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Summary

Over the last decades a revolution in novel measurement techniques has permeated the biological
sciences filling the databases with unprecedented amounts of data ranging from genomics, tran-
scriptomics, proteomics and metabolomics to structural and ecological data. In order to extract
insights from the vast quantity of data, computational and statistical methods are nowadays
crucial tools in the toolbox of every biological researcher. In this thesis I summarize my contri-
butions in two data-rich fields in biological sciences: transcription factor binding to DNA and
protein structure prediction from protein sequences with shared evolutionary ancestry.

In the first part of my thesis I introduce our work towards a web server for analysing transcription
factor binding data with Bayesian Markov Models. In contrast to classical PWM or di-nucleotide
models, Bayesian Markov models can capture complex inter-nucleotide dependencies that can
arise from shape-readout and alternative binding modes. In addition to giving access to our
methods in an easy-to-use, intuitive web-interface, we provide our users with novel tools and
visualizations to better evaluate the biological relevance of the inferred binding motifs. We hope
that our tools will prove useful for investigating weak and complex transcription factor binding
motifs which cannot be predicted accurately with existing tools.

The second part discusses a statistical attempt to correct out the phylogenetic bias arising in
co-evolution methods applied to the contact prediction problem. Co-evolution methods have
revolutionized the protein-structure prediction field more than 10 years ago, and, until very
recently, have retained their importance as crucial input features to deep neural networks. As
the co-evolution information is extracted from evolutionarily related sequences, we investigated
whether the phylogenetic bias to the signal can be corrected out in a principled way using a
variation of the Felsenstein’s tree-pruning algorithm applied in combination with an independent-
pair assumption to derive pairwise amino counts that are corrected for the evolutionary history.
Unfortunately, the contact prediction derived from our corrected pairwise amino acid counts did
not yield a competitive performance.
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1. Introduction

In the 19th century Charles Darwin and Alfred Russel Wallace independently made probably
the most profound discovery in modern biology: variation and selection are the two key drivers
shaping all forms of life on earth. The beauty of their evolutionary theory lies in its simplicity:
genetic information is susceptible to random changes (variation). The fraction of individuals
carrying a specific bit of genetic information depends on the efficiency of carrier organisms in
multiplying their own genetic information relative to non-carrier organisms (selection). When
run over a long time, this process brings forth individuals that multiply their own genetic material
efficiently under the existing constraints (well-adapted) (Darwin et al., 1858; Darwin, 1859).

100 years after Darwin’s and Wallace’s discovery, the DNA was discovered as the carrier molecule
of genetic information. DNA contains the blueprints for the building blocks of the organism and
encodes programs for regulating their production. This allowed a molecular interpretation of
evolution: a well-adapted organism outperforms other organisms in spreading their own DNA
by bringing the right molecules to the right place at the right time. The Central Dogma of
Molecular Biology describes the realization process of genetic information. The DNA regions
containing blueprints (genes) are transcribed to messenger RNAs (mRNAs) which in turn are
translated into proteins. This assembly process runs constantly in living cells and all steps are
under tight control by the encoded programs.

This chapter is concerned with the first step of the building block assembly: the transcription
of genes into mRNA, especially in the regulation of this process.

1.1. Molecular basis of transcription and its regulation

1.1.1. Transcription and RNA polymerase II

Transcription is the process of transferring pieces of the genetic information (genes) stored in
the DNA sequence into RNA molecules. On a molecular level transcription requires opening
and unwinding the DNA double helix, synthesizing a new RNA molecule based on the DNA
template strand and finally processing and releasing the RNA.

The central machineries in transcription are RNA polymerases which not only act as enzymes
catalyzing RNA synthesis, but also provide the platform for recruiting and interacting with
processing and regulatory factors. Eukaryotic cells encode several versions of the RNA poly-
merase, each specialised in the transcription of certain gene classes. While RNA Polymerase I

2



1.1. Molecular basis of transcription and its regulation 3

(Pol I) transcribes the precursor of the large ribosomal RNA, RNA Polymerase II Pol II pro-
duces mRNAs and a variety of non-coding RNAs, and RNA Polymerase III (Pol III) specializes
in producing transfer RNAs (tRNAs) and the small ribosomal RNAs (Cramer, 2019). Pol II has
an unstructured yet highly conserved stretch of tandem repeats with the consensus sequence
Y1S2P3T4S5P6S7 at the C-terminus of its largest subunit (Corden, 1990), referred to as the
C-terminal domain (CTD). The CTD is present in all eukaryotes albeit with varying copy num-
bers of the tandem repeats and serves as an interaction platform of the polymerase with factors
responsible for the RNA maturation process (Jeronimo et al., 2013).

A defining challenge in the evolution of complex multicellular organisms was the need to express
subsets of genes during development and in all specialized cell types. As Pol II is responsible
for transcribing mRNAs, the templates to all proteins, higher eukaryotes evolved a complex
regulatory toolbox for controlling Pol II transcription in space and time. In the following the
transcription cycle (Figure 1.1) and its regulation is discussed in more depth.

Initiation

The first phase in the transcription cycle is initiation. In initiation Pol II is recruited and po-
sitioned on the DNA upstream of the gene. The positions of Pol II in initiation are marked
by regulatory signals encoded in the sequence of the DNA, called core-promoters (Smale and
Kadonaga, 2003). Pol II reads out the core promoter indirectly by interacting with general tran-
scription factors, a class of DNA binding proteins assembled on the core-promoter Orphanides
et al. (1996); Juven-Gershon et al. (2008). The hereby formed complex has been termed pre-
initiation complex (PIC). The PIC prepares for transcription initiation by opening up the DNA
downstream of Pol II, a function contributed by a subunit of the general transcription factor
TFIIH (Kim et al., 2000). Co-activators binding to the PIC can be required to trigger tran-
scription initiation in-vivo (Thomas and Chiang, 2006). The Mediator complex is a prominent
co-activator and serves as a transient component of the PIC (Malik and Roeder, 2010; Wong
et al., 2014). Just like the polymerase is recruited by general transcription factors binding to
the core-promoter elements, the Mediator complex is recruited by transcription factors bind-
ing to regulatory signals in promoter-distal enhancer sequences (Kuras et al., 2003; Björklund
and Gustafsson, 2005; Bhaumik et al., 2004). Loop structures in chromatin allow close spatial
contact between the promoter bound Pol II and the enhancer bound Mediator (Carter et al.,
2002; Petrenko et al., 2016). The phosphorylation of the CTD by the kinase module of TFIIH
is linked to Mediator dissociating from the PIC and Pol II promoter escape (Wong et al., 2014).

In order to achieve fine-grain control of gene expression, transcription initiation is tightly regu-
lated. The recruitment of Pol II e.g. requires accessibility of the core-promoter to the general
transcription factors. In its most compact form, DNA is tightly wrapped around nuceleosomes
and is thus not accessible to all but very few so-called pioneer factors (Zaret and Carroll, 2011;
Magnani et al., 2011; Iwafuchi-Doi and Zaret, 2014). Displacing nucleosomes disrupts the tight
chromatin packing and makes the promoter sequences accessible for transcription factor bind-
ing, a hallmark of transcriptionally active genes (Reeves, 1984; Lee et al., 2004). In addition
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to chromatin accessibility at enhancer elements, gene activation is controlled by dynamic loop
formation between promoter and enhancer elements (Kadauke and Blobel, 2009; De Laat and
Duboule, 2013; Deng et al., 2012). These regulation strategies are underlying principles of the
distinct expression patterns observed in different cell types of the same organism. It is how-
ever important to keep in mind that transcription is a highly stochastic process (Sanchez and
Golding, 2013; Fukaya et al., 2016) and genome structure and loop formation in particular are
dynamic processes (Hansen et al., 2017; Fudenberg et al., 2017; Banigan and Mirny, 2020).
These dynamics are essential for the fine-grained transcription control individual cells exhibit in
the face of internal and external stimuli.

Elongation

Having escaped the promoter, Pol II catalyzes the formation of the phosphodiester bonds be-
tween the nascent RNA and the ribonucleotides dictated by the DNA template strand, and
thereby continuously elongates the RNA. In the elongation phase the CTD of Pol II accumu-
lates phosphorylation, a hallmark of the processive Pol II (Christmann and Dahmus, 1981; Sims
et al., 2004; Cramer, 2019). In order to gain its functional mature form, RNA produced in the
elongation phase undergoes refinement steps such as capping, splicing, polyadenylation. The
phosphorylated CTD of the moving polymerase acts as a binding platform and consequentially
enables co-transcriptional RNA maturation (Phatnani and Greenleaf, 2006; Perales and Bentley,
2009).

