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Abstract

Selecting informative features, such as accurate biomarkers for disease diagnosis, prognosis and response to treatment, is an essential
task in the field of bioinformatics. Medical data often contain thousands of features and identifying potential biomarkers is challenging
due to small number of samples in the data, method dependence and non-reproducibility. This paper proposes a novel ensemble feature
selection method, named Filter and Wrapper Stacking Ensemble (FWSE), to identify reproducible biomarkers from high-dimensional
omics data. In FWSE, filter feature selection methods are run on numerous subsets of the data to eliminate irrelevant features, and then
wrapper feature selection methods are applied to rank the top features. The method was validated on four high-dimensional medical
datasets related to mental illnesses and cancer. The results indicate that the features selected by FWSE are stable and statistically more
significant than the ones obtained by existing methods while also demonstrating biological relevance. Furthermore, FWSE is a generic
method, applicable to various high-dimensional datasets in the fields of machine intelligence and bioinformatics.

Keywords: feature selection; biomarker discovery; ensemble learning; high-dimensional data; genomics; proteomics.

INTRODUCTION
A biomarker, short for ‘biological marker’, is a biomedical indi-
cator that provides insight into the medical state of a patient

and its measurement is reliable and reproducible [1]. Biomarkers
have been widely used for disease detection, prevention, anal-
ysis of response to treatments, evaluating safety or toxicity of
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treatments, assessing risk and susceptibility in individuals, and
monitoring disease progress [2]. Development of gene expres-
sion profiling techniques such as Next-Gen Sequencing [3], DNA
microarray [4] and RNA sequencing (RNA-Seq) [5] have opened
new avenues for data-driven discovery of genetic biomarkers for
various diseases [6].

In the realm of machine learning, the problem of finding
top genetic biomarkers for a disease translates to selecting top
features (genes) from the data that discriminate well between the
case and control groups of the disease [7]. The minimal set of top
genes that maximize performance is referred to as ‘signature’. The
performance of the selected top genes is often measured using
the accuracy of classification between case and control groups
since true biomarkers capture characteristics of either the case or
control group and should thus be useful in classifying between the
groups. The selection of top biomarkers from high-dimensional
omics data is an area of broad and current interest [8].

Feature selection on omics datasets is difficult due to high
dimensionality (often tens of thousands of features) and relatively
small number of samples [9]. In addition, feature selection on
omics data suffers from the issues of method-dependence, mean-
ing different top features are obtained depending on the feature
selection method used; and feature instability, meaning the same
feature selection algorithm does not consistently select the same
top features across different perturbations of the data [10]. The
non-reproducibility of same top genes across different perturba-
tions of datasets is a serious impediment to clinical applications
of the selected markers [11]. Hence, to improve the quality of the
selected feature subset, both the accuracy and stability of the
feature selection methods need to be analysed parallelly [12].

Differential gene expression (DGE) analysis is the most popular
approach to identify top markers from omics data due to its
simplicity and interpretability [13]. DEGs are identified based on
the magnitude of difference between the mean expression values
across different classes and the variance of the values within each
class. Commonly used differential analysis tests such as Student’s
t-test, make assumptions that the underlying distribution of data
is Gaussian. However, this is seldom the case for gene expression
data [14]. The selection of appropriate P-value threshold for these
tests also affects the interpretability of the results [15] and in
recent times, disputes over the misuse of P-values have also arisen
[16, 17].

More recently, traditional machine learning feature selection
approaches have been applied to omics data for the discovery
of potential biomarkers. Compared with statistical tests, these
approaches use fewer assumptions about the distribution of data.
Many of these approaches such as Recursive Feature Elimination
(RFE) are able to analyse the predictive power of features as a
group rather than individual strength. This leads to the selection
of a set of top genes that may be poor biomarkers individually but
are strong biomarkers when combined as a group. Examples of the
application of traditional machine learning methods in biomarker
discovery include the use of elastic net for diagnosing papillary
thyroid carcinoma [18], Random Forest for tracking prostate can-
cer progression [19], and Lasso regression and RFE using Support
Vector Machines (RFE-SVM) for identifying therapeutic targets
in ferroptosis from coronary artery disease [20] and validating
biomarkers for Alzheimer’s Disease [21].

The performance of a given feature selection method varies a
lot across different datasets. Previous studies [22–24] have shown
that ensemble feature selection is an effective approach to over-
come this limitation. Integrating results from multiple biomarker
discovery methods increases the likelihood that the strengths of

at least one method will be well-suited to the characteristics of
the dataset, thereby enhancing overall performance. Ensemble
feature selection techniques have been successfully employed in
various contexts for biomarker discovery, such as VSOLassoBag
[25], a bagging ensemble of Lasso regressors, which has been used
for the diagnosis and prognosis of breast cancer. Similarly, RFE
using a bagging ensemble of SVMs has been applied to the diag-
nosis of childhood leukemia and colon cancer [26]. Furthermore, a
voting ensemble combining a correlation method, a causal infer-
ence method and a regression method using Borda count have
been used to predict miRNA targets for hepatocellular carcinoma
[27].

In this study, we conduct a comparative analysis of popular
feature selection methods and examine their combinations using
straightforward ensembling techniques. Based on the results of
this analysis, we propose a novel ensemble feature selection
architecture, termed FWSE (Filter and Wrapper Stacking Ensem-
ble), pronounced ‘fuse’. In addition to the ensembling analysis,
we evaluate the performance of FWSE against various existing
feature selection techniques for the task of biomarker discovery
on four high-dimensional genomic and proteomic datasets, two
of which are related to mental illnesses and two to cancer. Our
study reveals that FWSE is capable of achieving the optimal
combination of accuracy and stability on multiple datasets when
compared with existing popular feature selection methods.

These findings suggest that our proposed ensemble feature
selection architecture can serve as a potent tool for biomarker
discovery in high-dimensional omics data, potentially leading to
significant advancements in personalized medicine and disease
prevention. We believe that our work contributes to the ongoing
efforts in the field of machine learning and bioinformatics to
develop robust and reliable methods for feature selection in high-
dimensional data.

