
Efficient Point Clustering for
Visualization

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von

M.Sc. Computer Science

Christian Joachim Beilschmidt
geboren in Siegburg

Marburg, im Februar 2019

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg

(Hochschulkennziffer 1180) als Dissertation am 4. Juli 2019 angenommen.

Erstgutachter: Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

Zweitgutachter: Prof. Dr. Thorsten Thormählen, Philipps-Universität Marburg

Tag der Einreichung: 25. Februar 2019

Tag der mündlichen Prüfung: 8. August 2019

—Dedicated to my one decade of computer science studies

Abstract

The visualization of large spatial point data sets constitutes a problem with respect
to runtime and quality. A visualization of raw data often leads to occlusion and
clutter and thus a loss of information. Furthermore, particularly mobile devices
have problems in displaying millions of data items. Often, thinning via sampling is
not the optimal choice because users want to see distributional patterns, cardinal-
ities and outliers. In particular for visual analytics, an aggregation of this type of
data is very valuable for providing an interactive user experience. This thesis de-
fines the problem of visual point clustering that leads to proportional circle maps.
It furthermore introduces a set of quality measures that assess different aspects of
resulting circle representations.

The Circle Merging Quadtree constitutes a novel and efficient method to produce
visual point clusterings via aggregation. It is able to outperform comparable meth-
ods in terms of runtime and also by evaluating it with the aforementioned quality
measures. Moreover, the introduction of a preprocessing step leads to further
substantial performance improvements and a guaranteed stability of the Circle
Merging Quadtree. This thesis furthermore addresses the incorporation of miscel-
laneous attributes into the aggregation. It discusses means to provide statistical
values for numerical and textual attributes that are suitable for side-views such as
plots and data tables. The incorporation of multiple data sets or data sets that
contain class attributes poses another problem for aggregation and visualization.
This thesis provides methods for extending the Circle Merging Quadtree to out-
put pie chart maps or maps that contain circle packings. For the latter variant,
this thesis provides results of a user study that investigates the methods and the
introduced quality criteria.

In the context of providing methods for interactive data visualization, this thesis
finally presents the VAT System, where VAT stands for visualization, analysis and
transformation. This system constitutes an exploratory geographical information
system that implements principles of visual analytics for working with spatio-
temporal data. This thesis details on the user interface concept for facilitating
exploratory analysis and provides the results of two user studies that assess the
approach.

iv

Zusammenfassung

Die Visualisierung großer räumlicher Punktdatensätze stellt ein Problem in Bezug
auf Laufzeit und Qualität dar. Eine Visualisierung von Rohdaten führt oft zu
Verdeckungen und Unübersichtlichkeiten und damit zu einem Verlust von Infor-
mationen. Darüber hinaus haben insbesondere mobile Geräte Probleme bei der
Darstellung von Millionen von Datenelementen. Oft ist die Ausdünnung durch
Sampling nicht die optimale Wahl, da die Anwender Verteilungsmuster, Kardi-
nalitäten und Ausreißer erkennen wollen. Insbesondere für die Visual Analytics
ist eine Aggregation dieser Art von Daten sehr wertvoll, um eine interaktive Be-
nutzerführung zu ermöglichen. Diese Dissertation definiert das Problem des Visual
Point Clusterings, das zu proportionalen Kreiskarten führt. Darüber hinaus wird
eine Reihe von Qualitätsmaßnahmen eingeführt, die verschiedene Aspekte einer
resultierenden Kreisdarstellung bewerten.

Der Circle Merging Quadtree stellt eine neuartige und effiziente Methode zur
Erzeugung von Visual Point Clusterings durch Aggregation dar. Er ist in der
Lage, vergleichbare Methoden in Bezug auf die Laufzeit zu schlagen und sie auch
mit den oben genannten Qualitätsmaßnahmen zu validieren. Darüber hinaus
führt die Einführung eines Preprocessing-Schrittes zu weiteren deutlichen Leis-
tungssteigerungen und einer garantierten Stabilität des Circle Merging Quadtrees.
Diese Arbeit befasst sich darüber hinaus mit der Einbeziehung weiterer Attribute
in die Aggregation. Es werden Mittel zur Berechnung statistischer Werte für
numerische und textuelle Attribute diskutiert, die für Seitenansichten wie Dia-
gramme und Datentabellen geeignet sind. Die Einbindung mehrerer Datensätze
oder Datensätze, die Klassenattribute enthalten, stellt ein weiteres Problem für
die Aggregation und Visualisierung dar. Diese Arbeit stellt Methoden für die
Erweiterung des Circle Merging Quadtrees zur Verfügung, um Pie-Chart-Karten
oder Karten, die Circle Packings enthalten, auszugeben. Für die letztgenannte
Variante liefert diese Arbeit Ergebnisse einer Nutzerstudie, die die Methoden und
eingeführten Qualitätsmaße untersucht.

Im Rahmen der Bereitstellung von Methoden für die interaktive Datenvisuali-
sierung stellt diese Dissertation schließlich das VAT System vor, wobei VAT für
Visualisierung, Analyse und Transformation steht. Dieses System stellt ein ex-
ploratives geografisches Informationssystem dar, das die Prinzipien der visuellen
Analytik für die Arbeit mit raumzeitlichen Daten umsetzt. Diese Arbeit beschreibt
das Konzept der Benutzeroberfläche zur Unterstützung der explorativen Analyse
und liefert dabei die Ergebnisse von zwei Benutzerstudien, die den Ansatz be-
werten.

v

Erklärung

Hiermit versichere ich, dass ich meine Dissertation mit dem Titel

Efficient Point Clustering for Visualization

selbständig und ohne fremde Hilfe verfasst, nicht andere als die in ihr angegebenen
Quellen oder Hilfsmittel benutzt, alle vollständig oder sinngemäß übernommenen
Zitate als solche gekennzeichnet sowie die Dissertation in der vorliegenden oder
einer ähnlichen Form noch bei keiner anderen in- oder ausländischen Hochschule
anlässlich eines Promotionsgesuchs oder zu anderen Prüfungszwecken eingereicht
habe. Dies ist mein erster Versuch einer Promotion.

Marburg, den 25. Februar 2019 Christian Beilschmidt

vi

Acknowledgments

I foremost want to express my gratitude towards Prof. Dr. Bernhard Seeger for
supervising me through the course of this thesis and for bringing me into his group.
All discussions with him were very valuable and always encouraging to conduct
my research that lead to this thesis.

I want to thank all my colleagues from the Database Research Group of the Uni-
versity of Marburg for their collaboration in the course of my doctoral studies: Dr.
Daniar Achakeev, Johannes Drönner, Nikolaus Glombiewski, Jana Holznigenkem-
per, Dr. Bastian Hoßbach, Michael Körber, Michael Mattig, Andreas Morgen and
Marc Seidemann. Here, I would like to particularly mention Michael Mattig and
Johannes Drönner. Michael supported me in all my research and was the best pos-
sible co-author I could imagine. Further thanks for the time he spent proofreading
this thesis. Johannes provided me with all his expertise in the field of geography
and, together with Michael, he did an excellent teamwork in the development of
the Vat System. With respect to the Vat System I like to thank the students
Sören Hoffstedt, Julian Märte, Bastian Reitemeier, Daniel Schneider and Kerstin
Winter for spending particular implementation effort in advancing the system. I
furthermore want to thank Mechthild Keßler for supporting me in all organizational
aspects, in particular with respect to contract renewals.

For support from outside the Database Research Group I want to particularly
thank Dr. Thomas Fober for participating in my research and advising me during
his time as Interim Professor at the University of Marburg. Moreover, I enjoyed
working together on data science lectures. Furthermore, I want to thank Dr.
Alexander Markowetz in my time as a student at the University of Bonn for his
recommendation for a doctorate.

I would like to thank my family and friends who have supported me during this
time, although I was often away from the Cologne-Bonn area. In particular, I
would like to thank Verena for all her support and for proofreading this thesis,
which hopefully improved my English proficiency.

My work was partially funded by the Deutsche Forschungsgemeinschaft (DFG)
under grant no. SE 553/7-1 and SE 553/7-2. As part of the GFBio project I am
particularly thankful for the provision of use cases of biodiversity research that lead
to the idea of visual point clustering and to the development of the Visualization,
Analysis and Transformation System.

vii

Contents

Abstract iv

Zusammenfassung v

Erklärung vi

Acknowledgments vii

1. Introduction 1
1.1. GFBio . 2
1.2. Occurrence and Biodiversity Data 3
1.3. Contributions . 4
1.4. Organization of the Thesis . 7

2. The Problem of Visual Point Clustering 9
2.1. Problem Definition . 10
2.2. Zoom Levels . 11
2.3. Miscellaneous Point and Circle Attributes 13

3. Fundamentals and Related Work 14
3.1. GIS . 14

3.1.1. Data Types, Components and Operations 14
3.1.2. Coordinate Reference Systems 17

3.2. Visual Analytics . 18
3.2.1. Fields of Research . 18
3.2.2. Spatial Visualization . 20

3.3. Spatial Data Structures and Methods 21
3.3.1. Grid . 22
3.3.2. Histogram . 23
3.3.3. Point Aggregation . 24
3.3.4. Quadtree . 25
3.3.5. Space-Filling Curves . 27
3.3.6. Thinning . 28
3.3.7. Voronoi Diagrams and Delaunay Triangulations 30

3.4. Clustering . 31
3.4.1. Partitional Clustering . 32
3.4.2. Distributional Clustering . 34
3.4.3. Hierarchical Clustering . 34

viii

Contents

3.4.4. Choice of the Number of Clusters 37
3.4.5. Density-based Clustering . 39

3.5. Quality Measures for Clustering . 40
3.5.1. Extrinsic Methods . 40
3.5.2. Intrinsic Methods . 42

4. Quality Measures for Visual Point Clustering 43
4.1. Motivation . 43
4.2. Preliminaries . 45
4.3. Visual Assignment . 46

4.3.1. Nearest Neighbor Assignment 47
4.3.2. Enclosing Assignment . 47

4.4. Quality Measure Definitions . 48
4.4.1. Area Proportionality . 49
4.4.2. Circle Points Centered . 50
4.4.3. Circle Overlap . 51
4.4.4. Circle Point Distance . 52
4.4.5. Unassigned Points . 53
4.4.6. Uniform Point Distribution 55
4.4.7. Zoom Consistency . 56

4.5. Clustering Circle Mapping . 58
4.5.1. Circumcircle . 58
4.5.2. Log2 . 59
4.5.3. Log10 . 59

4.6. Experiments . 60
4.6.1. Methods . 61
4.6.2. Data Sets . 63
4.6.3. Clustering Methods . 63
4.6.4. Transformation Functions 65
4.6.5. Zoom Consistency . 66

4.7. Multiclass Adaptations . 67
4.7.1. Assignments . 67
4.7.2. Measures . 68

4.8. Summary . 69

5. CMQ: The Circle Merging Quadtree 70
5.1. Motivation and Requirements . 70
5.2. Method . 71

5.2.1. Idea . 72
5.2.2. Algorithm . 73

ix

Contents

5.3. Time and Space Complexity . 81
5.3.1. Time Complexity . 81
5.3.2. Space Complexity . 83

5.4. Preprocessing and Stability . 83
5.4.1. Stability . 84
5.4.2. Preprocessing . 85
5.4.3. Time and Space Complexity 88

5.5. Generation of Multiple Zoom Levels 89
5.6. Experiments . 90

5.6.1. Runtime . 92
5.6.2. Quality of Results . 95
5.6.3. Stability . 98
5.6.4. Compression . 99

5.7. Summary . 100

6. CMQ Extensions 102
6.1. Summary of Miscellaneous Attributes 102

6.1.1. Numerical Attributes . 103
6.1.2. Textual Attributes . 105

6.2. Visualizing Multiple Classes and Data Sets 106
6.2.1. Pie Chart Maps . 107
6.2.2. Circle Packing . 109

6.3. Summary . 125

7. The VAT System 126
7.1. Motivation . 126
7.2. VAT – Architecture and Data Model 128
7.3. WAVE – Overview and Features . 132

7.3.1. Wave Overview . 132
7.3.2. Operators and Workflows 134
7.3.3. Data Generalization and Exploration 136
7.3.4. Linked Visualization and Data Table 137
7.3.5. Citations and Provenance 138
7.3.6. Temporal Operations and Aggregation 139
7.3.7. Plotting and R Connectivity 141
7.3.8. Data Import and Export . 143

7.4. Integration to Infrastructure Projects 145
7.4.1. Connection to GFBio . 145
7.4.2. Opportunities for Other Projects 146

7.5. Example Use Case . 147

x

Contents

7.6. User Interface Design . 148
7.6.1. The Two-Phase Approach 149
7.6.2. User Evaluation . 149

7.7. Related Work and Systems . 152
7.8. Summary . 155

8. Conclusion 157
8.1. Summary . 157
8.2. Future Work . 158

8.2.1. Aggregation with Topological Constraints 158
8.2.2. Parallelized CMQ . 159
8.2.3. Streamed Clustering . 160

Appendices 162
A. Quality Measures Experiment . 163

References 167

List of Figures 185

List of Tables 191

List of Algorithms 192

Curriculum Vitae 194

xi

1
Introduction

In recent years, data-driven research has become almost ubiquitous in science. A
key aspect is the exploratory investigation of available data, which leads to new
ideas and hypotheses and which again leads to in-depth analyses. For instance, An-
drienko et al. [And+10] describe the important task of analyzing the environment
and the effects of climate change through visual analytics. In the context of vi-
sual analytics, a discipline where cognitive strengths of humans are combined with
powerful tooling from computers, data visualization is of utmost importance. The
rapidly growing complexity and size of data sets make this visualization task espe-
cially challenging. Particularly the visualization of spatial data, which is present
in applications like transportation and business analytics, can benefit from new
visualization technology [Kei+08b]. Kraak [Kra04] states that spatial data is of
special interest because the visualization of data on a map particularly stimulates
recognizing spatial patterns and relationships.

While visualization has been primarily performed on dedicated hardware so far,
there is currently a tendency that mobile devices are becoming more popular as
a front end for the analysis, and thus, replace the analytical usage of desktops
[MR05]. Thus, tablets and smartphones are increasingly becoming the target
devices for developers. Data visualization must therefore adapt to the limitations
of Internet bandwidth, computing power, battery capacity and screen size. On the
other hand, the era of big data leads to scenarios in which analyses are required
to process huge amounts of data [Zha+12; Mad+12]. Hence, it is necessary to
visualize more and more data on a constrained screen size and on devices that
have limited processing capabilities. A suitable way to address this challenge is to
aggregate data on the server side and to only transfer the aggregated data to the
mobile devices. This approach enables interactive analysis, while it is still efficient
in bandwidth and battery power on mobile devices.

Aside from computational aspects, visualizing raw data has additional downsides.
The limited screen size generally means having constrained maps that suffer from
a highly overloaded and occluded view. In this case, data aggregation can also help

1

1. Introduction

Figure 1.1.: This figure shows the discrepancy between a plot of raw points (left) of
the black alder and an aggregated view (right) of the points [Bei+17d].

to achieve a clear visualization with a higher information content. In particular for
detecting patterns like hot spots, an appropriate degree of aggregation facilitates
to focus on important aspects. Moreover, also the detection of outliers is a crucial
task that facilitates finding either errors or interesting phenomena. Figure 1.1
emphasizes this problem by showing raw data of the black alder on a map on
the left side. There are data points in western, central and northern Europe. It
clearly indicates the importance of data aggregation because most of the data is
completely occluded. The right side shows an aggregated circle map that resolves
this problem. For example, due to the size of the circles and the indicated number
of points, it is obvious that most occurrences are in central Europe, more precisely
in France and the Benelux Union. In contrast, the raw visualization does not
provide the information that France contains more than an order of magnitude
more points than, for instance, Spain or Norway. In the following sections, we
explain our interest in the biodiversity domain and first present a real project in
which data visualization is a key element. Then, we briefly introduce the setting
of biodiversity data.

1.1. GFBio

The German Federation for Biological Data (GFBio) is a German infrastructure
project that aims to integrate biodiversity data of German research collections,

2

1. Introduction

data centers and archives [DGG+14]. On the one hand, the integration includes
the digital and standardized provision of data from, for instance, collections of
museums. On the other hand, it also involves offering a unified access point for
planning the data management of (new) research projects and finding the most
competent and suitable corresponding GFBio partner. Many research data is not
fit for reuse because of missing data standards and strategies for long-term storage.
GFBio defines common standard workflows and data formats that address this
problem.

In addition to facilitating data reuse, the GFBio project also develops added-value
services for accessing, visualizing and processing available data. As a member
of the database research group of the University of Marburg we are developing
the Vat system as part of GFBio. This system offers a powerful visualization
and processing engine to integrate and combine research data from GFBio on
the one hand, but also other public resources on the other hand. It facilitates
visual analytics principles and supports users in fulfilling their research tasks.
Furthermore, the system integrates into the GFBio portal, which is a set of services
that are interconnected. In particular, the data search [Löf+17] allows users to
look up data using a unified search index that combines all data sources within
GFBio.

1.2. Occurrence and Biodiversity Data

Throughout this thesis, we mainly use data examples from the biodiversity domain,
in more detail occurrence data. Occurrence data constitutes points that indicate
the location where species were observed or collected geographically. For instance,
researchers observe European wildcats as part of their studies. They collect these
points via a GPS device and also note down miscellaneous attributes like the
time of observation and the fur color. In most cases it is not guaranteed that
observations in a data set distinguish unique animals, e.g. one animal could occur
several times and others only once just by chance. Furthermore, the absence of
occurrence records at a certain place does not imply that there actually is no
species apparent, i.e., there are generally no negative findings recorded and the
data is not complete.

The data quality of occurrence data sets is very heterogeneous. There are data sets
generated by amateur researchers as well as renowned experts. Issues are, for ex-
ample, the confusion of species with another, incorrect or flipped GPS coordinates,

3

1. Introduction

inaccurate old data and problems that arise during data import. Another com-
mon error is the occurrence of records with coordinate (0, 0) that was mistakenly
introduced as a replacement of unknown or null values.

Apart from data quality, this type of data is interesting for analytical algorithms
because of its inherent heterogeneity. Some data sets have rather few data points
and some data sets are very large. Furthermore, the distribution of species varies
significantly. Due to geographical factors, but also because of invasion, there
are species that only occur very locally in small regions or very widely on entire
continents or worldwide. In this scenario, hot spots of species are very impor-
tant, but outliers are also of interest. Outliers can indicate either errors, which
are relevant for data curators, or interesting findings, which are relevant for re-
searchers.

The Global Biodiversity Information Facility1 (GBIF) is the largest collection of
occurrence data of living species. The organization was established in 2001 and
has since been supported by the science ministers of the OECD. It provides open
access to its data. As of December 2018, 1 315 worldwide institutions have pub-
lished over 40 000 data sets and contributed more than one billion occurrence
records. This includes data from one to two million species in Darwin Core
standard [Wie+12]. This standard is endorsed by the organization for Biodi-
versity Information Standards2 (TDWG). It includes, among other fields, species
names that follow the GBIF taxonomy as well as a location and time informa-
tion.

1.3. Contributions

The research contributions of this thesis are listed in the following:

• Various algorithms are candidates for solving the visual point clustering prob-
lem. However, it is difficult to assess the quality of a result in a formal way
rather than by surveys with domain experts. This thesis provides a compre-
hensive set of quality measures for visual point clustering. Furthermore, it
presents a survey of state-of-the-art point aggregation methods with focus
on clustering and experiments with different domain data sets to inspect the
validity of the quality measures.

1www.gbif.org
2www.tdwg.org

4

https://www.gbif.org
https://www.tdwg.org/

1. Introduction

• Visualizing large spatial data sets in their raw form often leads to inadequate
results that suffer from occlusion, and thus a loss of information. Moreover,
technical constraints, particularly for mobile devices, do not allow display-
ing millions of data points. This thesis defines the problem of visual point
clustering and introduces the Circle Merging Quadtree, a novel algorithm for
ad-hoc aggregation and visualization of large point data sets that is suitable
for big data scenarios. The resulting proportional circle maps provide the
user with important information such as hot spots, distributional patterns
and outliers.

• The Circle Merging Quadtree constitutes an efficient method for point ag-
gregation, but does not guarantee stability. This thesis presents a prepro-
cessing step for this algorithm that leads to stable results with respect to
input permutations. Moreover, this preprocessing step leads to substantial
performance improvements for the Circle Merging Quadtree.

• This thesis contains an extensive evaluation that demonstrates the superi-
ority of the Circle Merging Quadtree algorithm over comparable algorithms
with respect to runtime and quality.

• Spatial data often has miscellaneous attributes that are of interest to re-
searchers as well. The Circle Merging Quadtree aggregates data sets using
their spatial properties. This thesis presents an overview of aggregation
methods that are suitable for providing a side-view, e.g. a plot or a data
table, with aggregates of the miscellaneous attributes.

• The visualization of multiple data sets poses similar problems to the visual-
ization of raw data like occlusion and many overlaps. This thesis presents the
adaptation of two approaches from literature to the Circle Merging Quadtree,
pie chart maps and maps of circle packings. In particular for the latter vari-
ant, this thesis presents extensions to known approaches and provides a user
study that investigates the effect of this map type and its extensions.

• The Visualization, Analysis and Transformation System (Vat) constitutes
an interactive geographical information system for the exploratory analysis
of spatio-temporal data that applies techniques from visual analytics. This
thesis presents an interface for exploratory workflow creation, effective data
generalization and previews, linked time series computations, and automatic
provenance and citation tracking. For data generalization, it uses the Circle
Merging Quadtree as main method for visualizing point data sets. Addi-
tionally, this paper presents the results of two user studies that verify the
validity of the approach.

5

1. Introduction

The following papers were published in the course of this thesis:

• Christian Beilschmidt, Michael Mattig, Thomas Fober, Bernhard Seeger:
An Efficient Aggregation and Overlap Removal Algorithm for Cir-
cle Maps.
GeoInformatica (2019) 23: 473.

• Christian Beilschmidt, Thomas Fober, Michael Mattig, Bernhard Seeger:
A Linear-Time Algorithm for the Aggregation and Visualization
of Big Spatial Point Data.
SIGSPATIAL/GIS 2017: 73:1-73:4.

• Christian Beilschmidt, Thomas Fober, Michael Mattig, Bernhard Seeger:
Quality Measures for Visual Point Clustering in Geospatial Map-
ping.
W2GIS 2017: 153-168.

• Christian Beilschmidt, Johannes Drönner, Michael Mattig, Marco Schmidt,
Christian Authmann, Aidin Niamir, Thomas Hickler, Bernhard Seeger:
VAT: A Scientific Toolbox for Interactive Geodata Exploration.
Datenbank-Spektrum 17(3): 233-243 (2017).

• Christian Beilschmidt, Johannes Drönner, Michael Mattig, Bernhard Seeger:
VAT: A System for Data-Driven Biodiversity Research.
EDBT 2017: 546-549.

• Christian Beilschmidt, Johannes Drönner, Michael Mattig, Marco Schmidt,
Christian Authmann, Aidin Niamir, Thomas Hickler, Bernhard Seeger:
Interactive Data Exploration for Geoscience.
BTW Workshops 2017: 117-126.

• Christian Authmann, Christian Beilschmidt, Johannes Drönner, Michael
Mattig, Bernhard Seeger: VAT: A System for Visualizing, Analyz-
ing and Transforming Spatial Data in Science.
Datenbank-Spektrum 15(3): 175-184 (2015).

• Christian Authmann, Christian Beilschmidt, Johannes Drönner, Michael
Mattig, Bernhard Seeger:
Rethinking Spatial Processing in Data-Intensive Science.
BTW Workshops 2015: 161-170.

6

1. Introduction

1.4. Organization of the Thesis

The rest of this thesis is structured as follows:

Chapter 2 presents and defines the problem of visual point clustering. It introduces
fundamental concepts and discusses assumptions.

This chapter contains parts of [Bei+17d].

Chapter 3 presents fundamentals as well as related work in the context of the
thesis. It outlines the background of geographical information systems and visual
analytics and introduces spatial data structures and algorithms. Moreover, it
provides an overview of clustering in general and also discusses generic clustering
quality measures.

This chapter contains parts of [Bei+17e], [Bei+17d] and [Bei+19].

Chapter 4 introduces quality measures for results of visual point clustering al-
gorithms and provides detailed definitions. In this sense, it shows an evalu-
ation of existing clustering algorithms and outlines their strengths and weak-
nesses.

This chapter contains parts of [Bei+17e].

Chapter 5 presents the Circle Merging Quadtree as an efficient algorithm for vi-
sual point clustering. It describes a preprocessing step that leads to substantial
performance improvements and ensures stability of the Circle Merging Quadtree.
Furthermore, it shows results of experimental evaluations with respect to runtime,
quality, stability and compression.

This chapter contains parts of [Bei+17d] and [Bei+19].

Chapter 6 provides extensions with respect to the incorporation of miscellaneous
attributes and multiple data sets or classes in the Circle Merging Quadtree method.
The first section deals with the aggregation of these miscellaneous attributes for
side-views. The second section presents two methods for visualizing multiple
data sets or multiple classes in the data alongside by using the Circle Merging
Quadtree.

The implementation of the CMQ extension for circle packing and the conduction
of the user survey was done in the course of a co-supervised Bachelor’s thesis
[Win18].

Chapter 7 presents a system for the Visualization, Transformation and Analysis
(Vat) of spatio-temporal data. This geographical visual analytics system uses the
Circle Merging Quadtree as the main method for visualizing point data and, thus,
creates a context for the use of this algorithm. The chapter gives an overview of

7

1. Introduction

Vat and details on the exploratory usage by using its interactive user interface
Wave. Furthermore, it presents two user studies that show the validity of the
approach.

This chapter contains parts of [Bei+17b], [Bei+17a] and [Bei+17c].

Chapter 8 concludes the thesis and presents ideas for future work.

8

2
The Problem of Visual Point

Clustering

In the following, we define the problem setting of visual point clustering. With
regard to the field of cartography, the problem setting relates to map generaliza-
tion. Slocum et al. [Slo+09] define map generalization as reducing the amount of
information on a map because of scale, mapping purposes, audience or technical
constraints. We focus on scale and technical constraints because we aim to pro-
vide a scalable method for displaying large point data sets on maps of a certain
size. These point data sets reflect discrete phenomena, e.g. observation records of
species or points of interests in cities.

Slocum et al. furthermore discuss several visualization variables. For discrete phe-
nomena, they prefer dot and circle maps over choropleth or isopleth maps (cf.
Chapter 3). The two latter types of maps show relative aggregates of portions of
the map or group parts of the map that share the same values. They claim that this
is favorable for displaying continuous phenomena. Furthermore, they see advan-
tages of proportional symbol maps in displaying information about raw totals, e.g.
the number of animal occurrences in a location. These symbols can be circles (as
in our case) but also rectangles or pictographs, e.g. for visualizing the consumption
of coffee as coffee mugs of different sizes. However, we do not consider pictographs
in our problem setting, but concentrate only on circles. This is in accordance with
Forrest et al. [FC85] who found that users are much faster in identifying abstract
shapes like circles than iconic shapes. As an example, the prominent mapping
service Google Maps1 encloses icons in circular shapes.

1maps.google.com

9

https://maps.google.com

2. The Problem of Visual Point Clustering

(-20 037 508.34, -20 037 508.34)

(20 037 508.34, 20 037 508.34)

(0, 0)

(p1.x, p1.y)

visual point
clustering r min

δ

(c4.x, c4.y)

c 2.r

c3.n = 1

Figure 2.1.: This figure illustrates the definition of a map, points and circles as
well as the notion of a minimum radius and inter-circle distance.

2.1. Problem Definition

We consider a two-dimensional coordinate system (cf. Chapter 3) specified by
its lower left and upper right coordinate (e.g. Web Mercator with lower left cor-
ner ll = (−20 037 508.34,−20 037 508.34) and upper right corner which equals to
−ll). Moreover, there is a potentially very large set of points P = {pi = (xi, yi)}
with i = 1, . . . , n given, where xi corresponds to the x-coordinate and yi to the y-
coordinate of a point pi. Every point represents a discrete object of the real world,
e.g. an animal observation or the location of a hotel. Our goal is to compute m
clusters and a corresponding set of augmented circles C = {c1, . . . , cm} where ci
refers to the i-th cluster. Moreover, we consider m ≪ n since we aim for a large
reduction of visible information on the map.

A circle c = (x, y, r, n) consists of the coordinates c.x and c.y of its center, its radius
c.r and the number of points c.n of its associated cluster. Note that within this the-
sis, we define a circle as a tuple or vector, but we will access the fields of the tuple by
using the corresponding attributes. The circles C should exhibit the following four
properties with respect to the input set of points P :

i) The number of circles is unknown in advance, but will typically be much
smaller than the number of points.

ii) Each circle represents a cluster, which is a partition of points from the data
set.

iii) The circles do not overlap each other.

10

2. The Problem of Visual Point Clustering

iv) The circles summarize the underlying point data set in terms of locality,
distribution and cardinality. The area of a circle reflects the number of
associated points, i.e., a larger circle corresponds to more points than a
smaller circle.

Figure 2.1 shows an illustration of the definition of a map, points and circles,
coordinates and attributes. The left side shows raw points on a map using the
Web Mercator coordinate system. The right side illustrates the output of the
aggregation, which is a set of circles. We use the term visual point clustering to
refer to the problem, as it is a special type of clustering with the specific constraints
mentioned above. With regard to cartography, visual point clustering outputs a
proportional circle map.

Our goal is to use these circles for visualization on a screen of a fixed width and
height given in pixels. Without loss of generality, we focus only on quadratic maps.
Of course, circles have to be perceivable and individually distinguishable by users.
Therefore, we define two parameters rmin and δ as illustrated on the right hand side
of Figure 2.1. The parameter rmin is the smallest radius we use for the visualization
of a cluster with one point. The parameter δ denotes the minimum inter-circle
distance. These values should follow the characteristics of the application and the
user’s screen, e.g. setting rmin relative to the font size and δ to 1 px. In the scope of
this thesis, we consider these parameters as given. These parameters correspond
to research from Jänicke et al. [Jän+12], who also introduced the concept of a
minimum radius and distances between circles (they use the parameter ϵ as in
density-based clustering, cf. Section 3.4). Also general geovisualization research,
e.g. from Slocum et al. [Slo+09], emphasizes the importance of visual variables
that include size and spacing.

2.2. Zoom Levels

Map applications are typically dynamic. Users are interested in a certain fraction of
the coordinate system (e.g. the bounds of Europe in the Web Mercator coordinate
system) at a certain zoom level. We consider zooming into the map as visualizing
the same extent of the coordinate system on a larger screen. In our case, we
use the common definition of a map with a width and height of 256 · 2z px for
zoom levels z ∈ N0. This corresponds to the zoom level definition in common map
applications like Google, Bing and Open Street Maps [Pic17] as well as comparable
research approaches [Jän+12]. Figure 2.2 illustrates the effect of this definition on
the size of the map. Note that the sizes are schematic and not pixel accurate. For

11

2. The Problem of Visual Point Clustering

z=0 z=1 z=2

Figure 2.2.: This figure illustrates the effect of different zoom levels.

illustration, we show 4 instead of 256 pixels for z = 0. Aside from that, one can
see the exponential growth of the map.

Our primary task is to generate a visual point clustering for a given point data
set P and a zoom level z. This fits best to an exploratory scenario and ad-
hoc map generation. Additionally, we consider generating multiple zoom levels
{0, . . . , zmax} at once in a setting where we provide a fixed set of pre-computed
zoom levels to a user. A reasonable value for the maximum zoom level is, for
instance, zmax = 4. This already results in a map with a resolution larger than
Ultra HD.

In real-world scenarios, zooming always leads to restricting the map extent. This
would make larger values for zmax reasonable. However, for simplicity we only
address the case of visualizing the whole world or coordinate reference system,
respectively. This is sufficient in order to investigate the effects of different map
sizes. We will use many different data sets in our experiments (cf. Chapter 5) to ex-
amine different distributional patterns without having the necessity of considering
spatial subsets explicitly.

Note that we use the notion of pixels to define the map and the circle sizes. In
general, a device screen displays a set of pixels in a specific region, which is referred
to as PPI (pixels per inch). Without loss of generality, we consider our pixels to
adhere to the web specification2 of 96PPI. Thus, for screens that have a very high
resolution, it is possible to adapt the minimum circle radius rmin as well as the
inter-circle distance δ by increasing them accordingly.

2www.w3.org/TR/css-values-4/ (accessed December 2, 2018)

12

https://www.w3.org/TR/css-values-4/

2. The Problem of Visual Point Clustering

2.3. Miscellaneous Point and Circle Attributes

The previous definition of point data only includes the spatial attributes that are
relevant for the visual point clustering problem. However, applications often come
with miscellaneous attributes about the points. These can be categories as well as
numerical or textual descriptions, e.g. a hotel location with the name of the hotel
and the number of bedrooms.

In particular in Chapter 6, we will deal with additional attributes that extend the
previously mentioned list of (spatial) attributes of points and circles. We refer
to these values by their attribute name in the same manner as, for instance, the
number of associated points c.n of a circle c.

13

3
Fundamentals and Related Work

This chapter presents fundamentals and related work of this thesis. It starts with
a definition of geographic information systems in Section 3.1. Here, we describe
connected fields of research and give a brief introduction to coordinate reference
systems for maps. Then, Section 3.2 presents the concept of visual analytics.
In particular, we discuss connected fields of research as well as details of spatial
information visualization. Section 3.3 contains information of relevant spatial data
structures and methods. These are utilized throughout this thesis and serve as
a reference. Furthermore, we present related work of aggregating and thinning
point data. In Section 3.4, we detail on generic clustering methodologies. We
present representative algorithms of several categories that are in particular used
in Chapter 4. Finally, Section 3.5 presents generic methods to assess the quality
of data clusterings.

3.1. GIS

Geographical Information Systems (GIS) are special kinds of information systems
that visualize, transform, analyze and manage spatial data [SW04; HdB09]. A
list of points of interest, roads, country borders, satellite images and models of
buildings are examples of this data. They are all spatially located on a map and
often have additional attributes such as time.

3.1.1. Data Types, Components and Operations

For data management it is necessary to access data from various sources and to
cope with different data formats. The main differences constitute in vector and
raster data. Vector data are composed of points, lines and polygons. A common
data standard is the Simple Feature Access Model [Ope10a]. In this model, points

14

3. Fundamentals and Related Work

are two- or three-dimensional coordinates, lines are lists of coordinates and poly-
gons are specified by inner and outer rings (connected lines) that allow arbitrary
shapes and holes. Furthermore, there are collections, i.e., sets of points, lines or
polygons. Spatial information (e.g. country borders as a collection of polygons)
in combination with additional attributes (e.g. the number of citizens) form a fea-
ture. In contrast, raster data (also called raster images) represent a discretization
of the map space by a fixed grid (cf. Section 3.3.1) of (mostly equal-sized and
quadratic) cells. For instance, every cell displays a 100m × 100m region of the
world by a single value, e.g. the temperature of a climate model. Since many
relevant data sets on a global scale are very large, e.g. hundreds of gigabytes for
a single raster, it is common to store these grids in multiple resolutions that are
called pyramids or overviews, for faster access. These formats are stored with
various data types. Examples for points are CSV files and the JSON extension
GeoJSON [Ope10b]. Raster data is stored, for instance, in GeoTIFF [RR97] or in
NetCDF [RD90].

For data access there are standardized interfaces described by the Open Geospa-
tial Consortium (OGC) like the Web Feature Service [Ope10b], Web Map Service
[Ope06] and the Map Coverage Service [Ope10b]. The Web Feature Service (WFS)
allows accessing vector data and provides data set selection and filtering mecha-
nisms. The Web Map Service (WMS) is used to query raster data from web
servers in order to retrieve images that can be displayed directly to users. The
Web Coverage Service (WCS) provides means for retrieving geographical data in
a processable format, e.g. rasters in GeoTIFF.

For the physical management of spatial data, GIS employ specialized data struc-
tures for two- or three-dimensional data. Representatives are grids, quadtrees and
octrees [Alu04] as well as R-trees [Bec+90] (cf. Section 3.3 for an overview of spa-
tial data structures). These structures facilitate an efficient data access, e.g. for
point and region queries.

GIS also offer functionality for data transformation. Examples are transformations
of data formats and data types like the transformation of vector data to raster data
and vice versa. A common approach of rasterizing a set of points and polygons
[Pin88; HdB09] is coloring the grid cells of a raster that either contain the points
or intersect with the polygon. Furthermore, lines and polygons can be transformed
to a raster via heatmaps [WF09] and kernel density maps [LH11]. On the other
hand, vectorization [Zha+16b; Men03] can be used to transform a raster image into
a vector representation, e.g. extracting polygonal regions from a satellite image.
Special cases are choropleth maps [Slo+09] in which contiguous polygonal surfaces
present regions of aggregated values that are intercomparable, e.g. the number of
citizens in countries. Isopleth maps [Slo+09] present regions that share common

15

3. Fundamentals and Related Work

values, e.g. contour lines of elevation levels in mountain areas. All spatial data
additionally complies with a coordinate reference system, which we will discuss in
more detail in Section 3.1.2. Here, GIS also offer functionality for the transforma-
tion of data from one coordinate reference system to another. This is in particular
necessary for a joint analysis of multiple data sets.

Among the most important goals of GIS is the analysis of spatial data. First of
all, this includes the provision of basic operations like filtering data, calculating
distances and computing the convex hull of a set of points. Additionally, GIS
employ techniques from data mining to find and extract relevant patterns in the
data [SW04]. This includes finding correlations, e.g. the influence of weather on
the number of visits of points of interest. For this, it is often necessary to combine
data sets. Spatial joins [PD96; Bae+07] allow the combination of multiple vector
or raster data sets, or a combination of both. This is also used for calculating map
overlays [SW04], e.g. clipping environmental raster data with polygonal country
borders. Aggregations like clustering (cf. Section 3.4) are also employed by GIS.
They generate overviews of data or provide additional insights into humanly in-
comprehensible amounts of data.

Visualization of geographic data is also a key component of GIS. In particular, this
reflects in automatic map generalization [SW04]. GIS are responsible for layouting
spatial information on maps in a way that users receive a high information value.
For raster and vector data, GIS provide colorizations, e.g. with respect to certain
class attributes or continuous numeric variables. In addition, GIS provide differ-
ent symbols for displaying, for instance, point data. Despite the common circular
representations, it is generally possible to use individual images that allow distin-
guishing different types or classes. Different symbols for points of interests on a
city map, e.g. house pictograms for hotels and crosses for churches, are a ubiquitous
example. The visualization form is also correlated to map legends, which explain
the properties of symbols and colors on the map. Furthermore, if there is too much
raw data for visualizing it on a map, methods like aggregation (cf. Section 3.3.3)
or thinning (cf. Section 3.3.6) are employed.

In addition to the spatial nature of data, the combination with temporal informa-
tion is often important for geo analysis as well [SW04; KK94]. GIS then answer
questions, for example, about the temporal change of certain environmental phe-
nomena. The miscellaneous data represents another dimension of the data. In
addition to the map view, also plots like line and scatter plots over time spans are
within the toolbox of GIS [ASS02].

16

3. Fundamentals and Related Work

projection

(a) (b)

Figure 3.1.: This figure shows the idea of a map projection (a) and a world map
in Web Mercator projection (b).

3.1.2. Coordinate Reference Systems

Coordinates in coordinate reference systems (CRS) allow the specification of the
position of spatial objects. A special kind of CRS are georeferenced coordinate
systems. They have a connection to the earth’s surface. Since the earth is neither
flat nor completely round, different ellipsoid definitions (also called spheroid or
spatial datum) approximate the earth’s globe. The most prominent CRS is the
World Geodetic System (WGS) [SM98] that was revised in 1984 and is therefore
called WGS 84. Its coordinates refer to the horizontal and vertical angles around
the center of gravity of the ellipsoid. The coordinate (0, 0) is located west to
Africa.

In order to display coordinates that are located on the ellipsoid of a CRS on a
flat surface, e.g. a computer screen, it is necessary to project the coordinates onto
the two-dimensional plane (cf. Figure 3.1 (a)). Map projections are mathemat-
ically defined functions that reduce the dimensionality of the coordinate. This
reduction unfortunately always causes an error, which is characterized by a loss
of information due to distortion. However, it is possible for a projection to be
either area preserving or angle preserving, which is also called conformal [Mal13].
In the former case, all relative areas of spatial objects are maintained. The lat-
ter case retains all local angles. This means that a straight line stays a straight
line and a 90◦ curve still remains a 90◦ curve. Hence, for different scenarios it is
useful to choose a map projection that induces the smallest error. Web Merca-
tor [Bat+14] (cf. Figure 3.1 (b)) is a prominent projection that is used in many
map services. It is almost angle preserving since it induces a small error, but
it is very simple and efficient to compute. A disadvantage of this projection is
that land masses in the north and south appear much larger than land masses in
the middle of the map, e.g. Antarctica appears larger than Africa, although it is
smaller.

17

3. Fundamentals and Related Work

Visualization

Models

KnowledgeData

Feedback Loop

Figure 3.2.: This figure shows the visual data exploration cycle as presented by
Keim et al. [Kei+08b].

3.2. Visual Analytics

Visual analytics is a scientific discipline that is concerned with analytical reasoning
and the provision of visual interfaces for its support [CT05]. The visual interfaces
help to improve the understanding of the incorporated data [CMS99]. Keim et
al. [Kei+08b] describe the division of labor in an analytical task between humans
and machines. The idea is to use combined strengths in order to compensate
for the weaknesses on each side. For instance, humans are extraordinarily good at
recognizing shapes and visual relationships, but in comparison, they are rather slow
in calculating statistics for millions of values. Keim et al. furthermore describe a
visual data exploration cycle (cf. Figure 3.2) in which data leads to interconnected
visualizations and models, and finally leads to knowledge. This knowledge can
also be transferred back to the selection of data sets for further investigations
[Che+09].

Visual analytics is often associated with data-driven research. In this methodol-
ogy, the exploratory analysis of data leads to insights without having a concrete
hypothesis in mind at the beginning [Kei+08a]. Additionally, it supports the rapid
testing of hypotheses and the retrieval of immediate feedback from visual analytics
systems. Tools of different scientific fields help to investigate data. This reduces
the effort for humans to search for data and to recognize patterns in data. Fur-
thermore, these systems facilitate finding relationships between data objects and
abstract the handling of data.

3.2.1. Fields of Research

As previously mentioned, visual analytics constitutes an intersection of different
research fields [Kei+08b]. One major field is the scientific visualization of data in

18

3. Fundamentals and Related Work

combination with human recognition. Human Computer Interaction (HCI) pro-
vides guidelines for designing intuitive user interfaces and for employing working
interaction styles that improve the connection between the visual analytics system
and the human user. In particular for spatial data (cf. Section 3.2.2), the visual
aspect plays a key role [AAG03]. But also scientific visualizations of data from
other domains are necessary to facilitate the understanding of users. Furthermore,
the quality of the visualization and the acceptability of the presented results need
to be considered.

