381 research outputs found

    Interpretable Machine Learning Methods for Prediction and Analysis of Genome Regulation in 3D

    Get PDF
    With the development of chromosome conformation capture-based techniques, we now know that chromatin is packed in three-dimensional (3D) space inside the cell nucleus. Changes in the 3D chromatin architecture have already been implicated in diseases such as cancer. Thus, a better understanding of this 3D conformation is of interest to help enhance our comprehension of the complex, multipronged regulatory mechanisms of the genome. The work described in this dissertation largely focuses on development and application of interpretable machine learning methods for prediction and analysis of long-range genomic interactions output from chromatin interaction experiments. In the first part, we demonstrate that the genetic sequence information at the ge- nomic loci is predictive of the long-range interactions of a particular locus of interest (LoI). For example, the genetic sequence information at and around enhancers can help predict whether it interacts with a promoter region of interest. This is achieved by building string kernel-based support vector classifiers together with two novel, in- tuitive visualization methods. These models suggest a potential general role of short tandem repeat motifs in the 3D genome organization. But, the insights gained out of these models are still coarse-grained. To this end, we devised a machine learning method, called CoMIK for Conformal Multi-Instance Kernels, capable of providing more fine-grained insights. When comparing sequences of variable length in the su- pervised learning setting, CoMIK can not only identify the features important for classification but also locate them within the sequence. Such precise identification of important segments of the whole sequence can help in gaining de novo insights into any role played by the intervening chromatin towards long-range interactions. Although CoMIK primarily uses only genetic sequence information, it can also si- multaneously utilize other information modalities such as the numerous functional genomics data if available. The second part describes our pipeline, pHDee, for easy manipulation of large amounts of 3D genomics data. We used the pipeline for analyzing HiChIP experimen- tal data for studying the 3D architectural changes in Ewing sarcoma (EWS) which is a rare cancer affecting adolescents. In particular, HiChIP data for two experimen- tal conditions, doxycycline-treated and untreated, and for primary tumor samples is analyzed. We demonstrate that pHDee facilitates processing and easy integration of large amounts of 3D genomics data analysis together with other data-intensive bioinformatics analyses.Mit der Entwicklung von Techniken zur Bestimmung der Chromosomen-Konforma- tion wissen wir jetzt, dass Chromatin in einer dreidimensionalen (3D) Struktur in- nerhalb des Zellkerns gepackt ist. Änderungen in der 3D-Chromatin-Architektur sind bereits mit Krankheiten wie Krebs in Verbindung gebracht worden. Daher ist ein besseres Verständnis dieser 3D-Konformation von Interesse, um einen tieferen Einblick in die komplexen, vielschichtigen Regulationsmechanismen des Genoms zu ermöglichen. Die in dieser Dissertation beschriebene Arbeit konzentriert sich im Wesentlichen auf die Entwicklung und Anwendung interpretierbarer maschineller Lernmethoden zur Vorhersage und Analyse von weitreichenden genomischen Inter- aktionen aus Chromatin-Interaktionsexperimenten. Im ersten Teil zeigen wir, dass die genetische Sequenzinformation an den genomis- chen Loci prädiktiv für die weitreichenden Interaktionen eines bestimmten Locus von Interesse (LoI) ist. Zum Beispiel kann die genetische Sequenzinformation an und um Enhancer-Elemente helfen, vorherzusagen, ob diese mit einer Promotorregion von Interesse interagieren. Dies wird durch die Erstellung von String-Kernel-basierten Support Vector Klassifikationsmodellen zusammen mit zwei neuen, intuitiven Visual- isierungsmethoden erreicht. Diese Modelle deuten auf eine mögliche allgemeine Rolle von kurzen, repetitiven Sequenzmotiven (”tandem repeats”) in der dreidimensionalen Genomorganisation hin. Die Erkenntnisse aus diesen Modellen sind jedoch immer noch grobkörnig. Zu diesem Zweck haben wir die maschinelle Lernmethode CoMIK (für Conformal Multi-Instance-Kernel) entwickelt, welche feiner aufgelöste Erkennt- nisse liefern kann. Beim Vergleich von Sequenzen mit variabler Länge in überwachten Lernszenarien kann CoMIK nicht nur die für die Klassifizierung wichtigen Merkmale identifizieren, sondern sie auch innerhalb der Sequenz lokalisieren. Diese genaue Identifizierung wichtiger Abschnitte der gesamten Sequenz kann dazu beitragen, de novo Einblick in jede Rolle zu gewinnen, die das dazwischen liegende Chromatin für weitreichende Interaktionen spielt. Obwohl CoMIK hauptsächlich nur genetische Se- quenzinformationen verwendet, kann es gleichzeitig auch andere Informationsquellen nutzen, beispielsweise zahlreiche funktionellen Genomdaten sofern verfügbar. Der zweite Teil beschreibt unsere Pipeline pHDee für die einfache Bearbeitung großer Mengen von 3D-Genomdaten. Wir haben die Pipeline zur Analyse von HiChIP- Experimenten zur Untersuchung von dreidimensionalen Architekturänderungen bei der seltenen Krebsart Ewing-Sarkom (EWS) verwendet, welche Jugendliche betrifft. Insbesondere werden HiChIP-Daten für zwei experimentelle Bedingungen, Doxycyclin- behandelt und unbehandelt, und für primäre Tumorproben analysiert. Wir zeigen, dass pHDee die Verarbeitung und einfache Integration großer Mengen der 3D-Genomik- Datenanalyse zusammen mit anderen datenintensiven Bioinformatik-Analysen erle- ichtert

