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Abstract

With the development of chromosome conformation capture-based techniques, we
now know that chromatin is packed in three-dimensional (3D) space inside the cell
nucleus. Changes in the 3D chromatin architecture have already been implicated in
diseases such as cancer. Thus, a better understanding of this 3D conformation is of
interest to help enhance our comprehension of the complex, multipronged regulatory
mechanisms of the genome. The work described in this dissertation largely focuses on
development and application of interpretable machine learning methods for prediction
and analysis of long-range genomic interactions output from chromatin interaction
experiments.

In the first part, we demonstrate that the genetic sequence information at the ge-
nomic loci is predictive of the long-range interactions of a particular locus of interest
(LoI). For example, the genetic sequence information at and around enhancers can
help predict whether it interacts with a promoter region of interest. This is achieved
by building string kernel-based support vector classifiers together with two novel, in-
tuitive visualization methods. These models suggest a potential general role of short
tandem repeat motifs in the 3D genome organization. But, the insights gained out
of these models are still coarse-grained. To this end, we devised a machine learning
method, called CoMIK for Conformal Multi-Instance Kernels, capable of providing
more fine-grained insights. When comparing sequences of variable length in the su-
pervised learning setting, CoMIK can not only identify the features important for
classification but also locate them within the sequence. Such precise identification
of important segments of the whole sequence can help in gaining de novo insights
into any role played by the intervening chromatin towards long-range interactions.
Although CoMIK primarily uses only genetic sequence information, it can also si-
multaneously utilize other information modalities such as the numerous functional
genomics data if available.

The second part describes our pipeline, pHDee, for easy manipulation of large
amounts of 3D genomics data. We used the pipeline for analyzing HiChIP experimen-
tal data for studying the 3D architectural changes in Ewing sarcoma (EWS) which
is a rare cancer affecting adolescents. In particular, HiChIP data for two experimen-
tal conditions, doxycycline-treated and untreated, and for primary tumor samples
is analyzed. We demonstrate that pHDee facilitates processing and easy integration
of large amounts of 3D genomics data analysis together with other data-intensive
bioinformatics analyses.
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Kurzfassung

Mit der Entwicklung von Techniken zur Bestimmung der Chromosomen-Konforma-
tion wissen wir jetzt, dass Chromatin in einer dreidimensionalen (3D) Struktur in-
nerhalb des Zellkerns gepackt ist. Änderungen in der 3D-Chromatin-Architektur
sind bereits mit Krankheiten wie Krebs in Verbindung gebracht worden. Daher ist
ein besseres Verständnis dieser 3D-Konformation von Interesse, um einen tieferen
Einblick in die komplexen, vielschichtigen Regulationsmechanismen des Genoms zu
ermöglichen. Die in dieser Dissertation beschriebene Arbeit konzentriert sich im
Wesentlichen auf die Entwicklung und Anwendung interpretierbarer maschineller
Lernmethoden zur Vorhersage und Analyse von weitreichenden genomischen Inter-
aktionen aus Chromatin-Interaktionsexperimenten.

Im ersten Teil zeigen wir, dass die genetische Sequenzinformation an den genomis-
chen Loci prädiktiv für die weitreichenden Interaktionen eines bestimmten Locus von
Interesse (LoI) ist. Zum Beispiel kann die genetische Sequenzinformation an und um
Enhancer-Elemente helfen, vorherzusagen, ob diese mit einer Promotorregion von
Interesse interagieren. Dies wird durch die Erstellung von String-Kernel-basierten
Support Vector Klassifikationsmodellen zusammen mit zwei neuen, intuitiven Visual-
isierungsmethoden erreicht. Diese Modelle deuten auf eine mögliche allgemeine Rolle
von kurzen, repetitiven Sequenzmotiven (”tandem repeats”) in der dreidimensionalen
Genomorganisation hin. Die Erkenntnisse aus diesen Modellen sind jedoch immer
noch grobkörnig. Zu diesem Zweck haben wir die maschinelle Lernmethode CoMIK
(für Conformal Multi-Instance-Kernel) entwickelt, welche feiner aufgelöste Erkennt-
nisse liefern kann. Beim Vergleich von Sequenzen mit variabler Länge in überwachten
Lernszenarien kann CoMIK nicht nur die für die Klassifizierung wichtigen Merkmale
identifizieren, sondern sie auch innerhalb der Sequenz lokalisieren. Diese genaue
Identifizierung wichtiger Abschnitte der gesamten Sequenz kann dazu beitragen, de
novo Einblick in jede Rolle zu gewinnen, die das dazwischen liegende Chromatin für
weitreichende Interaktionen spielt. Obwohl CoMIK hauptsächlich nur genetische Se-
quenzinformationen verwendet, kann es gleichzeitig auch andere Informationsquellen
nutzen, beispielsweise zahlreiche funktionellen Genomdaten sofern verfügbar.

Der zweite Teil beschreibt unsere Pipeline pHDee für die einfache Bearbeitung
großer Mengen von 3D-Genomdaten. Wir haben die Pipeline zur Analyse von HiChIP-
Experimenten zur Untersuchung von dreidimensionalen Architekturänderungen bei
der seltenen Krebsart Ewing-Sarkom (EWS) verwendet, welche Jugendliche betrifft.
Insbesondere werden HiChIP-Daten für zwei experimentelle Bedingungen, Doxycyclin-
behandelt und unbehandelt, und für primäre Tumorproben analysiert. Wir zeigen,
dass pHDee die Verarbeitung und einfache Integration großer Mengen der 3D-Genomik-
Datenanalyse zusammen mit anderen datenintensiven Bioinformatik-Analysen erle-
ichtert.
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1
Introduction

Could you have imagined that the size of the wheat genome, i.e. the complete
DNA sequence of common bread wheat is larger than that of the human genome (Zimin

et al., 2017)? Could you have imagined that Axolotl, a salamander, has a genome
∼10× the size of the human genome and that it is able to regenerate its limbs includ-
ing the bones (Nowoshilow et al., 2018)? Many such astounding facts make the field
of genome biology intriguing.

The DNA of eukaryotic organisms (all plants and animals are examples of eukary-
otes) is stored inside the nucleus of their cells. Almost all cells of an organism have an
identical copy of the complete DNA. This DNA when stretched out can be very long.
For example, in humans, the completely stretched out DNA is ∼2 m long, and the
cell nucleus is just 6 µm wide. This storage is achieved by a compact, complex, hier-
archical organization in three dimensional (3D) space. Scientists have been studying
this structure and organization of the genome of organisms since many years (cite).

Notwithstanding the highly complex organization of the genome, each cell performs
its functions based on the instructions encoded into the DNA sequence. The same
genetic sequence in each cell can give rise to different functions for different cells. For
instance, liver cells perform a different function than brain cells or the skin cells. A
particular set of genes can be up-regulated (or down-regulated) in some cells while a
completely different set of genes can be up-regulated in another. Instructions for such
regulation of genes can be encoded in the DNA genome itself, or, in the epigenome
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of a cell1. The epigenome comprises of modifications on top of the DNA, and is cell-
type- or tissue-specific (Feinberg and Callinan, 2006). Such regulatory instructions
could lie either in the vicinity of the gene or even far away on the (epi)genome. It
is now known that communication between such distant (regulatory) regions on the
genome is possible because of its 3D organization (Bickmore, 2013; Dekker, 2008;
Lieberman-Aiden et al., 2009; Rao et al., 2014).

Understanding the mechanisms of 3D genome regulation is important. It is a long-
standing interest of the scientific community to understand how living cells function.
This knowledge of the fundamental aspects of biology can help in understanding
what goes wrong in diseased conditions, or in other words, why certain cells loose
their proper functioning capability. To this end, studies have shown that aberrations
in the 3D architecture of the chromatin, a complex of DNA and proteins, can lead
to disease conditions such as cancer (Zeitz et al., 2013). This, thus, has potential to
impact the field of medicine. An improved understanding of these mechanisms can
help in better comprehension of various diseases and designing superior treatments
and therapies, for example, by identifying more potent drug targets.

Molecular biology techniques that help interrogate and study this 3D organization
were invented over the course of the last decade (de Wit and de Laat, 2012). These
experiments are performed on many different cell types and conditions to obtain
high-resolution (more detailed) genome-wide information about their 3D architecture.
Analyzing these data to gain biological insights requires enormous efforts towards
developing computational methods.

The need of computational approaches for handling and analyzing such biological
data sets has been long recognized. Gauthier et al. (2018) provide a brief overview of
the history of bioinformatics. Post 2000, we have witnessed an exponential rise in the
amount of data being generated and made available. This is mainly due to advances
in technology used for performing molecular biology experiments. Some examples are
the many consortium projects such as ‘The Human Genome Project’ (which culmi-
nated in early 2000s) and the human genome sequence (Lander et al., 2001; Venter
et al., 2001), ‘The 1000 Genomes Project’ (1000 Genomes Project Consortium et al.,
2010), 1000 Plant Genomes Project2, and the Precision Medicine Initiative3 etc. This
lead to many academic and industrial labs worldwide performing these experiments
on different organisms in diverse conditions with varied objectives. These objectives
ranged from studying the basic biology in normal conditions and diseases to using
the knowledge gained for identifying biomarkers, drug discoveries, and designing im-
proved therapies. With these developments, the amount and kinds of data available

1See definition of ‘epigenomics’ here: https://www.nature.com/subjects/epigenomics
2https://sites.google.com/a/ualberta.ca/onekp/home, Retrieved Jan. 31, 2019
3https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative, Retrieved Feb. 4, 2019
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soared. It then became infeasible for biologists to scrutinize the data manually. Thus,
approaches to automate pre-processing and analysis of such biological data—in part
or full—became more and more popular. In addition, many biological phenomena
were studied with the help of computer simulations. These involved computer ap-
plications of techniques from mathematics and statistics. All of this helped pace
multiple facets of science much to the benefit of everyone.

The field of artificial intelligence (AI) also saw much improvement during this time
frame. AI studied ways in which one could make automated inferences based on
data as evidence. After many algorithmic developments in the initial years of AI,
when more and more data started becoming available, performances of the same
algorithms improved with larger data. This in turn motivated the generation of even
more data and development of infrastructure worldwide for handling such vast data.
As AI algorithms got sophisticated during the decades of 1990s and the 2000s, their
performances on many benchmark tasks started improving, but their interpretability
took a back seat or was slackened.

In many fields, machine learning (ML) algorithms were then used as black boxes
simply keeping their hefty dividends in mind. For some, this is true even today. But
for a field like biology or medicine, the ability to understand the pieces of evidence
that the machine used to successfully perform a task such as prediction in large data
sets is a lot more important. In domains like linguistics or natural language processing
and computer vision, it is a lot easier or cheaper to know the ground truth than in the
biological or medical sciences. Also, there is comparatively lesser risk if the ground
truth itself is inaccurate. First, consider the task of identifying the subject and object
in an English language sentence (domain:linguistics) or identifying cats in images
(domain:computer vision). Compare these to the task of identifying the structure of
a protein complex. In the latter case, ground truth is only known from experiments,
and it can be expensive to obtain it. In general, the pieces of evidence uncovered by
computational methods often require going back to the laboratory and designing new
experiments or redesigning old ones. This involves monetary costs and/or it can be
time-consuming. Second, consider the following example from the field of medicine.
Doctors/radiologists routinely perform the task of classifying an image of a potential
skin tumor as either benign or malignant. For this task, a machine (or an algorithm)
that simply tells whether the tumor is benign or malignant, but nothing more, is
usually not very useful (in some exceptional cases where even basic diagnosis is hard
to come by, e.g., in underdeveloped or developing countries, this can still be useful).
Any information on the piece of evidence from the image that the algorithm used
to arrive at a particular answer is very important and holds tremendous value. It
can not only help doctors in uncovering something that was not discovered yet—for
instance, a complex, non-linear relationship between multiple entities—but can also
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help in improved diagnosis as well as prognosis.
Such interpretable computational methods are the prime subject of this thesis.

1.1 Thesis Outline
The work presented in this thesis can be divided into two parts. In the first part,
I demonstrate how interpretable ML methods can play an important role towards
gaining de novo insights into the 3D genome organization. In terms of the biol-
ogy, we answer the specific question of whether the genetic sequence is predictive of
long-range interactions between genomic regions such as enhancers and promoters or
others. In terms of methodology, we have developed and applied ML methods that
are interpretable and take into account the underlying biology. Our work exemplifies
the potential of ML methods with such characteristics in proposing newer hypothe-
ses and refining our understanding of biology itself. In the second part, we focus
on analysis pipelines for chromatin conformation data, especially when it is just one
part of the complete, global picture involving even larger volumes of data from other
experimental assays.

I have organized this thesis as follows. In Chapter 2, I begin by introducing the
reader to the basics of genome biology. I then familiarize the reader with the state-of-
the-art molecular techniques for interrogation of 3D genome organization. I also shed
light on the different ways in which scientists are using data from these experiments
to learn more about (a) the basic principles of genome organization, and (b) its role
in proper functioning of cells. Next, I introduce the reader to machine learning,
specifically focusing on kernel methods for supervised learning and string kernels.

Chapters 3, 4 and 5 describe the main contributions of this thesis. Chapter 3
presents a supervised learning model using only the genetic sequence information for
prediction of locus-specific long-range interaction partners. Two novel visualization
techniques that we developed to aid in this study are also described here.

Chapter 4 describes our approach for comparison of variable-length sequences in the
supervised learning scenario. The scenarios in which the need to compare sequences
of arbitrary length arise are discussed in this chapter. Further, we demonstrate the
efficacy of the method on a synthetic data set and two real biological data sets. This
chapter concludes with a discussion on the benefits of and the challenges in analyz-
ing high-resolution genome-wide chromatin interaction data sets using the method
described.

In Chapter 5, I present the pipeline we developed for end-to-end analysis of data
from chromatin interaction experiments. We also discuss how the pipeline facilitates
analyzing humongous amounts of HiChIP experimental data for two conditions in a
Ewing sarcoma cell line to study the changes in the 3D architecture.
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Finally, Chapter 6 concludes the thesis and discusses the future directions of this
work.

1.1.1 Note on Publications

Parts of the work presented in this thesis have been published at various avenues. In
particular,

• work described in Chapter 3 is published in the journal BMC Bioinformatics
as:
Sarvesh Nikumbh and Nico Pfeifer. Genetic sequence-based prediction of
long-range chromatin interactions suggests a potential role of short
tandem repeat sequences in genome organization. BMC Bioinformatics,
18(1):218, 2017. ISSN 1471-2105. doi: 10.1186/s12859-017-1624-x. URL
http://dx.doi.org/10.1186/s12859-017-1624-x.

• the method described in Chapter 4 is published as a conference proceeding in
WABI (Workshop on Algorithms in Bioinformatics) 2017:
Sarvesh Nikumbh, Peter Ebert, and Nico Pfeifer. All Fingers Are Not the
Same: Handling Variable-Length Sequences in a Discriminative Set-
ting Using Conformal Multi-Instance Kernels. In Russell Schwartz and
Knut Reinert, editors, 17th International Workshop on Algorithms in Bioin-
formatics (WABI 2017), volume 88 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1–16:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.WABI.2017.
16.

• the pipeline described in Chapter 5 is available on Github (see next section),
and the manuscript is in preparation.

At the beginning of every chapter, I report the contributions of all the authors involved
in it.

1.1.2 Note on Software

The software arising out of this work is provided for use to the community at large.
In Chapter 3, the pipeline for locus-specific analysis of long-range interaction part-
ners is provided in an executable format and is made available at [http://bioinf.mpi-
inf.mpg.de/publications/samarth/]. It is made available as free software for academic
use, with no warranty or liability.

For CoMIK (Conformal Multi-Instance Kernels), its source code is provided via
MPI-Github at [https://github.molgen.mpg.de/snikumbh/comik]. It is also provided
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in an executable format for non-MATLAB users. CoMIK is licensed under the MIT
License.

The source code of the pipeline for the analysis of the data from the HiChIP
experiments is also provided at [https://github.molgen.mpg.de/snikumbh/pHDee].
pHDee pipeline software is provided under MIT License. All software is accompanied
by a thorough set of instructions for the benefit of the end user.
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The future of research is interdisciplinary, and
will quickly take us into areas that today we can-
not even foresee, ... This building gives us the
space and the flexibility to go where the imagina-
tion of our faculty takes us.

Michael Tanner

2
Background

Interdisciplinary research is research at the intersection of two or more fields.
Such research often builds upon ideas, tools and techniques from multiple fields

for the progress of science. For example, in the natural sciences such as physics,
chemistry and biology, scientists are interested in improving our comprehension of
our surroundings. These are often sought with the help of tools and techniques
developed in other fields such as mathematics, statistics, and computer science. There
are many examples of such synergies leading to ground breaking discoveries. An
amalgamation of mathematics, statistics and computer science techniques is now also
called as the ‘computational science’. However, as has been rightly noted, “If you
want to do something successfully, understand the domain first, and the machine
learning second…”1, I begin by giving a basic introduction to molecular biology in the
first part of this chapter. This is followed by a section where I introduce machine
learning (ML), and popular ML approaches for the field of computational biology.

2.1 Essential Molecular Biology
This section presents a primer on concepts in molecular biology, and is intended to
provide the reader with a basis to better understand the work presented in this thesis.
To this end, I also present a comprehensive but non-exhaustive introduction to the

1Prof. Neil Lawrence summarizing the Talking Machines Podcast episode, Machine Learning in
the Field and Bayesian Baked Goods, t=57:50, Retrieved Jan. 23, 2019. Included with permission.
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molecular techniques developed for studying the 3D chromatin interaction profiles of
organisms. I envisage this to aid in making the journey of the reader through this
thesis as smooth as possible.

2.1.1 Genome: The Blueprint of Life

The cell is considered the most basic unit of life on earth. A cell is a watery solution
of molecules surrounded by a lipid membrane. An individual cell is responsible for
functions such as replication, synthesis of proteins, response to external environmental
stimuli etc. In order to perform these functions any cell uses up nutrients and can
make other newer molecules. Instructions and ingredients for all these responsibilities
are typically present in the cell itself. Any living organism has one or more cells.
For example, bacteria are unicellular while plants and animals including humans are
multicellular.

More specifically, almost all living cells are similar in the following aspects:

• Storage of the hereditary information in a linear chemical code, i.e. the deoxyri-
bonucleic acid (DNA);

• Transcription of portions of this hereditary information to the same intermedi-
ary form, i.e. the ribonucleic acid (RNA); and

• Translation of RNA into protein the same way.

That information can be transferred from nucleic acid to nucleic acid or from nucleic
acid to protein is termed as the ‘central dogma’ of molecular biology. Thus DNA,
RNA and proteins are three very critical macromolecules in any cell. In the following
I begin with a brief description of DNA, RNA and proteins. Subsequently, I focus
the discussion on DNA as it is at the heart of the subject of this thesis.

DNA forms the piece of heritable information stored in a cell. It is essentially the
blueprint that provides all instructions necessary for a cell to perform its functions.
Both DNA and RNA are macromolecules mainly formed by a chain of nucleotides (nt).
A nucleotide is a molecule made up of a nitrogenous base, ribose or deoxyribose sugar,
and a phosphate group. Each nucleotide is given a name depending on its nitrogenous
base. For a DNA molecule, the bases are adenine (A), guanine (G), cytosine (C) and
thymine (T). An RNA molecule has A, G, C and uracil (U) instead of T. DNA has a
double helix structure formed by two chains of nucleotides that cling together.2 The
nucleotide chains are also called strands. The two strands of DNA come together such
that the base A on one strand pairs with the base T on the other, and similarly, G pairs
with C. The phosphate of the DNA molecules form the backbone of this double-helix

2This double-helical structure of DNA was proposed and discovered in 1953 by Francis Crick
and James Watson based on Rosalind Franklin’s x-ray crystallography experiment that showed the
peculiar diffraction pattern of DNA.
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Figure 2.1.1: A schematic showing the DNA structure. Source: Wikimedia Commons, License:
Public Domain.

structure. Owing to the base-pairing A-T and G-C, nucleotides are, interchangeably,
also called as ‘basepairs’ (bp). One complete turn of the helix encompasses 10 bp.
Figure 2.1.1 shows the nucleotides and phosphate group. The phosphate group being
common among the nucleotides, a sequence of nucleotides forming the chain can be
simply described by the different nitrogenous bases. Thus, a DNA can be described
textually with alphabet of four characters A, C, G or T. The sequence of nucleotides
on one strand of DNA is complementary to those on its other strand. DNA is read
from its 5′ end to the 3′ end, i.e. from direction ‘upstream’ to direction ‘downstream’.
The sequence of nucleotides on each strand encodes information that describes an
organism. The complete DNA in the cell is called the ‘genome’ of an organism.

Certain portions of DNA are transcribed into what are known as messenger RNAs
or mRNAs. These portions of the DNA are called genes (more on genes below).
The mRNAs are then translated into proteins. Twenty different kinds of amino acids
are used for protein synthesis. Any amino acid has two chemical groups—the amino
group [N] and the carboxyl group [C]—and a third, called the side chain. The side
chains of the twenty amino acids show different chemical properties. Proteins are the
macromolecules responsible for the various tasks performed by cells; they keep the
cells up and running. Some important tasks fulfilled are metabolism, transcription
and protein synthesis, transportation, and intra- and inter-cellular communication.

2.1.2 Packaging of The Eukaryotic Genome

On the basis of the structure of their cells, organisms can be classified into prokaryotes
and eukaryotes. Cells of prokaryotes store the DNA in no distinct compartment, while
in eukaryotes the DNA is stored inside a specific intracellular compartment with a
surrounding membrane. This compartment is called the nucleus of the cell. Bacteria
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Figure 2.1.2: A schematic showing nucleosomes with histone proteins and DNA coiled around
them. Reprinted with modifications by permission from Springer Nature: Nature (License
#4487621281224), Füllgrabe et al. (2010), Copyright 2012.

and archaea are examples of prokaryotes. Plants and animals, including humans, are
examples of eukaryotes.

For any organism, its complete DNA can be very long when stretched out. For
instance, in humans, the DNA (approximately 3×109 nucleotides) is about 2 m long,
and, yet, it is contained within the cell nucleus which is about 6 µm wide. This is
possible due to multiple levels of compaction and organization applied to the DNA. At
the most basic level, the double-helical DNA [2 nm] is wound around histones which
are disc-shaped proteins (see a schematic shown in Figure 2.1.2). Each histone [11
nm] has 1.65 turns, or 147 bp, of DNA tightly wound around it. Eight such histone
molecules make a nucleosome. These nucleosomes are packed on top of each other
to further condense the DNA. The complex of DNA and proteins (histones and non-
histones, that bind to the DNA) is called chromatin [30 nm]. This 30 nm chromatin
fiber forms loops [300 nm]; these are further folded and compressed [700 nm] to form
a section of the chromatid of a chromosome. The chromosome itself is 1400 nm wide.
Thus, the DNA is packaged in the form of chromosomes. For example, the human
genome is divided into 46 chromosomes—22 pairs and two sex chromosomes. A gene
is one such peculiar segment of DNA which serves as an instruction to produce a
certain protein, thereby making the cell able to fulfill a function. But not all of
DNA is genes. Much of the DNA encodes for regulatory instructions. Therefore, one
can say that the genome is not just a cookbook filled with recipes, but also includes
information on when which recipe is to be used, and where a particular one can be
found.

We briefly discuss the gene regulatory mechanisms next.

2.1.3 Gene Regulation
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Transcription, Splicing and Translation

Protein synthesis from genes begins by transcription of DNA to mRNA, which then
undergoes translation. A gene is transcribed when a host of proteins called transcrip-
tion factors come together. Transcription factors (TFs) bind to specific DNA sequence
motifs called transcription factor binding sites (TFBSs). These sites are usually 5-15
bp long (Bulyk, 2003). The DNA sequence lying upstream to a gene is called the
promoter sequence or, simply, promoter. The promoter holds many sequence signals
(motifs) that help recruit a general set of TFs. These together then assemble a special
protein called RNA polymerase II at a specific position where transcription begins.
This position is called the transcription start site (TSS). Upon assembly, the RNA
polymerase II moves along the DNA synthesizing copies of pre-mRNAs, the primary
RNA transcripts. In addition to acting as activators, TFs can also repress/inhibit
gene expression (Latchman, 1997).

The pre-mRNA copies produced from a gene are then spliced to remove selected
portions called introns and keeping those called exons to give the final product. The
final product is the (mature) mRNA which is synthesized into proteins by ribosomes.
This process is called translation; it takes place outside the cell nucleus.

Role of Chromatin

Gene regulation can also happen at the level of and due to chromatin packing in the
cell nucleus (cf. Section 2.1.2). In packaged chromatin, whenever the cell requires
access to a certain portion of the DNA, the packaging is temporarily decondensed
by various enzymes and proteins. This makes specific regions of the DNA accessible.
Only then the basal transcriptional machinery and other TFs are able to do their
job. Accessibility of DNA regions can be controlled or facilitated by modifications to
DNA itself or the histones. Portions of DNA that are tightly wound around histones
remain inaccessible (to be read by proteins/enzymes) while some regions become
accessible as the coiled DNA loosens up due to chemical modifications on them.
These are termed as epigenetic modifications. Examples are DNA methylation—
addition of methyl group directly on the DNA, and histone modifications—chemical
modifications attaching to histone tails.

Such gene regulation mechanisms render cells the ability to perform different func-
tions although each cell has an identical copy of the genome. Depending upon the
type of the cell (based on the tissue) or cell line, a characteristically different set of
genes can be switched on or off.

Finally, we note that any genome has many genes. For example, the human genome
has roughly 20,000 genes. While the exact definition of a gene is still debated, it
has evolved over time. Salzberg (2018) defines a gene as “any interval along the
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chromosomal DNA that is transcribed into a functional RNA molecule or that is
transcribed into RNA and then translated into a functional protein”. The above
definition accounts for genes whose final product is a noncoding RNA molecule, one
that does not code for a protein. Finding the number of genes in humans is still an
open question (Salzberg, 2018).

2.1.4 The Genome is Now Better Understood in 3D

As discussed, genes are regulated by TFs binding to the promoter sequence. In the
early 1980s, studies reported regulation of genes by novel regulatory elements located
far away on the linear genome. These elements are usually located in the non-coding
portions of the DNA. For example, enhancers are identified as regulatory elements
that enhance transcription of a gene. Thus, they are similar to promoters in function
but are a lot more distant than the promoter is to the gene (Serfling et al., 1985).
These enhancers are, therefore, long-range activators of gene transcription.

Scientists first proposed that such regulatory function of an enhancer can be fulfilled
by being in spatial proximity or physically interacting with the concerned promoter.
Early on many FISH3-based studies reported co-localizations of functionally-related
elements in the nuclear space. FISH has been used to report examples of gene-rich
loci on chromosome 11 localizing outside of its territory, and the role of transcription
in it. This suggested formation of open chromatin structure for regions with high
gene density (Mahy et al., 2002). Williamson et al. (2012) report the topological co-
localization involving the Hoxd13 gene and the global control region located 180 kb
away. Consequently, such studies led to the proposition of a 3D conformation of the
genome inside the nucleus of the cell. Microscopy-based studies have now combined
forces with recently developed molecular biology experiments towards improving our
understanding of the mechanisms of regulation of the genome in 3D.

I first introduce the chromosome conformation capture (3C) technology for interro-
gation of the 3D chromatin interaction landscape in cells. Afterwards, some variants
of this technology that were developed to overcome shortcomings or issues with 3C
are discussed in brief. In the process, I also shed light on the output of these experi-
ments and the important caveats towards interpretations and conclusions from these
experimental data.

Chromosome Conformation Capture-Based Techniques

Chromosome Conformation Capture (3C) is the technology designed to probe inter-
actions between different genomic loci of interest (Dekker et al., 2002). The first few

3Fluorescence in situ hybridization (FISH) is a microscopy-based assay used for studying chro-
mosome structure. For more, refer (Volpi and Bridger, 2008)
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steps of the protocol for 3C, the maiden one, are common in principle to its deriva-
tives 4C, 5C and Hi-C (these are described subsequent to 3C). The general principle
of the 3C techniques follows these steps:

1. Fixation of the chromatin: In order to probe the organization of the chro-
matin later, first its current state is fixated (recorded) using fixating agents
such as formaldehyde. This makes chromatin regions that are spatially proxi-
mal (thus, also including those that are in direct contact) to cling (cross-link)
to each other.

2. Digestion of the chromatin: The fixated chromatin is then digested into
many small pieces. This is done using either restriction enzymes (REs) or by a
process called sonication. A RE, such as HindIII, MboI or DpnII, cuts the DNA
at all positions recognized by a specific substring of a certain length, say 6 bp
substring ‘AAGCTT’ for HindIII or 4 bp substring ‘GATC’ for MboI. These positions
are referred to as the cut sites of the restriction enzyme. It is easy to observe that
a shorter cut site will occur more frequently throughout the genome sequence
than the longer one. Thus, a 4 bp cutter such as MboI or DpnII results in shorter
restriction fragments (RFs) than a 6 bp cutter such as HindIII (Belaghzal et al.,
2017). In comparison to the enzyme-based approach, the process of sonication
fragments the DNA at random positions and is unaffected by accessibility of
the DNA in the chromatin. Sonication is used in ChIA-PET (Li et al., 2010),
which I briefly describe in Section 2.1.4.

3. Ligation of the digested chromatin: The cross-linked chromatin fragments
are ligated to form DNA molecules which are hybrids of the cross-linked seg-
ments. The output of this step is referred to as the contact library.

4. Reading-out and quantifying the ligation junctions: The re-ligated DNA
is then sheared to fragment the hybrid DNA molecules further. The pieces that
have the junctions on them are read out. Each such piece gives information
on the pairs of loci that are spatially proximal in the organization. When N

such pieces of DNA with junctions are read, we know of N interaction events
involving various regions on the genome. This particular step varies depending
on the aim and scope of the technique.

From the point of view of the genome itself, what one effectively captures is the
frequency of contact between different genomic loci. Thus, one is able to get a picture
of the 3D conformation of the chromosomes inside the cell nucleus.

It is important to note the following in the context of chromatin interaction ex-
periments. Here, an ‘interaction’ or a ‘contact’ between any two genomic loci could
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Figure 2.1.3: A schematic depicting the scope of different chromosome conformation
capture-based methods, namely 3C, 4C, 5C and Hi-C. Source: Dekker Lab webpage
http://my5c.umassmed.edu/about/about.php?tab=welcome&category=cmethods, with mod-
ifications. Accessed: December 2018. Included with permission (personal communication).

essentially mean either of two possibilities. First, the two regions are in direct physical
contact with each other to perform some cellular function. Any contact is typically
also accompanied by a set of other proteins, e.g., transcription factors, (co-)bound
to these genomic regions. Second, they are only spatially proximal and are possibly
communicating with each other indirectly to fulfill some function, or are close due
to other physical constraints. Communication between any two genomic loci may be
serving some functional purpose. For instance, a locus that acts as an enhancer or
a repressor could be interacting with a promoter region to either enhance or silence
the particular gene. In other cases, there is possibility of some physical constraints
acting upon the linear DNA polymer. For example, two loci adjacent or close on the
linear DNA sequence are bound to be in close spatial proximity.

The schematic shown in Figure 2.1.3 depicts the scope of the various chromosome
conformation capture (3C)-based techniques for probing the long-range interactions
between different regions of the genome. The difference between these various 3C-
based methods—3C, 4C, 5C—lies in the way in which the individual steps are handled
to achieve the respective scope with as much improved resolution as possible. I defer
the discussion on resolution of the contact matrix to Subsection “Pre-processing of
Chromatin Interaction Data”.
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3C: The maiden technique of the family, which also gives the family its name,
3C (Dekker et al., 2002) can interrogate interactions between specific genomic locus-
pairs of interest – hence, this is 1×1. After the contact library generation is completed,
the final step of counting the interaction events is performed using semi-quantitative
polymerase chain reaction (PCR) amplification4. During this step, primers designed
for identifying the restriction fragments allow counting the interaction events involv-
ing pairs of restriction fragments of interest.

4C: 3C was improved in two different ways, both in 2006 by two separate groups,
to probe genome-wide interactions involving a ‘bait’ locus. In the 3C-on-chip (4C) as-
say (Simonis et al., 2006), the primary fragmentation step is performed using HindIII.
And, after the subsequent ligation step, an additional iteration of fragmentation takes
place. This is done using DpnII, a more frequent cutter. The re-ligation step makes
the DNA molecules circular in nature. The interaction events involving the bait locus
are then counted using inverse PCR with primers specific to this locus (Simonis et al.,
2006). The PCR products are finally characterized using dedicated microarrays. In
Circular 3C (4C) (Zhao et al., 2006), large concentrations of ligase and incubations
longer than a week’s time generate circular DNA molecules of protein-DNA com-
plexes. This is followed by nested PCR to enable identification of global interaction
partners of the target sequence (Zhao et al., 2006).

Consequently, 4C is a 1 × all strategy. This ‘bait’ locus is also referred to as
the ‘viewpoint’. 4C has been the preferred technique of choice to study genome-
wide interactions of promoters, enhancers and various locus control regions as bait
loci (de Wit and de Laat, 2012). .

5C: In Chromosome Conformation Capture Carbon Copy (5C) (Dostie et al., 2006),
the aim is to probe interactions between many genomic regions at once. The 5C
protocol begins by generating the 3C template. The next step is to multiplex the
generated 3C template using 5C oligonucleotides. Then, a collection of forward and
reverse primers are used to ligate across the ligation junctions. This identifies the
corresponding restriction fragments. Many forward and reverse primers enable ana-
lyzing interactions between many restriction fragments. This 5C library is analyzed
using microarrays or high-throughput sequencing technology. Thus, this achieves a
many ×many scope (Dostie et al., 2006).

It is instructive to note that the sets of loci studied in a 5C experiment can include
regions from any where on the genome. They need not be contiguous and the two
sets can have different cardinalities.

4PCR: A technique developed for amplification of specific nucleic acid sequences by Kary Mullis,
an American biochemist. Mullis received the Nobel Prize in Chemistry 1993 for this invention. Read
more about PCR here.
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Hi-C: The high-throughput, genome-wide version of 3C is given the name Hi-C.
Hi-C maps genome-wide chromatin contacts in an unbiased manner. Before ligation
of the digested chromatin, the ends of the cross-linked segments are marked with
biotin. Then, the DNA molecules with biotins are pulled down using streptavidin
beads. This is followed by shearing and paired-end sequencing (Lieberman-Aiden
et al., 2009).

Pre-processing of Chromatin Interaction Data

The raw output from these experiments undergoes some standard pre-processing
steps. These are briefly described next. The reader is referred to Ay and Noble
(2015) and Belaghzal et al. (2017) for further reading.

1. Reference alignment of the raw sequencing reads. The chromatin inter-
action experiments report chimeric fragments. These are fragments of DNA
with ligation junctions on them. On either side of this junction are DNA
segments from non-contiguous genomic locations. This is the ideal scenario.
Usually, the chimeric fragments are readout using paired-end sequencing. In
paired-end sequencing, one sequences both ends of a fragment. Thus, one ob-
tains information about DNA segments forming the chimera. The reads are
then aligned to the reference genome. This identifies the genomic locations to
which the individual reads correspond.

2. Assignment of reads to restriction fragments. Upon mapping, one assigns
the individual reads to the RFs. Get all the RFs of the genome using the RE
cut-site. Use the distance of the cut-sites from the read locations to assign
individual reads to RFs.

3. Filtration of noise. Some factors need to be taken into account at the end of
the above two stages for filtering of invalid reads. For example, at the individual
read level, uniqueness and mapping quality of reads is important. At the read-
pair level, one should discard or filter out uninformative reads. Examples of
the latter are reads corresponding to dangling ends or self-circles. Dangling
ends could be results of unligated fragments, while self-circles are self-ligated
fragments.

The final output from a chromatin interaction experiment is a list of contacts.
It is a set of valid interactions between various genomic loci. For 5C and Hi-C,
this information is visualized as a two-dimensional matrix.