In the following sections, we provide an introduction to feature
selection and present a comprehensive overview of the methods
and datasets used in our study. We then present the results of
our ensembling analysis, which led to the development of FWSE.
Next, we conduct a comparative performance analysis of FWSE
against established approaches in the field. Finally, we discuss the
implications of our findings and suggest potential directions for
future research.

METHODOLOGY
This section is structured as follows: we first introduce the con-
cept of feature selection and its significance in the realm of
machine learning and bioinformatics. We then present a detailed
discussion of the feature selection methods that were compared
in this study, followed by an explanation of the ensembling tech-
niques that were employed. Subsequently, we introduce the novel
FWSE architecture and provide a comprehensive overview of its
design and functionality. We then describe the experimental setup
that was used to analyse the performance of each feature selec-
tion method, including the metrics used to evaluate their perfor-
mance. Finally, we present the datasets that were used in this
study, detailing their source, composition and relevance to the
task at hand.

Feature selection
Feature selection is a crucial process in machine learning that
involves identifying the most significant features for predicting
the outcome of a classification or regression task. By eliminat-
ing non-informative and irrelevant features, the performance
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of machine learning models can be enhanced, as decisions are
based solely on task-relevant features. However, feature selection,
particularly in molecular data, can be challenging due to high
dimensionality (large number of features) and a small number of
samples. Additionally, redundancy, where different subsets of fea-
tures can have the same predictive power, adds to the complexity
[28, 29]. Under different perturbations of data, a feature selection
algorithm might produce completely different sets of top features
that may be equivalent in terms of classification performance
[30]. Hence, when trying to identify biomarkers, it is essential to
use a reliable method that produces consistent features that are
significant across all samples [31].

Feature selection methods can be broadly categorized into
supervised, unsupervised and semi-supervised methods [32].
Supervised feature selection is used for classification or regres-
sion tasks, selecting features that can discriminate between
classes or approximate regression targets. Unsupervised feature
selection, designed for clustering problems, seeks alternative
criteria to define feature relevance without label information.
Semi-supervised feature selection bridges the gap between super-
vised and unsupervised methods, leveraging limited supervision
information to guide the feature selection process. In this study,
we employ supervised feature selection methods for the task of
biomarker discovery.

From a selection strategy perspective, feature selection meth-
ods can be classified into filter, wrapper and embedded methods
[33]. Filter methods assess feature importance based on data
characteristics independently of any learning algorithms. Wrap-
per methods use an external learning algorithm to evaluate the
quality of selected features, iterating until certain criteria are met.
Embedded methods offer a balance between filter and wrapper
methods by incorporating feature selection into model learning.
Some ensemble approaches combine multiple feature selection
techniques from different categories, forming a fourth category
known as ‘integrated’ methods. In the first part of this study, we
compared some traditional feature selection methods and their
simple ensembles on the LYRIKS data. These are described below.

F-statistic
The F-statistic of a feature is the result of an Analysis of Variance
(ANOVA) F-test for that feature across target classes. Mathemati-
cally, it is computed as the ratio of the between-group variance
to the within-group variance, where the groups are the target
classes. The F-statistic is a powerful measure of the statistical
significance of the group differences, but it assumes that the
data are normally distributed and the variances of the groups are
equal, which may not always be the case in real-world data.

Signal-to-noise ratio
The signal-to-noise ratio (SNR), similar to a Student’s t-test, is
a measure of the separation between the means of two classes
relative to the variability within each class. It is calculated as the
Euclidean distance between the class means divided by the sum
of the standard deviations of each class [34]. The SNR is a robust
measure of feature importance, but it assumes that the features
are independent, which may not be the case in high-dimensional
omics data. Equation 1 shows the formula for the calculation of
SNR for the ith feature:

SNRi = |M(class 1)
i − M(class 2)

i |
Std(class 1)

i + Std(class 2)
i

(1)

Lasso Regression
Logistic Regression is a method in which a linear decision bound-
ary is learned to separate between classes. The coefficients in the
equation that defines this boundary can be treated as feature
importance. Lasso Regression is a variant of logistic regression
that uses the L1 norm for penalization, leading to sparse solutions
where many of the estimated coefficients are zero. This results in
a smaller set of features being chosen, making Lasso Regression a
powerful tool for feature selection [35]. However, Lasso Regression
can be sensitive to outliers and may not perform well when the
number of features is much greater than the number of samples.

Random Forest
In decision trees, nodes with the greatest decrease in impurity
occur at the start, while nodes with the least decrease in impu-
rity occur at the end. By pruning the trees below a particular
node, a subset of the most important features can be created.
In this study, a bagging ensemble of decision trees also known
as Random Forest [36] has been used for the purposes of fea-
ture selection. Random Forest is a robust and versatile method,
but it can be computationally intensive, especially with high-
dimensional data.

Recursive Feature Elimination
In Recursive Feature Elimination (RFE), an external estimator is
used to assign importance to the features. Based on the feature
importances, a defined number of the least important features
are removed. In the next step, the external estimator is used to
rank the remaining features, and the least important features
are removed. This process continues till the required number of
features are left. In this work, RFE has been used with Linear
Support Vector Machines (SVMs), Logistic Regression and Random
Forests as the base models. RFE-SVM is an established feature
selection method to find statistically significant features in high-
dimensional gene datasets [37].

In addition to the aforementioned feature selection approaches
used in traditional machine learning, the proposed FWSE is also
compared with popular ensemble feature selection methods that
have been used for biomarker discovery, described below.

Variable-Selection Oriented Lasso Bagging
Variable-Selection Oriented Lasso Bagging (VSOLassoBag) is an
ensemble feature selection method that combines multiple Lasso
regression models in a bagging ensemble. It creates multiple data
subsets, filters out features based on their correlation with the
outcome, and uses cross-validated Lasso regression to further
rank the remaining features. Features with non-zero coefficients
are considered ‘selected’. The process is repeated across all data
subsets, and features that are frequently selected are considered
more important [25].