Data management is another important research area in the visual analytics con-
text [Kei+08b]. One of the goals is to be able to analyze large amounts of data.
For this task fast data access times, scalability and latency are properties of ut-
most importance. With respect to latency, Lui and Heer [LH14] investigated its
impact on exploratory visual analysis. Systems that are able to provide results
(refresh times) in about 100ms are considered to offer a continuous perception to
the user. This agrees with findings of Heer and Shneiderman [HS12] that prefer
computations at “rates resonant with the pace of human thought”. Findings show
that a low latency in user interactions leads to better analytical performance and
encourages insight generation [LH14]. However, there are operations that are more
or less sensitive to delays in responses. For instance, users expect an immediate
feedback of brushing and linking operations [CMS99]. These operations benefit
from efficient algorithms and systems that utilize aggressive caching. On the other
hand, zooming is less sensitive, and thus users are more tolerant to small delays.
Chen et al. [Che+09] emphasize that the visualization of response time indicators
is also part of information visualization. In general, additional delays of 500ms
have a negative impact on the user’s performance by using a system [LH14]. Users
find a system unusable if delays are too long and there is no feedback. Further-
more, slower systems dampen the user’s motivation of doing their tasks. This
effect is not deliberately recognized by users, but influences their behavior mea-
surably.

Data mining is the third field of research that has an impact on visual analytics
[Kei+08b]. It provides tools for browsing data and for investigating interesting
subsets. Means for finding correlations facilitate the formation and verification of
hypotheses. Cluster analysis (cf. Section 3.4) is a crucial analytical tool that on
the one hand facilitates structuring data and on the other hand is applicable for
visualization. For the latter it can be used as preprocessing to reduce the amount
of data a human user has to inspect. Generally, data abstraction is important for
visual analytics. Chen et al. [Che+09] emphasize the importance of finding an
optimal abstraction level.

The general approach to visual analytics is described by the famous information

19

3. Fundamentals and Related Work

seeking mantra from Shneiderman [Shn96]. It states that it is important to first
provide an overview to the user, then to present options like zooming and filtering,
and finally to provide further details on demand. Keim et al. [Kei+08a] extended
this mantra by suggesting doing an analysis of the data first. They propose to
show important subsets or findings subsequently and to provide means for further
analyses, zooms into the data and applications of filters. Finally, this methodology
also requires the provision of more details of the results on demand. This extension
takes into account that big data requires more sophisticated analytical methods
in order to provide overviews to the users. Shrinivasan et al. [SvW08] define the
sense-making loop as a visualization of the visual analytics process. A user often
has no clear goal at the beginning of a data analysis [LH14]. Moreover, this process
is often open-ended since one finding may lead to additional analytical tasks and
results.

3.2.2. Spatial Visualization

With respect to the topic of this thesis, we provide some more details regard-
ing information visualization and in particular spatial visualization. Card et al.
[CMS99] claim that the purpose of visualization is to provide insight and not just
to create pictures. This underlines the importance of this topic. Ackoff [Ack89]
presents a distinction between data, information and knowledge. He defines that
data itself is just a collection of raw symbols and that information provides an-
swers to questions of who, what, where and when. In addition, knowledge provides
answers to how questions. A good visualization facilitates at least the provision
of information to the user. In general, big data leads to the information overload
problem [Kei+08b]. To solve this problem, it is of utmost importance to aggregate
data and present it in an appropriate way.

In geography, data is often investigated with regard to topographical or topological
aspects. Topography describes the investigation of the land surface and its features
and relates more to raster data (cf. Section 3.1). In geography, topology refers to
the spatial relationships between different objects such as points and polygons.
Statistical indicators like plots are miscellaneous methods to investigate spatial
data.

Research in the field of spatial visualization has developed several guidelines that
should be followed. Munzner [Mun14] questions the unjustified use of three-dimen-
sional visualization and insists on using two-dimensional visualizations whenever
useful. Furthermore, she emphasizes that occlusion hides information and that
data should be presented in a way that reduces cognitive load for users. For
instance, side-by-side views like maps and accompanying plots are in favor over

20

3. Fundamentals and Related Work

animations. MacEachren [Mac04] emphasizes that the number of colors of sym-
bols on maps should be limited in order to preserve distinguishability. His findings
show that 10 different colors allow 98% color discrimination while the rate drops
to 72% for 17 colors. Furthermore, he points out that simple abstract shapes
like circles are more easily recognized than complex shapes or icons. Slocum et
al. [Slo+09] present findings that nearby circles on maps are considered to belong
to a group and that similar sizes do not interfere with this impression. Kraak
and Ormeling [KO13] also point out that points on a map should not always
be visualized as simple dots, but rather as circles with varying sizes if reason-
able.

Ellis and Dix [ED07] propose a set of eight criteria concerning clutter removal in
information visualization. These criteria are also applicable to spatial visualiza-
tion. A good visualization avoids overlap such that users can identify patterns and
understand data better because clutter leads to information loss. In addition, they
require that users can discriminate points, which means introducing a noticeable
boundary between map elements. Furthermore, the criteria emphasize that it is
important for data to keep spatial information and that data can be localized. Both
aspects are important for geographical data where users need to recognize loca-
tions, e.g. countries or mountain areas. A visualization that is adjustable allows
users to change aspects of the displayed results. Another key aspect is the re-
quirement that the visualization is scalable such that it can handle large data sets.
The penultimate criterion demands that a visualization technique can show point
attributes because they consider miscellaneous attributes to be important as well.
The last criterion is the requirement that users can see overlap density, so that a
loss of information can be reduced when overlaps occur.

3.3. Spatial Data Structures and Methods

This section discusses spatial data structures as well as methods with the focus
on two-dimensional point data in alphabetical order. It starts with the grid data
structure in Section 3.3.1 for basic indexing and querying of spatial data. Then, it
presents histograms in Section 3.3.2 as a tool to assess the distribution of data. Af-
terwards, it presents point aggregation techniques in Section 3.3.3. Subsequently,
it presents quadtrees in Section 3.3.4 as a more sophisticated spatial indexing
method. In Section 3.3.5 we present space-filling curves as a method to linearize
two-dimensional indices. Penultimately, this section discusses the concept of thin-
ning a set of points for visualization in Section 3.3.6. Finally, the section presents
Voronoi diagrams and Delaunay triangulations in Section 3.3.7.

21

3. Fundamentals and Related Work

(a) (b)

Figure 3.3.: This figure shows a fixed grid data structure (a) and a rectangular
query to the grid (b).

3.3.1. Grid

A basic sequential (list) storage of data is easy to implement, but has disadvantages
regarding the efficiency of spatial queries, e.g. rectangular queries. This requires to
scan the entire list for each query. This can be improved by partitioning the data
into a limited number of subsets. Hence, for a query, only certain subsets need to
be examined. A fixed grid [Sam04] stores the data in equally sized cells. If the data
domain is known in advance, it is possible to subdivide the space accordingly, e.g.
for two dimensions in the spatial processing context. The common shape of such
cells is a square, but it is also possible to store, for instance, rectangles, triangles or
hexagons [Sco15]. Every cell refers to a list that stores the data that is contained
in the cell. Figure 3.3 (a) shows an exemplary grid with 64 cells that stores
spatial point data. The method works best if the data is uniformly distributed.
A drawback of grids is their sparsity in case of non-uniform data. For example, if
data points fall only into the border regions of the grid, it is still necessary to store
the whole grid structure. This can be improved by storing only the non-empty
cells in a hash map by using the two-dimensional index of the cell as input to the
hash function. Furthermore, there can be large differences in the amount of data
stored in single grid cells, e.g. for dense hot spots.

Since the grid cells are of equal size, the lookup of the corresponding grid cell can
be efficiently done in constant time [Sam04]. Hence, for insertions and deletions
the runtime only depends on the underlying data structure, e.g. a linked list. For
rectangular range queries (cf. Figure 3.3 (b)) it is necessary to compute the cell
indices of the rectangle vertices and traverse all cells in between. For radius queries,
it is necessary to compute the bounding square and use the previous method. Then
all cells are first checked with a square-circle intersection, and later all data items
within the qualifying cells are checked for containment. Kanth and Singh [KS99]
showed a lower bound for two-dimensional range queries ofO(

√
n+r) for r elements

in the result set.

22

3. Fundamentals and Related Work

Data Domain

F
re

q
u

en
cy

Flat

Data Domain

Medium

Data Domain

Spiky

Figure 3.4.: This figure shows three histograms with differing numbers of buckets
for multimodal normal distributed data.

Grids can be used for data aggregation as well. The STING method [WYM97] uses
grids of multiple resolutions and stores data statistics in its cells rather than the
data itself. Since computing the grid index requires constant runtime, it is possible
to compute the grid in O(n) time for n data points and a single resolution. This
method presents a connection to two-dimensional histograms (cf. Section 3.3.2),
which basically store count information for each cell.

3.3.2. Histogram

Histograms [Sam04] represent a method that allows for an overview of the distribu-
tion of a data set. The idea is that the data follows a latent probability distribution
and that the method tries to estimate the probability density function of the under-
lying continuous random variable. The goal is to assess whether the distribution is,
for instance, uniform, symmetric or skewed. Furthermore, it is possible to assess
uni- or multimodality as well as other characteristics.

The method subdivides the data domain into parts that are called bins or buckets.
Then it counts the number of data items that fall into the buckets. The height of
the histogram bucket, which is represented as a bar diagram, is then proportional
to the data frequency. The common variant of a histogram has buckets of uniform
width (equiwidth), but there are other variants that have a uniform height (equi-
height) and modify the bucket width in a way that the bucket area reflects the
frequency.

23

3. Fundamentals and Related Work

The correct choice of the number of histogram buckets is crucial for facilitating
a meaningful interpretation [Sco15]. For instance, too few buckets show a flat-
tened out structure of the distribution (the extreme case of one bucket has no
expressiveness other than presenting the cardinality of the data set) and too many
buckets produce a very spiky representation with lots of empty buckets. Figure 3.4
shows an example of three histograms that visualize the same data with differing
numbers of buckets. The blue histogram bars present the data frequency and the
dotted orange line represents the actual data distribution. Apart from domain
knowledge, there exist general rules or formulas to calculate a suitable number of
buckets k from the number of data points n. Two examples are the square root
choice [Mac11] and Sturge’s formula [Stu26]. The former calculates k := ⌈

√
n⌉

and tries to balance the number of buckets with the number of data items within
the buckets. The latter calculates k := ⌈log2(n)⌉ + 1 and generally works well
with normally distributed data, but also poorly with non-uniform data in prac-
tice.

The height of the histogram is often normalized. In this way, the histogram can
represent a discretized version of a probability density function. In database man-
agement systems, histograms are good means for data statistics [Sam04]. In partic-
ular, they are used for query optimization by estimating the cardinality of ranges
and areas in data.

3.3.3. Point Aggregation

Since visualizing point data is a crucial operation for spatial data analysis (cf.
Section 3.2), there are techniques for providing an aggregated overview of data
sets. These techniques present a mixture of data generalization and data mining
and are tools that allow users to assess the distribution of large data sets. In the
following, we present a number of representative methods. Note that we discuss
thinning as a generalization method in Section 3.3.6.

Jänicke et al. [Jän+12; JHS13] developed GeoTemCo, which is a spatial data
aggregation technique that exploits Delaunay triangulations (cf. Section 3.3.7)
[dBer+08] for finding close points or circles that represent aggregates of points.
They organize the edges of the triangulation in a priority queue. Their similarity
function incorporates the density of the two vertices of the edges by introducing
circles with centers at the coordinate of the vertices and radii that are proportional
to the number of reflected points. The algorithm then iteratively finds the edge
with the highest similarity and reduces its vertices to a single vertex. This vertex
then represents all points from the former two vertices of the edge. The algorithm
continues until the circles of the edges’ vertices do no longer produce overlaps.

24

3. Fundamentals and Related Work

This requires updating the triangulation as well as the priority queue for each
step. The runtime of the algorithm is O(n · log(n)).

Bereuter et al. [BW13] describe a toolbox of different data aggregation techniques
in order to reduce the amount of data in mobile scenarios. They use a quadtree
(cf. Section 3.3.4) as data structure for storing the points and then apply differ-
ent algorithms to create aggregations or simplifications. These algorithms range
from using the coordinates of the filled quadtree nodes to displacing circles in
order to remove overlap. Their centroid method calculates the centroids of the
quadtree’s nodes with respect to a minimum circle size that determines the max-
imal node depth of a query. Each centroid reflects one circle in the result set
where the radius is determined by the number of points in the associated tree
node (and its children). A user-defined factor defines a proportional scaling of
these radii.

Grid-based techniques [GB17; LJH13] rely on dividing the space into equally sized
partitions and binning the points. These methods cannot locally adapt the spatial
extent of the partitions and, hence, their cell sizes do not reflect the density. Fur-
thermore, they use different colorings for the grid cells [LJH13] or use larger cells
in which they place symbols of different sizes [GB17].

Zhang et al. display point data as overlapping circles, but map the points onto
another spherical surface for comparison. Other methods [Jän+12; Zha+16a] fo-
cus on comparative visualization of multiple data sets. Jänicke et al. [Jän+12]
use groups of circles (circle packing [Can+07]) to represent groups. Ghanem et
al. aggregate multiple data sets at once and display pie charts instead of circles
[Gha+14]. These pie charts depict the fractional occurrence of the individual data
sets.

3.3.4. Quadtree

The quadtree [Alu04; Sam06] is a spatial index structure for two-dimensional data.
It is straightforward to generalize it to higher numbers of dimensions, e.g. the octet
tree for three-dimensional data. The idea is to split the data space at each level
of the tree into four quadrants, which can be referred to by using the geographical
regions northwest, northeast, southwest and southeast.

The point quadtree [Alu04] uses data elements to define the quadrants (data parti-
tions) at each tree level. Each quadrant stores exactly one item. This procedure is
disadvantageous for external storage because of the large number of pointers that
lead to random reads. Figure 3.5 (a) illustrates a point quadtree for a set of points.
Although the height h of the tree is O(n), it is possible to sort the data and use the

25

3. Fundamentals and Related Work

(a) (b)

Figure 3.5.: This figure illustrates the quadtree data structure. The left side (a)
shows a point quadtree and the right side (b) shows a region quadtree
with a node size of one point. Both quadtrees store the same set of
points.

medians recursively to receive good split points. This leads to a logarithmic height
of the tree. Insertions and point searches are of O(h) time complexity. Deletions
are complicated to handle since the data points themselves define the quadrants
and reorganizations are necessary [Alu04].

The region quadtree (also known as point region quadtree) [Alu04] divides the
data domain in four equally sized quadrants at each tree level. This means that
the split points are data independent and the quadrants can be referenced by
two bits per level (cf. tries [Sam04]). For region quadtrees it is possible to store
a fixed number of items in a tree node (block of data). Splits are performed
whenever the data blocks overflow. Since overflows can also occur after splits
when all items fall again into the same region, the degenerated tree does not have
a height bound (and thus no space limit) that only depends on the number of
points n. However, region quadtrees have a height bound of O(n · log(D

s
)), where

D represents the length of the root cell and s indicates the smallest distance
between two points in the quadtree [Sam84]. As for the point quadtree, insertions
have O(h) time complexity. Deletions are straightforward to implement for region
quadtrees and the same runtime applies here. Underfull regions can simply be
discarded.

Point searches examine one quadrant per tree level via a point in rectangle test
and, hence, have a runtime of O(h). Note that it is necessary to have a convention
for determining to which quadrant a point belongs that is exactly on the border.
Rectangular range queries have an expected runtime of O(log(n)+|C|) for n points
and |C| result cells if the query region is much smaller than the total data domain.
In this case, since the size of the incorporated tree quadrants (tested via rectangle-
rectangle overlaps) decreases exponentially, the query can efficiently find the cell
that covers the result in logarithmic time. Then it requires O(|C|) time for access-
ing all cells C that contain the query result. Spherical queries can be handled sim-

26

3. Fundamentals and Related Work

0 1 2 3

Hilbert

0
1
2
3

0 1 2 3

Snake

0
1
2
3

0 1 2 3

XY

0
1
2
3

0 1 2 3

Z

0
1
2
3

Figure 3.6.: This figure shows four space-filling curves for linearizing the indices of
a two-dimensional grid.

ilarly like rectangular range queries (cf. Section 3.3.1).

Quadtrees can as well be used for storing more complex structures like lines or
polygons [Sam04]. In this case, the vertices of the structure are either stored
in different quadtree nodes (edge quadtree) or each node that intersects with the
structure stores a pointer to the structure (MX quadtree). For example for lines,
the intersection of quadrant (rectangle) and line determines if a pointer is stored
in the quadrant. In case of splits, the check has to be recomputed for the new,
smaller quadrants.

3.3.5. Space-Filling Curves

Index structures often discretize multi-dimensional data domains in order to access
certain regions efficiently. In a grid, we refer to these regions as cells of equal size.
The traversal or storage layout of such cells is not unambiguous. We limit this
discussion to the two-dimensional domain since it is easier to understand and more
relevant for this thesis. Here, in each step, it is possible to choose among all eight
adjacent cells or to jump to an arbitrary, previously unvisited cell. Space-filling
curves [Bad13; SW04] provide a linear ordering of cells.

Figure 3.6 depicts four variants of space-filling curves for a discretization of the
data domain into 4×4 cells. Each cell has an index on the x and y axis, e.g. (0, 0) is
the starting point on the upper left cell for each curve. Note that we flipped x and
y such that the depictions of the curves better represent their characteristics. The
Z curve, also referred to as Morton ordering, is the most prominent representative.
It uses the bit representation of the x and y values and calculates a new value by
using bit interleaving. For instance, the two 4-bit representations of (210, 110) =
(00102, 00012) is 910 = 000010012. The XY curve corresponds to a default data
layout for storing an array of arrays contiguously on disk. Here, we fix the index

27

3. Fundamentals and Related Work

of one dimension and iterate over all indices of the other dimension. Then, the
index of the first dimension is increased until all positions are visited. Since the
XY order makes large jumps after traversing one dimension, the snake curve only
iterates over adjacent cells. In contrast to the XY curve, it iterates in a forward
fashion over the second domain if the index of the first domain is even. In the
other case, it iterates backwards. By iterating this way, the distance to the next
cell is always minimal. The Hilbert curve combines the minimal cell distances of
the snake curve with lower index differences of adjacent cells. For the snake case,
for instance, the change from (0, 0) to (1, 0) results in a large gap between the
indices. The Hilbert curve provides more locality in this sense. It is calculated
by recursively applying the basic form of the structure to the positions in the grid
and additionally uses rotations.

All the provided space-filling curves are self-similar [Bad13]. This means that
the small versions in Figure 3.6 represent puzzle pieces for larger grids such that
they provide the same structure on a larger scale. Hence, a grid of size 2k × 2k

consists of four 2k−1 × 2k−1 grid curves [SW04]. This means that they keep
their properties regardless of the number of discretized steps in the data do-
main.

3.3.6. Thinning

A common strategy for visualizing large amounts of point data on a screen is
thinning by sampling the data [PCM16; Wan+15; Wan+12; Arb93]. This is in
contrast to aggregating data points (cf. Section 3.3.3) and displaying them as
circles of different sizes. Thinning is a technique that yields a data reduction and
can reduce occlusion.

Simple random sampling [Arb93] uses basic sampling strategies like selecting every
item with the probability m

n
for retrieving approximately m items from n items in

total. If it is required to select exactly m items, it is possible to employ reservoir
sampling [Vit85]. Here, we select the first m items into an intermediate list and
then replace items of this list for all subsequent items with a probability of m

i
.

The value i represents the index of the i-th item in the data. The replacement
among the m items in the intermediate list is done uniformly at random. As a
result, each item has the same chance of being placed in the list. The advantage is
that the number of items does not need to be known in advance and the procedure
only requires a single pass over the data. A practical speed improvement can
be achieved by directly calculating the next element that is swapped and then
jumping directly to this element or skipping all elements in between, respectively.
Since this method only ensures randomness in data selection, it is likely that there

28

3. Fundamentals and Related Work

are many nearby elements for dense areas in the data. Thus, this does not prevent
elements from overlapping in dense regions.

Systematic sampling [Arb93] can be applied when the data is ordered uniformly
at random. Then, instead of choosing each item with a certain probability, it
is possible to calculate skips of size n

m
. This is much faster in practice. If

the data is not randomly ordered, but has inherent patterns, this method pro-
vides no randomness at all. If the data has certain subgroups and the sampling
should consider each of these groups, stratified sampling [Wan+12] can be ap-
plied. Here, the previously mentioned techniques can be applied to each stratum
(subgroup).

A recent work in this field is the thinning approach of Sarma et al. [Sar+12]. Their
method heavily depends on a hierarchy or an importance function, respectively,
to decide which data to keep and which to leave out. It is suitable, for instance,
for displaying cities on a map where we expect to see capitals first, then big cities
and finally smaller towns in higher zoom levels. They use a spatial tree index
structure (e.g. a MX quadtree, cf. Section 3.3.4) and store the data in predefined
cells (dependent on the zoom levels). The algorithm assigns each data item an
ordering index, based on its importance in combination with a random variable,
and stores the data elements on tree levels based on their ordering. The root node
thus contains the most important objects and the leaf nodes the least important
ones. During a tree traversal, the algorithm first considers earlier seen elements up
to the sample size. In addition, their sampling complies with the quality criteria
visibility, zoom consistency and adjacency. Visibility constrains the maximum
number of visible items per region. They additionally use the term maximality, i.e.,
returning as many elements as possible up to the visibility limit. Zoom consistency
ensures that items at zoom level z are also visible at all zoom levels z′ > z. The
adjacency is important for data other than points, e.g. polygons. Here, if a polygon
is visible in a cell, but spans across other cells as well, it has to be also visible there.
For data other than points, they prove that the problem is NP hard and provide
an integer program as well as a greedy algorithm that solves the problem more
efficiently.

Guo et al. [Guo+18] present a similar sampling technique that also complies with
a zooming and panning constraint which defines that visible objects should re-
main visible after zooming in or moving the map. Furthermore, they introduce a
different concept of a visibility constraint. Here, sampled objects should have at
least a minimal distance to each other in order to remove occlusion. Furthermore,
they introduce a representative constraint. It ensures that all sampled items max-
imize the similarity to the other values of the region they represent. They prove
that this problem is NP hard and provide a more efficient greedy algorithm with

29

3. Fundamentals and Related Work

(a) (b)

Figure 3.7.: This figure shows a Voronoi diagram of a set of points (a) and the
corresponding Delaunay triangulation (b).

an approximation ratio of 1
8
. Although this approach reduces occlusion, the use

of a minimum distance between the sampled elements weakens the indication of
whether the regions are dense or rather sparse. Furthermore, it is not trivial to
choose the sample size.

3.3.7. Voronoi Diagrams and Delaunay Triangulations

Given a set of points on the two-dimensional plane, a Voronoi diagram [AKL13]
divides the plane into cells such that each cell is a convex polygon and in each cell
is exactly one point. The line segments of the cells are placed in such a way that
the two nearest opposite points (centers) are exactly equidistant to the line. This
means that within a Voronoi cell, all potential positions are closer to the cell’s
center than to any other cell center. Figure 3.7 (a) shows an exemplary Voronoi
diagram of a set of points.

The Delaunay triangulation [AKL13] describes the computation of a triangle mesh
from a set of two-dimensional points. Figure 3.7 (b) shows the resulting mesh of
a Delaunay triangulation of a set of points. Here, all points are connected to
each other such that they (1.) form triangles and (2.) that no other point lies
in the circumcircle of the triangles (the triangle vertices are on the perimeter of
the circumcircle). This produces triangles that do not have very narrow angles.
Hence, Delaunay triangulations are beneficial for computations because they are
not susceptible to numerical rounding errors.

30

3. Fundamentals and Related Work

The Delaunay triangulation is a duality of the Voronoi diagram [AKL13]. The
triangulation can be computed by connecting all points that share an orthogonal
line segment in a Voronoi diagram (cf. Figure 3.7 where (a) and (b) are computed
on the same set of points). In contrast, a Voronoi diagram can be computed from a
Delaunay triangulation by introducing orthogonal line segments (half-planes) be-
tween all triangle edges. Since the number of triangle edges is linear in the number
of points, this computation is possible in linear time [AKL13; dBS04]. Note that
the Delaunay triangulation is not limited to two dimensions as there are existing
generalizations. However, we restrict this discussion to the two-dimensional case
and the bounds are only valid for two dimensions.

It is possible to compute the Delaunay triangle mesh in O(n · log(n)) time [dBS04].
The basic edge-flipping algorithm builds first an outer shell (triangle) of the points.
Then it iterates over the points and connects them to the triangle vertices such that
it creates three new triangles. It then uses the circumcircle for every new triangle
to test for every adjacent triangle if the opposing point is in this circle and, thus,
violates the angular property (b). If it violates the property, the algorithm flips
the edges of the two adjacent triangles and continues testing until all potentially
affected triangle pairs are valid. This algorithm has a worst-case time complexity of
O(n2), but an expected runtime of O(n · log(n)) if the points are visited in random
order. The randomness guarantees an upper bound of necessary edge flips. It
furthermore requires using a tree structure of triangles for efficient lookups. In
addition, a divide-and-conquer algorithm [CMS98] exists that recursively merges
triangulations of subsets of the data. The S-Hull (sweep-hull) [Sin16] algorithm
uses both a sweep line and a beach line to calculate the triangulation. Both
algorithms have a worst-case runtime of O(n · log(n)), but are more difficult to
implement and do not allow incremental updates.

3.4. Clustering

Clustering or cluster analysis describes the process of grouping a set of data items
into multiple groups [HKP11]. These groups are called clusters and the goal for
a clustering algorithm is to find clusters that fulfill certain properties. The most
important characteristic is that items within a cluster should be similar. To define
similarity, one has to provide a similarity or distance function, respectively. Al-
gorithms try to maximize the intra cluster similarity. This means that within
a cluster the pairwise similarities of items should be as large as possible. In
addition, algorithms aim to minimize the inter cluster similarity. This means
that the similarities of items that are in separate clusters should be as small as

31

3. Fundamentals and Related Work

(a) (b)

Figure 3.8.: This figure shows two clusterings of a data set generated by the com-
bination of values from three normal distributions with different vari-
ances. The left clustering (a) is computed using k-means and the right
clustering (b) is computed using EM.

possible. This discrimination leads to a clear separation of clusters from each
other.

In the following, we present the four basic kinds of clustering algorithms. We first
of all start with partitional clustering that tries to divide the data items into a fixed
number of clusters. Then we present distributional clustering that defines clusters
based on probability distributions. Thereafter, we present hierarchical clustering,
which builds a hierarchical tree of cluster assignments. After this subsection, we
insert a subsection that discusses the choice of the number of clusters as user
parameter. Finally, we discuss density-based clustering that defines the notion of
density as similarity measure and does not require a fixed number of clusters to
be specified beforehand.

3.4.1. Partitional Clustering

Partitional clustering specifies a class of algorithms that receive the data items
and a number of clusters as input, and divides this input into partitions based
on a similarity or distance function. The most prominent method in this class
is k-means [Llo82]. It basically forms Voronoi-shaped (cf. Section 3.3.7) clusters
where the means refer to the centers of the Voronoi cells. Figure 3.8 (a) shows an
exemplary k-means clustering of a set of points in the form of a combination of
three normal distributions with different variances. The basic algorithm initializes

32

3. Fundamentals and Related Work

the means with random values in the data domain. Then, it assigns every data
item to its closest mean so that clusters are formed. For each cluster, the algorithm
then calculates a new mean by computing the centroid of the cluster items. The
algorithm repeats these steps as long as the assignment of items to means (i.e.
clusters) changes. This implies that it stops at a local minimum. In practical
applications, it turned out that this algorithm converges very fast. In theory,
however, researchers proved k-means to be NP hard [MNV12]. They were able to
reduce k-means to the 3-SAT problem.

The algorithm k-means++ [AV07] tries to improve the practical runtime of k-means
by changing the initialization of the means. Experiments show significant decreases
in runtime of several orders of magnitude for real-world data sets. The method
iteratively chooses one mean after another from the data items. It starts with one
mean by selecting the first data item uniformly at random. The remaining means
are chosen at random with a higher probability for data items that are far away
from any already chosen mean. After initialization, the algorithm continues with
the basic k-means algorithm.

There are also other algorithms like fuzzy C-means [HKP11] that do not enforce a
strict partitioning of the data. This helps to overcome the problem that k-means
is prone to outliers and items between clusters. Here, an additional weight vector
w and the cluster mean vector C are optimized with respect to inter and intra
cluster distances. Like k-means, the algorithm stops at a local minimum. The
data items are, however, associated to every mean with a degree in [0, 1] so that
overlapping and fuzzy cluster borders are the result.

Since the calculation of a mean of data items requires the data items to be vectorial,
purely metric data cannot be clustered with k-means. Examples are the compari-
son of complex items, e.g. polygon similarity or differences in textual documents.
Methods that can handle metric data are k-medoids and k-modes [HKP11]. The
former one uses the metric distance function and the latter one is a frequency-based
method that replaces the mean calculation by a mode calculation. The latter one
can thus be used for categorical data. The basic algorithm for k-medoids is Parti-
tioning Around Medoids (PAM). Here, the initial medoids are selected uniformly
at random among the data items. Then, the algorithm assigns all items to their
closest medoid. Until there is no further improvement, PAM tries to swap the
medoids with each of the remaining data items. The improvement is calculated by
aggregating over the distances between the data items and their medoid, which op-
timizes the intra cluster distance. The result is also a local optimum. In practice,
k-medoids is slower than k-means. Additionally, it is possible to create a fuzzy
assignment for k-medoids similar to fuzzy C-means.

33

3. Fundamentals and Related Work

The k-means approach is only able to separate clusters that are linearly separa-
ble [DGK04]. Similar to support vector machines [Bis06] one can use the kernel
method to transform the data items into a higher dimensional space. This makes
the approach ubiquitously applicable.

3.4.2. Distributional Clustering

Distributional clustering follows the approach of using probability density func-
tions (pdfs) instead of representative points or hard cluster assignments. The
most prominent representative is Expectation Maximization (EM) [Bis06]. It tries
to find the maximum likelihood of a multimodal probability distribution that mod-
els the latent data distribution. EM treats the data items as observations and the
goal is to be robust against outliers and missing values. For initialization, EM
uses random parameters for each of the k pdfs. The algorithm then calculates the
probability density for the data items with respect to the k pdfs as a second step
(E step). As third step, the algorithm calculates the empirical mean and variance
of the data items for each pdf (M step). The probability density is used as weights
such that data items with a large density value contribute more to a pdf and vice
versa. EM repeats the last two steps until it converges to steady pdf parameters.
Figure 3.8 (b) shows an exemplary EM clustering of a set of points (cf. Figure 3.8
(a) to compare the results of EM and k-means).

EM runs much slower than k-means in practice. As an advantage, the result corre-
sponds to a mathematical model of the data distribution. The algorithmic result
can represent the data best if the latent distribution fits to the used probability
function, e.g. a Gaussian pdf. EM can use a covariance matrix that allows differ-
ent forms of the probability distribution along the data dimensions. Furthermore,
it allows for rotations. Problems can occur if one of the pdfs only contributes a
very small density for all data items [Bis06]. Then, as this basically corresponds
to an empty assignment, it is hardly possible to calculate the mean and variance
parameters. This leads to a non-singular covariance matrix. A solution is then to
reinitialize the vanished pdf with random values.

3.4.3. Hierarchical Clustering

Hierarchical clustering decomposes the data items into a hierarchical structure of
connections [HKP11]. There are two options to create these hierarchies: top-down
or bottom-up. The top-down method is called divisive clustering. It starts with the
full set of data items and recursively partitions this set into multiple subclusters

34

3. Fundamentals and Related Work

(a) (b)
0 1 6 2 3 7 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d
is

ta
n

ce

(c)

Figure 3.9.: This figure shows two clusterings of the aggregation data set [GMT07]
that are generated by agglomerative clustering with single linkage (a)
and complete linkage (b). Furthermore, the right diagram (c) shows
a dendrogram of single linkage clustering.

based on a distance function. Since there are 2n possibilities to split n data items
at each step, the approach is usually very expensive. This leads to algorithms like
DIvisive ANAlysis (DIANA) [HKP11], which use heuristics to estimate the split
points. The bottom-up method is called agglomerative clustering. AGglomerative
NESting (AGNES) [HKP11] is an algorithm that starts by placing every data
item into its own cluster. It then iteratively merges the clusters with the smallest
distance until all items are in the same cluster. Figure 3.9 (a) and (b) show two
exemplary clusterings of agglomerative clustering. Each merge step is stored in
a tree data structure that is called dendrogram. Figure 3.9 (c) shows such a
dendrogram of an exemplary clustering. A connection (edge) of two clusters in
the dendrogram is an indicator of a merge. The vertical length of the edge then
indicates the distance between the merged clusters. In order to get a clustering
with k clusters or clusters with a certain distance or similarity, it is necessary
to virtually cut the tree horizontally to retrieve the clustering. The runtime of
agglomerative methods is O(n3) in general, but there are O(n2) variants for specific
cases (e.g. SLINK [Sib73]).

In the description of the hierarchical methods, we used the notion of a cluster
distance instead of an item distance. The way how to calculate this distance is
described by the linkage method in this context. Note that the linkage still re-
quires specifying an item distance. The following list describes several linkage
methods [HKP11; ML14] and its properties. We denote the incorporated clus-
ters Ci and Cj, respectively. The symbols a and b describe the respective data

35

3. Fundamentals and Related Work

item.

single linkage Single linkage calculates the distance between two clusters as the
distance of the two closest cluster items.

distancesingle(Ci, Cj) := min
a∈Ci,b∈Cj

∥a− b∥

This generally results in clusters in the form of chains.

complete linkage Complete linkage is the opposite of single linkage and uses the
two farthermost data items of the two clusters to compute the distance.

distancecomplete(Ci, Cj) := max
a∈Ci,b∈Cj

∥a− b∥

This generally results in more circular and compact clusters.

average linkage Average linkage uses the arithmetic mean of the pairwise dis-
tances of two clusters as cluster distance.

distanceaverage(Ci, Cj) :=
1

|Ci| · |Cj|
∑︂

a∈Ci,b∈Cj

∥a− b∥

The results are rather generic clusters that can have various shapes in-
between the outputs of single linkage and average linkage.

centroid linkage Centroid linkage uses the centroids ci and cj of the cluster items
of Ci and Cj, respectively, to calculate the cluster distance.

distancecentroid(Ci, Cj) := ∥ci − cj∥

This linkage also leads to rather generic clusters similar to average linkage,
but does not consider the cardinality of the clusters.

Ward’s linkage Ward’s linkage utilizes the centroid distance, which reflects the
distance of the arithmetic means of the data items in the two clusters. By
using the normalized squared distance, the distance measures the increase in
variance.

distanceward(Ci, Cj) :=
distancecentroid(Ci, Cj)

1
|Ci| +

1
|Cj |

This method generally leads to similarly large clusters.

36

3. Fundamentals and Related Work

In order to save runtime on subsequent distance computations after merges, it can
be useful to update cluster distances instead of recomputing them. The Lance-
Williams formula [ML14] can be used to do such updates for various types of
linkage.

distancelance-williams((Ch ∪ Ci), Cj) := α1 · distance(Ch, Cj) + α2 · distance(Ci, Cj)

+ β · distance(Ch, Ci)

+ γ · |distance(Ch, Cj)− distance(Ci, Cj)|

Each type specifies the parameters α1, α2, β and γ. For instance, single linkage can
be defined by setting α1 := 1/2, α2 := 1/2, β := 0 and γ := −1/2.

For clustering large amounts of vectorial data and lowering the runtime costs,
BIRCH [ZRL96] is a candidate that combines tree-based indexing and clustering.
It uses a cluster feature (CF) tree that is height-balanced and built similarly to
a B+-tree [GWU99]. Cluster features are descriptors of a set of multidimensional
data items with the fields N for the number of data items, LS for the sum of data
items and SS for the squared sum of data items. By using this data structure,
BIRCH can calculate the radius of clusters. BIRCH requires the number of output
clusters k as input. In a first step, BIRCH builds the tree and splits cluster features
that exceed a certain cluster radius threshold. In a second step, BIRCH groups
similar leaf nodes and removes outliers. In a third step, BIRCH applies a clustering
algorithm to each leaf node. Experiments show that the runtime of building the
tree is nearly linear and the cost of clustering the leaf nodes is determined by
the choice of clustering algorithm, e.g. agglomerative clustering. Furthermore, it
showed performance weaknesses if the clusters in the data are not spherical in
shape [HKP11].

3.4.4. Choice of the Number of Clusters

Since algorithms such as k-means require specifying the number of clusters before-
hand, it is an important choice with respect to the quality of clustering results
[HKP11]. Generally, the number of clusters is specific for each data set. Experts
may be able to estimate suitable values for certain domains and with previous
knowledge. In the other cases, finding the right number of clusters is a problem
itself.

The Rand index [HA85] is a method that helps to assess the differences in two clus-
terings [VCH10]. It measures the changes in cluster assignments by looking at the

37

3. Fundamentals and Related Work

1 → 2 2 → 3 3 → 4 4 → 5 5 → 6 6 → 7 7 → 8 8 → 9 9 → 10

Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0
R

an
d

S
co

re

Figure 3.10.: This figure depicts the Rand index of a cluster algorithm on two data
sets (blue and orange) in the range of one to ten clusters.

pairwise cluster memberships of the n data items. The formula

rand(X, Y) =
a+ b(︁

n
2

)︁
calculates the ratio of the number of item pairs a that are in the same cluster in
clustering X as well as in Y , the number of item pairs b that are in a different
cluster in X as well as in Y and the number of total item pairs

(︁
n
2

)︁
. If the Rand

index is drawn as a line diagram for several numbers of clusters, the function
usually presents an elbow where it flattens out. This elbow point is then a sweet
spot for choosing the number of clusters. Figure 3.10 illustrates this method by
plotting the Rand score of a clustering algorithm for two different data sets. For
the blue data set, we see the elbow clearly on the transition from five to six clusters.
On the other hand, the orange data set has two potential spots from three to four
and five to six, and a notch in between.

The drawback of this approach and similar methods is that it requires computing
multiple clusterings. Not only that the output of most clusterings is discarded for
the result then, but also the clustering computation is generally very expensive
in terms of runtime. Furthermore, it is unclear at which number of clusters to
start and in which step sizes to proceed. For most cases, it is infeasible to test all
possible parameter settings.

38

3. Fundamentals and Related Work

Figure 3.11.: This figure shows a density-based clustering of the compound data
set [Zah70].

3.4.5. Density-based Clustering

The idea of density-based clustering is to cluster data that is very close to each
other in a region of the data domain. The method partitions the data into dense re-
gions and outliers. In contrast to the previous clustering methods, it is necessary to
specify a minimum density and not a number of clusters.

The most prominent algorithm in this category is Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [Est+96]. It requires two parameters ϵ and
minPts which specify a radius and a minimal number of points that are required
to form a cluster. The algorithm iterates over the data items and assigns each
item to one of three classes. Data items are core points if they have at least
minPts neighbors within their ϵ radius. Data items are border points if they are
within the ϵ radius of a core point. The algorithm considers all other data items
to be outliers. These properties require the notion of connectivity or reachability.
All items within the ϵ radius are directly density reachable. Density reachability
specifies that two items are reachable from a chain of intermediate items that are
pairwise directly density reachable. Border points cannot density-reach another
item. This relation is asymmetric. Density connected specifies that two items are
both density reachable from another intermediate item. Within a cluster all data
items are density connected. If a point is density reachable from any point in the
cluster, it is also part of this cluster. Figure 3.11 shows the result of a density-
based clustering of a data set that has clusters of different forms and densities.
In this case, a good choice of the parameters allows extracting almost all clusters
with only a few outliers or noise.

Since the algorithm has to perform a radius query (i.e. to calculate distances to all

39

3. Fundamentals and Related Work

other items) for each visit of a data item, its runtime is O(n2) in general. Gunawan
[Gun13] was able to show an O(n · log(n)) variant for two-dimensional data. In
addition, Gan and Tao [GT15] presented an approximate DBSCAN variant that
runs in linear time. It produces DBSCAN results in between two settings of ϵ.
However, experiments show that this algorithm only works for low-dimensional
data in practice [MAS16]. This is due to an exponential increase in runtime in
the number of data dimensions. Mai et al. [MAS16] furthermore show pruning
strategies to lower the number of radius queries. This leads to a lower runtime in
real-world scenarios.

3.5. Quality Measures for Clustering

The evaluation of different clustering methods essentially considers two main cri-
teria. First, the algorithm should be fast since a slow runtime makes it impractical
for large real-world use cases. Second, the algorithm has to provide clusters that
have a good quality. While the runtime is easily assessable both theoretically and
practically, the quality of a clustering is not obviously assessable, in particular
when evaluating it mathematically.

Before presenting several quality measures, we have to introduce two categories:
intrinsic and extrinsic methods [HKP11]. Extrinsic methods try to work with
ground truth data by using human evaluations or comparing it to other clus-
tering results and therefore lead to relative measuring. Intrinsic methods try to
find a score without ground truth data by assessing the clustering structure. For
instance, they assess how well clusters are separated and how compact clusters
are.

3.5.1. Extrinsic Methods

Clustering is usually considered to be an unsupervised learning problem [HKP11]
with no obvious ground truth data. However, it is still sometimes possible to
receive such ground truth anyway. This is usually done by incorporating expert
knowledge that leads to a partitioning of the data. Then it is possible to compare
the clustering results to such ground truth data.

There are matching-based methods like the purity [HKP11]. Purity calculates the
extent to which one cluster only contains points from one ground truth parti-

40

3. Fundamentals and Related Work

tion.

purity :=
1

n

k∑︂
i=1

r
max
j=1

nij

Here, r is the number of partitions, n is the total number of data items and nij

denotes the shared number of items between clustering i and partition j. A value
of 1 indicates a perfect purity. The values of k (number of clusters) should be
close or equal to r. If every data item is put into a separate cluster (k = n),
then the purity is automatically 1 as well. Other matching-based methods can
be borrowed from evaluating classification algorithms, e.g. precision and recall
[Pow11].

precisioni :=
maxrj=1 nij

ni

recalli :=
r

max
j=1

nij

|Tj|
Precision defines the maximum fraction of points from a cluster Ci that is found in
a partition. Recall defines the fraction of points in a partition Tj that is common
with a cluster. The F1 score combines precision and recall by calculating their
harmonic mean.

F1 :=
1

k

k∑︂
i=1

(︃
precision−1

i + recall−1
i

2

)︃−1

=
1

k

k∑︂
i=1

2 · precisioni · recalli
precisioni + recalli

Pairwise methods include, for instance, the already defined Rand index, which can
also be used to reflect differences between a clustering result and a partitioning.
The Jaccard coefficient [HKP11] can be calculated by first calculating the number
of data item pairs (true positives / TP) that are in the same cluster and in the
same partition.

TP := |{(xi, xj) | yi = yj ∧ yî = yĵ}|

Here, we denote the data items as xi and label the items in the partitions with yi
and in the clustering with ŷi. The true negatives (TN) are calculated similarly by
calculating the number of data items that are neither in the same cluster nor in
the same partition.

TN := |{(xi, xj) | yi ̸= yj ∧ yî ̸= yĵ}|

Finally, the coefficient divides the true positives by the total number of data item
pairs n, but ignores the true negatives.

Jaccard :=
TP(︁

n
2

)︁
− TN

41

3. Fundamentals and Related Work

3.5.2. Intrinsic Methods

Intrinsic methods assume that there is no ground truth for clustering results.
Thus, the idea of measuring the quality is to assess the previously mentioned in-
tra cluster similarities and inter cluster distances [HKP11]. Note that it is not
evident that the data items really reflect the distribution of the real-life scenario
they were extracted from (e.g. via observations). Furthermore, the choice of dis-
tance function is of utmost importance because it changes the relation of data
items and, thus, the quality assessment. As discussed previously, the number of
clusters is unclear as well, but can be important for the quality of the cluster-
ing result. The following quality measures try to express quality with different
methods.