As with transcription initiation, the need for fine-grain control of gene expression has given rise to
regulation strategies of transcription elongation, of which proximal promoter pausing is probably
the best understood mechanism. Typically 25 to 50 nucelotides after the transcription start site
(TSS) the polymerase stalls while still tightly binding DNA and RNA (Core and Adelman, 2019).
The unprocessive polymerase is then further stabilized through binding NELF and Spt5, while
awaiting a pause-release signal (Core and Adelman, 2019; Yamaguchi et al., 1999). Pause release
is directly linked to the phosphorelation of Spt5 by P-TEFb, which in turn releases NELF and
thereby prevents it from stalling the Pol II (Cheng and Price, 2007; Vos et al., 2018). To release
Pol II P-TEFb is recruited to the promoter by transcription factors and co-activators, hence a
process that is under transcriptional control (Li et al., 2018). Promoter-proximal pausing has
been suggested to be a mechanism for quantitatively fine-tuning expression, not just a binary
on-off switch (Gressel et al., 2019; Core and Adelman, 2019).

Termination

In transcription termination, the final step of the transcription cycle, the RNA is cleaved, fur-
ther processed towards maturity and Pol II is recycled for starting a new transcription cycle
(reviewed in Kuehner et al. (2011); Porrua and Libri (2015)). There are multiple termination
pathways, depending on the recruited co-factors. Protein coding transcripts undergo cleavage
and polyadenylation, a requirement for their stability, export and translational efficiency in order
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Figure 1.1.: The transcriptional cycle. mRNA transcription is a multi-stage process and the RNA
polymerase II produces transcripts by iteratively cycling through initiation, elongation and termination
phases. All stages are tightly regulated and the CTD of the moving polymerase serves as a platform for
co-transcriptional modification processes, such as capping, splicing and 3’ processing. Figure taken from
Cramer (2019).

to fulfil their role as templates to proteins (Colgan and Manley, 1997).

Just like initiation and elongation, termination is a controlled, yet dynamic process. Premature
termination, also referred to as transcription attenuation, is a strategy to discard unwanted
transcripts, involved in taming pervasive transcription (Porrua and Libri, 2015). Transcription
attenuation has also been implicated to have a gene-specific regulatory role (Kim and Levin,
2011; Wagschal et al., 2012; Porrua and Libri, 2015).

1.1.2. Promoters and enhancers

The roughly 20.000 protein coding genes encoded in the human DNA make up between 1–2%
of the 3 billion base pairs of genetic information. This perplexingly low fraction has hit the sci-
entific community by surprise (Claverie, 2001) and started a search for alternative explanations
for bridging the wide complexity gap between the 1mm long nematode C. elegans with roughly
the same number of genes and finding reasons for the vast amount of apparently unused genetic
information. One possible answer was provided by mapping regulatory regions genome-wide
with next-generation sequencing technologies. Around 3 million potentially regulatory regions
were identified based on the accessibility of chromatin, allowing them to attract transcription
factor binding (Thurman et al., 2012). Based on their overlap with annotated transcription start
sites, regulatory regions are classified into promoters (core promoter and activating sequences
upstream of a TSS) and enhancers (far from a TSS). As the general transcription factors bound
to Pol II at the core promoter can drive transcription in-vitro (Roeder, 1996, 1998; Hahn, 2004),
it is tempting to assign promoters and enhancers the distinct roles of basal transcription and ex-
pression level fine-tuning, respectively. Characteristic chromatin modifications and enrichment
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Figure 1.2.: Interplay of regulatory elements regulate transcription. According to our current
understanding of gene regulation, the genome is structured into larger chromatin interaction domains
(TADs), delimited by strong boundaries. Regulatory elements inside TADs share recruited transcription
factors and co-factors within the same TAD by transient chromatin interactions, thereby accumulating the
signals necessary to switch from low to bursts of high transcription levels. Figure taken from Andersson
and Sandelin (2020).

of co-activator p300 specifically at enhancer regions supported the plausibility of a fundamental
functional difference between promoters and enhancers (Heintzman et al., 2007, 2009). More
recent findings such as transcriptional activity of enhancers (De Santa et al., 2010; Kim et al.,
2010; Andersson et al., 2014), similarities in chromatin and sequence architecture (Koch et al.,
2011; Core et al., 2014; Scruggs et al., 2015) and the ability of promoters to modulate the ex-
pression of distal genes (Rajagopal et al., 2016; Engreitz et al., 2016; Diao et al., 2017; Dao
et al., 2017) challenge the notion of fundamental differences between promoters and enhancers
(reviewed in Andersson and Sandelin (2020)). Ultimately, it is the context-specific interplay
between a specific set of promoters and enhancers that determines the expression patterns of
genes. While the underlying regulatory signals are encoded the genome sequence itself, deci-
phering this cis-regulatory code is still an ongoing challenge (Zeitlinger, 2020). I will discuss
approaches to uncovering the cis-regulatory code in more detail in section 1.2.4.

1.1.3. Impact of chromatin architecture on gene regulation

If one would straighten and append the human DNA to one long single strand, its length would
be approximately 2 meters long. The diameter of a typical human cell is 4 to 5 orders of mag-
nitude smaller, and efficient packaging is thus crucial. While it has long been appreciated that
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chromatin is organized into stable higher-order structures (Zink et al., 1998; Cremer and Cremer,
2001), methods based on next-generation proved powerful tools for advancing our understanding
of the global genome architecture (reviewed in Kempfer and Pombo (2020)).

Chromatin architecture can be studied at different levels. At the finest level, DNA is packed
into nucleosomes, 146 nucelotides of DNA wrapped around a histone octamer (Kornberg, 1974;
Luger et al., 1997). When the DNA is tightly wrapped into nuceleosomes, it is inaccessible to
most transcription factors and is thus transcriptionally inactive (Magnani et al., 2011; Zaret
and Carroll, 2011; Iwafuchi-Doi and Zaret, 2014). The three dimensional structure of chromatin
is shaped by dynamic chromatin loops established by loop extrusion (Splinter et al., 2006;
Fudenberg et al., 2017; Banigan and Mirny, 2020). Convergent CTCF binding sites on the DNA
serve as road blocks for cohesin, a key component of the loop extrusion machinery and thereby
encode the loop structure in the DNA (de Wit et al., 2015; Merkenschlager and Nora, 2016;
Pugacheva et al., 2020). Zooming further out, chromatin loops give rise to chromatin interaction
domains, so called topologically associated domains (TADs) (Dixon et al., 2012). TADs are
characterized by chromatin interacting more frequently inside two TAD boundaries than with
other regions outside the TAD and their sizes range from tens of kilobases to few megabases
(Dixon et al., 2012; Rao et al., 2014). TAD bounderies deliminate regulatory chromatin units
and their disruption gives rise to ectopic regulatory interactions, thereby perturbing native gene
regulation (Lupiáñez et al., 2015; Franke et al., 2016).

Studied at an even higher level, chromatin can be classified into active and inactive blocks,
termed A and B compartments respectively. Chromatin interacts preferentially within blocks of
the same compartment type, suggesting a function-based chromatin arrangement inside the nu-
cleus (Lieberman-Aiden et al., 2009). The compartmentalization with respect to transcriptional
activity at the highest level highlights the intimate relationship between chromatin architecture
and transcription regulation. While the information of the chromatin structure is ultimately
encoded in the sequence, the important influence of chromatin architecture further complicates
the rules underlying transcription regulation. A visualization of our current understanding of
the influence of chromatin structure and regulatory elements on gene-regulation is depicted in
Figure 1.2.

1.1.4. Phase-separation in transcription

Many biological processes require the co-localization of a set of functionally related gene prod-
ucts at high concentration. To ensure high efficiency, some biological processes are performed in
parallel in specialized reaction chambers, so called organelles, which are separated from the cyto-
plasm by membranes. Recently, liquid-liquid phase separation has been discovered as a general
organisation principle of cells. Just like oil aggregates in water by de-mixing, the cytoplasm can
de-mix and form biomolecular condensates that behave like membrane-less organelles (Hyman
et al., 2014).

Weak multivalent interactions between unstructured, intrinsically disordered regions of proteins
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play an important role in establishing biomolecular condensates (Lin et al., 2017). Incidentally,
key players of the transcriptional cycle such as the activation domains of transcription factors,
the CTD, and histone tails are unstructured and thus suggest involvement in biomolecular
condensation.

In recent years evidence has accumulated that biomolecular condensates are a common phe-
nomenon in transcription-related processes (reviewed in Sabari et al. (2020)). Among the pro-
cesses covered in this thesis, Pol II clustering (Boehning et al., 2018), promoter-proximal pause
release (Rawat et al., 2021), co-transcriptional mRNA processing (Guo et al., 2019; Chen and
Belmont, 2019; Spector and Lamond, 2011; Kim et al., 2019), chromatin organisation (Gibson
et al., 2019; Larson et al., 2017; Larson and Narlikar, 2018; Strom et al., 2017; Sanulli et al.,
2019; Gibson et al., 2019; Wang et al., 2019; Li et al., 2020; Plys et al., 2019) and super-enhancers
(Sabari et al., 2018; Boija et al., 2018; Cho et al., 2018) have been reported to have liquid-liquid
phase separation as an underlying principle.