Multi-Criterion Fusion-based Recursive Feature Elimination
Multi-Criterion Fusion-based Recursive Feature Elimination
(MCF-RFE) is an ensemble wrapper feature selection method,
wherein features are recursively eliminated based on a voting
ensemble of multiple feature selection methods [38, 39]. MCF-RFE
leverages the strengths of multiple feature selection methods, but
it can be computationally intensive and may underperform if the
base feature selection methods are not well-suited to the data.
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Table 1: Summary of feature selection techniques used in this work

Abbreviation Method name Type Time
complexity

Supervised

ANOVA F-Statistic Filter Low Yes
SNR Signal-to-Noise Ratio Filter Low Yes
Lasso Lasso Regression Embedded Normal Yes
RF Random Forest Embedded Normal Yes
RFE-SVM Recursive Feature Elimination using Support Vector Machines Wrapper High Yes
RFE-LR Recursive Feature Elimination using Logistic Regression Wrapper High Yes
RFE-RF Recursive Feature Elimination using Random Forests Wrapper High Yes
VSOLassoBag Variable-Selection Oriented Lasso Bagging Integrated Normal Yes
MCF-RFE Multi-Criterion based Recursive Feature Elimination Integrated High Yes
ESVM-RFE Ensemble Support Vector Machine based Recursive Feature Elim-

ination
Integrated High Yes

E-Borda Voting Ensemble using Borda Count Integrated High Yes

Ensemble Support Vector Machine based Recursive Feature
Elimination
Ensemble Support Vector Machine based Recursive Feature Elim-
ination (ESVM-RFE) is a variant of RFE that uses a bagging ensem-
ble of SVM classifiers instead of a single SVM classifier to rank the
features at every step of elimination [26].

Voting Ensemble using Borda Count
In Voting Ensemble using Borda Count (E-Borda), to overcome
the problem of different feature selection methods being optimal
for different datasets or tasks, a voting ensemble of multiple
feature selection algorithms is taken [27, 40]. The aggregation of
the feature rankings from the multiple algorithms is done using
Borda Count. But like MCF-RFE, it can be sensitive to the choice of
base feature selection methods.

By comparing FWSE with these traditional and ensemble fea-
ture selection methods, we aim to demonstrate the effectiveness
and robustness of our proposed method in identifying reliable
biomarkers from high-dimensional omics data. A summary of all
the feature selection methods used in this study is provided in
Table 1.

Feature stability
Feature stability measures the consistency of the feature rankings
produced by each feature selection method, under different per-
turbations of the data. For this study, the Jaccard Index has been
used to analyse the stability:

Jaccard(A, B) = |A ∩ B|
|A ∪ B| (2)

Stability =
N∑

i=1

N∑

j=i+1

Jaccard(Ri, Rj) (3)

where N is the total number of rankings being compared and Ri

represents the ith ranking being compared.
The objective of this study is to measure the consistency

of only the top features. Hence, Jaccard Index has been used
to compare the similarity between two top n feature subsets.
The Jaccard Index does not account for the ranking of features
within the subset, hence, the stability is calculated repeatedly
over varying values of n. Metrics such as Kendall’s Tau [41]
and Spearman’s Rho [42] were not used because they utilize
ranking of all the features to compute stability, and the

ranking of irrelevant features may negatively affect the final
scores.

Ensemble Learning
Ensemble Learning or ensembling is a way of combining multiple
models, based on the idea that a group of diverse models would
perform better than a single model [43]. In the first part of this
study, three popular ensembling techniques were explored to
combine results from multiple feature selection methods. These
are illustrated in Figure 1(A) and discussed below.

Voting
Voting is a simple ensemble approach in which results from
different methods, trained on the same data, are aggregated based
on majority or by taking the average. The aggregation can also
be weighted, where the output of each method is multiplied
by a weight before combining. The approach is illustrated in
Figure 1(A). For the purposes of this study, rank aggregation [44]
has been used to combine the multiple feature rankings. In rank
aggregation, the feature importance results from the methods are
converted into feature rankings, where a smaller rank is allotted
to a feature with higher importance. Then all the feature rankings
are simply added up and the resulting array is sorted to obtain the
final rankings. The features with smaller values in the summed
vector end up with smaller ranks after sorting and are more
important.

Bagging
Bagging, short for bootstrap aggregation, is an ensemble learning
method that involves training multiple instances of the same
model, on different subsets of the training data. There exist many
approaches for creating the subsets, which involve choosing a
subset of samples at random, and may also involve choosing a
subset of features at random [45–48]. However, for this study, the
original approach of creating bootstrap samples has been used,
which involves choosing random samples with replacement, to
form the subsets [49]. This approach has been shown to decrease
the variance of the model while maintaining bias [50], thus reduc-
ing overfitting. The approach is illustrated in Figure 1(A).

Stacking
Stacking is a multi-layer approach in which outputs of the meth-
ods in the previous layer act as input to the methods in the
next layer. The methods in the first layer are trained on the data
whereas the methods in all the succeeding layers are trained
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Figure 1. (A) The various ensemble approaches explored in this study, namely voting, bagging and stacking. (B) The architecture of FWSE. (C) Evaluation
of a feature selection method on a dataset.

on the outputs of the methods in the previous layer. Figure1(A)
illustrates one such stack. Stacking has been shown to outperform
any of the single models used in the stack. [51].

Filter and Wrapper Stacking Ensemble
Based on the results of the ensembling experiments (shown
in Results section), a new ensemble architecture is proposed
to achieve an optimal combination of accuracy and stability.
This architecture is illustrated in Figure 1(B). Initially, multiple
bootstrap samples are generated from the dataset. Filter feature

selection methods are then applied to these samples, and their
outputs are combined using rank aggregation. The ‘pruning
factor,’ a parameter ranging from 0 to 1, governs the elimination
of the least significant features. In the scope of this study, this
factor is set at 0.5, leading to the removal of 50% of features in
all analyses presented. Subsequently, new bootstrap samples are
generated using the pruned feature set. Wrapper methods are
then applied to further rank the remaining features. The final
feature ranking is obtained through aggregation of the results
from these wrapper methods. A comprehensive analysis exploring
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Table 2: Summary of datasets used in the study

Dataset Profiling
technique

# of features # of samples Clinical factor Case Control Reference

LYRIKS Microarray 34928 84 Total 56 (66.7%) 28 (33.3%) Lee et al. [53]
Age 22.1 22.5
Female sex 14 (25.0%) 7 (25.0%)