The silhouette coefficient [HKP11] is an intrinsic measure that compares the av-
erage distance of a data item x of cluster Ci to items within the same cluster with
the average distance to items of different clusters.

silhouette(x) =

min1≤j≤k,j ̸=i

{︃∑︁
x′∈Cj

distance(x,x′)

|Cj |

}︃
−

∑︁
x′∈Ci,x

′ ̸=x distance(x,x′)

|Ci|−1

max

{︃
min1≤j≤k,j ̸=i

{︃∑︁
x′∈Cj

distance(x,x′)

|Cj |

}︃
,
∑︁

x′∈Ci,x
′ ̸=x distance(x,x′)

|Ci|−1

}︃
Data items that have a silhouette coefficient close to 1 are considered to be well
clustered, items with a low coefficient may be considered as outliers.

The Dunn index (DI) [VCH10] calculates the fraction of the minimum distance
between clusters (δij) and the maximum intra cluster distance between data items
(∆i).

δij := min
x∈Ci,x′∈Cj

distance(x, x′)

∆i := max
x,x′∈Ci

distance(x, x′)

DI :=
min1≤i<j≤k δij
max1≤i≤k ∆i

The Davies-Bouldin index [VCH10] calculates the scatter for each cluster and
tries to find in each case another cluster that leads to the maximum fraction of
the sum of their scatter values and a value that measure their separability. The
scatter is calculated by computing the distances of the data items of a cluster to its
centroid. The separation to the other clusters is calculated by using the distances
between their centroids. The final index is calculated by averaging over the scores
(fractions) of each individual cluster.

42

4
Quality Measures for Visual Point

Clustering

This chapter deals with the quality assessment of visual point clustering results.
First, Section 4.1, gives a motivation why it is necessary to introduce a new set of
quality measures. Then, Section 4.2 introduces preliminary mathematical defini-
tions and notations. This helps to achieve a uniform understanding of the concepts
and to make the following definitions more compact. Section 4.3 discusses the as-
signment of the visualized results to their corresponding input data. This is a
necessary setup step in order to apply the quality measures to any algorithmic
output. Section 4.4 presents the core of the chapter, which is the definition of
seven quality measures. Each measure is informally motivated and complemented
by a precise mathematical definition. Section 4.5 discusses the problem of map-
ping a generic clustering result to a set of circles. Here, several definitions form
rules for this mapping, which are later evaluated in the experiment section. In
Section 4.6, we present experimental results of a set of clustering methods with
respect to visual point clustering. This section evaluates different parameter set-
tings for each type of clustering method against multiple data sets. Furthermore,
we measure and discuss the impact of circle mappings on the overall result. Sub-
sequently, Section 4.7 presents an extension of the quality measures for the visual
point clustering of data containing multiple classes. Here, we develop the necessary
adaptations for each individual measure to cope with multiple classes and discuss
possible implications to the measure results. Finally, Section 4.8 provides a brief
summary of this chapter.

4.1. Motivation

In Chapter 2, we defined the specific problem of visual point clustering, i.e., cluster-
ing a set of points and representing these clusters as circles on a map. Furthermore,
we briefly discussed aspects that are important in visual point clustering. These

43

4. Quality Measures for Visual Point Clustering

range from avoidance of overlaps or obscuring information to the representation
of information about the underlying data. In order to compare the clustering
methods, it is reasonable to develop the concept of quality on a formal foundation
rather than a human intuition of the results. In particular, this is advantageous if
we want to assess existing clustering methods or to develop new ones in order to
tackle the visual point clustering problem.

In Section 3.5, we looked at various clustering measures that are often used to
evaluate clustering results for different data sets. However, it is not possible to
reasonably apply these to the visual point clustering problem setting. This is due
to the differences in what we call measurement of intention vs. measurement of
perception, on which we now elaborate in more detail.

In the generic clustering assessment, it is common to use the output of the algo-
rithm to compute the quality, e.g. the difference between intra and inter cluster
distance. We denote this as measurement of intention because we directly use
the intended cluster labels that were provided by the algorithm for each data
item.

On the contrary, in the visual point clustering problem setting we have to consider
the user, who is in the end the one that visually extracts the information out
of the clustering result. Since we want to have measures that correlate with the
user’s perception, we call this attempt measurement of perception. In order to
assess the perception, we have to actually look at the set of circles on the map and
deduce from that the connection to the underlying raw data. This connection, in
combination with the circles that represent the clusters, is then used as input for
the various quality measures.

It is very difficult to derive a single quality measure that evaluates all perceptible
desired properties at once. Hence, we will provide a list of important properties
and then address them individually by introducing several measures for different
aspects. This allows us to evaluate them independently in subsequent experiments.
Furthermore, we can create a joint measurement that combines all individual qual-
ity measures into a single number. This approach makes it much easier to incorpo-
rate different quality aspects and to compare the quality of the output of different
algorithms for different data sets.

The experiments will show that each criterion examines different aspects of the se-
lected algorithms. This will allow us to investigate the effects of different parameter
settings and to identify potentially conflicting aspects. Overall, the quality mea-
sures are practical criteria for evaluating visual point clustering.

44

4. Quality Measures for Visual Point Clustering

4.2. Preliminaries

In this section, we define the essential notation as well as functions that we will
use throughout this chapter. These range from transformations of the data space
to auxiliary formulas. These formulas ensure that all readers have a common
understanding of the definition of quality metrics.

Points and Circles For a point p ∈ P we use p.x and p.y, respectively, to address
the x and y coordinate. For a circle c ∈ C we use the same coordinate
notation to define the center of the circle and additionally use c.r to specify
the radius of this circle. The coordinates and radii are given in map units.
Furthermore, we abbreviate n := |P | and m := |C|.

Map In general, maps can have different x and y extents (cf. Section 3.1). Without
loss of generality, we only consider quadratic maps and define the measures
only for quadratic maps. As described in Section 2.2, we want to calculate
visual point clustering for different zoom levels z. These have been defined
as a magnification of the whole map, i.e., scaling it up for larger zoom levels.
This leads to the problem that we have to define measures for maps of dif-
ferent sizes. This would inevitably lead to inconsistent maximum distances
that we have to cope with. Therefore, we transform all outputs linearly into
the unit square [0, 1]× [0, 1]. This allows us to define the quality measures in-
dependent of the zoom level. Note that this leads to a reduction of the circle
radii with the factor 1/2z. Since the mapping is linear, there is no distortion of
distances or positioning. As a consequence, the minimum Euclidean distance
between any two points or circle centers is 0 and the maximum distance is√
12 + 12 =

√
2, respectively.

Circle-Point Distance To measure Euclidean distances between circles and points,
we consider only the coordinates of the circle’s center and ignore its radius.
This leads to:

pdist(c, p) :=
√︁

(c.x− p.x)2 + (c.y − p.y)2

In case we want to address whether a point is inside or outside a circle, there
is an additional definition that incorporates the radius:

cpdist(c, p) := pdist(c, p)− c.r

Note that the value is 0 when the point is at the edge of the circle and is
negative iff the point is inside the circle.

45

4. Quality Measures for Visual Point Clustering

Circle Distance The distance between two circles is defined as follows:

cdist(c1, c2) := pdist(c1, c2)− c1.r − c2.r

Iff the value is zero or positive, the circles do not intersect each other.

Centroid The centroid specifies the geometrical center of a set of points P ′ ⊆ P .

centroid(P ′) :=

(︄
1

|P ′|
∑︂
p∈P ′

p.x,
1

|P ′|
∑︂
p∈P ′

p.y

)︄

Analogously, for a set of circles C ′ ⊆ C, centroid(C ′) gives the centroid of
the coordinates of the circles by ignoring the radius component.

Area of Objects For calculating the area of an arbitrary object o, we use the
function A(o). If the object is a circle c, we use the well-known formula
A(c) := (c.r)2 · π. Furthermore, for a point p, the area A(p) is 0. Since
the computation of the area of arbitrary objects is very complex, inefficient
or lacking an analytical solution, we use Monte Carlo simulations [GS07] to
estimate the area.

Intersections and Unions The associative operators ci ∩ cj and ci ∪ cj define the
geometric intersection and the union of circles ci and cj, respectively. In the
following, we will use these operators mostly in combination with either a
point containment or an area calculation. For the former, we check whether
one or all of the points are within the circles. For the latter, we make
use of the Monte Carlo simulations. Both cases require the calculation of
cpdist(ci, p) ≤ 0 that indicates whether a point p is within circle ci.

4.3. Visual Assignment

Since we want to measure the perception of the circle representation (cf. Sec-
tion 4.1), it is insufficient to use the output of a clustering algorithm directly to
measure the quality in our problem setting. Therefore, it is necessary to have
functions that derive cluster assignments from a set of circles C (visual point clus-
tering) and a set of points P (raw data). The task is approached visually as if
the user would evaluate a (translucent) circle map on top of the raw points – this
would not be possible in practice when thinking of millions of raw data points, but
is possible in computational thinking. However, a single assignment function does
not cover all aspects that are necessary for defining the quality measures. Hence,
we introduce two different assignments that are both valid and useful in different
scenarios.

46

4. Quality Measures for Visual Point Clustering

(b)(a)

Figure 4.1.: This figure illustrates the differences between the nearest neighbor
assignment (a) and the enclosing assignment (b). The blue points are
associated to the light blue circle while the yellow points are associated
to the light yellow circle. The gray points are not assigned to any circle.

4.3.1. Nearest Neighbor Assignment

The nearest neighbor assignmentN of ci ∈ C is defined as

Ni := {p ∈ P | ci = argmin
c∈C

dist(c, p)}

with

dist(c, p) :=

{︄
cpdist(c, p) if cpdist(c, p) > 0

−
√
2 + pdist(c, p) else

.

It assigns the points to the nearest circle. If a point is outside a circle, the as-
signment uses the distance to the perimeter of the circle. Otherwise, the circle
encloses the point and the assignment considers the distance to the center. Since
the maximum distance in the unit interval is at maximum

√
2, this inverse calcu-

lation results in the smallest (negative) distance iff the circle center and the point
are equal. In general, this leads to the natural assignment of a point to the most
inner (containing) circle in the case of multiple overlapping circles. Otherwise, the
point is assigned to the nearest circle. Figure 4.1 (a) provides an example of this
assignment that shows the aforementioned properties. The points are colored blue
and yellow and are assigned to their nearest circle.

4.3.2. Enclosing Assignment

The enclosing assignment E of ci ∈ C is defined as

Ei := {p ∈ P | contains(ci, p)}

47

4. Quality Measures for Visual Point Clustering

with the predicate contains(c, p) := cpdist(c, p) ≤ 0. Moreover, there exists a
residual assignment E∅ = P \ (E1 ∪ . . .∪Em) which contains all points that are not
contained in any circle.

This assignment attaches each point to every circle that encloses that point. Note
that in contrast to the nearest neighbor assignment, points can be attached to
multiple circles in the case of circle overlap. Without any overlapping circles,
the mapping is still an at most one link between a point and a circle because
the residual assignment may not be empty anyway. Figure 4.1 (b) illustrates
this assignment for an exemplary set of points and circles. In comparison to
the nearest neighbor assignment, it provides the same mapping for the points
within the circles (blue and yellow) but also the residual points (gray) that are not
assigned.

4.4. Quality Measure Definitions

In the following, we define a set of quality measures M assessing the quality of
a circle representation C for a set of points P . The measure µi ∈ M assesses a
requirement i, i.e., one aspect of a qualitative circle representation of the underly-
ing data. Note that the index i is not a number in the following, but a symbolic
name with i ∈ {area, centered, overlap, distance, unassigned, uniform, zoom}. A
measure µ is a utility function (i.e. users prefer inputs that lead to higher values
than to lower values) that maps the input to a value of the unit interval (0, 1].
This ensures that all measures are within a comparable data range and that the
intercomparability of the requirements is guaranteed.

It is difficult, however, to find an intuitive definition of all measures that directly
maps to the unit interval. This is especially the case if there are unknown bounds,
e.g. in case of an error value. Hence, we measure for each requirement the devia-
tion νi of C to the optimal solution. Moreover, the output of νi must be greater
than or equal to zero since it reflects an error. We now apply a transformation
from deviations to utilities by using the mapping function µi := e−νi . The ex-
ponential function ensures that for deviations of zero, the utility value is exactly
one. On the other hand, larger values lead to an exponential decrease of the util-
ity towards zero. For the sake of simplicity, we will evaluate each requirement
on the basis of the deviation νi and omit the implicit transformation into a util-
ity.

As it will turn out later, some νi values have an upper limit in addition to the
required lower limit, e.g. a lower limit of zero and an upper limit of one. This

48

4. Quality Measures for Visual Point Clustering

|N2|=20
|N3|=30

|N1|=10 |N1|=10 |N2|=20 |N3|=30

✓ ✗
Figure 4.2.: This image shows a good and a bad example for area proportionality

in juxtaposition. While the left side shows circles whose areas scale
linearly in the number of assigned points, the right side shows circles
whose sizes do not reflect the number of points.

means that the utility value that applies the deviation as a negative value in
the exponential function would be in the interval [0.36, 1]. Since this would lead
to a loss of range, we apply a linear stretch function to utilize the entire range
again.

4.4.1. Area Proportionality

Idea The idea of area proportionality is that the area of the circles should be
proportional to the number of associated points. This helps the user to
identify the differences in cardinality of clustered data spots (circles) on the
map. Hence, we want to penalize circles that do not possess this property.

Definition In order to define this deviation, we first need a definition for the
density of a circle. Then, we can measure whether the densities of all circles
are almost equal. The density di for a circle ci is given as

di :=
|Ni|
A(ci)

.

It uses the nearest neighbor assignment, which reflects the data in the area
in and around a circle. To quantify almost equal, we use the coefficient of
variance [Bon06]

νarea :=

√︁
V ar({d1, . . . , dm})
E({d1, . . . , dm})

=

√︂
1
m

∑︁m
i (di − 1

m

∑︁m
i di)2

1
m

∑︁m
i di

.

This measure obviously penalizes strong variations in the di values, which is
the desired property of the measure. With regard to the robustness of the

49

4. Quality Measures for Visual Point Clustering

centroid

center

pdist

Figure 4.3.: This figure illustrates the calculation of the circle points centered
quality measure. It calculates the point distance between the cen-
ter (green) of the circle and the centroid (red) of the points (blue)
that are associated to the circle.

computation, one can also use the quartile coefficient of dispersion [Bon06]

νarea′ :=
Q3 −Q1

Q3 +Q1

,

where Qi is the i-th quartile of all density values. It uses the first and third
quartiles for calculating the difference (interquartile range [HKP11]) and for
normalization. While the first definition indicates the error in relative density
units and has no upper bound, the second definition has an upper limit of 1
since all density values are positive.

Example Figure 4.2 shows an exemplary evaluation for this measure for a small
set of three circles. The values in the circles indicate the cardinality of the
assigned points. While the circles on the left side facilitate estimating the
differences in cardinality due to their different areas (νarea =

V ar({0.1,0.1,0.1})
E({0.1,0.1,0.1}) =

0, νarea′ =
0.01−0.01
0.01+0.01

= 0), the right side has no such indication and is thus

misleading (νarea = V ar({0.1,0.2,0.31})
E({0.1,0.2,0.3}) = 48.265, νarea′ =

0.03−0.01
0.03+0.01

= 0.5). The
figure clearly shows that this property benefits the user and should be con-
sidered.

4.4.2. Circle Points Centered

Idea The idea for centered points in a circle is that the centroid of the points
assigned to a circle should be close to the center of the circle. Otherwise, the
circle would somewhat obliquely cover the points. It would be particularly

50

4. Quality Measures for Visual Point Clustering

✓ ✗
Figure 4.4.: This figure presents a good example (left) and a bad example (right)

for the circle overlap quality measure. The red colored area shows the
overlapping of circles, which covers parts of the other circles, and thus
reduces the information value. Each overlap reduces the quality score.

unexpected for the user to assume that the centroid of the points attached
to a circle did not lead to the centroid of that circle.

Definition For each circle, we compute the distance between its center and the
centroid of the points assigned to the circle. Then, the m distances are av-
eraged to obtain a single deviation value. This yields the following measure:

νcentered :=
1

m

m∑︂
i=1

pdist(ci, centroid(Ni)) .

Example Figure 4.3 provides a visual example of νcentered. Here we get a sense
of the impact of such obliqueness of circles with respect to the data points.
Since the blue points are only at the left of the light blue circle, the center
of the circle and the centroid of the points are clearly separated from each
other. For a user, it is hard to estimate the underlying distribution this way
without seeing the points. Shifting the circle to the left (by the value of the
pdist calculation) improves the visualization and the quality score.

4.4.3. Circle Overlap

Idea The circle overlap measure addresses the requirement that the optimal solu-
tion does not contain overlaps, and thus no occlusion. Chapter 2 has already
addressed this fundamental property with regard to the problem formulation,

51

4. Quality Measures for Visual Point Clustering

and Chapter 1 provided an example why this key problem leads to undesir-
able results. Since the avoidance of occlusion is a reason for applying visual
point clustering to the problem, any residual occlusion that is an indicator
of hidden information must be penalized by this deviation value.

Definition The circle overlap deviation must directly reflect the degree of the
overlap of the circles. It is not necessary to include any points into this
calculation. The optimum is no overlap at all. We therefore measure the
deviation from the optimum by

νoverlap :=
A(C1 ∩ . . . ∩ Cm)

A(C1 ∪ . . . ∪ Cm)
,

which is to some extent a modification of the well-known Jaccard coefficient.
In the worst case, if everything overlaps to 100%, this leads to a deviation
of νoverlap = 1. We then have to apply the stretching function for the utility
value.

Example Figure 4.4 depicts an example of not or partially overlapping circles to
illustrate this measure. Here, the three circles on the left side depict a perfect
score. The four circles on the right side, in contrast, show a substantial
overlap, and thus occlusion of information in the visualization. While the
worst case would be a complete overlap of all circles, this example poses a
diminished quality score.

4.4.4. Circle Point Distance

Idea The circle point distance measure reflects the fact that users are unable
to identify whether a circle represents (hidden) points that are far away
from the circle as a representative. Therefore, points (far) outside their
representative circle are unintentional, and thus indicate a bad quality of the
circle representation. Ideally, all points are enclosed by the circle. Otherwise,
the further away the points are located from a circle with the perspective of
the nearest neighbor, the greater the deviation value should be.

Definition In order to achieve this deviation value, we first measure how far the
points are outside their representing circle. We use the nearest neighbor
assignment here. Then, we compute all values for each circle and aggregate
them in order to obtain a single value. Concretely this is done by

νdistance :=
1

m

∑︂
c∈C

∑︂
p∈Nc

Ic,p · cpdist(c, p) .

52

4. Quality Measures for Visual Point Clustering

cpd
ist

c pdist

c.r

I=0

Figure 4.5.: This figure depicts the calculation of the circle point distance quality
measure. The green points do not represent an error for the measure.
On the other hand, the red points reduce the quality score by the
distance from their representing circle (cpdist).

The indicator function is defined as follows:

Ic,p :=

{︄
1, if cpdist(c, p) > 0

0, otherwise
.

To evaluate νdistance we only incorporate points that are not enclosed by
their representative circle. All points that are within their representative
circle produce a negative value (distance) that would distort the result. The
incorporation of the indicator function Ic,p prevents this.

Example In Figure 4.5, we see the distances (cpdist) of points (red) that are
outside of their representative circle. We have to consider that the distances
are exponentially factored in the utility value due to the transformation from
the deviation value. Therefore, we can envision this as Gaussian distributions
that start at the center of each circle which are modified to have a value of
one within the circles. In this example, the green points have an indicator
function value of I = 0 so that they do not affect the quality score.

4.4.5. Unassigned Points

Idea Unassigned Points addresses the circumstance that it is undesirable to have
points that are not contained in any circle. A user would see an uncovered
area that actually contains data. This leads to a biased reception of the map.
Hence, the more points a solution C does not cover, the more C deviates
from an optimal solution.

53

4. Quality Measures for Visual Point Clustering

⊆E∅ ⊆E∅

E0

E1

E2

Figure 4.6.: This figure illustrates the unassigned points quality measure and the
connection to the enclosing assignment. The red boxes represent sub-
sets of the points (red) in the residual assignment. In contrast to the
green points, which do not pose an error, they reduce the quality score
by their cardinality.

Definition We assess this concept with the following measure:

νunassigned :=
|E∅|
n

.

This formula uses the enclosing assignment and exploits the residual assign-
ment E∅, which is the set of points that is not enclosed by any circle. The
deviation value calculates the fraction of points in the residual assignment
and the total number of points n. In the optimal case, |E∅| = 0 and in the
worst case, |E∅| = n. This leads to a lower bound of zero and an upper bound
of one. Therefore, we again need to apply the stretching function to utilize
the entire range of the unit interval after applying the exponential function
to the negative deviation.

Example Figure 4.6 presents an example that visually shows the computation
of this measure. The measure ignores all points that are enclosed by a
circle (green points of E1, . . . , E3). The red boxes highlight the subsets of the
residual assignment E∅. These outside points (red) are all treated equally
and the exponential scaling of the utility value leads to a rapid punishment
of uncovered points. Therefore, a significant number of uncovered points
leads to a utility towards zero.

54

4. Quality Measures for Visual Point Clustering

Histogram

#

2.1 0 1.1 0

 0 1 0 0

 0 2 4 3.2

 0 0 2.1 2.1
Bins

Figure 4.7.: This figure illustrates the histogram computation of the uniform point
distribution quality measure as a three step process. The first step
shows a grid and the binning of points into grid cells. The second step
illustrates the bin counts and the scaling of the outer bins that only
partially intersect with the circle. The third step shows the creation
of a histogram from the bins in order to assess the uniformity of the
point distribution within the circle.

4.4.6. Uniform Point Distribution

Idea The optimal distribution of points within their representing circle should be
uniform. A user cannot expect to have, for instance, two dense, opposite
point hot spots rather than a homogeneous distribution of the points. This
means that it is not desirable to deviate strongly from a uniform distribu-
tion for points that are represented by a circle. Ideally, the points that are
enclosed by their representative circle should follow a uniform distribution.
In the worst case, the points in a circle are heavily skewed.

Definition We measure the deviation of this optimal distribution as follows: We

partition a circle ci into a two-dimensional grid of
⌈︂√︁
|Ei|
⌉︂
square buckets by

applying the function histogram(ci, Ei). This follows the square-root choice
rule [Sco15]. For histograms, a good choice of buckets is essential in order
to obtain a valid representation of the distribution. The above-mentioned
choice has been empirically proved to be suitable in this scenario.

For each bucket, we count the number of points that fall into that bucket.
Our counting also takes the case into account that a bucket is only partially
enclosed by a circle. In this case, we interpolate the count by the fraction
of its contained part. This can be done by calculating the ratio of the area
of the circle-square intersection to the area of the square. Since an analy-
tical solution is rather complex, we fall back to our Monte-Carlo-based area

55

4. Quality Measures for Visual Point Clustering

function from Section 4.2.

Similar to the νarea measure, we employ the coefficient of variance to measure
the deviations of the individual bucket counts. Equal counts in all buckets
correspond to a uniform distribution. Hence, the coefficient of variance is
an appropriate measure to check this property. We aggregate the results for
individual circles by taking the average of the coefficients of variance and
define νuniform as

νuniform :=
1

m

∑︂
ci∈C

√︁
V ar(histogram(ci, Ei))
E(histogram(ci, Ei))

.

Note that histogram(ci, Ei) outputs a set of bucket sizes (integers). Alterna-
tively, a Kolmogorov-Smirnov-Test [LRH07] allows measuring the deviation
as a confidence value of uniformity. However, the spatial histogram proved
to be computationally more robust for particularly smaller point sets within
a circle. In any case, we employ the enclosing assignment here, since we are
only interested in the points within the circular areas.

Example Figure 4.7 illustrates the histogram creation within the boundaries of a
single circle in three steps. At first, the measure overlays the circle with a
grid. For each grid cell, the measure then counts the number of contained
points. The second step emphasizes the scaling of border grid cells that only
partially intersect with the circle. As these cells represent a smaller area of
the circle, they scale the counted value up by the fraction of cell area and
circle-cell intersection area. Thus, e.g. the left upper cell represents a value
of 2.1 even though there was only one point falling into it. In contrast, the
upper right cell emphasizes that points are not considered if they are outside
the circle (but within the cell’s bounds). Furthermore, the third step shows
the retrieval of uniformity when drawing the histogram of the cell count
values. Optimally, all histogram bins have an equal height (= number of
elements).

4.4.7. Zoom Consistency

Idea Zooming into an area should break up clusters and give a more detailed view
on the point distribution. This means, we expect that smaller circles are
located in the regions that are covered by bigger circles from the previous
zoom level. Users should not zoom into an area that is covered by a circle
and find nothing there. In this case, the user cannot be sure whether the
view before or after zooming is correct or erroneous. This notion of zoom

56

4. Quality Measures for Visual Point Clustering

🔍 =?

z=1z=0

Figure 4.8.: This figure shows an example of the zoom consistency quality measure.
It illustrates the comparison of two subsequent zoom levels and the
calculation of the intersection (dotted line and circle). The arrow
with the magnifying glass depicts the (theoretical) up-scaling of the
lower zoom level in order to facilitate the comparison. The grid in the
background only serves the purpose of comparability between the sets
of circles.

consistency is stricter than the ones from Sarma et al. [Das+12] and Guo et
al. [Guo+18]. They only require the objects to be in the magnified area. We
furthermore require them to be at the correct spot.

Definition Since this measure is the only one that requires two sets of circles as
input (in contrast to a set of points and a set of circles), we have to slightly
extend our definitions. We define the set of circles at zoom level z as C(z).
To check the zoom consistency property for an individual circle c ∈ C(z) we
measure the relative overlap with the next zoom level z + 1. To do this,
we calculate the intersection of a circle c with the combination (union) of
the circle from the next zoom level and divide it by the area of that circle.
Finally, we aggregate over all circles in C(z) and calculate the average. This
leads to

νzoom :=
1

m

∑︂
c∈C(z)

A

(︄(︄ ⋃︁
c′∈C(z+1)

c′

)︄
∩ c

)︄
A(c)

.

One could argue that we have to address the differently sized maps of zoom
level z and z+1. However, due to the scaling to the unit interval mentioned
in Section 4.2, it is not necessary to adjust the sizes between contiguous (or
arbitrary) zoom levels. Despite the complex, nested union and intersection

57

4. Quality Measures for Visual Point Clustering

computations, the definition of our area computation allows us to easily
express this with Monte Carlo simulations.

Example Figure 4.8 provides an example of how the quality measure assesses two
contiguous zoom levels to calculate the deviation νzoom. We depict the initial
scaling of any input to the unit interval. The arrow with the magnifying glass
indicates this on the left side of the illustration. Furthermore, we provide a
background grid to facilitate the perception of the breakup of clusters when
zooming in (z = 1). Obviously, the circle shape does not allow perfect scores
when breaking up circles. This is comparable to the circle packing problem
[Can+07] where the goal is to reduce the dead space. The dotted two lines
and the circle indicate this for one instance on the lower part of the figure.

4.5. Clustering Circle Mapping

As described in Chapter 3 and discussed in Section 4.1, general clustering algo-
rithms output a mapping of points to clusters. However, for visual point clustering,
the output must be a set of circles C that represents such points P . In this section,
we close the gap and define transformation functions. They are in particular used
and evaluated in the experiments in Section 4.6.

Let Gi := {p ∈ P | p is assigned to Cluster i} be the ith assignment. We then ap-
ply a transformation function τ to each cluster, which maps it to a circle. This
provides the mapping to a visual point clustering. It is, however, not trivial to de-
fine such a mapping τ that is universally valid and meaningful. We therefore define
three methods that are candidates for τ . The experiment section (cf. Section 4.6)
will evaluate the quality of such candidates.

4.5.1. Circumcircle

A trivial method for mapping a set of points to a circle is to use a bounding ob-
ject. In our scenario, this is the boundary circle. Hence, this mapping function
uses the centroid of the assigned points for calculating the center of the circle.
To define the radius, we use the farthermost point to the center. Thus, we ob-
tain

τcc(Gi) :=

⎛⎜⎝ centroid(Gi)

max

(︃
max
p′∈Gi

(pdist (centroid(Gi), p
′)) , rmin

)︃ ⎞⎟⎠ coordinates x and y

radius
.

58

4. Quality Measures for Visual Point Clustering

We expect this mapping to produce quite large circles. It should be particularly
sensitive regarding outliers, which would drastically increase the diameter. Besides
that, the outermost maximum function ensures that the circle radius is never
smaller than the required minimum radius rmin. We discussed the concept and
visual implications of it in Chapter 2.

4.5.2. Log2

Jänicke et al. [JHS13] presented a mapping function that uses the cluster centroid
and scales the radius with regard to the number of assigned points. While the
centroid definition is identical to the one in τcc, the specification of the radius
uses a completely different approach. They used an empirical maximum circle
area

Amax := (4 log2 (n+ 1))2 · π

and a minimum circle area
Amin := r2min · π

with a fixed rmin. Using these two values leads finally to

τlog2(Gi) :=

⎛⎜⎜⎝
centroid(Gi)√︄

Amin +
|Gi|−1
n−1

(Amax − Amin)

π

⎞⎟⎟⎠
T

coordinates x and y

radius
.

The radius will grow proportionally in the number of points between the mini-
mum and maximum area. Furthermore, the scaling is implicitly bounded by the
minimum radius.

4.5.3. Log10

Since the results of Jänicke et al. were empirical, we add another maximum area
function that uses the decimal logarithm. This implies a doubling of the size by
an increase of an order of magnitude of points. We use the identical definition of
the minimum area and further define

Amax := (log10(n) · rmin)
2 · π .

59

4. Quality Measures for Visual Point Clustering

10 points

circumcircle log10log2

200 points

20 points

10 points

200 points

20 points

10 points

200 points

20 points

Figure 4.9.: This figure shows the differences of the three transformation functions
circumcircle, log2 and log10 for the same set of clusters.

We still have the same transformation function (for the sake of completeness):

τlog10(Gi) :=

⎛⎜⎜⎝
centroid(Gi)√︄

Amin +
|Gi|−1
n−1

(Amax − Amin)

π

⎞⎟⎟⎠
T

coordinates x and y

radius
.

The scaling here can be desirable when dealing with larger data sets, as the growth
is smoother or less drastic. In addition, the maximum area is smaller. This can
make sense because of limited map space. Note, however, that the maximum area is
only used if there is only one circle representing all points.

In Figure 4.9, we depict three exemplary visual point clusterings of the same set of
points by using the three proposed transformation functions. We see, for instance,
that circumcircle leads to no points that are outside a representative circle. On the
other hand, depending on the point distribution in a cluster, the area of the circles
may not indicate the cardinality. This is, in contrast, the case with both log2 and
log10. Here we see the differences in the increase of the circle area as the number
of points increases. With regard to the cardinality of the input data set, one or
the other can lead to a better fitting visualization.

4.6. Experiments

In this section we investigate how existing clustering methods work in the visual
point clustering problem setting. For this, we describe the methods and their im-
plementation and state the parameters which are required to be set by the user.

60

4. Quality Measures for Visual Point Clustering

Since the optimal parametrization for the methods is unclear, we propose to in-
vestigate a range of parameters for each method. Within these ranges, we perform
a grid search in order to find the best possible setting. In addition, this allows us
to examine the impact of different parametrizations. This also reveals the appli-
cability of the methods and their suitability of determining such parametrizations
in a universal scenario for arbitrary data sets.

Furthermore, we investigate the influence of the transformation function τ on the
quality of visual point clustering. We combine each previously defined (cf. Sec-
tion 4.5) transformation function with each of the clustering methods. As a result,
there are many combinations that allow a fair investigation of the impact of such
functions. Altogether, the parameters of the clustering methods and the choice of
the transformation function form the variables of this evaluation. For each data set,
we obtain a large set of circle representations. We evaluate them individually by ap-
plying our potentially contradictory quality measures.

4.6.1. Methods

In the following, we present the investigated clustering methods, which assign
points to clusters. In Section 3.4, we have introduced the different categories
of clustering methods. For the evaluation we considered certain representatives
of the four groups Partitional Clustering, Distributional Clustering, Hierarchical
Clustering and Density-Based Clustering. Since we have already explained the
principle of these methods in detail, we will only list the candidates here and
provide details about their implementation.

Partitional Clustering

For partitional clustering we evaluate the k-Means algorithm since it is the most
prominent algorithm for clustering. Furthermore, it provides satisfactory results in
a variety of use cases. We use the k-Means++ implementation of Apache Commons
Math1. The pluses indicate a modification of the initialization process. It uses a
more advanced technique, which (empirically) improves the convergence rate, and
thus the runtime in contrast to pure sampling. In contrast to k-Means, where
the result depends on the initialization, it guarantees a solution that is O(log(k))
apart from the optimal k-Means solution [AV07]. The k-Means algorithm has
one parameter, k, which specifies the number of output clusters. In our case
this corresponds directly to the number of circles m after the transformation. To

1commons.apache.org/proper/commons-math/

61

https://commons.apache.org/proper/commons-math/

4. Quality Measures for Visual Point Clustering

compensate the deficit of not knowing the optimal k, we examined settings for k
in the range between 1 and 15 000.

Distributional Clustering

For distributional clustering we evaluate Expectation Maximization (EM). We use
the implementation of the well-known OpenCV2 [KB13] library. From our experi-
ence, it provides the most stable implementation of the algorithm, which is robust
against vanishing Gaussians that lead to singular variance matrices (making it dif-
ficult to continue the algorithm, i.e., many library implementations simply crash).
EM has the same parameter k as k-Means such that k Gaussians are initialized
upfront. Again, this parameter k (k ∈ [1, 15 000]) corresponds to the number of
circles m in our case when we apply the transformation function to the resulting
clusters.

Hierarchical Clustering

For hierarchical clustering we incorporate multiple variants of agglomerative clus-
tering. The reason for this is that each variant is superior to other ones for certain
distributional patterns of data. The variants of choice are Single-Link (SLINK),
Complete-Link (CLINK) and Centroid (centroid) clustering. The ELKI library3

[Ach+12] provides many implementations of agglomerative clustering variants that
refer directly to research papers. The two former variants are applied by AGNES
[KR90] while the latter one uses AnderbergHierarchicalClustering [And73]. These
three variants output a dendrogram which we utilize to extract clusters of cardi-
nality m. We try values for m, similar to k-Means, in the range between 1 and
15 000.

Additionally, we implemented the Delaunay-based point aggregation algorithm
GeoTemCo by Jänicke et al. [JHS13]. It essentially represents a hierarchical clus-
tering algorithm. In contrast to the aforementioned methods, it directly outputs
circles using circle sizes identically to those generated by the log2 transformation.
Thereby, this eliminates the process of creating a dendrogram and cutting out the
desired number of clusters. The algorithm is directly applicable for visual point
clustering.

2www.opencv.org
3elki-project.github.io

62

https://www.opencv.org
https://elki-project.github.io

4. Quality Measures for Visual Point Clustering

Density-Based Clustering

For Density-Based Clustering we evaluate the most prominent candidate, namely
DBSCAN (Density-based Spatial Clustering of Applications with Noise) [Est+96].
We use the DBSCAN implementation of the ELKI library to generate clusters
based on their mutual proximity. The algorithm utilizes the parameters MinPts
and ϵ which were already described in Chapter 2. Here it is not necessary to
specify the number of output clusters. The number rather implicitly results from
the density setting. While it seems reasonable to set ϵ to rmin and MinPts to 1
(in order to not loose any points as outliers), we try values for ϵ ∈ [2.5, 25], and
MinPts ∈ [1, 10].

4.6.2. Data Sets

We selected five data sets of different sizes for the evaluation. Four address
the domain of biodiversity research and concern species observations from GBIF
(cf. Section 1.2). These are Loxodonta cyclotis (African forest elephant) with
23 points, Puma concolor (cougar) with 1 992 points, Macropus giganteus (east-
ern grey kangaroo) with 23 039 points and Alnus Glutinosa (common alder) with
185 259 points. We filtered the entire database with each species name in order
to generate the data sets. The fifth data set includes point locations from Open-
StreetMap4. They correspond to library locations in Germany (german libraries)
that were extracted from points of interest. This data set contains 3 383 points
and follows potentially different distribution patterns than the species observa-
tions.

4.6.3. Clustering Methods

For the first experiment, we only consider the first six quality measures and omit
zoom consistency. We will consider this measure in a separate experiment. We
calculated the results for all combinations of methods, parameter settings and
quality measures. To present the results in a meaningful way, we consider only
the Pareto frontier or skyline [Pap+05] of the results. This means that we discard
all solutions that are dominated by another solution, i.e., that are better in each
quality score. Using these frontiers, we can assure a fair comparison independent of
the parametrization. For instance, if a Pareto frontier of one method is completely

4www.openstreetmap.org

63

https://www.openstreetmap.org/

4. Quality Measures for Visual Point Clustering

Figure 4.10.: This plot matrix shows all pairwise Pareto frontiers on data set Alnus
glutinosa.

above the Pareto frontier of another method, it indicates that the first method
outperforms the second one.

Figure 4.10 presents the results in a pairwise plot-matrix for the Alnus glutinosa
data set. The other results are not shown here because they take up a lot of space
(which inflicts readability), but are available in Appendix A. The x and y axes
plot the quality measures against each other. The inner scatter plots (grid cells)
show the quality value of the individual quality measures. The diagonal of the
plot matrix depicts the individual criteria. The criteria distance, overlap, centered
and unassigned can be fulfilled completely by all approaches. This means that
there is at least one parametrization at or very close to the position (1, 1), which
indicating a perfect result.

The criterion area can only be completely fulfilled by k-Means. The other ap-

64

4. Quality Measures for Visual Point Clustering

Table 4.1.: This table shows the dominance ranking for the projections for each
data set. The numbers in braces show the amounts of dominated points.

τ Alnus Libraries Loxodonta Macropus Puma

cc 1 (574) 91 (306) - 209 (2343) 137 (1660)
log2 139 (395) 5 (372) - 1 (4182) 1 (2901)
log10 22 (528) 1 (512) 1 (1489) 29 (3176) 84 (1823)

proaches perform worse. One explanation for DBSCAN is that it suffers from
non-convex clusters resulting from density-connected data points. A transforma-
tion into a circle most likely leads to errors in this case. Likewise, SLINK is much
more susceptible to tubular clusters that are hard to approximate by a circle. On
the other hand, CLINK has a better quality due to the different distance func-
tion which prefers circular clusters. GeoTemCo performs worse for this criterion.
However, it is much better for all the other data sets that are significantly smaller.
Obviously, the log2-scaling poses a problem. Therefore, it is the subject of another
experiment.

The uniform criterion is not sufficiently fulfilled by any method. This is be-
cause there are no uniformly distributed clusters in the underlying point data
set. Therefore, it is difficult to fit uniform areas. GeoTemCo seems to have a
slight deviation from the optimum because the circle is displaced in each step of
the algorithm.

The plots that are not on the diagonal of the matrix show combinations of different
criteria. The uniform-overlap plot shows an interesting curve that indicates that
relaxing the overlap constraint makes it possible to better fit the circles to the uni-
form spots of the point data set. Such a phenomenon occurs when one chooses a
large value for m, i.e., more circles are obtained that allow or facilitate this adjust-
ment. If the user, for instance, focuses on the criteria uniform and overlap, there
are different choices: While SLINK provides in at least one parametrization the
best uniformity, GeoTemCo is the best choice for the criterion overlap. However,
the user gets the best compromise by applying SLINK in different parametriza-
tions. Similar tendencies exist for other combinations of criteria, but they are less
pronounced.

4.6.4. Transformation Functions

The previous experiment showed that the choice of the transformation function
might have a considerable impact on the quality score. In this experiment we

65

4. Quality Measures for Visual Point Clustering

centroid clink dbscan em geotemco kmeans slink
0.0
0.2
0.4
0.6
0.8
1.0

ut
ilit

y

Figure 4.11.: This boxplot shows the different quality values regarding the zoom
consistency.

evaluate the different transformation functions τ and summarize the results in Ta-
ble 4.1. For each data set, each method and each τ function, we first calculate the
number of dominated points within the Pareto frontier. The higher this amount,
the better the transformation function works for this data set. Then, for each
transformation, we obtain the best result according to the rank. For instance, in
the case of the Alnus data set, circumcircle performs best for a certain method
and parametrization. In more detail, it dominated 574 other approaches. The best
method (and parametrization) using log10, on the other hand, is ranked on position
22. This means that there are 21 other methods that use circumcircle that have
performed better. Finally, log2 performs worst.

For small data sets, transformations based on the logarithm clearly perform very
well. However, if the size of the data set increases, it is necessary to reduce
the maximum radii. This is possible, for example, by selecting larger bases for
the logarithm, since the logarithm function itself does not automatically imply
appropriate radii. If the radii are too large, problems (e.g. with uniformity) arise,
which have been described in Section 4.6.3. In such scenarios the circumcircle
approach performs surprisingly good, as in the case of the Alnus data set. This
clearly indicates that the maximal circle areas have to be adjusted, for instance
by incorporating the drawing area rather than just relying on the number of input
points.

4.6.5. Zoom Consistency

Finally, we examine the seventh quality measure, the zoom consistency. For com-
parison, we chose three zoom levels to calculate the quality score. Three zoom
levels are sufficient for our scenario to evaluate the zoom consistency. This is due
to the transitivity of the successive levels.

66

4. Quality Measures for Visual Point Clustering

Figure 4.11 shows the results in the form of boxplots. We can observe that
all approaches are able to produce very good results since there is at least one
parametrization for each approach that produces quality values that are close to
1. However, the majority of results is located inside the boxes, indicating that
many parametrizations of DBSCAN lead to non-optimal zoom consistencies. Since
parametrization is a crucial point for users, DBSCAN appears to be difficult to use.
Other approaches are much more robust in this respect. GeoTemCo leads to nearly
perfect results for our data sets. Since it does not require any parametrization,
this is an important finding. It shows that this approach allows for appropriate
use.

4.7. Multiclass Adaptations

Until now, the quality measures were limited to support the evaluation of circle
representations of point data sets containing a single class. In this section, we
extend the problem for the case where multiple classes exist. In particular, we
introduce another indicator parameter cls, which specifies the class as an integer
value. Consequently, this parameter is an additional attribute attached to a point
and a circle (cf. Section 2.3). In the following, we examine the necessary changes
for each measure of Section 4.4. In particular, we propose an alternative set
of quality measures that is suitable for the problem of multiclass visual point
clustering.

4.7.1. Assignments

Before presenting the multiclass quality measures definitions, we discuss how the
two assignment functions are adapted.

Nearest Neighbor Assignment

We define the multiclass nearest neighbor assignmentN ∗ of ci ∈ C as follows:

N ∗
i := {p ∈ P | ci = argmin

c∈C
dist(c, p)}

with

dist(c, p) :=

⎧⎪⎨⎪⎩
∞ if c.cls ̸= p.cls

cpdist(c, p) if cpdist(c, p) > 0

−
√
2 + pdist(c, p) else

.

67

4. Quality Measures for Visual Point Clustering

By setting the distance to infinity when the classes of point and circle do not match,
a point is only assigned to the nearest circle of its class.