1.2. Transcription factors and the regulatory code

Just like the gene products themselves, their regulatory information is stored in the DNA se-
quence and needs to be decoded. Transcription factors (TFs) are specialized proteins that read-
out regulatory information by binding to regulatory sequences in order to influence transcription
(Fulton et al., 2009; Vaquerizas et al., 2009).

Transcription regulation is a complex process, characterized by the synergistic interplay between
a large number of transcription factors which makes deciphering the mechanisms and logic of
transcription factors and their underlying gene-regulatory networks a complex task. Neverthe-
less, some have been assigned distinct functions, which I will summarize in the following. (i)
enabling and repressing transcription. As discussed in sections 1.1.2 and 1.1.3, transcriptionally
inactive chromatin is generally inaccessible to most transcription factors. Pioneer TFs open
chromatin up to facilitate recruitment of other factors (Magnani et al., 2011; Zaret and Carroll,
2011), whereas transcriptional repressors can prevent transcription factors from binding. Due to
the default state of transcriptionally inactive chromatin, the dominant role of TFs in mammals
has been attributed to transcription enhancement rather than repression with few exceptions
(Thiel et al., 2004; Frum et al., 2019). Recently, a systematic screening suggested a promi-
nent role of repressive silencer elements in mammalian genomes (Pang and Snyder, 2020) (ii)
Chromatin architecture and promoter-enhancer pairing. As described in section 1.1.3, CTCF
binding sites encode the chromatin loop positions in the genome. The most prominent TF in
this category is CTCF, a TF known for its roles in transcription activation and repression by
its ability to block promoter-enhancer interactions as a so called insulator (Bell et al., 1999;
Kim et al., 2015). (iii) Recruiting and stabilising the transcription the machinery. The best
studied TFs in this category are the general TFs and co-activators responsible for recruiting the
polymerase and initiating transcription (see also section 1.1.1).

TFs gain their DNA binding ability by having one or more DNA binding domains. Many contain
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additional effector domains in order to fulfil their role in modulating transcription. In-vivo, both
DNA binding and the effect on transcription of TFs are synergistic (Reiter et al., 2017). By
combinatorics alone, the estimated 1600 transcription factors encoded by the human genome
offer an enormous regulatory toolkit for fine-tuning gene expression (Lambert et al., 2018).

A further layer of complexity is added by quantitative binding strength modulation by imperfect
motifs. It is more and more appreciated that especially stochastic binding to weak, degenerate
binding motifs play an important role in the fine-regulation of transcription (Crocker et al.,
2016).

The context-specific interactions between chromatin architecture and accessibility, the synergis-
tic, combinatorial recruiting and binding behavior of TFs and the importance of weak binding
makes deciphering the logic behind the cis-regulatory code a defining challenge (Wasserman and
Sandelin, 2004), yet to be cracked.

1.2.1. Molecular basis of DNA binding

DNA binding domains bind DNA via side-chain interactions between TFs and the DNA. Binding
motifs of TFs are typically 6–12 nt in length in order to achieve sufficient specificity while
maintaining flexibility (Lambert et al., 2018). The binding affinity to sequence motifs is achieved
by a combination of sequence specific base readout and sequence unspecific shape readout (Rohs
et al., 2010). Nucleotide specific hydrogen bonds between TF and nucelotides in the major groove
of the DNA is the basis of the most efficient base-readout, but hydrogen bond formation in the
minor grove and hydrophobic interactions are also used for base readout. Shape readout detects
deviations of the DNA structure from the ideal B-DNA helix. DNA structure can be read out
in the form of minor grove and major grove shape, local kinks, and global DNA bend, among
other signatures (Rohs et al., 2010).

The DNA binding activity of TFs is provided by one or more evolutionary conserved DNA
binding domains (DBD). Different structural elements for DNA binding have evolved (reviewed
in Rohs et al. (2010)) and the 1700 human TFs obtain their specificity by mixing and matching
these elements (Lambert et al., 2018). In the following I will briefly introduce three common
structural motifs for DNA binding. (i) Helix-Turn-Helix (HTH) motif. One Helix serves as
a "recognition helix" for specific base readout, whereas the other helix further stabilizes the
binding. (ii) Basic Helix-Loop-Helix motif (bHLH). bHLH transcription factors using the bHLH
strategy rely on dimerization. One alpha helix from each dimerization partner is involved in
the base readout, enabling increased motif diversity by hetero-dimerization. (iii) Zinc finger
(ZF). ZF domains bind DNA by coordinating a Zn2+ ion and have the size of approximately 30
amino acids. With 700 putative TFs, C2H2 ZFs play an important role in human transcription
regulation (Weirauch and Hughes, 2011; Vaquerizas et al., 2009). Individual C2H2 ZF domains
have specificity for around 3 nucleotides, with the specificity depending on the amino acid choice
in variable positions in the ZFs domains (Najafabadi et al., 2015). In order to achieve sufficient
specificity, ZF domains typically occur in arrays with human ZFs containing on average 10 ZF
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Figure 1.3.: Proteins bind DNA by structurally conserved motifs. The graphic visualizes the
most common DNA binding strategies: the Helix-Turn-Helix (HTH) architecture, (first row and second
row middle), basic Helix-Loop-Helix motif (bHLH), (second row, right) and Zinc fingers (second row,
left). Figure taken from Yesudhas et al. (2017).

domains with only a subset of the domains binding at a time. The variable binding specificities
of each domain and the combinatorial binding of individual ZF domains gives ZF proteins a
high binding flexibility (Najafabadi et al., 2015). Examples of bound DNA-binding domains are
shown in Figure 1.3.

Obtaining accurate, quantitative models of TF binding affinity is a key objective in bioinfor-
matic studies of transcription factor binding. I will next discuss experimental methods used
for identifying TF binding sites and quantifying their affinity and then introduce computational
models for describing TF binding in silico.

1.2.2. Experimental methods for studying transcription factor binding

Transcription factor binding is typically studied in high-throughput in-vivo and in-vitro as-
says based on next-generation sequencing. Here I introduce chromatin immunoprecipitation
DNA-sequencing (ChIP-seq) and high throughput systematic evolution of ligands by exponen-
tial enrichment (HT-SELEX) as widely-used representatives for studying TF binding in-vitro
and in-vivo.

ChIP-seq is a widely-use in-vivo assay for studying the genomic binding sites of a protein of
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interest (Johnson et al., 2007). Using a chemical crosslinking agent, transient interactions be-
tween proteins and DNA are stabilized in a large quantity of cells. A subsequent sonication
step breaks the chromatin into small protein-bound fragments. Specific antibodies are used to
enrich for fragments bound by the protein of interest. Finally all proteins are degraded and the
DNA fragments are sequenced as a paired-end library. The genomic fragments bound by the
transcription factor of interest can be identified by mapping the sequencing reads back to the
genome.

As discussed earlier, the occupancy of potential transcription factor binding sites depends on the
cellular context. By capturing real binding events, ChIP-seq is a powerful tool to unravel context-
dependent transcription factor binding. Protocol inherent biases such as sonication biases,
background binding, variable antibody quality, sequence-dependent PCR amplification, and
mappability biases however make the quantitative interpretation of ChIP-seq signal challenging
(Diaz et al., 2012; Park et al., 2013).

TF binding can also be studied in-vitro. Efficient high-throughput SELEX protocols allowed to
characterize the binding preference of hundreds of transcription factors (Jolma et al., 2010, 2013).
SELEX identifies preferential binding by iteratively amplifying and selecting preferentially bound
sequences. The starting point for SELEX is a diverse pool of short random oligonucleotide
sequences and a protein of interest, tagged for efficient pull-down. The DNA pool is then
amplified via PCR and combined with the tagged proteins. Bound fragments are recovered by
protein pulldown and amplified for a subsequent round. The sequence enrichment observed by
comparing the DNA pool before and after each round allows to describe binding affinity by
thermodynamic modelling (Ruan et al., 2017; Sakamoto et al., 2018).

HT-SELEX allows to quantify the affinity of TFs outside of their native chromatin context.
As discussed earlier, TFs influence transcription in a highly synergistic manner, limiting the
applicability of HT-SELEX methods in representing TF dynamics in the cell. This inherent
neglect of context has been ameliorated in SELEX variants studying co-binding and binding
nucleosomal DNA (Jolma et al., 2015; Zhu et al., 2018). Despite these advancements, it is
important to keep in mind that deciphering the cis-regulatory code, i.e. dynamics of all involved
TFs, is more complicated than the combined dynamics of all involved TFs.