4. Binning to build contact maps. Upon filtering, the final list of contacts can
be visualized as 2D matrices. A pair of genomic loci identify each cell in this
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matrix. The corresponding cell entry itself is the contact frequency between
these loci. Thus, the complete matrix records contact frequencies between the
various genomic loci studied in the experiment. The size of these genomic bins
determines the resolution of the contact matrix.

With regards to Hi-C, there are two ways for building the contact matrix—one
is with RF-based resolution, the other is with resolution in terms of basepairs.
With RF-based resolution, each genomic bin along the matrix can represent
one or many RFs. If many RFs are combined, the number of RFs combined is
uniform throughout the matrix, and, the combined RFs should form a contigu-
ous genomic window. Each cell of the matrix denotes the interaction frequency
between the genomic regions characterized by the corresponding RFs. Although
the number of RFs per genomic bin along the matrix is fixed (one or many),
these regions can be of variable length in terms of basepairs, since the individual
RFs are of variable length. Contrastingly, when the resolution is in basepairs,
each genomic bin along the matrix is of a fixed number of basepairs (non-
overlapping genomic regions). In this case, the following procedure is followed:
(a) Bin the complete genome into fixed-size genomic regions; (b) For any given
interaction involving a pair of RFs, we note all those genomic bins that have an
overlap with the RFs; and, (c) Increment each cell entry corresponding to these
genomic bins by 1. For Hi-C, the contact matrix is symmetric in nature.

A 5C contact matrix usually has a RF-based resolution. As described, 5C
experiments interrogate interactions between two sets of genomic loci. For ex-
ample, Sanyal et al. (2012) map the interactions between a set of promoters and
a set of enhancers. In this 5C matrix, the promoters are along the rows and the
enhancers along the columns. Hence, a 5C matrix is non-symmetric.

Figure 2.1.4 shows an example heatmap visualization of a contact matrix. In
the heatmap, the darker the color, higher is the contact frequency. The left
panel of the figure shows a genome-wide contact matrix. The genomic bins are
arranged in the chromosomal order. In the right panel of the figure, we zoom
into the contact matrix, to a specific location on chromosome 4.

The resolution of a contact matrix impacts further downstream analysis steps.
It also affects the biological interpretations as I illustrate with examples later.
I now discuss the final, important pre-processing step applied to the contact
matrix.

5. Normalizing a contact matrix. Various kinds of biases affect chromatin
interaction experiments. For instance, the GC content of the genomic fragment
ends, mappability of reads, and density of restriction sites. One should correct
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Figure 2.1.4: Example of a genome-wide contact map from a Hi-C experiment in
GM12878 (Rao et al., 2014).

for these biases before analysis and interpretation of these data.

There are approaches that do so in an explicit or implicit fashion. Among
those that explicitly correct for these biases are: (a) Yaffe and Tanay (2011)’s
probabilistic model for jointly eliminating the biases; (b) HiCNorm, that uses
a Poisson or negative binomial regression model based background model (Hu
et al., 2012) to model the contact frequencies between loci. Yaffe and Tanay’s
approach models three known factors explicitly and has many parameters which
are estimated using maximum likelihood. This makes it computationally very
expensive; even more so with an increasing sequencing depth (Yaffe and Tanay,
2011). In comparison, with HiCNorm, the authors set the mappability feature as
a Poisson offset and estimate the effect of GC content and fragment length using
a generalized linear regression model. HiCNorm is comparatively faster (Hu
et al., 2012). Couple of other approaches that improved on the above two are
reviewed in Ay and Noble (2015).

Approaches that correct for the biases in an implicit fashion are based on an
important assumption. This assumption is that all regions on the genome should
have equal visibility in terms of the technical artifacts of the experiment as well
the biological features. The DNA sequencing bias towards different genomic
regions is an example of a technical artifact. Examples of biological features
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affecting the experiment include GC content of the fragments and fragment
length. In 2012, Imakaev et al. adopted an iterative procedure for correction
of genome-wide Hi-C contact matrices. The underlying idea here being that
the genome-wide contact map can be factorized into the biases and the relative
contact map between the genomic loci. Mathematically, this can be represented
as

ϵij = BiBjTij, (2.1)

where Bx is a bias vector denoting the bias associated with any genomic locus
x, T is the normalized, relative contact map with every row or column sum-
ming up to 1 (or a constant), and ϵ is the expected contact map assuming the
biases (the one obtained from the experiments). This procedure is commonly
known as matrix balancing, and is based on Sinkhorn and Knopp (1967)’s work
on convergence of non-negative square matrices to doubly stochastic matrices
(Sinkhorn-Knopp algorithm).

Similarly, Rao et al. (2014) used the Knight and Ruiz (2012)’s algorithm for
matrix balancing that is shown to converge faster than the Sinkhorn-Knopp
algorithm. Rao et al. used this procedure for normalizing extremely deeply
sequenced Hi-C contact maps with up to a billion reads. Matrix balancing
procedures are more common these days with genome-wide, deeply sequenced
Hi-C data sets becoming increasingly common.
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Figure 2.1.5: Exemplar raw and normalized chr2 contact maps from Hi-C experiment in
GM12878 (Rao et al., 2014). Resolution used 1M bp.

The normalization procedure leads to smoother contact maps as illustrated in
the Figure 2.1.5.
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It is often important and useful to visualize the normalized contact matrices as
heatmaps and inspect them to identify interesting patterns of long-range interac-
tions. These interaction maps show many key architectural features. I describe three
such features next.

A/B compartments: The contact matrix is typically analyzed using Principal
Component Analysis. This analysis has revealed an interesting interaction pattern
at the megabase scale characterized by the leading eigenvector (Imakaev et al., 2012;
Lieberman-Aiden et al., 2009). The genome appears to be divided into two compart-
ments A and B where regions in one compartment show a preference for interactions
with other regions in the same compartment but not with those falling in another.
These compartments alternate along chromosomes and demarcate regions of open
(A) and closed (B) chromatin (Lieberman-Aiden et al., 2009). They correlate with
features such as DNA accessibility, transcriptional activity, gene density, GC content
and chromatin marks, thus associating compartment A with euchromatic, transcrip-
tionally active regions, and compartment B with closed chromatin (Dekker et al.,
2013). Imakaev et al. (2012) have shown that the signal from the leading eigenvector
is more continuous in nature than strictly two-phased.

Topologically Associating Domains (TADs): TADs are self-interacting re-
gions seen as triangles in a contact map (Dixon et al., 2012; Nora et al., 2012). When
moving along the diagonal of a contact matrix, the effective number of long-range
interactions of individual bins show a sudden, drastic change in direction. Consider
a collection of genomic bins along the diagonal of the interaction matrix. They
show a high number of long-range interactions with loci upstream (downstream) to
it. Then, a bin immediately next to this collection shows a sudden shift: it has a
high number of interactions with loci downstream (upstream) to it, instead. This
observed phenomenon is termed as inversion in the directionality of interactions. It
is measured by the ‘Directionality Index’ (DI) statistic (Dixon et al., 2012). A col-
lection of genomic regions that tend to have more interactions between themselves
could result from the topological configuration illustrated in Figure 2.1.6. These are
thus called topologically associating domains and are abbreviated as TADs. As can
be seen in Figure 2.1.6, TADs are visible as pyramidal structures in the upper or
lower triangle of a symmetric contact matrix. Studies have proposed that TADs are
hierarchical in nature (Cubeñas-Potts and Corces, 2015; Fraser et al., 2015; Phillips-
Cremins et al., 2013; Rao et al., 2014) These lower-scale, domains within domains are
called metaTADs (Fraser et al., 2015), subTADs (Cubeñas-Potts and Corces, 2015;
Phillips-Cremins et al., 2013) or contact domains formed by DNA loops (Rao et al.,
2014).

20



Figure 2.1.6: Illustration of TADs and change in directionality of interactions at the border.
Reprinted by permission from Springer Nature: Nature (License #4487630141650), Dixon et al.
(2012), Copyright 2012.

TADs are found to be stable across cell-types (Dekker and Heard, 2015), and also
conserved across species (Sexton and Cavalli, 2015). Lupiáñez et al. (2015) report
that disruption of TADs can lead to changes in the regulatory code. For example,
disruption of TADs can lead to gaining newer interactions between enhancers and
promoters that were earlier in different TADs. The resultant misregulation caused
limb malformations (Lupiáñez et al., 2015). Borders of TADs/loops are often marked
by sites bound by CTCF in a convergent orientation and other structural proteins
such as the cohesin/SMC (Cubeñas-Potts and Corces, 2015; Rao et al., 2014). Com-
putational studies have analyzed the borders of these domains and have found that
short tandem repeats (STRs) are enriched at these borders (Mourad and Cuvier,
2016).

Many tools that attempt to identify TADs by identifying their boundaries ex-
ist. Some popular examples include an hidden Markov model-based approach using
DI (Dixon et al., 2012), a computational tool called ARMATUS using dynamic pro-
gramming (Filippova et al., 2014), and Arrowhead (Rao et al., 2014).

Significant interactions: Identifying statistically significant interactions is an
important aspect of 3C experiments. Since DNA is a linear polymer, genomic loci
on the same chromosome are expected to interact as a function of the genomic dis-
tance between them. Shorter the 1D distance between the loci, more frequent their
interactions. This can introduce many random looping interactions measured in the
chromatin interaction experiment. Thus, one has to consider this factor to identify
loci that interact more frequently than they would otherwise, by chance. There is
a good possibility that such statistically significant interactions are also function-
ally meaningful. Examples include long-range interactions between enhancers and
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genes/promoter regions. The interaction between the erythroid-specific β-globin gene
and its distal enhancer lying 50K bp away, the locus control region, is a well-studied
enhancer-gene pair example (Cope et al., 2010).

Different studies estimate this distance-dependent expected interaction profile in
different ways. Once the expected contact counts (E) between loci are available, then
the observed contact counts (O) between them are normalized w.r.t. E. The O/E
ratio is computed and a threshold is applied to determine significant interactions. For
example, Lieberman-Aiden et al. (2009) used the average interaction count between
genomic regions lying at similar distances to compute E. Sanyal et al. (2012) used a
strategy similar to this for identifying significant interactions from their 5C data.

Another approach to calling significant interactions is using a non-parametric ap-
proach. For instance, a popular tool, Fit-Hi-C (Ay et al., 2014), iteratively fits
smoothing splines to the contact profile of locus pairs arranged in ascending order, i.e.
from pairs separated by the least genomic distance to the largest. The first spline fit
allows identifying likely non-random interactions (outliers). These outliers are filtered
before fitting a second spline. This serves as a refined null model which is then used
to assign p-values and q-values to all interactions. Thus, one identifies significant
interactions at different false discovery rates (FDRs)5. Fit-Hi-C can also incorporate
biases per locus computed by any normalization procedure (Ay et al., 2014). There
is a high chance that the identified statistically significant interactions also play a
functional role, but it may not be the case with all such interactions.

Single cell Hi-C and in situ Hi-C: 3C and its derived experimental techniques
are performed over a population of cells, typically in the order of millions. Conse-
quently, these experiments characterize an average conformation of the chromosomal
structures in all the cells. Nagano et al. (2013) developed single cell Hi-C (scHi-C)
for detecting whole genome-wide interactions in a single cell. Here, the contact li-
brary is generated by following the same steps as in Lieberman-Aiden et al. (2009)’s
dilution Hi-C protocol described above, but, it is performed inside the cell nucleus
itself. An individual nucleus is then selected to perform the remaining steps in the
protocol, namely, reverse cross-links and readout the biotinylated junctions, further
digestion using Alu I, attach adapters for their PCR amplification and lastly, paired-
end sequenced (Nagano et al., 2013). The contact maps from scHi-C are sparse (see
panel b, Figure 2.1.7 for an example).The authors pooled data for 60 cells and the
corresponding contact map showed similar architectural features as Hi-C maps.

In situ Hi-C (Rao et al., 2014) is designed as an improvement over the dilution
Hi-C protocol (Lieberman-Aiden et al., 2009). Although inspired from an old nuclear

5FDR is the ratio of false positives to the true positives. Thus, controlling the FDR means
aiming for a low proportion of false positives results.
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Figure 2.1.7: A contact map generated from a scHi-C experiment is shown. Reprinted by
permission from Springer Nature: Nature (License #4483130037612), Nagano et al. (2013),
Copyright 2013.

ligation assay (Cullen et al., 1993), in situ Hi-C is similar to the scHi-C protocol. In
that, it performs the contact generation step inside an intact nucleus. This reduces
spurious contact frequency involving mitochondrial DNA and nuclear DNA, which is
the case with dilution Hi-C. In situ Hi-C uses a 4-cutter restriction enzyme compared
to the 6-cutter used in dilution Hi-C. Overall, in situ Hi-C can achieve higher reso-
lution than dilution Hi-C, provided the libraries are sequenced deeply enough (Rao
et al., 2014).

Most of the current set of chromatin interaction experiments provide information
that is still coarse. Since majority of the (known) regulatory regions are not larger
than a few hundred basepairs, experiments that can yield precise information at
high-resolutions are preferred. Although, the in situ Hi-C assay can provide genome-
wide contact maps at kilobase-resolution, it requires extremely deep sequencing. For
instance, the 1K bp-contact map for cell line GM12878 required about 1B sequencing
reads (Rao et al., 2014). This is still quite expensive.

Factor-Mediated Chromatin Interaction Detection

Hi-C or the other 3C assays explore the long-range interactions landscape in an un-
biased manner. Therefore, using these techniques for identifying and studying in-
teractions involving some selected subset of regions, e.g., regulatory regions such as
promoters, enhancers etc., requires very deep sequencing. Factor-mediated techniques
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help circumvent this requirement. They specifically enrich for interactions mediated
by factors identifying such subsets of regions. DNA-binding proteins or other archi-
tectural proteins and capture-oligos are examples of such factors.

ChIA-PET: ChIA-PET was the first technique that enabled genome-wide inter-
rogation of chromatin contacts mediated by proteins (Fullwood et al., 2009). It
combines 3C with ChIP-seq, the technique for identifying genome-wide binding infor-
mation (1D information) of proteins such as transcription factors. Thus, ChIA-PET
offers a protein-centric view of the complex interaction landscape as against other
3C-based approaches. But a key shortcoming of ChIA-PET is that, it requires a high
amount of starting material—in the order of millions of cells—and provides smaller
proportion of informative reads at a given sequencing depth.

HiChIP: HiChIP is developed as an improvement over ChIA-PET (Mumbach
et al., 2016). The main steps in the HiChIP protocol are as follows. HiChIP adapts
the in situ Hi-C contact generation procedure as its first step (Rao et al., 2014).
Then, those contacts associated with specific proteins of interest are isolated (with
ChIP). Finally, as in Hi-C, the biotinylated protein-associated contacts are pulled
down to prepare contact libraries. The HiChIP protocol is outlined in Figure 2.1.8.
The total time required for performing HiChIP is about 2 days. Another important

Figure 2.1.8: A schematic of the HiChIP protocol is shown. Reprinted by permission from
Springer Nature: Nature (License #4487631458797), Mumbach et al. (2016), Copyright 2016.

advantage of HiChIP over ChIA-PET is that, it requires 100-fold lesser starting ma-
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terial, and it can still provide a higher percentage of reads that are informative of the
3D conformation (Mumbach et al., 2016).

Other assays for detection of loci-specific interactions include capture-C (Hughes
et al., 2014), capture-Hi-C (Jäger et al., 2015) and HiCap (Sahlén et al., 2015). These
techniques enrich for interactions involving a specific set of loci which are identified
in different ways. We refer the reader to the respective articles for further reading.

Ligation-Free Chromatin Interaction Detection

The molecular techniques described above profile interactions on the basis of the
proximity-ligation principle. Beagrie et al. (2017) developed a ligation-free technique
that provides an orthogonal view of the 3D chromatin architecture within cells. Bea-
grie et al. call this genome-wide chromatin contact detection approach ‘Genome
Architecture Mapping’ (GAM).

GAM mainly employs cryosectioning and laser microdissection techniques from
electron microscopy. Structurally preserved, fixated cells are first cryosectioned. Sin-
gle nuclear profiles at random orientations from these cells are then isolated using
laser microdissection. This is followed by extraction of DNA content in each nuclear
profile which is then amplified and sequenced. Genomic loci that are proximal in 3D
nuclear space are expected to be observed in the same nuclear profile than loci which
are distant. Thus, a collection of many such nuclear profiles can together paint a
picture of the 3D chromosomal organization inside the cell nucleus. As an inherent
advantage of GAM, it can additionally infer the radial positions of the individual loci
as well as their relative compaction. GAM can also detect contacts involving triplets
of loci efficiently (Beagrie et al., 2017).

While GAM circumvents the biases influencing the digestion and ligation steps of
3C assays, it is affected by other biases such as window detection frequency, GC
content and mappability. Beagrie et al. (2017) discuss the steps to estimate and
normalize these biases.

2.1.5 Global Initiatives

Striking progress seen in the last decade in developing molecular techniques that yield
better insights into the 3D conformation and the long-range interactions, has opened
newer opportunities and challenges. Many of these are on the computational front
– development of standardized approaches for comparisons of data from different
states/conditions such as treated vs. untreated, tumor vs. normal etc. or chromatin
interaction data over a series of time points during different cell-cycle stages or single-
cell 3D interaction data. Additionally, insights gained from approaches using different
types of information need to be put together to understand as complete a picture as
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possible. The different types of information include 3D imaging data, such those
obtained from FISH, and chromatin interaction data. With these goals in mind, con-
sortia have been established, namely the NIH-4D Nucleome Network (Dekker et al.,
2017) in the US, the EU 4DNucleome Initiative (Marti-Renom et al., 2018), LifeTime
[https://lifetime-fetflagship.eu/] and MuG (Multiscale Complex Genomics)
[https://www.multiscalegenomics.eu/] in EU, the Japan-4DNucleome (Tashiro
and Lanctôt, 2015). Here, ‘4D’ stands for four dimensions constituted by the three
spatial dimensions and time.

2.2 Ewing Sarcoma
Ewing6 sarcoma (EWS) is a rare, pediatric cancer. It usually develops in the bones
or the soft tissues around them in young adults aged between 10 and 20. When
developed in bones, the most common locations for development are the pelvis, legs,
rib, arm or the spine, and when developed in a soft tissue, the common locations are
the thigh, pelvic region, foot, spine and the chest wall. Although it can occur at any
age, it is most frequently observed in adolescents. EWS is not inheritable.

A typical characteristic of EWS is the translocation of genetic material that involves
the EWS gene and ETS family transcription factors (Delattre et al., 1992). The re-
ciprocal chromosomal translocation between chromosomes 11 and 22 is typical (about
85% cases7) in EWS (Delattre et al., 1992)8. The translocation t(11;22)(q24;q12)
gives rise to a fusion oncogene EWS-FLI1.

EWS has fewer somatic mutations than many other cancers, especially those com-
mon in adults, such as breast and colon cancer (Lawrence et al., 2013). Consequently,
determining driving factors of EWS is an active area of research with many open ques-
tions. This includes designing proper treatment strategies for this malignant cancer.
Like other cancers, EWS also has the following stages: localized, metastatic or re-
current. The treatment strategy for EWS depends on its stage. Current adopted
treatment strategies for EWS include a combination of chemotherapy and surgery.

2.3 Machine Learning

2.3.1 Learning from Data: The Supervised and Unsupervised Way

I begin by briefly describing the concept of learning from data and an example that
helps illustrate it. Consider we are given n data points with additional information

6Pronounced as: YOO-ing
7Different sources report that upto 95% of cases have this translocation
8Other translocations are also observed; these are between chromosomes 21 and 22, 7 and 22,

and 17 and 22 (Delattre et al., 1992)
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describing each of them. These are termed as features or attributes that describe the
data points. Additionally, there could also be information available on the category
that each of those data points belongs to. For example, consider a list of products
available in a supermarket. The set of features describing them could include ingredi-
ents, packaging, make, fragility etc. Based on these features, the inventory supervisor
is to make a decision on various aspects. Some examples are: (a) decide whether a
certain product requires refrigeration or not; or (b) classify the products based on
their shelf-life; or (c) grade the products from low-to-high or on a continuous scale; or
(d) categorize the set of products which are seasonal, etc. An automated system that
when fed with this products’ information (input) can help identify the category (or
categories) each product belongs to (outputs). Such a system is said to ‘learn from
data’. When the categories assigned to the products are already given, the system
uses this information to learn characteristic features distinguishing products of one
category from those of the other. It is then tasked with predicting the categories for
products that are as yet unseen for the system. This scenario is called supervised
learning in which the machine is cognizant of the outputs and can use them to learn
common patterns. In supervised learning, the discrete categories that the products
need to be categorized into are typically referred to as ‘classes’, and their names
as ‘class labels’. This scenario is called ‘classification’. Instead of discrete classes as
labels, the output labels could be continuous, for example, grading a product’s pop-
ularity on a continuous scale of 0−5 (low−high). This scenario is called ‘regression’.
Before making predictions on the unseen data points, the stage in which the system
learns from the available data is called the training stage. In order to evaluate the
predictions made by such systems, the available data is often split into two chunks,
one used for training and the other that is kept aside to be artificially treated as
unseen or test data. Contrastingly, in the unsupervised learning scenario, no such
information about the categories of products is available. In other words, in unsuper-
vised learning, the information on the output label of each data point is missing. The
system then simply ‘clusters’ all data points into various categories based on their
similarities and/or differences. The (dis)similarity is computed using the feature in-
formation of the data points. In this case, any number of clusters is plausible; the
ideal number of clusters depends on the data and the task. Unsupervised learning is
also known as ‘clustering’.

The goal of a supervised learning system is to make the best predictions on the
unseen data points, and in doing so it is expected to generalize well. The goal of an
unsupervised learning system is to cluster the data into groups such that the data
points clustered in the same group are more similar to each other than those clustered
into different groups. The ‘learning problems’ are modeled and solved mathemati-
cally. In the following, we take a brief dive into the formal mathematical model for
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classification.

A General Mathematical Model of Classification

The learning problem we stated earlier—classification of products in a supermarket—
can be more generally but succinctly expressed mathematically as follows. Consider
that we are given some input data expressed in pairs: (xi, yi) ∈ X × {+1,−1}. Here,
the xi are instances of the non-empty set X representing the observed feature values,
and the yi are the class assignments for each xi, the class labels being +1 and −1.
When there are only two possible classes any instance xi can exclusively belong to, it
is called binary classification. The two classes are thus typically called the ‘positive’
and the ‘negative’ class. This explains the + and − in the labels which is intuitive
and also mathematically convenient as we will see later. From a more general point of
view, the class labels can also be 0 and 1. If there are more than two possible classes,
the prediction scenario is called multi-class classification. In binary or multi-class
classification, any instance can be assigned only one class label out of those possible.
In other words, the different classes are mutually exclusive. However, when they are
not mutually exclusive, an instance can be assigned more than one class label at the
same time, and it is called multi-label classification. We only consider the binary
classification scenario in the rest of this section.

The problem of binary classification is essentially inferring a function,

f : X → {−1,+1}. (2.2)

Intuitively, the machine is first shown a set of input data and their class assignments
(training data). It is then expected to accurately classify any new, as yet unseen, data
point(s) (test data). To achieve this, the machine looks for similarities between any
new data point and the set of points belonging to the positive class, and the negative
class. If this new point is more similar to points in the positive class, the machine
classifies it as positive, otherwise negative (assigns the label +1 or −1 respectively).
This is done for all of the test data points independently.

The notion of similarity: We now look into the reason why considering similarity
between data points works. It is assumed that the set of data points we are working
with are sampled from a probability distribution P(x, y) which is unknown, but is
fixed. Additionally, these data points are independent and identically distributed
(abbreviated as IID, a notion very common in statistics). Furthermore, we assume
that the test data points are also sampled from the same unknown distribution.

Before proceeding, let’s consider how we can compute similarities given data points,
xi. These fixed-dimensional vectors can be the features describing the products in our
earlier example, but in mathematical abstraction these are simply considered points in
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a d-dimensional space. The problem is now geometrical with points in d-dimensional
input space. Treating the input data points as vectors, we can perform all linear
algebraic operations in this space with geometric interpretations. For example, we
can compute dot products (also called inner products) between vectors directly in the
input space giving a notion of similarity. When the data, X , is not directly available
in a vector format, e.g., structured data such as strings, we often construct a feature
map denoted by Φ that transforms X in the input space to the feature space which
is endowed9 with dot product.

Φ : X → H (2.3)

Firstly, by using a feature map to represent any x ∈ X , we can vectorize our data
points when they are not. Secondly, even when they are already in vector form,
choosing a more suitable feature map for a given problem can be beneficial. Some
examples of both the cases are presented in the latter sections of this chapter. The
machine can now “read” the data and quantitatively understand what is similar and
to what extent.

Accurate classification amounts to finding a function f in Eq. (2.2) that generalizes
well to the test data also generated from the same probability distribution as the
training data (assumption). Alternatively, the function f can be called a model or
hypothesis. We can evaluate the performance of a machine in classifying test data
points using mathematical loss functions (L) which quantitatively inform about the
correctness of its classifications. Intuitively, a loss function computes the difference
between the predicted class label ŷ = f(x) and the true class label y for each data
point classified. Some popular examples of loss functions used in machine learning
applications are the 0–1 loss, hinge loss and squared loss. The 0–1 loss is the simplest
one. It just checks if the predicted and the true class label are the same. It is
mathematically written as follows.

L(x, y, ŷ) =

0, y = ŷ,

1, y ̸= ŷ
(2.4)

Often, just saying that the predicted class label is not the same as the true class label
is not enough. We are more interested in knowing how certain is the classifier of its
prediction for a data point. Therefore, ŷ = sgn(f(x)), when f(x) is real-valued, is
treated as the class label and the numerical quantity |f(x)| gives the confidence in

9Alternatively, also called equipped; See: https://math.stackexchange.com/q/961040
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the prediction. This notion is used in the hinge loss.

L(x, y, f(x)) =

0, yf(x) ≥ 1,

1− yf(x), otherwise
(2.5)

Hinge loss is also known as the soft margin loss, as will be clear later (in the Subsection
“The Support Vector Machine (SVM) for Classification”).

In a real world application, we would like to deploy such a machine in order to
automate a certain task, such as the task of product classification in a supermarket.
Our expectation would be that it makes as few errors as possible in classifying any
future data points which are still unseen. Therefore, for the task, the objective is to
find (or choose) an f from set F of all possible functions, that generalizes well. This
means that the chosen f minimizes the overall loss in classifying the test data points.
But all that the machine can see a priori is the training data, and only the error in
classifying the training data can be computed beforehand (Eq. (2.7)). This error is
called the training error or the empirical risk.

REmp(f) =
1

n

n∑
i=1

L(xi, yi, f(xi)) (2.6)

= Ê[L(xi, yi, f(xi))] (2.7)

What we can certainly do is choose a function that minimizes the empirical risk,

f ∗ = argmin
f∈F

REmp(f) (2.8)

and hope that f ∗ will also minimize the true risk which is the misclassification error
on the test data.

argmin
f∈F

R(f) ≈ argmin
f∈F

REmp(f) (2.9)

On choosing f : By the principle of structural risk minimization (SRM), one
chooses a function that minimizes the empirical risk (empirical risk minimization)
and is the least complex (Bousquet et al., 2004). Mathematically,

fSRM = argmin
f∈F

REmp(f) + penalty(f)model complexity (2.10)

Further to SRM, existing methods use regularized empirical risk minimization (Bous-
quet et al., 2004).

Finally, there is an important caveat to note here. A small training error does not
necessarily guarantee a small test error. The chosen function must simultaneously be
restricted as well as rich enough, so that it can predict the non-trivialities well and

30



also recognize any hidden regularities (or patterns) in the distribution, P(x, y). We
refer the reader to Bousquet et al. (2004); Cortes and Vapnik (1995); Scholkopf and
Smola (2001) for additional in-depth reading.

Figure 2.3.1: Linearly separable and non-separable sets of data points are shown in the left
and right panels respectively. Points in the positive class are shown in magenta, and those in
negative class are shown in cyan.

The Support Vector Machine (SVM) for Classification

In this subsection, we introduce the support vector machine, a very popular machine
learning technique for classification. Support vector machines are optimal hyperplane
classifiers. I discuss only the binary classification case.

Consider the set of points in 2D shown in Figure 2.3.1, left panel. The magenta
colored points belong to the positive class (+1) and others, in cyan, to the negative
class (−1). As in the earlier subsection, these points are mathematically represented
as xi ∈ X |X = Rp. In Figure 2.3.1, p = 2. For the case of linearly separable data
points, the SVM attempts to learn a linear function f that can separate the two sets
of points belonging to the two classes. This function has the form

f(x) = wTx + b (2.11)

where w ∈ Rp and b ∈ R. This equation represents an hyperplane. For any data
point, if yif(xi) ≥ 0, the point is correctly classified, otherwise, not. There are many
possible hyperplanes that can help achieve the objective of perfectly classifying the
given set of points (see left panel, Figure 2.3.2). We described the criterion followed
for choosing such an f from F in the earlier subsection.

When the points are not perfectly separable linearly (right panel, Figure 2.3.1),
SVMs allow a small number of misclassifications. This is done by deploying the hinge
loss (Eq. (2.5)). As will see later, this is called the soft margin case. The right panel
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in Figure 2.3.2 shows two possible hyperplanes in this scenario of data points not
being linearly separable. Each of them misclassifies an equal number of points, but
have different confidences (|f(x)|). From among several choices of f , SVMs focus on
choosing an f that also maximizes the confidence in its classifications. This helps
SVMs choose one among the possible hyperplanes, thus attaining a unique solution
in both scenarios.

H1.a H1.b
H1.c H1.a H1.b

Figure 2.3.2: Multiple possible hyperplanes for the linearly separable and non-separable cases
are shown in the left and right panels respectively. In the non-separable case (right panel), both
hyperplanes, H1.a and H1.b, misclassify equal number of data points (3), but with different
confidences.

The concept of margin: Observe that the hyperplane defined by f creates two
half-spaces10 which can be denoted by h+ = {x : f(x) ≥ 1} (points in positive class),
and h− = {x : f(x) ≤ −1} (points in negative class). The distance between these two
half-spaces is given by 2 × 1

∥w∥ and is called the margin. Then, it would be ideal to
choose an f that supports a maximal separation between the two half-spaces h+ and
h−, i.e. a maximum margin. We note that maximizing 2

∥w∥ is equivalent to minimizing
1
2
∥w∥2 (squared norm). Mathematically, this translates to the following minimization

problem:

minimize 1

2
∥w∥2 (2.12)

subject to yi(w
Txi + b) ≥ 1

This minimizes the empirical risk. Additionally, as noted, by using the hinge loss func-
tion, we can achieve a trade-off between minimizing empirical risk and generalization.
In other words, the chosen hyperplane is permitted to make a few classification errors
(in the training data) with small confidence. This is useful when the data is not

10They are formed by division of an affine space by a hyperplane which, here, is given by f , an
affine function.
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f(x)=0

f(x)=-1

f(x)=+1

Marginh+

h-

Figure 2.3.3: The hyperplane, f(x), is represented as a solid line, and the boundaries of the
two half-spaces, h+ and h−, as dashed lines.

completely linearly separable.

min
w,b

1

2
∥w∥2 + C

n∑
i=1

L(xi, y, f) (2.13)

subject to yi(w
Txi + b) ≥ 1

C > 0

While a small value of C assigns a relatively higher importance to finding a large
margin in comparison to the confidence on the predictions, a large value of C means
that the margin could be smaller but the predictions have stronger confidences. This
is simply due to the fact that with hinge loss (Eq. (2.5)) and f(x) = wTx + b, we are
computing the distance of a misclassified x from the correct half-space.

Cortes and Vapnik (1995) introduced the so-called slack variables, ξi, to replace the
hard, hinge loss constraint. This accounts for the data points for which the hinge loss
constraint in Eq. (2.13) is not fulfilled—these are points lying in the wrong half-space.

min
w,b,ξi

1

2
∥w∥2 + C

n∑
i=1

ξi (2.14)

subject to yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

C > 0

For each xi, the corresponding slack variable ξi = max(0, 1− yi(w
Txi + b)). The sum

of ξi gives an upper bound on the training error. This formulation is called the soft
margin SVM, and that in Eq. (2.12), the hard margin SVM.

Eq. (2.14) is a constrained, quadratic optimization problem which can be solved
by taking its Lagrangian (Boyd and Vandenberghe, 2004). This entails introducing
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Lagrangian multipliers, α = αi ≥ 0 for each constraints in yi(w
Txi + b) ≥ 1− ξi, and

β = βi ≥ 0 for ξi ≥ 0 as follows.

L(w, b, ξ, α, β) =
1

2
∥w∥2 + C

n∑
i=1

ξi

−
n∑

i=1

αi[ξi − 1 + yi(w
Txi + b)]

−
n∑

i=1

βiξi (2.15)

Solving for the unique saddle point of L will give the maximum w.r.t. the Lagrangian
variables (α,β), and minimum w.r.t. (w, b, ξ). Proceeding as usual for finding the
minimum, set the partial derivatives of L w.r.t. (w, b, ξ) to 0.

∂L

∂w
(w, b, ξ, α, β) = w −

n∑
i=1

αiyixi = 0 =⇒ w =
n∑

i=1

αiyixi (2.16)

∂L

∂b
(w, b, ξ, α, β) =

n∑
i=1

αiyi = 0 (2.17)

∂L

∂ξi
(w, b, ξ, α, β) = C − αi − βi = 0 for ∀i = {1, . . . , n} (2.18)

Substituting 2.16 in 2.15, and using 2.17 and 2.18,

L(w, b, ξ, α, β)

=
1

2
⟨w,w⟩+ C

n∑
i=1

ξi −
n∑

i=1

αi[ξi − 1 + yi(w
Txi + b)]−

n∑
i=1

βiξi

=
1

2
⟨w,w⟩+ C

n∑
i=1

ξi −
n∑

i=1

αiξi +
n∑

i=1

αi[1− yi(w
Txi + b)]−

n∑
i=1

βiξi

=
1

2
⟨w,w⟩+

n∑
i=1

ξi [C − αi − βi]︸ ︷︷ ︸
use 2.18

+
n∑

i=1

αi −
n∑

i=1

αiyi(w
Txi + b)

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi − b
n∑

i=1

αiyi︸ ︷︷ ︸
use 2.17

−
n∑

i=1

n∑
j=1

αiαjyiyjxixj

= −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi (2.19)

With 2.19, the dual of the primal problem (2.14) is expressed simply in terms of the
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Lagrangian variables α.

max
α∈R

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi (2.20)

subject to 0 ≤ αi ≤ C ∀i ∈ {1, . . . , n}
n∑

i=1

αiyi = 0

Thus, the SVM decision function for a data point x is given by

f(x) = sgn(wTx + b) = sgn
( n∑

i=1

αiyix
T
i x + b

)
. (2.21)

The data points xi only appear as dot products.

Figure 2.3.4: The hyperplane, f(x), is represented as a solid line. The data points with black
borders are support vectors (α ̸= 0). Shown in red are the penalties (ξ) for points on the wrong
side of their corresponding half-space boundary.

Support vectors: The data points with a non-zero α value, are called support
vectors. The points that lie at the half-space boundary or on the wrong side of
the corresponding half-space boundary are the support vectors (soft margin case).
Figure 2.3.4 shows the case where all support vectors either lie at the corresponding
half-space boundary or within the margin. As an extreme case, some support vectors
can lie even further inside the opposite half-space. The number of points serving
as support vectors is often lower than the total number of points, and serves as the
upper bound on the error rate of the classifier (Scholkopf and Smola, 2001). From
Eq. (2.16), we note that the solution obtained only depends on the support vectors
since only the points with a non-zero α contribute to w. In contrast to the soft margin
case, there are no points within the margin for the hard margin case.
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Model Selection Using Cross-Validation

Cross-validation (CV): Coming back to true risk, Rf in Eq. (2.9), since any real
‘future’ data is inaccessible, one uses cross-validation to evaluate and select a model.
Cross-validation mimics the scenario of unseen future test data as follows. The avail-
able data is divided into two portions, also called folds, one for training our classifier
and the other to test its performance. This fold of data kept for testing is artificially
treated as unseen data for the machine. Usually, this procedure is repeated k-times
to achieve generalization, and is called k-fold cross-validation. In it, per iteration, one
of the k-folds is treated as test data, with the remaining k− 1 folds used for training
in that iteration. This is schematically represented in Figure 2.3.5. An extreme case
of k-fold cross-validation is leave-one-out cross-validation where k = #samples.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold k-1 Fold k...