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Deep Learning for Genomics: A Concise Overview

    Full text link
    Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.Comment: Invited chapter for Springer Book: Handbook of Deep Learning Application

    Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases

    Get PDF
    Mapping perturbed molecular circuits that underlie complex diseases remains a great challenge. We developed a comprehensive resource of 394 cell type– and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity among transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) showed that disease-associated genetic variants—including variants that do not reach genome-wide significance—often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissue

    GraphProt: modeling binding preferences of RNA-binding proteins

    Get PDF
    We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt

    Explainable deep learning models for biological sequence classification

    Get PDF
    Biological sequences - DNA, RNA and proteins - orchestrate the behavior of all living cells and trying to understand the mechanisms that govern and regulate the interactions among these molecules has motivated biological research for many years. The introduction of experimental protocols that analyze such interactions on a genome- or transcriptome-wide scale has also established the usage of machine learning in our field to make sense of the vast amounts of generated data. Recently, deep learning, a branch of machine learning based on artificial neural networks, and especially convolutional neural networks (CNNs) were shown to deliver promising results for predictive tasks and automated feature extraction. However, the resulting models are often very complex and thus make model application and interpretation hard, but the possibility to interpret which features a model has learned from the data is crucial to understand and to explain new biological mechanisms. This work therefore presents pysster, our open source software library that enables researchers to more easily train, apply and interpret CNNs on biological sequence data. We evaluate and implement different feature interpretation and visualization strategies and show that the flexibility of CNNs allows for the integration of additional data beyond pure sequences to improve the biological feature interpretability. We demonstrate this by building, among others, predictive models for transcription factor and RNA-binding protein binding sites and by supplementing these models with structural information in the form of DNA shape and RNA secondary structure. Features learned by models are then visualized as sequence and structure motifs together with information about motif locations and motif co-occurrence. By further analyzing an artificial data set containing implanted motifs we also illustrate how the hierarchical feature extraction process in a multi-layer deep neural network operates. Finally, we present a larger biological application by predicting RNA-binding of proteins for transcripts for which experimental protein-RNA interaction data is not yet available. Here, the comprehensive interpretation options of CNNs made us aware of potential technical bias in the experimental eCLIP data (enhanced crosslinking and immunoprecipitation) that were used as a basis for the models. This allowed for subsequent tuning of the models and data to get more meaningful predictions in practice

    Statistical methods for biological sequence analysis for DNA binding motifs and protein contacts

    Get PDF
    Over the last decades a revolution in novel measurement techniques has permeated the biological sciences filling the databases with unprecedented amounts of data ranging from genomics, transcriptomics, proteomics and metabolomics to structural and ecological data. In order to extract insights from the vast quantity of data, computational and statistical methods are nowadays crucial tools in the toolbox of every biological researcher. In this thesis I summarize my contributions in two data-rich fields in biological sciences: transcription factor binding to DNA and protein structure prediction from protein sequences with shared evolutionary ancestry. In the first part of my thesis I introduce our work towards a web server for analysing transcription factor binding data with Bayesian Markov Models. In contrast to classical PWM or di-nucleotide models, Bayesian Markov models can capture complex inter-nucleotide dependencies that can arise from shape-readout and alternative binding modes. In addition to giving access to our methods in an easy-to-use, intuitive web-interface, we provide our users with novel tools and visualizations to better evaluate the biological relevance of the inferred binding motifs. We hope that our tools will prove useful for investigating weak and complex transcription factor binding motifs which cannot be predicted accurately with existing tools. The second part discusses a statistical attempt to correct out the phylogenetic bias arising in co-evolution methods applied to the contact prediction problem. Co-evolution methods have revolutionized the protein-structure prediction field more than 10 years ago, and, until very recently, have retained their importance as crucial input features to deep neural networks. As the co-evolution information is extracted from evolutionarily related sequences, we investigated whether the phylogenetic bias to the signal can be corrected out in a principled way using a variation of the Felsenstein's tree-pruning algorithm applied in combination with an independent-pair assumption to derive pairwise amino counts that are corrected for the evolutionary history. Unfortunately, the contact prediction derived from our corrected pairwise amino acid counts did not yield a competitive performance.2021-09-2
    • …
    corecore