In-vivo and in-vitro methods are thus complementary approaches studying different aspects of
transcription factor binding. Due to their orthogonal approach, cross-platform validation is a
powerful method for validating computational binding models (Weirauch et al., 2013).

1.2.3. Mathematical basis of motif models

Starting from a large number of preferentially bound sequences obtained from a TF-binding
experiment, the computational challenge is to identify the DNA stretches bound by the TF
and quantify their respective binding affinities. The Boltzmann distribution p(x) ∝ exp(−E(x)

kBT )

provides the theoretical link between the statistically sampled bound sequences and their under-
lying binding affinities, where p(x) denotes the probability of binding sequence x, E(x) is the
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energy state of the TF bound to x and kB and T are Boltzmann’s constant and temperature,
respectively. In the light of the exponential growth of possible binding motifs x with the motif
length, simplifying assumptions allow robust parameter estimation for modelling E(x) and thus
the binding affinities. As experimental TF-DNA binding measurements typically do not have
the resolution to report individual binding sites, but longer bound fragments, the binding posi-
tions have learnt alongside the binding affinities. Expectation-maximization and Gibbs sampling
are statistical frameworks that are frequently employed to jointly learn affinities and binding
locations (Das and Dai, 2007).

As mentioned before, the DNA binding affinities are typically described by parametric statistical
models. The most common assumption is that all positions in the motif contribute independently
and additively to the total binding affinity. For a binding motif of length L, this assumption
reduces the number of independent parameters to 3×L. In additive models, the binding affinity
is typically represented as a position weight matrix (PWM) (Stormo et al., 1982; Stormo, 2000).
Using the PWM as a lookup table, affinities of sequences can be calculated by summing the
weights wia of each the nucleotide a at each sequence position i. Despite the gross simplification
in the independence assumption, PWM models have proven fairly accurate for describing the
binding energy for most transcription factors (Benos et al., 2002; Zhao and Stormo, 2011).

It has long been known that the dependency assumption does not represent a biological truth.
Correlations between neighboring nucleotides can arise due to single amino acids in TFs bind-
ing to more than one nucleotide and the influence of the DNA sequence on the local DNA
structure (Luscombe et al., 2001; O’Flanagan et al., 2005). As PWMs arise as the special case
of memoryless Markov models, higher-order Markov models have been proposed to model the
binding affinities more accurately at the expense of a higher model complexity (Siddharthan,
2010; Zhao et al., 2012; Kulakovskiy et al., 2013; Siebert and Söding, 2016). In higher-order
Markov models the contribution a nucleotide makes to the total binding affinity depends on
the preceding nucleotides. Whereas a PWM as zeroth-order Markov model models 41 − 1 = 3

independent parameters per position, a first-order Markov model considers dinucleotides and
thus requires 42−1 = 15 parameters per position. More generally, a higher-order model of order
k has L× 4k+1 − 1 independent parameters.

As the number of parameters increases, higher-order models are prone to overfitting and captur-
ing complex biases in the datasets. In the past our group developed Bayesian Markov models
that implicitly adapt the model complexity to the available data and therefore allow training
higher-order models, effectively mitigating the risk of overfitting (Siebert and Söding, 2016). By
training on in-vitro and testing on in-vivo data or vice versa, it has been shown that complex
models can outperform simple models (Alipanahi et al., 2015; Siebert and Söding, 2016; Ge
et al., 2021).
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1.2.4. Computational approaches for uncovering the cis-regulatory code

Traditional approaches to TF binding use motif models such as PWMs or higher-order Markov
models to describe the binding preference of individual transcription factors based on the sta-
tistical overrepresentation of their short binding motif sequences. As discussed previously, co-
operativity is a key feature of transcription factor binding and activation, and understanding
the interplay between motifs by order, orientation, spacing and individual affinities is crucial for
understanding the cis-regulatory code (Farley et al., 2015, 2016). With their ability to derive
generalizable models on large amounts of complex data, end-to-end differentiable deep neural
networks (DNNs) have proven powerful models for describing transcription factor binding (Ali-
panahi et al., 2015; Kelley et al., 2016; Avsec et al., 2021b; Eraslan et al., 2019). Convolutional
neural networks, originally developed in the computer-vision field, have proven especially suit-
able, due to the similarity of individual convolutional kernels with PWMs. Instead of learning
just one PWM at a time, deep neural networks predict experimental read counts based on a
complex combination of hundreds of convolutional kernels and can thereby capture the com-
plex interplay between TFs binding sites. Instead of overrepresentation, motifs from DNNs can
be derived by quantifying the contribution each base makes to the final prediction (Shrikumar
et al., 2017; Avsec et al., 2021b).

A novel convolutional DNN with base-pair resolution recently extracted the soft syntax rules
underlying the binding preferences of pluripotency TFs, highlighting the depth of biological
insights that can be drawn from supervised training of DNN models (Avsec et al., 2021b).

1.3. Motivation aims and goals

Our group previously introduced Bayesian Markov Models (BaMMs) as a class of higher-order
motif models that are not susceptible to statistical overfitting and showed that BaMMs outper-
form PWM models in detecting bound sequences and quantifying binding affinities (Siebert and
Söding, 2016). While the original paper provided a proof-of-principle of BaMMs and made all
code and data publicly available, the target audience for the tool were bioinformaticians and
computationally versed biologists, well acquainted with the command line and de-novo discovery
of TF motifs. The aim of this project was to make BaMMs widely accessible to the scientific com-
munity by not only developing an intuitive web interface, but also offering easy-to-use common
workflows that simplify searching, annotating, evaluating and comparing motifs.



2. Methods

2.1. Seeding stage PEnG

2.1.1. The PEnG algorithm

We developed the PEnGmotif for finding enriched motifs as initialization for our higher-order
refinement to Bayesian Markov Models (BaMMs). The PEnG algorithm is motif-centered and
with its 6 consecutive steps aims to identify enriched motif patterns, reduce redundancy, sharpen
the motifs’ information content and merge shifted and overlapping motifs. An important feature
of PEnG is that the information encoded in the input sequences only enters in form of k-mer
counts. Therefore the runtime scales linearly in the total number of sequences and exponentially
in the maximum pattern length K. As k is a user-defined constant (usually K = 8 or K = 10),
PEnGmotif is especially suited for very large datasets.

Counting stage

The counting stage is the first stage of PEnGmotif. A sliding window of length K is shifted over
the sequences and the total number of occurrences of each K-mer is counted and stored in a 4K

element array. This is done separately for input sequences and background sequences. When
very large sets of background data exists, empirical background probabilities can be estimated
by dividing the 4K K-mer counts on the background set by the total number of counts. As
background sequences are not always available even less so in large amounts, we model the
background probabilities with a 2nd order Markov model by default. on either the background
sequences or the input sequences. The output of the counting stage are two 4K-element long
vectors, one with the K-mer counts of the input sequences and one with the probabilities of
observing each K-mer in non-specific binding events.

Scoring stage

The scoring stage assigns each K-mer X a z-score Z(X) according to its binding potential. The
z-score measures a scaled difference of the observed K-mer counts with the expected counts if
there were only unspecific binding events. A K-mer with a z-score below 0 has been observed
less often than expected by the unspecific binding, whereas highly enriched K-mers have large
positive z-scores. The z-score is derived by modelling the K-mer counts by a Poisson distribution

14
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with mean µ(X) = pbg(X)×L (Equation 2.1). All patterns that surpass a user-defined threshold
(by default Zthresh = 10) are selected as a set of K-mers bound with high confidence.

Z(X) =
n(X)− L× pbg(X)√

L× pbg(X)
(2.1)

Local optimization stage

DNA binding is a statistical process and the protein occupancy of a stretch of DNA de-
pends on its binding affinity. Depending on the statistical power, K-mers sufficiently simi-
lar to the optimal K-mer will also show enriched counts, albeit at a lower significance level.
A single binding domain therefore creates not one, but a local neighborhood of enriched K-
mers. We use the local optimization stage to reduce this redundancy and go from enriched
K-mers to motif patterns. We do this by finding local optimal patterns that cannot achieve
a higher score by replacing any of its positions with a letter from the degenerate IUPAC al-
phabet D = {A,C,G, T,R, Y, S,W, S,K,N}, where R = A or G, Y = C or T , S = G or C,
W = A or T , K = G or T and N = A or C or G or T . In addition to reducing redundancy, the
degenerate alphabet allows to remove uninformative positions by introducing N and describing
positions with weaker preference (e.g. R and Y for purine and pyrimidine bases respectively).
We implemented three different scoring functions for the local optimization: maximization of
pattern enrichment, minimization of log p-value and maximization of mutual information be-
tween the pattern X being an input sequence and an average input sequence X containing at
least one pattern match. By their construction, the three different scoring methods encourage
different levels of degeneracy: pattern degeneracy is strongly discouraged for enrichment scor-
ing and highly encouraged by the mutual information score. With the p-value scoring lying
somewhere in between.