Enclosing Assignment

The multiclass enclosing assignment E∗ of ci ∈ C is defined as

E∗i := {p ∈ P | contains(ci, p) ∧ ci.cls = p.cls} .

This ensures that circles can only enclose the points of their own class. The
definition of contains is the same as before.

4.7.2. Measures

In the following, we revisit every quality measure once again and check how to
adapt it to work in the multiclass problem setting. Since we have defined the
multiclass nearest neighbor and the multiclass enclosing assignment to deal with
multiple classes, the same deviation measures are applicable as before in the one-
class case in most cases.

For area proportionality there is no need to change the density calculation and no
need to change the calculation of the coefficient of variance. The same applies to
circle points centered and circle point distance since the measure is averaged over
all circles. This is still valid because of the modified assignment functions. Also for
the uniform point distribution it is sufficient to calculate the uniformity for each
circle and to calculate the mean value. The assignment ensures that the uniformity
is calculated between points of the same class.

Unassigned points can make use of the multiclass enclosing assignment and its
residual assignment. However, it is likely that the utility value will be lower com-
pared to the one-class scenario. For example, if a good overlap rating is achieved,
the circles of a single class cannot occupy the entire map space, but must segment
the available space. This seems inevitable.

Circle overlap does not incorporate the points, but includes just the circles into the
utility computation. The intersection and the union are calculated over all circles.
However, this is still valid in the multiclass scenario. Since we want to penalize the
loss of information in the form of occlusion, it is not necessary to consider the indi-
vidual classes. Instead, we weigh each occlusion equally.

For zoom consistency, on the other hand, we have to adjust the measure. This is
because zooming in should resolve circles into (potentially) smaller circles of the

68

4. Quality Measures for Visual Point Clustering

same class. Here it is not useful to accept that a cluster splits into parts that refer
to data that does not belong to that cluster. This means that we slightly extend
the definition to

ν∗
zoom :=

1

m

∑︂
c∈C(z)

1

A(c)
· A

⎛⎜⎝
⎛⎜⎝ ⋃︂
{c′ | c′ ∈ C(z+1) ∧ c′.cls = c.cls}

c′

⎞⎟⎠ ∩ c

⎞⎟⎠ .

The adjustment basically only considers circles from z+1 that have the same class
cls as the actually considered circle.

4.8. Summary

This chapter presented a set of quality measures for the evaluation of visual point
clusterings of point data sets. We presented multiple visual assignment methods
that perform the mapping from points to circles. We then defined the individual
measures that build upon these assignments.

We showed experiments that incorporated existing clustering methods and eval-
uated them for their applicability for visual point clustering. Beforehand, we
discussed different transformation techniques that map a set of points of a clus-
ter to a circular representation. Within the experiments, we have seen that the
parametrization of the different methods poses a problem for achieving good re-
sults. It is therefore difficult to set these parameters optimally in a particular
application. With GeoTemCo we have found a suitable method that does not
require parametrization. In addition, the choice of the transformation technique
has a substantial impact on the visual point clustering quality for a given a data
set.

For the multiclass scenario, we have proposed an adjustment of the criteria. Fortu-
nately, due to the definition of the visual assignment functions, only minor adjust-
ments were necessary to prepare the measures for the multiclass scenario.

69

5
CMQ: The Circle Merging Quadtree

This chapter presents the details of the Circle Merging Quadtree (CMQ), an al-
gorithm that computes a visual point clustering from a set of input points. The
chapter starts with an introductory motivation about the algorithm in Section 5.1.
It discusses whether it is necessary to develop a new algorithm with respect to the
findings of Chapter 4. Then Section 5.2 introduces the CMQ method by first
describing the general idea for a better understanding and then giving a com-
prehensive explanation of the algorithmic details. It also contains pseudocode of
all its important algorithms. Thereafter, Section 5.3 provides a discussion of the
time and space complexity of CMQ . This gives insight into the strengths of the
algorithm and theoretical bounds. Subsequently, Section 5.4 provides a discus-
sion about performance improvements and the stability of CMQ . In particular,
it provides an efficient preprocessing step of CMQ that guarantees stability and
details on the effects on temporal and spatial complexity. Section 5.5 deals with
the computation of subsequent zoom levels. It discusses possibilities to acceler-
ate the computation with respect to the properties of CMQ . The experiments in
Section 5.6 provide comprehensive evaluations of time, quality, stability and space
aspects of CMQ and its competitors. It also describes the used data sets and gives
an analysis that puts all results into perspective. Finally, Section 5.7 provides a
brief summary of this chapter.

5.1. Motivation and Requirements

In Chapter 4, we have seen that it is complicated to find an algorithm for visual
point clustering that provides a good quality. There are several aspects that an
algorithm must cover in order to solve the problem adequately. General clustering
methods have not proved to be well suited for the problem at hand. These methods
are either laborious to parameterize (e.g. the number of clusters k in k-Means)
or do not fit the approach of circular patterns (like DBSCAN). We were able
to find good settings most of the time, but finding these settings is generally

70

5. CMQ: The Circle Merging Quadtree

difficult because they require a lot of computing time or a heuristic estimation.
For instance, a systematic grid search requires computing numerous clusterings for
different parameter combinations. On the other hand, a heuristic estimation of the
parameters poses another source of error. GeoTemCo, as a specialized algorithm,
provides good overall results with respect to our quality criteria. However, its
runtime is O(n · log(n)) and we will show in the experiments (Section 5.6) that it
lacks in performance for a big data scenario.

Overall, it seems promising to develop a specialized algorithm that addresses the
problem of visual point clustering and does not require non-trivial parametriza-
tion from the user. But it is also important to consider time constraints for the
computation. Computational requirements involve responsiveness and through-
put. The latter one is important to fit into a big data scenario. The former one
is of utmost importance to enable interactivity. Interactivity is the key concept
for facilitating exploratory scenarios. Here, as a recap of Section 3.2, users can
browse through different data sets and examine interesting data, e.g. hot spots
or outliers, in more detail. For the computational constraints, we have to look
at both theoretical limits and the practical runtime performance of this algo-
rithm.

Another interesting aspect is the rate of data compression that such a visual point
clustering algorithm is able to achieve, while facilitating information recognition at
the same time. Since an occluded view of the raw data on a map hides information,
this is an advantageous side aspect. Data reduction is very important in mobile
usage scenarios. This is the case because the mobile bandwidth is limited and
the computing power of the consumer hardware is also limited, especially when
considering the battery power. So it is precisely beneficial when less data needs to
be transferred and displayed. Our experiments will investigate and measure this
feature.

5.2. Method

In the following, we first describe the idea behind the Circle Merging Quadtree
(CMQ). Then we elaborate on the fundamental algorithms in more detail. We
discuss the important steps of inserting, querying and merging by providing pseu-
docode and give additional estimates regarding the size of the expected out-
put.

71

5. CMQ: The Circle Merging Quadtree

5.2.1. Idea

The fundamental idea of CMQ is to work directly with circles rather than points.
Although the input is a set of points in the visual point clustering scenario, the
output is a set of circles. On a screen, we typically display points (which have no
area) as circles with a radius (e.g. rmin in our case). Therefore, it makes sense to
consider the problem of visualizing a set of circles instead. This means that we
have to transform all input data into circles beforehand. The subsequent section
will provide more details here.

CMQ treats the overlapping of circles as the main issue. Therefore, it will enforce
an overlap-free output while simultaneously preserving other spatial properties as
much as possible (e.g. area proportionality and the centering of circles with respect
to their represented points as reflected in the quality measures in Chapter 4).
Moreover, unlike other algorithms, CMQ does not displace circles in order to
reduce overlap that could lead to an additional bias in the result. In addition,
CMQ does not omit any data. Thus, it deliberately preserves outliers and does
not concentrate only on the aggregation of hot spots.

For reasons of efficiency, CMQ employs a spatial index structure that comes with
the following three properties. First, it allows storing circles rather than points
or rectangles. Second, it efficiently supports circle queries to detect overlaps.
Third, the index structure is dynamic, i.e., it supports insertions and deletions of
circles.

The core strategy of CMQ is to find overlaps as quickly as possible and to imme-
diately merge circles. This leads to an index structure that only needs to store a
small number of elements. In addition, CMQ guarantees that the circles that are
kept in the index are non-overlapping. Rather than inserting all the base circles of
the points in advance, CMQ resolves the overlap at the insertion time of each new
circle. Fewer objects in the index structure have two advantages. First, this results
in faster insertion and query times. Second, fewer objects allow processing large
data sets with less main memory, and thus, it leads to more efficient memory usage
in general. In Section 5.4.2, we detail on making the overlap checks even more ef-
ficient by introducing a grid-based preprocessing step.

With respect to the quality measures in Chapter 4, the size of the circles needs
to reflect the number of attached points. In Section 4.5, we discussed techniques
that allow a proportional scaling of the circles. In fact, the size of the circles grows
monotonically in the number of attached points, so that merges of circles always
lead to larger circles. Moreover, the radii of the circles are restricted to a range
between rmin and rmax. The lower bound is useful for the following reasons. First,

72

5. CMQ: The Circle Merging Quadtree

(a) (b)

Figure 5.1.: This figure shows an exemplary quadtree partitioning of a set of circles
(a) and the corresponding tree structure with pointers to internal and
leaf nodes (b).

it allows interactive users to select circles easily via a mouse click. Second, it is
important to derive an upper bound for the number of circles that are kept in the
index of CMQ .

CMQ uses the (natural) input order of the data as input. Therefore, it does
not require any sorting as a preprocessing step. This is very advantageous for
the worst-case runtime (see Section 5.3). However, without sorting the input,
there is no stable visualization of the circles, which will be discussed in Sec-
tion 5.4.3.

With respect to the classification of clustering algorithms, CMQ is a hybrid of hi-
erarchical and density-based clustering. Like hierarchical clustering, it first merges
circles with small distances, but does not give any guarantee that this occurs in
the order of the distances. Like density-based clustering, it inevitably merges over-
lapping circles, i.e., circles in areas of a high density. However, it represents each
of the clusters by a circle and not by a complex polygon that covers all the points
of the cluster.

5.2.2. Algorithm

The goal of this subsection is to present the index structure and its important
algorithms. The index structure is an adaption of the point-region quadtree (cf.
Section 3.3). As for the standard quadtree, each internal node partitions the
corresponding space into four quadrants. The space of the root node corresponds
to the bounds given by the map. We extended this basic quadtree to be able

73

5. CMQ: The Circle Merging Quadtree

Algorithm 5.1 insert

Input: A quadTree tree data structure
A circle to insert

1: currentNode ← root(quadTree)
2: while hasChildren(currentNode) do
3: for child ∈ children(currentNode) do
4: if encloses(child, circle) then
5: currentNode ← child
6: while isLeaf(currentNode) ∧ isFull(currentNode) do
7: children ← split(currentNode)
8: // pass circles of currentNode to children
9: for child ∈ children do
10: if encloses(child, circle) then
11: currentNode ← child
12: add(currentNode, circle)

to cope with circles instead of points. Recall the definition of a circle as a four-
tuple (x, y, r, n), where the parameter n represents the number of points that are
attached to the circle. In our version, a circle is stored in the lowest tree node that
fully contains it.

The quadtree consists of leaf nodes of constant size and index nodes with a fan-out
of four. In the following, we assume that at most one circle fits into a leaf node. If
a leaf node consist of more than one circle, the quadtree recursively subdivides the
associated cell into four equal-sized child cells until all cells at maximum contain
one circle. In contrast to points, this is not always possible because a circle can
intersect with a cell boundary. In our adapted version, we store such a circle in
a list associated to the lowest internal node whose cell still encloses the circle.
This is illustrated in Figure 5.1, where circles are stored in a quadtree. On the
left hand side (a), the partitioning of the quadtree is plotted, whereas the tree is
shown on the right hand side (b). Here, all circles except the red-marked one fit
into one leaf. The red-marked circle is stored in a list associated with the lowest
internal node that fully contains this circle. This organization introduces no copies
of circles, and thus, the operations for insertions, deletions and exact match search
are restricted to a single path only. In addition, the maintenance of copies would
have increased the storage overhead. Before we introduce the complete CMQ
algorithm, we first describe the functions insert and queryAndExtract of the
adapted quadtree.

INSERT Algorithm 5.1 shows the pseudocode of the insert function of the adjusted
circle quadtree. It requires a quadtree as input as well as a circle that should

74

5. CMQ: The Circle Merging Quadtree

Algorithm 5.2 queryAndExtract*

Input: A quadTree tree data structure
A query circle to test for overlaps
Minimum inter-circle distance δ in px

Output: A set of overlapping circles
1: nodes ← createStack()
2: push(nodes, head(quadTree))
3: while ¬isEmpty(nodes) do
4: currentNode ← pop(nodes)
5: for circle ∈ circles(currentNode) do
6: if intersects(query, circle, δ) then
7: remove(currentNode, circle)
8: return {circle}
9: for child ∈ children(currentNode) do
10: if intersects(query, bounds(child), δ) then
11: push(nodes, child)

12: return ∅

be inserted into the tree. The first part (lines 1-5) tries to find a node of
the tree into which the new circle fits. To do this, we traverse the tree in
a recursive fashion by starting from the root (line 1). For each node, the
four child nodes are examined whether one of them encloses the circle (line
3). If so, the insertion proceeds in the corresponding subtree. Otherwise,
the insertion stops either at a leaf node or at an internal node that is the
deepest one that still encloses the circle.

The second part of the insert algorithm (lines 6-11) considers that all leaf
nodes of the quadtree have a capacity threshold on which they split. Hence,
as long as the currentNode is a leaf node and full (line 6), it is divided into
four quadrants and the node data (circles) is descended to the child nodes
(line 8). Then, the insertion position for the circle is one of the child nodes
(as long as it does not get stuck at this level, as discussed before). Since all
circles of level l could theoretically descend into a single child node of level
l + 1, it is necessary to check this in a loop until all conflicts are resolved.
Finally, in line 12 the algorithm stores the circle at the previously determined
node.

QUERY Algorithm 5.2 as well as Algorithm 5.3 describe the queryAndExtract
method of the circle quadtree. They receive the quadtree, a query circle and
the minimum inter-circle distance δ as input and outputs a set of overlap-

75

5. CMQ: The Circle Merging Quadtree

Algorithm 5.3 queryAndExtract

Input: A quadTree tree data structure
A query circle to test for overlaps
Minimum inter-circle distance δ in px

Output: A set of overlapping circles
1: result ← createList()
2: nodes ← createStack()
3: push(nodes, head(quadTree))
4: while ¬isEmpty(nodes) do
5: currentNode ← pop(nodes)
6: for circle ∈ circles(currentNode) do
7: if intersects(query, circle, δ) then
8: remove(currentNode, circle)
9: add(result, circle)

10: for child ∈ children(currentNode) do
11: if intersects(query, bounds(child), δ) then
12: push(nodes, child)

13: return result

ping circles from the tree. Note that we have introduced two variants of the
algorithm only to facilitate determining the runtime of CMQ in Section 5.3.
While queryAndExtract (without star) returns all overlapping circles,
queryAndExtract* solely returns a single overlapping circle, since it im-
mediately returns in case of a match (see line 8). Without specifying a
specific version, we refer to the second version of queryAndExtract that
returns all overlapping circles.

The queryAndExtract function starts with the initialization of a result
list (line 1) and a stack for the node traversal (line 2). For the depth-first
traversal, we first move the root of the tree to the stack (line 2). As long as
there are nodes on the stack, we expand the tree and check for overlapping
circles (lines 4-12). At each iteration, we retrieve a node from the stack (line
5). First, we check for all circles (line 6) that are stored in this node whether
they overlap with the query circle with respect to the inter-circle distance
(line 7). In the case of an overlap, the element is immediately removed from
the tree and added to the result set (lines 8-9). This means that within the
query function the removal operation poses a side effect. We do not include
underflows in the algorithm where previously split nodes would be merged
together. In the second step, the function expands the current node (line
10). The function places each overlapping child node on the stack for further

76

5. CMQ: The Circle Merging Quadtree

Algorithm 5.4 CMQ

Input: Set P of n points with coordinates x and y
Minimum circle radius rmin in px
Minimum inter-circle distance δ in px
Map bounds B ∈ R2 × R2 in px
Maximum circle radius rmax in px

Output: A set of non-overlapping circles
1: quadTree ← initialize empty tree with bounds B
2: for point ∈ P do
3: circle ← makeCircle(point.x, point.y, rmin, 1)
4: overlappingCircles ← queryAndExtract(quadTree, circle, δ)
5: while overlappingCircles ̸= ∅ do
6: circle ← merge(overlappingCircles ∪ {circle}
7: rmin, rmax, n)
8: overlappingCircles ← queryAndExtract(quadTree, circle, δ)

9: insert(quadTree, circle)

10: return getAllCircles(quadTree)

expansion (lines 11-12). Finally, the function outputs the resulting set of
overlapping circles.

Algorithm 5.4 provides the details of the main function CMQ. The input con-
sists of the set of points P and the minimum circle radius rmin. Furthermore,
it contains the minimum inter-circle distance δ, the map bounds B and finally
the maximum radius rmax. Note that the application has to specify rmax using a
heuristic like rmax = 4 · log2(n + 1), which was introduced as the Log2 model in
Section 4.5. We will use these bounds rmin and rmax in the merge step to scale
the area of the circles ci proportionally to their relative number of attached points
ci.n.

First of all, the algorithm initializes an empty quadtree with the bounds B of the
considered map (line 1). Then it traverses over all points p ∈ P of the input
one after the other (line 2). The algorithm creates for each point p of the input a
circle (four-tuple) with center (p.x, p.y) and radius rmin by using theMakeCircle
function (line 3). This initial circle represents a cluster with exactly one point, and
thus, the fourth parameter (cardinality) is set to 1. Thereafter, the algorithm tries
to insert this circle into the quadtree while repeatedly checking for overlaps. Lines
5 to 8 provide the iterative lookup for detecting overlapping circles and merging
them. We perform the lookup for overlaps as a radius query to the adjusted
quadtree as described in Algorithm 5.3. The queryAndExtract function does

77

5. CMQ: The Circle Merging Quadtree

Algorithm 5.5 Function merge for merging circles

Input: Set of circles {c1, . . . , ck} with attributes x, y, r and n
Minimum circle radius rmin in px
Maximum circle radius rmax in px
The total number of points n

Output: A new, merged circle c with attributes x, y, r and n
1: newSize ←

∑︁k
i=1 ci.n

2: newX ←
∑︁k

i=1 ci.x · ci.n
newSize

3: newY ←
∑︁k

i=1 ci.y · ci.n
newSize

4: fraction ← newSize− 1

n− 1

5: Amin ← rmin
2 · π

6: Amax ← rmax
2 · π

7: Anew ← Amin + fraction · (Amax − Amin)

8: newRadius ←
√︃

Anew

π

9: return makeCircle(newX, newY, newRadius, newSize)

not only include the circle radius, but also a padding parameter specified by the
inter-circle distance δ. If the query returns a result, the matching circles are merged
with the current circle (line 6). Recall that the queryAndExtract function
directly removes all overlapping circles from the tree as a side effect. We repeat
this procedure with the new merged circle until there is no more overlap. Then, the
algorithm inserts the circle into the quadtree (line 9).

We can increase the efficiency of the insertions by introducing a technical modi-
fication to the function queryAndExtract. Instead of returning an empty set
in the case of no overlap, the algorithm returns insertion node that fully contains
the query circle. We determine the insertion node by traversing the query path
from the leaf, which contains the centroid of the query, upwards until that circle
is completely enclosed by the bounds of this node. By doing this, we can improve
the efficiency of the insert algorithm because most of the inserts occur in leave
nodes and it can omit a second tree traversal.

The merging of multiple circles is realized in the merge function. It is given as
pseudocode in Algorithm 5.5 and also illustrated in Figure 5.2. The input consists

78

5. CMQ: The Circle Merging Quadtree

0.30 0.55

0.30

0.55

32

10
0.08 0.27

0.5

0.5

42
0.35

Figure 5.2.: This figure illustrates the merging of two circles (left) into a new,
larger one (right). The centers and radii of the circles are given, in-
dicating the growth and displacement after merging. The numbers at
the arrows give the amount of attached points for each circle. The
required calculations are given in Algorithm 5.5.

of a set of k circles to be merged as well as the parameters rmin, rmax and the
total number of points n. The function returns a new merged circle. The lines 1
to 3 compute the center of the new circle as the weighted centroid of the input
circles, where the weights are the relative number of corresponding points. In an
analogous manner, the new area, which is determined in lines 4 to 7, is scaled
linearly between the minimum and maximum area. This procedure is similar to
the method described by Jänicke et al. [JHS13] except that we compute it for more
than two circles. Eventually, in line 8, we derive the new radius from the area. In
line 9, the function outputs the new circle.

After the CMQ algorithm has processed each of the points, the quadtree consists
of a set of m non-overlapping circles. In line 10 of Algorithm 5.4, the function
getAllCircles retrieves all circles from the quadtree and outputs them as the
result. Here, a simple tree traversal is sufficient. The size of this set is bounded
by the size of the input set (|P | = n) and the maximum number of displayable
circles on the map. For a given zoom level z, an upper bound for the number of
displayable circles is given by

map area

min circle area
=

2562 · 22z

r2min · π
.

This bound does not yet incorporate δ and unavoidable gaps between circles. Fur-
thermore, we expect m to be much smaller than this upper bound due to a high
number of expected overlaps.

79

5. CMQ: The Circle Merging Quadtree

(2) query and retrieve

(3) re
move an

d merge

Σ

(1) state

(4) query and insert

Figure 5.3.: This figure shows an example of a CMQ insertion of a point. Af-
ter querying with the minimum circle at the point’s center (red and
marked), the overlapping circles are removed from the quadtree (dark
blue). These circles are then merged into a new, larger circle that is
then inserted into the quadtree.

Figure 5.3 presents an example of the insertion phase of CMQ , starting (1) with
the quadtree from Figure 5.1. Here, we restrict the example to only plotting the
partitioning of the quadtree. The red-marked circle, which is a converted point
with minimum radius rmin, serves as a query to the quadtree. The query (2)
outputs two overlapping circles (dark blue), which are merged with the query
circle. Note that during the merge step, the tree no longer contains the previously
overlapping circles (3), and thus, a reorganization of the tree is performed. Then,
the newly created circle serves as input to the next query to the quadtree. Since
there is no overlap anymore, the algorithm inserts the circle into the quadtree
(4). This completes the insertion step of the point and the algorithm can now
continue with the next point. In the next section, we examine the time and space
complexity of this algorithm.

80

5. CMQ: The Circle Merging Quadtree

5.3. Time and Space Complexity

In this section, we investigate the theoretical complexity of the CMQ algorithm.
For this, we first consider the complexity of the runtime and secondly look at the
space and memory consumption.

5.3.1. Time Complexity

To analyze the time complexity, we first look at the individual operations of the
CMQ quadtree. Then, we analyze the runtime of each quadtree operation. Finally,
we can combine the results to present the total runtime of CMQ .

Line 1 of Algorithm 5.4 takes constant time for the empty tree structure being
initialized with its boundaries B. The for-loop in line 2 ensures that there are
exactly n calls of makeCircle (line 3), queryAndExtract (line 4) and insert
(line 9). While makeCircle requires constant time since it only initializes a four-
tuple, we will investigate queryAndExtract and insert later. The remaining
operations to estimate are in lines 6 to 8, since the condition of the while-loop in
line 5 causes only constant costs. By using the queryAndExtract* algorithm
(cf. Algorithm 5.2), we guarantee that it outputs either no or exactly one circle
that overlaps with the query circle. The overlapping circle is then merged in the
next iteration by using the operation merge in line 6. However, there is an upper
bound of n−1 merge operations. There are two extreme cases. First, there are no
overlaps at all and the loop is completely ignored. Second, there is only one circle
left after n−1 merge operations. Therefore, the total upper bound of the operations
insert, queryAndExtract* and merge is

1 +
n∑︂

i=2

2 = 2n− 1 = O(n) .

The same bound holds when using the queryAndExtract variant without star
(cf. Algorithm 5.3). Here, the number of loop iterations is less than or equal to the
starred variant because it can output more than one circle to merge. This leads
to the same merge operations at most.

Before we examine the runtime of insert and queryAndExtract, we show
that the height of the quadtree is O(1). The height of the tree is not bound by the
number of elements n, but rather by the map width w = 256 · 2z. Without loss
of generality, we consider a quadratic map of size w2. The node width decreases
exponentially with the depth of the tree because the width is halved for each level.
Therefore, a circle with a minimum radius of rmin does inevitably exceed the area

81

5. CMQ: The Circle Merging Quadtree

of the node boundaries at a certain level in the quadtree. This leads to a height
bound of

O

(︃
log (w)

log (2 · rmin)

)︃
.

This bound is much smaller than the worst-case depth of a quadtree, which is
multiplicatively composed of a linear component in n and the logarithmic fraction
between the root node length and the smallest distance of two points (cf. Sec-
tion 3.3). Since we incorporate the map bounds as a constant for a call of the
CMQ algorithm, the height is O(1).

Subsequently, the time complexity of a single insert operation (cf. Algorithm 5.1)
is O(1). Since the function traverses a path from the tree root to a leaf node
(lines 2-5) and the height is O(1), it requires a constant number of operations.
Furthermore, the time required to split an overfull leaf node (lines 7-8) is O(1)
because the algorithm has to split up a constant number of circles into a constant
number of child nodes. Circles that cannot descend into the tree because they
overlap the borders of a node are stored in the associated list of a tree node.
However, the list size is also bounded by the width of the map due to the extent of
the circles. There can only be a fixed number of circles assigned to a node before
they inevitably trigger a merge operation. Aside from that, the operations root,
hasChildren and encloses require constant time.

The queryAndExtract operation can be analyzed similarly to the insert oper-
ation. Here, the constant depth of the tree leads to a constant number of nodes that
are traversed in the worst case. Hence, the operation requires O(1) time for both al-
gorithms (cf. Algorithms 5.2 and 5.3). One can argue that in queryAndExtract
the result list potentially consists of all n circles. However, all queryAndEx-
tract operations in total only visit at most n circles since the merge operations
would then reduce them to a single circle. Therefore, for the variant queryAn-
dExtract, the operations requireO(1) time on average. Moreover, the operations
createList, createStack, isEmpty, pop, push, circles, intersects and
children require constant time. They are either trivial or only perform opera-
tions at the front or back of a list or stack. The function remove has to delete
circles out of a list with constant length on average.

Finally, we examine the cost of the merge operations (cf. Algorithm 5.5). While
the calculations in lines 1 to 3 require O(k) time for merging k circles, there are
at most n of such operations overall. The reason is, as discussed in the analysis
of the queryAndExtract operation, that after n− 1 merges of circles there is
only one circle left. All other computations from lines 4 to 9 as well as the make-
Cirlce method require constant time. Therefore, merge requires on average
O(1) time.

82

5. CMQ: The Circle Merging Quadtree

A side observation is that in the worst case, when all circles overlap, the costs
for the query and insert operations are minimal since there is only one circle
in the tree at a time. Vice versa, having no overlaps and a maximum num-
ber of circles in the tree yields a minimal number of query and insert opera-
tions.

5.3.2. Space Complexity

The analysis of the space complexity is, in contrast to time complexity, rather
straightforward. Since the only data structure is the quadtree that stores the
circles, we again examine the two extreme cases in the CMQ algorithm (cf. Algo-
rithm 5.4). In the first case, if no circles overlap at all, there are at most n circles
stored in the tree at the end. However, as discussed in Section 5.2.2, overlaps
are inevitable for a large n because it is only possible to display less than w2

r2min·π
circles side by side on a map of width w. Note again that this bound does not
incorporate the inter-circle distance δ. Hence, together with potential pointers
for the tree structures (loosely estimated with one pointer per circle) the space
complexity is O(w2) = O(1), assuming w being a constant. The second extreme
case considers the option that all circles overlap. Therefore, there is at any time
exactly one circle stored in the quadtree and the bound of O(1) also applies here.
Since queryAndExtract removes all circles from the quadtree that it returns,
it does not affect the space consumption. In any case, there are not more than
O(1) circles in the result set of queryAndExtract.

In summary, the combination of O(n) time and O(1) space complexity makes
CMQ a suitable candidate for a big data scenario. The experiments in Section 5.6
confirm this for the actual implementation with real data. Since the height of the
quadtree constitutes a constant in the runtime complexity, it is worth reducing
this constant in order to improve the practical efficiency of CMQ . In the next
section, we will show that we can further increase the efficiency by introducing a
preprocessing step.

5.4. Preprocessing and Stability

In this section, we present a preprocessing step for the Circle Merging Quadtree
that serves two purposes. It improves the performance of our method and produces
stable results, i.e., the output is independent of the ordering of the points. In
the following, we first motivate the importance of stability. Then, we present

83

5. CMQ: The Circle Merging Quadtree

the details of our preprocessing method. Finally, we analyze its time and space
complexity.

5.4.1. Stability

CMQ is a visual point clustering algorithm that aggregates point data. It solves
the unsupervised learning problem of creating circular representatives of the un-
derlying point data. There are two characteristics that are important for this type
of analytical algorithm: determinism and stability. A deterministic algorithm pro-
duces the same result every time it is applied to the same input. This creates
reliability for the user, as the results can be reproduced at any point in time.
Although not every analytical algorithm is deterministic, it is very advantageous
to achieve this property. For example, spring layouts [Di +94] are applied to dis-
play and arrange graph structures using different random seeds so that users can
refresh the visualization until it produces sufficient results. Stability means that
the algorithm, regardless of the order of input data, always produces the same
result. This property is even stricter than determinism. Again, it is quite common
for data analysis tools not to provide stability, e.g. BIRCH Clustering [ZRL96],
where the tree structure depends on the order of the data. However, both prop-
erties allow the user to easily reproduce the results of analyses and are therefore
a requirement in many applications. In particular, for visualization it seems to
be important to provide stable results. Keim et al. [Kei+08b] pointed out that
the acceptance of the presented results is essential. Also from our experience in
GFBio, users get confused when results change because of a different ordering of
the data.

It is straightforward to conclude that CMQ is a deterministic algorithm. By re-
considering Algorithms 5.1 and 5.3 to 5.5 of Section 5.2 we can state that there
is no randomness in any of the proposed functions. The reprocessing of the
same input data inevitably leads to the same iterations, and thus to the same
results.

On the other hand, CMQ is not stable by default. In Algorithm 5.4, the order
of the merge operations depends on the order of the input data. In each merge
step, the circle center moves to the combined centroid of the input circles and the
size scales with respect to a minimum and maximum radius (cf. Algorithm 5.5).
This means that, considering three circles A, B and C, it can potentially make a
difference which two circles are merged first. Figure 5.4 provides such an example
where the merge sequence on the left leads to a different result than the merge
sequence on the right side. On the left side, the merging of the circles A and
B leads to a circle (green) that does not overlap with C. In contrast, merging

84

5. CMQ: The Circle Merging Quadtree

A B C

A B C A B C

Figure 5.4.: This figure shows an example that a different order of circle merges
can lead to a different result. The left side depicts that the merge
of A and B leads to a circle (green) that does not overlap with C.
The right side illustrates that the merge of B and C leads to a circle
(green) that does not overlap with A. Thus, the left merge order leads
to two different circles than the right one.

the circles B and C yields a circle (green) that does not overlap with A on the
right side. As a result, there will be two different circles as result depending on
the merge order. However, the fact that an algorithm is not stable is not always
reflected in drastically different results. We will investigate the severity of this in
our experiments in Section 5.6.

5.4.2. Preprocessing

In the following, we propose a preprocessing step that improves the efficiency of
CMQ and also guarantees its stability. The core idea is that this step sorts the
data prior to the insertions of the data into the quadtree. Thereby, it already
identifies a large portion of the overlapping circle. These overlapping circles are
immediately merged and only the remaining circles must be inserted into the
quadtree. Furthermore, since we have evaluated the determinism of the CMQ
algorithm and its quadtree modifications in the previous subsection, this sorting
is sufficient to ensure stability.

Figure 5.5 illustrates the definition of a grid structure that has cells of width

√
2 · rmin +

1√
2
· δ ×

√
2 · rmin +

1√
2
· δ .

In the algorithm, we will assign each circle to the grid cell that contains its centroid.
This ensures that whenever at least two circles fall into the same grid cell, they do

85

5. CMQ: The Circle Merging Quadtree

0 1 2 3

x · (
√

2 · rmin + 1√
2
· δ)

0

1

2

3

y
·(
√

2
·r
m
in

+
1 √
2
·δ

)

rm
in

rm
in

δ

Figure 5.5.: The figure depicts the grid partitioning of the map for the preprocess-
ing method.

overlap. Note that this merging would also occur in the CMQ algorithm without
preprocessing if these circles were contiguous in a particular input sequence. The
cell specification takes into account that overlapping means that the distance is
at most δ between the circles. In Figure 5.5, the two circles (blue and orange)
are placed at the furthermost distance within a single cell to depict this. In this
case, the two circles are considered overlapping because they are just within the
distance δ.

We describe the extended CMQ algorithm with preprocessing in Algorithm 5.6.
The preprocessing starts with the creation of the grid of size k (line 1) where each
grid cell c ∈ {c1, . . . , ck} stores a corresponding circle (x, y, r, n), which is initially
undefined. The preprocessing then iterates over all data points (line 3), creates a
circle with a minimum radius of rmin (line 4) and assigns it to the matching grid cell
ci (line 5). It updates ci in line 7 by calling the merge function (cf. Algorithm 5.5)
on the corresponding and new circle in order to update the combined centroid,
radius and cardinality. The overall result of the merges is independent of the
insertion order because all merge operations lead to a combined centroid that
cannot exceed the grid cell. In the case that ci’s circle is uninitialized (line 9), it
is directly populated with the circle of this iteration. In the penultimate step in
line 10, the preprocessing retrieves all circles from the grid cells by traversing the
grid. Finally, in line 11, we call CMQ with the result of the preprocessing. Note
that we use the function CMQ˜, which is a modified version of CMQ . Here, the
input is a set of circles instead of a set of points. It is then sufficient to skip the
calls to makeCircle in CMQ .

There are two aspects that are important to ensure the stability of CMQ with

86

5. CMQ: The Circle Merging Quadtree

Algorithm 5.6 Function cmq with preprocessing

Input: Set P of n points with coordinates x and y
Minimum circle radius rmin in px
Minimum inter-circle distance δ in px
Map bounds B ∈ R2 × R2 in px
Maximum circle radius rmax in px

Output: A set of non-overlapping circles
1: grid ← initialize empty grid with bounds B and k cells of size
2:

√
2 · rmin +

1√
2
· δ ×

√
2 · rmin +

1√
2
· δ

3: for point ∈ P do
4: circle ← makeCircle(point.x, point.y, rmin, 1)
5: ci ← determineCell(grid, circle.x, circle.y)
6: if isInitialized(ci) then
7: ci.circle ← merge({ ci.circle, circle }, rmin, rmax, n)
8: else
9: ci.circle ← circle

10: circles ← gridCollect(grid)
11: return CMQ˜(circles, rmin, δ, B, rmax)

preprocessing. First, the grid structure does not merge overlapping circles that
have centroids in different grid cells. There will be circles in several grid cells that
overlap because their radius exceeds the cell boundaries, but they will be merged
later in CMQ . Second, if we iterate over all grid cells in a stable order (line 7), the
result of CMQ is also stable. This applies because the result is used as input for
CMQ and CMQ is deterministic. Therefore, we must iterate over all grid cells in
a predefined order and obtain the set of circles that corresponds to those cells. A
space-filling curve like the Hilbert, Snake, XY and Z curve (cf. Section 3.3) provides
such a stable order. It linearizes our two-dimensional map into one-dimensional
indices. Since our grid provides a discrete partitioning of the map, we fulfill the
requirements for the application of such curves.

In the following, we discuss the choice of data structure for the grid. There are
basically two options for storing the grid structure: as an array or as a hash map.
The former allows for fast insertions and provides stable iterations by default.
It could pose, however, a potential overhead if the grid is very sparse because of
skewed or concentrated data in the map extent. In this case, a grid uses much more
memory than necessary, which can result in many accesses of empty grid cells, and
thus lead to slower processing times. A hash map addresses this problem by being
space efficient while offering constant expected access times at the same time. In
this case, the space-filling curve serves as the prehash function. However, a good

87

5. CMQ: The Circle Merging Quadtree

hash function, which distributes the values uniformly, leads to few collisions, but
also to a lack of locality. In order to iterate in a stable way over the hash table,
it is necessary to use separate chaining for resolving collisions [Cor+09]. Open
addressing techniques like linear probing or double hashing have the problem that
the colliding entry that comes second in the insertion order is stored at a different
position in the hash table. Traversing the underlying hash table would therefore
result in circle lists that again depend on the insertion order. In contrast, for
separate chaining, it is sufficient to sort the entries of the buckets according to
the value of the space-filling curve to obtain stability during the iteration over the
hash table. Since the number of entries in a bucket is close to 1 on average in a
good setup [Kon10], sorting does not pose a significant overhead. Note that it is
impossible to have two entries with the same key (space-filling curve value of the
grid cell) because these entries would have been merged during grid insertion or
update. This means that we do not have to consider the stability of the sorting
algorithm. The experiments in Section 5.6 verify the findings and show the per-
formance improvements to the unstable variant of CMQ . In addition, it contains
measurements regarding the type of data structure and the type of space-filling
curve in order to assess differences.

5.4.3. Time and Space Complexity

In this subsection, we will briefly discuss the time and space complexity of the
preprocessing step of CMQ . In general, sorting algorithms require O(n · log(n))
time. However, our grid data structure with the insertions and the retrieval is
equivalent to a bucket sorting algorithm [Knu98]. This algorithm is able to sort the
data in O(n) time because the number of buckets is considered a constant. In this
case, the grid divides the (constant) map into cells that depend on the minimum
circle size (determined by rmin) and the inter-cluster distance δ. Therefore, we
consider the number of buckets to be a constant. The choice of data structure
(array or hash map) ensures that the access time is either constant or constant on
average.

For space complexity, we need to look at the size that equals the maximum amount
of data stored in the grid. When using an array, this size (= number of cells)
again depends on the size of the map and the minimum circle. For the hash
map, the number of stored grid cells is at most as large as for the array vari-
ant. In practice, it should be smaller if the data is not uniformly distributed.
In both cases it is bounded by the map size rather than the number of elements
n. Furthermore, we consider this to be much smaller than n in a big data sce-
nario.

88

5. CMQ: The Circle Merging Quadtree

Algorithm 5.7 Multiple Zoom Level Aggregation

Input: Set P of n points with coordinates x and y
Minimum circle radius rmin in px
Minimum inter-circle distance δ in px
Map bounds Bcrs ∈ R2 × R2 in coordinate system units
Maximum circle radius rmax in px
Zoom levels z1, . . . , zk ∈ N0 with zi < zj for i < j

Output: List of sets of circles C1, . . . , Ck with c ∈ Ci having attributes
x, y, r and n

1: result ← empty list
2: circles ← empty list
3: for p ← P do
4: append(circles, makeCircle(point.x, point.y, rmin, 1))

5: for i = k, . . . , 1 do
6: mapWidth ← 256 · 2zi

7: resolution ← Bcrs.width

mapWidth

8: B ← projectBounds(Bcrs, resolution)
9: circles ← projectCircles(circles, resolution)
10: Ci ← CMQ˜(circles, rmin, δ, B, rmax)
11: circles ← Ci

12: append(result, Ci)

13: return result // {Ck, . . . , C1}

5.5. Generation of Multiple Zoom Levels

In an interactive map application, users explore the aggregated point set. They
zoom into interesting areas and zoom out to get a better overview of a larger area.
These zooming actions invalidate the initial visual point clustering because the
projection of the coordinates of the map extent to pixel values changes. Therefore,
it is necessary to calculate a new set of circles. An application might try to calculate
several zoom levels in advance to achieve a better responsiveness for the user as a
form of prefetching.

For CMQ , it would thus be advantageous to speed up the calculation of multiple
zoom levels. Fortunately, we can achieve this by reusing results. More precisely,
we use the output of an aggregation of zoom level z as input for any aggregation
with zoom level znew, with znew < z. In particular, we expect zoom level znew
to be z − 1. We therefore reduce the size of the input for a subsequent zoom

89

5. CMQ: The Circle Merging Quadtree

level from n (the number of points) to m (the number of resulting circles from the
previous zoom level), which is especially advantageous if m≪ n. This incremental
calculation is possible because an overlap at a higher zoom level would also occur
at a lower zoom level. This monotonicity is true as long as the circles do not
become smaller after merging. Hence, reusing the previous results as input makes
it possible to avoid redundant computations. Jänicke et al. [JHS13] also made
use of monotonicity for computing their multi-level aggregation. In their case,
they iteratively remove edges in a Delaunay triangulation for subsequent zoom
levels.

Algorithm 5.7 shows the pseudocode for the computation of multiple zoom levels.
It uses the same input as Algorithm 5.4, but has a set of k zoom levels z1, . . . , zk,
with zi < zj for i < j, as additional input. After initializing the result list (line
1), the algorithm creates for each point one circle using the minimum radius rmin

(lines 2-4). Starting from the highest zoom level (line 5), it calculates the map
bounds and the resolution (line 6 and 7) and maps the data into the current
zoom level (line 8 and 9). The algorithm then calls CMQ (cf. Algorithm 5.4)
for generating the circles for the current zoom level (line 10). These circles then
represent the input for the next lower zoom level in the next iteration (line 11)
as well as one result entry (line 12). Note that we again use the slightly mod-
ified version CMQ˜ of Algorithm 5.4, which accepts circles as input instead of
points and skips the calls to makeCircle. This corresponds to the definition in
Section 5.4.

5.6. Experiments

In this section, we compare the Circle Merging Quadtree (CMQ) to the other
suitable methods discussed in Section 3.3. These are

• the Delaunay-based aggregation method of Jänicke et. al [Jän+12]
(GeoTemCo) and

• the quadtree-based approach of Bereuter et. al [BW13] (quadtree).

In addition, we apply our grid-based preprocessing step to CMQ and specify the
memory type (vector for array and hash for hash map) as well as the space-filling
curve type (hilbert, snake, z and xy, cf. Section 3.3). For example, CMQplain

stands for CMQ without preprocessing and CMQhash xy for CMQ with prepro-
cessing based on a hash map and the XY curve.

90

5. CMQ: The Circle Merging Quadtree

Figure 5.6.: Two example data sets: the left side shows the distribution of 910 784
occurrence points of cooper’s hawk in North America and the right
side shows the distribution of 768 436 occurrence points of the greylag
goose which are spread across the world.

For all computations we set the minimum radius rmin = 2.5 px (diameter of 5 px)
and the inter-circle distance δ = 1px. For specifying the maximum radius we have
chosen for comparability that all methods use the rule of thumb of Jänicke et al.
[Jän+12] of rmax = 4 · log2(n) px. This corresponds to the transformation function
Log2 in Section 4.5.

We implemented all methods in Rust1 version 1.24. The experiments have been
performed on an Intel i7-3770 CPU running at 3.40GHz and having 24GB of
RAM. The comparison of methods considers the runtime as well as the qual-
ity. For CMQ we additionally investigate the stability and compression perfor-
mance.