Bipolar RNASeq 20581 480 Total 240 (50%) 240 (50%) Krebs et al. [54]
Age 50.3 43.4 https://www.ncbi.nlm.nih.gov/

geo/download/?acc=GSE124326&
format=file&file=GSE124326_
count_matrix.txt.gz

Female sex 131 (54.6%) 119 (49.6%)
LUAD RNASeq 20531 569 Total 510 (89.6%) 59 (10.4%) Liu et al. [55]

Age 65.3 66.0 https://cbioportal-datahub.s3.
amazonaws.com/luad_tcga_pan_
can_atlas_2018.tar.gz

Female sex 274 (53.9%) 32 (56.1%)
PDAC Proteome 11662 215 Total 140 (65.1%) 75 (34.9%) Cao et al. [56]

Age 64.3 64.5 https://www.linkedomics.org/
data_download/CPTAC-PDAC/

Female sex 66 (47.1%) 33 (49.2%)

the impact of varying the pruning factor on model accuracy and
stability is provided in Appendix B.

Study design
This study consists of two parts, the first part compares basic
feature selection techniques and analyses the effect of ensem-
bling these techniques. Previous studies [11] have shown that
ensembling is an effective approach to deal with highly correlated
features. Based on results from this part, FWSE is proposed as
a novel ensemble feature selection algorithm. The second part
of this study compares the performance of the proposed FWSE
method with the traditional feature selection techniques and also
popular ensemble feature selection approaches.

To evaluate the performance of every feature selection method,
the method is first run on the training data to obtain a set of top
features. Then different classifiers are trained using the features
selected by the methods. The accuracy of these classifiers is
evaluated on the test set. Since the data contain a small number
of samples, K-fold cross validation is used to analyse model
performance [52]. In K-fold cross validation, the whole dataset is
split into K equal parts (called folds). In each iteration, one of the
folds is treated as the test set and the other K-1 folds are treated
as the training set. This process is repeated K times such that each
one of the K folds gets to be a test set once.

Since, in each fold, the training sets are different, the feature
selection algorithms end up producing different top features each
time. To evaluate the reproducibility of the features selected by
these algorithms, the consistency of the top features across the
folds is analysed. This process is illustrated in Figure 1(C).

Datasets
In this study, we applied a number of feature selection methods
to identify biomarkers in four datasets, the Longitudinal Youth at
Risk Study (LYRIKS) [53], Bipolar disorder [54] Lung Adenocarci-
noma [55] and Pancreatic Ductal Adenocarcinoma [56].

The LYRIKS dataset was recorded at the Institute for Mental
Health (IMH), Singapore and contains 34 928 gene expression
values for 84 participants (56 Ultra-High Risk [57] and 28 control).
Ultra-High Risk (UHR) is a criterion that aims to identify people
at-risk of developing psychosis in the future. Participants were
assessed to be UHR using the Comprehensive Assessment of

At Risk Mental States (CAARMS) [58]. RNA was extracted from
peripheral blood and gene expression profiles were assessed on
Illumina HumanHT-12 v4 Expression BeadChip arrays. Goh et al.
[59] previously reported a 12-gene signature on this dataset that
is 90% accurate in identifying people at UHR.

The Bipolar data were recorded by the University Medical
Center Utrecht, Netherlands, and contains 20 581 gene expression
values of 480 participants (240 bipolar and 240 control). Bipolar
Disorder (BD) is a complex mental disorder characterized by mood
instability, and has high level of heritablility [60]. The participants
were diagnosed to be Bipolar using the Structured Clinical Inter-
view for DSM-IV (SCID) [61] test. Peripheral whole blood was used
for RNA-seq to derive the gene expression values.

The Lung Adenocarcinoma (LUAD) dataset was taken from
The Cancer Genome Atlas (TCGA) PanCancer Atlas study [55]. It
contains 20531 gene expression values of 569 participants (510
cancerous and 59 control). Lung adenocarcinoma is a common
form of non-small cell lung cancer and is the most common type
of lung cancer among non-smokers. It is also the second most
common cause of cancer-related deaths worldwide [62]. The gene
expression was obtained using the Illumina HiSeq platform.

The Pancreatic Ductal Adenocarcinoma (PDAC) dataset com-
prises of eight types of omics data sourced from 140 pancreatic
tumor tissues, 67 paired normal adjacent tissues (NATs) and 9 nor-
mal pancreatic duct tissues. The data was collected in accordance
with the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
guidelines. PDAC is a highly aggressive cancer with a dismal 5-
year survival rate below 10%. Often diagnosed at advanced stages,
it poses a significant challenge for effective treatment and is
projected to become a leading cause of cancer death by 2030 [63].
In this study, we used the proteomic expression in which 11 662
proteins were quantified.

A summary of the datasets used in this study is shown in
Table 2.

RESULTS
Analysis of feature selection ensembles
First, six feature selection methods (summarized in Table 1)
were run unmodified (also referred to as vanilla) on the LYRIKS
dataset. Here, 5-fold cross validation was used to evaluate the
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Figure 2. (A) Comparison of the classification accuracies of different classifiers using the top features selected by various feature selection algorithms.
The accuracy represents the average accuracy of the classifier across the K folds of cross-validation. (B) Comparison of stability of the features selected
by the various feature selection algorithms across the K folds. The stability score is calculated using Jaccard Index (defined in Equation 3).

performance of the methods. In each fold, the feature selection
methods were run on the training set and the identified features
were used to train four different classifiers viz. SVM [64], K-
Nearest Neighbours (KNN) [65], Multi-layer Perceptron (MLP)
[66, 67] and Gradient-Boosted Decision Tress (GBDT) [68], for
classification of UHR and control groups. Four different types of
classifiers were used to ensure the selected features perform well
across any type of classification method. The accuracy of these
classifiers was evaluated on the test set. Figure 2(A) shows the
accuracy of these classifiers with increasing number of selected
features.

The highest accuracies have been achieved by the wrapper
methods RFE-SVM and RFE-LR. Lasso performs the next best
while Random Forest gives lowest accuracies over the top 20 fea-
tures. For the filter methods ANOVA and SNR, after the first five
features, the accuracy remains nearly constant with increasing
number of features.