PWM conversion stage

In the PWM conversion stage locally optimal degenerate patterns are converted to PWMs. We
offer two conversion schemes: in the simple scheme the probability of nucleotide a at position j
is chosen as the relative frequency of the counts of all k-mers matching the IUPAC pattern.

pja =
nja∑

b∈{A,C,G,T} njb
(2.2)

In order to prevent over-specific PWMs, we add uniform pseudocounts to the aggregated pattern
counts nja (by default 10 pseudocounts).

With the assumption that optimally bound patterns with a single mutation still have a high
binding affinity to the protein of interest, we can derive a more advanced PWM conversion
scheme:
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pja =
n(y0:j−1 a yj+1:W−1)

n(y0:j−1N yj+1:W−1)
(2.3)

Here K-mers are denoted in element-wise vector notation y = y0y1 . . . yK−1. Note that this
conversion scheme does not require pseudocounts and works especially well for long informative
motifs typical for many transcription factors. By default we use the advanced PWM conversion
scheme.

PWM sharpening stage

PWMs derived in the previous stage consider all K-mers that match the pattern with equal
weight. By weighting the contribution of each K-mer by their binding affinity, we can futher im-
prove the PWM model. Starting the pattern-derived PWM, we use the expectation-maximization
framework to iteratively refine the seed PWMs.

We derive the likelihood ratio of observing a K-mer under motif and background PWM model
with parameters p and pbg, respectively, as follows:

p(x|p)
p(x|pbg)

=

K−1∏
j=0

pj(xj)

pbg(xj)
(2.4)

In the expectation step we calculate for each K-mer the probability of being bound by the factor.

r(x) =
p(x|p)

/
p(x|pbg)∑

x′∈{A,C,G,T}K n(x
′)p(x′|p)

/
p(x′|pbg)

(2.5)

In the maximization step we use the previously calculated expectations to update the model
parameters p.

pj(a) =
∑

x∈{A,C,G,T}W
I(xj=a)n(x) r(x) (2.6)

Plugging 2.5 in 2.6 gives the expectation-maximization iteration equation up to a normalization
constant.

p
(t)
j (a) ∝

∑
x∈{A,C,G,T}K

I(xj=a)n(x)
p(x|p(t−1))

p(x|pbg)
(2.7)

To model further model saturation at sites with very high affinity, we limit the likelihood ratio
to a maximum of A = 1000 with a smooth decay and obtain the final iteration equation.

p
(t)
j (a) ∝

∑
x∈{A,C,G,T}W

I(xj=a)n(x)

(
A−1 +

p(x|pbg)

p(x|p(t−1))

)−1

. (2.8)
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Merging stage

In the merging stage, PWMs representing shifted instances of the same motif are combined. For
the two PWMs p(m) and p(m′) of length l and l′, respectively, we derive a similarity score S(p, p′)
as the maximum overlap score when shifting the motifs by offset d = −2,−1, . . . , l′ − l+ 2 with
respect to each other.

S
(
p(m), p(m

′)
)
= max

−2≤d≤l′−l+2

{
s
(
p
(m)
j1 : j2

, p
(m′)
j′1 : j

′
2

)}
(2.9)

Where j1 = max{0, d}, j2 = min{l−1, l′−1+d} and j′1 = max{0,−d}, j′2 = min{l′−1, l−1−d}
denote the boundaries of the aligned overlap segment for p and p′, respectively. We measure the
overlap similarity by the background-aware similarity function s(p, p′):

s(p, p′) =
1

2

(
d(p, p(bg)) + d(p′, p(bg))

)
− d(p, p′), (2.10)

with the background nucleotide distribution p(bg) and the distance function d(p, p′) defined as
the sum of the KullbackLeibler distances H(p||p̄) and H(p′||p̄), with p̄ := (p + p′)/2 defined as
the average distribution of p and p′.

d(p, p′) =
l−1∑
j=0

(
H(p||p̄) +H(p′||p̄)

)
=

l−1∑
j=0

∑
a∈{A,C,G,T}

(
pja log2 pja + p′ja log2 p

′
ja − 2p̄ja log2 p̄ja

)
.

(2.11)

s(p, p′) reaches its maximum for highly similar overlaps (d(p, p′) ≈ 0) where both overlap se-
quences are dissimilar to the background sequences (d(p, p(bg)) + d(p′, p(bg))≫ 0).

With a similarity score for two PWMs in hand, the iterative merging routine is defined as follows:
(1) calculate pairwise similarity scores for all PWMs. (2) As long as there exists a pair (p, q)
that surpasses a defined similarity threshold (e.g. 0.75 × K bits), merge and remove p and q.
(3) Update the distances of the newly merged PWM to all remaining PWMs. Go back to (2)
until none of the pairs surpasses the similarity threshold.

PWM pairs (p(m), p(m
′)) are merged position-wise aligned with the shift dmax that achieved the

highest similarity score S
(
p(m), p(m

′)
)

with following strategy: Non-overlapping positions take
the nucleotide distribution from the PWM that has the overhang. For overlapping positions
the joint distribution is calculated as the re-normalized sum of the probabilities in the aligned
columns weighted by the total occurrences of the pattern that gave rise to each PWM.

At the end of the merging routine, all PWM with sufficient similarity have been combined and
thus the output is a set of non-redundant enriched motifs as PWM models.
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Derivation of local optimization scores

We developed three objective functions for the local optimization stage: enrichment optimiza-
tion, mutual information optimization and p-value optimization. The objective functions score
the discrepancies in observed and expected K-mer counts. The counts for degenerate patterns
are the the sum of counts of all K-mers matching the degenerate patterns.

p-value score. Just like the z-score definition, the p-value score is based on a Poisson model
of how many counts one would expect in absence of specific binding events. Having observed a
pattern n times in the input set with an estimated mean of µ = pbg×L counts in a size-matched
unspecific binding set, we derive a p-value for enriched patterns as follows:

P-value =
∞∑
k=n

µk

k!
e−µ

=
µn

n!
e−µ

∞∑
k=0

µk

(n+ 1) · · · (n+ k)

<
≈ µn

n!
e−µ

∞∑
k=0

µk

(n+ 1)k

≈ µn

n!
e−µ 1

1− µ/(n+ 1)

logP-value ≈ n log µ
n
+ n− µ− 1

2
log(2πn)− log

(
1− µ

n+ 1

)
. (2.12)

As we only have to calculate p-values for enriched motifs (µ << n + 1), we can use the closed
form solution of the geometric series in the third line. 3e transform the p-value into log space
for numerical stability and apply Stirling’s approximation to enable efficient computation.

In the local optimization stage we minimize the the log p-value, resulting in the statistically
most significant locally optimal pattern.

Mutual information score. Instead of finding the statistically most significant motif, with the
mutual information score we seek to find a motif that best distinguishes input from background
sequences. Given a set of N input sequences of average length L and a pattern of length K that
matches Mobs times out of M := N(L − K + 1) possible positions in the input set and Mexp

times in a size-matched background set, the empirical probability of the pattern matching any
position in the input and background set are denoted as p̃obs and p̃exp:
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p̃obs =
Mobs

M

p̃exp =
Mexp

M

We can now approximate the probability of observing at least one pattern match in a sequence
of average length in the input (pobs) and background (pexp) set:

pobs = 1− (1− p̃obs)L−K+1

≈ 1− e−p̃obs(L−K+1)

= 1− e−Mobs/N

pexp = 1− (1− p̃exp)L−K+1

≈ 1− e−p̃exp(L−K+1)

= 1− e−Mexp/N

We further define the two random variables X and Z as follows.

X =

{
0 iff sequence contains no match to pattern
1 iff sequence contains at least one match to pattern

Z =

{
0 iff sequence is a background sequence
1 iff sequence is an input sequence

With the mutual information score we seek the pattern that has the highest mutual information
between X and Z. Intuitively speaking we seek the pattern for which the binding probability
on an average sequence carries the most information about whether that sequence is an input or
background sequence. Thus in short the pattern that best distinguishes input from background
sequences.

The mutual information between X and Z is defined as

MI =
∑

Z∈{0,1}

∑
X∈{0,1}

p(X,Z) log
P (X,Z)

P (X)P (Z)

=
∑

Z∈{0,1}

∑
X∈{0,1}

p(X|Z) log P (X|Z)
P (X)

P (Z) (2.13)
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With q := p(Z = 1) we have by definition of X and Z:

p(X = 1|Z = 1) = pobs

p(X = 1|Z = 0) = pexp

p(X = 1) = p(X = 1|Z = 1)p(Z = 1) + p(X = 1|Z = 0)p(Z = 0)

= pobsq + pexp(1− q)

Defining further p := pobsq + pexp(1− q), and plugging into equation 2.13, we obtain:

MI(q) = q

[
pobs log

pobs
p

+ pobs log
1− pobs
1− p

]
+ (1− q)

[
pexp log

pexp
p

+ pexp log
1− pexp
1− p

]
= −qH(pobs)− (1− q)H(pexp) +H(p)

Where H(X) := −X logX − (1−X) log (1−X) is defined as the entropy.