For this evaluation we extracted 50 real data sets from GBIF2, which represent the
(worldwide) locations of observations of different species (cf. Section 1.2). Their
sizes vary from several hundred to several million data points. We obtained these
data sets by partitioning all observation data by species name and choosing par-
titions in a way that favors larger cardinalities. We implemented this by ranking
the partitions in ascending order of their cardinality and using rank proportion-
ate sampling (roulette wheel selection [LL12]) such that they were chosen with
a probability of ranki∑︁

i rank
. These data sets contain different data patterns, i.e.,

more or less dense regions, larger and smaller distributions of data and differ-
ently shaped hot spots. Figure 5.6 shows heat maps of two exemplary data sets
to emphasize this. While the left-hand side shows 910 784 occurrence points of

1www.rust-lang.org
2Global Biodiversity Information Facility, www.gbif.org

91

https://www.rust-lang.org/
https://www.gbif.org

5. CMQ: The Circle Merging Quadtree

10−3

10−4

10−5

10−6

10−7

10−8

Zoom Level 0

min mean max

10−3

10−4

10−5

10−6

10−7

10−8

Zoom Level 1

min mean max

CM
Q has

h
hilb

er
t

CM
Q has

h
sn

ak
e

CM
Q has

h
xy

CM
Q has

h
z

CM
Q pla

in

CM
Q ve

ct
or

hilb
er

t

CM
Q ve

ct
or

sn
ak

e

CM
Q ve

ct
or

xy

CM
Q ve

ct
or

z

Geo
Tem

Co

Q
uad

tr
ee

Method

10−3

10−4

10−5

10−6

10−7

10−8

Zoom Level 2

min mean max

R
u

n
T

im
e

(s
)

/
P

o
in

t

Figure 5.7.: The minimum, average and maximum runtime per point for the 11
algorithms.

cooper’s hawk in North America only, the right-hand side shows 768 436 occur-
rence points of the greylag goose that are more evenly distributed across the world.
We have made all data records available under the URL dbs.mathematik.uni-
marburg.de/downloads/data/an efficient algorithm for visual clustering/, which
allows the reuse of the data and reproducibility of the results.

5.6.1. Runtime

For analyzing the runtime, we measured the wall-clock time of the execution.
Note that we excluded the initial I/O-time for loading the data sets into main

92

https://dbs.mathematik.uni-marburg.de/downloads/data/an_efficient_algorithm_for_visual_clustering/
https://dbs.mathematik.uni-marburg.de/downloads/data/an_efficient_algorithm_for_visual_clustering/

5. CMQ: The Circle Merging Quadtree

memory. This is reasonable because it is exactly the same operation for each
algorithm.

We consider two different scenarios for the performance evaluation. The first one
focuses on a single target zoom level. This is particularly important for exploratory
data visualization, where immediate response times are crucial for an initial visual-
ization. The second one considers the runtime for computing multiple zoom levels
at once. This is applicable when users want to investigate a single data set in more
detail (cf. Section 5.5). For both scenarios, we performed the computations on all
50 data sets and recorded the individual runtimes. We repeated each experiment
five times and report the averaged results.

For the first scenario, we measure each zoom level individually and report the
results for the different methods in Figure 5.7. Here, we display the minimum,
median and maximum runtime per point. We have calculated these times by
dividing the total runtime for a data set by the number of points in that data set.
This allows us to compare the runtimes independent of the size of the data set.
Note that we used a logarithmic scale for the y-axis because of the large differences
in the runtimes of the methods. It is noticeable that the Circle Merging Quadtree
outperforms the other two methods at least by an order of magnitude. The plots
of the results for three zoom levels make it apparent that all methods are quite
stable and slow down only slightly for larger zoom levels. It is also evident that
CMQ with preprocessing has an order of magnitude lower runtime than CMQ
without preprocessing. In addition to providing a stable algorithm, it seems to
be highly advantageous for the runtime. The hash map storage has a better
maximum runtime in comparison to the array storage. Furthermore, the snake
and Z curve seem to have a slightly better performance than the Hilbert and xy
curves.

For further investigations of the behavior of CMQ ’s preprocessing implementa-
tions, we present another view on the data. The boxplot in Figure 5.8 shows the
differences between hash map and array storage. Array storage is more efficient for
small zoom levels, while hash map storage is more efficient for larger zoom levels.
This can be explained by the increasing sparsity of the map as the map becomes
larger. Here, the array becomes significantly larger than the hash table, while the
number of occupied positions in the array, which are the actually used grid cells,
becomes quite small.

Figure 5.9 shows the runtimes per point for the 50 data sets for CMQhash z in more
detail (in this example for zoom level 3). Since the values are not aggregated, we
can assess the differences between smaller and larger data sets. We can notice an
overhead for smaller data sets and a consistent runtime per point for larger data

93

5. CMQ: The Circle Merging Quadtree

0 1 2 3 4

Zoom Level

0

2

4

6
R

u
n

T
im

e
(s

)
/

P
o

in
t

×10−7

CMQhash z
CMQvector z

Figure 5.8.: The runtime per point for CMQhash z and CMQvector z.

2
2

5

4
0

2

1
4

3
5

2
8

3
5

6
6

5
0

2
5

1
3

2

7
0

3
3

9

1
8

8
9

8
4

2
9

0
6

6
2

3
9

3
7

4
4

6
3

2
4

3
7

1
1

4
6

8
9

4

1
6

5
3

5
8

3

2
9

3
9

9
7

0

4
1

6
7

6
9

2

4
9

0
6

6
2

7

5
2

9
0

1
7

9

Number of Points in Data Set

10−8

10−7

R
u

n
T

im
e

(s
)

/
P

o
in

t

Figure 5.9.: This figure shows the runtime per point of CMQhash z for the 50 data
sets. The x-axis indicates the number of points in the data set.

sets. This overhead for smaller data sets is a factor to explain the outlier values in
Figure 5.8. The consistency on the right side of the plot confirms the linear scaling
of the runtime for larger cardinalities of the input data.

For the second scenario, we report the computation times for a total of five zoom
levels. All methods can exploit the fact that multiple zoom levels are computed
at once. CMQ uses the method described in Section 5.5. Quadtree takes advan-
tage of creating the data structure only once and traversing it by outputting the
nodes that depend on the minimum circle size for that zoom level (which depends
on the transformation from map units to pixel values). GeoTemCo exploits the
hierarchical clustering strategy and can output the result of a single zoom level
as an intermediate step. Figure 5.10 shows similar results for all data sets (sorted
wrt. their size) in comparison to the first scenario where only one zoom level is
considered. CMQ also performs better than the other two methods here, in par-

94

5. CMQ: The Circle Merging Quadtree

0× 106 1× 106 2× 106 3× 106 4× 106 5× 106

Number of Points in Data Set

10−4

10−2

100

102

104

R
u

n
T

im
e

(s
)

CMQ hash z

CMQ plain

CMQ vector z

GeoTemCo

Quadtree

Figure 5.10.: The runtime of five algorithms for five zoom levels over the number
of points of the 50 data sets.

ticular with preprocessing. Note that we again use a logarithmic scale for the
y-axis. Moreover, there is a growing divergence for the larger data sets between
CMQ and GeoTemCo. This is an indicator for the superior scalability of the
method.

Figure 5.11 depicts the runtimes of the different preprocessing parametrizations
of CMQ as a function of the 50 data sets (sorted by size). Note that we again
computed all five zoom levels. While the hash map showed a better scalability in
the first scenario, the array storage has a better overall runtime for multiple zoom
levels here. The Z curve seems to be the space-filling curve that poses the least
overhead for the computations. The Hilbert curve, on the other hand, performs
worse regardless of the storage type.

5.6.2. Quality of Results

To evaluate the visualization quality we use the seven quality criteria introduced
in Chapter 4. We apply all algorithms to five zoom levels for each of the 50 data
sets and obtain 250 results per method. The results are summarized in seven
boxplots in Figure 5.12, which displays an individual boxplot for each method and
each criterion. Recall that the quality measures pose utility values. A value of one
indicates the best result regarding a certain criterion, whereas zero is the worst
result.

95

5. CMQ: The Circle Merging Quadtree

0× 106 2× 106 4× 106
0.0

0.2
R

u
n

T
im

e
(s

)

hash hilbert

hash snake

hash xy

hash z

0× 106 2× 106 4× 106

vector hilbert

vector snake

vector xy

vector z

Number of Points in Data Set

Figure 5.11.: This figure shows the runtime of all CMQ algorithms for five zoom
levels over the number of points of the 50 data sets. This plot com-
pares the runtimes for CMQ with hashing (left) and array storage
(right).

The boxplots for the criteria centered and distance show no difference among the
methods. All of them produce very good results. The criterion overlap is com-
pletely fulfilled by all variants of the method CMQ as well as GeoTemCo. The
quadtree produces, however, very poor results. This is due to the circle construc-
tion, which determines the radius by the number of points in a subtree. If this
subtree contains a lot of points, the resulting circle greatly exceeds the bounding
box of the node, which can lead to an overlap with circles of other nodes. All
methods produce a small number of points that are not located within any circle
(unassigned). Within the circles, the points follow a uniform distribution to a
certain degree. However, none of the four methods is producing circle represen-
tations with good results for this criterion. It seems that this criterion is difficult
to satisfy because not all point distributions can be perfectly approximated by
non-overlapping circles. Even though we do not obtain optimal results for zoom
consistency, the results obtained from CMQ and its variants as well as GeoTemCo
are acceptable. The quadtree approach is significantly worse in this regard. When
zooming in, it is possible that a deeper tree level is considered for the creation of
the circles. This means that a circle is split up into (up to) four circles that are
located at the centers of the child nodes. The center of the parent node may thus
be potentially empty on the map. Finally, the criterion area varies considerably
between all data sets, at least if CMQ, GeoTemCo or quadtree are applied. For
some data sets, we obtain satisfactory results, whereas for the majority of data sets
the results are very poor. One explanation is the incorporation of the minimum
radius rmin, which does not allow a proportional scaling that would undercut this
threshold.

In our next evaluation, we give all individual quality criteria equal weight and
sum them up to get a scalar quality criterion for each method on each data set.

96

5. CMQ: The Circle Merging Quadtree

0.0

0.5

1.0

U
ti

lit
y

centered distance overlap

0.0

0.5

1.0

U
ti

lit
y

unassigned

C
M

Q
h

a
sh

h
il
b

er
t

C
M

Q
h

a
sh

sn
a

ke
C

M
Q

h
a

sh
xy

C
M

Q
h

a
sh

z
C

M
Q

p
la

in
C

M
Q

ve
ct

or
h

il
b

er
t

C
M

Q
ve

ct
or

sn
a

ke
C

M
Q

ve
ct

or
xy

C
M

Q
ve

ct
or

z
G

eo
T

em
C

o
Q

u
a

d
tr

ee

uniform

C
M

Q
h

a
sh

h
il
b

er
t

C
M

Q
h

a
sh

sn
a

ke
C

M
Q

h
a

sh
xy

C
M

Q
h

a
sh

z
C

M
Q

p
la

in
C

M
Q

ve
ct

or
h

il
b

er
t

C
M

Q
ve

ct
or

sn
a

ke
C

M
Q

ve
ct

or
xy

C
M

Q
ve

ct
or

z
G

eo
T

em
C

o
Q

u
a

d
tr

ee

zoom

C
M

Q
h

a
sh

h
il
b

er
t

C
M

Q
h

a
sh

sn
a

ke
C

M
Q

h
a

sh
xy

C
M

Q
h

a
sh

z
C

M
Q

p
la

in
C

M
Q

ve
ct

or
h

il
b

er
t

C
M

Q
ve

ct
or

sn
a

ke
C

M
Q

ve
ct

or
xy

C
M

Q
ve

ct
or

z
G

eo
T

em
C

o
Q

u
a

d
tr

ee

0.0

0.5

1.0

U
ti

lit
y

area

Figure 5.12.: These boxplots show the performance of all methods regarding the
seven quality criteria individually.

The results for this combined criterion are depicted again in the form of box-
plots in Figure 5.13. As can be recognized, the CMQ variants lead to the best
overall results, closely followed by GeoTemCo. Quadtree performs clearly worse
than the other methods. In order to confirm this visual impression we also per-
formed several Wilcoxon tests [CF14]. In contrast to the popular t-test, it does
not require a uniform distribution of the data. More specifically, we can reject
the null hypotheses that the pairwise differences of the quality values between
each CMQ variant and GeoTemCo or Quadtree symmetrically distribute around
0 with over 99% confidence. This is in accordance with the visual impression of
the boxplots.

Figure 5.14 shows the results of the visualization of the occurrence records of the
Central European wolf spider (Piratula hygrophila), which has most records in
Belgium. We can observe that CMQ provides a very clear and informative result

97

5. CMQ: The Circle Merging Quadtree

CM
Q has

h
hilb

er
t

CM
Q has

h
sn

ak
e

CM
Q has

h
xy

CM
Q has

h
z

CM
Q pla

in

CM
Q ve

ct
or

hilb
er

t

CM
Q ve

ct
or

sn
ak

e

CM
Q ve

ct
or

xy

CM
Q ve

ct
or

z

Geo
Tem

Co

Q
uad

tr
ee

0.50

0.60

0.70

0.80

0.90

A
ve

ra
ge

U
ti

lit
y

Figure 5.13.: This boxplot shows the performance of all methods as an equally
weighted average of all seven quality criteria.

(cf. Figure 5.14 (a)). On the other hand, Quadtree (cf. Figure 5.14 (b)) produces
several overlaps that make it more difficult to recognize and distinguish between
individual clusters. The result of GeoTemCo (cf. Figure 5.14 (c)) is very similar
to the result of CMQ , which is as expected.

5.6.3. Stability

In Section 5.4 we discussed the stability of the results of CMQ with respect to the
insertion order of the input data. In this subsection, we evaluate how stable CMQ
is without preprocessing. Furthermore, we validate that the preprocessing step
indeed solves the stability problem. In order to measure stability, we use the in-
tersection over union (IoU) of the areas between two result sets. This is calculated
by using a Monte Carlo simulation and by calculating the difference between the
number of commonly shared points and the number of the points that fall in one of
the resulting sets of circles. We created a first assessment by generating 8 permu-
tations from each of the 50 data sets and comparing these permutations with each
other. This leads to a total of 50·

(︁
8
2

)︁
= 1400 comparisons. As a second assessment,

we use the native and reverse order of the data to investigate probable worst-case
scenarios. This leads to another 50 comparisons.

Figure 5.15 shows the results of the stability experiment. At first, we see that
results of CMQ without using the preprocessing are, as assumed, not perfect, but
nevertheless of high stability. The median is close to 95%, but there are also some
results below 75%. The vector approach, which uses both the one-dimensional
array and the hash map with the sorted overflow lists, produces 100% stability

98

5. CMQ: The Circle Merging Quadtree

(a) (b) (c)

Figure 5.14.: This figure shows the three results of the methods (a) CMQ , (b)
Quadtree and (c) GeoTemCo for the Central European wolf spider
(Piratula hygrophila).

for all data sets. In conclusion, the preprocessing step leads in each case to stable
results.

5.6.4. Compression

In addition to assessing the qualitative aspects of point aggregations, it is interest-
ing to look at the advantages regarding mobile applications that suffer from low
internet bandwidth. This means that any form of data compression in this domain
is highly advantageous.

For this experiment, we again use all 50 data sets. Figure 5.16 shows the compres-
sion rates for different zoom levels by using the Circle Merging Quadtree. They are
calculated by dividing the byte size of the input data set of points by the byte size
of the output data set of circles (thus also considering the additional radius field).
Note that we used the plain version of CMQ without preprocessing because it does
not lead to significantly different results. Since the visual space is limited, and we
assess the performance using large data sets with millions of points, the resulting

99

5. CMQ: The Circle Merging Quadtree

no
gr

id

has
h hilb

er
t

has
h sn

ak
e

has
h xy

has
h z

ve
ct

or hilb
er

t

ve
ct

or sn
ak

e

ve
ct

or
xy

ve
ct

or
z

0.50

0.75

1.00

Io
U

Random

Inverse

Figure 5.15.: This boxplot shows the intersection over union (IoU) for the cluster-
ing outputs of the different CMQ methods. Inputs are either random
permutations or inverse data sets.

0 1 2 3 4

Zoom Level

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

C
o

m
pr

es
si

o
n

R
at

e

Figure 5.16.: This boxplot shows the compression rates of CMQ for different zoom
levels. Higher zoom levels lead to more space and, hence, to fewer
overlaps.

numbers of circles that range from several dozens to a few thousands yield com-
pression rates above 98%. This is in accordance with our predicted bound of the
maximal number of circles in the output in Section 5.2.

5.7. Summary

This chapter presented CMQ , the Circle Merging Quadtree, which is a new method
for aggregating point data sets into a set of circles. Thus, it represents a visual
point clustering algorithm. We provided implementation details as well as a the-
oretical analysis of runtime and space complexity. In addition, we discussed the
concept of stability and presented a preprocessing step that poses a solution for
a stable CMQ variant by using a spatial grid. Furthermore, we provided a CMQ

100

5. CMQ: The Circle Merging Quadtree

variant for calculating multiple zoom levels at once by exploiting monotonicity of
the computational results.

The experiments confirmed the theoretical analysis that CMQ is a suitable visual
point clustering algorithm for big data scenarios. In particular, CMQ with pre-
processing is much faster than the plain CMQ variant, although it was not the
intended feature of the design considerations. Besides outperforming competing
algorithms, CMQ also provides qualitatively good results that are at least as good
as the results from the competitors. The stability evaluation verified the theoreti-
cal proof that the preprocessing does indeed lead to stable results. Preprocessing
is therefore advantageous in any case since it does not have any downsides, in par-
ticular none for the quality criteria. Finally, the compression rates of CMQ are,
as expected, very high. In accordance with the assumption that the number of
circles is very small in contrast to the number of points from the input (m≪ n),
it revealed one of the general strengths of visual point clustering. It is a win-
win situation that a decrease of necessary space is accompanied by an increase in
information about the data for the user.

101

6
CMQ Extensions

This chapter presents extensions of the CMQ algorithm. Here, CMQ is consid-
ered as the basic version upon the following methods build up independently. The
extensions allow CMQ to be more powerful by adding additional features. Fur-
thermore, each extension must adhere to the linear runtime of the algorithm such
that it stays relevant for big data scenarios. The chapter starts with Section 6.1
and presents an extended version of CMQ , which aims to provide summaries of
miscellaneous attributes. These attributes have non-spatial characteristics. The
section provides means for numerical as well as textual attributes. Then, the
chapter presents methods to cope with multiple data sets at once or multiple
classes within the data. Section 6.2 presents two approaches. First, it presents
pie chart maps. Second, and in more detail, it presents circle packed maps. For
this method, the section additionally presents experiments and a user survey re-
garding runtime and quality. Finally, Section 6.3 provides a brief summary of this
chapter.

6.1. Summary of Miscellaneous Attributes

This section presents extensions to the CMQ algorithm to deal with miscellaneous
attributes of the input data set. In the previous chapter, we only considered
the spatial attributes of the data set. However, spatial data typically has further
attributes in real-world scenarios. In our visual point clustering scenario, we cannot
always incorporate these values into our visualization. Section 6.2 will present
means for this special case. Generally, we can present these values alongside with
the visualization, e.g. in a data table or in additional plots. Since we have to output
attribute information for every circle (i.e. cluster), we have to provide aggregated
information here as well. Hence, we discuss suitable aggregation methods that
we can utilize for the miscellaneous attributes in the spatial clustering process.
The resulting values provide characteristics for the data that is represented by

102

6. CMQ Extensions

the circles. In the following, we will distinguish between numerical and textual
attributes.

6.1.1. Numerical Attributes

Aggregating numerical attributes is basically the calculation of statistics on the
underlying data. This means we fall back on computing basic characteristics with
standard algorithms. However, we have to consider two restrictions: First, CMQ
runs in linear time. In order to preserve this runtime, we have to use equally
efficient algorithms. Second, the clustering process merges data sets iteratively.
Hence, an incremental algorithm to generate statistics is required. Note that statis-
tics like median are known as examples that are expensive to compute in an itera-
tive fashion. However, incremental statistics are not strictly required since we can
use a fallback. We first store all attribute data in (linked) lists that we merge in the
circle merge step. Then, we calculate the statistics as a last step. This does, how-
ever, increase the space complexity of CMQ to O(n).

Many essential statistics can be calculated in a single pass over the data set. This
means that it is possible to calculate them in linear time, so that the runtime of
CMQ is preserved. In the following, we discuss a selection of them. We use X for
denoting a list of n numerical values (x1, . . . , xn).

Average/Mean To calculate the average of an attribute of a data set in a single
pass, one can basically add up all values and divide the sum by the number
of values. An incremental approach [Fin09] is the following:

xn =
(n− 1) · xn−1 + xn

n
= xn−1 +

xn − xn−1

n
.

For updating the mean after merges, it is also possible to use this formula
for merges of two sets of values, in which p is a value between 1 and n:

X = X1,...,p ∪Xp+1,...,n =
p

n
x1,...,p +

n− p

n
xk+1,...,n .

Variance and Standard Deviation To calculate the variance of an attribute of a
data set in a single pass, one can generally exploit the formula

V ar(X) = E(X2)− E(X)2 .

However, it can lead to arithmetic overflows for large data sets if the addition
of squared values leads to overflows of the numeric variable. In order to save

103

6. CMQ Extensions

space in the CMQ computation, it is not always the best option to simply
use more bits for storage. Welford [Wel62] provided the following algorithm
as a stable online variance calculation:

δ = xn − xn−1

M2,n = M2,n−1 + δ(xn − xn)

s2n = M2,n

n−1
.

Here, s2n denotes the (corrected) sample variance for n values. M2,n represents
the square of differences to the mean. Since the δ values generally are much
smaller than the values themselves, the additions are much more robust
against arithmetic overflow errors.

Skew & Kurtosis The skew and kurtosis values of a list of values can be calculated
similarly to the variance algorithm of Welford. Pébay [Péb08] introduced the
calculation of values for M3,n and M4,n:

s2n = s2n−1 +
δ
n

M3,n = M3,n−1 + δ3 (n−1)(n−2)
n2 − 3δM2,n

n

M4,n = M4,n−1 +
δ4(n−1)(n2−3n+3)

n3 + 6δ2M2,n

n2 − 4δM3,n

n
.

This enables incremental updates without introducing probable arithmetic
overflows.

Min/Max The calculation of minimum and maximum are trivial. It suffices to
introduce a variable that stores the intermediate min/max value and update
it during the merge step.

Top k In order to store more than one maximum value, we have to introduce a
data structure that replaces the single numeric variable. We omit the least
k discussion here since it is almost identical and just requires switching the
comparison function. The data structure is a bounded min heap that stores
k elements at maximum. Frederickson [Péb08] introduced this selection al-
gorithm. At first, it fills the heap until it contains k elements. Then, it can
compare the new value to the top value of the heap, which is the smallest
one of the k elements. Whenever a new, larger value occurs, it swaps the top
value of the heap with this value. Then, reorganizing the heap leads to the
smallest value being on top again. Since the heap is limited to k elements,
we can consider the runtime to update it to be constant. In total, this leads
to a linear runtime.

The calculation of the median as well as the mode of a list of values is not com-
putable in a single pass with only constant memory [MP80]. For the median,

104

6. CMQ Extensions

the standard algorithm sorts the data and takes the value in the middle (or an
aggregate of the two middle values for an even number of data values). Since
this requires O(n · log(n)) time, it is necessary to use selection algorithms instead
[Cor+09]. For instance, the median of medians algorithm provides a pivot element
that is very close to the real median. Actually, practical applications usually use
approximate algorithms. They run in O(n) time or O(n) expected time, respec-
tively.

We treat temporal data attributes in the same manner as numeric values. Here,
UNIX timestamps (seconds, optionally with fractions and minus leap seconds, since
Thursday, 1 January 1970) are a common numerical representation. Viable statis-
tics are the time span (max−min) and the standard deviation.

As stated before, we usually display these statistics in plots or data tables. Addi-
tionally, it is also possible to use shadings of a color to indicate differences. For
example, a light blue color indicates older mean values and stronger blue colors im-
ply that there are more recent mean values in a circle.

6.1.2. Textual Attributes

Textual attributes have different properties than numerical attributes. First of
all, the individual attribute values are of different or unknown sizes. A dictionary
encoding (also called dictionary compression or domain encoding) [WMB99] can
help to solve this problem. It leads to the storage of numerical identifiers instead
of strings and allows looking up the strings whenever necessary. Furthermore, it
is difficult to aggregate textual attributes. Since these values are of nominal (or
categorical) type, they do not support certain operations (additions, multiplica-
tions) that are essential for numerical values. For instance, most of the time it
is rather useless to calculate the average string or the standard character devia-
tion for a list of scientific species names. Instead, it is meaningful to provide a
list of characteristic values. This is similar to the top k results of the previous
subsection.

We provide three methods to generate such a list of k representative textual values.
First, we can use sampling to obtain this list. Reservoir sampling (cf. Section 3.3)
provides a good way to incrementally compute it. We first collect k items in a list
and swap each new value with one of these items with a probability of k/i. Here,
i is the running index of the values in a loop. Note that in practice it is only
necessary to calculate the index of the next value that leads to a swap and ignore
all values in between.

105

6. CMQ Extensions

Second, we can retain the values that are closest to their circle center. By doing
so, we expect these values to be of high relevance to the user’s viewpoint. For
this method, we have to adapt the merge method of two circles. Here, we keep k
elements and discard the rest based on the distances to the (new) circle center. As
data structure we employ a max heap for the merge step or simply lists for small k.
Since k is a constant, the overhead is constant as well.

Third, we can compute the values that occur with the highest frequency. Here, we
introduce a hash map for every circle. The key is the index of the encoded dictio-
nary and the value is a count variable that is incremented on every occurrence of a
value. Then, we find the most frequent k values by using the min-heap technique
as explained in the previous subsection. For merges, we have to update the hash
map of the first circle with the key-value pairs of the other circles, each time using a
traversal of the hash table. To avoid unnecessary costs we fix the largest hash table
and insert the values of the remaining participating circles of the merge. Note that
this method requires O(n) additional space for CMQ .

Since the total number of values cannot exceed n, the (total) sizes of the hash
tables are bounded by O(n). This is the case since the visual point clustering
yields a non-overlapping partitioning of the attribute values. Hence, we are still
able to compute this in O(n) expected time. This method is especially useful if
we work with a constant number of different values, which is the case for classes
or categorical attributes.

6.2. Visualizing Multiple Classes and Data Sets

CMQ ensures an efficient visualization of a point data set, while simultaneously
complying with a range of visual qualities. For instance, it removes clutter and
occlusion by not allowing any overlap. However, when we want to visualize
multiple point data sets at once, the same problems arise that were described
in Chapter 1. Figure 6.1 shows the combined visualization of three data sets.
The displayed species occurrence points show European wildcats (red), Euro-
pean moles (green) and European rabbits (blue) on top of each other. Here,
the top layer hides most of the two underlying layers of data. For instance, the
species distribution of European wildcats is hardly recognizable in this visualiza-
tion.

In our setting, the visualization of multiple data sets is equivalent to the visual-
ization of a single data set that contains multiple classes. For instance, a data set
in GBIF can contain records based on literature, human observations or machine

106

6. CMQ Extensions

Figure 6.1.: This graphic shows a combined visualization of three data sets that
induce an overlap among the circles.

observations. For q different data sets, we can simply merge these records and
introduce a new class attribute cls with the values 1, . . . , q. Therefore, we can
treat the data in both scenarios equally. For the sake of simplicity, we consider
the class label to be an integer. For textual class labels, we can easily introduce a
numeric identifier.

In general, we want to display data from different classes distinctively on the map.
In literature, there are generally two options to solve this problem (cf. Section 3.3).
First, we can display each circle on the map as a pie chart that visualizes the
fractions of the classes. Second, we can display circles of different classes next to
each other on the map such that they do not overlap each other. In each case, we
give the individual classes distinct colors in order to differentiate them visually.
The following subsections detail on both options, but have an emphasis on the
latter approach.

6.2.1. Pie Chart Maps

Pie Chart Maps [Slo+09; Gha+14] represent one way to visualize multi-class data
with CMQ . Figure 6.2 shows an exemplary visualization of a puma data set in
North and South America with three classes (blue, green and red) that were
derived by correlations with environmental data and partitioning the data via
thresholds. In the figure, each circle contains an individual pie chart. The slices

107

6. CMQ Extensions

Figure 6.2.: This figure displays a map of differently sized circles. Each of them
shows different class occurrences in the form of a pie chart.

correspond to the fractions (count) of the classes in the data set that are assigned
to the corresponding circle. This visualization form has advantages and disadvan-
tages.

It is positive that it is straightforward to extend the CMQ algorithm to implement
this approach. Here, it is only necessary to introduce an individual hash map for
each circle in which the algorithm can store the number of class occurrences.
During the merge step, the algorithm has to add the hash map values of all but
one circle to the values of the remaining circle. This yields the class counts for the
new, merged circle. This technique is equal to the counting of classes presented
in Section 6.1. Besides that, pie chart maps are expressive and understandable
because they are a fundamental and ubiquitous technique for data visualization
[Slo+09; Mun14; HKP11]. They allow to exactly see the class differences within
the circle and still present the total differences in the number of points due to the
proportional circle sizes.

A negative aspect is that the circle fractions are hardly intercomparable with

108

6. CMQ Extensions

fractions of the other circles. Thus, it is complicated to assess the differences of
a single class in circle A to the same class in circle B. Furthermore, pie charts
within the minimum circle (with radius rmin) are generally hard to recognize. It
is therefore necessary to increase the minimum radius accordingly, which leads to
more overlap, and thus to a coarser visualization.

For client-side visualization, the algorithm has to attach to each circle an additional
set of classes with their counts or fractions. Then, map libraries like OpenLayers
[GSH15] allow the incorporation of visualization libraries like d3 [BOH11] (cf.
the OpenLayers d3 integration example1). Since the number of outputted circles
m is quite small, the overhead of drawing multiple small charts on the map is
moderate.

6.2.2. Circle Packing

Drawing circles of different classes on the map is an alternative to pie chart maps.
For this approach, we apply the same visual quality aspects to this advanced multi-
class visualization as to the single class problem. Thus, it is of utmost importance
to still disallow any overlap. For CMQ it is only valid to merge circles that are of
the same class. But if the algorithm detects an overlap of two circles of different
classes, it is not clear how it should cope with it.

A general option is to displace the circles such that they do not overlap. However,
this does not only introduce an error in quality that occurs since the circles move
away from the underlying attached points. In addition, the constraint map size
does not allow this option. The following example underlines this statement. As-
sume the map is tightly filled with circles of class A such that it is not possible to
move one circle without causing any overlap. Then, if any circle of class B should
be introduced into the visualization, at least one circle of class A must disappear
or fall out of the map when a displacement happens.

Jänicke et al. [Jän+12] developed a method that we want to adapt for CMQ in
the following. Here, we compute the set of circles as in the pie chart method. But
instead of creating the pie charts, we introduce another step of packing a new set
of circles of the individual classes into the overall circles. We call these overall
circles placeholder circles. In the following subsection, we will describe them in
more detail.

An advantage of the circle packing approach is that this allows a comparison
of circles belonging to different classes as long as they are proportionally scaled

1openlayers.org/en/latest/examples/d3.html (accessed November 10, 2018)

109

https://openlayers.org/en/latest/examples/d3.html

6. CMQ Extensions

depending on their attached number of points. It is easy to distinguish different
circles and assess their sizes not only locally, but also globally. Furthermore, we
will show a way how to integrate this packing into the CMQ algorithm without
having to make fundamental changes.

A disadvantage is that this method is more complex than calculating the pie chart
fractions. It requires an additional step of circle packing. Furthermore, having
circles of multiple classes on the map means less space for the individual classes.
In more detail, if a circle of class A covers a region, e.g. Germany, it is not possible
for a circle of class B to cover the same region. This inevitably leads to less covered
space. We will investigate this in more detail by applying the quality measures in
the experiment subsection.

Algorithms

In order to implement the updated merge method, we introduce two new data
structures that are necessary to cope with circles of multiple classes. The first one
is the extended circle c+ := (x, y, r, n, cls, xd, yd). The first four parameters are
equal to the parameters of the original circle definition in Chapter 2. In addition,
it contains a class label cls and display coordinates xd and yd. The former circle
coordinates x and y define the centroid of the data points of the represented data.
However, due to the display of multiple classes within the placeholder circle, it is
necessary to displace the circle positions such that they can be visualized side by
side without overlaps on the map, again. Thus, the display coordinates xd and
yd can differ from the data coordinates, which refer to the centroid of the points
in the cluster. The differentiation of these two coordinate pairs is very useful
for optimizing the packing of the extended circles within their placeholder circles.
As a reminder, for the sake of simplicity, we consider all class labels cls to be
integers.

The second data structure is the aforementioned placeholder circle c◦ := (x, y, r, l =
{c+1 , . . . , c+q }). It contains a circle with center and radius as well as a set l of
extended circles. For each class, there is at most one extended circle. We consider
the extended circles for classes that are not reflected by a placeholder circle as
undefined. Moreover, all extended circles c+1 , . . . , c

+
q lie inside the placeholder

circle using their display coordinates.

Algorithm 6.1 shows the algorithm of the extended merge method. Here, in line 1,
the algorithm initializes the set of circles that at some point will form the new set l
for the placeholder circle. In line 2, the algorithm initializes a map that holds up to
q sets of extended circles. In lines 3 to 5, the algorithm iterates over all placeholder

110

6. CMQ Extensions

Algorithm 6.1 Function mergemulti for merging circles with circle packing

Input: Set of placeholder circles {c◦1, . . . , c◦k} with attributes x, y, r and l
Minimum circle radius rmin in px
Maximum circle radius rmax in px
The total number of points n
The number of classes q

Output: A new, merged placeholder circle c◦ with attributes x, y, r and l
1: mergedCircles ← ∅
2: circles ← empty map of size q from cls to a set of extended circles
3: for c◦ ∈ {c◦1, . . . , c◦k} do
4: for c+ ∈ c◦.l do
5: circles[c+.cls] ← circles[c+.cls] ∪ c+

6: for i ∈ 1, . . . , q do
7: c+ ← merge(circles[i], rmin, rmax, n)
8: if c+.n > 0 then
9: mergedCircles ← mergedCircles ∪ c+

10: l ← circlePacking(mergedCircles)
11: (x, y, r) ← boundingCircle(l)
12: return makePlaceholderCircle(x, y, r, l)

circles and their sets of extended circles l, and inserts them into circles. In lines 6 to
9, the algorithm merges all circles of the same class and inserts the resulting circle
into the mergedCircles set as long as they are initialized (n > 0 indicates that). In
line 10, the circlePacking method is called to update the (xd, yd) coordinates of
the extended circles. In line 11, the algorithm calculates a new bounding circle for
the set of extended circles by calling boundingCircle on l. Finally, in line 12, the
algorithm creates a new placeholder circle with the placeholder coordinates x and
y, the placeholder radius r and the set of extended circles l. We now present four
different algorithms for the circlePacking method.

Basic Packing Basic packing is based on the work of Jänicke et al. In their
method, they use pre-defined circle positions2 for values of q for one to six. Fig-
ure 6.3 shows one example with q = 4. These illustrated positions are derived from
work of Kravitz [Kra67]. In this approach, the largest circle (depending on the
number of represented points) is always placed at the upper left position. Since
the goal is to find a small placeholder circle, the second largest circle is placed
on the diagonal opposite to the first circle. The figure highlights this on the left

2cf. hydra.nat.uni-magdeburg.de/packing/cci/d1.html (accessed Nov. 30, 2018)

111

http://hydra.nat.uni-magdeburg.de/packing/cci/d1.html

6. CMQ Extensions

a

a b

(b)(a)

Figure 6.3.: This figure illustrates the packing template (a) and the basic packing
algorithm (b) for packing four extended circles {c+1 , . . . , c+4 } in one
placeholder circle c◦.

side (a) by plotting the triangular distances where the hypotenuse b is the largest
distance compared to the legs a. Thus, this technique ensures smaller placeholder
radii. The two remaining circles are then placed at the two remaining spots. In
the following, we refer to the list of q positions for q circles that are packed into a
placeholder circle as a template. The generation of such a template requires (i) the
center of the placeholder circle, (ii) the (largest) radius to use for the q inner cir-
cles and (iii) the number of circles q. Furthermore, the right side (b) of Figure 6.3
shows that smaller circles are placed towards the center within their placeholder
circles.

Algorithm 6.2 shows the steps of this approach. Here, in line 1, the algorithm sorts
the list of circles in descending order by their radius. It can then easily retrieve
the largest radius in line 2. In line 3, the algorithm calculates the center of the
placeholder circle by calculating the weighted centroid of the circle centers. In
line 4, the algorithm creates a template of circle (display) positions as described
above for the number of circles |l| and based on the previously calculated center.
Then, in lines 5 and 6, the algorithm retrieves the template positions one by one
for the circles. It updates the values for xd and yd in-place. Finally, in line 7, the
algorithm transforms the list of circles into a set that can be used as a new set l
for the placeholder circle.

Data-related Packing Data-related packing follows a different approach of com-
puting the template positions. Here, the algorithm tries to place the circles close to
their data center. The hypothesis is that this approach increases the quality of the
overall clustering. On the other hand, the radii of the bounding circles around the

112

6. CMQ Extensions

Algorithm 6.2 Function basicPacking for circle packing

Input: Set l of circles {c+1 , . . . , c+|l|} with attributes x, y, r, n, cls, xd and yd
Output: An updated set of circles {c+1 , . . . , c+|l|}

1: circles ← sort(l, order by r desc)
2: rlargest ← circles[0].r

3: (xcenter, ycenter)←
(︄∑︁|l|

i=0 circles[i].x · circles[i].n∑︁|l|
i=0 circles[i].n

,

∑︁|l|
i=0 circles[i].y · circles[i].n∑︁|l|

i=0 circles[i].n

)︄
4: template ← createTemplate(xcenter, ycenter, rlargest, |l|)
5: for i ∈ |l| do
6: (circles[i].xd, circles[i].yd) ← getPosition(template, i)

7: return toSet(circles)

Figure 6.4.: This figure illustrates data-related packing. The circles on the right
side are arranged according to the underlying data (left side).

packed (extended) circles are expected to be slightly larger than in the basic pack-
ing algorithm. Figure 6.4 illustrates the idea of data-related packing. Here, the
circles (right side) are arranged accordingly to the underlying data distribution (left
side). For instance, the majority of blue points is at the upper right of the example
and the representative circle is in the same position.

Algorithm 6.3 shows the steps of this approach. Here, lines 1 to 4 are equal to the
basicPacking algorithm. Then, in lines 5, the algorithm gathers all positions
from the template. In lines 6 to 12, the algorithm selects the closest position with
respect to the data centers of the circles. It therefore allows the largest circle to
choose its position first. The other circles have to choose among the remaining
positions. This placement of extended circles improves the clustering and reduces
the error of the distances among the points and the center of the extended circles.
The largest circle shall induce the least error. Finally, in line 13, the algorithm

113

6. CMQ Extensions

Algorithm 6.3 Function dataRelatedPacking for circle packing

Input: Set l of circles {c+1 , . . . , c+|l|} with attributes x, y, r, n, cls, xd and yd
Output: An updated set of circles {c+1 , . . . , c+|l|}

1: circles ← sort(l, order by r desc)
2: rlargest ← circles[0].r

3: (xcenter, ycenter)←
(︄∑︁|l|

i=0 circles[i].x · circles[i].n∑︁|l|
i=0 circles[i].n

,

∑︁|l|
i=0 circles[i].y · circles[i].n∑︁|l|

i=0 circles[i].n

)︄
4: template ← createTemplate(xcenter, ycenter, rlargest, |l|)
5: positions ← {getPosition(template, 1), . . ., getPosition(template, |l|)}
6: for c+ ∈ l do
7: (xbest, ybest) ← (inf, inf)
8: for (xd, yd) ∈ positions do
9: if pdist ((xd, yd) , (c

+.x, c+.y)) < pdist((xd, yd), (xbest, ybest)) then
10: (xbest, ybest) ← (xd, yd)

11: (c+.xd, c
+.yd) ← (xbest, ybest)

12: positions ← positions \ (xbest, ybest)

13: return toSet(circles)

returns the updated set of extended circles.

Space-Optimized Packing Space-optimized packing tries to improve the output
of the basic packing in order to generate smaller placeholder circles. The idea
is to move the circles closer to the center of the placeholder circle to decrease
its radius. By doing so, there is less dead space in a packed circle, and thus
on the map. Consequently, space-optimized packing improves the quality of the
overall clustering. Figure 6.5 exemplifies space-optimized packing. In contrast to
the basic packing specification on the left side, the circles on the right side are
moved to the center to form a condensed representation where the dead space is
removed.

Algorithm 6.4 shows the steps of this approach. The lines 1 to 6 are equal to
the basicPacking algorithm. In line 7, the algorithm defines a constant step
size for moving the circles closer to the center. If the step size is too small, then
there will be a lot of iterations. If the size is too big, then it is unlikely that the
algorithm finds a circle that moves into the direction of the center. Our suggestion
is to set the step size with respect to the screen pixels, e.g. to one pixel. In line
8, the algorithm introduces the variable result that serves as result set. In lines

114

6. CMQ Extensions

Figure 6.5.: This figure illustrates space-optimized packing. The circles on the
right side are moved towards the center so that they are more compact
and the dead space is reduced.

9 to 19, a loop moves the circles closer to the center in a round-based fashion,
starting with the largest circle. In line 11, the movement towards the center is
temporarily kept in (xnew, ynew). In the following, it should be remembered that
cpdist calculates the distance between a circle and a point and cdist calculates
the distance between two circles, including their radii. In lines 12 to 14, the
algorithm checks whether the center of the placement template would then be in
the extended circle. If so, we remain the old position of the extended circle and
continue with the next extended circle. In a similar way, the algorithm checks for
overlap with other extended circles, and if so, it continues with the while-loop. In
lines 15 to 18, the algorithm checks whether the movement did not introduce an
overlap with another circle. If the movement is valid, then the algorithm updates
the coordinates of the circle in-place in line 19 and appends it back to the queue
in line 20. In the other case, the result set is filled (lines 13 and 17) and eventually
contains all circles. Finally, in line 21, the algorithm returns the resulting set of
circles.

Data-related Space-Optimized Packing The data-related space-optimized
packing method is a combination of the former two approaches. First of all, it
finds a placement in the template for q circles based on the data-related approach.
Then, in order to optimize the placeholder circle, it uses the space-optimized ap-
proach. Our hypothesis is that this approach works best as long as both individual
approaches improve the quality of the output. However, it is the most costly al-
gorithm.

115

6. CMQ Extensions

Algorithm 6.4 Function spaceOptimizedPacking for circle packing

Input: Set l of circles {c+1 , . . . , c+|l|} with attributes x, y, r, n, cls, xd and yd
Output: An updated set of circles {c+1 , . . . , c+|l|}

1: circles ← sort(l, order by r desc)
2: rlargest ← circles[0].r

3: (xcenter, ycenter)←

(︄∑︁|l|
i=0 circles[i].x · circles[i].n∑︁|l|

i=0 circles[i].n
,

∑︁|l|
i=0 circles[i].y · circles[i].n∑︁|l|

i=0 circles[i].n

)︄
4: template ← createTemplate(xcenter, ycenter, rlargest, |l|)
5: for i ∈ |l| do
6: (circles[i].xd, circles[i].yd) ← getPosition(template, i)

7: step ← define a step size
8: result ← ∅
9: while ¬empty(circles) do
10: c+ ← pop(circles)

11: (xnew, ynew) ←
(︃(︃

c+.xd

c+.yd

)︃
+ step · (xcenter, ycenter)

T − (c+.xd, c
+.yd)

T

|(xcenter, ycenter)T − (c+.xd, c+.yd)T |

)︃T

12: if cpdist ((xnew, ynew, c
+.r), (xcenter, ycenter)) < 0 then

13: result ← result ∪ c+

14: continue whileLoop
15: for c+other ∈ (circles ∪ result) do
16: if cdist

(︁
(xnew, ynew, c

+.r), (c+other.xd, c
+
other.yd, c

+
other.r)

)︁
< 0 then

17: result ← result ∪ c+

18: continue whileLoop
19: (c+.xd, c

+.yd)← (xnew, ynew)
20: append(circles, c+)

21: return result

Experiments

This subsection presents different experiments with respect to the circle packing
extensions of CMQ . First, we show and discuss the results of two runtime mea-
surements. Then, we look at the change of visual point clustering quality with
respect to single class data. Finally, we present the results of a user study that
aims to validate the quality results.