The stability of these traditional algorithms with increasing
number of features is shown in Figure 2(B). It is evident that
the filter methods ANOVA and SNR are more stable relative to
other methods. ANOVA achieves high top 5 feature consistency.
RFE-LR achieves higher stability than filter methods after the

top 40 features, whereas its companion wrapper method RFE-
SVM, achieves much lower stability comparatively. Random Forest
performs the worst in terms of stability because of the intrinsic
randomness involved in the algorithm [69].

In the following, we explored the effect of the three ensemble
techniques (presented in Figure 1A) for feature selection.

Bagging
The first ensemble technique explored in the study is bagging.
In bagging, in each fold of the cross-validation, 10 bootstrap
samples were created, each bootstrap sample containing a subset
of available samples in the training set, chosen at random with
replacement. The feature selection algorithms were run on these
bootstrap samples, and the feature rankings generated by each
algorithm were aggregated to obtain one final ranking per algo-
rithm.

The mean accuracies of the feature selection algorithms across
the four classifiers viz. SVM, KNN, MLP and GBDT, with and
without bagging, are compared in Figure 3(A). The mean accuracy
does not change much with bagging, across all types of feature
selection methods. Figure 3(B) records the stability of the features
selected by the algorithms. Significant improvement in stability
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can be seen for algorithms that involve some randomness in
initialization like Random Forests. The stability does not improve
for filter methods SNR and ANOVA partially because there are no
hyperparameters whose values affect the calculation of feature
importance.

Voting
In Voting, rankings from different algorithms are combined using
rank aggregation to obtain one ensemble ranking. To analyse the
effect of voting, the vanilla rankings of SNR and ANOVA were
combined into a filter ensemble, RFE-SVM and RFE-LR into a
wrapper ensemble, Lasso and Random Forest into an embedded
ensemble and all the six algorithms in one ensemble referred to
as ‘All’. Figure 4(A) and (B) show the mean accuracies and stability
scores of these ensembles compared with the vanilla algorithms
used to create the ensemble.

From the results, it can be seen that in all cases, the accuracy
and stability of an ensemble ranking are nearly an average of the
vanilla rankings used to create them. For example, the stability
results of the filter ensemble lie midway between the stability of
ANOVA and SNR and similarly, the mean accuracy of the filter
ensemble lies between the accuracy of ANOVA and SNR.

Stacking
Stacking is an ensembling technique in which the output of one
algorithm is provided as input to another algorithm. In the feature
selection context, this means the features selected by the first
algorithm are passed to the second algorithm to further select a
smaller subset of important features. In the analysis, one feature
selection technique was used from each category, viz. ANOVA
from filter, RFE-SVM from wrapper and Lasso from embedded and
basic stacking ensembles were explored that can be created using
two out of the three algorithms. The first algorithm was used
to select the top 50% of the features and the second algorithm
ranked the remaining features to achieve the final ranking.

Figure 5(A) shows the mean accuracy of the stacking ensem-
bles compared with the vanilla algorithms used in them. The only
stack that significantly outperforms its vanilla algorithms is the
ANOVA+RFE-SVM stack, where ANOVA is the first algorithm that
is used to select the top 50% of features and RFE-SVM is the second
and final algorithm used to rank the selected top 50% features.
RFE-SVM is the closest to the stack in terms of mean accuracy,
but as Figure 5(B) illustrates, the ANOVA+RFE-SVM stack achieves
higher stability than vanilla RFE-SVM.

Based on the insights gathered from these ensembling analy-
ses, the FWSE algorithm was designed. For details about the FWSE
algorithm please refer to the Methodology section.

Comparative analysis of FWSE and established
approaches
Case study #1: LYRIKS data
The LYRIKS dataset, which deals with UHR individuals, presents
a unique landscape for biomarker discovery. For this dataset,
in FWSE, we employed ANOVA and SNR as filter methods, and
RFE-SVM and RFE-LR as wrapper methods, creating 10 bootstrap
subsets at both stages, each subset equal in size to the original
dataset.

As depicted in Figure 6(A), FWSE outperforms traditional fea-
ture selection algorithms in terms of accuracy. The filter methods
in FWSE effectively eliminate irrelevant features, while the wrap-
per methods rank the remaining relevant features to identify a
minimal subset that maximizes accuracy. The stability of FWSE
is also comparable to the most stable traditional algorithms,

demonstrating the robustness of our ensemble approach. The
usage of bagging and multiple filter/wrapper methods greatly
improves the stability of the proposed ensemble compared with a
simple one filter and one wrapper method stack. ANOVA and RFE-
LR are closest to FWSE’s stability but FWSE heavily outperforms
them in accuracy, achieving ≈ 93% mean accuracy in top 15
features and ≈ 95% mean accuracy in top 30 features. RFE-SVM
is the closest to FWSE in terms of accuracy, but the ensemble
significantly outperforms RFE-SVM in stability.

When compared to ensemble biomarker discovery methods
(Figure 6B), FWSE exhibits superior accuracy and stability on the
LYRIKS dataset. While E-Borda comes close in terms of accuracy,
FWSE achieves much higher stability, demonstrating its robust-
ness in the face of data perturbations. Similarly, ESVM-RFE and
VSOLassoBag initially give better stability than FWSE when the
number of selected features is less than 30, but FWSE significantly
outperforms both in terms of accuracy (≈ 8% on average).

Case study #2: Bipolar data
The Bipolar dataset, with its focus on a complex mental disorder,
presents a challenging testbed for our proposed FWSE method due
to low separability between the target classes. For this dataset,
ANOVA and SNR were employed as filter methods and RFE-RF was
employed as the wrapper method in FWSE.

As shown in Figure 6(C), FWSE outperforms traditional meth-
ods in terms of both accuracy and stability. RFE-RF comes close
in terms of accuracy, but FWSE demonstrates higher stability,
especially when the number of selected genes is less than 20.

When compared with ensemble biomarker discovery methods
(Figure 6D), FWSE again outperforms the competition in terms of
both accuracy and stability, demonstrating its robustness across
different datasets and conditions. MCF-RFE is closest to FWSE in
terms of accuracy and VSOLassoBag is closest in terms of stability
but when accuracy and stability are considered together, FWSE
significantly outperforms all the ensemble biomarker discovery
methods. This demonstrates the robustness of FWSE, even in the
face of data perturbations on a dataset with low separability,
making it a promising tool for biomarker discovery in mental
health research.