As we do not know the fraction of bound sequences p(Z = 1), we build a heuristic score by sum-
ming over three values q ∈ {0.5, 0.1, 0.01} for three broad regimes of binding. Furthermore we
normalize the mutual information MI(q) by the entropy H(q) to derive at the final optimization
score SMI which we maximize in the local optimization.

SMI :=
∑

q∈{0.5,0.1,0.01}

MI(q)
H(q)

Enrichment score. The enrichment score maximizes the ratio of the number of observed divided
by expected pattern counts. Especially for expectation values much smaller than 1, the pure
enrichment is susceptible to noise due to the discrete nature of counts. To prevent infrequent
patterns obtaining high enrichment scores, we add pseudocounts to the expectation. The number
of pseudocounts scale with the number of sequences and are controlled by a strength parameter
fpsdc (by default fpsdc = 0.005).

SEnrich :=
n

(pbg × L+ fpsdc ×N)
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The enrichment score is maximized in the local optimization stage. By its definition the en-
richment score discourages pattern degeneracy. With K = 4 or K = 6, it is especially useful
for detecting very short enriched K-mers which can be found in high-throughput DNA/RNA
binding sets such as PAR-CLIP or eCLIP.



3. Results

3.1. PEnGmotif

By design the expectation-maximization (EM) framework offers motif refinement. In each iter-
ation the algorithm proposes an update to the model parameters that increases the likelihood,
thereby guaranteeing convergence to a local maximum of the likelihood function, but not neces-
sarily the global optimum. In general the landscape of the likelihood can be rugged with multiple
local maxima representing different enriched motifs, thereby making the strategic choice of initial
seed parameters an important consideration. We developed the PEnGmotif algorithm as a fast
tool for iterating promising seed PWMs for the higher-order refinement. Users can then select
the most promising seeds for higher-order optimization. As the EM will only output locally
optimal motifs, biological relevance ultimately has to judged by comparative motif analysis and
motif performance evaluations.

3.1.1. PEnGmotif on artificial sequences

In order to understand the individual stages of PEnGmotif better and provide a proof of prin-
ciple, we use PEnGmotif to recover implanted motifs in simulated sequences. To this end, we
simulate 10000 150nt long nucleotide sequences with a second order Markov model, thereby
determining the background 3mer sequences. with a probability of 50% we implant a human
CTCF motif according to the PWM model MA0139.1 from the JASPAR database (Fornes et al.,
2020) by selecting a motif position with uniform probability. We then apply PEnGmotif to
recover the CTCF motif as a potential seed for higher-order refinement.

A visualization of PEnGmotifs processes and outputs for pattern sizes 8, 10 and 12 are presented
in the following. In the first step, kmers are counted on the input data and the most enriched
kmers – also referred to as base patterns – are selected for further IUPAC optimization (Fig-
ure 3.1A). Depending on dataset size, pattern size and motif lengths, hundreds to thousands of
base patterns can found. For ease of visualization, only the fate of the five base patterns with
highest z-score are visualized. Note also that unlike the EM framework, PEnGmotif’s kmer
centered approach is oblivious to motif positioning. The visual pattern alignment in the first
two stages are for the ease of the reader, but unknown to the algorithm.

In the local optimization stage, base patterns are optimized to IUPAC patterns using a degen-
erate nucleotide alphabet (Figure 3.1B). Here we use mutual information, PEnGmotifs default
optimization score. Patterns with same alignment with respect to the motif tend to be optimized

22
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to the same IUPAC patterns, thereby drastically reducing the number of patterns that have to
be considered for the downstream stages. The three different objective functions available during
the local optimization routine are visualized in Figure 3.2.

In the PWM conversion stage, distinct IUPAC patterns are converted to PWMs, by taking into
account the counts of all base patterns matching each IUPAC pattern (Figure 3.1C). Compared
to the implanted motif, the information content of the inferred PWMs is lower due to the noise
arising from unbound k-mers matching degenerate IUPAC patterns by chance.

In order to overcome the information gap, we use the previously PWMs in a EM algorithm
that quantifies how strongly the base patterns are bound and thereby sharpens the motif by
increasing the motif content (Figure 3.1D). In this example the information content of the
sharpened PWMs slightly surpasses the information content of the implanted motif.

Lastly, all PWMs with significant overlaps are merged to a single motif that resembles the im-
planted motif, albeit with higher information content, thereby over-specifying bound sequences
(Figure 3.1E). Seeded with the merged PWM, the position-aware motif optimization of the
refinement EM can quickly converge to a realistic motif model.

3.1.2. PEnGmotif on real sequences

In order to validate the reliability of PEnGmotif in detecting seeds in in-vivo data, we applied
PEnGmotif with pattern length 10 to CTCF peaks called from ENCODE(Wang et al., 2012;
Consortium et al., 2012) ChIP-seq data in the five well-studied cell lines Hct116, Huvec, K562,
Mcf7, Wi38 provided by the GTRD project (Yevshin et al., 2019) (Figure 3.3). In all data
sets the 4–5 discovered motifs are consistent with a merged, 14 bp long main motif and 2–3
shorter submotifs that did not have sufficient similarity to the main motif and thus have not
been merged. Moreover, a motif representing long A-T rich stretches that due to their length
have not been corrected out by the second-order background model.

3.1.3. Time benchmark

In contrast to EM based motif discovery tools, PEnGmotif’s k-mer based approach allows high
speed, a strength that makes it especially suitable for seed discovery (Figure 3.4). For typical
ChIP-seq peak data sets with between 10,000 and 100,000 sequences, PEnGmotif requires less
than a second for pattern length k=8, around 17 seconds for k=10 and around 5 minutes for
k=12. At this data set size regime, the total runtime is dominated by the pattern length rather
than number of sequences and sequence length. For very large sequence sets, processing and
counting the sequences becomes the bottleneck. The largest test set with 150m sequences,
contains about an order of magnitude more nucleotides than the human genome. PEnGmotif
requires around 20 minutes on this dataset.
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A) Top 5 base pattern after counting and scoring
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C) Pattern to PWM conversion
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D) PWM sharpening
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E) Merged PWM output
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Figure 3.1.: PEnGmotif recovers implanted motifs on simulated sequences. We use PEnGmotif
with k-mer length 8, 10, 12 to recover implanted CTCF motifs. Here we show the results of the PEnG
algorithm on the five highest enriched base pattern k-mers and the PWM output A) By counting and
ranking the k-mers by their z-score under a Poisson model, the highest ranking base patterns are selected
for local optimization. Here the top 5 base patterns are depicted aligned to their respective motif position.
position. B) Local optimization combines base patterns to enriched IUPAC patterns by detecting variable
sites. C) IUPAC patterns are converted to PWM by combining the counts from matching base patterns.
D) The information content of PWMs is increased by iterating the EM algorithm. E) The optimized
PWMs are combined based on their overlap, resulting in one long PWM, resembling the implanted motif.
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A) Top 5 base pattern after counting and scoring
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Figure 3.2.: Local optimization strategies produce slightly different EM seeds. We use PEnG-
motif with k-mer length 10 to recover implanted CTCF motifs with our three different IUPAC pattern
optimization goals: p-value, mutual information and pattern enrichment. Panels A–D as described in
Figure 3.1. The three different objective functions lead to different levels of IUPAC pattern degeneracy
with enrichment optimization. The degeneracy is lowest for enrichment optimization and highest for
mutual information optimization. In this case the therby introduced differences in the PWMs generated
in the PWM conversion stage are small and the EM in the PWM sharpening step converges to the same
output motif.
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Figure 3.3.: PEnGmotif’s CTCF motifs are consistent across ENCODE ChIP-seq motifs.
When applied to real ChIPseq data from well-studied ENCODE cell lines, PEngmotif discovers consistent
motifs, with one 14bp long main motif, 2–3 unmerged submotifs and a motif representing overrepresented
long A-T rich nucleotide stretches.
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Figure 3.4.: PEnGmotif runtime benchmark PEnGmotif processes data sets of size of typical ChIP-
seq peaks in less than a second for pattern length k=8, around 17 seconds for k=10 and around 5 minutes
for k=12. At these data set sizes, the choice of the pattern length dominates the the total runtime.
PEnGmotif can process data sets orders of magnitudes larger than typical data sets at acceptable speed.
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3.2. Five tools for motif analysis

3.2.1. De-novo motif discovery

De-novo motif discovery is the core workflow of our web server. We implemented motif discovery
as a process consisting of two consecutive stages: a seeding stage followed by higher order
refinement.