We created 18 multi-class data sets by combining 10 data sets from GBIF (cf.
Chapter 5) in different variations. Table 6.1 shows the data set names and their
number of points. We chose from c ∈ {1, . . . , 6} classes and retrieved each time c

116

6. CMQ Extensions

Figure 6.6.: This figure shows two screenshots of CMQ with circle packing. The
left screen displays the result of basic packing and the right side the
result of data-related packing.

data sets from the original set uniformly at random. Then, we concatenated the c
data sets into one new data set for evaluation within which the points were assigned
to class labels 1, . . . , c. Figure 6.6 shows one of those multi-class data sets. Here,
we see three classes of data distributed in Europe. One can see the differences
between basic packing on the left side and data-related packing on the right side.
For instance, the different arrangement of the circles in Great Britain allows a more
accurate representation of blue circles for the coverage of Ireland. This was possible
because in England, where the large red circle moved east, a different arrangement
appeared. For all experiments, we have used a system with an AMD Ryzen 7
2700X CPU running at 3.70GHz and 32GB of RAM.

Table 6.1.: This table shows the names of the data sets and their number of points
for generating the evaluation data set.

Data Set Name # Points

Tayloria tenuis 403
Carduus personata 1 994
Platyperigea montana 2 537
Stachys alpina 7 826
Carassius gibelio 16 841

Data Set Name # Points

Camaroptera brachyura 37 238
Deschampsia flexuosa 188 985
Acrocephalus scirpaceus 459 473
Spizella passerina 1 653 584
Larus delawarensis 2 329 401

117

6. CMQ Extensions

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M

Number of Points in Data Set

0.0

0.1

0.2

0.3

0.4

M
ea

n
R

u
n

ti
m

e
(s

)
Basic Packing

Data-related Packing

Space-Optimized Packing

Data-related Space-Optimized Packing

No Packing

Figure 6.7.: This figure shows the runtime of CMQ with the different packing
variants and without packing.

Runtime We conducted two runtime experiments. The first experiment tries
to gather information about the scalability of the method with respect to the
number of points in a data set. Here, we use the 18 data sets that contained
different numbers of classes and average the runtime of zoom levels z ∈ {1, . . . , 5}
and five repetitions each. Figure 6.7 shows the resulting runtimes. The x-axis
reflects the number of data points in the data set. The y-axis reflects the average
total runtimes of the four CMQ variants with packing and the variant without
packing. We draw lines that interconnect the different entries in order to recognize
trends.

The plot contains three different results. First, the runtime with respect to
the number of points is linear for all methods. Second, the variant without
packing is much faster since the runtime reflects a much lower constant increase
per additional data point. Third, it is not apparent that any packing method
outperforms another one. The differences between the lines are insignificantly
small.

The second experiment shows the impact of the number of classes on the runtime
of the CMQ algorithm. Here, we generated another 60 data sets that we extracted
out of the same ten data sets as the prior ones. Instead of combining the data
sets to gather multi-class data, we assigned class labels to each record uniformly
at random. Here, we used numbers from one to six again. Figure 6.8 shows the
results of the runtime measurements in the form of a bar chart. The x-axis denotes

118

6. CMQ Extensions

1 2 3 4 5 6

Number of Classes in Data Set

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
R

u
n

ti
m

e
(s

)
p

er
P

o
in

t
×10−7

Basic Packing

Data-related Packing

Space-Optimized Packing

Data-related Space-Optimized Packing

Figure 6.8.: This figure shows the runtime for the packing variants for different
numbers of classes in the data sets.

the number of classes. The y-axis shows the mean runtime per data point over all
data sets and zoom levels. We have calculated this number by dividing the total
runtime by the number of data points in the individual data sets. For each of the
four packing variants we display individual bars.

As a first finding, the bars show that the runtime per point increases for all packing
variants. Only data-related space-optimized packing has an outlier for one class,
although it has to choose a data-related position for only one circle. The second
finding is that the basic packing seems to have a small overhead for a small number
of classes, but has less increase for a larger number. This is because it does not
have to do any effort for choosing the right template spots within the placeholder
circle nor does it have to optimize the positions afterwards. For the other vari-
ants, space-optimized packing seems to have the largest increase alone and also
in combination with space-optimization. A reason for this is that the incremental
movement towards an optimal position within the template circle requires more
time per class than choosing the best spot for one of the circles like in data-related
packing.

Quality For analyzing the quality, we evaluate the 18 data sets from the intro-
duction of this experiment section again and compute the quality values. Since
most quality scores are similar, we only show the differences in Figure 6.9. Here,
we see that CMQ without circle packing obviously produces overlaps within the

119

6. CMQ Extensions

B
a

si
c

P
a

ck
in

g

D
a

ta
-r

el
a

te
d

P
a

ck
in

g

S
p

a
ce

-O
p

ti
m

iz
ed

P
a

ck
in

g

D
a

ta
-r

el
a

te
d

S
p

a
ce

-O
p

ti
m

iz
ed

P
a

ck
in

g

N
o

P
a

ck
in

g

0.0

0.5

1.0

U
ti

lit
y

overlap

B
a

si
c

P
a

ck
in

g

D
a

ta
-r

el
a

te
d

P
a

ck
in

g

S
p

a
ce

-O
p

ti
m

iz
ed

P
a

ck
in

g

D
a

ta
-r

el
a

te
d

S
p

a
ce

-O
p

ti
m

iz
ed

P
a

ck
in

g

N
o

P
a

ck
in

g

unassigned

Figure 6.9.: This figure shows quality scores of the measures overlap and unas-
signed for the circle packing variants.

circles of different classes. In contrast, CMQ with circle packing has a lower score
in unassigned points. An explanation for this is that a displacement of circles
in the circle packing step produces a distance to the actual, underlying circles.
Thus, the enclosing assignment, which is used for calculating this score, retrieves
less assigned points for the individual circles. This seems to be an unavoidable
trade-off when using circle packing to display multiple data sets. Without hav-
ing overlaps, it is impossible to achieve a high score here. The scores among
the circle packing variants have only few differences and those are hardly notice-
able.

Figure 6.10 shows the differences in the average quality score of the circle pack-
ing variants of CMQ . Here, the variants all produce similar scores. However, the
means show some subtle differences. Basic packing has the lowest mean with
0.617813. Then, data-related packing has a mean of 0.618316 and is followed by
data-related space-optimized packing with 0.619437. Among the packing variants,
space-optimized packing scores highest with a mean of 0.623014. Surprisingly, the
variant without packing produces the highest mean score of 0.635479. By reconsid-

120

6. CMQ Extensions

Bas
ic

Pac
ki

ng

D
at

a-
re

la
te

d
Pac

ki
ng

Spac
e-

O
ptim

ize
d

Pac
ki

ng

D
at

a-
re

la
te

d
Spac

e-
O

ptim
ize

d
Pac

ki
ng

N
o

Pac
ki

ng

0.50

0.60

0.70

0.80

0.90
A

ve
ra

g
e

U
ti

lit
y

Figure 6.10.: This figure shows the average quality score for the circle packing
variants.

ering the trade-off between the scores for unassigned points and overlap, we notice
that the overlap problem is underweighted in this average score. To investigate
this further, we will present a user survey in the following that incorporates actual
user impressions with respect to this problem.

User Survey In order to get real-world feedback from users, we conducted a
survey among 75 computer science, data science and business informatics stu-
dents. The survey consisted of 20 questions, which were partitioned into two
blocks. The first block tried to find out whether users prefer circle packing over
no packing. The second block consisted of questions regarding preferences for ba-
sic packing and data-related packing. Due to time constraints in the inquiry, we
decided not include questions regarding space-optimized packing. However, this
setup allows us to investigate if the small increase in the computed quality score
of the measures from basic to data-related packing is also reflected in the user
survey.

Each time, we showed the participants two maps that were generated using differ-
ent algorithm variants of the same multi-class data set. We chose the data sets out
of the 18 data sets with different zoom levels again that were used in the previous
subsection. The maps were accompanied by an explanatory textual description
about the distribution of these data sets. Furthermore, there were supplementary
maps of the single data sets. The participants had the option to decide whether

121

6. CMQ Extensions

No Preference
3.66 % (24)

No Packing

33.54 % (220)

With Packing

62.80 % (412)

Figure 6.11.: This figure shows the survey results for maps that were created by
CMQ with circle packing versus maps that were created without
circle packing. The value next to the percentage shows the absolute
number of votes.

they preferred the left or right map. In addition, they had the option to be inde-
cisive and not to prefer any representation. This allowed us to gather direct A/B
comparisons about the preferences.

All questions were shuffled uniformly at random and presented to the participants.
Note that not every participant answered every question. The questions with the
minimum number of answers had 63 responses.

Figure 6.11 shows the aggregated results in the form of a pie chart with respect
to maps that were created with or without (basic) circle packing. We clearly see
that our hypothesis that users prefer circle packing over the unpacked variant is
confirmed. Roughly 2/3 of the users prefer circle packing in one-to-one comparisons.
On the other hand, also 1/3 of the users prefer maps without circle packing and
accept some overlap of the circles. This finding can be interrelated with the quality
scores of the previous subsection that presented a trade-off between circle overlap
and unassigned points.

Figure 6.12 presents the results with respect to the comparison of basic to data-
related circle packing. Data-related circle packing clearly outperforms basic pack-
ing by receiving more than half of the votes. Basic packing is preferred in less
than 30% of the responses. In contrast to the previous comparison, the number

122

6. CMQ Extensions

Basic Packing

29.74 % (196)

Data-related Packing

54.63 % (360)

No Preference

15.63 % (103)

Figure 6.12.: This figure shows the survey results for maps that were created by
CMQ with basic circle packing versus maps that were created with
data-related circle packing. The value next to the percentage shows
the absolute number of votes.

of votes with no preference is quite high with 15%. This is in accordance with the
close quality scores of the previous subsection.

The results show a clear tendency that circle packing is preferred over no packing
and that it is worth investigating improvements of the packing method. Further-
more, they show that the results of the quality measures are connected to the
answers from real users.

Quality Criteria and User Survey Since we have our quality criteria on the one
hand and the binary results of the user survey on the other hand, it is complicated
to get a common interpretation. We therefore utilize techniques from preference
learning [Hül+08], which aim to find a predictive preference model from observed
preference information. We employ this method to bridge the gap between criteria
and survey results, and to gain additional insights. Fober et al. [FCH11] propose a
method that uses pairwise labels and applies multi-objective optimization to find
a set of utility functions. These functions model latent user preferences and are in
accordance with the provided data. The proposed method transfers the problem
to a binary classification problem and uses gradient descent to gradually improve
upon positive and negative examples. In our case, we insert the labels from the (in

123

6. CMQ Extensions

Area Proportionality

18.39 %

Circle Points Centered

17.48 %
Circle Overlap

6.06 %

Circle Point Distance

28.47 %

Unassigned Points

4.01 %

Uniform Point Distribution

25.59 %

Figure 6.13.: This figure shows the influence of the quality criteria as a result of
preference learning based on the user survey result.

total) 1 187 answers to our 20 questions in the form of (winner, loser) pairs. Addi-
tionally, we insert the utility values provided by our multi-class quality measures.
We calculate these by computing the quality for the underlying data sets for each of
the two options for each question. The preference learning algorithm then finds a
set of weights and a joint linear utility function based on the preferences of the user
survey. We can normalize the weights and use them as an indicator of influence
for each quality criterion on the user decisions.

Figure 6.13 shows the resulting influences in form of a pie chart. First of all,
there is no quality criterion that has no influence on the user preferences. This
means that all of them are valid for assessing the algorithmic results. Further-
more, circle point distance has the largest influence, followed by uniform point
distribution. These criteria evaluate if the circles are close to the underlying data
and whether they are skewed. Then, area proportionality and circle points cen-
tered seem important factors for the user preferences. In particular, the former
criterion allows differentiating the hot spots from the sparse regions in the data.
The latter criterion ensures that the circles are located at the correct region on
the map. Finally, circle overlap and unassigned points seem to have the least
influence.

Regarding overlap, the survey results show the tendency to allow some degree
of overlap as long as it contributes to the overall understanding of the map rep-

124

6. CMQ Extensions

resentation. This means that it could potentially make sense in the multi-class
case to introduce a relaxation of this criterion. As an example, the query proce-
dure could incorporate another ϵrelax parameter that specifies a small error toler-
ance. Thus, CMQ would only merge overlaps that lead to severe occlusion on the
map.

While the influence values that were derived from preference learning are useful
indicators for the influence of the quality criteria, there is most likely some bias in
the survey data. For instance, all packing variants produce circle overlap values of
1, whereas only the non-packed representation produces lower values. This means
that the parameter is uncorrelated to the preference for all questions regarding
different packing variants. For unassigned points, the question design did not es-
pecially map the raw data in a different visualization such that survey participants
had the chance to see unassigned points other from the textual description. This
means that the answer based on their preference was most likely not affected by
this criterion.

In conclusion, preference learning is a suitable method to gain further insights into
the assessment of the multi-class quality criteria based on preferences from real
users. Relevant findings were that all criteria have an influence on the preference
and that the influences are different among the criteria. However, an extended
and carefully balanced survey design could increase the significance of the find-
ings.

6.3. Summary

This chapter presented extensions of the CMQ algorithm. First, it showed means
to cope with miscellaneous attributes that were of non-spatial nature. For this,
the chapter contained descriptions of different methods for numerical as well as
textual attributes.

Second, the chapter introduced CMQ extensions for visualizing multi-class data.
Here, the section contained method descriptions for pie chart maps and circle
packed maps. For circle packing in particular there were different improvements
introduced with respect to a method from literature [Jän+12]. For all circle pack-
ing variants, we conducted runtime and quality evaluations. Especially regarding
quality, we conducted a user survey that gave an extended insight into the per-
ception of the CMQ variants. Additionally, we evaluated the survey results using
preference learning techniques that yielded influences of quality criteria with re-
spect to the answers of the survey participants.

125

7
The VAT System

After presenting a particular visualization method in the previous chapters, this
chapter presents the design and the development of the Visualization, Analysis
and Transformation (Vat) System. This embeds CMQ in the context of a system
that relies heavily on these and similar methods. It starts with a motivation in
Section 7.1. Here, it discusses key aspects of a modern geographic information
system and the necessity to develop such a new system. Section 7.2 presents the
main architecture of the Vat System. It highlights important design principles
as well as concepts and gives an introduction to the components of the system.
The main part is provided in Section 7.3 and contains detailed descriptions of
important features and realizations of concepts of the Vat System. The primary
focus is on the visualization component and the user interaction with the system.
Section 7.4 presents the connection of theVat System to the GFBio infrastructure.
Besides providing details about the portal integration, we give a brief outlook on
how to potentially use the Vat System in other research projects. In Section 7.5,
we present an exemplary use case within the Vat System. Here, we follow the
working path of a single user to achieve a research goal. Section 7.6 outlines the
development process of the user interface. It presents two user studies that have
been conducted on the path to the final design. In Section 7.7, we investigate
related systems in the geo processing ecosystem. We divide the systems into a
number of groups and highlight differences in comparison to the Vat System.
Finally, we summarize this chapter in Section 7.8.

7.1. Motivation

In recent years, data-driven research has become increasingly popular [AAG03;
Ste+13]. A major reason for this is the exponentially growing amount of data in
all fields of science. This makes it necessary to investigate this data in order to find
interesting correlations or anomalies. In the field of biodiversity and geography, a
lot of data is still unused [CW14; Gri15]. The current landscape of geo processing

126

7. The VAT System

systems makes it difficult to incorporate existing geo data into research activities.
After the completion of a research project, many research data sets run into the
archives without being in compliance with standard data formats and can hardly
be integrated without a great deal of manual transformation effort. However, the
goal is to have a system that helps to integrate such data and to use the wholeness
of research results for new analyses.

We have developed the Vat (Visualization, Analysis and Transformation) system
to tackle this problem. It allows investigating different kinds of geo data in an
exploratory fashion. To achieve this, it provides a map with a coordinate system
to visualize the data in the first place. By following a visual analytics approach,
Vat enables researchers to work with geo data, manipulate it and combine it
by simultaneously providing visual feedback. The processing of geo data is quite
complicated. In addition to different data formats and standards, the geographical
representation and in particular the processing of multiple data sets with different
projections holds several pitfalls.

Vat aims to support different types of users. For instance, a computer scientist has
the ability to develop fast data processing, but lacks in experience in working with
geographic data. A geographer, for example, has the necessary expert knowledge
in working with geo data, but has difficulties in efficiently processing large data
sets. As a third example, a biodiversity researcher is a specialist in producing a
meaningful analysis of the distribution of species, but needs support in working
efficiently and correctly with geo data.

Since interactivity is a crucial component of geo analysis tools [Rot13], Vat pro-
vides means for interactively investigating data. Following Shneiderman’s informa-
tion seeking mantra [Shn96] (cf. Section 3.2), it provides an overview of the data,
tools to zoom and filter as well as the option to retrieve more details on demand.
This includes data aggregation techniques such as the Circle Merging Quadtree
(CMQ) for point data as presented in the prior chapters. Furthermore, it provides
simplifications of data to achieve quick response times for results in preview qual-
ity since this quality is sufficient for visualization. To complete the interactivity
methodology, Vat incorporates fast, GPU-based algorithms to leverage modern
hardware infrastructures.

An essential feature of Vat are tools for combining data of different types, such as
raster and vector data (cf. Section 3.1). This allows covering the heterogeneity of
geo data, and thus making sense of data and gaining insight from data from various
sources. Another important feature is the inherent temporal support, which allows
users to process time series of data. This is neglected by most contemporary geo
information systems (GIS).

127

7. The VAT System

Vat provides a modern, web-based graphical user interface (GUI) that uses state-
of-the-art web components. This leads to an intuitive user interface that does
not require any local installation for the user. By means of this connection to
the backend, users can on the one hand upload their own research data (pre-
publication data) and process it in the system. On the other hand, they can
incorporate existing research data and geographical data products that are pro-
vided by Vat, e.g. essential climate variables derived from ESA satellite images
[Hol+13]. The provision of data drastically reduces the effort for a combined anal-
ysis, since it represents one of the most expensive parts of the processing chain
[Lon+05].

Within the project scope of GFBio (cf. Section 1.1)Vat provides a close integration
to the GFBio data centers that facilitates to reuse all research data that is made
available by the participating organizations. Furthermore, since GFBio offers a
joint venture of research collections and archives, the amount of mobilized data is
steadily increasing. Users can search for and look up GFBio data in a warehouse-
like fashion [BS97], and import it into Vat. For all computations, Vat offers a
complete data lineage and provenance tracking. This makes it possible to generate
all necessary citations from the sources, which is a decisive feature in science
[EGA18].

7.2. VAT – Architecture and Data Model

The Vat System is a geo processing system that consists of two main parts. First,
it consists of a high-performance back end called Mapping (Marburg’s Analysis,
Processing, and Provenance of Information for Networked Geographics) and, sec-
ondly, of an interactive web-based user interface calledWave (Workflow, Analysis
and Visualization Editor). Figure 7.1 depicts the overview of the general archi-
tecture. Users, in general, work with Wave to interactively explore and process
geographical data. Wave then interacts with Mapping which itself accesses the
underlying repositories and databases that hold the source data sets. In addition
to the user interface access, expert users and machines can directly communicate
with Mapping via its API [Aut+15a]. The API consists of OGC standard pro-
tocols [Ope07] for accessing the data and a custom API for creating workflows
and triggering their processing as well as miscellaneous functionality like user and
project management. Mapping implements OGC protocols like WFS [Ope10b] for
querying vector data like points and polygons, WMS [Ope06] to create map images
out of raster data and WCS [Ope08] to output raster data in a machine-readable

128

7. The VAT System

V System
M

R Server

Vector Data

Raster Data

Remote Data

W

Users

External Tools

AT
APPING

AVE

Figure 7.1.: This illustration presents a concise view on the system architecture of
the Vat System.

format. Wave hides all complexity of the underlying system and lets users explore
the data and incrementally build processing workflows.

The Vat System supports two very different data types: raster and vector data
(cf. Section 3.1). A raster is a uniform grid of numeric values. Cells contain
either continuous values, e.g. temperature measurements, or discrete values, e.g.
a classification based on land usage. Vector data is modelled to be consistent
with the Simple Feature Access model [Ope10a]. Here, a data set consists of a
set of features with attributes. Since we want to achieve clean semantics for our
operators, we only allow homogeneous collections of features. Thus, a data set
consists either of points, lines or polygons. Each feature is optionally a multi-
feature consisting of multiple points, lines or polygons. A multi-feature has then
a shared set of attributes. We implemented the attributes for each feature as a
key-value map. Vat supports textual and numeric values. For raster values and
numerical feature attributes, we introduced the notion of a unit. Units specify what
was measured (e.g. temperature in °C) and have metadata if the values correspond
to a classification or to a continuous variable.

In the Vat System all data always has a temporal context in addition to the
spatial context [Bei+17c]. The joint context describes the validity of a data item
in terms of a location and a time interval. In the same manner, a query specifies a
spatial bounding box and a temporal interval. Figure 7.2 illustrates what we call
spatio-temporal query rectangle. Here, we query Europe in the years 1990 to 2000.
The system returns all results that are valid within these constraints. As time is

129

7. The VAT System

198
0

 1
990

 20

00

201
0

x coordinate
y

co
or

di
na

te

tim
e

Figure 7.2.: An exemplary spatio-temporal query rectangle that spans over Europe
in the time range of the years 1990 to 2000.

an integral part of our data model, we consider all data sets as time series. This
implies that all operators in the Vat System must adhere to time series semantics,
e.g. Allen’s interval semantics [All83].

With respect to our data model, the temporal semantics have different implica-
tions. For our raster data type, we define that all cells of a raster have the same
temporal validity. A raster data set then consists of multiple rasters with disjoint
temporal validity. For the vector data types, each feature can have a different tem-
poral extent. Within one feature all data has the same temporal validity. There is
no restriction for a vector data set to have features of disjoint temporal validity. It
would be impractical, for instance, if a data set could not contain multiple animal
trajectories of January 2019.

The Vat System processes all data as workflows. A workflow consists of all in-
puts and processing steps and describes how they are interconnected. A query to
the Vat System thus consists of a spatio-temporal query rectangle and a work-
flow.

The idea of the Vat System is that the user processes the data by starting with
the sources and incrementally combining, filtering and transforming it until he
reaches a result. A crucial component of the Vat System is that it builds the
necessary workflow implicitly in the background such that the user does not have
to take care of it. This helps in the exploration phase where users discard multiple
processing and analysis ideas because they do not lead to the desired result. We
call this pattern exploratory workflows (cf. Figure 7.3) [Aut+15b]. Since the explo-
ration leads to incrementally built workflows, the Vat System leverages previous
results by storing intermediate results in a caching data structure [Kör16]. This
avoids many redundant and expensive recomputations. The retrieval of cached
results also applies to changes in the spatio-temporal query rectangle. Subsequent
queries that match, contain or overlap cached results can thus be answered faster.

130

7. The VAT System

Plot Data

Add
 D

ata

Add Data

Add Data

Plo
t D

ata

Add Data

Combine Data
Filter Data
Discard Data

Cluster Data

✔

🗶🗶

🗶

🗶

Figure 7.3.: The term exploratory workflows describes the transparent tracking of
computational steps that have led to a result while discarding dead
ends.

For example, when plotting variables of a data set that was created by enriching
animal occurrences with attributes of a climate model, the enriched data set may
already be cached. Furthermore, when querying first Europe and then Germany,
the results can be extracted from the cache since the first result contained the
second result.

The two main components of the Vat System are built upon various technologies.
Wave is a web project written in TypeScript [HL16]. It uses Angular [SC17] as
main framework that allows to write reusable web components and to structure the
application according to the model-view-controller (MVC) [Gam+94] paradigm.
For displaying the geo data on a map, we utilize the flexible OpenLayers [GSH15]
framework that uses WebGL [Mar11] for efficiently visualizing different geo data
types. It also works well with different geographical projections. In the next
section we will discuss, among other things, several dynamic components, which
we realized by using Rx/JS [DA17]. The Rx/JS framework allows us to build
a reactive application by using powerful iterators and asynchronous events. For
plots and graphs, we use the D3.js [BOH11] library that provides building blocks
to create custom data visualizations.

The second main component of the Vat System, Mapping, is written in modern
C++. It uses a custom architecture which is enhanced by several libraries for net-
working (Boost1, POCO2) and data import (e.g. the Geospatial Data Abstraction
Library (GDAL) [War08]). A FastCGI [Bro96] interface provides a connection to
a web server like the Apache HTTP Server [Bro96]. In order to exploit modern
hardware, we implement the operators to execute highly in parallel [Aut+15b].

1www.boost.org
2pocoproject.org

131

https://www.boost.org/
https://pocoproject.org

7. The VAT System

To support multiple GPU vendors as well as many-core CPUs, we use OpenCL
[SGS10] and its C-based programming language. Since the goal of the Vat Sys-
tem is to be used in multiple research projects, we have implemented a modular
design. This design allows us to combine and compile distinct features for specific
projects. Furthermore, an adapted user interface exists alongside adapted back
end functionality.

7.3. WAVE – Overview and Features

This section contains an overview of Wave, the user interface of the Vat System.
This focus allows a user- and functionality-centric view on the overall system. We
describe features that affect both the front and back end of the Vat System, and
we will also address the interconnection to Mapping and Mapping’s mode of
operation along the way. This section starts with an overview and then discusses
individual aspects in more detail.

7.3.1. WAVE Overview

Wave is the front end of the Vat System. It offers an intuitive user interface
to support interactive, exploratory geo analysis primarily for biodiversity data.
The basic usage is as follows: Users upload either their own data or choose data
from the data repository. The current version contains species occurrences points,
environmental data like climate and elevation models as raster data as well as
polygonal expert range maps or country borders. Then, they apply several opera-
tors to the data. This includes filtering the data, e.g. restricting species points to
a country, and enriching data by combining, for instance, point and raster data.
Additionally, users can transform data, which includes either geographical projec-
tions or data formats. For example, users can create a heat map raster from a set
of points. Furthermore, users can use tools to create plots and diagrams from the
data. Finally, users can share their data with other users or export it into their
local workspace. At each step, users can review the workflow of processing as well
as the aggregated citations of each intermediate result.

The central part of Wave is the map. The idea is to always visualize the geo-
graphical context of the data. We follow this approach because it is in accordance
with the concept of visual analytics (cf. Section 3.2) and can exploit the spatial
nature of the data. The map can display the data in different map projections,
since different projections make sense depending on the nature or location of the

132

7. The VAT System

data set (cf. Section 3.1). In addition, users can utilize a background layer, e.g. an
OpenStreetMap backed country border map or a topographic terrain map. This
is common to most GIS systems and expected by users since it facilitates map
orientation. Of course, users can pan the map to shift focus and zoom into in-
teresting parts of the map or zoom out to get an overview. All data on the map
can have an individual coloring, e.g. a color palette for a climate raster or a point
color to distinguish multiple point data sets. For raster data sets, the coloring is
calculated in Mapping and the resulting image is displayed on the map. Vector
data is colored locally on the web browser.

The elements on the map are displayed in different layers. One layer corresponds
to one data set or displayable entity on the map. This entity is the result of a
workflow, which we described briefly in Section 7.2. For each layer we display its
name and its legend in a list on the left side of the screen. The legend shows if
the layer displays icons, classes or gradients and provides, for instance, a mapping
from class color to class name. Users can reorder the layer list, which reflects in
a reordering of the elements on the map. This is especially advantageous if one
layer hides information of another one, e.g. if users want to display a set of points
on top of a climate raster. A context menu offers options among others to hide or
remove layers, or to change the appearance (symbology) of a layer. For instance,
a user can color a point layer consisting of a data set of species occurrences such
that each subspecies is colored differently.

Since it is not possible to display all non-spatial attributes of a layer on the map,
the bottom of the screen contains a panel with tabs for a data table and a citation
view. A user can select a single layer by clicking onto its list entry in order to
retrieve the miscellaneous information. We call this concept active layer. The data
table entries and the map elements are interconnected. Hence, a user can select a
table entry and highlight it on the map and vice versa.

The right side of the screen contains a menu panel, which is optionally collapsible
to increase screen space. It contains menu items for authentication, data insertion
or upload, geo operators and project settings. Furthermore, it contains another
panel for non-mappable items, which are data plots.

The authentication form in the menu panel links to the user database of the Vat
System. This allows foremost that all progress is automatically stored on the
server. Hence, users can continue their work from any system as long as they
are logged in. Without login, the progress is stored locally on the user’s web
browser. Furthermore, a login allows users to manage their work in different
projects. Each project consists of local settings like a list of layer and plots, a
temporal reference, a map projection and a name. Users can then switch between

133

7. The VAT System

Figure 7.4.: This screenshot provides an overview of the main parts of Wave.
There is a layer list on the left side, a list of citations at the bottom
and a plot panel on the right side. Additionally, there is a zooming
and temporal reference toolbar on top.

different projects and the system automatically adapts their workspace accord-
ingly.

The top of the map contains two action panels. The first one provides buttons
for zooming in and out of the map. This is, of course, also possible via scrolling
or touch gestures on mobile devices. The second one is a reference time toolbar.
Users are able to specify a reference point in time or a time range. The data on
the map is computed accordingly to this specification.

Figure 7.4 shows a project that contains four layers and one plot. The layers
are of different types and contain point and polygon collections and a raster time
series. The global reference time is set to June 2000. The bottom tab panel
displays a list of citations and contains a switch to display a data table instead.
On the right, there is currently the list of plots visible. The boxplot on the right
side shows classified data with respect to elevation data from one of Vat’s data
repositories.

7.3.2. Operators and Workflows

The core functionality of the Vat System is to manipulate and analyze geo data.
Users do this by applying operators to the data. Here, each layer serves as possi-
ble input and the active layer is pre-selected if it represents a valid input for the
operator. Each operator specifies which layer types are required and allowed as
input. For example, a point in polygon filter operator requires exactly one point

134

7. The VAT System

Figure 7.5.: This screenshot shows the representation of the workflow graph in
Wave. Users can click on any operator to get more parametrization
details.

layer and one polygon layer. This avoids specifying operators with false param-
eters. Other operators, e.g. the raster expression operator, require at least one
raster layer. This means, users can select, for instance, two layers for calculating
the difference between two rasters like the maximum and minimum precipitation
for a year. The output of an operator is either a new layer or a plot. Hence, a filter
operator does not necessarily replace the input layer. Instead, the input remains
for inspecting the effect. Plots are unidirectional data elements in Vat, i.e., they
are not usable as input.

During geo computations, it is necessary to match data, e.g. to match projections.
Vat automatically introduces projections whenever necessary without manual en-
gagement of the user. Since all projections of spatial data induce an error, Vat
introduces projections as late as possible in the processing. Thus, data sets re-
main and are processed in their natural representation until it is no longer possi-
ble.

As described briefly in Section 7.2, Vat automatically records all operations like
applying operators, plotting data and removing layers. Thus, at each point in
time, we have the complete workflow of operations available. Figure 7.5 shows the
workflow graph that we can query for each layer in Wave. It shows a tree from
data sources over operators to a result. For each operator we can additionally
review its parametrization. In future versions of Wave we intend to allow changes
in workflow operators and make it possible to reintroduce intermediate results as
a new layer.

135

7. The VAT System

7.3.3. Data Generalization and Exploration

There are two major objectives when interactively visualizing data for the user:

1. Vat aims to compute results in a near-real-time fashion for the user’s explo-
ration experience.

2. Vat provides an abstraction of the data that facilitates detecting interesting
patterns.

Data generalization can address both concerns.

The generalization of raster data is possible by aggregating multiple adjacent cells
and representing them in a lower resolution. This requires less space, but comes at
the expense of losing information. However, the number of visible cells is naturally
limited by the amount of pixels on the user’s screen. Thus, it is sufficient to out-
put raster images in this resolution for previews. Moreover, it is also sufficient to
use source rasters and intermediate results of queries in this resolution instead of
restricting the aggregation only to the results. This allows us to compute preview
results with low latency. Users can afterwards trigger the computation in full res-
olution to produce scientifically valid results. In addition, users can incrementally
improve the accuracy of the data processing and the data visualization by simply
zooming into interesting areas. Zooming in increases the number of pixels in the
map extent and, hence, the accuracy.

A popular approach to generalizing vector data is rasterization. This allows reduc-
ing the data to a fixed grid and makes a lot of operations much easier to compute,
e.g. checking if a point is contained in a rasterized polygon. One drawback is the
loss of attribute information that was attached to each feature. Especially varying
textual data is hardly representable in a raster format. Another drawback is the
loss of precision, e.g. by introducing a line width. A different approach is to ap-
ply simplification techniques that lead to fewer coordinates while still maintaining
the general structure of the data. Apart from being expensive, this approach also
causes semantic changes of queries. For lines and polygons it is possible use stan-
dard techniques like Douglas-Peucker [SGS10], but we aim for extending them to be
able to consider topographic constraints in future work.

Vat offers an approach for generalizing big point data sets in order to speed up
their visualization and to identify cluster patterns. As discussed in the course of
the introduction in Chapter 1, displaying each point with its associated attributes
exceeds the capabilities of current browsers on modern hardware even for sizes of
less than one million points. Additionally, the size of transferring the data in the
GeoJSON standard format stresses the internet connection of mobile devices. An

136

7. The VAT System

example for this are 23 039 kangaroo (Macropus giganteus) occurrence points from
GBIF (cf. Section 1.2). The uncompressed size with 20 common attributes is 1̃5
MB even for this relatively small data set. We can use the Circle Merging Quadtree
(CMQ) here, which we presented in much detail in Chapter 5. It allows us to ag-
gregate data to see hot spot clusters as well as outlier data. CMQ allows combining
nearby data points dependent on the zoom level and map resolution. By zooming
in the user gets a smaller excerpt of the map in more detail such that clusters break
up and more details reveal. We represent the clusters as non-overlapping circles
with logarithmically scaled areas based on the number of included points. Vat
uses currently the Log10 transformation function as described in Section 4.5. In
addition to the varying circle sizes that depend on the associated number of points,
the circles contain the number of points as labels.

7.3.4. Linked Visualization and Data Table

Wave is a reactive web application. With the map-centric approach it allows us
to align the other data views accordingly. This means that whenever the refer-
ence time changes, all visible plots as well as the data table entries recompute
automatically. This allows stepping through time in, for example, yearly intervals
and keeping everything else synchronized. Classical GIS would need the user to
compute all other items individually. In addition, all data views correspond to
the current viewport, which is the extent of the map. Thus, a global view leads
to a global computation of the data and, for instance, to zoom in on Germany,
leads to recomputations for this selected area only. This facilitates the intuitive
investigation of interesting places and the access to more details for certain areas
on demand.

In accordance with most plots, the data table has to display aggregated data,
e.g. clustered point data. Each table row corresponds to the visible, aggregated
data points on the map. This allows us to limit the transferred data from Map-
ping to the aggregated values only. Therefore, the table shows exactly the same
data points as the map in the same resolution. Because of the geographic aggre-
gation of the points, we also need to aggregate all other attributes of the data
set.

In Section 6.1, we presented different efficient methods for aggregating the miscel-
laneous attribute values. For numeric attributes, we use the mean and standard
deviation. By zooming in, the number of points in a cluster decreases and so does
the standard deviation. This means the information gets more exact by diving into
the data. Vat keeps for textual attributes a small number of representative points
(typically three to five) for each cluster. Among the many options for selecting

137

7. The VAT System

representative points, we currently use the attributes of the points closest to the
cluster center. The reason for our choice is that the accuracy of this information
improves when zooming in.

Some textual attributes contain links to multimedia data. An example is a hy-
perlink to a photo of a data set object. Wave is able to detect multimedia
links in a table cell and provides image views as well as audio and video play-
ers whenever relevant to access the data at its source. Thus, users are able to
investigate the different aspects of a data set directly within the Vat System.
We display all multimedia data in the menu panel on the right side of the user
interface.

7.3.5. Citations and Provenance

Citations are very important for scientific work. They allow researchers to classify,
comprehend and reproduce published results. They are also important for the
publishers of those results, as they facilitate assessing the impact of their work.
Aside from scientific results, also raw data has to be properly cited for the above
reasons. Today, more and more organizations and journals encourage publishing
data as a citable publication to facilitate data sharing. Articles, like Buneman et
al.’s [BDF16], stress the importance of citations in scientific data management.
Instead of applying complementary techniques to existing systems, Vat treats
citations as first class citizens.

Our system aggregates all citations of the involved data sets. It exploits the
automatically tracked workflows (cf. Section 7.3.2) to retrieve information from all
incorporated data sources. We call the combination of

1. citation

2. license

3. URI (e.g. a link to a landing page)

provenance information. All operators are responsible for collecting or forward-
ing the provenance information of the result. For source operators this means
that they have to harvest their sources for citations. On the other hand, process-
ing operators combine the provenance information of their inputs via a duplicate
eliminating union operation. This behavior can be altered for specific operators,
e.g. a filter operator does not necessarily need to output citations of filtered out
entries.

138

7. The VAT System

citation data source

union
raster value
extraction

filter
attribute
filter

union
point in
polygon

all citations

citation data source citation data source

Figure 7.6.: This tree illustration visualizes the secondary computation path for
citations that are computed alongside the actual data.

In general, the citation generation can be seen as a second workflow that calculates
the citations alongside with the actual data. Figure 7.6 shows this extended work-
flow view. In Wave, the provenance information for the active layer is available in
the citation tab at the bottom. In addition, Vat will always add this information
to a data export.

7.3.6. Temporal Operations and Aggregation

Dynamic time series processing based on workflows is a core feature of Vat in
contrast to other GIS-like systems. Our system supports the specification of date
and time as a global temporal reference. As stated in Section 7.2, each query
consists of a workflow and a spatio-temporal query rectangle. The time interval, in
particular, expresses the validity of the result. The temporal reference slices a time
series result such that it only contains elements that are valid at the given point
in time or time interval. This facilitates an exploratory, on-demand processing
of workflows in which Vat only generates the results for actually requested data.
Furthermore, workflows can be reused for queries with different spatio-temporal
query rectangles.

139

7. The VAT System

timet0 t1 t2 t3

Input 1

Input 2

Output

Point-in-Polygon Filter↓ ↓

Figure 7.7.: This figure depicts the time series computation of a point-in-polygon
filter [Bei+17a]. Users can query with different time slices that deter-
mine the results.

For example, a user may add the WorldClim3 mean annual temperature data set
as a raster layer to a project. This data set is a time series that contains monthly
climate variables. By means of the temporal reference, the system is now able to
choose the valid raster for the month of the currently selected point in time and
add it to the map. Consequently, operations that include this data set also incor-
porate the correct raster with respect to the temporal reference. In comparison,
traditional GIS oblige a user to manually add the correct raster from the data set
beforehand. This is obviously a cumbersome and error-prone task. Here, a change
of the temporal reference in the user interface of Wave automatically leads to the
correct raster being displayed and computed.

The temporal validity of a data object is defined as an interval from a start time
to an end time during which the object is incorporated into computations. The
start and end times refer to a user-defined temporal reference system, which is in
practice always the Gregorian calendar. When users want to combine data with
different temporal validities, Vatmay have to split data objects into multiple items
with different validities. Figure 7.7 presents such a computation with an example
of a point-in-polygon filter. Here, the point data set has an infinite temporal
validity (always valid) and the polygon data set contains two features with different
temporal validities. The resulting time series contains all points that are inside the
blue polygon for the interval [t0, t1). For [t1, t2), there is no polygon and, hence,
there are no points that are inside a polygon. For [t2, t3), Vat outputs all points
that are inside the orange polygon. When specifying a point in time in Wave,
the query to Vat only returns the points that are valid within that time slice.
Vat does not compute the whole time series and, thus, the diagram in Figure 7.7
displays a more theoretic view on the processing.

3www.worldclim.org

140

https://www.worldclim.org

7. The VAT System

timet0 t1 t2 t3

Input 1

Input 2

Output

Expression↓ ↓

Time Shift↓ ↓

Figure 7.8.: This figure depicts a computation that first duplicates the input with
a time shift operator (+1 time step). Then, it calculates a raster
expression, e.g. an addition. The coloring emphasizes this process.

A different problem setting occurs when combining multiple data sets with non-
overlapping temporal validity. Figure 7.8 exemplifies this by showing the com-
putation of the temporal differences of the world population. Users can use the
GPW4 data set, which is a raster that represents population counts with a five-
year validity. The idea is to compare the population with the population from ten
years before. Users can apply a time shift operator in Wave that allows absolute
or relative shifting of the temporal information of the spatio-temporal query rect-
angle. Thus, users add the GPW raster to the map and create a second layer by
applying a relative time shift of -10 years to it. Then, an expression operator can
calculate the differences between these two rasters. As a result, users can query a
workflow with the year 2010 that computes the differences in population between
2000 and 2010. When stepping five years backwards in the temporal context in
Wave, the system automatically computes the same workflows for the difference
between 1995 and 2005.

7.3.7. Plotting and R Connectivity

Plots allow visualizing properties of data sets and correlations among attributes
that are neither visible on the map nor recognizable in the data table. Vat has
native support for some plot types, e.g. histograms. Here, Wave uses D3.js to
visualize the graphs. Since plots are the result of an operator, users can use
similar input dialogs to create them.

In addition to the native plots, Vat provides an interface for the programming lan-
guage R. On the one hand, this allows experienced users to bring in their existing

4sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev10 (accessed Sept. 9, 2018)

141

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev10

7. The VAT System

Figure 7.9.: This graphic depicts the application of a time series plot.

scripts, e.g. for sophisticated data statistics or for generating plots. On the other
hand, we utilize the R interface ourselves to exploit its powerful visual components.
For certain plot types, we provide a transparent interface that makes the function-
ality accessible to users without knowledge of R. Altogether, it is not necessary
to reimplement certain functionality again. Among others, we have implemented
scatter plots with trend lines, bar charts and temporal line charts that rely on the
R connectivity. The last one allows plotting a time series for layer attributes and
a time interval in the spatio-temporal query rectangle. Figure 7.9 shows the input
dialog and one exemplary output for this plot.

Vat establishes a steady connection to an R server component. To accomplish this,
our Mapping back end links to an RServer5 instance. We use remote procedure
calls to execute code, send input data and return the finished script output. One
problem is the impedance mismatch of our C++ and GPU-friendly data structures,
which constitute, inter alia, in a columnar data structure for vector data. We
use RInside [EF13] to implement a two-way mapping of all our data structures to
equivalent R data structures. For this, we used the sp package [PB05] that provides
geo data structures like data frames with spatial properties. In the R environment,
Vat provides a custom namespace with specific functionality to access input data

5github.com/bgweber/RServer

142

https://github.com/bgweber/RServer

7. The VAT System

Figure 7.10.: This graphic shows an exemplary step of the CSV import dialog.

sets and the spatio-temporal query rectangle. The output data types are either
raster or vector data, plots or simply texts. For security reasons, we make use of
sandboxing to prevent the execution of malicious and system-threatening code on
Vat’s host system.