Case study #3: LUAD data
The LUAD dataset, which focuses on Lung Adenocarcinoma,
presents a different set of challenges due to very high separability.
Based on the performance of the traditional feature selection
methods, in FWSE, ANOVA and SNR were employed as the filter
methods and RFE-SVM and RFE-LR were employed as the wrapper
methods.

As shown in Figure 6(E), FWSE achieves the highest accuracy
among traditional feature selection methods, although its stabil-
ity is lower than filter methods ANOVA and SNR. This is likely
due to the high separability of the LUAD dataset, which contains
many groups of genes that can achieve similar high levels of
separability. FWSE does outperform other wrapper and embedded
methods in terms of stability. RFE-LR has slightly lower accuracy
and stability than FWSE. Lasso comes close in terms of accuracy
only around the top 20 features mark but has lower stability than
FWSE throughout.

When compared with ensemble biomarker discovery methods,
FWSE outperforms all other approaches in terms of both accuracy
and stability (Figure 6F). MCF-RFE, while slightly lower in accu-
racy and slightly higher in stability around top 15–20 features,
eventually falls behind in both accuracy and stability. E-Borda
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Figure 3. Comparison of feature selection methods and their bagging variants. (A) The accuracy of all wrapper, embedded and filter methods displays
negligible changes after implementing bagging. (B) Bagging ensembles substantially enhance stability, especially for methods where initialization
involves an element of randomness.

also comes close to FWSE after the top 35 features, but FWSE
maintains higher accuracy and stability.

Case study #4: PDAC data
The PDAC dataset also exhibits good separability, like the LUAD
dataset. For PDAC, in FWSE, ANOVA and SNR were employed as
the filter methods, and RFE-RF and RFE-LR (with L1 norm) were
employed as the wrapper methods. Just like in previous case
studies, 10 bootstrap subsets were created at each stage, each
subset equal in size to the original dataset.

As depicted in Figure 6(G), FWSE stands out as the most
accurate among traditional machine learning feature selection
methods. While Lasso displays slightly higher stability in the
top 20–30 features, FWSE surpasses it considerably in terms of
accuracy. The stability of SNR and ANOVA on this dataset further
confirm this trend that in datasets with high separability, filter
methods tend to achieve the highest stability. However, FWSE
outperforms these methods in accuracy, making it a superior
choice when prioritizing accuracy.

When pitted against ensemble feature selection methods,
FWSE again outperforms in terms of accuracy and stability.
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Figure 4. Comparison of feature selection methods to their voting ensembles. (A) The accuracy of voting ensembles tends to reflect the mean
performance of the individual methods included in the ensemble. (B) Similarly, the stability of voting ensembles typically approximates the average
stability of the individual algorithms within the ensemble.

E-borda demonstrates comparable accuracy but falls significantly
short in stability. VSOLassoBag exhibits equivalent stability in the
top 15–30 features but does not match FWSE’s accuracy. ESVM-
RFE shows subpar performance in both accuracy and stability.

These results underscore the versatility of FWSE across differ-
ent datasets and conditions. An interesting trend to note is the
relationship between class separability and the stability of FWSE.
In the Bipolar dataset, where class separability is the lowest, FWSE
surpasses all other methods in terms of stability, demonstrating
its resilience in challenging conditions. In the LYRIKS dataset,
FWSE’s stability is on par with the top-performing approach,
further attesting to its robustness. However, in the LUAD and
PDAC datasets, where class separability is very high, the stability

of FWSE is slightly lower than that of filter methods. This is
potentially because, in high separability scenarios, many groups
of genes can achieve the same level of accuracy. Nonetheless,
the high accuracy and overall performance of FWSE across all
datasets underscores its potential as a reliable and versatile tool
for biomarker discovery from high-dimensional omics data.

Biological significance
Beyond demonstrating enhanced accuracy and stability, we fur-
ther evaluated the biological relevance of the biomarkers identi-
fied by FWSE.

The genes selected on LUAD, including ALDH18A1, CSTF2,
MYO7A, SMYD5, SRPK1, C1orf63, GMPPA, ZNF207 and ABCC3,
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Figure 5. Comparison of feature selection methods and their stacking combinations. (A) The combination of Filter and Wrapper methods (ANOVA+RFE-
SVM stack) demonstrates enhanced accuracy relative to their individual performances. (B) Furthermore, the ANOVA+RFE-SVM stack exhibits superior
stability compared with the standalone Wrapper method RFE-SVM.

have demonstrated associations with lung cancer and other can-
cers in the literature. For instance, ALDH18A1 has shown over-
expression in lung cancer [70]. CSTF2 has been identified as
an independent prognostic factor in non-small cell lung cancer
(NSCLC) and its suppression has been linked to inhibited lung
cancer cell growth [71]. MYO7A, although primarily studied in the
context of melanoma, has demonstrated roles in cell growth and
migration, suggesting potential significance in lung cancer [72].
SMYD5 and SRPK1, when depleted, have been associated with
increased tumor growth [73, 74]. C1orf63 has been found overex-
pressed in several cancers including lung cancer [75]. Mutations
in GMPPA have shown a significant association with patient mor-
tality in LUAD [76]. SERINC2 plays a critical role in LUAD, with

SERINC2 knockdown shown to inhibit proliferation, migration and
invasion in this cancer type [77]. ABCC3 has been identified as a
marker for multiple drug resistance and predictor for poor clinical
outcome in NSCLC, indicating its critical role in lung cancer
pathology [78].