In the seeding stage users the PEnGmotif algorithm is applied to a file with short nucleotide
sequences in fasta format uploaded by the user. The PEnGmotif algorithm is highly configurable
and many of the options are exposed to the user in our web interface (Figure 3.5). The default
parametrization is well suited for processing peaks from most DNA ChIP-seq experiments. Users
can optimize the motif detection to RNA binding experiments (e.g. PAR-CLIP/iCLIP/eCLIP)
by switching to single-stranded motif detection and if necessary increase sensitivity for shorter
motifs by reducing the pattern length, lowering the z-score threshold for required k-mer enrich-
ments and experimenting with lower background orders. Users with in-vitro sequencing data
(e.g. HT-SELEX) can provide sequences from the input library as external background set. The
remaining options are situational and can be experimented with for fine-tuning results: users
can remove spurious significant patterns by increasing the minimum number of pattern occur-
rences, can choose the metric for local optimal IUPAC pattern generation and deactivate EM
optimization of IUPAC patterns.

After job processing the user is redirected to a result page that lists for each discovered PWM
seed, (1) its consensus IUPAC string, (2) its sequence logo with reverse complement, (3) its
motif AvRec score and (4) an estimation of the fraction of input sequences containing the seed
motif (Kiesel et al. Figure 2A). Additionally, users can download the motifs in MEME format
for further processing with third party tools. Based on the users’ prior knowledge about the
expected motif or the given occurrence and motif performance scores, they can select promising
motifs as seeds for higher-order refinement. Users without prior knowledge can also choose non-
interactive seeding, which automatically chooses the best performing motifs for higher-order
refinement.

In the refinement stage, the BaMMmotif algorithm is applied iteratively to the user-provided
sequences using each selected seed as a motif initialisation to train powerful higher-order models.
By default 2nd order Bayesian Markov Models are trained, but users can choose to reduce the
order. Users can also choose to extend the refined BaMM model by adding flanking nucleotides
to the core seed.

Just like the seeding procedure, higher-order refinement is submitted as a job and a result
page is shown after completion. In addition to the IUPAC string, zeroth-order motif logos
and performance statistics, an additional section shows up to two higher-order logo plots for
1st and 2nd order contributions. For each position a higher-order logo visualize the additional
information contributed by the respective context kmers (Kiesel et al. Figure 2B).
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Figure 3.5.: PEnGmotif is highly parameterizable in our web server UI. Our web server allows
users to tailor the seeding stage to their needs by exposing a many of PEnGmotif’s commandline options
to the user via the UI. The default settings work well for most ChIP-seq and DNA-SELEX datasets. For
RNA data, better results can be achieved by choosing the single stranded mode, reducing the pattern
length to 6, and using enrichment and the IUPAC optimization score.

3.2.2. Motif evaluation

Motifs are over-represented oligonucleotide sequence stretches in the input data. Over-representa-
tion is a statistical property and is not always a good proxy for biological relevance: motifs with
very small enrichments can become significant in sufficiently large data sets, while in biologi-
cal context such motifs would be binding the transcription factor only marginally better than
random stretches of DNA. To give users a meaningful visualization for judging the biological
relevance of motifs, we provide p-value distribution and a recall over TP/FP-ratio plots.

For the p-value enrichment plot, p-values are estimated from motif binding scores for each
sequence under the null hypothesis that the sequence does not contain the motif. If none of the
input sequences would contain the motif, the p-value distribution would be uniform between
0 and 1. Sequences containing the motif will enrich for larger motif binding scores and thus
skew the p-value distribution towards lower p-values. We visualize model quality by plotting
the recall over the TP/FP enrichment. We use the AvRec score, the area under this curve, for
ranking motifs.

Based on two different definitions on bound and unbound sequences, the server provides in total
four motif evaluation plots (Kiesel et al. Figure 2C). The two plots corresponding to the dataset-
centered definition have the underlying assumption that all uploaded sequences are bound by
the factor of interest. The two plots corresponding to the motif-centered definition estimate
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the fraction of bound sequences. When nearly all sequences contain the motif of interest, the
dataset-centered and motif-centered analyses give similar results. For rarely occurring motifs,
the motif-centered AvRec score captures the motif-specific binding and is thus independent of
the frequency of the motif in the dataset. With both analyses side by side the user can estimate
the presence of each motif is in the dataset while also getting a good proxy for the biological
binding capabilities for rarely observed motifs.

3.2.3. Motif scanning

Given a set of sequences and a motif model, the task of motif scanning is to estimate the binding
strength of the motif at each possible binding position of the sequence. Our server offers a
workflow that after uploading the sequences and a model in BaMM or MEME format scans
sequences and returns a file with all motif positions with a p-value lower than a user-defined
cutoff. Additionally the server provides a plot of the distribution of motif positions relative
to the sequences (Kiesel et al. Figure 2C). Especially for sequences extracted symmetrically
around peaks of binding signal, as typical for ChIP-seq, a prominent enrichment of center can
help distinguishing primary motifs from secondary motifs from co-binding factors.

3.2.4. Motif-motif comparison

Motif-motif comparison is the process of annotating motifs by searching against a database of
known motifs. Our server offers users the possibility to upload motifs in BaMM or MEME format
and choose one out of nine databases to search against. The databases contain higher-order
motif databases learnt from curated ChIP-seq data, such as GTRD (human, mouse, rat, yeast,
zebrafish) (Yevshin et al., 2019) or modERN (fly) (Consortium et al., 2012) and manually curated
databases such as HOCOMOCO (human, mouse) (Kulakovskiy et al., 2018) and JASPAR (cross-
species) (Fornes et al., 2020). By decreasing the e-value cutoff users can limit the search to
high-confidence hits. The result of motif-motif comparison is a table of up to five database
motifs with the highest e-value. For each database motif the factor name, e-value, logos of query
and database hit and a link to further information are listed in a table (Kiesel et al. Figure 2D).

3.2.5. Browser for motif database

Our motif databases are also accessible via the web interface. We offer users the ability to search
databases by protein target name or browse all motifs of a specific database(Figure 3.6). For
each motif in the database we list the name of the target protein, the zeroth-order sequence logo
and its reverse complement, and the species. We also provide cell type and experiment type if
the information is available. In case of external motifs (JASPAR: Fornes et al., HOCOMOCO
Kulakovskiy et al.) we provide the link to the third party website of the motif. In case of the
self-trained BaMM motif databases (GTRD: Yevshin et al. and modERN Consortium et al.),
we also provide higher-order sequence logos, motif evaluation plots, motif distribution plots and
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Figure 3.6.: The database explorer allows to browse motif databases. Users can search our
databases by factor name and can obtain not only logo motifs, but a link to detailed information of our
trained BaMM model, or an external link to the database entry in case of an external database such as
JASPAR and HOCOMOCO.

offer users the possibility to download the models or use them as an input for a motif-scanning
task.

3.3. Job submission

Depending on the workflow type and the dataset size, our analysis pipelines require a few
minutes to an hour of processing time. In order to control resource utilization, the pipelines
are submitted as jobs to a task queue. A scheduler monitors and executes jobs in chronological
order when enough resources are available. Each job is assigned a randomly generated 128-
bit Identifier in form of a universally unique identifier (UUID). Users can use the identifier to
obtain information about the progress of their jobs and obtain the results once the job has been
executed successfully. The UUIDs allow users to share their results with colleagues via url,
without having to worry about third party access. Collisions are practically impossible due to
the large range of possibe UUIDs (2128 ≈ 3.4×1038). To help users monitor their jobs, we display
a table with time of submission, job name, job type, job status and a link to the result page of
recently submitted jobs. We track recently submitted jobs by a session id stored in an HTTP
cookie. This implementation assigns jobs to the browser session not the individual but cannot
assign it perfectly to a person. Our implementation does not require user login and thus makes
the server more accessible at the price that our job list cannot track across different browsers
and computers and deleting the HTTP cookie will also stop tracking previously submitted jobs.
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3.4. Highly configurable, easily deployable open source server

Especially for researchers without a deep computational background, servers can provide an easy
access to software without having to worry about installation and computational resources. The
source code of servers is however often not open nor is the server software designed for usage apart
from the original web instance. The BaMM web server is not only open software, but also easily
installable therefore adheres to high standards of open software in science. Instead of using the
server instance that we provide at bammmotif.soedinglab.org, users can also set up the server
on their own machines with little effort. We achieve this by a strong focus on configurability in
the server design and employing of modern container technology: all functionality of our server
is provided as interconnected docker containers and are freely available on hub.docker.com.
The web server, the task queue and the databases (MySQL and Redis) are running in separate
containers. The interplay of the containers is coordinated by Docker Compose, making starting
a fully functional server as easy as typing docker-compose up in a terminal.