7.3.8. Data Import and Export

Wave provides functionality to import custom data into the Vat System as well
as to export results for publication or further usage. Exporting allows using the
results, for instance, in custom applications or specific analysis tools. Furthermore,
users can share results with each other.

For importing custom data, Vat implements various adapters to read basic vector
data formats, e.g. CSV, and various raster data formats, e.g. GeoTIFF. Figure 7.10
shows the CSV import dialog of Wave, which guides the user through the upload
of a custom CSV data file. It is a multi-step approach:

1. The user uploads a CSV file and the dialog uses a data sample for configu-
ration purposes.

2. The dialog automatically detects CSV delimiters, but lets the user modify
the choice.

143

7. The VAT System

3. The user specifies the spatial column(s) of the file. This can be, for instance,
one latitude and one longitude column for one point per line or a Well Known
Text (WKT) [Ope10a] string that specifies a single polygon per line. The
data projection is also configurable here.

4. The user specifies columns for the temporal validity. This can be, for in-
stance, a start and an end column or a start and a duration column, e.g. in
seconds.

5. The user can change the settings of the column data types of the remaining
columns.

6. The last dialog step contains settings for error handling. It allows specifying
the behavior in the case of erroneous lines. For instance, Vat can stop the
whole import process or simply skip these lines. As another alternative, Vat
can change the value of erroneous fields to default parameters. Furthermore,
the user can change the name of the data set in this dialog step.

7. Vat imports the file, adds it to the map and provides a list of user uploaded
data sets.

For raster data, Vat uses primarily the GDAL library, which provides connectors
to a large number of data formats. In addition, Vat is able to integrate data
from remote sources that provide standard interfaces such as WFS and WCS.
For example, the US government provides such a service6 for public data like
educational and police reports. This allows the incorporation of a large variety of
data sources and types into the Vat System.

Besides data import, Vat provides means to export the data out of the system
again. Wave provides an export interface that starts a download of a selected
layer, which is a result of a workflow computation. A data export always consists
of a package (zip file) of three items:

1. the data itself, e.g. a raster in GeoTIFF or a vector data set in GeoJSON
[But+16] format,

2. the workflow description for which Vat creates a JSON file that provides
the computational graph and operator parametrization, and

3. the list of citations, which is again a JSON file that contains a list of citable
items with the fields citation string, license and URI.

6www.data.gov

144

https://www.data.gov/

7. The VAT System

This emphasizes that the idea of Vat is not only to create a result, but also to al-
ways maintain the data lineage in form of a processing workflow and data source in-
formation. This makes theVat System especially valuable in science.

For sharing results with other users, Wave allows creating a URL string that users
can send to their peers. When users follow this link, Wave opens up and provides
the options either to integrate a new layer with the shared workflow into their
project or to start a project with the shared result only. Users are then able to
review the workflow and citations of the computation and also integrate this result
into their own, new computations. In the future, we aim to implement identifiers
like the Digital Object Identifier (DOI) [Pas02] that would make it possible to
provide links to results from a publication to a long-term instance of the Vat
System.

7.4. Integration to Infrastructure Projects

This section briefly discusses the integration of the Vat System into a project
environment. As a role model, we will first discuss the connection to the GFBio
project. Then, we point out opportunities for using Vat in other infrastructure
and research projects.

7.4.1. Connection to GFBio

The Vat System is an integral part of the GFBio (cf. Section 1.1) portal. By
using this portal, researchers can create a data management plan for their research
projects and at some point, at latest at the end of the project, submit their data
to one of GFBio’s associated partner data centers or archives. The other end of
the spectrum concerns the reusage of this research data. Scientists who want to
visualize or incorporate previously generated data can use the portal search to look
up relevant data sets, review their metadata and download them [Löf+17]. Within
GFBio, there exists an agreed set of mandatory metadata fields, e.g. spatial and
temporal metadata that is available for every data set. The Vat System utilizes
these fields to integrate respective search results.

The Vat System provides access to GFBio search baskets. Like in a warehouse,
GFBio portal users can search for relevant data and put multiple data sets into a
basket for further usage. Users can either follow a link from the portal or query
the search basket from within the Vat System to access these data sets. Here,
Vat accesses the data centers and archives via both customized and standardized

145

7. The VAT System

connectors. Examples are connectors to the Pangaea Data Warehouse [Pas02] and
to the BioCASe providers [GBM07], which make data available in the XML-based
ABCD [Acc07] standard. This leads to a close portal integration where users can
easily transfer their search results to the Vat System.

In order to link GFBio portal users to the Vat user database, we established a
single sign-on for GFBio users. When using Vat from a link from the GFBio
portal, they will be automatically logged in. Otherwise, users can use their GFBio
credentials to log into the Vat System. In the background, this describes an add-
on module for the Vat user database. Thus, for a running Vat instance, users
can use either their GFBio credentials or their Vat credentials to login and share
their work.

7.4.2. Opportunities for Other Projects

The Vat System is not inherently integrated into the GFBio infrastructure. On
the contrary, it is based on a module system. Thus, it can principally offer the
same functionality to other research and infrastructure projects. For instance, we
established a cooperation with the GEO BON7 project to create an EBV Spatial
Analyzer [Bei+18] as a dedicated web application. EBVs (Essential Biodiver-
sity Variables) [Per+13] present derived measurements that groups of biodiversity
researchers agree upon and which are important indicators for the world’s bio-
diversity. Forest gain and loss models are one example, whereas the majority of
variables still needs to be developed or decided on. Here, we provide aVat instance
with a modified user interface based on Wave. It uses pre-defined workflows that
are created in a first step with the basic system. In a second step, the resulting
workflows are visualized in a report version with only few options or parameters
to change. For instance, one could visualize the forest change together with a
time series plot and provide the user only with the possibility to change the time
period.

By maintaining the modular structure of all Vat components, it is possible to
also provide adapted versions to other research projects. This allows using the
powerful core functionality of the Vat System and to change only the look and
feel as well as the options for the user. This would facilitate a faster development
of such applications and the use of joint forces to continue developing the Vat
System.

7geobon.org

146

https://geobon.org

7. The VAT System

d

a

b

c

Figure 7.11.: This screenshot presents the final stage of the use case, in which
markers indicate the different steps that have led to the results
[Bei+17b].

7.5. Example Use Case

In the following, we present a use case that exemplifies the capabilities and the
usage of the Vat System. A public version of the system is available8 and al-
lows conducting this scenario. We consider the scientific task of discovering dif-
ferences in the distribution of two tree species: the toothbrush tree (Salvadora
persica) and the kola nut (Cola nitida). While the toothbrush tree is a small
evergreen tree that grows in hot and dry conditions, the kola nut is a tropical
tree from West African rainforests. Our use case includes processing and visu-
alizing a combination of raster and vector data, comparative plotting and time
shifting.

In a first step, occurrence data from both species is added to Wave. Users often
want to combine their own data with existing public data sets. Thus, the use case
contains one user data set and two data sets from one of the repositories provided
by Vat. The user data is given as a CSV file and is therefore imported with the
import wizard from Wave’s data menu. Having specified the data format as well
as spatio-temporal properties, the data set is available in the private repository
of the user and added as a layer to the map. Then the species occurrence wizard
from Wave’s data menu is used. Here, the kola nut is looked-up and the resulting
GBIF data is added as layer to the map.

8vat.gfbio.org

147

https://vat.gfbio.org

7. The VAT System

Figure 7.11 shows the map with layers for both species (cf. marker (a)). Their
distributions are matching their habitat descriptions. The kola nut occurrences
are in rainforest areas while toothbrush trees are located in hot and dry re-
gions. To confirm the visual impression, the user adds environmental data to
the project.

In the data repository of Wave’s data menu, monthly precipitation data is avail-
able from the WorldClim data set. Adding it as a new layer allows assessing
the precipitation at the occurrence points by visual inspection. Now the raster
value extraction operator from the operator menu allows adding the raster value
at each occurrence location to the occurrence points by joining the two data
sets. This creates a new layer where all points have an additional attribute pre-
cipitation that reflects the average monthly precipitation at the location of the
point.

Figure 7.11 shows layers for both species and the precipitation (cf. marker (b)).
In order to compare the two data sets, the histograms of the precipitation at the
occurrence locations are generated with the histogram operator fromWave’s oper-
ator menu. Here, both histograms use the same configuration (e.g. a range of 0mm
to 300mm and 20 buckets) to achieve comparable results.

Figure 7.11 shows the histograms of precipitation values at the occurrence loca-
tions of the kola nut and the toothbrush tree (cf. marker (c)). We observe that
kola nut occurrences are more often located in areas with high precipitation rates
and toothbrush trees in dry areas. The precipitation data from WorldClim rep-
resents monthly aggregates. Wave’s temporal reference toolbar allows traversing
the data month-by-month by changing the displayed point in time. By changing
the reference time in Wave, the layers on the map, the values in the data-table
and the plots are re-generated automatically. For creating sophisticated species
distribution models on the user’s personal computer, the enriched species layers
are exported as CSV files by using the export dialog found in the layer’s context
menu.

7.6. User Interface Design

An intuitive user interface is of utmost importance to the Vat System’s ecosys-
tem. The goal was the realization of the concept of an interface for exploratory
data analysis and time series data computations. The development of Wave was
conducted in two phases.

148

7. The VAT System

7.6.1. The Two-Phase Approach

In the first phase, we discussed many design decisions on a white board. We
combined our ideas into a paper prototype, which was iteratively improved. While
the first paper prototypes were on real paper, later versions were developed using
software tools like balsamiq9 and inVision10. This allowed us to easily incorporate
button clicks and multiple page views, and to present them to users. This phase
contained a user evaluation with domain experts. We will discuss the results in
more detail in Section 7.6.2. With these results, we reworked the paper prototype
and finished phase one.

In the second phase, we started implementing the actual web application. For
this, we first took our conceptual ideas from the paper prototype into account
for choosing the most promising web technologies and frameworks in order to
accelerate the implementation process. As discussed earlier, we mainly rely on
Angular and its Material Design implementation, which we started using as early
adopters in the beta phase. Fortunately, as it is developed mainly by Google
Engineers, there are stable and (which is unusual for web frameworks) long-term
stable versions available now. When the first working version was available, we
conducted a second user evaluation, which we will also discuss in Section 7.6.2. As
in the first phase, the results led to some modifications of the user interface. Since
the development of the paper prototype was evaluated thoroughly and provided a
blueprint, there were no immense redesign steps necessary. One noticeable design
change was, for instance, the menu bar’s switch from the top to the right side of
the screen. This provided more screen space, particularly on mobile devices such
as tablets, but also on widescreen monitors.

After these two steps, we started integrating the Vat System into the GFBio
portal, while simultaneously improving it and extending its functionality. For
maintenance, regular portal user tests ensure that updates in the GFBio ecosystem
do not interfere with the interaction of the Vat System with other components.
For this, the GFBio consortium implemented several user stories and use cases
that are manually tested on releases of new versions.

7.6.2. User Evaluation

To evaluate the usability of Wave we conducted both user studies with biodiversity
experts from the Senckenberg Biodiversity and Climate Research Institute (BiK-

9balsamiq.com
10www.invisionapp.com

149

https://balsamiq.com/
https://www.invisionapp.com/

7. The VAT System

Figure 7.12.: This graphic shows the CSV upload dialog of the paper prototype
[Bei+17b].

F) in Frankfurt am Main, Germany. The first user study took place in the design
phase of Wave and was conducted to gain insights about an appropriate user
interface design prior to the product development. The second user study was
designed to evaluate the actual implementation of Wave and featured the use
case provided in the previous section.

Conceptual Design Evaluation

The conceptual design evaluation included 15 potential users in the design process
of creating an effective user interface. For this we developed a paper prototype (cf.
Figure 7.12), which covers an almost identical use case to the one described in the
previous section. The use case focuses on bird occurrences instead of tree occur-
rences, but uses the same operations. This allowed us to abstract all implementa-
tion details and to focus on concepts on a sketch board. The advantage was that it
was very inexpensive to discard inadequate concepts. And in conclusion, this led
to rapid concept development with domain experts.

The user study consisted of two parts. The first one consisted of an introduction to
the use case and a 20-minute time span to solve a specific task. The users had to
work on the task independently without any system introduction or explanation.
We observed their behaviors and timed their steps doing certain sub tasks. The

150

7. The VAT System

50% 0% 50%

I can very well imagine to
use the system regularly.

I experience the system as
unnecessarily complex.

I experience the system as easy to use.

I think I will need technical sup-
port in order to use the system.

I think the functionality of the
system is well integrated.

I think there are too many in-
consistencies in the system.

I can imagine that most people will
master to use the system very quickly.

I experience the handling of
the system as cumbersome.

I felt very confident while
using the system.

(a)
Conceptual Design

Evaluation

50% 0% 50%

(b)
System

Evaluation

Agree Strongly Agree Somewhat Neutral

Disagree Somewhat Disagree Strongly

Figure 7.13.: These bar diagrams show the results of the two user evaluations
[Bei+17b].

second part included a questionnaire of nine fixed questions and an additional field
for free text comments. The participants had ten minutes time for their feedback.
The questions aimed at different impressions about the system usage. The users
were asked to choose from typical symmetric five-level Likert scaled answers with
a neutral element (cf. Figure 7.13 (a)).

Our analysis combined the behavioral observations, the answers to the question-
naire as well as additional comments. In conclusion, we did not find any reason
for major changes in our design proposal. Nevertheless, we identified minor weak-
nesses and were able to get a better understanding of how users intend to work
with our system. One interesting fact to mention was the users’ expectation to
interact with the application in a similar way as with desktop GIS. This included
right-clicking on elements to perform actions. This was a strong contrast to our
previous experience in web application development. In addition to the feedback
from the first user study, we were asked by early testers to move the toolbar
from the top to the side of the screen (cf. Figure 7.11). The idea was to utilize

151

7. The VAT System

the typical wide-screen aspect ratio of modern desktop and mobile displays more
efficiently.

System Evaluation

The second user study included seven participants. While the evaluation design
was the same as in the first evaluation, the participants used an early implemen-
tation of Vat and not a mock-up. The equal experiment design allows a direct
comparison of both study results. First, we introduced the use case that focused
on toothbrush tree and kola nut (cf. Figure 7.11). Then, again, the users worked
independently without introduction or explanation of Wave to solve the tasks. In
comparison to the first study, we extended the time span to 30 minutes. None of
the users had a previous experience with using Wave. We monitored the screens
of the participants and their mouse movements. Additionally, we asked them to
express their thoughts (think-aloud method [Jas+04]) and recorded everything in
detail in writing. After finishing their tasks, the participants filled out the same
survey we used in the course of the first evaluation to assess Vat (cf. Figure 7.13
(b)).

In summary, the results were very positive. The participants identified no major
issue, so that no conceptual change of Wave was made. Minor disturbances in the
workflow could be explained by the deviations from the participants’ daily used
tools. The temporal functionality, which is a novel feature in this domain, was very
much appreciated. As the provided data sets were also highly appreciated, most
participants asked us to extend the repository with more specialized data sets.
Some users mentioned that they will most likely use Vat in the future and think
that we should start providing Vat functionality for other biodiversity projects,
e.g. for landing pages of data sets.

7.7. Related Work and Systems

This section presents related work and related systems that share common goals
with the Vat System. We divide them into six groups, based on different as-
pects. For each group, we introduce the most prominent representative systems
or research.

First of all, there are portals and catalogues for accessing geographical data. Ex-
amples are the Atlas of Living Australia [Bel11], LifeWatch [BL12], Integrated
Digitized Biocollections (iDigBio) [Bea14] and the Catalogue of Life [JWO11].

152

7. The VAT System

These portals make data for several communities available, e.g. the Atlas of Living
Australia provides environmental pre-aggregated data for the Australian conti-
nent. While these full-fledged solutions can be seen as competitors for the GFBio
projects, Vat – as a part of GFBio – presents a more powerful geo processing
engine that allows for dynamic processing of collected data. A specialized interface
for Vat that hides all the complexity could bring up a similar front end to a data
archive. CKAN [Win13] and GeoNetwork [TH07] are two data catalogues. While
these rely on third-party tools like GeoServer [Iac17] for data visualization, Vat
rather compares to these third-party tools than to the catalogue itself. Vat can
be seen as one building block that could be integrated in one of the previously
mentioned solutions.

Second, there is geo software that aims for publishing data interactively on a map.
The most prominent software is GeoServer [Iac17], which is the standard imple-
mentation of several OGC protocols [Ope07]. It supports various raster and vec-
tor formats as well as connections to databases with geo extensions, e.g. PostGIS
[OH15]. While GeoServer constitutes a web service that has to be installed locally,
GIS Cloud [LPB16] and CARTO [Zas15] are cloud-based services. GIS Cloud fo-
cuses on integrating custom data (mostly vector data) for an online, shared access,
CARTO has its focus on producing beautiful maps. None of these systems provides
sophisticated means for data processing. For CARTO there are some pre-defined
analyses available and GeoServer can leverage the operators from the underlying
database. Furthermore, GeoServer provides means to rasterize vector data. Vat
also supports retrieving and publishing data using OGC standard protocols. While
it has limited capabilities of map layouting and designing, it focuses more on geo
data processing.

Third, there are workflow systems. Taverna [Wol+13] and Kepler [Alt+04] are
classical examples for this system category, which offer users an interface to de-
fine a processing workflow upfront. The execution of a workflow leads eventu-
ally to the output of the result. Pegasus [McL+13], the Google Earth Engine
[Gor+17] and OmniSci [Mos17] (formally MapD) are modern representatives that
focus on distributed processing. Especially the Google Earth Engine incorporates
the machine learning framework Tensorflow [Aba+16] to incorporate state-of-the
art algorithms in geo processing. OmniSci incorporates in-memory processing with
GPUs to achieve a high throughput. However, Vat is designed to give users an
interactive experience and defines workflows along the way of exploring the data.
Hence, it uses a similar paradigm, but approaches it from another perspective.
While Taverna and Kepler provide the user at least with a graphical user inter-
face, Pegasus and the Google Earth Engine require programming the workflow.
There are special-purpose systems like the Map of Life [JMG12], which provide

153

7. The VAT System

a front end to answer distinct questions in the domain of biodiversity. They pre-
process their data with the Google Earth Engine and deliver the results to the
user.

Fourth, there is standard geographical information system (GIS) software. A
prominent open source representative is QGIS [Gra13]. In general, GIS offer a
graphical user interface that requires only little programming skills. Desktop GIS,
however, have some disadvantages. First, they suffer from slow processing as they
are limited to local resources and do not exploit modern hardware sufficiently well
[Aut+15b]. Second, to the best of our knowledge so far no GIS exists that treats
every data set as a time series and produces derived data sets with valid tempo-
ral information dynamically on demand. Existing GIS like GRASS [Peb17] have
extensions that allow processing temporal data sets. However, to match their ex-
isting processing model, they process the data upfront rather than on demand.
Moreover, they store intermediate steps as new data sets on disk, which leads to
a high consumption of storage space and slow response times for exploratory data
analysis.

Fifth, in contrast to desktop GIS, Zhang et al. [ZYG17] are developing a web-
based GIS for exploratory usage. They incorporate GPU-accelerated processing
similar to the Vat System. Their work focuses on extensive indexing support
for evaluating point-in-polygon predicates. However, they base their front end
on the Google Maps Platform [Pet15] for performance and ease of use, but fo-
cus mainly on the back end part. In contrast, we consider a good user interface
to be equally important as a high-performance back end. Thus, we spent par-
ticular effort on accomplishing a high level of usability. We conducted extensive
user studies to validate our user interface design and identify opportunities for
improvements.

Sixth, there are systems that provide either raster or vector processing. RasDaMan
[Bau+98] and SciDB [The10] are the most prominent examples for raster process-
ing in the form of efficient array computing. On the other hand, there are efficient
vector processing systems like SparkGIS [Bai+17], GeoSpark [YWS15] and STARK
[HGS17] that are all based on Apache Spark [Zah+10]. Pandey et al. [Pan+18]
investigated various Spark-based systems in terms of their functionality and per-
formance. Unlike Vat, they do not provide combined geo processing with raster
and vector data, but only support a subset of vector data types. However, as they
focus only on vector data, they offer more possibilities with respect to join predi-
cates, e.g. k-nearest neighbor joins. Beyond that, all systems are server-side only
and do not inherently provide a powerful user interface.

From our experience, expert users do not always rely on GIS and often program

154

7. The VAT System

their workflow in their programming environment. The programming language
R is an often-used candidate since it offers large statistics functionality without
the necessity to use third party libraries. Systems like the Berkeley Ecoinformatics
Engine [Rap+14] serve as storage for vectorial biodiversity data and environmental
raster data. In this case, it provides an API to query the data with filter pred-
icates. However, it does not provide sophisticated processing functionality itself.
In Vat, users can augment the system by using custom R operators. Instead of
downloading all data to the local machine that runs R, we allow uploading missing
operators to the processing environment. Thus, users can rely in most cases on
our high-performance operators and only have to switch to custom operators if
really necessary.

A cross-cutting concern for all geo processing in science is the generation of proper
citations [AK07]. Since it is often difficult to convince researchers to publish their
data alongside with their findings if the funding agencies do not require it, it is of
utmost importance that new research gives sufficient credit to the data producers.
Automatic citation generation is key to this question. Buneman et al. [BDF16]
tackle this task for database systems in general. The idea is to subdivide the input
data into citable units. When citations need to be specified, citable units represent
the most fine-grained levels to look at. Their method uses common query rewriting
techniques to transform the query into views such that each view corresponds to a
citable unit. If the view is still in the re-written query, the data’s metadata is part
of the citation. While the problem of query re-writing is NP hard in general, there
are applicable heuristics to use. Other solutions [Rau+16] also try to find the best
subsets of the data that form the citations. Since Vat uses custom operators for
each processing step, the citation tracking is integrated there. This means that it
is not necessary to rewrite the queries afterwards.

7.8. Summary

This chapter presented the Vat System, which is an interactive web-based geo-
graphic information system for exploratory data analysis of spatio-temporal data.
We showed the novelties of the system that includes inherent time series support
as well as lineage and citation handling. In addition, we showed that data ag-
gregation techniques like the Circle Merging Quadtree (CMQ) were adapted to
be used within the system. These techniques foster exploratory analysis. Besides
that, the integration of R allows us reusing existing functionality, e.g. for plots,
and integrating user-defined functions.

155

7. The VAT System

We additionally showed the connection to the GFBio project. Besides the inclusion
of various generic data sources, the seamless connection to the project’s portal
encourages data reusage of biodiversity research data. Taking GFBio as a role
model, this integration advocates the utilization of the Vat System for other
research projects.

Furthermore, we presented the conceptual design and implementation of the user
interface (Wave) of the Vat System. Here, we discussed two user studies that
facilitated design decisions along the way. As a result, Wave promotes the ex-
ploratory usage and harmonically transforms the user’s actions into queries to the
back end server (Mapping).

Finally, we presented related systems of different categories and discussed their re-
lationship with the Vat System. In this context, we identified similarities and dis-
tinguished ourselves from their methodology. As a result, Vat is a system that ad-
dresses geo processing for exploratory research in a novel way.

156

8
Conclusion

This final chapter concludes this thesis by first giving a summary of the presented
content. Here, we point out the most important findings and put them into context.
Then, we point out ideas for future research in the field of visual point clustering
and exploratory geographical information systems.

8.1. Summary

In this thesis, we addressed the problem of visualizing large spatial point data sets.
We defined the problem of visual point clustering that leads to proportional cir-
cle maps. These maps represent aggregates of the underlying data sets that provide
important information about distribution, cardinality and locality.

For investigating the quality of a visual point clustering result, this thesis intro-
duced a set of quality measures that address different aspects of a good circle
representation. In this sense, we investigated generic clustering methods for their
suitability in this problem setting. The findings showed that there were acceptable
results possible in principle, but the parametrization poses a problem that makes
it infeasible to use these algorithms.

Moreover, this thesis presented the Circle Merging Quadtree (CMQ). This method
constitutes a novel and efficient approach for visual point clustering. Since its
basic form does not provide computational stability, we extended the algorithm
by a preprocessing that solves this issue and substantially improves the overall
runtime. The experimental evaluation showed that CMQ outperforms related al-
gorithms in terms of runtime. Additionally, we demonstrated the high quality
of its results by evaluating the quality measures on several real-world data sets
from the field of biodiversity. Moreover, the aggregation of points to circles leads
to, in comparison, very small output data sets that are suitable for mobile de-
vices.

157

8. Conclusion

This thesis furthermore showed extensions to the basic CMQ method with re-
spect to miscellaneous attributes and to multiple data sets or classes within a data
set. For miscellaneous attributes, we detailed on suitable aggregation methods
that allow to efficiently compute statistical measures that are suitable for side-
views like plots or data tables. For multiple data set or classes, we extended
two methods from literature, pie chart maps and maps with circle packings, to
work with CMQ . For the latter variant, we proposed several improvements that
were also evaluated within a user study. The study revealed the positive effect
on the visualization of multiple data sets that is provided by this CMQ exten-
sion.

Since CMQ is a method that is ideally suitable for visual analytics systems, we
embedded it into the context of an exploratory geographical information system.
The Visualization, Analysis and Transformation System (Vat) constitutes such a
visual analytics system for spatio-temporal data. Here, we detailed on the develop-
ment of an interactive user interface that facilitates exploratory research. Two user
studies verified the success of the development of Vat.

Overall, this thesis provided significant contributions in the field of spatial data
visualization and spatio-temporal visual analytics systems for research that incor-
porate geographical data.

8.2. Future Work

For future research, we discovered three possibilities. First, we discuss aggregations
with further topological constraints. Second, we propose the parallelization of
CMQ . Third, we open up the field of stream processing in the context of visual
point clustering.

8.2.1. Aggregation with Topological Constraints

The visual point clustering leads to aggregating data of multiple nearby loca-
tions to new circles in a location (and with a size) that represents all of these
included locations best. However, there are reasonable arguments for scenarios
in which this leads to undesired effects. For example, points of observations of
sea animals in combination with points of terrestrial animals can potentially lead
to circles in the ocean that represent the terrestrial species, or vice versa. An-
other example is data that is gathered from different countries. In this case, we

158

8. Conclusion

might want to provide an aggregated view that does not merge data from adjacent
countries.

We can achieve these topological constraints by incorporating lines or polygons
that act as boundary objects [Gru+15]. Hence, we would forbid merging two or
more objects across those boundaries. A possibility is to introduce a data structure
for boundary lookups, e.g. another quadtree. Each merge would then be prelimi-
nary and checked for an overlap with a boundary by querying this data structure.
If an overlap occurs, the merge would then be reverted.

It may be necessary to introduce displacements in the constrained aggregation
case. If a circle crosses a boundary, it gets pushed back in order to eliminate
the overlap. Note that displacements could lead to potentially new overlaps with
circles that were previously unaffected.

8.2.2. Parallelized CMQ

In the chapter about the Vat System (cf. Chapter 7) we discussed the utiliza-
tion of GPUs in order to speed up computations by exploiting a high degree of
parallelism. By now, although being very efficient, the visual point clustering com-
putation of CMQ is linear and single threaded. However, we see great potential
to improve CMQ even further by enhancing certain steps with parallel computa-
tion.

The computation of the preprocessing step incorporates a grid data structure. This
correlates to the rasterization of points by introducing additional constraints. For
instance, our grid constitutes a (very) large spatial histogram. Common GPU-
based histogram computations [Góm+13] store one histogram for every compu-
tational group in local memory. This, however, quickly exceeds the memory of
modern GPUs in the case of large histograms. On the other hand, one can gen-
erally iterate over all points in parallel and access the grid cells concurrently.
Unfortunately, a large number of threads that access a constant size grid leads to
many concurrent accesses and, hence, locking and synchronization. This means
it is not possible to achieve a highly parallel implementation this way. A com-
promise pose adapted group prefix-sum (grouped scan) operations [KML15]. An
experimental evaluation can then reveal the best strategy with respect to certain
degrees of parallelism, size of the map (and circles) as well as number of points as
input.

Moreover, the computation of the insertions as well as the queries to the quadtree
of CMQ can benefit from parallel computation [ZYG14]. The quadrants of the
quadtree can be visited in parallel since partial results of the queryAndExtract

159

8. Conclusion

method do not interfere with each other. Hence, with respect to the rather small
depth of the tree, a certain degree of parallelism is possible here as well. Synchro-
nization mechanisms allow combining the partial query results. Recall that we
adapted the insertion such that it exploits the result of the queryAndExtract
method on misses. It returns the path to the empty spot in the tree. Thus, there
is no room for additional parallelism.

Since CMQ has a low memory requirement, it is possible to extend the algorithm
to compute batches of input data sets that exceed the GPU’s memory. In this case,
either the resulting tree or the grid structure remain in the GPU’s main memory.
The remaining space has to be adequately subdivided between input buffers of
point data and caches as well as local variables.

8.2.3. Streamed Clustering

Another use case for CMQ is monitoring a stream of spatial data [KK13]. Here,
CMQ can constitute an efficient visualization that needs to be updated according
to the incoming (and expiring) data in the stream. Depending on the type of data
stream (complete history, tumbling or sliding [Li+05]) it is necessary to update
CMQ differently. Two examples are the live observation of animal species or the
city monitoring of parking cars.

If it is required to visualize the complete history, there is no adaptation necessary
in order for CMQ to work. Due to the constrained space requirements of CMQ (cf.
Chapter 5) there is no need to remove any data in this case.

For tumbling windows, it is sufficient to compute a visual point clustering for
CMQ for every window. Since CMQ is efficient, its computation can take place
alongside the processing of the streaming data. In this case, CMQ can output
both intermediate results as well as the complete results at the end of each win-
dow.

For the last case of sliding windows, it is necessary to update CMQ such that
it allows removing outdated or invalid points. For instance, we can only use the
preprocessing grid and compute the remaining tree on demand or in fixed time
intervals. If we know the elements to remove, we can undo the merge step by
inversely calculating the weighted average. In the case that we do not know the
elements to remove, we can compute CMQ for the data that falls out of memory.
Then, the calculation of a weighted moving average [Fin09] between two CMQ
structures has to be computed. However, suitable semantics for this computation
and its validity has to be properly defined first.

160

8. Conclusion

An experimental evaluation can in either case show differences in updating the
grid or the whole CMQ . Furthermore, one can assess the differences of the static
version of CMQ and the streaming version in terms of quality. Additionally,
CMQ can potentially act as a sketch [Fin09] of the data to provide further statis-
tics other than plain visualization. The extent of this is also up to further re-
search.

161

Appendices

162

A. Quality Measures Experiment

Figure A.1.: German libraries (3384 points)

163

Figure A.2.: Loxodonta cyclotis (24 points)

164

Figure A.3.: Macropus giganteus (23040 points)

165

Figure A.4.: Puma concolor (1993 points)

166

References

[Aba+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasude-
van, P. Warden, M. Wicke, Y. Yu, X. Zheng, and G. Brain, “Ten-
sorFlow: A System for Large-Scale Machine Learning,” in OSDI ’16:
12th USENIX Symposium on Operating Systems Design and Imple-
mentation, Berkeley, CA, USA: USENIX Association, 2016, pp. 265–
283.

[Acc07] Access to Biological Collections Data Task Group, “Access to Biologi-
cal Collection Data (ABCD), Version 2.06,” Biodiversity Information
Standards (TDWG), 2007.

[Ach+12] E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and A. Zimek,
“Evaluation of Clusterings - Metrics and Visual Support,” in Proceed-
ings of the IEEE 28nd International Conference on Data Engineer-
ing (ICDE), Washington, DC, USA: IEEE Computer Society, 2012,
pp. 1285–1288.

[Ack89] R. L. Ackoff, “From Data to Wisdom,” Journal of applied systems
analysis, vol. 16, no. 1, pp. 3–9, 1989.

[All83] J. F. Allen, “Maintaining Knowledge About Temporal Intervals,”
Communications of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[Alt+04] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S.
Mock, “Kepler: An Extensible System for Design and Execution of
Scientific Workflows,” in Proceedings of the 16th International Con-
ference on Scientific and Statistical Database Management, IEEE,
2004, pp. 423–424.

[AK07] M. Altman and G. King, “A Proposed Standard for the Scholarly
Citation of Quantitative Data,” D-Lib Magazine, vol. 13, no. 3/4,
2007.

[Alu04] S. Aluru, “Quadtrees and Octrees,” in Handbook of Data Structures
and Applications, D. P. Mehta and S. Sahni, Eds., Chapman and
Hall/CRC, 2004, pp. 19–1–19–26.

[And73] M. R. Anderberg, Cluster Analysis for Applications. New York, NY,
USA: Academic Press, 1973, p. 372.

167

References

[And+10] G. Andrienko, N. Andrienko, U. Demsar, D. Dransch, J. Dykes, S. I.
Fabrikant, M. Jern, M.-J. Kraak, H. Schumann, and C. Tominski,
“Space, Time and Visual Analytics,” International Journal of Geo-
graphical Information Science, vol. 24, no. 10, pp. 1577–1600, 2010.

[AAG03] N. Andrienko, G. Andrienko, and P. Gatalsky, “Exploratory Spatio-
Temporal Visualization: An Analytical Review,” Journal of Visual
Languages and Computing, vol. 14, no. 6, pp. 503–541, 2003.

[ASS02] L. Anselin, I. Syabri, and O. Smirnov, “Visualizing Multivariate Spa-
tial Correlation with Dynamically Linked Windows,” Urbana, vol. 51,
p. 61 801, 2002.

[Arb93] G. Arbia, “The Use of GIS in Spatial Statistical Surveys,” Interna-
tional Statistical Review, pp. 339–359, 1993.

[AV07] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of
Careful Seeding,” in SODA ’07: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[AKL13] F. Aurenhammer, R. Klein, and D.-T. Lee, Voronoi Diagrams and
Delaunay Triangulations. World Scientific, 2013.

[Aut+15a] C. Authmann, C. Beilschmidt, J. Drönner, M. Mattig, and B. Seeger,
“Rethinking Spatial Processing in Data-Intensive Science,” in BTW
2015: Datenbanksysteme für Business, Technologie und Web - Work-
shopband, vol. P242, Bonn, Germany: Gesellschaft für Informatik
e.V., 2015, pp. 161–170.

[Aut+15b] C. Authmann, C. Beilschmidt, J. Drönner, M. Mattig, and B. Seeger,
“VAT: A System for Visualizing, Analyzing and Transforming Spatial
Data in Science,” Datenbank-Spektrum, vol. 15, no. 3, pp. 175–184,
2015.

[Bad13] M. Bader, Space-Filling Curves - An Introduction with Applications
in Scientific Computing. Berlin, Heidelberg, Germany: Springer, 2013.

[Bae+07] W. D. Bae, P. Vojtechovsky, S. T. Leutenegger, S. Alkobaisi, and S. H.
Kim, “An Interactive Framework for Raster Data Spatial Joins,” in
GIS ’07: Proceedings of the 15th Annual ACM International Sym-
posium on Advances in Geographic Information Systems, New York,
NY, USA: ACM, 2007, pp. 1–7.

168

References

[Bai+17] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “SparkGIS: Resource
Aware Efficient In-Memory Spatial Query Processing,” in SIGSPA-
TIAL ’17: Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ACM,
2017, 28:1–28:10.

[BL12] A. Basset and W. Los, “Biodiversity e-Science: LifeWatch, the Euro-
pean Infrastructure on Biodiversity and Ecosystem Research,” Plant
Biosystems, vol. 146, no. 4, pp. 780–782, 2012.

[Bat+14] S. E. Battersby, M. P. Finn, E. L. Usery, and K. H. Yamamoto, “Im-
plications of Web Mercator and Its Use in Online Mapping,” Carto-
graphica: The International Journal for Geographic Information and
Geovisualization, vol. 49, no. 2, pp. 85–101, 2014.

[Bau+98] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann,
“The Multidimensional Database System RasDaMan,” in SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, New York, NY, USA: ACM, 1998, pp. 575–
577.

[Bea14] J. H. Beach, “Conceptualizing and Managing Paleontological Collec-
tion Data with Specify Software,” inGSA Annual Meeting: Advancing
the Digitization of Paleontology and Geoscience Collections: Projects,
Programs, and Practices II, 2014.

[Bec+90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: An Efficient and Robust Access Method for Points and Rect-
angles,” in SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, New York, NY,
USA: ACM, 1990, pp. 322–331.

[Bei+18] C. Beilschmidt, J. Drönner, N. Fernández, C. Langer, M. Mattig,
and B. Seeger, “Towards an EBV Analyzer based on VAT,” in ICEI
2018: Proceedings of the 10th International Conference on Ecological
Informatics: Translating Ecological Data into Knowledge and Deci-
sions in a Rapidly Changing World, J. Gaikwad, B. König-Ries, and
F. Recknagel, Eds., Jena, Germany, 2018.

[Bei+17a] C. Beilschmidt, J. Drönner, M. Mattig, M. Schmidt, C. Authmann,
A. Niamir, T. Hickler, and B. Seeger, “Interactive Data Exploration
for Geoscience,” in BTW 2017: Datenbanksysteme für Business, Tech-
nologie und Web - Workshopband, vol. P-266, Bonn, Germany: Gesell-
schaft für Informatik e.V., 2017, pp. 117–126.

169

References

[Bei+17b] C. Beilschmidt, J. Drönner, M. Mattig, M. Schmidt, C. Authmann,
A. Niamir, T. Hickler, and B. Seeger, “VAT: A Scientific Toolbox
for Interactive Geodata Exploration,” Datenbank-Spektrum, vol. 17,
no. 3, pp. 233–243, 2017.

[Bei+17c] C. Beilschmidt, J. Drönner, M. Mattig, and B. Seeger, “VAT: A Sys-
tem for Data-Driven Biodiversity Research,” in EDBT 2017: Pro-
ceedings of the 20th International Conference on Extending Database
Technology, Konstanz, Germany: OpenProceedings.org, 2017, pp. 546–
549.

[Bei+17d] C. Beilschmidt, T. Fober, M. Mattig, and B. Seeger, “A Linear-Time
Algorithm for the Aggregation and Visualization of Big Spatial Point
Data,” in SIGSPATIAL ’17: Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Informa-
tion Systems, New York, NY, USA: ACM, 2017, 73:1–73:4.

[Bei+17e] C. Beilschmidt, T. Fober, M. Mattig, and B. Seeger, “Quality Mea-
sures for Visual Point Clustering in Geospatial Mapping,” in W2GIS
2017: Proceedings of the 15th International Symposium on Web and
Wireless Geographical Information Systems, Cham, ZG, Switzerland:
Springer International Publishing, 2017, pp. 153–168.

[Bei+19] C. Beilschmidt, T. Fober, M. Mattig, and B. Seeger, “An Efficient Ag-
gregation and Overlap Removal Algorithm for Circle Maps,” GeoIn-
formatica, vol. 23, no. 3, pp. 473–498, 2019.

[Bel11] L. Belbin, “The Atlas of Living Australia’s Spatial Portal,” in Pro-
ceedings of the Environmental Information Management Conference
2011 (EIM 2011), vol. 29, 2011, pp. 39–43.

[BW13] P. Bereuter and R. Weibel, “Real-time Generalization of Point Data
in Mobile and Web Mapping Using Quadtrees,” Cartography and Ge-
ographic Information Science, vol. 40, no. 4, pp. 271–281, 2013.

[BS97] A. Berson and S. J. Smith, Data Warehousing, Data Mining, and
OLAP. New York, NY, USA: McGraw-Hill Education, 1997.

[Bis06] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006, p. 738.

[Bon06] D. G. Bonett, “Confidence Interval for a Coefficient of Quartile Vari-
ation,” Computational Statistics and Data Analysis, vol. 50, no. 11,
pp. 2953–2957, 2006.

[BOH11] M. Bostock, V. Ogievetsky, and J. Heer, “D³ Data-Driven Docu-
ments,” IEEE Transactions on Visualization and Computer Graphics,
no. October, pp. 2301–2309, 2011.

170

References

[Bro96] M. Brown, “FastCGI: A High-Performance Gateway Interface,” in
Programming the Web - A Search for APIs Workshop at Fifth Inter-
national World Wide Web Conference, vol. 6, 1996.

[BDF16] P. Buneman, S. Davidson, and J. Frew, “Why Data Citation is a Com-
putational Problem,” Communications of the ACM, vol. 59, no. 9,
pp. 50–57, 2016.

[But+16] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub,
“The GeoJSON Format - RFC 7946,” Internet Engineering Task
Force (IETF), Tech. Rep., 2016.

[Can+07] J. W. Cannon, W. J. Floyd, W. R. Parry, and K. Stephenson, “In-
troduction to Circle Packing: The Theory of Discrete Analytic Func-
tions,” The Mathematical Intelligencer, vol. 29, no. 3, pp. 63–66, 2007.

[CMS99] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Infor-
mation Visualization: Using Vision to Think. Academic Press, 1999.

[Che+09] M. Chen, D. Ebert, H. Hagen, R. S. Laramee, R. Van Liere, K.-L.
Ma, W. Ribarsky, G. Scheuermann, and D. Silver, “Data, Informa-
tion, and Knowledge in Visualization,” IEEE Computer Graphics and
Applications, vol. 29, no. 1, 2009.

[CMS98] P. Cignoni, C. Montani, and R. Scopigno, “DeWall : A Fast Divide &
Conquer Delaunay Triangulation Algorithm in Ed,” Computer-Aided
Design, vol. 5, no. 30, pp. 333–341, 1998.

[CT05] K. A. Cook and J. J. Thomas, Illuminating the Path: The Research
and Development Agenda for Visual Analytics. Los Alamitos, CA,
US: IEEE Computer Society, 2005.

[CF14] G. W. Corder and D. I. Foreman, Nonparametric Statistics: A Step-
by-Step Approach. Hoboken, NJ, USA: John Wiley & Sons, 2014.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, 3rd ed. Cambridge, MA, USA: The MIT Press,
2009.

[CW14] M. J. Costello and J. Wieczorek, “Best Practice for Biodiversity Da-
ta Management and Publication,” Biological Conservation, vol. 173,
pp. 68–73, 2014.

[DA17] P. P. Daniels and L. Atencio, RxJS in Action. Greenwich, CT, USA:
Manning Publications, 2017.

171

References

[Das+12] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy, “Ef-
ficient Spatial Sampling of Large Geographical Tables Categories and
Subject Descriptors,” SIGMOD ’12: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pp. 193–
204, 2012.

[dBer+08] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars,
Computational Geometry: Algorithms and Applications, 3rd ed. Berlin,
Heidelberg, Germany: Springer, 2008.

[dBS04] M. de Berg and B. Speckmann, “Computational Geometry,” in Hand-
book of Data Structures and Applications, D. P. Mehta and S. Sahni,
Eds., Chapman and Hall/CRC, 2004, pp. 62–1–62–20.

[DGK04] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-Means, Spectral
Clustering and Normalized Cuts,” in KDD ’04: Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ACM, New York, NY, USA, 2004, pp. 551–
556.

[Di +94] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms
for Drawing Graphs: an Annotated Bibliography,” Computational Ge-
ometry, vol. 4, no. 5, pp. 235–282, 1994.