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold k-1 Fold k...

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold k-1 Fold k...

...

... ...

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold k-1 Fold k...
Data partitioned into k-folds

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold k-1 Fold k...

CV iteration 1: Fold 1 as test fold

CV iteration 2: Fold 2 as test fold

CV iteration 3: Fold 3 as test fold

CV iteration k: Fold k as test fold

Figure 2.3.5: k-folds cross validation procedure is shown. For each iteration, the shaded fold
is used as the test fold.

Learning algorithms have parameters that need to be optimized such that their
performance can be maximized. These are called hyperparameters. For example,
SVMs have the cost parameter that should be tuned. Kernels, which are introduced
in the latter sections, also have parameters that can (and should) be tuned. The CV
procedure incorporates tuning as follows. This can be performed using what is known
as nested cross-validation. In it, data is first partitioned into k outer folds. Then,
in each of the k iterations, data in the corresponding k − 1 training folds is further
treated with k- or t-fold cross-validation. Here, one fold (say, the tth fold) is used for
tuning the hyperparameters instead of testing.

2.3.2 On Kernels and Their Properties

We now turn our focus to feature spaces, H in Eq. (2.3), and their properties.
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X
X

X
Φ(x)

Figure 2.3.6: Left panel: Data points of two classes (shown in cyan and magenta) in the
input space are not separable with a linear decision boundary. Right panel: Transforming to the
(possibly higher dimensional) feature space using feature map Φ enables separating them well.

There can be scenarios where the data is not well separable using a linear hyper-
plane in the input space. In such cases, the SVM must be able to realize non-linear
decision boundaries in the input space to separate data points belonging to the dif-
ferent classes. Figure 2.3.6 shows such a scenario. It can be observed that no linear
decision boundary can separate the magenta points from the cyan ones. Such data
can be transformed to a feature space, Φ, where they are well separable, before pre-
senting them to an SVM. Typically, this feature space has higher dimensionality than
the input space. Depending on the feature map, computing the explicit feature repre-
sentation for each data point could be a time-consuming, computationally expensive
task. Furthermore, recall that for an SVM we only require information on the dot
product between data points instead of their explicit representation. This also fol-
lows for the feature space. This is made possible by the so-called kernels or kernel
functions.

Kernels can help project the data points from a lower dimensional input space to a
possibly higher- or infinite-dimensional feature space where they are better separable.
We call k(x1, x2) = ⟨Φ(x1),Φ(x2)⟩ a kernel function. In other words, a kernel function
is a function that returns the dot product between the feature space representations
of any two input data points. A matrix of pairwise kernel values (similarity scores)
between all data points x1, . . . , xn is a square matrix of size n × n. It is called the
Gram or the kernel matrix. A Gram matrix is a positive definite matrix (see proof
below).
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Symmetric and Positive Definiteness:

Symmetric : k(xi, xj) = k(xj, xi) (2.22)
Positive Definite :

∑n
i=1

∑n
j=1 cicjk(xi, xj) ≥ 0, n ∈ N, c1...,n ∈ R (2.23)

Note that any symmetric matrix is said to be positive definite if and only if all its
eigenvalues are non-negative. In 2.23, equality is attained only when any ci = 0.
Positive definiteness of a Gram matrix, G, can be shown as follows. With

Gij = k(xi, xj) = ⟨Φ(xi),Φ(xj)⟩, ∀i, j ∈ [1, . . . , n],

for any vector v,

v′Gv =
n∑

i,j=1

vivjGij

=
n∑

i,j=1

vivj⟨Φ(xi),Φ(xj)⟩

=
n∑

i=1

viΦ(xi)
n∑

j=1

vjΦ(xj)

= ∥
n∑

i=1

viΦ(xi)∥2 ≥ 0 (2.24)

It is quite possible that, explicit computation of the feature map Φ may not always
be convenient (or computationally cheap). In which case, we can still define a ker-
nel function without explicit construction of the feature space, due to the following
theorem that guarantees that for any valid kernel, such a feature space exists.

Theorem 1. For any kernel k on X × X , where X is a non-empty set, there exists
a Hilbert space H and a mapping Φ : X → H such that

k(x1, x2) = ⟨Φ(x1),Φ(x2)⟩,∀x1, x2 ∈ X , (2.25)

where ⟨·, ·⟩H represents a dot product in the Hilbert space.

Together, we conclude that for a function to be a valid kernel function, it suffices to
show that its Gram matrix is positive definite (since every inner product is a positive
definite function).

A Kernel and Its Reproducing Kernel Hilbert Space: A reproducing kernel
Hilbert space is defined as follows.

Definition 2.3.1. Let X be a non-empty set and H be a K-Hilbert space over X ,
i.e. a K-Hilbert space that consists of functions mapping from X into K.
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(i) A function k : X × X → K is called a reproducing kernel of H if we have
k(·, x) ∈ H for all x ∈ X and the reproducing property

f(x) = ⟨f, k(·, x)⟩

holds ∀f ∈ H and all x ∈ X .

(ii) The Hilbert space H is called a reproducing kernel Hilbert space (RKHS) over
X if ∀x ∈ X the Dirac functional δx : H → K defined by

δx(f) := f(x), f ∈ H

is continuous.

A Note on Normalization

Feature space normalization is an important, recommended step to be performed
when training an SVM (Herbrich and Graepel, 2001; Shawe-Taylor and Cristianini,
2004). Feature space normalization was shown to have a large impact on the gen-
eralization error of an SVM classifier (Herbrich and Graepel, 2001). For any kernel
matrix K, the feature space normalized kernel K̃ is given by

K̃ij =
Kij√
KiiKjj

, (2.26)

where Kij is a short-hand for K(xi, xj). Eq. 2.26 is especially helpful when the feature
map used is non-linear and unknown. For a linear feature map such as simple dot
products, normalization in the feature space is equivalent to that in the input space
performed using norms.

K̃ij =

⟨
Φ(xi)

∥Φ(xi)∥
,

Φ(xj)

∥Φ(xj)∥

⟩
=

⟨Φ(xi),Φ(xj)⟩
∥Φ(xi)∥∥Φ(xj)∥

=
Kij√
KiiKjj

(2.27)

Therefore, the kernels we use in this thesis are feature space normalized.

Examples of Kernels

For Real Valued Data: Two popular examples of kernel functions for real-valued
data are polynomial kernel and the Gaussian Radial Basis Function kernel.

Polynomial kernel : k(x1, x2) = (⟨x1, x2⟩+ c)d (2.28)
where c is a constant and d ∈ N.

Gaussian RBF kernel : k(x1, x2) = exp
(
− γ∥x1 − x2∥2

)
(2.29)
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One may note that the linear kernel is the special case of the polynomial kernel with
c = 0 and d = 1. Additionally, the Gaussian RBF kernel is a translation invariant
kernel. It is the most widely used kernel due to its capacity to generate any complex
classification function. This capacity can be controlled by manipulating the parameter
γ.

For Structured Data: Data across domains may not always be available in the
vector form. Examples of structured data are graphs, text documents, images etc.
Computational biology, in particular, has many tasks where data is available in a
structured form, e.g., DNA or protein sequence, protein 3D structure representations
or even images from microscopy. As we have discussed earlier, given a suitable feature
map, one can always define similarity measures or kernels for such data. Since this
thesis primarily focuses on DNA sequences (strings), I dedicate Subsection 2.3.3 to
a discussion of popular, state-of-the-art string kernels. Finally, I refer the reader
to Gärtner (2003)’s survey article on kernels for structured data and Shawe-Taylor
and Cristianini (2004) book Kernel Methods for Pattern Analysis for further reading.

2.3.3 String Kernels

I now discuss some popular examples of string kernels that were developed to be
suitable for solving problems involving strings in biology.

A note on the nomenclature used in computational biology/bioinformatics, and
also in the rest of this thesis. A protein or DNA sequence is simply a string of
characters. Here after in this thesis, whenever the object (or data point) is a string,
we represent it by s instead of x . The length of any sequence s is the number of
characters in it, and is typically represented by |s| = L. The alphabet for proteins
has 20 characters for the 20 naturally occurring amino acids11, while that for DNA
has 4 characters {A,C,G,T} as seen earlier. The length of the alphabet is represented
by |Σ| = l. Words, which are k-length subsequences (substrings), are also called as
k-mers. Bioinformatics also uses the term ‘oligomers’ interchangeably with k-mers
with any value for k. So does this thesis.

The Spectrum Kernel

The spectrum kernel is one of the simplest string kernels that was designed for the
protein sequence classification problem, but it is also generally applicable to any case
involving sequences (Leslie et al., 2002).

In general, the spectrum kernel represents each sequence using a feature map which
counts the number of times each k-mer occurs in the sequence for all possible k-mers.

11A complete list can be looked up at: http://www.virology.wisc.edu/acp/Classes/
DropFolders/Drop660_lectures/SingleLetterCode.html

40

http://www.virology.wisc.edu/acp/Classes/DropFolders/Drop660_lectures/SingleLetterCode.html
http://www.virology.wisc.edu/acp/Classes/DropFolders/Drop660_lectures/SingleLetterCode.html


We know that, given the alphabet, the set of all possible k-mers is given by Σk. Let
|Σk| = M , and the iterator, mi∈[1,M ]. Thus, for any sequence s, its k-spectrum feature
map, Φk(s), is given as

Φk(s) = (ϕmi
(s))mi∈Σk (2.30)

where ϕmi
(s) denotes the frequency of occurrence of k-mer mi in s where k ≥ 1.

Then, the k-spectrum kernel value of sequence pair (s1, s2) is

kk(s1, s2) = ⟨Φk(s1),Φk(s2)⟩ (2.31)

where ⟨·, ·⟩ denotes inner product. A further simpler alternative is when ϕmi
(s) in

Eq. (2.30) indicates just the presence or absence of the k-mer mi in sequence s instead
of the frequency.

Intuitively, this feature map captures the profile of a sequence based on its con-
stituent k-mers and their occurrence frequencies. It is the bag-of-words kernel (pop-
ular in natural language text classification and information retrieval) for biological
sequences. The authors used the spectrum kernel in conjunction with the SVM for
remote homology detection in protein sequences where it was shown to attain perfor-
mance comparable to the then state-of-the-art approaches.

String Kernels Considering Occurrence Positions of Features

You may have noted that the spectrum kernel feature map takes the k-mers and their
occurrence frequencies into account, however, it is indifferent to their occurrence
positions in the sequences. From a biological point of view, the position at which
an oligomer occurs in a sequence could have an impact on the underlying biology
(cf. section 2.1.3). For example, the position of the oligomer ‘TATAAA’, called the
TATA-box, in promoter sequences plays an important role. Also, several other motifs
corresponding to the basal transcription machinery such as TFs IIA, IIB etc., or
the intiator are expected to be within a certain distance from the TSS (Butler and
Kadonaga, 2002; Juven-Gershon et al., 2008; Smale and Kadonaga, 2003). Other
problems involving splice sites or translation initiation sites can also be characterized
by the position of the motif in the corresponding sequences. Thus, several kernels have
been developed to address this aspect. These kernels specifically consider positions
of motifs in sequences when comparing them. We discuss such kernels next.

The Weighted Degree Kernel

The weighted degree kernel (WDK) was proposed to account for the position informa-
tion of features when computing sequence similarity (Rätsch and Sonnenburg, 2004).
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Mathematically, the WDK of order d is written as,

k(s1, s2) =
d∑

k=1

βk

L−k+1∑
p=1

I[uk,p(s1) = uk,p(s2)] (2.32)

where uk,p(s) denotes k-mers at any position p in the sequence s. Here, k = [1, d],
and I(·) denotes the indicator function. In the WDK of order d, Rätsch and Sonnen-
burg proposed weighting the k-mer matches such that longer matches are effectively
assigned higher weight. The authors proposed the weighting parameter βk = 2d−k+1

d(d+1)
,

which assigns βd < βd−1 < . . . < β1. However, every longer k-mer match has many
shorter k-mer matches. Thus, any pair of sequences that have many longer k-mer
matches score essentially higher than a pair in which only shorter k-mers match.
Finally, the two sequences should be of the same length for comparison.

In summary, the WDK of order d compares two sequences according to their [1, d]-
spectrum at each position in the sequence where a k-mer can start (thus, the upper
limit L − k + 1 on the second summation in Eq. (2.32)). Thus, the WDK feature
map is much richer than that of the spectrum kernel. The WDK has been shown to
be the state-of-the-art approach for the splice site recognition problem (Rätsch and
Sonnenburg, 2004).

From Exact to Inexact Matching For Comparisons

In many real world applications, finding a match is rarely about spotting the exact
one. For example, in the problem we discussed earlier, for categorizing food products
in a super market, not every banana looks the same or not every yoghurt pack looks
exactly the same; they are same or similar, some more than others. Similarly, in
biology, protein as well as DNA sequence motifs are mostly degenerate. A DNA
binding site recognized by a TF is one such example. While a TF could have a
high affinity to a particular sequence of nucleotides for binding, this affinity gradually
decreases as the sequence deviates, becoming more and more non-specific. Therefore,
it is important that approaches to compare sequences allow facets like gaps, shifts and
certain degree of mismatches when comparing sequences. To that end, the spectrum
kernel described above has a variant that compares sequences with mismatches (Leslie
et al., 2004), and gaps (Leslie and Kuang, 2003) permitted. The weighted degree
kernel with shifts (WDKS) permits the start positions of the matching k-mers in the
two sequences to be slightly shifted, although the shift is penalized (Rätsch et al.,
2005).

k(s1, s2) =
d∑

k=1

βk

L−k+1∑
p=1

S∑
s=0

δsI[uk,p+s(s1) = uk,p(s2)] + I[uk,p(s1) = uk,p+s(s2)] (2.33)
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Here, δs = 1
2(s+1)

penalizes any shift (s) in the start positions (p) of the k-mers. This
tolerance of shift decays with increase in the amount of shift.

I next describe two dot product kernels, the oligo kernel (Meinicke et al., 2004) and
the oligomer distance histograms (ODH) kernel (Lingner and Meinicke, 2006). With
both of them, one can inherently interpret their rich feature maps and visualize the
sequence features. The oligo kernel was the first position-aware approach to also per-
mit positional uncertainty (inexactness of position) in sequence comparison (Meinicke
et al., 2004).

The Oligo Kernel

Meinicke et al. (2004) proposed a feature map constructed by defining an oligo func-
tion for occurrences of all possible k-mers, over a given alphabet, in a sequence. The
idea here is to account for the positional as well as the compositional uncertainty.

Every possible k-mer in Σk has a corresponding oligo function which characterizes
their occurrences in a given sequence and the associated positional uncertainty using
Gaussians as shown in Eq. (2.34) and 2.35. The feature map for any sequence s is a
concatenation of the oligo functions, µmi

.

µmi
(t) =

∑
p∈Smi

e
−(t−p)2

2σ2 (2.34)

Φ(s) = [µmi∈
∑k ]T (2.35)

In Eq. (2.34), t denotes the finite number of discrete positions (in a sequence) con-
sidered for representation, σ captures the degree of positional uncertainty, and Smi

represents the positions in sequence s where mi occurs. [·]T denotes the transpose in
Eq. (2.35). Comparing two sequences then entails computing the inner product of
their feature maps.

k(s1, s2) = Φ(s1)Φ(s2) (2.36)
=

√
πσ

∑
mi∈Σk

∑
p∈Smi

∑
q∈Smj

e−
1

4σ2 (p−q)2 (2.37)

The case σ → 0 considers only exact positional matches of k-mers, and σ → ∞ allows
infinite distance between the starting positions of the k-mers in the two sequences.
The latter case makes it equivalent to the spectrum kernel in that the position does
not matter at all. The feature map is useful for interpretation of the sequence features
deemed important for the problem at hand.
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The Oligomer Distance Histograms Kernel

In 2006, Lingner and Meinicke introduced another feature representation focusing on
the relative distances between oligomer pairs instead of positions of the individual
oligomers for characterizing sequence similarity. The oligomer distance histogram is
a fixed-length feature space representation of any arbitrary-length sequence based
on histograms of distances between short oligomers as they occur in the sequence.
The distance between a pair of k-mers is defined as the difference in their starting
positions in the sequence. For any sequence s, let D = L− k, the maximum distance
between any two k-mers occurring in the sequence. The distance histogram vector of
s corresponding to the k-mer pair (i, j) is given by

hij(s) = [h0
ij(s), h

1
ij(s), . . . , h

D
ij (s)]

T (2.38)

where T denotes transpose. For all such k-mer pairs over Σ, the corresponding dis-
tance histogram vectors are concatenated together, similar to the oligo kernel, giving
a complete feature space representation Φ(s).

Φ(s) = [hT
11(s),hT

12(s), . . . ,hT
MM(s)]T (2.39)

The ODH kernel value for two sequences s1 and s2 is given by the dot product.

k(s1, s2) = Φ(s1)Φ(s2). (2.40)

The set of feature vectors for N training samples is: X = [Φ(s1), . . . ,Φ(sN)] and the
N × N kernel matrix is given by: K = XTX. It was shown that this kernel accu-
rately detects homology in protein sequences and also identifies important oligomer
pairs (Lingner and Meinicke, 2006).

With respect to interpretability and visualization, after the oligo and the ODH
kernel in 2004 and 2006, the WD kernel (and its shift variant) was reinforced in 2008
with positional oligomer importance matrices (POIMs) for visualization of important
k-mer features (Sonnenburg et al., 2008).

2.3.4 Tricks for Designing Kernels

For many applications, designing a new kernel adapted to the task at hand may
often be a good idea. There are two possible ways of doing it. First, using an
existing kernel and performing some permissible operation on it to get the final kernel.
Second, designing one using some already known domain specific similarity measure.
The latter option is useful when the similarity measure does not yield a valid kernel
function by itself. I give examples of both below.
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Using an existing valid kernel: Let k1 and k2 be kernels over X ×X , X ⊆ Rn,
β ∈ R+, then

(i) Sum of two kernels is a kernel

k(x1, x2) = k1(x1, x2) + km(x1, x2) (2.41)

(ii) Constant × kernel is a kernel.

k(x1, x2) = βk1(x1, x2) (2.42)

(iii) A linear combination of two or more kernels is also a kernel. This is a combi-
nation of the above two operations.

k(x1, x2) = β1k1(x1, x2) + . . .+ βmkm(x1, x2) (2.43)

This is useful when for the same set of objects x ∈ X , there is multiple modalities
of information available. Then one can freely construct a kernel per modality
and combine them in this fashion. Assignment of weights (β values) can be
resolved using the so-called multiple kernel learning problem (Marius Kloft and
Zien, 2011) (see Subsection 2.3.5).

(iv) Product of two kernels is also a kernel

k(x1, x2) = k1(x1, x2)k2(x1, x2) (2.44)

We refer to (Shawe-Taylor and Cristianini, 2004) for a more comprehensive reading.
The empirical kernel map: When a certain domain specific similarity measure

exists, it can be used to compute pairwise similarity between all data points. But it is
not necessary that this similarity measure yields a valid kernel. In this case, one can
use the so-called empirical kernel map (Tsuda, 1999). In it, one first chooses a finite
subset of the available data points as templates, and computes similarities with the
templates for all the data points. This results in a fixed, finite-dimensional feature
vector for each data point. The empirical kernel is then obtained by computing the
dot product between the finite-dimensional feature vectors. With r templates, the
empirical kernel value between data points x1 and x2 is given as

∀x ∈ X , k(x1, x2) = ⟨Φ(x1),Φ(x2)⟩ =
r∑

i=1

s(x1, tr)s(x2, tr). (2.45)

where s(·, tr) is the similarity of a data point with the templates. Choosing templates
can be an overhead though.
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Removal of negative eigenvalues: Alternative to the empirical kernel map ap-
proach, one can also take a simpler route of making the pairwise similarity matrix
positive definite, if it is not, as follows. Constantly shifting a kernel matrix by sub-
traction of its minimal eigenvalue makes the kernel matrix positive definite (Roth
et al., 2003).

K̃ = K − λmin(K), (2.46)

where λmin(·) denotes the minimal eigenvalue of the argument matrix.

2.3.5 Learning In View Of The Multiplicities Of The Real World

Talking about multiplicities of the real world (applications), we already mentioned
multi-class and multi-label classification scenarios (see Subsection 2.3.1). In this sub-
section, we introduce scenarios of learning from: (a) multiple information modalities
for objects; (b) multiple (related) tasks; and (c) multiple instances of objects. We
briefly discuss them next.

Handling Multiple Information Modalities

Quite frequently, one comes across a scenario where multiple pieces of information are
available for the same set of objects in a task. Using all of them can enable learning
better models for the task. Consider an example from the biomedical domain. For
a prediction task involving patient data, one could have information on their gene
expression values, DNA methylation and various histone modifications. Using only
one kind of information of these, say the gene expression profiles, restricts what the
model can learn about a disease. One would rather prefer using all different kinds of
information simultaneously to understand the disease and its mechanisms as much as
possible.

This can be done by designing a separate kernel for each kind of information and
putting all of them to use (by 2.43). When the kernel function k(·, ·) is a combination
of multiple kernels, it is called a combined kernel.

kcombined(s1, s2) =
m∑
i=1

βik(s1, s2) (2.47)

A simple case of a combined kernel is a uniform combination of the individual so-
called subkernels, i.e. assigning a weight of 1.0 to each subkernel. This type of kernel
is called the sum kernel. Alternatively, some subkernel can be more important than
others. Then we would be interested in weighting these subkernels appropriately. The
problem of learning these subkernel weights from the data itself is termed multiple
kernel learning (MKL) (Bach et al., 2004).
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Convex combinations are the most popular choice for combining the kernel matri-
ces. They allow for assessing the relative importance of the combined kernels. Opti-
mization constraints are based on the ℓp-norm on the kernel weights, where p usually
has the value one or two. Using the ℓ1-norm on the kernel coefficients, i.e. ∥β∥1 =
m∑
1

|βi| = 1 induces sparsity (Ng, 2004). The ℓ2-norm, i.e. ∥β∥2 =
√
β2
1 + . . .+ β2

m = 1

leads to non-sparse coefficient values βm. ℓ2-norm MKL has been more popular and
successfully used earlier in biological applications, for example, in combining hetero-
geneous data sources (Tsuda et al., 2004; Yu et al., 2010).

Handling Multiple Tasks

Building a model that is very close to the truth—as in it captures the complex re-
lationships well—is feasible when reasonably abundant data is available to train our
learning algorithm. But in many real world tasks, only few training examples may
be available. Moreover, obtaining additional training data could be very expensive.
This is especially true in computational biology or the biomedical domain due to
hefty costs of scientific equipments, and time and effort required for an experiment
or medical test. The paucity of training data makes the prediction task at hand even
more difficult. As a workaround, data available for any other related task can be uti-
lized. In another scenario, imagine that there are several related tasks that need to be
learned simultaneously. A supervised learning algorithm that can combine informa-
tion from these related tasks is expected to build models capable of achieving better
accuracies. Multitask learning (MTL) attempts to do this—share information across
several related tasks—and achieve improved performance on all the tasks. Usually,
one uses domain-specific information to measure the task similarity.

(Evgeniou et al., 2005) introduced how multitask learning can be performed with
kernel methods. (Jacob and Vert, 2008) provided the following formulation for sharing
of information between tasks with a kernel on tasks.

KMTL((sA, tA), (sB, tB)) = ⟨Φ(sA, tA),Φ(sB, tB)⟩ (2.48)
= ⟨ΦT (tA),ΦS(sA)⟩ ⊗ ⟨ΦT (tB),ΦS(sB)⟩ (2.49)
= ⟨ΦT (tA),ΦT (tB)⟩ × ⟨ΦS(sA),ΦS(sB)⟩ (2.50)
= KT (tA, tB) ·KS(sA, sB) (2.51)

where tA, tB are tasks, and sA, sB are examples corresponding to the two tasks,
ΦT and ΦS are task- and sequence-specific feature maps, and KMTL is the multitask
kernel between the two tuples (sA, tA) and (sB, tB). This formulation for KMTL as
a product of a kernel on tasks and a kernel on examples is very convenient. It was
used for predicting peptide–MHC-I binding (Jacob and Vert, 2008). We too use
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this formulation for a problem we tackle in this thesis (see Chapter 3). Widmer and
Rätsch (2012) present an overview of MTL applications for problems in computational
biology.

Handling Multiple Instances

Dietterich et al. first described the multiple instance learning (MIL) problem in 1997,
where the training examples could have many alternative feature vectors describing
them.

Consider the following general example involving a lock smith who has to identify
the shape of the key that opens the door to a particular room in an office. Most
employees have one key in their keychain which unlocks the said door. For this
task, The lock smith has access to the keychains (with keys) of all employees without
knowing which key in it opens the door, and has no access to the particular door itself.
Thus, here, in order to identify the shape of the key that would open the door, the
lock smith examines all keys in every keychain as instances with potential features and
infers the characteristic shape of the key that would open the said door (Dietterich
et al., 1997).

As a second example, consider the drug-activity prediction problem where the task
is to infer the observed activity of a drug molecule. Usually, an input drug molecule
binds well to a target binding site on some other larger molecule when one out of
a set of conformations is adopted by the input molecule. The other conformations
in the set can result in binding, but, only weakly. And, any other conformation
that is not a member of this set results in no binding. In this case, the different
viable conformations are the multiple favorable instances, one out of them leading
to a desired result which is a strong binding event. An instance of this example is
the task of major histone compatibility (MHC) class II binding peptide prediction by
modeling it as a MIL problem (Pfeifer and Kohlbacher, 2008).

Thus, MIL differs from the typical binary classification scenario which has only
one feature vector representing each object. MIL describes a binary classification
problem for data that consists of pairs (Xi, yi), where Xi is a bag containing so-called
instances x ∈ Xi and yi is a binary label (+1 or −1). The labels of the instances are
not known, but each bag Xi with yi = −1 only has negative instances and each bag
Xi with yi = +1 has at least one positive instance. Thus, it can also be said that
there is ambiguity in the training examples. The goal of MIL is to learn the best
classifier to predict yj given Xj.

The normalized set kernel, also known as the multi-instance kernel, introduced by
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Gärtner et al. (2002) for MIL is given as follows:

k(X,X ′) :=
kset(X,X ′)

fnorm(X)fnorm(X ′)
(2.52)

where kset(X,X ′) :=
∑

x∈X,x′∈X′
k(x, x′) and fnorm(X) is a suitable normalization func-

tion (Gärtner et al., 2002). One could normalize using either averaging (fnorm(X) :=

#X) or feature space normalization (fnorm(X) :=
√
kset(X,X)).

In this thesis, we use the multiple instance setting to model the problem of com-
paring variable-length sequences in the classification scenario. In it, we represent any
individual sequence (bag) as a collection of its segments (instances). Chapter 4 is
dedicated for a detailed description of this problem.
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3
Genetic Sequence-Based Prediction of

Long-range Chromatin Interactions

This chapter describes our work on computational prediction of long-range
chromatin interactions using the genetic sequence. This work is published
as (Nikumbh and Pfeifer, 2017). While the project idea was conceived by
Nico Pfeifer, I designed, implemented and performed the computational
experiments with Nico’s guidance. All model interpretations and analyses
were performed by me and supervised by Nico Pfeifer. Large portions of
text in this chapter have been adapted from (Nikumbh and Pfeifer, 2017).

3.1 Introduction

As outlined in the biological background (Section 2.1), it is well known that chro-
matin, a complex of DNA and proteins, is packed in three-dimensional (3D)

space inside the nucleus of the cell in a highly regulated fashion. The spatial con-
formation of chromosomes is governed by certain principles (Bickmore, 2013; Cope
et al., 2010; de Wit and de Laat, 2012). The structure of chromatin depends on the
functional state of the cell (viz. normal/diseased) and gene activity among other
cellular properties. Thus, a better understanding of 3D chromatin structure and the
underlying mechanisms determining this structure helps in gaining an enhanced com-
prehension of many genomic functions. With the advent of chromosome conformation
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capture (3C)-based techniques in the last decade (reviewed in detail in Section 2.1.4),
genome-wide analysis of the interaction profiles is now possible (Heidari et al., 2014).
Studies have revealed a correlation between long-range chromatin interactions and
the functional state of the cell (Zeitz et al., 2013), and more generally, cell-type
specificity Heidari et al. (2014). These long-range interactions comprise pairs of loci
that are close in 3D space, but not necessarily close in sequence. The spatial co-
localization of different chromosomal regions—cis as well as trans—can be due to a
mix of factors. For example, two or more loci can co-localize for specific, direct con-
tact between each other, or they are co-localized due to some nonspecific binding as a
result of the packing of the chromatin fibre or having the same subnuclear structure.
Specific co-localization may signify functional association (Dekker et al., 2013).

Knowing which loci interact over a long-range and evaluating the effect of such
interactions can help us further our understanding of genome regulation and organi-
zation. Thus, it is of general interest to be able to predict whether a given pair of
loci which are distant on the linear chromosome would interact in 3D space. There
exist machine learning-based approaches for predicting such long-range interactions
between enhancer and promoters using TF binding and epigenetic information (Roy
et al., 2015; Whalen et al., 2016; Yang et al., 2017b). These approaches exclude
other genomic regions which lack such additional information from their study. A
sequence-based model can improve our understanding of chromatin interactions and
the principles governing chromosome folding at the most basic level. It can also be
useful to study any genomic region excluded from other studies. Such a model has sev-
eral potential applications. One is to use the predicted label as additional information
for the prediction of boundaries of topologically associating domains (TADs) (Dixon
et al., 2012). Another is to assist methods that predict the 3D structure of the
chromosome from Hi-C data (Varoquaux et al., 2014).

This chapter describes in detail our work on a computational pipeline for predic-
tion of locus-specific long-range chromosomal interactions. We begin by stating the
related work followed by our approach in a nutshell vis-à-vis the related work (Sec-
tions 3.2 and 3.3). This is followed by the description of the materials in Section 3.4,
wherein we describe the experimental data used and pre-processing performed. The
subsequent sections of the chapter present our pipeline, the results and discussion
(Sections 3.5, 3.6 and 3.7 respectively).

3.2 Related Work
The last few years have seen an increasing interest in prediction of long-range inter-
actions between promoters and enhancers. Thus, there has been a surge of computa-
tional studies for predicting and/or understanding interactions involving promoters
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and enhancers. Namely (Roy et al., 2015), (Whalen et al., 2016) and (Yang et al.,
2017b).

Per cell line, in contrast to our per-locus models, all of these approaches model the
‘all interactions versus all non-interactions’ scenario. Among all loci, they use only
enhancer-promoter (EP) pairs. Roy et al. (2015) and Whalen et al. (2016) use various
functional genomics features to represent each EP pair. They include information on
different histone modifications and transcription factors available from many exper-
imental assays, such as ChIP-seq, DNase-seq, and RNA-seq, performed in different
cell lines. Roy et al. (2015) use an ensemble of Random Forest-based model and a
multitask regression model, and Whalen et al. (2016) use gradient boosted trees for
classification. In another work, Yang et al. (2017b) use sequence features at the EP
pairs for classifying them as interactions and non-interactions in two ways. In one,
sequence features are used via information on the TFBSs for all known TF motifs
from databases like JASPAR (Sandelin et al., 2004). In another, they represent each
EP pair by embedding it in a lower-dimensional space. These are word embeddings
obtained using word2vec (Mikolov et al., 2013a,b). In both the variants, the authors
use gradient boosted trees for classification (Yang et al., 2017b). In spite of using
genetic sequence information, there are limitations to the benefits of these models.
Specifically, in the first case using only known TFBS-motifs is similar in principle to
using information from TF ChIP-seq data sets, and in the second case, interpreting
the word embedding features is difficult. All of these approaches achieve reasonable
prediction performances. Also, there is quite an overlap in the set of features reported
by these studies as important for EP interactions (EPIs). In particular, all of them
report CTCF, cohesin complex (SMC-RAD21) and zinc-finger proteins as important
features characterizing EPIs. Contrasting to the other studies, Whalen et al. (2016)
also consider information in the intervening chromatin for every EP pair considered.
They report many DNA-binding proteins, and histone marks corresponding to ac-
tivation and elongation in the intervening windows as features important for distal
EPIs.

The rest of the chapter presents our approach for prediction of locus-specific long-
range chromatin interactions using the genetic sequence.

3.3 Our Approach in a Nutshell
In this study we built a method based on support vector machines (SVMs) (Boser
et al., 1992) to predict which genomic loci potentially interact with a given locus under
study based on the genetic sequence of the candidate loci. In a nutshell, we do the
following. Given a contact matrix delineating interactions between various genomic
loci, we build a predictor for a locus of interest (LoI) from the contact matrix. This
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predictor learns the characteristics of the genomic loci that happen to significantly
interact with the LoI as against the set of loci that do not. Thus, we build a predictor
per locus.

We analyzed 5C contact matrices for three human cell lines—GM12878, K562 and
HeLa-S3. We demonstrate that the genetic sequence is predictive of the long-range
interactions. We developed new visualization methods to enable an intuitive visu-
alization of the sequence features that proved useful for discerning the interaction
partners of a LoI from those that do not interact with it. This renders our models
to be more than black boxes. Since our models are locus-specific, one can compare
the important sequence features characterizing (non-)interactors of the same locus
in two cell lines. Additionally, we used these locus-specific models trained on 5C
data to independently predict potential chromosome-wide interaction partners for
the same LoI. This computational validation is done on high-resolution Hi-C data
sets from (Rao et al., 2014).

Since the genetic sequence is only the primary level at which genomic function and
organization information is encoded, it is apparent that higher levels of modifications
will have the final say towards these chromatin interactions. This is especially true
for cell line-specificity. In other words, one would not expect a model using sequence
information alone to outshine one that (also) utilizes additional information sources
in terms of prediction accuracy. But, a sequence-level model has its advantages as
already stated. Thus, we would like to stress upon our two-fold aim in performing
this study:

1. Answer the question: To what extent can the genetic sequence alone predict
these long-range chromosomal interactions? To this end, we performed compu-
tational experiments using our genetic sequence-based approach.

2. Understand the characteristic sequence features underlying such long-range in-
teractions. This is achieved with the help of visualization methods we have
newly developed in this work. They aid in interpreting the sequence signals
that contribute towards predicting locus-specific interaction partners.

In general, we believe that such an approach using sequence-level information could
be useful to study sequence peculiarities among the interaction partners of a particular
locus.

3.4 Materials
We use the 5C contact matrices from experiments published by (Sanyal et al., 2012).
They probed a collection of regions for two tier-I cell lines (GM12878 and K562) and a
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tier-II cell line (HeLa-S3) from ENCODE (The ENCODE Project Consortium, 2012).

The data for each cell line was comprised of two biological replicates. For each repli-
cate, Sanyal et al. (2012) performed the following two pre-processing steps. First,
filtering of primers. All 5C primers were expected to perform similarly w.r.t. the
trans interactions in the experiment. Any variation observed was considered to be
due to experimental factors such as differences in primer and ligation efficiencies. On
this premise, outlier primers were filtered as follows. Two mean values were com-
puted, the average 5C signal for each restriction fragment in trans, and the global
average of all interchromosomal contact frequencies. The global mean was used to
obtain a correction factor per restriction fragment that normalizes its trans signal to
those of all restriction fragments. If any of these correction factors was too high or
too low, specifically beyond mean±1.654 standard deviations, that restriction frag-
ment was flagged for removal. Second, normalization of the 5C signal per restriction
fragment. The above correction procedure was repeated for the remaining set of
restriction fragments. The normalized 5C signal between any pair of restriction frag-
ments was obtained by multiplying three quantities, the correction factors for the pair
and the corresponding contact frequency. This two-step procedure corrects for detec-
tion biases per restriction fragment (Sanyal et al., 2012). The intra-chromosomally
interacting restriction fragments are then tested for significance. In the process, the
inverse relationship between contact frequencies and the genomic distance between
interacting pairs is accounted for, and peaks are called (cf. Subsection 2.1.4). Sanyal
et al. apply a conservative FDR cutoff of 1%. Sanyal et al. term the interactions
that are called peaks in both replicates as ‘TruePeaks’ and those not called peaks in
either replicate as ‘NonPeaks’. Consequently, in our study, positive examples for any
classifier are ‘TruePeaks’ and negative examples, ‘NonPeaks’. We considered different
FDR cutoff values (1%, 10% and 15%) and selected an FDR cutoff of 10% for the
final model (see Subsection 3.4 below). Table 3.4.1 gives information on the number
of ‘TruePeaks’ (#TP) and the number of ‘NonPeaks’ (#NP) for the genomic regions
included in this study.

