1,500 research outputs found

    Efficient Point Clustering for Visualization

    Get PDF
    The visualization of large spatial point data sets constitutes a problem with respect to runtime and quality. A visualization of raw data often leads to occlusion and clutter and thus a loss of information. Furthermore, particularly mobile devices have problems in displaying millions of data items. Often, thinning via sampling is not the optimal choice because users want to see distributional patterns, cardinalities and outliers. In particular for visual analytics, an aggregation of this type of data is very valuable for providing an interactive user experience. This thesis defines the problem of visual point clustering that leads to proportional circle maps. It furthermore introduces a set of quality measures that assess different aspects of resulting circle representations. The Circle Merging Quadtree constitutes a novel and efficient method to produce visual point clusterings via aggregation. It is able to outperform comparable methods in terms of runtime and also by evaluating it with the aforementioned quality measures. Moreover, the introduction of a preprocessing step leads to further substantial performance improvements and a guaranteed stability of the Circle Merging Quadtree. This thesis furthermore addresses the incorporation of miscellaneous attributes into the aggregation. It discusses means to provide statistical values for numerical and textual attributes that are suitable for side-views such as plots and data tables. The incorporation of multiple data sets or data sets that contain class attributes poses another problem for aggregation and visualization. This thesis provides methods for extending the Circle Merging Quadtree to output pie chart maps or maps that contain circle packings. For the latter variant, this thesis provides results of a user study that investigates the methods and the introduced quality criteria. In the context of providing methods for interactive data visualization, this thesis finally presents the VAT System, where VAT stands for visualization, analysis and transformation. This system constitutes an exploratory geographical information system that implements principles of visual analytics for working with spatio-temporal data. This thesis details on the user interface concept for facilitating exploratory analysis and provides the results of two user studies that assess the approach

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres Verständnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstützt. Ziel dieser Arbeit ist es, einen Überblick über die Probleme dieser Visualisierungen zu geben und konkrete Lösungsansätze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingeführt, um den Nutzen der geführten Diskussion für die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    A Pattern Approach to Examine the Design Space of Spatiotemporal Visualization

    Get PDF
    Pattern language has been widely used in the development of visualization systems. This dissertation applies a pattern language approach to explore the design space of spatiotemporal visualization. The study provides a framework for both designers and novices to communicate, develop, evaluate, and share spatiotemporal visualization design on an abstract level. The touchstone of the work is a pattern language consisting of fifteen design patterns and four categories. In order to validate the design patterns, the researcher created two visualization systems with this framework in mind. The first system displayed the daily routine of human beings via a polygon-based visualization. The second system showed the spatiotemporal patterns of co-occurring hashtags with a spiral map, sunburst diagram, and small multiples. The evaluation results demonstrated the effectiveness of the proposed design patterns to guide design thinking and create novel visualization practices

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Interactive Exploration of Temporal Event Sequences

    Get PDF
    Life can often be described as a series of events. These events contain rich information that, when put together, can reveal history, expose facts, or lead to discoveries. Therefore, many leading organizations are increasingly collecting databases of event sequences: Electronic Medical Records (EMRs), transportation incident logs, student progress reports, web logs, sports logs, etc. Heavy investments were made in data collection and storage, but difficulties still arise when it comes to making use of the collected data. Analyzing millions of event sequences is a non-trivial task that is gaining more attention and requires better support due to its complex nature. Therefore, I aimed to use information visualization techniques to support exploratory data analysis---an approach to analyzing data to formulate hypotheses worth testing---for event sequences. By working with the domain experts who were analyzing event sequences, I identified two important scenarios that guided my dissertation: First, I explored how to provide an overview of multiple event sequences? Lengthy reports often have an executive summary to provide an overview of the report. Unfortunately, there was no executive summary to provide an overview for event sequences. Therefore, I designed LifeFlow, a compact overview visualization that summarizes multiple event sequences, and interaction techniques that supports users' exploration. Second, I examined how to support users in querying for event sequences when they are uncertain about what they are looking for. To support this task, I developed similarity measures (the M&M measure 1-2) and user interfaces (Similan 1-2) for querying event sequences based on similarity, allowing users to search for event sequences that are similar to the query. After that, I ran a controlled experiment comparing exact match and similarity search interfaces, and learned the advantages and disadvantages of both interfaces. These lessons learned inspired me to develop Flexible Temporal Search (FTS) that combines the benefits of both interfaces. FTS gives confident and countable results, and also ranks results by similarity. I continued to work with domain experts as partners, getting them involved in the iterative design, and constantly using their feedback to guide my research directions. As the research progressed, several short-term user studies were conducted to evaluate particular features of the user interfaces. Both quantitative and qualitative results were reported. To address the limitations of short-term evaluations, I included several multi-dimensional in-depth long-term case studies with domain experts in various fields to evaluate deeper benefits, validate generalizability of the ideas, and demonstrate practicability of this research in non-laboratory environments. The experience from these long-term studies was combined into a set of design guidelines for temporal event sequence exploration. My contributions from this research are LifeFlow, a visualization that compactly displays summaries of multiple event sequences, along with interaction techniques for users' explorations; similarity measures (the M&M measure 1-2) and similarity search interfaces (Similan 1-2) for querying event sequences; Flexible Temporal Search (FTS), a hybrid query approach that combines the benefits of exact match and similarity search; and case study evaluations that results in a process model and a set of design guidelines for temporal event sequence exploration. Finally, this research has revealed new directions for exploring event sequences
    corecore