score before the suspension is the highest.

Model Performance. To evaluate the performance of our model, we use two

known evaluation metrics for regression models: Mean Squared Error (MSE) and

Mean Absolute Error (MAE) which are defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 , MAE =

∑n
i=1

∣∣∣Yi − Ŷi

∣∣∣
n

Our model achieves an average of 0.046 in MSE with 0.005 standard deviation

and an average of 0.152 in MAE with 0.014 standard deviation. In the next section,

we show different evaluation experiments for the proposed model.

4.4 Experimental Evaluation

We design a set of validation experiments to help evaluate our model and answer the

following questions:

1. Is our ranking model effective in ranking bots based on their maliciousness?

2. Can we evaluate different bot detection techniques?
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4.4.1 Deep Learned Model Evaluation

Experimental Evaluation: For this validation experiment, we use a new set of

bots and listen to these accounts for a three-month period. We collect bot features

and use the ranking model to predict their maliciousness scores over all the windows.

After data collection, we check the bots and find the suspended accounts. We label

the bots using two classes: Suspended versus Active bots. In Figure 4.4, we show the

distribution of all maliciousness scores for both Suspended and Active bots. We can

observe how each class has a different probability density function, where the area

under each curve is normalized to 1.

D
e
n

s
it
y

Maliciousness Score

Figure 4.4: Histogram and kernel density estimate for Suspended vs Active bots’
maliciousness scores.

Table 4.3 shows some statistical analysis for the two classes. Suspended bots have

much higher maliciousness scores than Active bots, which shows how our model can

differentiate between the malicious versus benign bots not only before suspension,

but also during their lifetime.

Comparison with Existing Methods: Existing work has focused on detecting



Chapter 4. Ranking Bot Malevolence in Twitter 77

Table 4.3: Active vs suspended bots statistics.

Active Bots Suspended Bots
Number of bots 606 83

Number of windows 20, 364 2, 765
Mean 0.17 0.80

Variance 0.07 0.03
Skewness 1.71 −2.21

bots and classifying them into predefined groups (e.g. spammers and self-promoters).

To our best knowledge, there is no work on predicting bot maliciousness. Therefore,

we chose to compare our model with BotOrNot. BotOrNot gives each bot a score, and

higher scores indicate more bot-like behavior. While the BotOrNot scoring system

does not explicitly represent maliciousness, we found it the closest to our work since

bot-like behavior usually carries malicious activities.

From the dataset discussed in the previous section, we use the BotOrNot bots

and compare the two techniques based on the two evaluation metrics MSE and

MAE with the variance. Table 4.4 shows the performance for both techniques. Our

model outperforms BotOrNot in both MSE the MAE. This illustrates how having

information about suspension can help to identify maliciousness, and relying on bot

detection techniques alone is not sufficient.

Table 4.4: BotOrNot vs our model evaluation using MSE and MAE with variance.

Evaluation Metric BotOrNot Our Model
MSE 0.079 (±0.001) 0.028 (±0.002)
MAE 0.275 (±0.003) 0.114 (±0.015)
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4.4.2 Model Ranking Evaluation

To evaluate our model ranking performance for a given set of bots, we first predict the

maliciousness score for each bot and then sort the list. Malicious bots are expected

to be at the top of the list with the highest scores, while benign bots are expected

to be at the bottom of the list with the lowest scores.

To evaluate our ranking model, we use Label Ranking Average Precision (LRAP)

metric. For a given binary matrix of ground truth labels y ∈ {0, 1}nsamples×nlabels and

the predicted score associated with each label f̂ ∈ Rnsamples×nlabels , LRAP is defined

as:

LRAP (y, f̂) =
1

nsamples

nsamples−1∑
i=0

1

||yi||0

∑
j:yij=1

|Lij|
rankij

where Lij =
{
k : yik = 1, f̂ik ≥ f̂ij

}
, rankij =

∣∣∣{k : f̂ik ≥ f̂ij

}∣∣∣, | · | computes the

cardinality of the set, and || · ||0 is the `0 norm (nonzero elements in a vector)[23].

To calculate the LRAP metric, we create binary ground truth labels, where both

Malicious and Medium labels are assigned a non-zero value and Benign label is

assigned a zero value. We randomly generate 500 queries; each query contains a

random set of window instances. Using the generated binary ground truth labels

and the predicted maliciousness scores, we find the average reported LRAP for all

queries is 99.66%.

We evaluate the ranking model using the validation data, we compute the LRAP

where we treat the validation data as a single query, our model achieves on average

LRAP of 94.29% with standard deviation of 0.007.
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Figure 4.5: The maliciousness scores for Debot, BotWalk and BorOrNot.

4.4.3 Bot Detection Techniques Evaluation

We investigate the effectiveness of bot detection techniques based on their ability to

detect malicious bots. We consider BotOrNot, Debot, and BotWalk in this experi-

ment. We sample 300 random bots per technique, then use our model to predict the

maliciousness score for each instance. Figure 4.5 shows the score distribution for the

three methods. Note that Debot, BotOrNot, and BotWalk have the highest average

scores, respectively, and Debot has the lowest variance among the three techniques.

This shows how some bot detection techniques are better in detecting malicious bots.