We selected ten regions per cell line to evaluate the potential of the DNA se-
quence to serve as the sole information source in predicting the long-range interac-
tions. For each cell line, these are the 10 regions with the most positive examples
available. These are the ‘model-defining’ regions for our study. All genomic coordi-
nates are w.r.t. hg19, GRCh37 assembly. The ‘model-defining’ loci are among the
TSS-containing regions (by GENCODE v7 (Harrow et al., 2012)) and the sets of loci
in the positive and negative class for the individual classifiers are restriction fragments
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Figure 3.4.1: Lengths of restriction fragments for various regions in different cell lines. Their
violin plots are arranged in two columns per cell line. Length is measured in terms of the
#nucleotides in a sequence.
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Figure 3.4.2: Z-scores for various cell lines at 1, 10 and 15% FDRs. We have followed the
nomenclature from (Sanyal et al., 2012). Rep1Peak_Rep1Zscore: peak in rep1, z-score in rep1
plotted; Rep2Peak_Rep2Zscore: peak in rep2, z-score in rep2 plotted; Rep1Peak_Rep2Zscore:
peak in rep1, z-score in rep2 plotted, Rep2Peak_Rep1Zscore: peak in rep2, z-score in rep1
plotted; TruePeaks: called peak in both replicates; NonPeaks: not called peak in either replicate.
We compared each z-score distribution of the different peak classes to the z-score distribution of
the NonPeaks with an unpaired Wilcoxon test. Asterisks (*) are shown for significant difference
in z-score distribution at significance level 0.05. We did not correct for multiple testing to keep
the analysis comparable to (Sanyal et al., 2012). The marks ‘P’ and ‘N’ on the box-plots for
TruePeaks and NonPeaks denote they constituted the positive- and negative-set of examples
respectively in our work.
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corresponding to enhancers (also by GENCODE v7 (Harrow et al., 2012)) (Sanyal
et al., 2012). All values of #TruePeaks and #NonPeaks in Table 3.4.1 are for FDR
10%.

For the computational validation with high-resolution Hi-C data, we used the data
for cell lines GM128781 and K5622 from Rao et al. (2014) deposited at Gene Expres-
sion Omnibus (Edgar et al., 2002)

Relaxation of FDR cutoff to enable studying of putative ‘bystander’ or structural
interactions

From a biological point of view, we attempted to take a more broader view and de-
fined an interaction taking into account not just the significant ‘looping interactions’
but also the possibility of so-called ‘bystander’ or structural interactions involving
the intervening chromatin (Hughes et al., 2014; Sanyal et al., 2012). A conservative
FDR cutoff percentage, such as 1%, would include only significant ‘looping interac-
tions’ as prevalently defined in the community, and a comparatively liberal one would
include structural interactions. Thus, in all computational experiments, in order to
distinguish significant interactions from non-interactions in the 5C data, we relaxed
the FDR cutoff to 10%, instead of 1% as in (Sanyal et al., 2012). In this manner, we
traded off between being very conservative and comparatively liberal.

This relaxation still maintained a significantly higher mean z-score of the interac-
tions for TruePeaks in comparison to NonPeaks for all the cell lines, similar to the 1%
cutoff case (see Figure 3.4.2). Although 15% FDR also shows a significant difference,
it did not provide much benefit in the number of additional TruePeaks per region in
comparison to relaxing the FDR from 1% to 10%, consistently across all three cell
lines. (i.e., positive examples per classification problem in our study)

3.5 Methods
We use string kernels (introduced in Section 2.3.3) in conjunction with an SVM
as a classifier to analyze the genomic loci in this study. Because these loci have
highly diverse lengths (see Figure 3.4.1), we could not directly use position-aware
string kernels like the oligo kernel (Meinicke et al., 2004) or weighted degree (WD)
kernels (Rätsch et al., 2005; Rätsch and Sonnenburg, 2004) for comparing the loci.

1GSE63525_GM12878_combined_contact_matrices.tar.gz
2GSE63525_K562_intrachromosomal_contact_matrices.tar.gz
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3.5.1 Pipeline for Predicting Long-range Chromatin Interactions

As discussed in the background chapter, Section 2.1.4, a contact matrix output by
any chromatin conformation experiment must be subjected to normalization and ex-
traction of significant contacts. Also, these experiments are usually performed for
multiple biological replicates to assess the impact of experimental errors and other
variations.

Figure 3.5.1 depicts our approach for predicting long-range chromatin interactions.
The normalization and peak-calling procedures that we adopted for analyzing the 5C
data used in this study are described in Section 3.4. Once a raw contact matrix has
been normalized and the significant interactions have been called, we binarize the
contact matrix as follows. Genomic loci (along the rows) not called significant inter-
action partners of a particular locus (along the columns) in either replicate constitute
the negative class (see Figure 3.5.1, cells denoted by filled black boxes). Those called
significant in all replicates constitute the positive class (see Figure 3.5.1, cells denoted
by filled orange boxes). This leaves a lot of uncalled loci (along the rows). These are
denoted by unfilled boxes (Figure 3.5.1). Then, we build classifiers for loci along the
column of the matrix (one per locus). We call these loci the ‘model-defining’ loci.
For each individual classifier, the corresponding positive and negative set of examples
is built as stated above. Accordingly, from Figure 3.5.1, loci r3, rM and the like
are included in the positive class for the classifier corresponding to locus c1. Locus
r2 and the like are included in the negative class for it. Note that loci denoted by
unfilled boxes, e.g., r1 and r4, are not included in either class and are excluded by the
model. Clearly, any locus that belongs to the positive class in one model, may belong
to either the positive or negative class in another model or may be even completely
excluded.

For each classifier, 80% of the given set of sequences were used for training while
20% were held-out as test sequences. The classifiers are based on an SVM with
the ODH kernel (cf. Section 2.3.3). The cost parameter for the SVM, and oligomer
length, and maximum distance value for the ODH kernel can be set by the user. Our
pipeline also accounts for class-imbalance by proportionately up-weighting the mis-
classification cost for the minority class (here, positive class) (Elkan, 2001). Recall
the misclassification error term C

n∑
i=1

ξi in Eq. (2.14) from Chapter 2. It is replaced

by C+
∑
i∈P

ξi +C− ∑
i∈N

ξi where C+ and C− are costs associated with misclassification

errors for examples of the positive (P) and negative (N) class, respectively. Propor-
tionally up-weighting the misclassification cost for the minority class leaves just the
cost variable C to be set. Typically, C+/C− = |P |/|N | (Ben-Hur and Weston, 2010;
Elkan, 2001).
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Figure 3.5.1: Pipeline for predicting locus-specific long-range chromatin interactions using the
genetic sequence. In the contact matrix, cells denoted by filled orange boxes ( ) correspond
to loci that are called significantly interacting with the LoI in all replicates of any experiment
profiling chromatin interactions. This constitutes the positive set of sequences for the corre-
sponding classifier. Those denoted by filled black boxes ( ) correspond to loci that are not called
significantly interacting in any of the replicates. This constitutes the negative set of sequences
for the corresponding classifier. This leaves those loci which are called significantly interacting
in at least one, but not in all of the replicates. They are visualized by unfilled boxes ( ) and are
not used by the classifier. The genomic loci along the columns of the contact matrix (c1, c2,
c3,...,cN) are the LoI for which we build locus-specific classifiers.
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Experimental Setup

For each model, the cost parameter for SVM is varied in the range 10−3, 10−2, . . . , 103.
We performed experiments with K -mer values 3 and 5 and the maximum distance
between K -mers as 100. The ODH kernel has no other hyperparameters to be tuned.
Intuitively, a model built with K -mer value 5 encodes more specificity while the K -
mer value 3 maintains relative generality. We perform a 5-fold nested cross-validation
to select the best performing cost-value for the SVM while the ODH feature repre-
sentation parameters are fixed.

3.5.2 New Visualization Techniques

We developed two new visualization techniques suitable for our models using the ODH
representation. The aim is to enable better interpretation of the sequence signals
that contributed towards prediction of locus-specific interaction partners. The first of
these two techniques is ‘Absolute Max Per Distance’ and, the second is ‘Position-Wise
Weight Matrix (PWWM)-based TopN’.

Absolute Max Per Distance (AMPD) visualizations

We introduced the ODH representation in Section 2.3.3. Recall that the dimension-
ality of the ODH feature vector for a given alphabet

∑
using oligomer length K and

distances up to D is [(|
∑

|K)2 × (D + 1)]. For the DNA sequence alphabet, and
oligomer length 3 and 5, this gives 413,696 and 105,906,176 dimensions, respectively.
The SVM weight vector for a model has the same dimensionality as the feature vec-
tor (cf. Subsection 2.3.1). This implies, in this scenario that its dimensionality is
the same as the dimensionality of the ODH feature vector. Thus, each entry of the
SVM weight vector is the coefficient assigned to a K-mer pair separated by a distance
d ∈ [0, 1, . . . , D]. For each of our locus-specific models, the 5-fold outer cross valida-
tion gives 5 different SVM weight vectors. These five individual weight vectors are
averaged to obtain one representative weight vector for a per-locus model. From this
averaged weight vector, we note two K -mer pairs per distance value, one that was
assigned the most positive coefficient and the other, most negative. A positive coeffi-
cient means the d-separated K-mer pair is an important feature among the positive
sequences, while a negative coefficient means it is an important feature to classify
the sequence as negative. All such selected K-mers at the various distance values
are visualized to provide a distance-centric view of the important features. Such a
visualization for region 9 of cell line GM12878 is shown in Figure 3.6.3. We call
these visualizations ‘Absolute Max Per Distance’ (AMPD) visualizations. For better
readability, the K -mer pairs at even distance values are arranged in the outer column
and those at odd distance values in the inner column. Figures 3.6.3, 3.6.5, and 3.6.8
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show examples of ‘AMPD’ visualization for different regions across the three cell lines
GM12878, K562 and HeLa-S3. In particular, these are for regions 9, 7 and 6 from
among those given in Table 3.4.1.

Position-Wise Weight Matrix (PWWM)-based ‘TopN’ visualizations

Independently, the entries of the averaged weight vector are sorted in descending or-
der and then thresholded to reveal the top 25 scoring entries. Figure 3.6.4 visualizes
only those selected top-25 K -mer pairs. Here, the (D + 1) distances are arranged
radially. Each spoke gives the magnitude of the highest-scoring K -mer pair at the
corresponding distance. If the magnitude does not cross the threshold value, that
spoke is plotted in gray. If it does, it is plotted in ‘blue’ when it has a positive
contribution (see Figure 3.6.4), and in ‘red’ when it has a negative contribution (see
Figure 3.6.9). We call these visualizations ‘Top25’, or more generally, ‘TopN’ visual-
izations where one can choose a suitable value for ‘N’. Since there can be more than
one entry at the same distance d among the top-N, this leads to sequence logo-like rep-
resentations. At any distance d, all motifs that exceeded the threshold are collected
along with their weight magnitudes and stacked one over the other to finally repre-
sent them with a consensus motif. This consensus motif is obtained by constructing
a ‘Position-Wise Weight Matrix’ (PWWM) of dimension (|

∑
| × 2K ). It represents

the nucleotides appearing at each position from 1 to 2K along with their relative
contribution to the weight vector. A dummy example illustrating this is shown in
Table 3.5.1. This PWWM is computed as follows. For position p ∈ {1, . . . , 2K}, the

Table 3.5.1: A dummy PWWM for selected 3-mer pairs at certain distance d. |w1|, |w2|, and
|w3| are magnitudes of the weights for the example 3-mer pairs. `A', `C', `G' and `T' are
the rows corresponding to the nucleotides. Position, p ∈ {1, . . . , 6}. Each cell is divided by
W = (|w1|+ |w2|+ |w3|).

3-mer pairs
|w1| A A A G A A
|w2| G A A A G A
|w3| A A G A A A
`A' 1

W
(|w1|+ |w3|) 1

W
(|w1|+ |w2|+ |w3|) 1

W
(|w1|+ |w2|) 1

W
(|w2|+ |w3|) 1

W
(|w1|+ |w3|) 1

W
(|w1|+ |w2|+ |w3|)

`C' 0 0 0 0 0 0
`G' 1

W
(|w2|) 0 1

W
(|w3|) 1

W
(|w1|) 1

W
(|w2|) 0

`T' 0 0 0 0 0 0
p 1 2 3 4 5 6

matrix cell (`A'/`C'/`G'/`T', p) is populated with the sum of the weight contribu-
tion of those motifs in which the given nucleotide is present at position p. The matrix
is then normalized for the column entries to sum up to 1. The resulting consensus
motifs are represented as sequence logos (Schneider and Stephens, 1990). Examples
of ‘Top25’ visualizations are shown in Figures 3.6.4, 3.6.6, 3.6.7, 3.6.9, and 3.6.10.
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3.5.3 Implementation and Availability of Software

As compared to the protein sequences used in (Lingner and Meinicke, 2006), the
ODH feature vectors for the DNA sequences used in this study are relatively dense.
This is because the DNA alphabet is just 4 characters, and many of these sequences
are very long (cf. Figure 3.4.1). To tackle this scenario, we adapted the MAT-
LAB3 code provided by the authors for ODH feature representation and kernel
computation (Lingner and Meinicke, 2006). We used LIBSVM’s SVM implemen-
tation (Chang and Lin, 2011). Our complete pipeline with all the wrappers, and
the additional MTL implementation is written in MATLAB. Our pipeline is named
‘Samarth’, and made available for download at the supplemental website http:
//bioinf.mpi-inf.mpg.de/publications/samarth/ as free software for academic
use, with no warranty or liability. The ‘AMPD’ and the ‘TopN’ visualizations were
created using custom MATLAB and R (R Core Team, 2013) scripts respectively.

3.6 Results
We used the pipeline described above for predicting the long-range interaction part-
ners of each of the ten model-defining loci per cell line. In this section we describe
the results of these computational experiments.

3.6.1 Prediction of Long-Range Chromatin Interactions is Possible from
the Sequence Alone Using Non-Linear SVMs

Table 3.6.1 shows the test AUC (area under the ROC curve) values for all regions in
all the three cell lines resulting from our 5-fold nested cross validation. Furthermore,
our pipeline is also capable of handling imbalances in the data. For all the model-
defining regions in our computational experiments, the positive class is in minority
(see columns #TP and #NP reproduced from Table 3.4.1). We report performances
with data imbalance handled (see Section 3.5.1). The average test AUC values for
the individual tasks are as follows.

Oligomer length 3 {GM12878, K562, HeLa-S3}: {0.7251, 0.7534, 0.6782};

Oligomer length 5 {GM12878, K562, HeLa-S3}: {0.7443, 0.7716, 0.7153}.

Box plots of all the test performances for different regions in all three cell lines are
given in Figure 3.6.1, and Figure 3.6.2. Owing to small sample sizes, the model test

3MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts,
United States.
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Figure 3.6.1: Box-plots of SVC performances for cell lines GM12878, K562 and Hela-S3. Five
regions (numbered ‘A0-A4’, ‘B0-B4’ and ‘C0-C4’ for GM12878, K562 and Hela-S3 respectively)
out of 10 are shown. Individual tasks setting, oligomer lengths = {3, 5} in purple and light blue
respectively. MTL with 10 tasks, oligomer lengths = {3, 5} in orange and green. Distances
between K-mer pairs upto D = 100. Box-plots for the other five regions among the 10 are
given in Figure 3.6.2.
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Figure 3.6.2: Box-plots of SVC performances for further five regions in cell lines GM12878,
K562 and Hela-S3. Five regions (numbered ‘A5-A9’, ‘B5-B9’ and ‘C5-C9’ for GM12878, K562
and Hela-S3 respectively) out of 10 are shown. Individual tasks setting, oligomer lengths =
{3, 5} in purple and light blue respectively. MTL with 10 tasks, oligomer lengths = {3, 5} in
orange and green. Distances between K-mer pairs upto D = 100. Box-plots for the other five
regions among the 10 are given in Figure 3.6.1.

67



performances mostly show high variance (Figures 3.6.1 and 3.6.2) .

3.6.2 Tandem Repeat Motifs are an Important Feature Distinguishing
Interaction Partners

Figure 3.6.3 and Figure 3.6.4 show our new visualizations of the set of K -mer pairs
that influenced the prediction the most. Recall that, in both these visualizations,
any K -mer pair is represented as an adjoined {2K}-mer separated by ‘|’, e.g., 3-mer
pairs as 6-mers, and we loosely address these K -mer pairs as ‘motifs’, although they
are not contiguous. Figure 3.6.3 shows the ‘Absolute Max Per Distance’ (AMPD)
visualization for region 9 in cell line GM12878. The AMPD visualization shows, at
each distance value (plotted on vertical axis), the K -mer pair that contributes the
most in predicting a locus as positive and negative. The weights of these K -mer pairs
(fetched from the SVM weight vector) are plotted on the horizontal axis. Figure 3.6.3
top panel shows 6-mers consisting of the 3-mer pairs separated by ‘|’, and in the
bottom panel are the adjoined 5-mers. Owing to the high dimensionality of the 5-
mer case, we observe that the magnitudes of the weights quickly shrink in this case.
We filter this information further and visualize only the top few high-scoring features
in the ‘Top25’ visualization in Figure 3.6.4.

Across various regions, among many motifs, short tandem repeat sequences, espe-
cially di- and trinucleotide repeats, are prominently observed at various distances.
Our ‘AMPD’ visualizations facilitate spotting of patterns spread over distances while
the ‘TopN’ visualizations can help spot possibly hidden shorter K -mer signals. Refer
to Figure 3.6.3 for the following discussion. The dinucleotide ‘GT’ being repeated is
observed to have a maximal contribution for distances up to 26 and 34 in the 3-mers
and the 5-mers case. In both the cases, the model identifies it as an important feature
towards predicting a locus as a potential interacting partner of region 9 in GM12878.
Additionally, the 3-mer case shows patterns prominently containing more ‘T’s sepa-
rated by ∼30-60 bp as a negatively contributing feature. They are absent from the set
of positive contributors. Interestingly, we observe various such patterns for different
regions across cell lines.

Our literature search revealed some relevant studies on tandem repeat sequences
and their potential biological roles. A 1990 review by Vogt provides an exten-
sive account of the potential functions of tandem repeat sequences in the human
genome (Vogt, 1990). It includes an exhaustive discussion of the various repeat se-
quences, viz. mono-, di-, tri-, tetranucleotides and beyond. It also postulates their
association with a multitude of nuclear proteins that help them assume specific chro-
mosomal structures. The author terms this ability of the tandem sequence repeat
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GM12878: Highest scoring motifs for region 9

TTT|TTT ATA|ATAATT|TTT GTG|TGT
AAA|AAA GTG|GTGAAA|AAA TTT|TTT
AAA|AAA TTT|TTT

TTC|TTT GTG|TGTTTG|TCC GTG|GTG
AAA|AAA GTG|TGTTGT|TTT TGT|TGT
GGG|GGA GTG|TGT

CTT|AAG TGT|TGTAAA|GGA GTG|TGT
ATT|TTT GTG|GTG

AAA|AAA GTG|TGTAAA|CAG GTG|GTG
TTT|TAA GTG|TGTTTT|TGT TGT|TGT
TTT|GAA GTG|TGT

TTT|GAA GTG|GTGAAA|TTT GTG|TGT
AAA|TTT GTG|GTGTTT|AAT TGT|GTG

AGA|CAG AAT|AAT
AAA|TTT TGT|GTGAAA|TTT GTG|GTG
AAA|AGT TGT|GTGTGT|TTT TGT|TGT
AAA|AAA AGG|CTG

ATT|ATT AAT|AAATTT|AAA TAA|AAA
AAA|TTA TTT|TTTTTA|ATT TAT|TTT
TTC|TTT AAA|TAT
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TTT|ATT CCT|CAGTTT|TTT AAG|ATA
TTT|TTT AAA|TTC

TTT|TTT TTT|ACTTTT|TTT AAA|AAA
TTT|AAA AGG|CTG

TTT|AAA TAA|AATTTT|AAA CAA|TTT
TTT|TTT AGC|ACATTT|TTT CTT|TCT
AAA|CTA AAA|TGT

AAA|TAG CTG|AGCCTG|CCT CCA|ATA
TTT|TTT AAG|ATATTT|TTT AAT|TCC
TTT|TTT TTT|AAA

TTT|TTT TTT|AAATTT|TTT TAA|TAA
TTT|TTT ACA|ACATTT|TTT ACA|ACA
TTT|TTT AAA|GAA

TTT|TTT AAT|AAATTT|TTT AAA|AAA
AAA|GAA CCC|CAGTTT|TTT ATC|TTT
TTT|TTT TTT|TGG

AAA|ATT CAC|AAAAAA|CTT AGG|GAA
GAG|AAA AAA|AGA

TTT|AAA AAT|TTTTTT|TTT AGA|TTT
TTT|TTC AGA|TTTTGG|ACC AAT|ATA
TCC|TTT GCC|AGT

TGA|TTT TCA|AGTCCT|TTT AAA|ACA
AAA|TCA AAA|CAAATT|AAA CTG|TGT
AAA|ACC ATA|TCA

TTT|TTT CAA|AATTTT|TTG TTC|TAA
TCT|TTT ACT|TAACTC|TTT ACT|AAA
ACA|TTT CAG|CTG

TTG|TTT ATA|TTATTG|CTT AAT|AAT
TTG|TTT AAA|AAAAAA|GCA CAA|AAA
TTG|AAA AAA|AAA

TCC|TTT TGT|GAACTC|TTT AAA|AAG
AAA|TGT TTT|TCAAAA|CTT CAG|TTC
TTT|GAG GAG|TGT

TGG|AAA AGA|TGTTTT|TTT TAA|TTT
TTT|TTT TGC|CCA

CAG|TTT TAA|TCTTTT|CTT GAA|AAA
CTG|TCC AAA|TTTTTT|CCA AAA|TTT
TTT|CTT CAA|AAA

TTT|TTT ACA|ACATTT|TTT TTG|ATA
TTT|TTT AAA|ATGAAA|ATT AAA|AGA
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GM12878: Highest scoring motifs for region 9

ATTTT|ATTTT AATAA|AATAAAAAAA|AAAAA AAAAT|AAATA
AAAAA|AAAAA AAAAT|AATAAAAAAA|AAAAA GTGTG|TGTGT
AAAAA|AAAAA GTGTG|GTGTG

AAAAA|AAAAA GTGTG|TGTGTAAAAA|AAAAA GTGTG|GTGTG
AAAAA|AAAAA GTGTG|TGTGTAAAAA|AAAAA GTGTG|GTGTG
AAAAA|AAAAA GTGTG|TGTGT

AAAAA|AAAAA GTGTG|GTGTGAAAAA|AAAAA GTGTG|TGTGT
CACAC|CACAC GTGTG|GTGTG

ACACA|CACAC GTGTG|TGTGTAAAAA|AAAAA GTGTG|GTGTG
AAAAA|AAAAA GTGTG|TGTGTAAAAA|AAAAA GTGTG|GTGTG
TGGGA|GCCAC GTGTG|TGTGT

CTGGG|GCCAC GTGTG|GTGTGACACA|CACAC GTGTG|TGTGT
TCCCA|GAGGC GTGTG|GTGTGATCCC|GAGGC GTGTG|TGTGT
AATCC|GAGGC GTGTG|GTGTG

GCTGG|GTAAT GTGTG|TGTGTGCTGG|TAATC GTGTG|GTGTG
AGCTG|TAATC GTGTG|TGTGTGCTGG|ATCCC GTGTG|GTGTG
CTGGG|CCCAG GTGTG|TGTGT

CTGGG|CCAGC GTGTG|GTGTGGCTGG|CCAGC GTGTG|TGTGT
CACCT|AGGCA GTGTG|GTGTGTTTTT|TTTTT GTGTG|TGTGT
CACCT|GCAGG GTGTG|GTGTG

AAAAA|AAAAA GTGTG|TGTGTTTTTT|TTTTT GTGTG|GTGTG
TTTTT|TTTTT CAGCC|AAAAATTTTT|TTTTT GTGTG|GTGTG
TTTTT|TTTTT AAAAA|TTTTT

TTTTT|TTTTT AAAAA|TTTTTTTTTT|TTTTT AAAAA|TTTTT
GGTCT|CCTCC GAAAG|ATTTG

GGTCT|CTCCC AGCCT|CAAAATGGTC|CTCCC CAGCC|CAAAA
TGGTC|TCCCA TTCAA|AAAAACTGGT|TCCCA GCCTG|TTGAA
GCTGG|TCCCA ATCAC|AAACC

CTGGT|CCAAA ATCAC|AACCCTTTTT|TTTTT GATCA|AACCC
GAGAC|AAAAA AAAAA|AAGAAGGTCT|GTGCT GCCCA|CTCCC
GGTCT|TGCTG AGCCT|TTTTT

TGGTC|TGCTG TTTTT|TTAAATCAAG|GCCAC TTTTT|AACTC
TCAAG|CCACC TATAT|TATATGTTGG|TCCCA ACAGG|ACTCT
TGTTG|TCCCA AGTAG|GTAGA

TTTTT|TTTTT AGAGG|AGAAAGGTCT|ATTAC TCACA|TAAAA
TGGTC|ATTAC TTTTT|CTCACCTGGT|ATTAC TGTTT|AGTCT
CTGGT|TTACA TGAGG|ACTGC

CTGGT|TACAG CTGAG|ACTGCCTGGT|ACAGG CTGAG|CTGCA
CTGGT|CAGGC GATCA|AAAAT

TGTGT|TGTGT GCTGA|TGCACCTCTG|TCAAG GCTGA|GCACT
TGTGT|TGTGT GGCTG|GCACTGGTCT|TGAGC CTGAG|CTCCA
GGTCT|GAGCC GCTGA|CTCCA

GGTCT|AGCCA GCTGA|TCCAGCTGGT|GAGCC GATCA|AAAAA
CTGGT|AGCCA TTTTT|AACCTCTGGT|GCCAC GCTGA|AGCCT
GCTGG|GCCAC GGCTG|AGCCT

GGGTT|TGCTG CTAAA|ATAAACAGGC|AGCCA GAGGC|AGCCT
CAGGC|GCCAC CTACT|GCACTAGGCT|CTCCT GCTAC|GCACT
CCAGG|CCACC AGCTA|GCACT

GAGGC|AAAAA CAGCT|GCACTAAAAA|AAAAA CTGAG|GACAG
TTTTT|TCCCA AGCTA|CTCCAGTATT|CCTCC AAATA|AAAAT
TTTTT|CCAAA GTCCC|GCACT

GAGGC|AAAAA ATAGA|AATAAAAAAA|AAAAA CAGCT|CAGCC
AAAAA|AAAAA AAAAA|AAGAAAAAAA|AAAAA AAAAA|AGAAA
TCACT|TGGCT TTTTT|CTCAA

AGATG|ACAGG CCTGT|GCACTGAGAT|ACAGG GCCTG|GCACT
GGTTT|GAGCC GCCTG|CACTC

CACTT|AAAAA TTTCT|CACTTAAAAA|AAAAA GCCTG|CTCCA
AGTGG|GCCAC TTTTT|GATTCAGACC|GGAGG TTTTT|GATTC

TTTTT|ATTAC CTCAC|TTTTT
GAGAT|TGAGC TTTTT|CTGCCTTTTT|TACAG TTTTT|CTGCC
ACAAA|TGAGC TTTTT|TGCCTGAGAT|GCCAC TTTTT|GCCTC
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Figure 3.6.3: ‘AMPD’ visualization of the informativeK -mer pairs from the predictor for region
9 in GM12878 (Refer Table 3.6.1 for region details). Top: At distances in {0, . . . , 100}, the
3-mer pair that maximally contributes towards positive and negative classification of a given
locus is shown. Weights are shown on the horizontal axis, distances on the vertical axis. Below:
‘AMPD’ visualization for the 5-mer case.
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Figure 3.6.4: ‘Top25’ visualization of the informative 3-mer pairs separated by various distances
and their magnitudes from the predictor for region 7 in GM12878 (Refer Table 3.4.1 for region
details). Top-25 3-mer pairs, with weight magnitudes higher than the threshold (dashed inner
circle), for the positive class (blue). The dashed inner circle is the threshold to select the top-25
entries of the averaged SVM weight vector.
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blocks to render locus-specific higher order structure, and, to play a role in orga-
nization as the ‘chromatin folding code’ (Vogt, 1990). In the review (Vogt, 1990),
the author also points to a specific case of the dinucleotide `TG' as a simple repeat-
ing block, which has already been shown to have an enhancer function in vitro in
as early as 1984 (Hamada et al., 1984). More recently, a 2014 study by Yáñez-Cuna
et al. identified dinucleotide repeat motifs (DRMs) as general features that can render
a nonfunctional sequence into an active enhancer element. Another comprehensive
study of 2014 suggests a potential role of simple sequence repeats (SSRs), including
their repeat lengths, in genome regulation and organization (Ramamoorthy et al.,
2014). These sequence repeats are broadly termed as variable number tandem re-
peats (VNTRs). VNTRs have already been implicated in many complex neurological
disorders (e.g., Huntington disease (Malaspina et al., 2001)), and are generally known
to be polymorphic (Brookes, 2013).

There are more studies that bolster this hypothesis concerning the general role of
short tandem repeats. For example, (Gymrek et al., 2016) finds significant expression
simple tandem repeats (eSTRs) to be enriched in clinically relevant phenotypes, and
contributing to the variations in gene expression. Specific to the three dimensional
architecture of the chromatin, (Mourad and Cuvier, 2016) suggests that the repeat
regions also play a role at the borders of TADs. X-chromosome inactivation (XCI),
the process of inactivating a copy of the X-chromosome in a female mammal, has
been of particular interest to the community. It has been studied with regards to
the three-dimensional organization. The work by Rao et al. (2014) that produced
kilobase-resolution Hi-C data already highlights a specific case of the inactive X (Xi)
chromosome containing large loops anchored at CTCF-binding repeats. Studies also
report on the role of the macrosatellite repeat DXZ4 in Xi chromosome using Hi-
C (Darrow et al., 2016; Giorgetti et al., 2016). Darrow et al. (2016) report that
in the Xi chromosome many superloops4 are often anchored at the DXZ4 repeats,
and that there are two superdomains5 formed whose separating boundary lies at the
macrosatellite DXZ46. The authors specifically perform deletion of DXZ4 and observe
that this leads to disruption of the superloops and superdomains, thus rendering
the macrosatellite DXZ4 essential for XCI. The work of Giorgetti et al. (2016) that
studied the role of Xist in Xi chromosome organization also similarly reports loss of
superdomains (or mega-domains, as they termed it) upon deletion of DXZ4.

We wish to note that among recent work discussed above, studies from 2016 were
published while our manuscript, (Nikumbh and Pfeifer, 2017), was in review.

4superloops: extremely large loops within superdomains
5superdomains: contact domains unusually larger than TADs
6superloops and superdomains, both span several dozen megabases (Darrow et al., 2016)
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3.6.3 Identifying Cell-Line Specific Characteristic Signals

An advantage of studying locus-specific interactions at the sequence-level is realized
when our models can reveal the characteristic signals among interaction partners of
the same locus in two different cell lines. Consider the locus chr22:32170492-32188129
which is, both, region 6 and region 7 among our models for HeLa-S3 and K562 re-
spectively (see Table 3.6.1). Refer to their ‘AMPD’ visualizations with 3-mers and
5-mers in Figures 3.6.8 and 3.6.5 respectively. For K562, the ‘CA’ dinucleotide repeat
sequence stretch of length ∼20 markedly denotes a non-interacting partner while this
same repeat sequence seems to be interrupted with a short stretch of ‘T’s in HeLa-S3.
Also, another repeat sequence, ‘AGA’, is notable beyond distance values 50 among
the non-interacting partners for this locus in K562 as compared to HeLa-S3, where
it is only intermittently observed. Similarly, these signals are also picked up by our
5-mer models. The corresponding ‘Top25’ visualizations for these regions are given
in Figures 3.6.6, 3.6.7, 3.6.9, and 3.6.10.

