9 research outputs found

    Design and implementation of a secured SDN system based on hybrid encrypted algorithms

    Get PDF
    Software defined network suggests centralizing network knowledge in one network portion by separating the routing (control plane) mechanism from the transmission network packet operation (data plane). The control plane is composed of one, two or more controllers which are considered as software-defined networking (SDN) network brain where the real intelligence is incorporated. The process of separating the control unit from the data unit led to a problem related to poor security of data sent in the network, so solutions to these problems had to be found. In this paper, address this problem by implementing robust algorithms to encrypt information, based on advanced encryption standard (AES), Rivest–Shamir–Adleman (RSA), and hybrid encryption algorithms to guarantee data protection and authenticity. The results showed that the hybrid coding method is better in terms of security and improved time (faster than RSA alone) by applying several scenarios in the SDN network to a set of encrypted files

    Permissioned Blockchain-Based Security for SDN in IoT Cloud Networks

    Full text link
    The advancement in cloud networks has enabled connectivity of both traditional networked elements and new devices from all walks of life, thereby forming the Internet of Things (IoT). In an IoT setting, improving and scaling network components as well as reducing cost is essential to sustain exponential growth. In this domain, software-defined networking (SDN) is revolutionizing the network infrastructure with a new paradigm. SDN splits the control/routing logic from the data transfer/forwarding. This splitting causes many issues in SDN, such as vulnerabilities of DDoS attacks. Many solutions (including blockchain based) have been proposed to overcome these problems. In this work, we offer a blockchain-based solution that is provided in redundant SDN (load-balanced) to service millions of IoT devices. Blockchain is considered as tamper-proof and impossible to corrupt due to the replication of the ledger and consensus for verification and addition to the ledger. Therefore, it is a perfect fit for SDN in IoT Networks. Blockchain technology provides everyone with a working proof of decentralized trust. The experimental results show gain and efficiency with respect to the accuracy, update process, and bandwidth utilization.Comment: Accepted to International Conference on Advances in the Emerging Computing Technologies (AECT) 202

    P-IOTA: A Cloud-Based Geographically Distributed Threat Alert System That Leverages P4 and IOTA

    Get PDF
    The recent widespread novel network technologies for programming data planes are remarkably enhancing the customization of data packet processing. In this direction, the Programming Protocol-independent Packet Processors (P4) is envisioned as a disruptive technology, capable of configuring network devices in a highly customizable way. P4 enables network devices to adapt their behaviors to mitigate malicious attacks (e.g., denial of service). Distributed ledger technologies (DLTs), such as blockchain, allow secure reporting alerts on malicious actions detected across different areas. However, the blockchain suffers from major scalability concerns due to the consensus protocols needed to agree on a global state of the network. To overcome these limitations, new solutions have recently emerged. IOTA is a next-generation distributed ledger engineered to tackle the scalability limits while still providing the same security capabilities such as immutability, traceability, and transparency. This article proposes an architecture that integrates a P4-based data plane software-defined network (SDN) and an IOTA layer employed to notify about networking attacks. Specifically, we propose a fast, secure, and energy-efficient DLT-enabled architecture that combines the IOTA data structure, named Tangle, with the SDN layer to detect and notify about network threats

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    Decentralized Decision Making for Limited Resource Allocation Using a Private Blockchain Network in an IoT (Internet of Things) Environment with Conflicting Agents

    Get PDF
    Blockchains have gotten popular in recent times, owing to the security, anonymity, and lack of any third-party involvement. Blockchains essentially are record keeping tools that record any transactions between involved parties. One of the key aspects of handling and navigating of any autonomous traffic on the streets, is secured and simple means of communication. This thesis explores distribution of minimum resources between multiple autonomous agents, by settling conflicts using events of random nature. The thesis focusses on two specific events, tossing of a coin and the game of rock, paper, and scissors (RPS). An improvement on the traditional game of RPS is further suggested, called rock, paper, scissors, and hammer (RPSH). And then seamless communication interface to enable secure interaction is setup using blockchains with smart contracts. A new method of information exchange called Sealed Envelope Exchange is proposed to eliminate any involvement of third-party agents in the monitoring of conflict resolution. A scenario of assigning the sole remaining parking spot in a filled parking space, between two vehicles is simulated and then the conflict is resolved in a fair manner without involving a third-party agent. This is achieved by playing a fair game of RPSH by using blockchains and simulating cross chain interaction to ensure that any messages and transactions during the game are secured

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    Blockchain and Internet of Things in smart cities and drug supply management: Open issues, opportunities, and future directions