[DGG+14] M. Diepenbroek, F. Glöckner, P. Grobe, et al., “Towards an Inte-
grated Biodiversity and Ecological Research Data Management and
Archiving Platform: The German Federation for the Curation of Bi-
ological Data (GFBio),” in GI-Jahrestagung, 2014, pp. 1711–1721.

[EF13] D. Eddelbuettel and R. François, “Rcpp: Seamless R and C++ In-
tegration,” Journal of Statistical Software, vol. 40, no. 8, pp. 1–18,
2013.

[ED07] G. Ellis and A. Dix, “A Taxonomy of Clutter Reduction for Informa-
tion Visualisation,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 13, no. 6, pp. 1216–1223, 2007.

[EGA18] N. Escribano, D. Galicia, and A. H. Ariño, “The Tragedy of the Biodi-
versity Data Commons: A Data Impediment Creeping Nigher?” The
Journal of Biological Databases and Curation, 2018.

[Est+96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in International Conference on Knowledge Discovery and Da-
ta Mining, vol. 240, 1996, pp. 226–231.

[Fin09] T. Finch, “Incremental Calculation of Weighted Mean and Variance,”
General Relativity and Gravitation, vol. 39, no. 4, pp. 511–520, 2009.

172

References

[FCH11] T. Fober, W. Cheng, and E. Hüllermeier, “Focusing Search in Mul-
tiobjective Evolutionary Optimization through Preference Learning
from User Feedback,” in Proceedings of the 21st Workshop on Com-
putational Intelligence, vol. 40, Karlsruhe, Germany: KIT Scientific
Publishing, 2011, p. 107.

[FC85] D. Forrest and H. W. Castner, “The Design and Perception of Point
Symbols for Tourist Maps,” The Cartographic Journal, vol. 22, no. 1,
pp. 11–19, 1985.

[Gam+94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1994.

[GT15] J. Gan and Y. Tao, “DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation,” in SIGMOD ’15: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, 2015,
pp. 519–530.

[GWU99] H. Garcia-Molina, J. Widom, and J. D. Ullman, Database System
Implementation. Upper Saddle River, NJ, USA: Prentice-Hall, 1999.

[Gha+14] T. M. Ghanem, A. Magdy, M. Musleh, S. Ghani, and M. F. Mokbel,
“VisCAT: Spatio-Temporal Visualization and Aggregation of Cate-
gorical Attributes in Twitter Data,” in SIGSPATIAL ’14: Proceed-
ings of the 22th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, New York, NY, USA:
ACM, 2014, pp. 537–540.

[GMT07] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering Aggregation,”
ACM Transactions on Knowledge Discovery from Data, vol. 1, no. 1,
pp. 1–30, 2007.

[Góm+13] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil,
“An optimized approach to histogram computation on GPU,” Ma-
chine Vision and Applications, vol. 24, no. 5, pp. 899–908, 2013.

[Gor+17] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis
for everyone,” Remote Sensing of Environment, vol. 202, pp. 18–27,
2017.

[Gra13] A. Graser, Learning QGIS 2.0. Packt Publishing Ltd, 2013.

[GSH15] T. Gratier, P. Spencer, and E. Hazzard, OpenLayers 3: Beginner’s
Guide. Packt Publishing Ltd, 2015.

173

References

[Gri15] R. E. Griffin, “When are Old Data New Data?” GeoResJ, vol. 6,
pp. 92–97, 2015.

[GS07] C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Society, 2007.

[GB17] M. Gröbe and D. Burghardt, “Micro Diagrams: A Multi-Scale Ap-
proach for Mapping Large Categorised Point Datasets,” in Proceed-
ings of AGILE 2017: The 20th AGILE International Conference on
Geographic Information Science, 2017.

[Gru+15] M. G. Gruppi, S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin,
and W. Li, “An Efficient and Topologically Correct Map Generaliza-
tion Heuristic,” Proceedings of the 17th International Conference on
Enterprise Information Systems (ICEIS), pp. 516–525, 2015.

[Gun13] A. Gunawan, “A Faster Algorithm for DBSCAN,” Master’s Thesis,
Technische University Eindhoven, 2013.

[GBM07] A. Güntsch, W. Berendsohn, and P. Mergen, “The BioCASE Project -
A Biological Collections Access Service for Europe,” Ferrantia, vol. 51,
pp. 103–108, 2007.

[Guo+18] T. Guo, K. Feng, G. Cong, and Z. Bao, “Efficient Selection of Geospa-
tial Data on Maps for Interactive and Visualized Exploration,” in
SIGMOD ’18: Proceedings of the 2018 International Conference on
Management of Data, New York, NY, USA: ACM, 2018, pp. 567–582.

[HGS17] S. Hagedorn, P. Götze, and K.-U. Sattler, “The STARK Framework
for Spatio-Temporal Data Analytics on Spark,” in BTW 2017: Daten-
banksysteme für Business, Technologie und Web, vol. P-265, Bonn,
Germany: Gesellschaft für Informatik e.V., 2017, pp. 123–142.

[HKP11] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Tech-
niques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers, 2011.

[HS12] J. Heer and B. Shneiderman, “Interactive Dynamics for Visual Anal-
ysis,” Queue, vol. 10, no. 2, p. 30, 2012.

[HL16] A. Hejlsberg and S. Lucco, TypeScript Language Specification, Ver-
sion 1.8. Microsoft, 2016.

174

References

[Hol+13] R. Hollmann, C. J. Merchant, R. Saunders, C. Downy, M. Buchwitz,
A. Cazenave, E. Chuvieco, P. Defourny, G. De Leeuw, R. Forsberg,
T. Holzer-Popp, F. Paul, S. Sandven, S. Sathyendranath, M. Van
Roozendael, and W. Wagner, “The ESA Climate Change Initiative:
Satellite Data Records for Essential Climate Variables,” Bulletin of
the American Meteorological Society, vol. 94, no. 10, pp. 1541–1552,
2013.

[HA85] L. Hubert and P. Arabie, “Comparing Partitions,” Journal of Clas-
sification, vol. 2, no. 1, pp. 193–218, 1985.

[HdB09] O. Huisman and R. A. de By, “Principles of Geographic Information
Systems,” ITC Educational Textbook Series, vol. 1, 2009.

[Hül+08] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker, “Label
Ranking by Learning Pairwise Preferences,” Artificial Intelligence,
vol. 172, no. 16-17, pp. 1897–1916, 2008.

[Iac17] S. Iacovella, GeoServer Beginner’s Guide: Share Geospatial Data us-
ing Open Source Standards. Packt Publishing Ltd, 2017.

[JHS13] S. Jänicke, C. Heine, and G. Scheuermann, “GeoTemCo: Compara-
tive Visualization of Geospatial-Temporal Data with Clutter Removal
Based on Dynamic Delaunay Triangulations,” in VISIGRAPP 2012:
Proceedings of the 7th International Joint Conference on Computer
Vision, Imaging and Computer Graphics. Theory and Application,
vol. 359, Berlin, Heidelberg, Germany: Springer, 2013, pp. 160–175.

[Jän+12] S. Jänicke, C. Heine, R. Stockmann, and G. Scheuermann, “Com-
parative Visualization of Geospatial-Temporal Data,” in GRAPP &
IVAPP 2012: Proceedings of the International Conference on Com-
puter Graphics Theory and Applications and International Confer-
ence on Information Visualization Theory and Application, Setúbal,
Portugal: SciTePress, 2012, pp. 613–625.

[Jas+04] M. W. Jaspers, T. Steen, C. V. D. Bos, and M. Geenen, “The Think
Aloud Method: A Guide to User Interface Design,” International
Journal of Medical Informatics, vol. 73, no. 11-12, pp. 781–795, 2004.

[JMG12] W. Jetz, J. M. McPherson, and R. P. Guralnick, “Integrating Bio-
diversity Distribution Knowledge: Toward a Global Map of Life,”
Trends in Ecology and Evolution, vol. 27, no. 3, pp. 151–159, 2012.

[JWO11] A. C. Jones, R. J. White, and E. R. Orme, “Identifying and relating
biological concepts in the Catalogue of Life,” Journal of Biomedical
Semantics, vol. 2, no. 1, p. 7, 2011.

175

References

[KB13] A. Kaehler and G. Bradski, Learning OpenCV - Computer Vision
in C++ with the OpenCV Library. Sebastopol, CA, USA: O’Reilly
Media, 2013.

[KS99] K. R. Kanth and A. Singh, “Optimal Dynamic Range Searching in
Non-replicating Index Structures,” in Proceedings of the 7th Interna-
tional Conference on Database Theory (ICDT), Berlin, Heidelberg,
Germany: Springer, 1999, pp. 257–276.

[KML15] T. Karnagel, R. Mueller, and G. M. Lohman, “Optimizing GPU-
accelerated Group-By and Aggregation,” ADMS ’15: Proceedings of
the 6th International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures, pp. 13–
24, 2015.

[KR90] L. Kaufman and P. J. Rousseeuw, “Agglomerative Nesting (Program
AGNES),” in Finding Groups in Data: An Introduction to Cluster
Analysis, L. Kaufman and P. J. Rousseeuw, Eds., Hoboken, NJ, USA:
John Wiley & Sons, 1990, pp. 199–252.

[Kei+08a] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H.
Ziegler, “Visual Analytics: Scope and Challenges,” in Visual Data
Mining, 4404, S. J. Simoff, M. H. Böhlen, and A. Mazeika, Eds.,
vol. 4404, Berlin, Heidelberg, Germany: Springer, 2008, pp. 76–90.

[Kei+08b] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon, “Visual analytics: Definition, Process, and Challenges,”
in Information Visualization, A. Kerren, J. T. Stasko, J.-D. Fekete,
and C. North, Eds., Berlin, Heidelberg, Germany: Springer, 2008,
pp. 154–175.

[KK94] Z. Kemp and A. Kowalczyk, “Incorporating the Temporal Dimension
in a GIS,” in Innovations in GIS, M. F. Worboys, Ed., vol. 1, London,
UK: Taylor and Francis, 1994, pp. 89–102.

[Knu98] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting
and Searching, 2nd ed. Reading, MA, USA: Addison-Wesley, 1998.

[Kon10] A. G. Konheim, Hashing in Computer Science: Fifty Years of Slicing
and Dicing. Hoboken, NJ, USA: John Wiley & Sons, 2010, p. 386.

[Kör16] M. Körber, “Caching von Geodaten,” Unpublished Master’s Thesis,
University of Marburg, 2016.

[Kra04] M. J. Kraak, “The Rrole of the Map in a Web-GIS environment,”
Journal of Geographical Systems, vol. 6, no. 2, pp. 83–93, 2004.

176

References

[KO13] M.-J. Kraak and F. J. Ormeling, Cartography: Visualization of Spatial
Data. Routledge, 2013.

[Kra67] S. Kravitz, “Packing Cylinders Into Cylindrical Containers,” Mathe-
matics magazine, vol. 40, no. 2, pp. 65–71, 1967.

[KK13] M. Krstajic and D. A. Keim, “Visualization of Streaming Data: Ob-
serving Change and Context in Information Visualization Techniques,”
IEEE International Conference on Big Data, pp. 41–47, 2013.

[LH11] O. D. Lampe and H. Hauser, “Interactive Visualization of Streaming
Data with Kernel Density Estimation,” in Visualization Symposium
(PacificVis), 2011 IEEE Pacific, IEEE, 2011, pp. 171–178.

[LPB16] H. U. Leena, B. G. Premasudha, and P. K. Basavaraja, “Sensible Ap-
proach for Soil Fertility Management using GIS Cloud,” in ICACCI
’16: 2016 International Conference on Advances in Computing, Com-
munications and Informatics, Washington, DC, USA: IEEE Com-
puter Society, 2016, pp. 2776–2781.

[Li+05] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Se-
mantics and Evaluation Techniques for Window Aggregates in Data
Streams,” in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, New York, NY,
USA: ACM, 2005, pp. 311–322.

[LL12] A. Lipowski and D. Lipowska, “Roulette-Wheel Selection via Stochas-
tic Acceptance,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 391, no. 6, pp. 2193–2196, 2012.

[LH14] Z. Liu and J. Heer, “The Effects of Interactive Latency on Exploratory
Visual Analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[LJH13] Z. Liu, B. Jiang, and J. Heer, “imMens: Real-time Visual Querying
of Big Data,” Computer Graphics Forum, vol. 32, no. 3, pp. 421–430,
2013.

[Llo82] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transac-
tions on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[Löf+17] F. Löffler, K. Opasjumruskit, N. Karam, D. Fichtmüller, U. Schindler,
F. Klan, C. Müller-Birn, and M. Diepenbroek, “Honey Bee Versus
Apis Mellifera: A Semantic Search for Biological Data,” in The Se-
mantic Web: ESWC 2017 Satellite Events, Cham, Switzerland: Sprin-
ger International Publishing, 2017, pp. 98–103.

177

References

[Lon+05] P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind,
Geographic Information Systems and Science. Hoboken, NJ, USA:
John Wiley & Sons, 2005.

[LRH07] R. H. Lopes, I. Reid, and P. R. Hobson, “The Two-Dimensional
Kolmogorov-Smirnov Test,” Proceedings of Science, 2007.

[Mac04] A. M. MacEachren, How Maps Work: Representation, Visualization,
and Design. Guilford Press, 2004.

[Mac11] R. Maciejewski, “Data Representations, Transformations, and Statis-
tics for Visual Reasoning,” Synthesis Lectures on Visualization, vol. 2,
no. 1, pp. 1–85, 2011.

[Mad+12] J. Madhavan, S. Balakrishnan, K. Brisbin, H. Gonzalez, N. Gupta,
A. Y. Halevy, K. Jacqmin-Adams, H. Lam, A. Langen, and H. Lee,
“Big Data Storytelling Through Interactive Maps,” IEEE Data En-
gineering Bulletin, vol. 35, no. 2, pp. 46–54, 2012.

[MNV12] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The Planar k-
Means Problem is NP-hard,” Theoretical Computer Science, vol. 442,
pp. 13–21, 2012.

[MAS16] S. T. Mai, I. Assent, and M. Storgaard, “AnyDBC: An Efficient Any-
time Density-based Clustering Algorithm for Very Large Complex
Datasets,” in KDD ’16: Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining,
New York, NY, USA: ACM, 2016, pp. 1025–1034.

[Mal13] D. H. Maling, Coordinate Systems and Map Projections. Elsevier,
2013.

[Mar11] C. Marin, “WebGL Specification,” Khronos WebGL Working Group,
2011.

[McL+13] M. McLennan, S. Clark, F. McKenna, E. Deelman, M. Rynge, K.
Vahi, D. Kearney, and C. Song, “Bringing Scientific Workflow to the
Masses via Pegasus and HUBzero,” in IWSG 2013: Proceedings of the
5th International Workshop on Science Gateways, 2013.

[Men03] J. Mena, “State of the Art on Automatic Road Extraction for GIS
Update: A Novel Classification,” Pattern Recognition Letters, vol. 24,
no. 16, pp. 3037–3058, 2003.

[MR05] L. Meng and T. Reichenbacher, “Map-based Mobile Services: Theo-
ries, Methods and Implementations,” in Human Genetics, L. Meng,
T. Reichenbacher, and A. Zipf, Eds., Berlin, Heidelberg, Germany:
Springer, 2005, pp. 1–10.

178

References

[Mos17] T. Mostak, “Using GPUs to Accelerate Data Discovery and Visual
Analytics,” in FTC 2016: Proceedings of Future Technologies Confer-
ence, Washington, DC, USA: IEEE Computer Society, 2017, pp. 1310–
1313.

[MP80] J. I. Munro and M. S. Paterson, “Selection and Sorting with Limited
Storage,” Theoretical Computer Science, vol. 12, no. 3, pp. 315–323,
1980.

[Mun14] T. Munzner, Visualization Analysis and Design. Boca Raton, FL,
USA: CRC Press, 2014.

[ML14] F. Murtagh and P. Legendre, “Ward’s Hierarchical Agglomerative
Clustering Method: Which Algorithms Implement Ward’s Criterion?”
Journal of Classification, vol. 31, no. 3, pp. 274–295, 2014.

[OH15] R. O. Obe and L. S. Hsu, PostGIS in Action, 2nd ed. Greenwich, CT,
USA: Manning Publications, 2015.

[Ope06] Open Geospatial Consortium, “Web Map Server (WMS) Implemen-
tation Specification,” OpenGIS Project Document, 2006.

[Ope07] Open Geospatial Consortium, “Web Service Common Implementa-
tion Specification,” OpenGIS Project Document, 2007.

[Ope08] Open Geospatial Consortium, “Web Coverage Service (WCS) Imple-
mentation Standard,” OpenGIS Project Document, 2008.

[Ope10a] Open Geospatial Consortium, “OpenGIS Implementation Standard
for Geographic Information - Simple Feature Access,” OpenGIS Pro-
ject Document, 2010.

[Ope10b] Open Geospatial Consortium, “OpenGIS Web Feature Service (WFS)
2.0 Interface Standard,” OpenGIS Project Document, 2010.

[Pan+18] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How Good are
Modern Spatial Analytics Systems?” Proceedings of the VLDB En-
dowment, vol. 11, no. 11, pp. 1661–1673, 2018.

[Pap+05] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline Com-
putation in Database Systems,” ACM Transactions on Database Sys-
tems (TODS), vol. 30, no. 1, pp. 41–82, 2005.

[PCM16] Y. Park, M. J. Cafarella, and B. Mozafari, “Visualization-Aware Sam-
pling for Very Large Databases,” in Proceedings of the IEEE 32nd
International Conference on Data Engineering (ICDE), Washington,
DC, USA: IEEE Computer Society, 2016, pp. 755–766.

[Pas02] N. Paskin, “Digital Object Identifiers,” Information Services and Use,
vol. 22, no. 2-3, pp. 97–112, 2002.

179

References

[PD96] J. M. Patel and D. J. DeWitt, “Partition Based Spatial-Merge Join,”
in SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, New York, NY, USA:
ACM, 1996, pp. 259–270.

[Péb08] P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of
Covariances and Arbitrary-Order Statistical Moments,” Sandia Na-
tional Laboratories, Tech. Rep., 2008.

[Peb17] E. Pebesma, “The GRASS GIS Temporal Framework: Object ori-
ented code design with examples,” International Journal of Geograph-
ical Information Science, vol. 31, no. 2014, pp. 1–19, 2017.

[PB05] E. Pebesma and R. S. Bivand, “Classes and Methods for Spatial Data:
the sp Package,” R News, vol. 5, no. 2, pp. 9–13, 2005.

[Per+13] H. M. Pereira, S. Ferrier, M. Walters, G. N. Geller, R. H. Jongman,
R. J. Scholes, M. W. Bruford, N. Brummitt, S. H. Butchart, A. C.
Cardoso, N. C. Coops, E. Dulloo, D. P. Faith, J. Freyhof, R. D.
Gregory, C. Heip, R. Höft, G. Hurtt, W. Jetz, D. S. Karp, M. A.
McGeoch, D. Obura, Y. Onoda, N. Pettorelli, B. Reyers, R. Sayre,
J. P. Scharlemann, S. N. Stuart, E. Turak, M. Walpole, and M. Weg-
mann, “Essential Biodiversity Variables,” Science, vol. 339, no. 6117,
pp. 277–278, 2013.

[Pet15] M. P. Peterson, “Evaluating Mapping APIs,” in Modern Trends in
Cartography, J. Brus, A. Vondrakova, and V. Vozenilek, Eds., Cham,
Switzerland: Springer International Publishing, 2015, pp. 183–197.

[Pic17] S. Pickering, “A New Way to Proxy Levels of Infrastructure Devel-
opment,” Research and Politics, vol. 4, no. 1, 2017.

[Pin88] J. Pineda, “A Parallel Algorithm for Polygon Rasterization,” in SIG-
GRAPH ’88: Proceedings of the 15th Annual Conference on Computer
graphics and Interactive Techniques, ACM, New York, NY, USA,
1988, pp. 17–20.

[Pow11] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure
to ROC, Informedness, Markedness & Correlation,” Journal of Ma-
chine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[Rap+14] G. Rapacciuolo, D. B. Roy, S. Gillings, and A. Purvis, “Temporal
Validation Plots: Quantifying how well correlative species distribution
models predict species’ range changes over time,” Methods in Ecology
and Evolution, vol. 5, no. 5, pp. 407–420, 2014.

180

References

[Rau+16] A. Rauber, A. Asmi, D. Van Uytvanck, and S. Pröll, “Identification of
Reproducible Subsets for Data Citation, Sharing and Re-Use,” Bul-
letin of IEEE Technical Committee on Digital Libraries, Special Issue
on Data Citation, vol. 12, no. 1, pp. 6–15, 2016.

[RD90] R. Rew and G. Davis, “NetCDF: An Interface for Scientific Data
Access,” IEEE Computer Graphics and Applications, vol. 10, no. 4,
pp. 76–82, 1990.

[RR97] N. Ritter and M. Ruth, “The GeoTiff Data Interchange Standard for
Raster Geographic Images,” International Journal of Remote Sens-
ing, vol. 18, no. 7, pp. 1637–1647, 1997.

[Rot13] R. E. Roth, “Interactive Maps: What we know and what we need to
know,” Journal of Spatial Information Science, vol. 6, no. 6, pp. 59–
115, 2013.

[Sam84] H. Samet, “The Quadtree and Related Hierarchical Data Structures,”
ACM Computing Surveys, vol. 16, no. 2, pp. 187–260, 1984.

[Sam04] H. Samet, “Multidimensional Spatial Data Structures,” in Handbook
of Data Structures and Applications, D. P. Mehta and S. Sahni, Eds.,
Chapman and Hall/CRC, 2004, pp. 16–1–16–29.

[Sam06] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures. San Francisco, CA, USA: Morgan Kaufmann, 2006.

[Sar+12] A. D. Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy,
“Efficient Spatial Sampling of Large Geographical Tables Categories
and Subject Descriptors,” in SIGMOD ’12: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data,
New York, NY, USA: ACM, 2012, pp. 193–204.

[SC17] V. Savkin and J. Cross, Essential Angular. Packt Publishing, 2017.

[Sco15] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization. Hoboken, NJ, USA: John Wiley & Sons, 2015.

[SW04] B. Seeger and P. Widmayer, “Geographic Information Systems,” in
Handbook of Data Structures and Applications, D. P. Mehta and S.
Sahni, Eds., Chapman and Hall/CRC, 2004, pp. 55–1–55–22.

[Shn96] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxon-
omy for Information Visualizations,” in Proceedings of the 1996 IEEE
Symposium on Visual Languages, Washington, DC, USA: IEEE Com-
puter Society, 1996, pp. 336–343.

181

References

[SvW08] Y. B. Shrinivasan and J. J. vanWijk, “Supporting the Analytical Rea-
soning Process In Information Visualization,” CHI ’08: Proceedings
of the 26th Annual CHI Conference on Human Factors in Computing
Systems, pp. 1237–1246, 2008.

[Sib73] R. Sibson, “SLINK: An optimally efficient algorithm for the single-
link cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–
34, 1973.

[Sin16] D. A. Sinclair, “S-Hull : A Fast Radial Sweep-Hull Routine for De-
launay Triangulation,” CoRR, pp. 1–7, 2016.

[SM98] J. A. Slater and S. Malys, “WGS 84 — Past, Present and Future,” in
Advances in Positioning and Reference Frames, F. K. Brunner, Ed.,
Berlin, Heidelberg, Germany: Springer, 1998, pp. 1–7.

[Slo+09] T. Slocum, R. McMaster, F. Kessler, and H. Howard, Thematic Car-
tography and Geovisualization. Upper Saddle River, NJ, USA: Pren-
tice Hall, 2009.

[Ste+13] C. A. Steed, D. M. Ricciuto, G. Shipman, B. Smith, P. E. Thornton,
D. Wang, X. Shi, and D. N. Williams, “Big Data Visual Analytics
for Exploratory Earth System Simulation Analysis,” Computers &
Geosciences, vol. 61, pp. 71–82, 2013.

[SGS10] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems,” Computing
in science & engineering, vol. 12, no. 3, pp. 66–73, 2010.

[Stu26] H. A. Sturges, “The Choice of a Class Interval,” Journal of the Amer-
ican Statistical Association, vol. 21, no. 153, pp. 65–66, 1926.

[The10] The SciDB Development Team, “Overview of SciDB - Large Scale Ar-
ray Storage, Processing and Analysis,” in SIGMOD ’10: ACM SIG-
MOD International Conference on Management of Data, New York,
NY, USA: ACM, 2010, pp. 963–968.

[TH07] J. Ticheler and J. U. Hielkema, “GeoNetwork opensource: Interna-
tionally Standardized Distributed Spatial Information Management,”
OSGeo Journal, vol. 2, no. 1, pp. 1–6, 2007.

[VCH10] L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka, “Relative
Clustering Validity Criteria: A Comparative Overview,” Statistical
Analysis and Data Mining, vol. 3, no. 4, pp. 209–235, 2010.

[Vit85] J. S. Vitter, “Random Sampling with a Reservoir,” ACM Transac-
tions on Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.

182

References

[Wan+12] J.-f. Wang, A. Stein, B.-b. Gao, and Y. Ge, “A Review of Spatial
Sampling,” Spatial Statistics, vol. 2, pp. 1–14, 2012.

[Wan+15] L. Wang, R. Christensen, F. Li, and K. Yi, “Spatial Online Sampling
and Aggregation,” Proceedings of the VLDB Endowment, vol. 9, no. 3,
pp. 84–95, 2015.

[WYM97] W. Wang, J. Yang, and R. Muntz, “STING: A Statistical Information
Grid Approach to Spatial Data Mining,” in VLDB ’97: Proceedings
of the 23rd International Conference on Very Large Data Bases, San
Francisco, CA, USA: Morgan Kaufmann Publishers, 1997, pp. 186–
195.

[War08] F. Warmerdam, “The Geospatial Data Abstraction Library,” in Open
Source Approaches in Spatial Data Handling SE - Advances in Geo-
graphic Information Science, B. Hall and M. G. Leahy, Eds., vol. 2,
Springer, 2008, pp. 87–104.

[Wel62] B. P. Welford, “Note on a Method for Calculating Correct Sums of
Squares and Products,” Technometrics, vol. 4, no. 3, pp. 419–420,
1962.

[Wie+12] J. Wieczorek, D. Bloom, R. Guralnick, S. Blum, M. Döring, R. Gio-
vanni, T. Robertson, and D. Vieglais, “Darwin Core - An Evolving
Community-Developed Biodiversity Data Standard,” PLOS ONE,
vol. 7, no. 1, pp. 1–8, 2012.

[WF09] L. Wilkinson and M. Friendly, “The History of the Cluster Heat
Map,” The American Statistician, vol. 63, no. 2, pp. 179–184, 2009.

[Win13] J. Winn, “Research Data Management using CKAN: A Datastore,
Data Repository and Data Catalogue,” in IASSIST 2013: Data In-
novation: Increasing Accessibility, Visibility,and Sustainability, 2013.

[Win18] K. Winter, “Visual Clustering of Large Heterogeneous Point Sets,”
Unpublished Bachelor’s Thesis, University of Marburg, 2018.

[WMB99] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd ed. San Francisco,
CA, USA: Morgan Kaufmann, 1999.

[Wol+13] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S.
Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P.
Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna Workflow Suite:
Designing and Executing Workflows of Web Services on the Desktop,
Web or in the Cloud,” Nucleic Acids Research, vol. 41, no. Web Server
issue, W557–W561, 2013.

183

References

[YWS15] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: A Cluster Computing
Framework for Processing Large-scale Spatial Data,” in SIGSPA-
TIAL ’15: Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, New York,
NY, USA: ACM, 2015, 70:1–70:4.

[Zah+10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in HotCloud ’10:
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, 2010.

[Zah70] C. T. Zahn, “Graph Theoretical Methods for Detecting and Describ-
ing Gestalt Clusters,” IEEE Transactions on Computers, vol. C-20,
no. 1, pp. 68–86, 1970.

[Zas15] M. Zastrow, “Data Visualization: Science on the Map,” Nature (Tool-
box), vol. 519, no. 7541, pp. 119–120, 2015.

[ZYG14] J. Zhang, S. You, and L. Gruenwald, “Data Parallel Quadtree In-
dexing and Spatial Query Processing of Complex Polygon Data on
GPUs,” in ADMS ’14: Proceedings of the 5th International Workshop
on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures, 2014, pp. 13–24.

[ZYG17] J. Zhang, S. You, and L. Gruenwald, “Towards GPU-Accelerated
Web-GIS for Query-Driven Visual Exploration,” in W2GIS 2017:
Proceedings of the 15th International Symposium on Web and Wire-
less Geographical Information Systems, Cham, ZG, Switzerland: Springer
International Publishing, 2017, pp. 119–136.

[Zha+12] L. S. Zhang, A. Stoffel, M. Behrisch, S. Mittelstadt, T. Schreck, R.
Pompl, S. Weber, H. Last, and D. Keim, “Visual Analytics for the Big
Data Era - A Comparative Review of State-of-the-Art Commercial
Systems,” in VAST ’12: Proceedings of the 2012 IEEE Conference
on Visual Analytics Science and Technology, Washington, DC, USA:
IEEE Computer Society, 2012, pp. 173–182.

[Zha+16a] L. Zhang, C. Rooney, L. Nachmanson, B. L. W. Wong, B. C. Kwon,
F. Stoffel, M. Hund, N. Qazi, U. Singh, and D. A. Keim, “Spherical
Similarity Explorer for Comparative Case Analysis,” in Proceedings
of the IS&T International Symposium on Electronic Imaging 2016:
Visualization and Data Analysis, Oxford, UK: Ingenta, 2016, pp. 1–
10.

184

References

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” in SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA: ACM, 1996, pp. 103–114.

[Zha+16b] Z. Zhang, J. Li, X. Li, Y. Lin, S. Zhang, and C. Wang, “A Fast
Method for Measuring the Similarity Between 3DModel and 3D Point
Cloud,” ISPRS - International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, vol. 41, pp. 725–728,
2016.

185

List of Figures

1.1. This figure shows the discrepancy between a plot of raw points
(left) of the black alder and an aggregated view (right) of the points
[Bei+17d]. 2

2.1. This figure illustrates the definition of a map, points and circles as
well as the notion of a minimum radius and inter-circle distance. . . 10

2.2. This figure illustrates the effect of different zoom levels. 12

3.1. This figure shows the idea of a map projection (a) and a world map
in Web Mercator projection (b). 17

3.2. This figure shows the visual data exploration cycle as presented by
Keim et al. [Kei+08b]. 18

3.3. This figure shows a fixed grid data structure (a) and a rectangular
query to the grid (b). 22

3.4. This figure shows three histograms with differing numbers of buckets
for multimodal normal distributed data. 23

3.5. This figure illustrates the quadtree data structure. The left side
(a) shows a point quadtree and the right side (b) shows a region
quadtree with a node size of one point. Both quadtrees store the
same set of points. 26

3.6. This figure shows four space-filling curves for linearizing the indices
of a two-dimensional grid. 27

3.7. This figure shows a Voronoi diagram of a set of points (a) and the
corresponding Delaunay triangulation (b). 30

3.8. This figure shows two clusterings of a data set generated by the
combination of values from three normal distributions with different
variances. The left clustering (a) is computed using k-means and
the right clustering (b) is computed using EM. 32

3.9. This figure shows two clusterings of the aggregation data set [GMT07]
that are generated by agglomerative clustering with single linkage
(a) and complete linkage (b). Furthermore, the right diagram (c)
shows a dendrogram of single linkage clustering. 35

3.10. This figure depicts the Rand index of a cluster algorithm on two
data sets (blue and orange) in the range of one to ten clusters. . . . 38

3.11. This figure shows a density-based clustering of the compound data
set [Zah70]. 39

186

List of Figures

4.1. This figure illustrates the differences between the nearest neighbor
assignment (a) and the enclosing assignment (b). The blue points
are associated to the light blue circle while the yellow points are
associated to the light yellow circle. The gray points are not assigned
to any circle. 47

4.2. This image shows a good and a bad example for area proportionality
in juxtaposition. While the left side shows circles whose areas scale
linearly in the number of assigned points, the right side shows circles
whose sizes do not reflect the number of points. 49

4.3. This figure illustrates the calculation of the circle points centered
quality measure. It calculates the point distance between the center
(green) of the circle and the centroid (red) of the points (blue) that
are associated to the circle. 50

4.4. This figure presents a good example (left) and a bad example (right)
for the circle overlap quality measure. The red colored area shows
the overlapping of circles, which covers parts of the other circles,
and thus reduces the information value. Each overlap reduces the
quality score. 51

4.5. This figure depicts the calculation of the circle point distance quality
measure. The green points do not represent an error for the mea-
sure. On the other hand, the red points reduce the quality score by
the distance from their representing circle (cpdist). 53

4.6. This figure illustrates the unassigned points quality measure and the
connection to the enclosing assignment. The red boxes represent
subsets of the points (red) in the residual assignment. In contrast
to the green points, which do not pose an error, they reduce the
quality score by their cardinality. 54

4.7. This figure illustrates the histogram computation of the uniform
point distribution quality measure as a three step process. The first
step shows a grid and the binning of points into grid cells. The
second step illustrates the bin counts and the scaling of the outer
bins that only partially intersect with the circle. The third step
shows the creation of a histogram from the bins in order to assess
the uniformity of the point distribution within the circle. 55

187

List of Figures

4.8. This figure shows an example of the zoom consistency quality mea-
sure. It illustrates the comparison of two subsequent zoom levels
and the calculation of the intersection (dotted line and circle). The
arrow with the magnifying glass depicts the (theoretical) up-scaling
of the lower zoom level in order to facilitate the comparison. The
grid in the background only serves the purpose of comparability
between the sets of circles. 57

4.9. This figure shows the differences of the three transformation func-
tions circumcircle, log2 and log10 for the same set of clusters. 60

4.10. This plot matrix shows all pairwise Pareto frontiers on data set
Alnus glutinosa. 64

4.11. This boxplot shows the different quality values regarding the zoom
consistency. 66

5.1. This figure shows an exemplary quadtree partitioning of a set of
circles (a) and the corresponding tree structure with pointers to
internal and leaf nodes (b). 73

5.2. This figure illustrates the merging of two circles (left) into a new,
larger one (right). The centers and radii of the circles are given,
indicating the growth and displacement after merging. The numbers
at the arrows give the amount of attached points for each circle. The
required calculations are given in Algorithm 5.5. 79

5.3. This figure shows an example of a CMQ insertion of a point. Af-
ter querying with the minimum circle at the point’s center (red
and marked), the overlapping circles are removed from the quadtree
(dark blue). These circles are then merged into a new, larger circle
that is then inserted into the quadtree. 80

5.4. This figure shows an example that a different order of circle merges
can lead to a different result. The left side depicts that the merge
of A and B leads to a circle (green) that does not overlap with C.
The right side illustrates that the merge of B and C leads to a circle
(green) that does not overlap with A. Thus, the left merge order
leads to two different circles than the right one. 85

5.5. The figure depicts the grid partitioning of the map for the prepro-
cessing method. 86

5.6. Two example data sets: the left side shows the distribution of
910 784 occurrence points of cooper’s hawk in North America and
the right side shows the distribution of 768 436 occurrence points of
the greylag goose which are spread across the world. 91

5.7. The minimum, average and maximum runtime per point for the 11
algorithms. 92

188

List of Figures

5.8. The runtime per point for CMQhash z and CMQvector z. 94
5.9. This figure shows the runtime per point of CMQhash z for the 50 data

sets. The x-axis indicates the number of points in the data set. . . . 94
5.10. The runtime of five algorithms for five zoom levels over the number

of points of the 50 data sets. 95
5.11. This figure shows the runtime of all CMQ algorithms for five zoom

levels over the number of points of the 50 data sets. This plot com-
pares the runtimes for CMQ with hashing (left) and array storage
(right). 96

5.12. These boxplots show the performance of all methods regarding the
seven quality criteria individually. 97

5.13. This boxplot shows the performance of all methods as an equally
weighted average of all seven quality criteria. 98

5.14. This figure shows the three results of the methods (a) CMQ , (b)
Quadtree and (c) GeoTemCo for the Central European wolf spider
(Piratula hygrophila). 99

5.15. This boxplot shows the intersection over union (IoU) for the clus-
tering outputs of the different CMQ methods. Inputs are either
random permutations or inverse data sets. 100

5.16. This boxplot shows the compression rates of CMQ for different zoom
levels. Higher zoom levels lead to more space and, hence, to fewer
overlaps. 100

6.1. This graphic shows a combined visualization of three data sets that
induce an overlap among the circles. 107

6.2. This figure displays a map of differently sized circles. Each of them
shows different class occurrences in the form of a pie chart. 108

6.3. This figure illustrates the packing template (a) and the basic packing
algorithm (b) for packing four extended circles {c+1 , . . . , c+4 } in one
placeholder circle c◦. 112

6.4. This figure illustrates data-related packing. The circles on the right
side are arranged according to the underlying data (left side). . . . 113

6.5. This figure illustrates space-optimized packing. The circles on the
right side are moved towards the center so that they are more com-
pact and the dead space is reduced. 115

6.6. This figure shows two screenshots of CMQ with circle packing. The
left screen displays the result of basic packing and the right side the
result of data-related packing. 117

6.7. This figure shows the runtime of CMQ with the different packing
variants and without packing. 118

189

List of Figures

6.8. This figure shows the runtime for the packing variants for different
numbers of classes in the data sets. 119

6.9. This figure shows quality scores of the measures overlap and unas-
signed for the circle packing variants. 120

6.10. This figure shows the average quality score for the circle packing
variants. 121

6.11. This figure shows the survey results for maps that were created by
CMQ with circle packing versus maps that were created without
circle packing. The value next to the percentage shows the absolute
number of votes. 122

6.12. This figure shows the survey results for maps that were created by
CMQ with basic circle packing versus maps that were created with
data-related circle packing. The value next to the percentage shows
the absolute number of votes. 123

6.13. This figure shows the influence of the quality criteria as a result of
preference learning based on the user survey result. 124

7.1. This illustration presents a concise view on the system architecture
of the Vat System. 129

7.2. An exemplary spatio-temporal query rectangle that spans over Eu-
rope in the time range of the years 1990 to 2000. 130

7.3. The term exploratory workflows describes the transparent tracking
of computational steps that have led to a result while discarding
dead ends. 131

7.4. This screenshot provides an overview of the main parts of Wave.
There is a layer list on the left side, a list of citations at the bottom
and a plot panel on the right side. Additionally, there is a zooming
and temporal reference toolbar on top. 134

7.5. This screenshot shows the representation of the workflow graph in
Wave. Users can click on any operator to get more parametrization
details. 135

7.6. This tree illustration visualizes the secondary computation path for
citations that are computed alongside the actual data. 139

7.7. This figure depicts the time series computation of a point-in-polygon
filter [Bei+17a]. Users can query with different time slices that
determine the results. 140

7.8. This figure depicts a computation that first duplicates the input
with a time shift operator (+1 time step). Then, it calculates a
raster expression, e.g. an addition. The coloring emphasizes this
process. 141

7.9. This graphic depicts the application of a time series plot. 142

190

List of Figures

7.10. This graphic shows an exemplary step of the CSV import dialog. . . 143
7.11. This screenshot presents the final stage of the use case, in which

markers indicate the different steps that have led to the results
[Bei+17b]. 147

7.12. This graphic shows the CSV upload dialog of the paper prototype
[Bei+17b]. 150

7.13. These bar diagrams show the results of the two user evaluations
[Bei+17b]. 151

A.1. German libraries (3384 points) . 163
A.2. Loxodonta cyclotis (24 points) . 164
A.3. Macropus giganteus (23040 points) 165
A.4. Puma concolor (1993 points) . 166

191

List of Tables

4.1. This table shows the dominance ranking for the projections for each
data set. The numbers in braces show the amounts of dominated
points. 65

6.1. This table shows the names of the data sets and their number of
points for generating the evaluation data set. 117

192

List of Algorithms

5.1. insert . 74
5.2. queryAndExtract* . 75
5.3. queryAndExtract . 76
5.4. CMQ . 77
5.5. Function merge for merging circles 78
5.6. Function cmq with preprocessing 87
5.7. Multiple Zoom Level Aggregation 89

6.1. Function mergemulti for merging circles with circle packing 111
6.2. Function basicPacking for circle packing 113
6.3. Function dataRelatedPacking for circle packing 114
6.4. Function spaceOptimizedPacking for circle packing 116

193

Curriculum Vitae

This page contains personal data. It is therefore not part of the online publica-
tion.

194

	Abstract
	Zusammenfassung
	Erklärung
	Acknowledgments
	Introduction
	GFBio
	Occurrence and Biodiversity Data
	Contributions
	Organization of the Thesis

	The Problem of Visual Point Clustering
	Problem Definition
	Zoom Levels
	Miscellaneous Point and Circle Attributes

	Fundamentals and Related Work
	GIS
	Data Types, Components and Operations
	Coordinate Reference Systems

	Visual Analytics
	Fields of Research
	Spatial Visualization

	Spatial Data Structures and Methods
	Grid
	Histogram
	Point Aggregation
	Quadtree
	Space-Filling Curves
	Thinning
	Voronoi Diagrams and Delaunay Triangulations

	Clustering
	Partitional Clustering
	Distributional Clustering
	Hierarchical Clustering
	Choice of the Number of Clusters
	Density-based Clustering

	Quality Measures for Clustering
	Extrinsic Methods
	Intrinsic Methods

	Quality Measures for Visual Point Clustering
	Motivation
	Preliminaries
	Visual Assignment
	Nearest Neighbor Assignment
	Enclosing Assignment

	Quality Measure Definitions
	Area Proportionality
	Circle Points Centered
	Circle Overlap
	Circle Point Distance
	Unassigned Points
	Uniform Point Distribution
	Zoom Consistency

	Clustering Circle Mapping
	Circumcircle
	Log_2
	Log_2

	Experiments
	Methods
	Data Sets
	Clustering Methods
	Transformation Functions
	Zoom Consistency

	Multiclass Adaptations
	Assignments
	Measures

	Summary

	CMQ: The Circle Merging Quadtree
	Motivation and Requirements
	Method
	Idea
	Algorithm

	Time and Space Complexity
	Time Complexity
	Space Complexity

	Preprocessing and Stability
	Stability
	Preprocessing
	Time and Space Complexity

	Generation of Multiple Zoom Levels
	Experiments
	Runtime
	Quality of Results
	Stability
	Compression

	Summary

	CMQ Extensions
	Summary of Miscellaneous Attributes
	Numerical Attributes
	Textual Attributes

	Visualizing Multiple Classes and Data Sets
	Pie Chart Maps
	Circle Packing

	Summary

	The VAT System
	Motivation
	VAT – Architecture and Data Model
	WAVE – Overview and Features
	Wave Overview
	Operators and Workflows
	Data Generalization and Exploration
	Linked Visualization and Data Table
	Citations and Provenance
	Temporal Operations and Aggregation
	Plotting and R Connectivity
	Data Import and Export

	Integration to Infrastructure Projects
	Connection to GFBio
	Opportunities for Other Projects

	Example Use Case
	User Interface Design
	The Two-Phase Approach
	User Evaluation

	Related Work and Systems
	Summary

	Conclusion
	Summary
	Future Work
	Aggregation with Topological Constraints
	Parallelized CMQ
	Streamed Clustering

	Appendices
	Quality Measures Experiment

	References
	List of Figures
	List of Tables
	List of Algorithms
	Curriculum Vitae