3.6.4 Multitask Learning (MTL) Helps Mitigate Issue of Having Too Few
Interacting Partners per Locus

Recall from Section 2.3.5 that any individual learning problem can be termed as
a ‘task’, or in other words, is a single task. Thus, each locus-specific prediction
problem in our scenario is termed as a single task. We also stated in Section 3.4
that the choice of the ten regions for this study was made based on the number of
positive samples available for each task. The number of positive samples decreases
from region 0 through 9 in each cell line (Table 3.6.1). Such small samples sizes affect
the learning ability of machine learning methods including the SVMs, and often lead
to a loss of generalizability. These small sample sizes in the single-task setting can
be mitigated with the help of the so-called ‘multitask’ setting (see Section 2.3.5 for
an introduction). In order to evaluate the efficacy of MTL for this problem, we
used the available 10 individual tasks. Here, to compute the task similarity, we used
the ‘model-defining’ locus (the LoI) information, i.e., the genetic sequence at this
locus. The locus sequence of every ‘model-defining’ region was also represented as
an ODH feature vector using the K -mer values 3 and 5, separately, and maximum
distance 100. The similarities between these regions (in turn, the tasks) were given
by dot products (ODH kernel). For single-task models that used oligomer length
3 and 5 representations for the input sample sequences, we used the corresponding
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K562: Highest scoring motifs for region 7

A TA | A TA TTT| TTT
CA C| A CA A A A | A A AA CA | A CA A A A | A A A
A CA | CA C A A A | A A ACA C| CA C TTT| TGT
A CA | CA C TTT| TTACA C| CA C A A A | A A A
A CA | CA C A A A | A A ACA C| CA C A A A | A A A
CA C| A CA TCT| A A AA CA | A CA TTT| TTTCA C| A CA TTA | TTT

A CA | A CA TTT| TTTA CA | CA C A A A | TA G
A CA | A CA TTA | A A ACA C| A CA TTT| TTT
A CA | A CA TTT| TTTCA C| A CA TTT| TTT
CA C| CA C TTT| TTTCA C| A CA TTT| TTTA CA | A CA TTT| TTT

A CA | CA C TTT| TTTA GA | A GA TTT| A TC
A A A | A A A TTG| TTTA A A | A A A CCC| CCC
A A A | A A A TTT| TTTA CA | A CA A CA | A A A
CA C| A CA A A A | A A TA A A | A A A A TT| TGG
A A A | A A A TTT| CTTCA C| CA C TTG| TTTCA C| A CA CCT| CTT

A CA | A CA GTT| TTTA CA | CA C GA G| TTT
A A A | A A G TTT| A A AA A A | A A G TGT| TTT
A GA | A GA A A A | TTTA A G| A GA TTT| TCT
A A A | TGA A A A | GTAA A A | GA G A A A | TCACA T| CA T A A A | TTT

A A A | A A G A A A | TTTA CA | A CA A A A | TTT
A CA | CA C TTT| TTTTTT| CCC TTT| TTT
A A A | A GA TTT| TTTA CA | A CA TTT| TTT
TTC| CA T TTT| TTTTCT| CCC TTT| TTT

A GA | A GA TTT| TTGA TT| TA T A A A | TTTA CA | CA C A A A | TTT
TGA | A A A TTT| TTTA TT| TGA TCA | CTC
GA A | A GA A A A | TTTGA A | CCA CA G| TTG
GA G| GA G A A C| TTTA A T| A GA TGT| TTT
A A A | A GA A A A | TTTA GA | GA G A A A | TTT
A GA | A GA A A A | TTTTCC| TTT A A A | TTTCTA | TTT A A A | TTT

CTG| TCC A A A | TTTA GA | A GA TTT| TGA
TTT| CTC A GA | A A ACA A | A GA A GT| A A A
CTT| CA T TTT| TTTA A A | A A G CA G| TCA
TA C| A TA TGA | TTTCA A | TCT TTT| TTTTCC| TA A TTT| TTT

CA T| TGA TTT| TTTA A G| TCA TTT| TTT
TCC| TTC TTT| TTTCA G| TGG TTT| TTT

A A G| A GA TTT| TTTCA T| TTC TTT| TTT
A GA | A GA TTT| TTTA TA | A TA CTT| TTT
A CA | TCC A A A | GGAA CA | A A G A A A | GA GGA T| CCT TGT| TTT

A GA | GGG A A A | TTTA GA | A GA A A A | TTT
A GA | CA G TTT| TTTA GA | A GA A A A | GGA
CA G| A GA A A A | GA GA GA | A GA TTT| TTT
GA G| A GA TTT| TTTA GA | A GA TTT| TGTCTC| CTG TTT| TTT

A TA | A A A TTT| TTTA GA | TGA TTT| TTT
A GA | A GA TTT| TTTA GA | GA G TTT| TTT
A GA | A GA TTT| TTTGGG| TGA TGT| TGG
A GA | A GA TTT| TTTCTC| TCA TTT| TTT
A TG| A TG TTT| TTT
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K562: Highest scoring motifs for region 7

A CA CA | A CA CA A A A A A | A A A A A
CA CA C| A CA CA A A A A A | A A A A ACA CA C| CA CA C TTTTT| TTTTT
CA CA C| A CA CA TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
CA CA C| A CA CA TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
CA CA C| A CA CA TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
A CA CA | CA CA C TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTT

A CA CA | A CA CA TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTT
A CA CA | A CA CA TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTT
A CA CA | A CA CA TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTT
CA CA C| CA CA C TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTTCA CA C| CA CA C GCCTC| TA CA G

A CA CA | CA CA C GCCTC| A CA GGA CA CA | A CA CA TTTGG| A TCA C
A CA CA | CA CA C A CTTT| GA TCAA CA CA | A CA CA CA CTT| GA TCA
A CA CA | CA CA C CCTCA | TA CA GCA CA C| CA CA C GCCTC| TA CA G
A CA CA | CA CA C TGCCT| TA CA GA CA CA | A CA CA CTGCC| TA CA G
A CA CA | CA CA C TCCTG| GCCTCCA CA C| CA CA C GGCTC| A GGCCA CA CA | CA CA C TGGCT| A GGCC

CA CA C| CA CA C CTCCT| CTCCCA CA CA | CA CA C TTA GC| CA GCT
CA CA C| CA CA C GTA A T| GA TCAA CA CA | CA CA C TGTA A | GA TCA
A CA CA | A CA CA CCTGT| GGA TCCA CA C| A CA CA GCCTC| GCCA C
CA CA C| CA CA C CCTGT| A TCA CCA CA C| A CA CA GCCTG| A TCA CA CA CA | A CA CA GCTGA | TGCA G

A CA CA | CA CA C CCA GC| CA GGACA CA C| CA CA C CCA GC| A GGA G
CA CA C| A CA CA A A A A A | TTTTTCA CA C| CA CA C TTTTT| TTTTT
CA CA C| A CA CA TTA GC| A GGCTA CA CA | A CA CA TGGCT| GA TCA
A CA CA | CA CA C A A A A A | TTTTTCA CA C| CA CA C A A A A A | TTTTT
CA CA C| A CA CA TGA A C| TCCA GCA CA C| CA CA C CCTGT| CA GGACA CA C| A CA CA GCTA C| TTGCA

TTTTT| CGA TC A GCTA | TTGCATGTA T| TCCTG CA GCT| TTGCA
TA TTT| TGA CC CA GCT| TGCA GA TGTT| CCCA A CCCA G| TTGCA

A GA GA | A GA GA CCCA G| TGCA GGA GA G| A GA GA CCCA G| GCA GT
A GA GA | A GA GA TCCCA | GCA GTGA GA G| A GA GA A A A A A | TTTTT
A GA GA | A GA GA A A A A A | TTTTTA TTTT| TGA TC A A A A A | TTTTTA GA GA | A GA GA TGCA G| A A A A A

TTTTT| CA CTG TTGCA | A A A A AA GA GA | A GA GA TTGCA | A A A A A
GA GA G| A GA GA TGGA G| GCCTCA GA GA | A GA GA A GGTT| A A A A A
GA GA G| A GA GA A A A A A | GGA GGA GA GA | A GA GA CTGA G| TCCA G
CA CA C| A CA CA GA TCA | CA A A AA GA GA | A GA GA GGA GG| CA CTCA TTTT| TGA TC TTTTT| TTTTT

A CA GA | A GA GA TTTTT| TTTTTTTTTT| CCTCC TTTTT| TTTTT
A GA GA | A GA GA TTTTT| TTTTTTTTTT| TTGGC CCA GG| GA GCC
A GA GA | A GA GA CCA GG| A GCCATTTTT| CCTCC TTTTT| GCCTC
A GA GA | A GA GA CA GCT| TGCA CTTTTT| CTCCT A GCTA | CA CTC
A GA GA | A GA GA CA GCT| CA CTCA GA GA | GA GA G CCA GC| CA CTCA GA GA | A GA GA CCCA G| CA CTC

A GA GA | GA GA G TCCCA | CA CTCA GA GA | A GA GA CCA GC| TCCA G
GA GA G| A GA GA CCCA G| TCCA GA GA GA | A GA GA TTA GC| TTGCA
CTCA G| TGTTG TTA GC| TGCA GA GA GA | A GA GA A TTA G| TGCA G
TTTTT| CCA A A A A TTA | TGCA GA GA GA | A GA GA A A A TT| TGCA GTTTTT| A A A GT CCCA G| CTGGG

A GA GA | A GA GA A A A A A | TGCA GCA CTG| A TTTT CCA GG| GGA TT
A GA GA | A GA GA A A A A T| A GTGATTTTT| GA TTC A A A A A | TTTTT
A GA GA | A GA GA A A A A A | TTTTTA GA GA | GA GA G TCTCT| GA GGC
A GA GA | A GA GA CCCA G| TA CA GA TA TA | TTTTT TTA GC| A GA TC
A GA GA | A GA GA TGA GG| A A A A A
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Figure 3.6.5: ‘AMPD’ visualization of the informativeK-mer pairs from the classifier for region
7 in K562 (Refer Table 3.4.1 for region details). Top panel: At distances in (0-100), the 3-mer
pair that maximally contributes towards positive and negative classification of a given locus is
shown. Weights are shown on the horizontal axis, distances on the vertical axis. Bottom panel:
Visualization of the 5-mer case.
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Figure 3.6.6: ‘Top25’ visualization of the informative 3-mer pairs separated by various distances
and their magnitudes from the classifier for region 7 in K562 (Refer Table 3.4.1 for region
details). Top panel: Top-25 3-mer pairs contributing to predicting a locus as belonging to the
negative class (red); Bottom: Top-25 5-mer pairs. Dashed inner circle is the threshold to select
the top-25 dimensions of the SVM weight vector.
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Figure 3.6.7: ‘Top25’ visualization of the informative 3-mer pairs separated by various distances
and their magnitudes from the classifier for region 7 in K562 (Refer Table 3.4.1 for region
details). Top panel: Top-25 3-mer pairs contributing to predicting a locus as belonging to the
positive class (blue); Bottom: Top-25 5-mer pairs. Dashed inner circle is the threshold to select
the top-25 dimensions of the SVM weight vector.
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HeLa: Highest scoring motifs for region 6

CA T| CA T A A A | A A A
CCA | CA T A A A | A A ATTT| TTT A A A | A A A
TTT| TTT A A A | A A ATTT| TTT TTT| TGT

A CA | CA C A A A | A CATTT| TTT A A A | A A A
TTT| TTT A A A | A A ATTT| TTT A A A | A A A
TTT| TTT A A A | A A AA CA | A CA A A A | A A ACA C| A CA A A A | A A A

A CA | A CA A A A | A A AA CA | CA C A A A | A A A
A CA | A CA A A A | A A ACA C| A CA CA C| CCC
TA A | A CA TTT| TTACTG| GCA TTA | TTT
CCT| TTC TTT| TTTA CA | CA C TTT| A TTA CA | A CA TTT| TTT

CCA | TA T TTT| TTTTGT| TGT TTT| TTT
A GA | A GA TTT| TTTTTT| CTC TTT| TTT
CTG| CTT TTT| TTTCCT| CTT TTT| TTT
TTT| A A A TTT| TTTTTT| CTC A TT| TTT
CTT| CCT TTT| TTTCTA | TTT TTT| TTTCTA | TTT CA G| CCA

TCA | TCA TTT| TTTCTG| A CA TTT| TTT
A TT| A A G CCT| GA GTGG| CTC A A A | CCT
CCA | TTG CTG| CCTTTT| CCT CCT| GA T
TTT| CCT A A A | CCTCTT| TGT A A A | CTGTA T| TTT GTG| TTT

TTT| GCT TTT| A TTA GA | TGA TTT| TCT
A GG| TGA A A A | A A ATTT| A A A TTT| TTT
GGC| TCC TTT| TTTTTT| TGG TTT| TTT
TTT| TGG TTT| TTTTTT| GGT TTT| TTT
TGG| CTC TTT| TTTCTT| CA G TTT| TTTA CA | CA C TTT| TTT

TTT| GA T CTG| A A ATA T| A A A A TT| CA G
CA T| A A A TCA | TCAA A T| TGA TTT| TA T
TTC| TCT TCA | TA GTCT| CA G A A A | A A A
TTT| CTC TTT| GTGTA A | A GG A GT| TTT
TGT| CTC TTT| TTTA CC| TGG TTT| TTTCTA | TTT CA G| CCA

TCC| CCT CCA | CCATGT| CTG CA G| TGA
CCA | CCT TTT| GTTCCA | TTT TTT| TTT
CTC| CCT CCA | CA CTGT| CTG TTT| CA C
CCT| CTG TA T| TTTTTT| TCT TTT| TTTTCC| TTT TTT| TTT

TTT| CTC TTT| TTTTTT| TA A CA G| A A A
TTT| TA A TTT| TGATTT| CTC TGA | GTG
A A T| A A A CTG| TTTCCA | TCT TTT| TTT
A GA | TCA CTT| TTTTTT| CA A TTT| TTC
TTT| CCT CA G| CA CA GG| CCA GGA | A A AA A G| A GG TTT| CTG

A GA | TTT TGG| A A AGGA | CTG TTC| TTT
GGG| TTT CTC| TTTGGC| TCT TGT| TTT
TCT| CTT TTT| TTTTTT| A A A TTT| TTT
TCT| GGC TTT| TCTA A A | GA G CCA | CTGA A A | GA G TTT| TTT

TTT| TGG TTT| TTTTCC| CA T TTT| TTT
GCT| TCC TTT| TTTTTT| GA T TTT| TTT
CTC| TGT TTT| TTGTTT| CA C A CA | GA A
A A G| TCC CTG| A A ACA T| CA T TTT| TTT
CCT| CCC TTT| TTT
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HeLa: Highest scoring motifs for region 6

A CA CA | A CA CA A A A A A | A A A A A
CA CA C| A CA CA A A A A A | A A A A AA CA CA | A CA CA A A A A A | A A A A A
A CA CA | CA CA C A A A A A | A A A A AA CA CA | A CA CA A A A A A | A A A A A
CA CA C| A CA CA A A A A A | A A A A AA CA CA | A CA CA A A A A A | A A A A A
CA CA C| A CA CA A A A A A | A A A A AA CA CA | A CA CA A A A A A | A A A A A
A CA CA | CA CA C A A A A A | A A A A AA CA CA | A CA CA A A A A A | A A A A AA CA CA | CA CA C A A A A A | A A A A A

CA CA C| CA CA C A A A A A | A A A A AA CA CA | CA CA C TTTTT| TTTTT
A CA CA | A CA CA TTTTT| TTTTTA CA CA | CA CA C TTTTT| TTTTT
A CA CA | A CA CA TTTTT| TTTTTCA CA C| A CA CA TTTTT| TTTTT
A CA CA | A CA CA TTTTT| TTTTTA CA CA | CA CA C TTTTT| TTTTTA CA CA | A CA CA CTGTA | GA GGC

A CA CA | CA CA C TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
A CA CA | CA CA C TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
A CA CA | CA CA C TTTTT| TTTTTA CA CA | A CA CA TTTTT| TTTTT
CA CA C| A CA CA CTCCT| GGA TTA CA CA | A CA CA TGCCT| A CA GG
CA CA C| A CA CA CCTGC| TA CA GA CA CA | A CA CA CCTGC| A CA GGCA CA C| A CA CA CCTGC| CA GGC

A CA CA | A CA CA CTCCT| A CA GGCA CA C| A CA CA TTA GC| CA GCT
CA CA C| CA CA C CTGTA | A GA A TCA CA C| A CA CA TTA GC| GCTA C
A CA CA | A CA CA TCA A G| GGGA TA CA CA | CA CA C TCA A G| GGA TT
A CA CA | A CA CA TCA A G| GA TTACA CA C| A CA CA GTA A T| CTTGAA CA CA | A CA CA TGTA A | CTTGA

GTA TT| TGGTC CCCA G| CTGGGTGTA T| TGGTC TCA A G| A CA GG
TGTA T| GGTCT TCA A G| CA GGCTGTGT| TGTGT GCTCA | GA TCA
TTTGT| GGTCT GA GTG| GGTTCTTTGT| GTCTC GGCTC| TCA GC
TTTTG| GTCTC GGA GG| CTGGGTTTTT| GTCTC GTGGC| A TCA C
A GCTG| TTTA G CA GGA | A A A A ATA TTT| CTCCT TGA GG| CTA CTTA TTT| TCCTG A GGCT| GGTTC

TGTA T| CTCCT CA GGC| GGTTCTGTA T| TCCTG CCA GG| GGTTC
TGTA T| CCTGA CCCA G| GGTTCGTA TT| TGA CC CCCA G| GTTCA
TGTA T| TGA CC GA TCA | TCTA CTTGTA | TGA CC TCA CT| A GCTG
CCTCC| TTTTA CA GCT| GTGA GGCCTC| TTTTA A TCA C| CTA A A
TTTTT| TGA TC A A A TT| GA GA ATTTTT| GA TCT A A A A T| GA GA ACTCA G| TTTTT CTGTA | TTGCA

TTTTT| CA CTG CTGTA | TGCA GA A A A A | A A A A A GTGCA | TCA GC
TTTTT| GA TCT CTGTA | CA GTGCTGGA | A CCTC CTGTA | A GTGA
TGTGT| TGTGT CTGTA | GTGA GGGCTG| A CCTC CTGTA | TGA GC
TTTTT| GA TCT GA TCA | CA A A ATA TA T| TA TA T GA GGC| TCTCTTTTTT| TCTGC GA GGC| CTCTA

TTTTT| CTGCC TTTTT| CCA CCTTTTT| CCTCC GGCTG| A GCCA
TTTTT| CTTGG CTGTA | GA GA TTTTTT| TTGGC GGA GG| A A A A A
A A A A A | TTTTT CCA GG| A GCCAA A A A A | TTTTT GGA GG| A A A A A
TTTTT| GCCTC GA GGC| A A A A ATTTTT| CCTCC GGA GG| A A A A A
TTTTT| CTCCC GA GTG| A GCTGTTTTT| TCCCA TGGGA | A A A A ATTTTT| CCCA A TTGGG| A A A A A

TTTTT| CCA A A CTGTA | CCA CTTTTTT| GCTCA A A TTA | GA GGT
CCTGG| TTTTT CTGTA | A CTGCGA GA C| TTA CA GGA GG| CA A A A
TTTTT| TTCA A TTA GC| TGCA GTTTTT| TCA A G A TTA G| TGCA G
TTTTT| TCA A G A A TTA | TGCA GCTTCT| TCTTC A A A TT| TGCA GTTTTT| CCA A A CCCA G| CTGGG

A TTTT| CCA A A A A A TT| CA GTGTTTTT| GA TTC A A TTA | GTGA G
TTTTT| GA TTC A A A TT| GTGA GTTTTT| GA TTC A A A A T| GTGA G
TCA CT| TTTTT A A A A T| TGA GCGA GA C| A GCCA TCA CT| TTTGT
TTTTT| TCTTC CTGTA | CTGGGTTTTT| TCTTC A TTA G| GA GA T

TGA TC| GCTA A A A TTA | GA GA T
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Figure 3.6.8: ‘AMPD’ visualization of the informativeK-mer pairs from the classifier for region
6 in HeLa-S3 (Refer Table 3.4.1 for region details). Top panel: At distances in (0-100), the 3-
mer pair that maximally contributes towards positive and negative classification of a given locus
is shown. Weights are shown on the horizontal axis, distances on the vertical axis. Bottom:
Visualization of the 5-mer case.
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Figure 3.6.9: ‘Top25’ visualization of the informative 3-mer pairs separated by various distances
and their magnitudes from the classifier for region 6 in HeLa-S3 (Refer Table 3.4.1 for region
details). Top panel: Top-25 3-mer pairs contributing to predicting a locus as belonging to the
negative class (red); Bottom: Top-25 5-mer pairs. Dashed inner circle is the threshold to select
the top-25 dimensions of the SVM weight vector.
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Figure 3.6.10: ‘Top25’ visualization of the informative 3-mer pairs separated by various dis-
tances and their magnitudes from the classifier for region 6 in HeLa (Refer Table 3.4.1 for
region details). Top panel: Top-25 3-mer pairs contributing to predicting a locus as belonging
to the positive class (blue); Bottom: Top-25 5-mer pairs. Dashed inner circle is the threshold
to select the top-25 dimensions of the SVM weight vector.
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task similarities also with oligomer length 3 and 5, respectively. The mean test AUC
values for the multitask setting with 10 tasks are shown in columns marked ‘C’ and
‘D’ (oligomer length 3 and 5, respectively) of Table 3.6.1. Mean performance increase
across all regions are:

Oligomer length 3 {GM12878, K562, HeLa-S3}: {0.13, 0.06, 0.13}

Oligomer length 5 {GM12878, K562, HeLa-S3}: {0.09, 0.06, 0.11}

Their box plots are shown in Figures 3.6.1 and 3.6.2. Performances in the MTL
setting mostly show reduced variance as compared to the single-task performances.

Thus, our pipeline in the MTL setting can mitigate the issue of having too few
interacting partners per locus. In the extreme case when a locus is not profiled, it
can identify putative interaction partners of the locus, provided that at least some
regions from the same cell line have been profiled with 4C or 5C .

3.6.5 Computational Validation with High-Resolution Hi-C

We attempted to test the ability of our locus-specific models trained on the restriction
fragment-resolution 5C data from (Sanyal et al., 2012) to predict interaction partners
of the same loci on high-resolution Hi-C data from (Rao et al., 2014). This section
describes this experiment in detail.

Preparation of Validation Data

(Rao et al., 2014) performed Hi-C experiments resulting in contact matrices at very
high-resolution for various cell lines including GM12878 and K562 (Rao et al., 2014).
Contact matrices are available for resolutions 1K, 5K, 10K, 25K bp, etc. For both
cell lines GM12878 and K562, we used information from cis-contact matrices at 5, 10
and 25K resolutions and considered 5K as our base resolution. That means the final
set of sequences that we used for validation are 5K bp long.

These Hi-C cis-contact matrices were normalized using Knight and Ruiz (KR) nor-
malization procedure (Knight and Ruiz, 2012). After normalizing, in order to iden-
tify significantly interacting partners of a locus, we computed the observed/expected
(O/E) values for each pair of loci. Following Lieberman-Aiden et al. (2009), we used
an ad-hoc cutoff of 2.5 to call an interaction significant. In other words, per con-
tact matrix, a locus with a normalized O/E value ≥ 2.5 was considered significantly
interacting with the LoI. The final set of loci significantly interacting with the LoI
is obtained by the stringent criterion described below. We performed the same pro-
cedure as above for contact matrices at resolutions 5, 10 and 25K. Corresponding
to our LoI, we marked those columns from the cis-contact matrix (of the relevant
chromosome) which have an overlap with the LoI. For example, if the LoI was 12,000
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bp long and matrix resolution 5K, we would mark three contiguous column bins in
the matrix. These contiguous columns are together considered to correspond to the
LoI in the 5C data. Then, we collected those bins along the rows of the contact ma-
trix which have a non-zero KR-normalized interaction frequency with the LoI. From
among these, bins which have a significant interaction with the LoI are considered as
positive samples at resolution 5K. The above procedure of calling significant interac-
tion partners is repeated for resolutions 10K and 25K. The final set of loci that are
considered significantly interacting with any particular LoI includes only those that
are significant at 5K resolution and also at 10K or 25K resolutions. In other words,
if a locus was deemed significant only at 5K resolution but not at 10K or 25K, then
we did not consider it a true positive.

These cis-interacting genomic loci from the high-resolution contact maps are treated
as unseen test sequences for the classifiers built for each region using the 5C data.
Each of these unseen test sequences is 5K bps long. In the pipeline, these are thus
treated similar to the 20% hold-out set. The ODH feature representations of the
unseen test sequences are fed to the classifier to predict their labels. We performed
this experiment for cell lines GM12878 and K562.

Table 3.6.2: Computational validation with high-resolution Hi-C data. Reported values are
mean±s.d. (s.d.: standard deviation)

Chromosome-wide interaction partners
Cell-type Oligomer length 3 Oligomer length 5
GM12878 (regions 0-4) 0.5552± 0.009 0.5503± 0.006
GM12878 (regions 0-9) 0.5358± 0.025 0.5279± 0.028
K562 (regions 0-4) 0.5508± 0.091 0.5650± 0.088
K562 (regions 0-9) 0.5122± 0.084 0.5239± 0.081

Interaction partners beyond 1M bp
GM12878 (regions 0-4) 0.5468± 0.005 0.5419± 0.007
GM12878 (regions 0-9) 0.5327± 0.019 0.5220± 0.026
K562 (regions 0-4) 0.5593± 0.062 0.5646± 0.064
K562 (regions 0-9) 0.5304± 0.058 0.5294± 0.064

Validation in the 5C→Hi-C Setting

When evaluating performances of our models for predictions on unseen loci from
Hi-C data, we did so for two scenarios. One, where all chromosome-wide loci are
considered; and the other, only those lying beyond 1M bp from the ‘model-defining’
locus are considered. Using the stringent criterion described above, the mean AUC
values and their standard deviations are as follows. For prediction with models using
oligomer length 3:
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(a) chromosome-wide partners: {GM12878, K562} : {0.5358±0.025, 0.5122±0.084}

(b) partners beyond 1M bps: {GM12878, K562} : {0.5327± 0.019, 0.5304± 0.057}

And, with models using oligomer length 5:

(a) chromosome-wide partners: {GM12878, K562} : {0.5278±0.028, 0.5238±0.081}

(b) partners beyond 1M bps: {GM12878, K562} : {0.5220± 0.026, 0.5294± 0.064}

For both cell lines, when considering only the first five regions, the average perfor-
mance was ∼0.55 test AUC (see Table 3.6.2). Models for K562 show higher variance
than models for GM12878. We observe that performances of models for some LoI are
comparatively poorer than those of other models.

Training on contact information from 5C and predicting contacts chromosome-wide
is a hard problem. We envisage there are two reasons contributing to this hardness.
Having few negative samples to learn from is one, and the other is, having a rather
long model defining locus (cf. Table 3.4.1). We hypothesize that this is due to the
following reasons. First, the 3C assays give no information on the potential causal
portion(s)—causal for the said interaction—along the complete restriction fragment.
In this case, the genomic regions that are part of the reported restriction fragment
but play no role towards the interaction, simply pose as noise. These regions cannot
be easily weeded out. Second, the interacting as well as non-interacting partners of a
rather long ‘model-defining’ locus can have many different contributing characteristics
in them. Examples of this include the many transcription factor binding sites or
genetic elements which impose important architectural restrictions. These may not be
comprehensively captured by the few available samples in the 5C data. This especially
affects a model that learns from 5C data and predicts on high-resolution Hi-C as is the
case here. Third, these 5C experiments are performed on selected promoter regions
and distal enhancers (Sanyal et al., 2012). We make the models trained on such
restricted 5C data to predict a potential interaction partner anywhere on the genome
not just promoter or distal enhancer regions. Fourth, contacts over different distance
ranges are a result of different genomic backgrounds. This is completely violated in
the 5C→Hi-C setting and evaluating the model’s prediction performance on regions
beyond promoters or enhancers exacerbates the issue.

3.7 Discussion
From the point of view of understanding chromatin interactions at the sequence level,
ours is the first approach to study these interactions in a locus-specific manner. In
this study, we hypothesized that the genetic sequence at the loci that significantly
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interact with a LoI is informative in discerning them from loci that do not interact
with this LoI. Studying chromatin interactions in a locus-specific manner gives novel
insights into potentially important sequence-level mechanisms for three-dimensional
organization of chromosomes.

As already noted, our aim in performing this study was two-fold. First, to estab-
lish if the genetic sequence alone can predict the long-range chromosomal interactions.
Second, to understand the characteristic sequence features underlying these interac-
tions. We achieved these by performing computational experiments on 10 regions
each in three different cell lines. The motivation for deciding upon such an aim for
our study was as follows. The existing approaches for analyzing and predicting long-
range interactions focus at the level of all interactions vs. all non-interactions from
a contact matrix (cf. Section 3.2). These approaches give insights into the general
genome-wide, cell-type specific interactions. We envisage this genome-wide versus
per-locus relationship on the computational side is analogous to the Hi-C versus 4C
relationship on the experimental side. There are similar comparative advantages of
the per-locus approach over the ‘all versus all’ prediction models and vice versa.

In comparison to the literature for prediction of enhancer-promoter interactions,
we have used the term long-range chromatin interactions in a broader sense. These
include possible interactions between intervening chromatin regions in addition to the
enhancer-promoter interactions. We also hypothesized that the intervening chromatin
could play an important role in maintaining a favorable landscape for the loci to
interact. For example, it could provide the necessary structural or organizational
backbone required for chromosome folding inside the nucleus. This view was largely
motivated based on the hypothesis by Bickmore (2013). Thus, we use the complete
restriction fragments instead of the shorter promoter or enhancer loci. Such broader
set of interactions that can involve the intervening chromatin are termed bystander
interactions (Sanyal et al., 2012). Hughes et al. (2014) observed such interactions
in capture-C experiment data, and called them structural interactions. These are
possibly weaker interactions due to putative low-affinity binding sites. Low-affinity
binding sites have been largely unexplored as yet, even in general (Tanay, 2006).

Our classifiers trained on data from 5C experiments that probed selected TCRs
and distal enhancers in three cell lines GM12878, K562 and HeLa-S3 (Sanyal et al.,
2012). The classifiers attained an average test performance of ∼0.75 in the single-task
setting. We developed two new, intuitive visualization methods that are suited for
our problem scenario involving variable-length sequences and an appropriately chosen
ODH feature representation. Aided by these visualizations, our per-locus models
shed light on the potential sequence signals that can characterize the interactors
versus the non-interactors of a LoI. Analysis of the various sequence signals from our
models suggests a possible functional and organizational role for short tandem repeat
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sequences in the genome potentially more than previously thought. We cited various
recent studies corroborating this in Section 3.6.2. Furthermore, our approach can also
identify cell line-specific sequence features characterizing the (non-)interactors of the
same genomic locus ini two cell lines (see Section 3.6.3).

We also demonstrated how knowledge of individual models could be transferred to
those of other regions (those having too few examples to learn from) via multitask
learning. Mean performance for the multitask setting is 0.83. This is an average of
the performances of all models for oligomer length 3 and 5 combined together.

We made our models trained on 5C data predict interactions between 5K bp long
loci from the recent high-resolution Hi-C data (Rao et al., 2014) for cell lines where
the Hi-C data was available. In this case, the prediction performance of our models
was only slightly better than random. Another study to perform a similar 5C→Hi-C
validation is by Roy et al. (2015). Following are the aspects pertaining to the 5C→Hi-
C setting, where our approach is different in comparison to (Roy et al., 2015). First,
we used a stringent criterion to identify true positives in the high-resolution Hi-C
data. For this task, Roy et al. (2015) consider an interaction to be true positive if it
is called a peak in any one of the three resolutions 5K, 10K and 25K bp. The ulti-
mate resolution of the genomic loci considered is 5K bp (Roy et al., 2015). Second,
our models are based on sequence information. Recall that for each locus, Roy et al.
(2015) use a simple feature vector corresponding to the functional genomics informa-
tion. Consequently, the segments on the restriction fragment that supposedly pose
as noise affect our models adversely, more than theirs. Third, the additional layers
of chemical modifications on the genetic sequence make a sequence-based model less
authoritative towards determining whether a pair of loci interact. We already stated
this in Section 3.3. Having said that, Roy et al. too achieved relatively modest perfor-
mances in comparison to those in other settings viz. 5C→5C and Hi-C→Hi-C. They
report performances in terms of the area under the precision-recall curve (auPRC).
Specifically, their model achieved an auPRC of 0.643 in K562 and 0.687 in GM12878
for the 5C→Hi-C setting. Note that the genomic regions for which data are not avail-
able are left out all together from these state-of-the-art studies. Our sequence-based
approach can be still be helpful in such scenarios. Moreover, we expect that our mod-
els can be further strengthened or supported by utilizing the additional regulatory
(epi)genomic information wherever available.

Finally, an important point to note here is that our models do not require any locus
to be either a TCR or an enhancer region per se. In principle, it can be seamlessly
applied to contact matrices output by any 5C-based or even high resolution Hi-C-
based experiments (as training data). At places, we have used the terms TCR and
enhancers for the interacting regions because the contact matrices we use in this
study come from 5C experiments involving these loci. So, when given a Hi-C contact
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matrix, any locus therein could be used to learn corresponding models in a similar
fashion, and it need not necessarily be an enhancer or a promoter region. It is for
this reason, we preferred to call these genomic loci as simply regions in this study.
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4
Comparison of Variable-Length DNA

Sequences Using Conformal Multi-Instance
Kernels

This chapter describes our work on comparing variable-length DNA se-
quences in the discriminative setting without much of the positional con-
straints of the existing string kernels. While this work was motivated
by my earlier project (described in Chapter 3), it got fast-tracked as my
immediate next project after a discussion with Prof. Ana Pombo at the
EMBL conference on Transcription and Chromatin in 20161. Work de-
scribed in this chapter was presented at WABI 2017 as (Nikumbh et al.,
2017b). An earlier version is also available as a preprint, (Nikumbh et al.,
2017a). Consequently, large portions of text in this chapter have been
adapted from Nikumbh et al. (2017a) and (Nikumbh et al., 2017b). Au-
thor contributions are as follows: I conceived and designed the project with
Nico’s guidance. I implemented CoMIK. Peter Ebert’s group seminar in
the department motivated CoMIK’s applicability for a more general prob-
lem of different promoter definitions. While I designed the synthetic data
set, Peter contributed with ideas for suitable biological data sets for show-
ing the general efficacy of CoMIK, helped with comments in improving

1https://www.embl.de/training/events/2016/TRM16-01/

85

https://www.embl.de/training/events/2016/TRM16-01/


CoMIK’s code-base in terms usability.

4.1 Introduction and Motivation

Until now we saw that all chromatin interaction data is pre-processed to output
contact maps using either of the following strategies: (a) they perform uniform

binning and produce a contact matrix with fixed-size genomic bins; or, (b) produce
a contact matrix at restriction fragment-resolution wherein individual bins of the
matrix are of non-uniform size in terms of the genomic regions but uniform in the
number of restriction fragments per bin. This introduces a coarseness that affects
the understanding and interpretation of chromatin interactions. For example, across
studies, two arbitrarily long genomic loci that respectively contain a promoter and
an enhancer are simply considered as an enhancer-promoter (EP) interacting pair.
Any possible role played by the intervening or the flanking regions is ignored. This
is illustrated in Figure 4.1.1.

∼10kb long

Enhancer ??

∼4kb long

Promoter ??

Figure 4.1.1: Illustration of an enhancer–promoter interaction (EPI). The enhancer and the
promoter are shown as located somwhere on the restriction fragment shown in grey. Contact
between such restriction fragments is simply considered as an EPI neglecting any possible role
of the flanking or intervening chromatin.

In various studies since the elucidation of the human genome, many different def-
initions of promoters have been used in different studies. For example, Butler and
Kadonaga defined a core promoter as a minimal stretch of contiguous DNA sequence
(∼40 nucleotides (nt)) that contains the TSS and is sufficient for accurate transcrip-
tion initiation (Butler and Kadonaga, 2002; Juven-Gershon et al., 2008). A proximal
promoter is a region in the immediate vicinity of the TSS, roughly 250 bp upstream
and downstream (Butler and Kadonaga, 2002; Juven-Gershon et al., 2008). There are
examples of many studies that consider using either an arbitrary-sized window around
the TSS (albeit fixed for the study) or only the region upstream of it as promoter
sequences. Some examples are shown in Figure 4.1.2. This gives rise to a conundrum
about the choice of an appropriate size of a promoter in any new study or one that
unifies promoter sequences from prior works. Both the scenarios described above
warrant development of methods that can compare sequences of variable lengths.
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Different lengths for promoter sequences

TSS
|

+2kb
|

+1kb
|

−1kb
|

−2kb
|

−3kb
|

−4kb
|

−5kb
|

−6kb

Nature 2013

← upto −10kb

PNAS 2014

Nature Meth. 2012

Figure 4.1.2: Some examples from literature using different promoters definitions are shown.
From top to bottom, the three examples are Chen et al. (2013), He et al. (2014) and Ernst and
Kellis (2012) respectively.

Discriminative machine learning methods like SVMs (Boser et al., 1992) together
with string kernels have achieved state-of-the-art performance on many relevant prob-
lems in computational biology (e.g., splice site prediction (Rätsch et al., 2005)).
The earliest kernel-based approaches for computing similarities between biological se-
quences, e.g., spectrum (Leslie et al., 2002) and mismatch kernel (Leslie et al., 2004),
allow comparing sequences of different length. But they do not encode any positional
information. Later approaches, for example, the weighted degree kernel (Rätsch and
Sonnenburg, 2004) and the oligo kernel (Meinicke et al., 2004), do consider posi-
tional information in the corresponding sequences, some even with a certain amount
of positional uncertainty (Rätsch et al., 2005). Additionally, alignment-based se-
quence comparison also provides a position-dependent similarity score albeit with a
gap penalty (Saigo et al., 2004). Thus, these approaches do allow deviations from
exact matches but they are penalized. The oligomer distance histograms (ODH) ker-
nel (Lingner and Meinicke, 2006) allows comparing sequences of different length by
representing a sequence with a fixed-length feature vector, but it ignores information
about the position of such oligomer pairs within the sequence. See Chapter 2 for a
brief overview of the above kernels.

Figure 4.1.3 outlines the above mentioned scenarios. Any position-aware kernel
that also allows shifts can detect the signal in case (a), but not in case (b), where the
signal is very far apart. Even if it does, it would penalize this deviation. Case (c)
represents how ODH would detect this signal and thus consider the two sequences to
be similar, but information on the position of this signal in the individual sequences
is lost. The work presented in this chapter is a step towards filling this gap. We
want to compare sequences allowing reasonable degree of positional freedom without
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S1

S2

signal

(a)

GTGTGT

GTGTGT

S1

S2

(b)  

GTGTGT

GTGTGT

S1

S2

(c)

FV1
FV2 ODH FVs

GTGTGT

GTGTGT

| | | | | | |

| | | | | | |

break into segments

(d)

S1

S2

GTGTGT

GTGTGT

Figure 4.1.3: Various scenarios comparing sequences of different lengths using existing ap-
proaches.

simultaneously penalizing this deviation, or, better yet, keep it problem-dependent.
This scenario, as we have seen, can arise in case of chromatin conformation data.
Here, the pairs of loci interacting over a long-range are variable-length restriction
fragments reported from the experiments. The putative causal signal in the two
interacting loci does not have any positional restriction unlike the transcription start
site in the promoter sequences.