On PDAC, FWSE identified some proteins that could be key
potential biomarkers such as S100A14, MISP, SFN, SULF1, SAMD9
and SERPINB5. S100A14 is not only an indicator of PDAC progres-
sion but also contributes to gemcitabine resistance, making it a
potential therapeutic target [79]. MISP’s upregulation is linked to
poor patient outcomes and is instrumental in immune system
alterations in PDAC [80]. SFN has been validated as a stromal
marker with prognostic significance, specifically affecting both
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Figure 6. Comparison of mean accuracy and stability of FWSE to other feature selection algorithms. (A) Comparison against traditional feature selection
methods on the LYRIKS data. (B) Comparison against ensemble feature selection methods on the LYRIKS data. (C) Comparison against traditional
feature selection methods on the Bipolar data. (D) Comparison against ensemble feature selection methods on the Bipolar data. (E) Comparison against
traditional feature selection methods on the LUAD data. (F) Comparison against ensemble feature selection methods on the LUAD data. (G) Comparison
against traditional feature selection methods on the PDAC data. (H) Comparison against ensemble feature selection methods on the PDAC data.

overall and disease-free survival [81]. SERPINB5 stands out for
its capacity to differentiate PDAC from pancreatitis, owing to its
promoter hypomethylation [82]. SAMD9 and SULF1, although not
as extensively studied, also show associations with PDAC pathol-
ogy and are candidates for future investigations [83]. IGF2BP3
plays a role in PDAC malignancy by affecting cell invasiveness and
modulating miRNA-mRNA interactions [84]. The comprehensive
list of potential biomarkers recognized utilizing our novel FWSE
method is provided in Appendix A.

Further strengthening our findings, the Gene Ontology (GO)
enrichment analysis of the biomarker signatures identified using
FWSE revealed compelling biological significance with P-values
less than 0.01 considered significant. The LYRIKS signature was
enriched in GO terms related to integral components of the mem-
brane, plasma membrane, oxygen binding, heme binding and
endoplasmic reticulum membrane. The plasma membrane and
endoplasmic reticulum are integral to the immune response,
facilitating the recognition of antigens and the production of
immune-related proteins. This aligns with the widely reported
observation of immune dysfunction in individuals at UHR for
psychosis [85].

In the context of bipolar disorder, our FWSE methodology
pinpointed genes enriched in GO terms such as carbohydrate
binding, inflammatory response, apoptotic process, and cellular
response to lipopolysaccharide. These terms are closely tied to
immune function as well. For instance, carbohydrate binding
is involved in cell-cell recognition, a crucial aspect of immune
response, while inflammatory response and cellular response to

lipopolysaccharide are directly linked to immune activation. This
is consistent with the growing body of evidence suggesting a
role for immune dysfunction in the pathophysiology of bipolar
disorder [86].

The biomarker signature identified in the LUAD dataset from
TCGA exhibited enrichment in GO terms related to the endoplas-
mic reticulum membrane, ER to Golgi vesicle-mediated transport,
mitochondrion, and ATP binding. The ER is involved in protein
folding and transport, lipid metabolism and calcium homeostasis,
disruptions in which can lead to ER stress, a condition implicated
in various diseases, including cancer [87]. The ER also plays a role
in vesicle-mediated transport to the Golgi apparatus, a pathway
crucial for protein secretion [88]. Mitochondria, known for their
role in energy production through ATP synthesis, also play key
roles in apoptosis and reactive oxygen species (ROS) production,
critical processes in cancer development [89].

Lastly, the biomarker signature on the PDAC dataset was
enriched in GO terms associated with actin binding, calcium ion
binding, extracellular space and cytosol. Actin binding is relevant
for cellular structure and motility, potentially contributing to can-
cer cell invasiveness. Calcium ion binding is involved in various
cellular processes, including signal transduction pathways that
could be altered in cancerous cells. The extracellular space is
key for cell-to-cell communication, often dysregulated in cancer,
and the cytosol is involved in numerous metabolic and signaling
pathways. These terms complement previous findings on GO
terms related to extracellular structure and binding properties
being associated with PDAC [83].
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In summary, the identified biomarker signature’s enrichment
in these GO terms aligns with existing literature on UHR, Bipolar,
LUAD, and PDAC, further validating the biological relevance of the
identified biomarkers. Altogether, these findings underscore the
potential of our FWSE method in identifying biologically relevant
biomarkers across diverse disease contexts and emphasize the
importance of considering the collective action of these biomark-
ers in disease pathology.

DISCUSSION
In this study, we introduce a novel method to address a critical
scientific challenge associated with high-dimensional medical
data, often referred to as ‘the curse of dimensionality.’ More
specifically, our focus is on the discovery of reliable and stable
biomarkers. While statistical tests have been routinely employed
to identify differentially expressed genes as biomarkers due
to their simplicity, they operate under the assumption of
feature independence. This is often not the case in reality, as
genes function in interconnected networks and pathways [90].
Recent studies have demonstrated that ensemble methods
can effectively overcome the inherent limitations of various
feature selection methods, thereby achieving a more reliable
consensus [91].

The first phase of the study delves into an exploration of var-
ious feature selection techniques (filter, embedded and wrapper)
for biomarker selection from high-dimensional omics data. We
also investigate combinations of these methods using popular
ensemble techniques (voting, bagging and stacking). Our find-
ings underscore that filter methods, which utilize univariate or
multivariate statistics independent of the classifier used, yield
stable features that are less prone to overfitting [92]. In contrast,
wrapper and embedded methods, while often delivering higher
accuracy when using the same classifiers that were used for
feature selection, can overfit due to their complex nature, as
evidenced by lower stability in some cases. Our study further illus-
trates that ensemble approaches can enhance the consistency
(using bagging and voting) and performance (using stacking) of
the selected features by leveraging the diversity of the feature
selection algorithms used.

The second phase of the study presents the novel FWSE
method. FWSE synergistically combines filter and wrapper
methods to create a signature that not only delivers high accuracy
but is also stable, reproducible and biologically significant. The
use of bootstrapping enhances the stability of our approach
and mitigates overfitting. The stacking strategy allows us to
harness the strengths of both filter and wrapper methods. The
filter methods effectively eliminate non-differentially expressed
genes across groups, while the wrapper methods evaluate the
remaining features as a collective set. This results in a set
of genes that provide high group separability, even though
each gene may be a weak biomarker individually. Our robust
signature identified for the LYRIKS data outperforms previous
works in predicting UHR criteria [59], and the genes and proteins
identified for LUAD and PDAC are associated with the respective
cancers.

Despite FWSE’s strong performance in accuracy and stability, it
is computationally intensive. The use of time-consuming wrapper
feature selection techniques like RFE, when repeated on multiple
bootstrap samples, slows the process even further. Future work
will explore the incorporation of more constraints into the FWSE
architecture to improve computational efficiency and biological
relevance, thereby further enhancing its utility in the realm of
biomarker discovery.