    Get PDF
    Blockchain-based drug supply management (DSM) requires powerful security and privacy procedures for high-level authentication, interoperability, and medical record sharing. Researchers have shown a surprising interest in Internet of Things (IoT)-based smart cities in recent years. By providing a variety of intelligent applications, such as intelligent transportation, industry 4.0, and smart financing, smart cities (SC) can improve the quality of life for their residents. Blockchain technology (BCT) can allow SC to offer a higher standard of security by keeping track of transactions in an immutable, secure, decentralized, and transparent distributed ledger. The goal of this study is to systematically explore the current state of research surrounding cutting-edge technologies, particularly the deployment of BCT and the IoT in DSM and SC. In this study, the defined keywords “blockchain”, “IoT”, drug supply management”, “healthcare”, and “smart cities” as well as their variations were used to conduct a systematic search of all relevant research articles that were collected from several databases such as Science Direct, JStor, Taylor & Francis, Sage, Emerald insight, IEEE, INFORMS, MDPI, ACM, Web of Science, and Google Scholar. The final collection of papers on the use of BCT and IoT in DSM and SC is organized into three categories. The first category contains articles about the development and design of DSM and SC applications that incorporate BCT and IoT, such as new architecture, system designs, frameworks, models, and algorithms. Studies that investigated the use of BCT and IoT in the DSM and SC make up the second category of research. The third category is comprised of review articles regarding the incorporation of BCT and IoT into DSM and SC-based applications. Furthermore, this paper identifies various motives for using BCT and IoT in DSM and SC, as well as open problems and makes recommendations. The current study contributes to the existing body of knowledge by offering a complete review of potential alternatives and finding areas where further research is needed. As a consequence of this, researchers are presented with intriguing potential to further create decentralized DSM and SC apps as a result of a comprehensive discussion of the relevance of BCT and its implementation.© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Security architecture for Fog-To-Cloud continuum system

    Get PDF
    Nowadays, by increasing the number of connected devices to Internet rapidly, cloud computing cannot handle the real-time processing. Therefore, fog computing was emerged for providing data processing, filtering, aggregating, storing, network, and computing closer to the users. Fog computing provides real-time processing with lower latency than cloud. However, fog computing did not come to compete with cloud, it comes to complete the cloud. Therefore, a hierarchical Fog-to-Cloud (F2C) continuum system was introduced. The F2C system brings the collaboration between distributed fogs and centralized cloud. In F2C systems, one of the main challenges is security. Traditional cloud as security provider is not suitable for the F2C system due to be a single-point-of-failure; and even the increasing number of devices at the edge of the network brings scalability issues. Furthermore, traditional cloud security cannot be applied to the fog devices due to their lower computational power than cloud. On the other hand, considering fog nodes as security providers for the edge of the network brings Quality of Service (QoS) issues due to huge fog device’s computational power consumption by security algorithms. There are some security solutions for fog computing but they are not considering the hierarchical fog to cloud characteristics that can cause a no-secure collaboration between fog and cloud. In this thesis, the security considerations, attacks, challenges, requirements, and existing solutions are deeply analyzed and reviewed. And finally, a decoupled security architecture is proposed to provide the demanded security in hierarchical and distributed fashion with less impact on the QoS.Hoy en día, al aumentar rápidamente el número de dispositivos conectados a Internet, el cloud computing no puede gestionar el procesamiento en tiempo real. Por lo tanto, la informática de niebla surgió para proporcionar procesamiento de datos, filtrado, agregación, almacenamiento, red y computación más cercana a los usuarios. La computación nebulizada proporciona procesamiento en tiempo real con menor latencia que la nube. Sin embargo, la informática de niebla no llegó a competir con la nube, sino que viene a completar la nube. Por lo tanto, se introdujo un sistema continuo jerárquico de niebla a nube (F2C). El sistema F2C aporta la colaboración entre las nieblas distribuidas y la nube centralizada. En los sistemas F2C, uno de los principales retos es la seguridad. La nube tradicional como proveedor de seguridad no es adecuada para el sistema F2C debido a que se trata de un único punto de fallo; e incluso el creciente número de dispositivos en el borde de la red trae consigo problemas de escalabilidad. Además, la seguridad tradicional de la nube no se puede aplicar a los dispositivos de niebla debido a su menor poder computacional que la nube. Por otro lado, considerar los nodos de niebla como proveedores de seguridad para el borde de la red trae problemas de Calidad de Servicio (QoS) debido al enorme consumo de energía computacional del dispositivo de niebla por parte de los algoritmos de seguridad. Existen algunas soluciones de seguridad para la informática de niebla, pero no están considerando las características de niebla a nube jerárquica que pueden causar una colaboración insegura entre niebla y nube. En esta tesis, las consideraciones de seguridad, los ataques, los desafíos, los requisitos y las soluciones existentes se analizan y revisan en profundidad. Y finalmente, se propone una arquitectura de seguridad desacoplada para proporcionar la seguridad exigida de forma jerárquica y distribuida con menor impacto en la QoS.Postprint (published version
    corecore