We approach this problem of handling comparison of variable-length sequences in
a discriminative setting. Such a comparison also warrants allowing positional free-
dom as motivated above. We cast the typical binary classification problem involving
pair-wise sequence comparisons into a multiple instance learning (MIL) problem (Di-
etterich et al., 1997) (see Section 2.3.5 for a general introduction to MIL). Briefly, in
this MIL setting, each sequence is broken into segments (Figure 4.1.3 (d)). Any seg-
ment can hold predictive features important for the classification problem. Then, in
order to compare two sequences, all segments of one sequence are compared to those
of the other. Such a bipartite comparison of all segments of any two sequences can
point to the importance of the individual segments of the sequences towards their sim-
ilarity. We employ conformal multi-instance kernels (Blaschko and Hofmann, 2006)
to obtain the importance for segments of each sequence for the classification prob-
lem. Thus, casting into an MIL problem enables our two-fold objective—handling
variable-length sequence comparison and allowing positional freedom in doing so.
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This renders the capability to identify segments of a sequence informative for the
classification problem. We call our approach CoMIK for ‘Conformal Multi-Instance
Kernels’.

In the following, we begin with a detailed description of CoMIK in Section 4.2. We
first describe our complementary segmentation procedure (Section 4.2.1). Further,
we show how we exploit this design with the help of conformal transformations to the
multi-instance kernel (Blaschko and Hofmann, 2006) to identify important segments
of a sequence towards its classification with SVMs (Section 4.2.2). Subsequently, we
discuss efficient retrieval of the SVM weight vector for the complex setting of multiple
conformal multi-instance kernels in Section 4.2.4. Then, we demonstrate how to
interpret the nonlinear classifiers by adopting visualization techniques introduced in
the previous chapter. Results of the computational experiments follow.

4.2 Methods

4.2.1 Segment Instantiation with Complementary Views

5
|

4
|

3
|

2
|

1start endsignal

4
|

3
|

2
|

1start end

Figure 4.2.1: Illustration of complementary segmentation procedure. The sequence is shown
in gray. Non-shifted segmentation is shown on top, in orange color, and shifted segmentation
with blue. Segmentation begins at the position marked ‘start’, and ends at the position marked
as ‘end’.

Non-shifted Segment Instantiation

Given any arbitrary length sequence, we propose representing it by its segments
where a segment is defined as a smaller part of the whole sequence. Beginning right
at the start of the sequence, we create segments of a predetermined size along the
sequence until it ends. The last segment is allowed to have a different size, either
smaller or larger than the other segments (elaborated below). This accommodates any
remainder portion of the sequence in case the sequence length is not an exact multiple
of the segment-size. If the final segment is as short as half of the predetermined
segment-size or shorter, we concatenate it to the penultimate segment, making the
eventual final segment longer than the other segments. In other cases, it is maintained
as is, leading to a final segment shorter than the other segments. This segmentation
provides a non-shifted view of the whole sequence as the first segment starts at the
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beginning of the sequence and, together, the segments span the entire sequence. We
call this instantiation the non-shifted segment instantiation. Figure 4.2.1 illustrates
the non-shifted segmentation procedure in orange color.

Shifted Segment Instantiation

There may still be signals at the boundaries of any two non-shifted segments (see
Figure 4.2.1) which may get overlooked when comparing sequences using just non-
shifted segments. To cover for this scenario, we introduce an alternate instantiation
called shifted segmentation whereby the boundaries due to non-shifted segmentation
of the sequence end up in the same segment in this representation. In this case,
segmentation begins from the mid-point of the first non-shifted segment, and proceeds
to create further segments along the sequence essentially covering the boundaries of
the non-shifted segments. The portions of the sequence before start and after end
can be omitted since they are already covered (in the non-shifted view). Shifted
segments can either be of the same size as the non-shifted segments or different.
Thus, shifted segmentation provides a complementary view of the same sequence
covering the portions which get overlooked by non-shifted segmentation. A simple

(5N)nt
Non-shifted view: 5 segments, N nt each

Shifted view: 4 segments, N nt each
B1

B2

B3
B4 B5

A1 A2
A3 A4

A5 A6

Sequence
 S1

Figure 4.2.2: Complementary segmentation is illustrated on a sequence. In this dummy example
case, the sequence is (5N)nt long and the individual segments are N nt long. The ends of shifted
segments are marked by points B1-B5, and those of non-shifted segments, by points A1-A6. A1
and A6 coincide with the beginning and end of the sequence itself. And, B1-B5 are mid-points
of the 5 non-shifted segments. In shifted segmentation, sequence portion before B1 and after
B5 can be ignored. See text for details on handling the scenario when the sequence-length is
not a multiple of the segment-size.

case of non-shifted and shifted segmentation is depicted in Figure 4.2.2. The segment-
size is chosen a priori by the user as is suitable for the problem at hand. Refer to
Section 4.2.3 for a discussion on choosing an appropriate segment-size and its overall
influence on the algorithm.

4.2.2 Conformal Multi-Instance Kernels for Complimentary Set of Seg-
ments

Once segmented, we cast this problem into a multiple instance learning (MIL) prob-
lem (Dietterich et al., 1997). Recall from the background chapter, Section 2.3.5, in
MIL, each sample (X, y) represents a set X of instances x (x ∈ X) and a label y
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for X. The sets of instances are also called bags. One or more instances from a bag
could be responsible for the bag to be classified as positive or negative due to the pres-
ence or absence of class-specific features. A bag can have any number of instances.
In CoMIK, each sequence is treated as a bag and all its segments—non-shifted and
shifted—as instances in the bag. Therefore, CoMIK can inherently handle sequences
of arbitrary lengths.

Multi-Instance Kernels

Gärtner et al. proposed the normalized set kernel (a.k.a. multi-instance kernel) for
the multiple instance problem (Gärtner et al., 2002) (cf. Section 2.3.5). Briefly, for
each sample represented as a bag of instances, the kernel value between any two bags
X and X ′, k(X,X ′), is given as in Eq. (4.1).

k(X,X ′) :=
kset(X,X ′)

fnorm(X)fnorm(X ′)
(4.1)

where kset(X,X ′) :=
∑

x∈X,x′∈X′
k(x, x′). Here fnorm(X) is a suitable normalization

function. One could normalize using either averaging (fnorm(X) := #X, where
#X denotes the number of instances in bag X) or feature space normalization
(fnorm(X) :=

√
kset(X,X)). In this work, we used feature space normalization.

While the multi-instance kernel can successfully handle comparison between bags
by comparing their individual instances, it has the issue that, in averaging, it looses
any information related to the contributions of the individual instances. In other
words, it treats all the instances in a bag equally. And, it is usually desirable to
not only obtain a solution to a problem, but also to identify (a) the features that
contribute to that specific solution, and (b) the parts which contain these features.
Here, (b) amounts to knowing which instance(s) in a bag have features that helped
determining the correct class label of the bag (positive or negative class). To this end,
we propose using conformal multi-instance kernels (Blaschko and Hofmann, 2006) that
allow us to obtain an instance weighting based on the contribution of these instances
to learning the discriminant function.

Conformal Multi-Instance Kernels

Blaschko and Hofmann proposed the conformal multi-instance kernel as a modifica-
tion to the normalized set kernel (Blaschko and Hofmann, 2006). This modification
is a conformal transformation parameterized by θ, tθ > 0, applied to the kernel
function. The conformal transformation preserves the angle between vectors in the
mapped space. The idea is to magnify those regions in the feature space which are
discriminative and shrinking those which are not discriminative. Selection of these
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candidate regions in the feature space is done by clustering. All input instances are
clustered using any clustering algorithm and the corresponding cluster centres are
chosen as candidate regions or expansion points. The decision of whether the region
characterized by any cluster centre is discriminative or not is made by solving the
multiple kernel learning problem as explained further.

Blaschko and Hofmann proposed: (a) the conformal transformation tθ(x) to be of
the form given in Eq. (4.2).

tθ(x) =
E∑

e=1

θeκ̃(x, ce) (4.2)

κ̃(x, ce) = exp

(
− ∥x− ce∥2

2σ2

)
(4.3)

Here, ce’s denote the cluster centres indexed by e ∈ {1, . . . , E} for a total of E

expansion points; and (b) κ̃ to be a Gaussian (Eq. (4.3)) whose bandwidth (σ) can be
adjusted. The parameter θe in Eq. (4.2) tells how discriminative the region around
a certain cluster centre is. A large value of θe denotes that the neighborhood of
the corresponding expansion point ce is a discriminative region. As mentioned, the
θe values are learned via multiple kernel learning (see below and Eq. (4.5)). Thus,
replacing k(x, x′) by its conformal transformation tθ(x)tθ(x

′)k(x, x′)

k(X,X ′) =
1

fnorm(X) · fnorm(X ′)

∑
x∈X

∑
x′∈X′

tθ(x)tθ(x
′) k(x, x′)︸ ︷︷ ︸

base kernel

(4.4)

Identifying expansion points. Following Blaschko and Hofmann, we use k-
means clustering to identify clusters. The corresponding cluster centres, ce’s, are then
treated as expansion points (E = k). Here, the individual instances are represented
by their ODH feature vectors as discussed in Section 4.2.2. Too many instances
can create a bottleneck for clustering. Blaschko and Hofmann suggest using the
buckshot clustering heuristic (Cutting et al., 1992) in this scenario. By this heuristic,
to identify E clusters from n instances, one can perform k-means on randomly sampled√
En instances (Blaschko and Hofmann, 2006). This has been shown to identify

qualitatively similar clusters and being highly scalable at the same time (Blaschko
and Hofmann, 2006).

Resultant conformal multi-instance kernel. Upon substituting Eq. (4.2) in
Eq. (4.4), and simplification (see (Blaschko and Hofmann, 2006) for more details),
the conformal multi-instance kernel is given by

k(X,X ′) ≈
E∑

e=1

θ2e

(
1

fnorm(X) · fnorm(X ′)

∑
x∈X

∑
x′∈X′

κ̃(x, ce)κ̃(x
′, ce) k(x, x

′)︸ ︷︷ ︸
base kernel

)
(4.5)
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Eq. (4.5) is then posed as a multiple kernel learning (MKL) (Bach et al., 2004) problem
(linear in βe ≡ θ2e) to simultaneously learn the θe’s and the SVM parameters α, also
called λ in part of the literature.

Obtaining individual instance weights. Upon solving the MKL problem, once
the sub-kernel weights (θe’s) are obtained we can directly obtain tθ(x) for any instance
x of a bag X using Eq. (4.2).

Figure 4.2.3 shows the resultant kernel matrix.
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...

kernelc1 kernelc2 kernelc3 kernelce

Resultant
matrix=

β1 +β2 +β3 +βe

Figure 4.2.3: Resultant kernel matrix as a weighted sum of conformally transformed kernels
corresponding to cluster centres c1, . . . , ce. β1,...,e are the weights assigned to the different
sub-kernels upon solving the MKL problem.

Oligomer Distance Histograms (ODH) Kernel as Base Kernel

The choice of the base kernel to compare the individual instances depends on the
problem. Here, we propose representing the individual segments of a sequence by
its ODH representation and using the ODH kernel (Lingner and Meinicke, 2006)
to compute similarities between segments. Using the ODH representation enables
comparing variable-length segments to one another. Furthermore, it allows predictive
motifs to occur anywhere within the segment.

We only reproduce the mathematical form of the ODH representation of a sequence
‘s’ (Eq. (4.6)) and the ODH kernel (Eq. (4.7)) here. Refer to Section 2.3.3 for more
details on ODH representations.

Φ(s) = [hT
11(s),hT

12(s), . . . ,hT
MM(s)]T (4.6)

The N training samples are given as: X = [Φ(s1), . . . ,Φ(sN)] and the N ×N kernel
matrix is given by

K = XTX (4.7)

4.2.3 Choosing an Appropriate Segment-Size

While the user could choose a segment-size that is appropriate for a problem, there is a
four-way trade-off one should consider. This four-way trade-off involves the following

93



factors: the segment-size itself, the resulting number of segments, the computation
time, and the prediction performance. The ODH kernel computation involving dot
products between very high-dimensional feature vectors benefits from the sparsity
of these feature vectors. But, with just 4 characters in the DNA alphabet, repre-
sentation of a very long segment may not be sparse enough to reap the benefits of
sparse computations. Therefore, shorter segments are preferred in this case. But, a
small segment-size could result in a large number of segments if the sequences in the
study are rather long. And, having too many segments influences the computation
time spent performing clustering and subsequently applying the transformation per
segment. Also, prediction performance-wise, if the segments are too small they may
not cover the predictive motifs.

In general, many long segments in total from all the sequences could lead to a
longer computation time for the instance-wise base kernel at the training stage. But
this is a one-time computation needed to be performed in the beginning.

4.2.4 Interpretation and Visualization of Features

In the following, we discuss how one can interpret and visualize the sequence features
deemed important by CoMIK for a prediction problem.

Obtaining the SVM Weight Vector for CoMIK

In the MKL problem (Bach et al., 2004), the weight vector corresponding to a given
sub-kernel Ke is given as in Eq. (4.8).

we = βe

N∑
i=1

αiyiΦe(Xi) (4.8)

Φe(X) =
1

B

∑
x∈X

κ̃(x, ce)ϕe(x) (4.9)

Here βe is the sub-kernel weight learned by solving the MKL problem and each Φe(Xi)

is the feature space representation of sequence Xi corresponding to sub-kernel Ke. For
the conformally transformed multi-instance setting, this means Φe(X) is the bag-level
ODH representation of the sequence upon transformation w.r.t. to the cluster centre
characterizing the sub-kernel Ke. Thus, Φe

m(X) can be represented mathematically as
in Eq. (4.9), where ϕe(x) is the ODH representation of segment x (Eq. (4.6)) belonging
to bag X, κ̃(x, ce) is the Gaussian transformation (Eq. (4.3)) and B is the feature space
normalization factor. Following Shawe-Taylor and Cristianini (2004), B can either
be
√
k(X,X) or ∥

∑
x∈X κ̃(x, ce)ϕe(x)∥2 since our base kernel, the ODH kernel, is a

dot product kernel (refer to Section 4.2.2). Thus, we have a bag-level representation
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of a sequence corresponding to all cluster centres which allows us to compute all
the relevant weight vectors. These individual weight vectors can also be used to
make fast predictions on test examples. For this, we only need the transformed ODH
representations of the test examples corresponding to each kernel in the collection.

Visualizing Features from the CoMIK Weight Vector

Figure 4.5.1 shows visualizations of the features deemed important by CoMIK in
discerning the positive set of sequences from the negative set. The top panel in
Figure 4.5.1 shows the ‘Absolute Max Per Distance’ (AMPD) visualization (Nikumbh
and Pfeifer, 2017) that provides a distance-centric view of features (cf. Chapter 3,
Section 3.5.2). Recall that the AMPD visualization shows the K-mer pairs assigned
the most positive and most negative coefficient in the discriminant at all distances
considered. The bottom panel shows the K-mer-centric view which was introduced
by Lingner and Meinicke (2006). It shows the importance of each K-mer pair towards
prediction. Simply stated, the K-mer-centric view of the discriminant is a matrix
which is obtained by taking an ℓ2-norm of the weight vector with itself. A K-mer
pair which holds high importance will have a high absolute value in the matrix.

4.2.5 Implementation and Availability of Software

MATLAB implementation of CoMIK is made available on Github at: https://
github.molgen.mpg.de/snikumbh/comik. For non-MATLAB users, we provide an
executable version of CoMIK which can be run together with MATLAB Runtime2.
CoMIK takes as input a positive and negative set of sequences as separate FASTA files
and performs complementary segmentation. Further, it uses Shogun’s (Sonnenburg
et al., 2010) MKL solver to obtain the sub-kernel weights. CoMIK is licensed under
the MIT License.

4.3 Data Sets
To establish the general efficacy of CoMIK, we performed experiments on a simulated
data set consisting of variable-length sequences and a yeast data set with the typical
fixed-length sequences scenario. Both of these are described next. Additionally, we
briefly describe the long-range enhancer-promoter interaction data used by (Whalen
et al., 2016).

2MATLAB Runtime available at: https://mathworks.com/products/compiler/mcr.html
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Simulated Data Set

We prepared a simulated data set of 1000 arbitrary-length sequences with a mix
of many coupled and non-coupled motifs as explained below. Of these 1000 were
three kinds of positive sequences totaling 500; the rest 500 comprised of two kinds of
negative sequences. Refer to Table 4.3.1 for the following: (a) 300 of the 500 positive

Table 4.3.1: Motif sets planted in the simulated data set. The differences between the positive
and the negative variants are underlined (e.g., 4P and 4N). ‘-’ denotes a gap. Columns marked
‘+’ and ‘−’ give the number of positives and negatives respectively containing the corresponding
set of motifs. Columns ‘P’ and ‘N’ give the #segment (non-shifted) in which the motif could
lie (start positions).

Set Motifs + − P N
1.`GAGTTATACATGGTATAGACCACACTATTA' {1,2} {2,3}
2.`AACATGGTCTAGACCATTTT' {3} {1}
3.`CTAAACAGGGTCTATACCACACTATTA' {5} {5}

A 4P.`AGGATATATATGTGCTCTTCAGATTTTCACCCTTAGCAAGAGCGAGG' 300 300 {6} -
4N.`ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG' - {6}
5P.`ACACAGCTACTACCACAGGGACAGACAGACAG' {4} -
5N.`ATAGCGCTACTACCACACCCACAGACAGACAG' - {1}
1.`ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG' {3} {2,3}
2.`ATAGCGCTACTACCACACCCACAGACAGACAG' {2} {1}

B 3P.`GACACATGTGCACATATGGTTTTCACCCCGATACATAGTGAGG' 100 200 {4} -
3N.`GACACATGTGCACATATG-TAGCGAGG' - {3,4}

C `GA' repeated at every 10 nt in the sequence 100 - - -

sequences had motifs from set A planted in them (column marked ‘+’), all except
those marked with N (e.g., 4N and 5N which are negative variants of the positive
motifs 4P and 5P, respectively). (b) Another 100 positive sequences had motifs from
set B planted in them; 3P and 3N denoting variants as in (a). (c) Additional 100
positive sequences had the dinucleotide `GA' repeated at every 10nt throughout the
sequences. For the 500 negative sequences, 300 contained all motifs from set A (1, 2,
3 and the negative variants) and the remaining 200, similarly, with motifs from set B.
In all the sequences, each motif was planted at a randomly chosen start position inside
a respective window. For CoMIK, it was then possible to determine the segment in
which the different motifs could lie. Since we later discuss results with segment-size 70
nt, columns ‘P’ and ‘N’ already give the segment numbers (for non-shifted segments)
where each motif could lie. Length of sequences of type (a) and (b), either positive or
negative, was in the range [300,500] nt, and [500,600] nt for type (c). All sequences
were generated with uniform probabilities for A, C, G and T and the motifs had a 0.1

mutation probability. Maintaining equal proportions of the different kinds of positives
and negatives, we held out 200 sequences as unseen test examples (100 positives and
100 negatives) and used the remaining 800 sequences for training.
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Yeast Data Set

Lubliner et al. (2015) studied yeast core promoter sequences analyzing the effect
of sequence variation in different core promoter regions. Among other things, the
authors showed that location, orientation, and flanking bases are important for TATA
element function. We obtained a total of 316 core promoter sequences, each 118
bp long. The core promoter activity measurements for each of these sequences are
provided. We followed the procedure in Figure 5 in (Lubliner et al., 2015) to classify
them into two classes, sequences showing either low or high activity (expression).
This resulted in 28 positive and 288 negative sequences.

Table 4.3.2: Number of positive and negative sequences in the 5C data set.

GM12878 K562 HeLa-S3
#Positives 63 46 98
#Negatives 226 105 207

5C Data Set

This is the data set used in our earlier work (cf. Chapter3, Section 3.4). In order to
demonstrate the efficacy of CoMIK compared to our earlier approach, we performed
experiments on one region from each cell line. We fetched the positive and negative
set of sequences for region 0 in K562, GM12878 and HeLa. The number of positive
and negative sequences for each of these are given in Table 4.3.2.

4.4 Experimental Setup

Table 4.4.1: Parameters and the range of values tested for the simulated, 5C and the yeast
data set.

Parameters Simulated data set 5C Yeast
#Clusters {2, 5, 7} {5, 7, 10} {2, 5, 7}
Segment-size {50, 70} 50 10
Sigma (σ) for Gaussian transformation 10{−1,...,2} 10{2,4,6} 10{−1,...,2}

Oligomer length {2, 3} {2, 3} {2, 3}
Maximum distance {50, 70} 50 10
SVM-cost 10{−3,...,3} 10{−3,...,6} 10{−3,...,3}

For each data set, we performed 5-fold nested cross-validation (CV) by splitting
the data into 80%:20% for training and test, respectively. For each outer-fold, model
selection was performed with a 5-fold inner CV loop on the training set with ℓ1-
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and ℓ2-norm MKL. CoMIK accounts for any class imbalance by proportionately up-
weighting the misclassification cost for the minority class as proposed in (Elkan, 2001).
All parameters and the range of values tested for them are given in Table 4.4.1. Of
these, #Clusters, σ and SVM-cost are optimized by cross-validation while other pa-
rameters, namely segment-size, oligomer length and maximum distance, are assigned
fixed values for each individual run. We used the same segment-size for the shifted
and the non-shifted cases. The best performing set of parameter values obtained
from the inner CV-folds was used to re-train the model using the complete training
data and make predictions on the unseen test set of examples per outer CV-fold. We
report the area under the receiver operating characteristic (ROC) curve (AUC) for
predictions on this held-out test set averaged over the five outer folds.

We compare our performance on the simulated data set to that of KIRMES (Kernel-
based Identification of Regulatory Modules in Euchromatic Sequences) (Schultheiss
et al., 2009). The approach taken by KIRMES is as follows. Consider a set of motifs
representing TFBSs, and a positive and negative set of genomic sequences (corre-
sponding to some task) given. Then, a motif finding step can be performed a priori
to obtain the match-positions of each motif in all the sequences. Each of the positive
and negative sequences is then represented instead by a collection of subsequences.
These subsequences are fixed size windows extracted around the best match-positions
of the given motifs in the individual sequences. Subsequences corresponding to a par-
ticular motif from all sequences are compared to each other using a variant of WDKS.
This variant supplements the WDKS kernel (cf. Section 2.3.3) with conservation in-
formation for the sequences (Schultheiss et al., 2009). This procedure results in as
many kernels as the number of motifs. This ensemble of kernels is then used for
classification. The remaining parts of the sequences—those not extracted—are ne-
glected. KIRMES was shown to perform well on gene sets derived from microarray
experiments for identifying loss or gain of gene function (Schultheiss et al., 2009).

Figure 4.5.1 (following page): Distance-centric and K-mer-centric visualizations of features
for the simulated data set. The distance-centric visualization in the top-panel shows 2-mer pairs
that were assigned the highest positive and negative weights at each distance value corresponding
to a sub-kernel that was assigned the highest weight upon MKL. For easy viewing, the K-mer-
pairs at odd distances are placed on the outside and the even distances, inside. Horizontal
axis: weights, vertical axis: distances between 2-mer pairs (#basepairs). The bottom-panel
shows the K-mer-centric visualization. Refer to Section 4.2.4 for details on the K-mer centric
visualization.
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4.5 Results
We present results of computational experiments on simulated DNA sequences, yeast
core promoters and 5C data. We also demonstrate how CoMIK can be used to not
just determine features important for classification, but also delineate them at the
segment level. This can be done for all candidate sequences including test sequences.

Simulated data set

For this data set, while KIRMES achieves an AUC of 0.9432, CoMIK attains near-
perfect classification, AUC 0.9960±0.003. We surmise that the superior performance
of CoMIK is due to the sequences containing the dinucleotide repeat motif ‘GA’ (see
Table 4.3.1) This motif may not be captured well at the motif-finding stage and thus
affects KIRMES’ prediction performance.

We provide visualizations of features from the run that achieved the best perfor-
mance with oligomer-length 2, segment-size 70nt, ℓ1-norm MKL in Figures 4.5.1. In
the top panel, is the ‘AMPD’ visualization of the SVM weight vector and the bot-
tom panel, the K-mer-centric visualization. While the K-mer-centric view clearly
indicates GA’s important role, the distance-centric visualization shows that it could
be periodic. Experiments using different segment-sizes can easily uncover the fact
that they are spread throughout the sequences. Figure 4.5.2 visualizes the 70nt-long

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Segment ranks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 4.5.2: Bar plot with intensities to visualize importance of segments of 50 test sequences
from the simulated data set. The sequences are arranged along the vertical axis, and the seg-
ments along the horizontal axis (Numbers represent segment-IDs). Among these 50 sequences,
the longest sequence has a total of 17 segments (9 non-shifted and 8 shifted segments). For
every sequence, non-shifted segments are shown first, followed by its shifted segments.

segments of 50 out of the 200 test sequences horizontally. For each sequence, the non-
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shifted segments are followed by its shifted segments. Per sequence, the higher-ranked
segments would be the ones where the features are located.

Yeast

CoMIK achieved an AUC of 0.9459± 0.029 on this data set with segment-size 10nt,
oligomer-length 3 and ℓ1-norm MKL. Furthermore, the most important features rep-
resent motifs known as important for classification. We visualize the 3-mer pairs
deemed important by CoMIK for this classification in Figure 4.5.3, left panel. The
right panel here visualizes the sequences and their ranked segments as a heatmap. The
316 sequences are arranged vertically from top to bottom, and their segments hori-
zontally. For the 118nt-long sequences in this data set, the segment-size of 10nt lead
to 12 non-shifted and 11 shifted segments, and are arranged in that order. Thus, the
coordinates for the non-shifted and shifted segments in the sequence are as marked on
the top of the heatmap. We observe that segments 3 and 9, i.e. regions [−98,−89] and
[−38,−29] happen to be ranked first consistently. Segments 15 and 21 are the best-
ranked shifted segments also corresponding to the same genomic window. And, in-
deed, Lubliner et al. report that the main TSS lay at position −30 and that the regions
[−118,−99] and [−98,−69] hold important features which upon mutations greatly re-
duced expression (Lubliner et al., 2015). In the left panel, the top-ranked kernel
shows TATA-like elements to be important for classification. Furthermore, among the
features reported by other kernels in the collection (not shown), CoMIK rightly iden-
tifies T/C-rich K-mers to be enriched among the positive sequences as against G/C-rich
K-mers which are also reported in Supplementary Figure 4 in (Lubliner et al., 2015).

Figure 4.5.3 (following page): Distance-centric visualization of features (top) and visual-
ization of weights assigned to segments per sequence for the yeast data set (bottom). As in
Figure 4.5.1, the top panel shows 3-mer pairs that were assigned the highest positive and neg-
ative weights at each distance value corresponding to the sub-kernel with the highest weight
among all sub-kernels in the collection. For legibility, the K-mer-pairs at odd distances are
placed on the outside and the even distances, inside. Horizontal axis: weights, vertical axis:
distances between 3-mer pairs (#basepairs). The bottom panel shows all sequences in the data
set (training as well as test) as segments: Segment rankings based on the weights assigned to
the various segments are visualized as a heatmap. The rank-to-color mapping is as shown in the
colorbar on the extreme right. Since all sequences in this data set are 118nt-long, we have 12
non-shifted segments and 11 shifted segments. Per sequence, non-shifted segments are shown
first, then the shifted segments.
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5C data set

Performances of CoMIK on the three cell lines are given in Table 4.5.1. For compar-
ison with our approach described in the earlier chapter, we report the performances
with oligomer length 3 from Table 3.6.1 in Chapter 3. We observe that in experiments
using 3-mers and with segment-size 50, CoMIK already achieves better or at par per-
formance. Furthermore, CoMIK ’s additional ability to identify important portions
in the individual sequences can give novel insights.

Table 4.5.1: Performance of CoMIK on 5C data set: Test AUC values (mean±s.d.) for region
0 in three cell lines. The approach presented in Chapter 3 is referred to as (Nikumbh and Pfeifer,
2017).

Method↓/Cell lines→ GM12878 K562 HeLa-S3
(Nikumbh and Pfeifer, 2017) 0.7417± 0.059 0.8163± 0.071 0.6914± 0.058
CoMIK 0.7829± 0.063 0.7920± 0.084 0.6993± 0.012

4.6 Discussion

This chapter presented CoMIK, a method for comparing variable-length sequences
in a discriminative setting using conformal multi-instance kernels. We assessed the
performance of CoMIK on three classification problems, namely, a simulated data
set of variable-length sequences and two real biological data sets involving DNA se-
quences. This includes the 5C data set used in the earlier chapter. Together with the
visualizations, we demonstrated the efficacy of CoMIK on all these problems.

We compared CoMIK to KIRMES, another approach that can handle compari-
son of variable-length sequences. Section 4.4 briefly notes various shortcomings of
KIRMES. Performance of KIRMES heavily relies on the motif-finding step (see Sec-
tion 4.4). The influence of selecting matches other than the best one is not clear. Also,
choosing only one when multiple matches have (nearly) the same score seems rather
arbitrary. This risks neglecting putative low-affinity or weak binding sites or de novo
features in the sequences. In principle, although one could use the complete sequence
with KIRMES by way of having the motifs spread through-out the sequence, this
is again controlled by the motif-finding step. These shortcomings render KIRMES
unsuitable for problems such as comparison of genomic regions from chromatin in-
teraction experiments. In contrast, CoMIK uses the complete sequence by design.
This helps is capturing complex relationships between features lying anywhere in the
whole sequence as demonstrated by CoMIK ’s superior performance on the simulated
data set.
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For the 5C data set, our earlier approach, described in Chapter 3, does not give
any information on the location of the features in the restriction fragments. In com-
parison, for the 3 genomic regions on which we tested, CoMIK not only maintains
the quantitative prediction performance, but also locates important features and seg-
ments within each sequence. This qualitative gain enables the possibility to learn
more fine-grained insights and makes CoMIK relatively more advantageous. Thus,
CoMIK ’s ability to locate the segment with signal can be useful in studying the so-
called structural interactions between the intervening chromatin (Sanyal et al., 2012)
of the long-range interacting loci. CoMIK ’s high prediction performance and accurate
feature identification on the yeast data set demonstrates that CoMIK is also useful
in the typical scenario involving fixed-length sequences.

CoMIK’s computation time is largely governed by the clustering step and the sub-
sequent transformation of the segments. Both of these are performed at every CV
iteration, and are influenced by the choice of the segment-size. Our implementation
exploits the sparsity of the ODH features for short individual segments by making
use of sparse representations and computations. In general, the segment-size only af-
fects CoMIK’s running time. However, for scenarios like the discussed yeast problem,
shorter segments may be preferred. In the clustering step, the buckshot heuristic is
oblivious to the imbalance in the data. This could be replaced with stratified sam-
pling for buckshot clustering. For scenarios wherein positional information is more
important, kernels like the WDS (Rätsch et al., 2005) or the oligo kernel (Meinicke
et al., 2004) may be more suitable as base kernels.
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5
Pipeline for End-to-End Analysis of

Chromatin Interaction Data

This chapter describes the pipeline I developed as part of work done to-
wards analyzing HiChIP data for different conditions and tumor samples
in Ewing sarcoma (EWS) cells. This project is done in collaboration with
Eleni Tomazou, Andre Rendeiro, Nico Pfeifer and Christoph Bock. Eleni
was responsible for performing all the biological experiments, while I and
Andre shared the joint responsibility of performing the computational anal-
yses with guidance from other members. In particular, my prime respon-
sibility was development of this pipeline, while downstream bioinformatics
analysis being Andre’s responsibility. All authors took part in the inter-
pretation of the results. The project manuscript is under preparation, and
the pipeline is under active development.

Designing bioinformatics workflows is a craft that requires putting together many
tools to solve different intermediate computational problems. These tools have

various parameters that need to be set. Choosing parameter values based on mis-
understandings can result in downstream bioinformatics analyses being misconstrued
leading to flawed conclusions. An example that was recently reported is the misun-
derstanding of the parameter ‘-max_target_seqs’ for NCBI BLAST (Altschul et al.,
1990; Shah et al., 2018). Another example is the commonly misread perplexity param-
eter of t-SNE (t-Distributed Stochastic Neighborhood Embedding), a dimensionality

105



reduction and visualization technique, that is difficult to interpret (van der Maaten
and Hinton, 2008; Wattenberg et al., 2016).

5.1 pHDee: Processing HiChIP/Hi-C Data From
End-to-End

As discussed in Chapter 2, chromatin interaction experiment data can be noisy.
Using data from these experiments to understand the 3D organizational principles
of chromosomes requires data manipulation at different levels such as significant
point-to-point interactions, loops, TADs, and A/B compartments. Obtaining each
of these from raw experimental data involves solving many computational prob-
lems on the way. These are active research problems, and have multiple choices
of tools/approaches available for solving them. As a result, when analyzing chro-
matin interaction data, one should have a good understanding of all the intermediate
tools, their parameters and the consequences when they take different values. Ability
to sift through all the tools and their parameters at once can facilitate focusing on
the downstream analyses.

We describe here such a pipeline we implemented for end-to-end analysis of chro-
matin interaction data. We call the pipeline, ‘pHDee’–processing HiChIP Data from
end-to-end. It can also be used for analyzing Hi-C data. The pipeline uses different
tools as its constituent modules to perform the various functions. The workflow of
the pipeline is illustrated in Figure 5.1.1. We describe the workflow next.

1. Raw data to valid interactions. We split paired-BAM files into FASTQ
files corresponding to the two mates in each paired-end (PE) read. These are
then fed into HiC-Pro (Servant et al., 2015) which is an independent pipeline by
itself. As part of this module, HiC-Pro performs the following tasks: (a) genome
mapping, (b) fragment assignment, (c) identification of valid ligation products
(interaction pairs).(cf. pre-processing step 3, Subsection 2.1.4, Chapter 2)

2. Normalization of interaction frequencies. HiC-Pro provides a fast im-
plementation of iterative correction and eigenvalue decomposition (ICED) for
normalization of chromatin interaction frequencies (Imakaev et al., 2012) (cf.
Chapter 2, Section 2.1.4 for more details).

3. Visualizing valid interactions as a 2D matrix. The valid interactions
between genomic regions are visualized as a 2D matrix, also called interaction
or contact matrix (cf. Chapter 2, section 2.1.4). Using Juicebox, one can
visualize not just the raw or the normalized interaction matrix, but also (a) the
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Figure 5.1.1: Different tasks of the workflow of pHDee are shown.

difference of two interaction matrices, and (b) superimposed tracks of additional
features along the genome. These include 1D (e.g., ChIP-seq data) and 2D
features (e.g., loops, TADs). With Juicebox, similar to the zooming-in and
-out facility of Google Maps, one can zoom into different regions of a single
contact matrix using the mouse-wheel. This enables easy exploration of the
contact matrix at different resolutions. By coupling one contact matrix with
another, this feature can facilitate seamless comparisons of contact matrices at
different resolutions. Juicebox is available as a standalone Java application, or
also via the web-browser with Juicebox.js (Robinson et al., 2018). Therefore,
visualizing chromatin interaction data using Juicebox is very easy.

4. Valid interactions to significant point-to-point interactions. We use
another popular tool Fit-Hi-C (Ay et al., 2014) to identify statistically signifi-
cant point-to-point interactions. We refer to Section 2.1.4, Chapter 2 for more
details about Fit-Hi-C.

5. Calling significant differential interactions among two conditions. It is
of interest to compare the 3D architectures of cells in two biological conditions,
e.g., tumor vs. normal cells or doxycycline-treated vs. untreated cells. Cur-
rently, there exist three tools for calling differential interactions: diffHiC (Lun
and Smyth, 2015), HiCcompare (Stansfield et al., 2018) and FIND (Djekidel
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et al., 2018). We make use of HiCcompare and diffHiC.