In general, most detected bots are malicious in nature; yet, they are not suspended

by Twitter. These bots continue to disrupt the trustworthiness of the platform and

threatens users safety. Until Twitter is able to take actions, more research should

be focused on bots maliciousness to shed light on this problem and make users more

aware of bots.
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4.5 Conclusion

In this chapter, we propose a ranking model to help estimate the malicious behavior

of bots in social media. We show how measuring the malicious degree of bots is

significantly more important than identifying the degree of bot relevance. We perform

experiments to evaluate the performance of our ranking model, achieving an average

precision of 94.29%. We also perform a validation experiment on a different set

of bots to show how our model can differentiate between benign and malevolence

bots.
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Chapter 5

Conclusion and Future Work

The main goal of this dissertation is to identify various forms of promotional cam-

paigns in social media, and to show the roles of bots and users in such campaigns.

We investigate promotional campaigns in both online e-commerce sites and social

networks, and explain the impact of these campaigns on the trustworthiness of social

media. The key challenges in this work are the absence of ground truth data and

the diverse forms of promotional campaigns which result in hard-to-detect malicious

activities across promoters.

We study reviews in online e-commerce sites and identify a new type of abuse in

review systems which is incentivized reviews. We use a dictionary based technique

to extract app names and code words in a highly precise manner from close to a

million apps. Our system is able to detect promotional reviews with 91% precision

and extract codes with 93% precision, and can successfully detect and extract the

app names with 95% precision.

To identify abusive incentivized reviews, we develop a novel relational ensembling

technique for outlier detection, that reduces bias in the resulting outliers by relating

outliers from multiple entities (e.g. apps, users and reviews). Our method identifies

a set of abusive incentivized reviews, such as automated, spamming, targeting and
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hidden-beneficiary reviews. We generate novel features to help the subspace anomaly

detection methods reducing the variance. The key observation is that our novel

features harness stronger agreement compared to the agreement produced by the

given-features among the three independently ranked lists of outliers. We also find

that most outlier reviews (around 90%) have at least an outlier app or an outlier user

when we use our novel features. We observe that the precision of perfect agreement

is higher than the precision of partial agreement. In contrast, the recall of partial

agreement is higher than the recall of perfect agreement.

In chapter 3, We study bots’ involvement in campaigns and show how they are

exploiting the organic popularity of social campaigns. We created BotCamp, a sys-

tem to detect bot-driven interaction in campaigns. BotCamp performs multi-aspect

(i.e. temporal, textual, and topographical) clustering of bots. We develop a heuristic

cluster ensembling approach to combine communities detected from different graphs.

We find that the retweets and temporal clusters score the highest agreement with the

predicted labels which show the importance of these graphs in detecting campaigns.

We develop an automatic interaction classifier to discover novel interactions among

bots participating in social campaigns with 98% precision. The results suggest that

our feature set can capture the agreement and disagreement interactions success-

fully. We have identified 87 disagreeing pairs of campaigns during U.S. election that

include disagreement over debate results, email controversy, etc. We have not iden-

tified any disagreement in Baseball and Friday datasets, which suggests that the

campaigns are not competing with each other, rather they support and promote

by interacting through retweets and mentions. The results show that while some

campaign domains are non-competitive in nature, others are controversial leading to

disagreement interactions.

To identify malicious bots, we propose a real-time ranking system for bots on

Twitter. We create a comprehensive feature set and behavioral profile to character-

ize malicious bots and capture different aspects of malicious behavior. We show how
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time is a key element to consider when studying the behavior since a bot could have

different maliciousness scores during its lifetime. We use a deep learned model to

produce a ranking score. Our model is trained on a novel dataset of suspended bots

and achieves 94.29% precision in ranking the bots, and can predict malicious bots

successfully before suspension. We illustrate how having information about suspen-

sion can help identifying maliciousness, and relying on bot detection techniques alone

is not sufficient to study malicious behavior. We compare between three bot detec-

tion techniques and show that Debot [27] and BotOrNot [33] are better in detecting

malicious bots, respectively.

For future work, there are three main directions that this work could be expanded,

we briefly discuss them and show some use cases:

1. Referral Incentives on App Reviews. We study incentivized reviews in

Google Play store platform. The algorithms described in chapter 2 may ap-

pear to be specialized for incentivized review mining in the Google Play store.

However, the high-level architecture of the system is easily generalizable with

necessary domain knowledge. For example, a domain expert can easily pro-

duce the whiteList, blackList, and whiteNames lists for his domain. A similar

identifier list for other entities such as hotels, books, etc. are also available to

domain experts. Thus, one future direction is to expand our system to measure

the incentivized reviews in other domains and estimate their impact on other

review platforms such as TripAdvisor and Amazon.

2. Bot-driven Interacting Campaign Detection. For this work we use DeBot

system to find bot-driven campaigns and study their interactions, one future

direction is to incorporate other bot detection techniques (e.g. BotOrNot and

BotWalk) to detect various bot types since bots keep evolving to prevent their

suspension, and bots participating in campaigns are not necessarily temporally

correlated. One of the challenges to this work is Twitter API restrictions
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which limit the amount of data that we can process. One possible direction is

to implement BotCamp framework as a distributed architecture to collect more

data and detect larger campaigns, even when the bots are passively spreading

content at a relatively lower rate.

3. Ranking Bot Malevolence in Twitter. In this work, we study bots mali-

cious behavior in Twitter. One future direction for this work is to deploy the

system in real time and detect malicious bots before their suspension. Another

direction is to use the system as a tool to monitor users and keep the accounts

alive by tracking their maliciousness score to prevent Twitter suspension.

Overall, this dissertation portrays a bleak picture of social networks where promo-

tional campaigns are abusing this modern marvel in order gain competitive advantage

over other campaigns, and sometimes over the humans in general. The true resolu-

tion will need a social reform about how online social media is perceived, which is

beyond the discipline of Computer Science.
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