In summary, this study represents a meaningful contribution
to the field of biomarker discovery, by systematically analysing
the effect of ensemble feature selection methods and pro-
viding a novel and robust approach to identifying stable and
biologically relevant biomarkers in high-dimensional medical
data. The implications of this work are broad, with potential
applications in disease diagnosis, prognosis and therapeutic
development.

Appendix A: List of Identified Biomarkers
This section shows the complete list of potential biomarkers
identified for diagnosis of Ultra-High Risk (UHR) and bipolar using
the novel ensemble feature selection method, FWSE, developed
in this study. The top 20 markers are listed in Table 3 in order of
importance. The use of each of the biomarker sets for diagnosis,
prognosis and treatment design is subject to a copyright by the
authors.

Table 3: Potential biomarkers identified for the different
datasets using FWSE

Dataset Potential Biomarkers

LYRIKS LDLRAD1, CYP8B1, CDH11, TMEM225, HS.170946,
LOC100134138, HS.537754, C2CD3, LRRTM2, OR4A15,
LOC100127888, LOC100129002, LOC100131961, PLA2G5,
LOC389118, LOC100134413, LOC641964, SVOPL,
LOC100133959, SNORD113-6, OR56B4, LOC653113, SRD5A2,
HS.146184, CNTNAP5

Bipolar TSPAN2, TAGLN2, FAR2, CXCL8, PFKFB2, LINC01765,
CD300A, TAGLN2P1, MIR23AHG, FLT3, PIGB, SLC31A2,
IVNS1ABP, AKAP12, CNTNAP3, LINC00877, YIPF4, LILRA4,
RFX2, SYTL3, PGM5, CFAP45, MAK, DNASE1L3, CASP10

LUAD ALDH18A1, SRPK1, SMYD5, KIAA0907, MYO7A, CSTF2, SER-
INC2, ZNF207, ABCC3, GMPPA, C1orf63, C1orf131, UBFD1,
DLG3, P4HB, GYG2, SKIV2L, TXNDC5, PVRL4, NEK6

PDAC C19orf33, GLA, S100A14, MISP, SCEL, IGF2BP3, SDCBP2,
GALNT7, HEPH, SFN, SULF1, SAMD9, SERPINB5, PGM2L1,
LMO7, MDK, REG4, STON1, HK2, GSDMB, ARPC1B, MYO1E,
SDR16C5, S100A16, ACTN1

Appendix B: Sensitivity Analysis of Pruning
Factor
In this appendix, we aim to analyse the sensitivity of the pruning
factor, which plays an important role in the feature elimination
process in our FWSE method. Although a pruning factor of 0.5
was used in the study, this section explores how variations in this
parameter influence the performance metrics of accuracy and
stability.

The pruning factor specifies the proportion of features that are
discarded during the initial filter-based feature selection phase
of the FWSE algorithm. It is expressed as a fraction and takes
on values within the range of 0–1. To conduct this analysis, we
consider multiple values for the pruning factor 0, 0.2, 0.33, 0.5,
0.66, 0.8 and 1.

We evaluate the impact of changing the pruning factor on
two distinct datasets: LYRIKS, which contains microarray gene
expression data, and PDAC, which has proteomics data and is
characterized by high separability. For each dataset and pruning
factor setting, we calculate the mean accuracy and mean stability
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Table 4: Impact of varying pruning factor on accuracy and
stability, averaged across top 50 features

Pruning LYRIKS PDAC

Factor Accuracy Stability Accuracy Stability

0 88.41 0.325 94.88 0.367
0.2 88.19 0.339 94.77 0.355
0.33 89.17 0.340 94.65 0.356
0.5 90.29 0.346 94.53 0.349
0.66 89.20 0.340 94.11 0.351
0.8 87.77 0.322 93.97 0.338
1 88.08 0.371 93.09 0.577

that FWSE achieves across the top 50 features. The results of this
analysis are presented in Table 4.

On LYRIKS, the accuracy of FWSE appears to peak at the
pruning factor of 0.5, achieving a mean accuracy of 90.29%. The
accuracy tends to decrease as the pruning factor deviates from
this optimal value in either direction. A similar trend can be
observed with FWSE’s stability, except when the pruning factor
is set to 1. This suggests that a pruning factor of 0.5 provides a
balanced feature selection that maximizes classification accuracy
for this particular dataset.

For PDAC, the accuracy tends to increase as the pruning factor
decreases. When the pruning factor is set to 0, the features
are ranked only using wrapper methods. Hence, we see higher
accuracy on PDAC. Whereas when the pruning factor is set to 1,
the features are ranked purely using filter methods. Hence, higher
stability can be observed on both datasets.

In summary, this sensitivity analysis reveals that the prun-
ing factor has a nuanced impact on the performance of the
FWSE method. It implies that the optimal setting may depend
on the specific characteristics of the dataset and the priori-
ties of the study (e.g., maximizing accuracy vs. stability). Future
work will include developing methods to automatically deter-
mine the most appropriate pruning factor for different types of
datasets.

Key Points

• The curse of dimensionality is a major challenge when
dealing with high-dimensional medical data and finding
reliable biomarkers. Ensembling techniques, as demon-
strated in this study, can improve the consistency and
performance of feature selection algorithms, overcom-
ing the limitations of individual methods.

• Different ensemble techniques offer unique advantages.
Voting ensemble provides an average accuracy across
the methods applied, while bagging ensemble enhances
stability for methods that involve randomness in their
initialization. Stacking of filter and wrapper feature
selection methods, on the other hand, leads to a notable
improvement in accuracy.

• The proposed FWSE method stacks multiple bagging
ensembles of filter and wrapper methods to create a
robust biomarker signature. This novel approach outper-
forms traditional algorithms in terms of accuracy and
stability, although it is computationally expensive.

• The biomarkers identified by FWSE are not only statisti-
cally significant but also biologically relevant, enhancing

the practical utility of the method in disease diagnosis,
prognosis, and therapeutic development. Furthermore,
the stability of the FWSE method underscores its poten-
tial as a reliable tool for biomarker discovery.
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