HiCcompare jointly normalizes the Hi-C data sets to be compared. Taking a
distance-centric approach for comparison, HiCcompare jointly represents the in-
teraction frequencies in two Hi-C data sets as a function of the distances between
the interacting regions. The authors call this the MD plot where D=distance
(measured in units of resolution), and M=minus (representing the difference be-
tween the interaction frequencies at a given distance in the two matrices). The
data sets are then jointly normalized using loess regression. The normalized
contact counts are then used for comparing the two Hi-C data sets. Finally,
HiCcompare outputs the set of differential interactions after performing multiple
testing correction.

To obtain a robust set of differential interactions, we added another comple-
mentary module to identify differential interactions with diffHiC (Lun and
Smyth, 2015). diffHiC uses statistical approaches from the edgeR package (Mc-
Carthy et al., 2012) for eliminating biases between data sets and compar-
ing them to identify differential interactions. The set of differential interac-
tions are assigned p-values using the Benjamini-Hochberg method (Benjamini
and Hochberg, 1995) for multiple testing correction. While diffHiC can de-
tect differential interactions complementary to those detected by HiCcompare,
HiCcompare is reported to handle the between-data set biases better than
diffHiC (Stansfield et al., 2018).

Additional features of pHDee. With pHDee, the user just needs to edit a single
umbrella config file to setup the tools that should be used and their parameters.
Different runs of pHDee are saved separately, clearly noting the choices of tools and
the parameter values for the run. A log file per run of pHDee provides information on
the timestamped progress of the run. Since, the output from pHDee will be used for
further bioinformatics analysis, observing how different parameter values affect the
result can be a lot easier.

Admittedly, the 3D-genomics field is still in its nascent stage. There is a lack
of an ‘agreed upon’ standard file format for representation and a tool/approach for
different tasks. Therefore, there may arise a need to add additional modules to the
above workflow in the future. The modular framework of pHDee allows for an easy
integration of additional modules.

Implementation Details of pHDee

pHDee itself is implemented in Python. It is essentially a wrapper that puts to-
gether using different software tools in one place. These different softwares need not
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necessarily be written in Python. This is especially helpful in the current scenario
wherein a plethora of newly developed alternative solutions exist for performing each
3D-genomics task noted in Figure 5.1.1. For example, Zufferey et al. (2018) review
and benchmark 22 different software tools for identifying TADs. pHDee uses a single
umbrella configuration file to setup all the tools and their parameters for a single run.

While pHDee adapts the scripts already provided by the tools for converting be-
tween different file formats, when not available, it provides them. These include
conversion from one file format to another (e.g., HiC-Pro to Fit-Hi-C, HiC-Pro
to diffHiC/HiCcompare), and some other miscellaneous tasks such as combining
contact matrices before visualization. With regards to visualization with the tool
Juicebox (Durand et al., 2016), scripts are provided for converting the list of valid
interactions to the .hic format usable with Juicebox.

Suitability of a tool/approach for a task depends on various factors. Some of these
stem from the underlying biology while others solely from the modeling approach
used by the tool. Thus, taking these factors into account, a bioinformatician should
be able to select a suitable tool for the task at hand. To this end, one can add a new
module to pHDee to include the selected tool in the workflow. At present, adding a
new module corresponding to a tool amounts to maintaining proper file formats and
writing a wrapper function for it.

Comparison With Other Tools

HiCExplorer is a recently developed Python-based pipeline that enables certain ways
of processing and analyzing chromatin interaction data (Ramírez et al., 2018). HiC-
Explorer implements functions for pre-processing raw interaction data to obtain
contact matrices, compare different matrices (by a simple difference operation) or
perform a correlation analysis of contact matrices. Additionally, it can plot static
contact matrices, and TADs with 1D feature tracks. For dynamic visualization, it
can convert the files to the cooler format (Abdennur et al., 2018) that can be used
with HiGlass (Kerpedjiev et al., 2018), another dynamic contact map visualization
tool1. There is also a web-server/web-based version of HiCExplorer2 made available
via Galaxy (Wolff et al., 2018). This facilitates usage of HiCExlorer by biologists and
biomedical researchers who are often non-programmers.

Thus, while pHDee has a similar objective—providing an end-to-end solution—in
contrast to HiCExplorer, it aims to provide the bioinformatician with two important
advantages. First, freedom to use tools/approaches not implemented in Python, and,
second, seamless self-addition of a module to incorporate any new tool/approach as
desired. This makes integration of newer tools with pHDee very easy. For example, re-

1http://higlass.io
2https://hicexplorer.usegalaxy.eu/
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cently developed approaches for comparing contact matrices of replicate experiments
or different cell lines include HiCRep (Yang et al., 2017a) and GenomeDISCO (Ursu
et al., 2018). These can be easily integrated into pHDee by the end user. In fact,
pHDee can already incorporate individual functionalities from HiCExplorer as mod-
ules. Also, currently, HiCExplorer does not support any functionality w.r.t. identi-
fying differential interactions.

We implemented and used pHDee for analyzing data from HiChIP experiments
performed on EWS cells. We briefly discuss HiChIP and the role of pHDee in analyzing
HiChIP data in EWS cells in the following sections of this chapter.

5.2 Analysis of Genome Architecture Changes in
EWS Cells Using HiChIP

Since few somatic mutations are observed in EWS as compared to other cancers (Lawrence
et al., 2013), researchers hypothesized that tumor heterogeneity could be explainable
by the epigenetic heterogeneity. Indeed, studies have shown that the fusion oncopro-
tein EWS-FLI1 dynamically reprograms the epigenome. Specifically: (a) Riggi et al.
(2014) show that divergent chromatin remodeling mechanisms of EWS-FLI1 can ac-
tivate or repress enhancers in Ewing sarcoma; (b) Tomazou et al. (2015) have shown
that EWS-FLI1 reprograms the epigenome at promoters and (super) enhancers, es-
pecially the H3K27 acetylation mark; and, (c) Sheffield et al. (2017) showed that
heterogeneity in DNA methylation profiles in tumor samples can explain the tu-
mor heterogeneity and the clinical diversity observed. In particular, Tomazou et al.
(2015) have mapped the epigenome of EWS cells using the cell line A673 which is the
standard model of system biology in Ewing sarcoma cells. Specifically, DNA methy-
lation (using Whole Genome Bisulfite Sequencing (WGBS) and Reduced Represen-
tation Bisulfite Sequencing (RRBS)), seven histone modifications (using ChIP-seq),
RNA levels (using RNA-seq) and open chromatin states (using ATAC-seq) have been
mapped in cells corresponding to two conditions. These are up- and (doxycycline-
induced) down-regulation of EWS-FLI1 in A673 cells.

As a next step, we hypothesized that analyzing the architectural changes in Ew-
ing sarcoma cells after down-regulation of EWS-FLI1, and, in tumor samples can
help characterize the epigenetic reprogramming better. It could possibly also lead to
insights of therapeutic value. We hypothesized using a protein-mediated chromatin
interaction detection technique, such as HiChIP, would be ideal in this scenario.
Specifically, HiChIP was performed on A673 cells before and after treating them
with doxycycline. As noted above, this treatment knocks out the fusion oncogene
EWS-FLI1. Two replicate HiChIP experiments are performed with five IPs, namely,
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H3K4me2, H3K4me3, CTCF, SMC1 and H3K27ac. Additionally, HiChIP was also
performed on two primary tumor samples. Two IPs were used in this case: H3K27ac
and CTCF.

At the initial stage, pHDee was run on HiChIP data of the individual IPs separately.
This helped analyze the quality of the contact libraries per IP and also estimate the
appropriate bin size of the contact matrices. For this, we used the criterion proposed
by Rao et al. (2014) which suggests that bin size as appropriate which results in
80% bins of the contact matrix to have at least 1000 interactions. The libraries were
sequenced to obtain about 200M reads for each IP (counting both replicates). Addi-
tionally, we looked at the following for the contact libraries generated: (a) genome
coverage of different IPs individually and their combinations (see Figure 5.2.1); and,
(b) per IP, the global percentage of interactions overlapping with enhancers or pro-
moters or other regions of the genome (Figure 5.2.2 and 5.2.3).

We obtained (a) as follows. We used genomecov from bedtools to obtain the
genome-wide coverage for each IP individually and in different subsets. Initially,
the IP H3K27ac had two versions determined by its suppliers, Abcam and Diagen-
ode. This made the total IP count to six. Thus, there are 26 possible subsets. 63
of these (excluding the empty set) have been arranged along the x-axis. The y-axis
shows the percentage of genome covered by each subset with at least 1, 5 or 10 reads.
These are separated into three panels. The numbers on top of the bars denote the
rank assigned to each subset based on the percentage of genome covered. Specifically,
all combinations of two IPs (IDs 7-21) and five IPs (IDs 57-62) are marked with a
square. This facilitated choosing the IP-pair CTCF + H3K27ac_Abcam (ID: 11) as
a good combination that captured a large fraction of the observed set of interactions
at the given sequencing depth.

In case of (b), enhancers (E) and promoters (P) were determined as follows. Strin-
gent criterion: From Tomazou et al. (2015)’s ChIP-seq data, all H3K4me peaks that
are present in at least two of the four biological replicates were merged into one set
of regions and only those that overlapped or lay within 1kb of the nearest Ensembl-
annotated TSS were defined as promoters. This criterion was made lenient by com-
bining H3K4me peaks present in at least one of the biological replicates and enforcing
no further restrictions. Similar strategy was used for identifying a stringent and le-
nient set of enhancers, using H3K27ac sites instead of H3K4me. Figure 5.2.3 and 5.2.2
show percentages of interactions that are EP, PP, EE, ED, PD, and DD interactions.
Here, D = distant denoted any other region apart from enhancers and promoters.

Further tasks included, for bin sizes 1M, 500K, 250K, 150K, 100K, 50K, 25K ob-
taining (a) the significant interactions per IP and all IPs pooled; (b) differential
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Figure 5.2.1: Figure shows the percentage genomic coverage of different IPs individually and
in combinations.

interactions per IP and all IPs pooled using diffHiC and HiCcompare. This was also
performed for the HiChIP data for two primary tumor samples.

Thus pHDee helped facilitating a seamless data-intensive downstream bioinformat-
ics analysis.

5.3 Discussion
We developed pHDee, an easy-to-use, plug-and-play pipeline for HiChIP or Hi-C data
analysis. The pipeline collates handling of different tools for different tasks at one
place. This enables the user to concentrate on the downstream bioinformatics anal-
ysis. Adding new modules to pHDee is easy. The complete source code is made
available at https://github.molgen.mpg.de/snikumbh/pHDee.
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CTCF:
% interactions

(stringent definitions)

PP, 0.441%
EP, 0.092%
EE, 0.382%

PD, 4%
ED, 3%
DD, 92%

SMC1:
% interactions

(stringent definitions)

PP, 0.520%
EP, 0.089%
EE, 0.355%

PD, 4%
ED, 3%
DD, 92%

H3K4me3:
% interactions

(stringent definitions)

PP, 8.99%
EP, 0.95%
EE, 0.34%

PD, 2.7%
ED, 30.4%
DD, 56.6%

H3K4me2:
% interactions

(stringent definitions)

PP, 5.75%
EP, 0.74%
EE, 0.87%

PD, 5.9%
ED, 21.9%
DD, 64.8%

H3K27ac_diagenode:
% interactions

(stringent definitions)

PP, 0.91%
EP, 0.17%
EE, 0.52%

PD, 4.6%
ED, 4.8%
DD, 88.9%

H3K27ac_abcam:
% interactions

(stringent definitions)

PP, 2.44%
EP, 0.39%
EE, 1.36%

PD, 7.3%
ED, 9.5%
DD, 79.0%

Figure 5.2.2: Figure shows the global percentage of interactions involving loci overlapping an
E or P or otherwise. Overlaps are defined comparatively stringently (see text).
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Figure 5.2.3: Lenient definitions used for promoters and enhancers. Figure shows the global
percentage of interactions involving loci overlapping an E or P or otherwise.
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6
Perspective

It has long been known that regulatory elements like enhancers in the genome are
able to regulate genes that are located distantly on the linear DNA sequence.

Such long-range interactions between regions in the genome are made possible due
to the compact 3D organization of chromatin inside the nucleus. Molecular biol-
ogy techniques, such as 3C and its derivatives, that can probe this 3D organization
were invented during the last decade. In parallel, computational approaches are be-
ing developed that help study the role of different features contributing to this 3D
organization. This thesis outlines our efforts in developing interpretable machine
learning-based approaches for this task. This chapter serves to conclude this thesis.
I first summarize the contributions made in this thesis—both biological and method-
ological. Finally, I lead the discussion into the broader perspectives and possible
future directions.

6.1 Conclusions
Chapter 3 outlines our SVM-based approach for prediction of long-range chromatin
interactions using only sequence features. In it, we specifically sought to establish the
extent to which the genetic sequence at a genomic locus played a role in identifying
potential long-range interaction partners of a particular genomic locus of interest.We
built locus-specific models using string kernels to compare genomic fragments, and
coupled it together with support vector machines for classification. We were able to
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show that the genetic sequence information at a genomic locus can help discern if it
interacts with the locus of interest or not. Our computational experiments were one of
the first to suggest a potential general role for short tandem repeat (STR) sequences
in genome organization (Nikumbh and Pfeifer, 2017). We also developed novel ways
for visualizing the important sequence features for this prediction problem that aided
in establishing this hypothesis. While such tandem repeats have been implicated
in neurological diseases like the Huntington disease since the last decade, several
recent studies have either proposed or shown evidence of general regulatory roles for
STRs (Bagshaw, 2017), including in cancer (Gymrek, 2017; Gymrek et al., 2016), at
borders of large chromatin domains such as TADs (Darrow et al., 2016; Mourad and
Cuvier, 2016).

Although the ODH feature representation allowed us to compare the variable-length
restriction fragments, the sequence features identified as important for classification
cannot be traced back to their location in the individual sequences. We addressed
this limitation next.

Chapter 4 presents CoMIK, a string kernel-based method we developed to enable
comparison of variable-length sequences in a supervised ML scenario. This compar-
ison can be free of using absolute positional information which is a characteristic of
the existing methods. CoMIK achieves this by modeling the problem in a way that is
borrowed from the computer vision or natural language processing domain, but so far
novel in computational biology. For example, analogous to a document (paragraph)
being composed of paragraphs (sentences), CoMIK treats every sequence as a set of
its segments. It then characterizes a sequence by the features in all its segments and
uses this information for its classification, i.e., assigning a class label to the sequence.
We demonstrated that CoMIK can accurately classify sequences using this approach.
It also helps in assessing the contributions of the segments of each sequence towards
classification (Nikumbh et al., 2017b). This, in a way, combines the best of both
worlds—identification of important features and locating segments within the whole
sequence that hold these important features.

An overarching, long-term goal here is to analyze long-range interactions using
CoMIK. Compared to other approaches (Roy et al., 2015; Whalen et al., 2016; Yang
et al., 2017b), when comparing genomic fragments reported from chromatin inter-
action experiments, this method can provide de novo, fine-grained insights into the
sequence drivers of such long-range interactions. This can enable studying the role
of the flanking regions or the intervening chromatin in the so-called ‘structural’ in-
teractions (Hughes et al., 2014; Sanyal et al., 2012).

This approach can have some limitations. If there are just too many or too long
sequences, breaking them down into shorter segments can pose a computationally
intensive problem (cf. Section 4.2.3)
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In Chapter 5, the focus is shifted from developing and applying interpretable ma-
chine learning methods to enabling easy manipulation of chromatin conformation
data in order to facilitate their analysis together with other facets of cellular biology.
To this end, Chapter 5 delineates our pipeline, pHDee, for end-to-end processing of
HiChIP/Hi-C data. Bioinformatics analyses often involve manipulating and analyz-
ing large amounts of data from different molecular biology experiments. For example,
when studying differences in cell-types or tissues, in order to get a more complete view,
analyses involve data from several experiments. This entails ploughing through data
described using different formats by various tools. In this scenario, pHDee enables
focusing on the downstream, data-intensive bioinformatics analyses. We have used
the pipeline for processing data from two replicates of HiChIP experiments profiling
long-range interactions mediated by selected histone modifications and architectural
proteins in a Ewing sarcoma cell line and primary EWS tumor samples. Processing
this huge volume of chromatin conformation data using pHDee facilitates perform-
ing downstream analysis. This downstream analysis additionally involved handling
of genome-wide ChIP-seq data of different histone modifications, open chromatin re-
gions (ATAC-seq) and RNA-seq data in the same cell line. As research in 3D-genomics
progresses, it is expected that approaches for tasks and the different file formats will
be more standardized reducing the burden of managing many of these as is the case
today.

6.2 Future Directions
On the methodology side, we already noted that kernels should be positive definite.
In CoMIK, the conformal transformation applied to each multi-instance kernel is not
guaranteed to yield a positive definite kernel matrix due to the Gaussian nature of the
transformation. This is an open problem (Feragen and Hauberg, 2016). While we did
not encounter such a scenario in our experiments on data sets reported in Chapter 4,
as a workaround, we propose removing the negative eigenvalues and making the kernel
matrices positive definite (cf. Subsection 2.3.4). Furthermore, from the point of view
of practical applicability of CoMIK for large-scale data sets such as the genome-wide
conformation data, one will have to devise ways to handle the computation of the
intermediate large similarity matrix.

From the perspective of biology, as already noted in Chapter 4, development of
CoMIK was mainly motivated by two aspects. First, our work in Chapter 3 which we
already discussed in the earlier section. Second, the prevalence of different definitions
of promoters used across studies that yield promoter sequences of different lengths,
and also the notion of focused and dispersed core promoters (Butler and Kadonaga,
2002; Juven-Gershon et al., 2008). It will be interesting to process promoter sequences
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using CoMIK to gain insights into the core promoter sequences and their transcription
initiation modes.

Recall the ‘Bickmore hypothesis’ we discussed in Chapter 3, Section 3.7. Briefly, it
states that there can be different mechanisms that help establish interactions between
distant genomic regions, for instance, physical contact via single large loop or many
mini loops, or interaction via diffusion but no physical contact. Intriguingly, there is
a recent line of work suggesting liquid-liquid phase separation as an emerging model
that can explain these mechanisms (Hnisz et al., 2017).

Finally, I would like to conclude by making the following point. In terms of inter-
pretability of computational models, there are always important caveats that ought to
be taken into account. For instance, when predicting long-range interactions between
genomic regions, the available (or used) ground truth for this task clearly defines
what the machine actually learns. To this end, it is very important to distinguish be-
tween (a) models predicting point-to-point and looping interactions; (b) interactions
between known or annotated regulatory regions and those involving other genomic
regions, etc. Often, this distinction can be hazy due to the experimental design itself
or due to noise in the measurements. We note the well-known aphorism by the British
Statistician George E. P. Box that addresses this: “All models are wrong, some are
useful”.

118



Bibliography

1000 Genomes Project Consortium et al. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061, 2010.

Nezar Abdennur, Anton Goloborodko, Maxim Imakaev, and Leonid Mirny. mirny-
lab/cooler: v0.7.10, May 2018. URL https://doi.org/10.5281/zenodo.
1243296.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology, 215
(3):403–410, 1990.

Ferhat Ay and William Noble. Analysis methods for studying the 3D architecture
of the genome. Genome Biology, 16(1):183, 2015. ISSN 1474-760X. doi: 10.1186/
s13059-015-0745-7. URL http://genomebiology.com/2015/16/1/183.

Ferhat Ay, Timothy L Bailey, and William Stafford Noble. Statistical confidence
estimation for Hi-C data reveals regulatory chromatin contacts. Genome research,
2014.

Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learn-
ing, conic duality, and the SMO algorithm. In Proceedings of the Twenty-first
International Conference on Machine Learning, ICML ’04, pages 6–, New York,
NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015424. URL
http://doi.acm.org/10.1145/1015330.1015424.

Andrew T.M. Bagshaw. Functional mechanisms of microsatellite DNA in eukaryotic
genomes. Genome Biology and Evolution, 9(9):2428–2443, 2017. doi: 10.1093/gbe/
evx164. URL http://dx.doi.org/10.1093/gbe/evx164.

Robert A Beagrie, Antonio Scialdone, Markus Schueler, Dorothee CA Kraemer, Mita
Chotalia, Sheila Q Xie, Mariano Barbieri, Inês de Santiago, Liron-Mark Lavitas,
Miguel R Branco, et al. Complex multi-enhancer contacts captured by genome
architecture mapping. Nature, 543(7646):519, 2017.

Houda Belaghzal, Job Dekker, and Johan H Gibcus. Hi-C 2.0: An optimized Hi-C
procedure for high-resolution genome-wide mapping of chromosome conformation.
Methods, 123:56–65, 2017.

Asa Ben-Hur and Jason Weston. A user’s guide to support vector machines. In Data
mining techniques for the life sciences, pages 223–239. Springer, 2010.

119

https://doi.org/10.5281/zenodo.1243296
https://doi.org/10.5281/zenodo.1243296
http://genomebiology.com/2015/16/1/183
http://doi.acm.org/10.1145/1015330.1015424
http://dx.doi.org/10.1093/gbe/evx164


Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the royal statistical society.
Series B (Methodological), pages 289–300, 1995.

Wendy A. Bickmore. The spatial organization of the human genome. An-
nual Review of Genomics and Human Genetics, 14(1):67–84, 2013. doi:
10.1146/annurev-genom-091212-153515. URL http://dx.doi.org/10.1146/
annurev-genom-091212-153515. PMID: 23875797.

Matthew B Blaschko and Thomas Hofmann. Conformal multi-instance kernels. In
NIPS 2006 Workshop on Learning to Compare Examples, 2006.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, COLT ’92, pages 144–152, New York, NY, USA,
1992. ACM. ISBN 0-89791-497-X. doi: 10.1145/130385.130401. URL http://doi.
acm.org/10.1145/130385.130401.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical
learning theory. In Advanced lectures on machine learning, pages 169–207. Springer,
2004.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

K.J. Brookes. The VNTR in complex disorders: The forgotten polymorphisms?
a functional way forward? Genomics, 101(5):273 – 281, 2013. ISSN 0888-
7543. doi: http://dx.doi.org/10.1016/j.ygeno.2013.03.003. URL http://www.
sciencedirect.com/science/article/pii/S0888754313000451.

Martha L Bulyk. Computational prediction of transcription-factor binding site loca-
tions. Genome biology, 5(1):201, 2003.

Jennifer E.F. Butler and James T. Kadonaga. The RNA polymerase II core promoter:
a key component in the regulation of gene expression. Genes & Development, 16
(20):2583–2592, 2002. doi: 10.1101/gad.1026202. URL http://genesdev.cshlp.
org/content/16/20/2583.short.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm.

Qiang Chen, Yibin Chen, Chunjing Bian, Ryoji Fujiki, and Xiaochun Yu. TET2
promotes histone o-glcnacylation during gene transcription. Nature, 493(7433):
561–564, 2013.

Nathan Cope, Peter Fraser, and Christopher Eskiw. The yin and yang of chromatin
spatial organization. Genome Biology, 11(3):204, 2010. ISSN 1465-6906. doi:
10.1186/gb-2010-11-3-204. URL http://genomebiology.com/2010/11/3/204.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. ISSN 0885-6125. doi: 10.1007/BF00994018. URL http:
//dx.doi.org/10.1007/BF00994018.

120

http://dx.doi.org/10.1146/annurev-genom-091212-153515
http://dx.doi.org/10.1146/annurev-genom-091212-153515
http://doi.acm.org/10.1145/130385.130401
http://doi.acm.org/10.1145/130385.130401
http://www.sciencedirect.com/science/article/pii/S0888754313000451
http://www.sciencedirect.com/science/article/pii/S0888754313000451
http://genesdev.cshlp.org/content/16/20/2583.short
http://genesdev.cshlp.org/content/16/20/2583.short
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://genomebiology.com/2010/11/3/204
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018


Caelin Cubeñas-Potts and Victor G. Corces. Architectural proteins, transcription,
and the three-dimensional organization of the genome. FEBS Letters, 589(20,
Part A):2923 – 2930, 2015. ISSN 0014-5793. doi: https://doi.org/10.1016/
j.febslet.2015.05.025. URL http://www.sciencedirect.com/science/article/
pii/S0014579315004019. 3D Genome structure.

Katherine E Cullen, Michael P Kladde, and Mark A Seyfred. Interaction between
transcription regulatory regions of prolactin chromatin. Science, 261(5118):203–
206, 1993.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scat-
ter/gather: A cluster-based approach to browsing large document collections. In
Proceedings of the 15th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’92, pages 318–329, New York,
NY, USA, 1992. ACM. ISBN 0-89791-523-2. doi: 10.1145/133160.133214. URL
http://doi.acm.org/10.1145/133160.133214.

Emily M. Darrow, Miriam H. Huntley, Olga Dudchenko, Elena K. Stamenova,
Neva C. Durand, Zhuo Sun, Su-Chen Huang, Adrian L. Sanborn, Ido Machol,
Muhammad Shamim, Andrew P. Seberg, Eric S. Lander, Brian P. Chadwick, and
Erez Lieberman Aiden. Deletion of DXZ4 on the human inactive X chromosome
alters higher-order genome architecture. Proceedings of the National Academy
of Sciences, 113(31):E4504–E4512, 2016. doi: 10.1073/pnas.1609643113. URL
http://www.pnas.org/content/113/31/E4504.abstract.

Elzo de Wit and Wouter de Laat. A decade of 3C technologies: insights into nuclear
organization. Genes & Development, 26(1):11–24, January 2012. ISSN 1549-5477.
doi: 10.1101/gad.179804.111. URL http://dx.doi.org/10.1101/gad.179804.
111.

Job Dekker. Gene regulation in the third dimension. Science, 319(5871):1793–1794,
2008. ISSN 0036-8075. doi: 10.1126/science.1152850. URL http://science.
sciencemag.org/content/319/5871/1793.

Job Dekker and Edith Heard. Structural and functional diversity of topologically
associating domains. FEBS letters, 589(20PartA):2877–2884, 2015.

Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing chro-
mosome conformation. science, 295(5558):1306–1311, 2002.

Job Dekker, Marc A. Marti-Renom, and Leonid A. Mirny. Exploring the three-
dimensional organization of genomes: interpreting chromatin interaction data. Nat
Rev Genet, 14(6):390–403, Jun 2013. ISSN 1471-0056. URL http://dx.doi.org/
10.1038/nrg3454. Review.

Job Dekker, Andrew S Belmont, Mitchell Guttman, Victor O Leshyk, John T Lis,
Stavros Lomvardas, Leonid A Mirny, Clodagh C O’shea, Peter J Park, Bing Ren,
et al. The 4d nucleome project. Nature, 549(7671):219, 2017.

Olivier Delattre, Jessica Zucman, Béatrice Plougastel, Chantal Desmaze, Thomas
Melot, Martine Peter, Heinrich Kovar, Isabelle Joubert, Pieter de Jong, Guy

121

http://www.sciencedirect.com/science/article/pii/S0014579315004019
http://www.sciencedirect.com/science/article/pii/S0014579315004019
http://doi.acm.org/10.1145/133160.133214
http://www.pnas.org/content/113/31/E4504.abstract
http://dx.doi.org/10.1101/gad.179804.111
http://dx.doi.org/10.1101/gad.179804.111
http://science.sciencemag.org/content/319/5871/1793
http://science.sciencemag.org/content/319/5871/1793
http://dx.doi.org/10.1038/nrg3454
http://dx.doi.org/10.1038/nrg3454


Rouleau, et al. Gene fusion with an ETS DNA-binding domain caused by chromo-
some translocation in human tumours. Nature, 359(6391):162, 1992.

Thomas G. Dietterich, Richard H. Lathrop, Tomas Lozano-Perez, and Arris Phar-
maceutical. Solving the multiple-instance problem with axis-parallel rectangles.
Artificial Intelligence, 89:31–71, 1997.

Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming
Hu, Jun S. Liu, and Bing Ren. Topological domains in mammalian genomes iden-
tified by analysis of chromatin interactions. Nature, 485(7398):376–380, May 2012.
ISSN 0028-0836. doi: 10.1038/nature11082. URL http://dx.doi.org/10.1038/
nature11082.

Mohamed Nadhir Djekidel, Yang Chen, and Michael Q Zhang. FIND: differential
chromatin interactions detection using a spatial poisson process. Genome research,
2018.

Josèe Dostie, Todd A. Richmond, Ramy A. Arnaout, Rebecca R. Selzer, William L.
Lee, Tracey A. Honan, Eric D. Rubio, Anton Krumm, Justin Lamb, Chad Nus-
baum, Roland D. Green, and Job Dekker. Chromosome conformation capture
carbon copy (5C): A massively parallel solution for mapping interactions between
genomic elements. Genome Research, 16(10):1299–1309, 2006. doi: 10.1101/gr.
5571506. URL http://genome.cshlp.org/content/16/10/1299.abstract.

Neva C Durand, James T Robinson, Muhammad S Shamim, Ido Machol, Jill P
Mesirov, Eric S Lander, and Erez Lieberman Aiden. Juicebox provides a visual-
ization system for Hi-C contact maps with unlimited zoom. Cell systems, 3(1):
99–101, 2016.

Ron Edgar, Michael Domrachev, and Alex E. Lash. Gene expression omnibus:
Ncbi gene expression and hybridization array data repository. Nucleic Acids
Research, 30(1):207–210, 2002. doi: 10.1093/nar/30.1.207. URL http://nar.
oxfordjournals.org/content/30/1/207.abstract.

Charles Elkan. The foundations of cost-sensitive learning. In Proceedings of the
17th International Joint Conference on Artificial Intelligence - Volume 2, IJ-
CAI’01, pages 973–978, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-812-5, 978-1-558-60812-2. URL http://dl.acm.org/
citation.cfm?id=1642194.1642224.

Jason Ernst and Manolis Kellis. ChromHMM: Automating chromatin-state discovery
and characterization. Nat Meth, 9(3):215–216, March 2012. ISSN 15487091. doi:
10.1038/nmeth.1906.

Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning mul-
tiple tasks with kernel methods. J. Mach. Learn. Res., 6:615–637, December 2005.
ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1046920.1088693.

Andrew P. Feinberg and Pauline A. Callinan. The emerging science of epigenomics.
Human Molecular Genetics, 15(suppl_1):R95–R101, 04 2006. ISSN 0964-6906. doi:
10.1093/hmg/ddl095. URL https://dx.doi.org/10.1093/hmg/ddl095.

122

http://dx.doi.org/10.1038/nature11082
http://dx.doi.org/10.1038/nature11082
http://genome.cshlp.org/content/16/10/1299.abstract
http://nar.oxfordjournals.org/content/30/1/207.abstract
http://nar.oxfordjournals.org/content/30/1/207.abstract
http://dl.acm.org/citation.cfm?id=1642194.1642224
http://dl.acm.org/citation.cfm?id=1642194.1642224
http://dl.acm.org/citation.cfm?id=1046920.1088693
https://dx.doi.org/10.1093/hmg/ddl095


Aasa Feragen and Søren Hauberg. Open problem: Kernel methods on manifolds
and metric spaces. what is the probability of a positive definite geodesic exponen-
tial kernel? In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors,
29th Annual Conference on Learning Theory, volume 49 of Proceedings of Ma-
chine Learning Research, pages 1647–1650, Columbia University, New York, New
York, USA, 23–26 Jun 2016. PMLR. URL http://proceedings.mlr.press/v49/
feragen16.html.

Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford. Identification of
alternative topological domains in chromatin. Algorithms for Molecular Biology, 9
(1):14, 2014.

James Fraser, Carmelo Ferrai, Andrea M Chiariello, Markus Schueler, Tiago Rito,
Giovanni Laudanno, Mariano Barbieri, Benjamin L Moore, Dorothee CA Krae-
mer, Stuart Aitken, et al. Hierarchical folding and reorganization of chromosomes
are linked to transcriptional changes in cellular differentiation. Molecular systems
biology, 11(12):852, 2015.

J Füllgrabe, N Hajji, and B Joseph. Cracking the death code: apoptosis-related
histone modifications. Cell death and differentiation, 17(8):1238, 2010.

Melissa J. Fullwood, Mei Hui Liu, You Fu Pan, Jun Liu, Han Xu, Yusoff Bin Mo-
hamed, Yuriy L. Orlov, Stoyan Velkov, Andrea Ho, Poh Huay Mei, Elaine G. Y.
Chew, Phillips Yao Hui Huang, Willem-Jan Welboren, Yuyuan Han, Hong Sain
Ooi, Pramila N. Ariyaratne, Vinsensius B. Vega, Yanquan Luo, Peck Yean Tan,
Pei Ye Choy, K. D. Senali Abayratna Wansa, Bing Zhao, Kar Sian Lim, Shi Chi
Leow, Jit Sin Yow, Roy Joseph, Haixia Li, Kartiki V. Desai, Jane S. Thom-
sen, Yew Kok Lee, R. Krishna Murthy Karuturi, Thoreau Herve, Guillaume
Bourque, Hendrik G. Stunnenberg, Xiaoan Ruan, Valere Cacheux-Rataboul, Wing-
Kin Sung, Edison T. Liu, Chia-Lin Wei, Edwin Cheung, and Yijun Ruan. An
oestrogen-receptor-[agr]-bound human chromatin interactome. Nature, 462(7269):
58–64, Nov 2009. ISSN 0028-0836. doi: 10.1038/nature08497. URL http:
//dx.doi.org/10.1038/nature08497.

Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD Explorations
Newsletter, 5(1):49–58, 2003.

Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-
Instance kernels. In Proc. 19th International Conf. on Machine Learning, pages
179–186, Massachusetts, 2002. Morgan Kaufmann.

Jeff Gauthier, Antony T Vincent, Steve J Charette, and Nicolas Derome. A brief
history of bioinformatics. Briefings in Bioinformatics, page bby063, 2018. doi:
10.1093/bib/bby063. URL http://dx.doi.org/10.1093/bib/bby063.

Luca Giorgetti, Bryan R Lajoie, Ava C Carter, Mikael Attia, Ye Zhan, Jin Xu,
Chong Jian Chen, Noam Kaplan, Howard Y Chang, Edith Heard, et al. Struc-
tural organization of the inactive x chromosome in the mouse. Nature, 2016.

Melissa Gymrek. A genomic view of short tandem repeats. Current opinion in genetics
& development, 44:9–16, 2017.

123

http://proceedings.mlr.press/v49/feragen16.html
http://proceedings.mlr.press/v49/feragen16.html
http://dx.doi.org/10.1038/nature08497
http://dx.doi.org/10.1038/nature08497
http://dx.doi.org/10.1093/bib/bby063


Melissa Gymrek, Thomas Willems, Audrey Guilmatre, Haoyang Zeng, Barak Markus,
Stoyan Georgiev, Mark J. Daly, Alkes L. Price, Jonathan K. Pritchard, Andrew J.
Sharp, and Yaniv Erlich. Abundant contribution of short tandem repeats to gene
expression variation in humans. Nature Genetics, 48:22, 2016. URL http://dx.
doi.org/10.1038/ng.3461.

H. Hamada et al. Characterization of genomic poly(dT-dG).poly(dC-dA) sequences:
structure, organization, and conformation. Mol Cell Biol, 4(12):2610–2621, Dec
1984. ISSN 0270-7306. URL http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC369266/. 6098814[pmid].

Jennifer Harrow, Adam Frankish, Jose M. Gonzalez, Electra Tapanari, Mark
Diekhans, Felix Kokocinski, Bronwen L. Aken, Daniel Barrell, Amonida Zadissa,
Stephen Searle, If Barnes, Alexandra Bignell, Veronika Boychenko, Toby Hunt,
Mike Kay, Gaurab Mukherjee, Jeena Rajan, Gloria Despacio-Reyes, Gary Saun-
ders, Charles Steward, Rachel Harte, Michael Lin, Códric Howald, Andrea Tanzer,
Thomas Derrien, Jacqueline Chrast, Nathalie Walters, Suganthi Balasubramanian,
Baikang Pei, Michael Tress, Jose Manuel Rodriguez, Iakes Ezkurdia, Jeltje van
Baren, Michael Brent, David Haussler, Manolis Kellis, Alfonso Valencia, Alexan-
dre Reymond, Mark Gerstein, Roderic Guigó, and Tim J. Hubbard. GENCODE:
The reference human genome annotation for the ENCODE project. Genome Re-
search, 22(9):1760–1774, 2012. doi: 10.1101/gr.135350.111. URL http://genome.
cshlp.org/content/22/9/1760.abstract.

Bing He, Changya Chen, Li Teng, and Kai Tan. Global view of enhancer–promoter
interactome in human cells. Proceedings of the National Academy of Sciences, 111
(21):E2191–E2199, 2014. doi: 10.1073/pnas.1320308111. URL http://www.pnas.
org/content/111/21/E2191.abstract.

Nastaran Heidari, Douglas H. Phanstiel, Chao He, Fabian Grubert, Fereshteh Jahan-
bani, Maya Kasowski, Michael Q. Zhang, and Michael P. Snyder. Genome-wide
map of regulatory interactions in the human genome. Genome Research, 24(12):
1905–1917, 2014. doi: 10.1101/gr.176586.114. URL http://genome.cshlp.org/
content/24/12/1905.abstract.

Ralf Herbrich and Thore Graepel. A pac-bayesian margin bound for linear classifiers:
Why svms work. In Advances in neural information processing systems, pages
224–230, 2001.

Denes Hnisz, Krishna Shrinivas, Richard A Young, Arup K Chakraborty, and
Phillip A Sharp. A phase separation model for transcriptional control. Cell, 169
(1):13–23, 2017.

Ming Hu, Ke Deng, Siddarth Selvaraj, Zhaohui Qin, Bing Ren, and Jun S. Liu.
HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28
(23):3131–3133, 2012. doi: 10.1093/bioinformatics/bts570. URL http://dx.doi.
org/10.1093/bioinformatics/bts570.

Jim R. Hughes, Nigel Roberts, Simon McGowan, Deborah Hay, Eleni Giannoulatou,
Magnus Lynch, Marco De Gobbi, Stephen Taylor, Richard Gibbons, and Douglas R.
Higgs. Analysis of hundreds of cis-regulatory landscapes at high resolution in a

124

http://dx.doi.org/10.1038/ng.3461
http://dx.doi.org/10.1038/ng.3461
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC369266/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC369266/
http://genome.cshlp.org/content/22/9/1760.abstract
http://genome.cshlp.org/content/22/9/1760.abstract
http://www.pnas.org/content/111/21/E2191.abstract
http://www.pnas.org/content/111/21/E2191.abstract
http://genome.cshlp.org/content/24/12/1905.abstract
http://genome.cshlp.org/content/24/12/1905.abstract
http://dx.doi.org/10.1093/bioinformatics/bts570
http://dx.doi.org/10.1093/bioinformatics/bts570


single, high-throughput experiment. Nat Genet, 46(2):205–212, Feb 2014. ISSN
1061-4036. URL http://dx.doi.org/10.1038/ng.2871. Technical Report.

Maxim Imakaev, Geoffrey Fudenberg, Rachel Patton McCord, Natalia Naumova,
Anton Goloborodko, Bryan R Lajoie, Job Dekker, and Leonid A Mirny. Iterative
correction of Hi-C data reveals hallmarks of chromosome organization. Nature
methods, 9(10):999, 2012.

Laurent Jacob and Jean-Philippe Vert. Efficient peptide–MHC-I binding prediction
for alleles with few known binders. Bioinformatics, 24(3):358–366, 2008. doi: 10.
1093/bioinformatics/btm611. URL http://bioinformatics.oxfordjournals.
org/content/24/3/358.abstract.

Roland Jäger, Gabriele Migliorini, Marc Henrion, Radhika Kandaswamy, Helen E
Speedy, Andreas Heindl, Nicola Whiffin, Maria J Carnicer, Laura Broome, Nicola
Dryden, et al. Capture Hi-C identifies the chromatin interactome of colorectal
cancer risk loci. Nature communications, 6:6178, 2015.

Tamar Juven-Gershon, Jer-Yuan Hsu, Joshua WM Theisen, and James T Kadonaga.
The RNA polymerase II core promoter—the gateway to transcription. Current
opinion in cell biology, 20(3):253–259, 2008.

Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum, Kasper Dinkla,
Hendrik Strobelt, Jacob M. Luber, Scott B. Ouellette, Alaleh Azhir, Nikhil Kumar,
Jeewon Hwang, Soohyun Lee, Burak H. Alver, Hanspeter Pfister, Leonid A. Mirny,
Peter J. Park, and Nils Gehlenborg. HiGlass: web-based visual exploration and
analysis of genome interaction maps. Genome Biology, 19(1):125, Aug 2018. doi: 10.
1186/s13059-018-1486-1. URL https://doi.org/10.1186/s13059-018-1486-1.

Philip A. Knight and Daniel Ruiz. A fast algorithm for matrix balancing. IMA Journal
of Numerical Analysis, 2012. doi: 10.1093/imanum/drs019. URL http://imajna.
oxfordjournals.org/content/early/2012/10/26/imanum.drs019.abstract.

Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,
Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al.
Initial sequencing and analysis of the human genome. Nature, 409(6822):860–922,
2001.

David S. Latchman. Transcription factors: An overview. The International Jour-
nal of Biochemistry & Cell Biology, 29(12):1305 – 1312, 1997. ISSN 1357-
2725. doi: https://doi.org/10.1016/S1357-2725(97)00085-X. URL http://www.
sciencedirect.com/science/article/pii/S135727259700085X.

Michael S Lawrence, Petar Stojanov, Paz Polak, Gregory V Kryukov, Kristian Cibul-
skis, Andrey Sivachenko, Scott L Carter, Chip Stewart, Craig H Mermel, Steven A
Roberts, et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature, 499(7457):214, 2013.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing,
volume 7, pages 566–575, 2002.

125

http://dx.doi.org/10.1038/ng.2871
http://bioinformatics.oxfordjournals.org/content/24/3/358.abstract
http://bioinformatics.oxfordjournals.org/content/24/3/358.abstract
https://doi.org/10.1186/s13059-018-1486-1
http://imajna.oxfordjournals.org/content/early/2012/10/26/imanum.drs019.abstract
http://imajna.oxfordjournals.org/content/early/2012/10/26/imanum.drs019.abstract
http://www.sciencedirect.com/science/article/pii/S135727259700085X
http://www.sciencedirect.com/science/article/pii/S135727259700085X


Christina Leslie and Rui Kuang. Fast kernels for inexact string matching. In Learning
Theory and Kernel Machines, pages 114–128. Springer, 2003.

Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford
Noble. Mismatch string kernels for discriminative protein classification. Bioin-
formatics, 20(4):467–476, 2004. doi: 10.1093/bioinformatics/btg431. URL http:
//bioinformatics.oxfordjournals.org/content/20/4/467.abstract.

Guoliang Li, Melissa J. Fullwood, Han Xu, Fabianus Hendriyan Mulawadi, Stoyan
Velkov, Vinsensius Vega, Pramila Nuwantha Ariyaratne, Yusoff Bin Mohamed,
Hong-Sain Ooi, Chandana Tennakoon, Chia-Lin Wei, Yijun Ruan, and Wing-
Kin Sung. Chia-pet tool for comprehensive chromatin interaction analysis with
paired-end tag sequencing. Genome Biology, 11(2):R22, Feb 2010. doi: 10.1186/
gb-2010-11-2-r22. URL https://doi.org/10.1186/gb-2010-11-2-r22.

Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, To-
bias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O.
Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Grou-
dine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lan-
der, and Job Dekker. Comprehensive mapping of long-range interactions re-
veals folding principles of the human genome. Science, 326(5950):289–293, 2009.
doi: 10.1126/science.1181369. URL http://www.sciencemag.org/content/326/
5950/289.abstract.

Thomas Lingner and Peter Meinicke. Remote homology detection based on oligomer
distances. Bioinformatics (Oxford, England), 22(18):2224–2231, September 2006.
ISSN 1367-4811. doi: 10.1093/bioinformatics/btl376. URL http://www.ncbi.
nlm.nih.gov/pubmed/16837522.

Shai Lubliner, Ifat Regev, Maya Lotan-Pompan, Sarit Edelheit, Adina Weinberger,
and Eran Segal. Core promoter sequence in yeast is a major determinant of expres-
sion level. Genome research, 25(7):1008–1017, 2015.

Aaron TL Lun and Gordon K Smyth. diffhic: a bioconductor package to detect
differential genomic interactions in Hi-C data. BMC bioinformatics, 16(1):258,
2015.

Darío G Lupiáñez, Katerina Kraft, Verena Heinrich, Peter Krawitz, Francesco Bran-
cati, Eva Klopocki, Denise Horn, Hülya Kayserili, John M Opitz, Renata Laxova,
et al. Disruptions of topological chromatin domains cause pathogenic rewiring of
gene-enhancer interactions. Cell, 161(5):1012–1025, 2015.

Nicola L. Mahy, Paul E. Perry, and Wendy A. Bickmore. Gene density and transcrip-
tion influence the localization of chromatin outside of chromosome territories de-
tectable by FISH. The Journal of Cell Biology, 159(5):753–763, 2002. doi: 10.1083/
jcb.200207115. URL http://jcb.rupress.org/content/159/5/753.abstract.

Andrea Malaspina et al. A survey of trinucleotide/tandem repeat-containing tran-
scripts (TNRTs) isolated from human spinal cord to identify genes containing un-
stable DNA regions as candidates for disorders of motor function. Brain Research
Bulletin, 56(3-4):299 – 306, 2001. ISSN 0361-9230. doi: http://dx.doi.org/10.

126

http://bioinformatics.oxfordjournals.org/content/20/4/467.abstract
http://bioinformatics.oxfordjournals.org/content/20/4/467.abstract
https://doi.org/10.1186/gb-2010-11-2-r22
http://www.sciencemag.org/content/326/5950/289.abstract
http://www.sciencemag.org/content/326/5950/289.abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837522
http://www.ncbi.nlm.nih.gov/pubmed/16837522
http://jcb.rupress.org/content/159/5/753.abstract


1016/S0361-9230(01)00597-4. URL http://www.sciencedirect.com/science/
article/pii/S0361923001005974. Triplet Repeat Diseases.

Sören Sonnenburg Marius Kloft, Ulf Brefeld and Alexander Zien. Lp-norm multiple
kernel learning. Journal of Machine Learning Research, 12:953–997, 2011.

Marc A Marti-Renom, Genevieve Almouzni, Wendy A Bickmore, Kerstin Bystricky,
Giacomo Cavalli, Peter Fraser, Susan M Gasser, Luca Giorgetti, Edith Heard,
Mario Nicodemi, et al. Challenges and guidelines toward 4d nucleome data and
model standards. Nature genetics, page 1, 2018.

Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological variation.
Nucleic acids research, 40(10):4288–4297, 2012.

Peter Meinicke, Maike Tech, Burkhard Morgenstern, and Rainer Merkl. Oligo kernels
for datamining on biological sequences: a case study on prokaryotic translation ini-
tiation sites. BMC Bioinformatics, 5(1):169, 2004. ISSN 1471-2105. doi: 10.1186/
1471-2105-5-169. URL http://www.biomedcentral.com/1471-2105/5/169.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013a. URL http:
//arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013b.

Raphaël Mourad and Olivier Cuvier. Computational identification of genomic features
that influence 3D chromatin domain formation. PLOS Computational Biology, 12
(5):1–24, 05 2016. doi: 10.1371/journal.pcbi.1004908. URL https://doi.org/10.
1371/journal.pcbi.1004908.

Maxwell R Mumbach, Adam J Rubin, Ryan A Flynn, Chao Dai, Paul A Khavari,
William J Greenleaf, and Howard Y Chang. HiChIP: efficient and sensitive analysis
of protein-directed genome architecture. Nature methods, 13(11):919, 2016.

Takashi Nagano, Yaniv Lubling, Tim J Stevens, Stefan Schoenfelder, Eitan Yaffe,
Wendy Dean, Ernest D Laue, Amos Tanay, and Peter Fraser. Single-cell Hi-C
reveals cell-to-cell variability in chromosome structure. Nature, 502(7469):59, 2013.

Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance.
In Proceedings of the Twenty-first International Conference on Machine Learn-
ing, ICML ’04, pages 78–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-
5. doi: 10.1145/1015330.1015435. URL http://doi.acm.org/10.1145/1015330.
1015435.

Sarvesh Nikumbh and Nico Pfeifer. Genetic sequence-based prediction of long-
range chromatin interactions suggests a potential role of short tandem repeat se-
quences in genome organization. BMC Bioinformatics, 18(1):218, 2017. ISSN
1471-2105. doi: 10.1186/s12859-017-1624-x. URL http://dx.doi.org/10.1186/
s12859-017-1624-x.

127

http://www.sciencedirect.com/science/article/pii/S0361923001005974
http://www.sciencedirect.com/science/article/pii/S0361923001005974
http://www.biomedcentral.com/1471-2105/5/169
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1371/journal.pcbi.1004908
https://doi.org/10.1371/journal.pcbi.1004908
http://doi.acm.org/10.1145/1015330.1015435
http://doi.acm.org/10.1145/1015330.1015435
http://dx.doi.org/10.1186/s12859-017-1624-x
http://dx.doi.org/10.1186/s12859-017-1624-x


Sarvesh Nikumbh, Peter Ebert, and Nico Pfeifer. All fingers are not the same:
Handling variable-length sequences in a discriminative setting using conformal
multi-instance kernels. bioRxiv, 2017a. doi: 10.1101/139618. URL https:
//www.biorxiv.org/content/early/2017/05/18/139618.

Sarvesh Nikumbh, Peter Ebert, and Nico Pfeifer. All Fingers Are Not the Same:
Handling Variable-Length Sequences in a Discriminative Setting Using Confor-
mal Multi-Instance Kernels. In Russell Schwartz and Knut Reinert, editors,
17th International Workshop on Algorithms in Bioinformatics (WABI 2017), vol-
ume 88 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–
16:14, Dagstuhl, Germany, 2017b. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. doi: 10.4230/LIPIcs.WABI.2017.16. URL http://drops.dagstuhl.de/
opus/volltexte/2017/7645.

Elphège P Nora, Bryan R Lajoie, Edda G Schulz, Luca Giorgetti, Ikuhiro Okamoto,
Nicolas Servant, Tristan Piolot, Nynke L van Berkum, Johannes Meisig, John Sedat,
et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Nature, 485(7398):381, 2012.

Sergej Nowoshilow, Siegfried Schloissnig, Ji-Feng Fei, Andreas Dahl, Andy WC Pang,
Martin Pippel, Sylke Winkler, Alex R Hastie, George Young, Juliana G Roscito,
et al. The axolotl genome and the evolution of key tissue formation regulators.
Nature, 554(7690):50, 2018.

Nico Pfeifer and Oliver Kohlbacher. Multiple instance learning allows MHC class
II epitope predictions across alleles. In Keith A. Crandall and Jens Lagergren,
editors, Algorithms in Bioinformatics, pages 210–221, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-87361-7.

Jennifer E Phillips-Cremins, Michael EG Sauria, Amartya Sanyal, Tatiana I Gerasi-
mova, Bryan R Lajoie, Joshua SK Bell, Chin-Tong Ong, Tracy A Hookway,
Changying Guo, Yuhua Sun, et al. Architectural protein subclasses shape 3d orga-
nization of genomes during lineage commitment. Cell, 153(6):1281–1295, 2013.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013. URL http://www.
R-project.org/.

Senthilkumar Ramamoorthy, Hita Sony Garapati, and Rakesh Kumar Mishra. Length
and sequence dependent accumulation of simple sequence repeats in vertebrates:
Potential role in genome organization and regulation. Gene, 551(2):167 – 175,
2014. ISSN 0378-1119. doi: https://doi.org/10.1016/j.gene.2014.08.052. URL
http://www.sciencedirect.com/science/article/pii/S0378111914009913.

Fidel Ramírez, Vivek Bhardwaj, Laura Arrigoni, Kin Chung Lam, Björn A Grüning,
José Villaveces, Bianca Habermann, Asifa Akhtar, and Thomas Manke. High-
resolution TADs reveal DNA sequences underlying genome organization in flies.
Nature communications, 9(1):189, 2018.

Suhas S P. Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D
Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer,

128

https://www.biorxiv.org/content/early/2017/05/18/139618
https://www.biorxiv.org/content/early/2017/05/18/139618
http://drops.dagstuhl.de/opus/volltexte/2017/7645
http://drops.dagstuhl.de/opus/volltexte/2017/7645
http://www.R-project.org/
http://www.R-project.org/
http://www.sciencedirect.com/science/article/pii/S0378111914009913


Eric S Lander, and Erez Lieberman Aiden. A 3D map of the human genome
at kilobase resolution reveals principles of chromatin looping. Cell, 159(7):1665–
1680, 2014. doi: 10.1016/j.cell.2014.11.021. URL http://www.cell.com/cell/
abstract/S0092-8674(14)01497-4.

G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alternatively
spliced exons in C.elegans. Bioinformatics, 21(suppl 1):i369–i377, 2005. doi: 10.
1093/bioinformatics/bti1053. URL http://bioinformatics.oxfordjournals.
org/content/21/suppl_1/i369.abstract.

Gunnar Rätsch and Sören Sonnenburg. Accurate splice site prediction for caenorhab-
ditis elegans. In Kernel Methods in Computational Biology, MIT Press series on
Computational Molecular Biology, pages 277–298. MIT Press, Cambridge, MA.,
2004.

Nicolò Riggi, Birgit Knoechel, Shawn M Gillespie, Esther Rheinbay, Gaylor Boulay,
Mario L Suvà, Nikki E Rossetti, Wannaporn E Boonseng, Ozgur Oksuz, Edward B
Cook, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to
directly activate or repress enhancer elements in Ewing sarcoma. Cancer cell, 26
(5):668–681, 2014.

James T. Robinson, Douglass Turner, Neva C. Durand, Helga Thorvaldsdóttir, Jill P.
Mesirov, and Erez Lieberman Aiden. Juicebox.js provides a cloud-based visu-
alization system for Hi-C data. Cell Systems, 6(2):256 – 258.e1, 2018. ISSN
2405-4712. doi: https://doi.org/10.1016/j.cels.2018.01.001. URL http://www.
sciencedirect.com/science/article/pii/S2405471218300012.

Volker Roth, Julian Laub, Klaus-Robert Müller, and Joachim M Buhmann. Going
metric: Denoising pairwise data. In Advances in Neural Information Processing
Systems, pages 841–848, 2003.

Sushmita Roy, Alireza Fotuhi Siahpirani, Deborah Chasman, Sara Knaack, Ferhat
Ay, Ron Stewart, Michael Wilson, and Rupa Sridharan. A predictive modeling
approach for cell line-specific long-range regulatory interactions. Nucleic Acids
Research, 2015. doi: 10.1093/nar/gkv865. URL http://nar.oxfordjournals.
org/content/early/2015/09/03/nar.gkv865.abstract.

Pelin Sahlén, Ilgar Abdullayev, Daniel Ramsköld, Liudmila Matskova, Nemanja
Rilakovic, Britta Lötstedt, Thomas J. Albert, Joakim Lundeberg, and Rickard
Sandberg. Genome-wide mapping of promoter-anchored interactions with close to
single-enhancer resolution. Genome Biology, 16(1):156, Aug 2015. doi: 10.1186/
s13059-015-0727-9. URL https://doi.org/10.1186/s13059-015-0727-9.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein
homology detection using string alignment kernels. Bioinformatics, 20(11):1682–
1689, July 2004. ISSN 1367-4803. doi: 10.1093/bioinformatics/bth141. URL
http://dx.doi.org/10.1093/bioinformatics/bth141.

Steven L Salzberg. Open questions: How many genes do we have? BMC biology, 16
(1):94, 2018.

129

http://www.cell.com/cell/abstract/S0092-8674(14)01497-4
http://www.cell.com/cell/abstract/S0092-8674(14)01497-4
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i369.abstract
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i369.abstract
http://www.sciencedirect.com/science/article/pii/S2405471218300012
http://www.sciencedirect.com/science/article/pii/S2405471218300012
http://nar.oxfordjournals.org/content/early/2015/09/03/nar.gkv865.abstract
http://nar.oxfordjournals.org/content/early/2015/09/03/nar.gkv865.abstract
https://doi.org/10.1186/s13059-015-0727-9
http://dx.doi.org/10.1093/bioinformatics/bth141


Albin Sandelin, Wynand Alkema, Pär Engström, Wyeth W Wasserman, and Boris
Lenhard. Jaspar: an open-access database for eukaryotic transcription factor bind-
ing profiles. Nucleic acids research, 32(suppl_1):D91–D94, 2004.

Amartya Sanyal, Bryan R. Lajoie, Gaurav Jain, and Job Dekker. The long-range
interaction landscape of gene promoters. Nature, 489(7414):109–113, Sep 2012.
ISSN 0028-0836. doi: 10.1038/nature11279. URL http://dx.doi.org/10.1038/
nature11279.

T. D. Schneider and R. M. Stephens. Sequence logos: a new way to display consensus
sequences. Nucleic Acids Res, 18:6097–6100, 1990.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

Sebastian J. Schultheiss, Wolfgang Busch, Jan U. Lohmann, Oliver Kohlbacher,
and Gunnar Rätsch. KIRMES: kernel-based identification of regulatory mod-
ules in euchromatic sequences. Bioinformatics, 25(16):2126–2133, 2009. doi:
10.1093/bioinformatics/btp278. URL http://bioinformatics.oxfordjournals.
org/content/25/16/2126.abstract.

Edgar Serfling, Maria Jasin, and Walter Schaffner. Enhancers and eukaryotic gene
transcription. Trends in Genetics, 1:224 – 230, 1985. ISSN 0168-9525. doi: https://
doi.org/10.1016/0168-9525(85)90088-5. URL http://www.sciencedirect.com/
science/article/pii/0168952585900885.

Nicolas Servant, Nelle Varoquaux, Bryan R Lajoie, Eric Viara, Chong-Jian Chen,
Jean-Philippe Vert, Edith Heard, Job Dekker, and Emmanuel Barillot. HiC-Pro:
an optimized and flexible pipeline for Hi-C data processing. Genome biology, 16
(1):259, 2015.

Tom Sexton and Giacomo Cavalli. The role of chromosome domains in shaping
the functional genome. Cell, 160(6):1049 – 1059, 2015. ISSN 0092-8674. doi:
https://doi.org/10.1016/j.cell.2015.02.040. URL http://www.sciencedirect.
com/science/article/pii/S009286741500241X.

Nidhi Shah, Michael G Nute, Tandy Warnow, and Mihai Pop. Misunderstood pa-
rameter of ncbi blast impacts the correctness of bioinformatics workflows. Bioin-
formatics, page bty833, 2018. doi: 10.1093/bioinformatics/bty833. URL http:
//dx.doi.org/10.1093/bioinformatics/bty833.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004. ISBN 0521813972.

Nathan C Sheffield, Gaelle Pierron, Johanna Klughammer, Paul Datlinger, Andreas
Schönegger, Michael Schuster, Johanna Hadler, Didier Surdez, Delphine Guillemot,
Eve Lapouble, et al. DNA methylation heterogeneity defines a disease spectrum in
Ewing sarcoma. Nature medicine, 23(3):386, 2017.

Marieke Simonis, Petra Klous, Erik Splinter, Yuri Moshkin, Rob Willemsen, Elzo
De Wit, Bas Van Steensel, and Wouter De Laat. Nuclear organization of active
and inactive chromatin domains uncovered by chromosome conformation capture–
on-chip (4C). Nature genetics, 38(11):1348, 2006.

130

http://dx.doi.org/10.1038/nature11279
http://dx.doi.org/10.1038/nature11279
http://bioinformatics.oxfordjournals.org/content/25/16/2126.abstract
http://bioinformatics.oxfordjournals.org/content/25/16/2126.abstract
http://www.sciencedirect.com/science/article/pii/0168952585900885
http://www.sciencedirect.com/science/article/pii/0168952585900885
http://www.sciencedirect.com/science/article/pii/S009286741500241X
http://www.sciencedirect.com/science/article/pii/S009286741500241X
http://dx.doi.org/10.1093/bioinformatics/bty833
http://dx.doi.org/10.1093/bioinformatics/bty833


Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

Stephen T. Smale and James T. Kadonaga. The RNA polymerase II core pro-
moter. Annual Review of Biochemistry, 72(1):449–479, 2003. doi: 10.1146/annurev.
biochem.72.121801.161520. URL https://doi.org/10.1146/annurev.biochem.
72.121801.161520. PMID: 12651739.

Sören Sonnenburg, Alexander Zien, Petra Philips, and Gunnar Rätsch. POIMs: po-
sitional oligomer importance matrices — understanding support vector machine
based signal detectors. Bioinformatics, July 2008. URL http://bioinformatics.
oxfordjournals.org/cgi/content/full/24/13/i6.

Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas
Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, and Vo-
jtěch Franc. The SHOGUN machine learning toolbox. J. Mach. Learn. Res., 11:
1799–1802, August 2010. ISSN 1532-4435. URL http://dl.acm.org/citation.
cfm?id=1756006.1859911.

John C Stansfield, Kellen G Cresswell, Vladimir I Vladimirov, and Mikhail G Doz-
morov. Hi-Ccompare: an R-package for joint normalization and comparison of
Hi-C datasets. BMC bioinformatics, 19(1):279, 2018.

Amos Tanay. Extensive low-affinity transcriptional interactions in the yeast genome.
Genome Research, 16(8):962–972, 2006. doi: 10.1101/gr.5113606. URL http:
//genome.cshlp.org/content/16/8/962.abstract.

Satoshi Tashiro and Christian Lanctôt. The international nucleome consortium.
Nucleus, 6(2):89–92, 2015. doi: 10.1080/19491034.2015.1022703. URL https:
//doi.org/10.1080/19491034.2015.1022703. PMID: 25738524.

The ENCODE Project Consortium. An integrated encyclopedia of dna elements in
the human genome. Nature, 489(7414):57–74, Sep 2012. ISSN 0028-0836. doi:
10.1038/nature11247. URL http://dx.doi.org/10.1038/nature11247.

Eleni M Tomazou, Nathan C Sheffield, Christian Schmidl, Michael Schuster, Andreas
Schönegger, Paul Datlinger, Stefan Kubicek, Christoph Bock, and Heinrich Kovar.
Epigenome mapping reveals distinct modes of gene regulation and widespread en-
hancer reprogramming by the oncogenic fusion protein ews-fli1. Cell reports, 10(7):
1082–1095, 2015.

K. Tsuda, S. Uda, T. Kin, and K. Asai. Minimizing the cross validation error to
mix kernel matrices of heterogeneous biological data. Neural Processing Letters,
19:63–72, 2004.

Koji Tsuda. Support vector classifier with asymmetric kernel functions. In in European
Symposium on Artificial Neural Networks (ESANN. Citeseer, 1999.

Oana Ursu, Nathan Boley, Maryna Taranova, YX Rachel Wang, Galip Gurkan
Yardimci, William Stafford Noble, Anshul Kundaje, and Inanc Birol. Genomedisco:
A concordance score for chromosome conformation capture experiments using ran-
dom walks on contact map graphs. Bioinformatics, 1:7, 2018.

131

https://doi.org/10.1146/annurev.biochem.72.121801.161520
https://doi.org/10.1146/annurev.biochem.72.121801.161520
http://bioinformatics.oxfordjournals.org/cgi/content/full/24/13/i6
http://bioinformatics.oxfordjournals.org/cgi/content/full/24/13/i6
http://dl.acm.org/citation.cfm?id=1756006.1859911
http://dl.acm.org/citation.cfm?id=1756006.1859911
http://genome.cshlp.org/content/16/8/962.abstract
http://genome.cshlp.org/content/16/8/962.abstract
https://doi.org/10.1080/19491034.2015.1022703
https://doi.org/10.1080/19491034.2015.1022703
http://dx.doi.org/10.1038/nature11247


Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

Nelle Varoquaux, Ferhat Ay, William Stafford Noble, and Jean-Philippe Vert.
A statistical approach for inferring the 3D structure of the genome. Bioin-
formatics (Oxford, England), 30(12):i26–33, June 2014. ISSN 1367-4811.
doi: 10.1093/bioinformatics/btu268. URL http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=4229903&tool=pmcentrez&rendertype=abstract.

J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. science, 291(5507):1304–1351,
2001.

P Vogt. Potential genetic functions of tandem repeated dna sequence blocks in the
human genome are based on a highly conserved “chromatin folding code”. Human
genetics, 84(4):301—336, March 1990. ISSN 0340-6717. doi: 10.1007/bf00196228.
URL http://dx.doi.org/10.1007/BF00196228.

Emanuela V Volpi and Joanna M Bridger. FISH glossary: an overview of the fluo-
rescence in situ hybridization technique. Biotechniques, 45(4):385–409, 2008.

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effec-
tively. Distill, 2016. doi: 10.23915/distill.00002. URL http://distill.pub/
2016/misread-tsne.

Sean Whalen, Rebecca M Truty, and Katherine S Pollard. Enhancer-promoter inter-
actions are encoded by complex genomic signatures on looping chromatin. Nature
Genetics, 48(5):488–496, 2016.

Christian Widmer and Gunnar Rätsch. Multitask learning in computational biology.
In Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages
207–216, 2012.

Iain Williamson, Ragnhild Eskeland, Laura A Lettice, Alison E Hill, Shelagh Boyle,
Graeme R Grimes, Robert E Hill, and Wendy A Bickmore. Anterior-posterior
differences in HoxD chromatin topology in limb development. Development, 139
(17):3157–3167, 2012.

Joachim Wolff, Vivek Bhardwaj, Stephan Nothjunge, Gautier Richard, Gina Ren-
schler, Ralf Gilsbach, Thomas Manke, Rolf Backofen, Fidel Ramírez, and Björn A
Grüning. Galaxy hicexplorer: a web server for reproducible Hi-C data analysis,
quality control and visualization. Nucleic Acids Research, 46(W1):W11–W16, 2018.
doi: 10.1093/nar/gky504. URL http://dx.doi.org/10.1093/nar/gky504.

Eitan Yaffe and Amos Tanay. Probabilistic modeling of Hi-C contact maps eliminates
systematic biases to characterize global chromosomal architecture. Nat Genet, 43
(11):1059–1065, Nov 2011. ISSN 1061-4036. doi: 10.1038/ng.947. URL http:
//dx.doi.org/10.1038/ng.947.

132

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4229903&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4229903&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1007/BF00196228
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne
http://dx.doi.org/10.1093/nar/gky504
http://dx.doi.org/10.1038/ng.947
http://dx.doi.org/10.1038/ng.947


J. Omar Yáñez-Cuna et al. Dissection of thousands of cell type-specific enhancers
identifies dinucleotide repeat motifs as general enhancer features. Genome Research,
24(7):1147–1156, 2014. doi: 10.1101/gr.169243.113. URL http://genome.cshlp.
org/content/24/7/1147.abstract.

Tao Yang, Feipeng Zhang, Galip Gurkan Yardimci, Fan Song, Ross C Hardison,
William Stafford Noble, Feng Yue, and Qunhua Li. HiCRep: assessing the repro-
ducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome
research, pages gr–220640, 2017a.

Yang Yang, Ruochi Zhang, Shashank Singh, and Jian Ma. Exploiting sequence-based
features for predicting enhancer–promoter interactions. Bioinformatics, 33(14):
i252–i260, 2017b. doi: 10.1093/bioinformatics/btx257. URL http://dx.doi.org/
10.1093/bioinformatics/btx257.

Shi Yu, Tillmann Falck, Anneleen Daemen, Leon-Charles Tranchevent, Johan
Suykens, Bart De Moor, and Yves Moreau. L2-norm multiple kernel learning and its
application to biomedical data fusion. BMC Bioinformatics, 11(1):309, 2010. ISSN
1471-2105. doi: 10.1186/1471-2105-11-309. URL http://www.biomedcentral.
com/1471-2105/11/309.

Michael J. Zeitz, Ferhat Ay, Julia D. Heidmann, Paula L. Lerner, William S. Noble,
Brandon N. Steelman, and Andrew R. Hoffman. Genomic interaction profiles in
breast cancer reveal altered chromatin architecture. PLoS ONE, 8(9):e73974, 09
2013. doi: 10.1371/journal.pone.0073974. URL http://dx.doi.org/10.1371%
2Fjournal.pone.0073974.

Zhihu Zhao, Gholamreza Tavoosidana, Mikael Sjölinder, Anita Göndör, Piero Mari-
ano, Sha Wang, Chandrasekhar Kanduri, Magda Lezcano, Kuljeet Singh Sandhu,
Umashankar Singh, et al. Circular chromosome conformation capture (4C) un-
covers extensive networks of epigenetically regulated intra-and interchromosomal
interactions. Nature genetics, 38(11):1341, 2006.

Aleksey V Zimin, Daniela Puiu, Richard Hall, Sarah Kingan, Bernardo J Clavijo,
and Steven L Salzberg. The first near-complete assembly of the hexaploid bread
wheat genome, Triticum aestivum. GigaScience, 6(11):1–7, 2017. doi: 10.1093/
gigascience/gix097. URL http://dx.doi.org/10.1093/gigascience/gix097.

Marie Zufferey, Daniele Tavernari, Elisa Oricchio, and Giovanni Ciriello. Compar-
ison of computational methods for the identification of topologically associating
domains. Genome Biology, 19(1):217, Dec 2018. ISSN 1474-760X. doi: 10.1186/
s13059-018-1596-9. URL https://doi.org/10.1186/s13059-018-1596-9.

133

http://genome.cshlp.org/content/24/7/1147.abstract
http://genome.cshlp.org/content/24/7/1147.abstract
http://dx.doi.org/10.1093/bioinformatics/btx257
http://dx.doi.org/10.1093/bioinformatics/btx257
http://www.biomedcentral.com/1471-2105/11/309
http://www.biomedcentral.com/1471-2105/11/309
http://dx.doi.org/10.1371%2Fjournal.pone.0073974
http://dx.doi.org/10.1371%2Fjournal.pone.0073974
http://dx.doi.org/10.1093/gigascience/gix097
https://doi.org/10.1186/s13059-018-1596-9

	Abstract
	Kurzfassung
	Introduction
	Thesis Outline
	Note on Publications
	Note on Software


	Background
	Essential Molecular Biology
	Genome: The Blueprint of Life
	Packaging of The Eukaryotic Genome
	Gene Regulation
	The Genome is Now Better Understood in 3D
	Global Initiatives

	Ewing Sarcoma
	Machine Learning
	Learning from Data: The Supervised and Unsupervised Way
	On Kernels and Their Properties
	String Kernels
	Tricks for Designing Kernels
	Learning In View Of The Multiplicities Of The Real World


	Genetic Sequence-Based Prediction of Long-range Chromatin Interactions
	Introduction
	Related Work
	Our Approach in a Nutshell
	Materials
	Methods
	Pipeline for Predicting Long-range Chromatin Interactions
	New Visualization Techniques
	Implementation and Availability of Software

	Results
	Prediction of Long-Range Chromatin Interactions is Possible from the Sequence Alone Using Non-Linear SVMs
	Tandem Repeat Motifs are an Important Feature Distinguishing Interaction Partners
	Identifying Cell-Line Specific Characteristic Signals
	Multitask Learning (MTL) Helps Mitigate Issue of Having Too Few Interacting Partners per Locus
	Computational Validation with High-Resolution Hi-C

	Discussion

	Comparison of Variable-Length DNA Sequences Using Conformal Multi-Instance Kernels
	Introduction and Motivation
	Methods
	Segment Instantiation with Complementary Views
	Conformal Multi-Instance Kernels for Complimentary Set of Segments
	Choosing an Appropriate Segment-Size
	Interpretation and Visualization of Features
	Implementation and Availability of Software

	Data Sets
	Experimental Setup
	Results
	Discussion

	Pipeline for End-to-End Analysis of Chromatin Interaction Data
	pHDee: Processing HiChIP/Hi-C Data From End-to-End
	Analysis of Genome Architecture Changes in EWS Cells Using HiChIP
	Discussion

	Perspective
	Conclusions
	Future Directions

	Bibliography