Focus on reuse poses high demands on configurability. We allow users to set a wide range of
configuration options via key-value pairs in a flat text format. Users can set modalities for
database access, the paths for data storage and extensive logging configurations, restrictions
for file uploads, adapt the job processing to the available resources and set many more options
without having to modify the code of the server. Moreover, we implemented a plug-in system
for motif databases that allows dynamically adding and removing motif databases on server
startup. This allows users to create their own motif databases and use them for motif-motif
comparison on internal or locally deployed instances of the server.

3.5. Designed and setup for low maintenance

For each job BaMM web server stores uploaded input files and all generated files in order to offer
users the opportunity to download the complete analysis. In order to prevent excessive resource
usage, we give jobs a fixed life-time and implemented a daily cleanup routine that removes
expired jobs and thus frees resources. The time for the cleanup routine and the maximum life-
time of jobs can controlled via configuration options. To further reduce the required monitoring,
we implemented automatic email notifications when user inputs lead to unexpected crashes and
automatically restart jobs in case of a server failure.

3.6. Comprehensive documentation

In order to help users understand the usage, capabilities and output of the server, we provide a
comprehensive documentation rendered by Sphinx and hosted at bammserver.readthedocs.io.
The documentation gives a succinct explanation of the four different job workflows users can
submit and their parametrization, an extensive explanation of all visualizations and file formats
and covers commonly asked questions.

https://bammmotif.soedinglab.org
https://hub.docker.com/r/soedinglab/bammserver
https://bammserver.readthedocs.io
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“The BaMM web server for de-novo motif discovery and regulatory sequence analysis"
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and Johannes Söding†

(*) equal contribution, (†) corresponding author

Nucleic Acids Research (2018), Vol. 46, Web Server issue W215–W220, doi: 10.1093/nar/gky431.

4.1.1. Author contributions

A.K. designed and developed a first prototype of the BaMM web server. M.W. developed a prototype
of the two-step de-novo motif discovery and refinement workflow under supervision of C.R.. C.R.
developed the final submitted server. M.M. and J.S. developed the initial version of the seeding stage
software (PEnGmotif), C.R. and J.S. further improved PEnGmotif by developing new approaches to
local pattern optimization. W.G. developed BaMMmotif2, and generated the motif databases. C.R.
and W.G. developed tools and scripts for server visualizations. J.S. conceived the project and supervised
A.K, M.M, C.R. and W.G. A.K., W.G., C.R. and J.S. wrote the manuscript.

4.1.2. Code and data availability

The web server is based on the Django web framework and is written in Python, uses html/css for visual-
ization, mysql and redis as backend databases and docker for easy deployment. It is hosted free of charge
at bammmotif.soedinglab.org and can be used without prior registration. The web server code is avail-
able on github (soedinglab/BaMM_webserver) licensed under the AGPL-3.0 license. Both BaMMmotif2
and PEnGmotif are licensed under the GPLv3 license with the source code available without registration
at github (soedinglab/PEnG-motif and soedinglab/BaMMmotif2). The BaMM databases used on the
BaMM web server are freely available from our data server wwwuser.gwdg.de/~compbiol/bamm.
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ABSTRACT

The BaMM web server offers four tools: (i) de-novo
discovery of enriched motifs in a set of nucleotide se-
quences, (ii) scanning a set of nucleotide sequences
with motifs to find motif occurrences, (iii) search-
ing with an input motif for similar motifs in our
BaMM database with motifs for >1000 transcription
factors, trained from the GTRD ChIP-seq database
and (iv) browsing and keyword searching the mo-
tif database. In contrast to most other servers, we
represent sequence motifs not by position weight
matrices (PWMs) but by Bayesian Markov Models
(BaMMs) of order 4, which we showed previously to
perform substantially better in ROC analyses than
PWMs or first order models. To address the inade-
quacy of P- and E-values as measures of motif qual-
ity, we introduce the AvRec score, the average re-
call over the TP-to-FP ratio between 1 and 100. The
BaMM server is freely accessible without registration
at https://bammmotif.mpibpc.mpg.de.

INTRODUCTION

Many methods such as ChIP-seq or high-throughput SE-
LEX (1) produce a set of nucleotide sequences that are pref-
erentially bound by a protein of interest in vitro or in vivo.
From such data, a motif model for the sequence dependence
of the binding affinity of the protein to the DNA or RNA
can be derived. This model can then be used to predict bind-
ing sites and their strengths in other sequences.

Position weight matrices (PWMs) are the standard model
to describe binding motifs. In the PWM every motif posi-
tion contributes additively and independently from other
positions to the total binding energy. Even though the ap-
proximation of independence of positions works well for
many transcription factors, dependencies do occur (2,3),
for example due to bendability or shape constraints during
binding (4), to multiple binding configurations of the pro-

tein (5), or to cooperative interactions between closely bind-
ing factors that can modulate each others’ binding affinities
(6).

PWMs can be generalized to Markov models of order k
that account for nucleotide dependencies by conditioning
the probability for the four nucleotides at each motif po-
sition on the previous k nucleotides. First-order Markov
models have been added to the popular motif databases
JASPAR and HOCOMOCO (7,8). Models of order 2 and
higher have not yet been adopted in the major databases,
probably due to the difficulties to robustly train the many
parameters of these models on limited data.

We recently developed Bayesian Markov Models
(BaMMs) (9), which efficiently prevent overfitting by auto-
matically learning conditional probabilities only up to an
order k at which they can still be estimated reliably. The key
idea is that the conditional probabilities of order k − 1 are
used as prior probabilities for the conditional probabilities
of order k. We have shown that BaMMs of order 4 and 5
systematically outperform PWMs and first-order models
in distinguishing bound sequences from negative sequences
generated by a second-order Markov model (9).

A very popular web server for regulatory sequence anal-
ysis based on PWMs offering a wide choice of tools is the
MEME server (10). The RSAT web server (11) provides a
general toolbox for the analysis of regulatory sequences in-
cluding motif-based analyses. Furthermore, other web re-
sources and databases are available for training first-order
models (12,13).

The BaMMmotif server brings the improved quality of
BaMM motif models within reach of users unfamiliar with
command-line tools, in a largely self-explanatory web in-
terface designed for ease of use. The user can discover
BaMM models enriched in a set of input sequences, scan se-
quence sets with BaMM models for motif occurrences, and
compare discovered or uploaded motifs with a database of
BaMM models learned from ChIP-seq datasets.

*To whom correspondence should be addressed. Tel: +49 551 201 2890; Fax: +49 551 201 2803; Email: soeding@mpibpc.mpg.de
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
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Figure 1. Tools offered by the BaMM server: (i) de-novo discovery of
motifs enriched in a nucleotide sequence set. Motifs are represented by
higher order BaMMs, which capture correlations between nucleotides.
(ii) Searching with an input BaMM or PWM motif for similar motifs in
our database of over 1000 fourth-order BaMM motifs. (iii) Browsing and
keyword searching in our motif database. (iv) Scanning a set of nucleotide
sequences with BaMM or PWM motifs to find motif occurrences.

BAMM TOOLS

In the following we describe the four tools offered by the
BaMM server (Figure 1).

De-novo motif discovery using higher-order BaMMs

This tool discovers the motifs enriched in an input set of nu-
cleotide sequences in comparison to the expectation from
a background model. For example in sequences obtained
from a ChIP-seq or HT-SELEX experiment, the BaMM
motif models will approximately describe the sequence de-
pendence of the binding energy of the protein to DNA (see
page 2 of supplementary material in (9)). The motif model
can be used to scan other sequences for motif occurrences
(see next subsection).

Method. The motif discovery proceeds in two stages, seed
pattern discovery and motif refinement. For the pattern dis-
covery we developed a fast and sensitive algorithm (PEnG-
motif) that will be described in detail elsewhere. Briefly, it
finds all locally optimal W-mers (default W = 8) over an al-
phabet of 11 IUPAC letters (A, C, G, T, R = A or G, Y = C
or T, W = A or T, S = C or G, M= A or C, K = G or T, N =
A, C, G or T), where locally optimal patterns are those for
which changing any single one of its letters would result in
a decreased enrichment relative to the random expectation
from the background model. (Alternatively, the P-value or
the mutual information between presence/absence of motifs
and input versus background sequence can be optimized.)
With each locally optimal pattern, a PWM of length W is
initialized and optimized using an expectation maximiza-
tion (EM) algorithm. PWMs that have very similar over-
lapping regions are merged and ranked by our new AvRec
score (next section).

The seed motifs are then refined using BaMM!motif
(9). It learns the parameters of the BaMMs with an

EM algorithm that maximizes the log likelihood of the
motif model under a zero-or-one-occurrence-per-sequence
(ZOOPS) model (14). The BaMM server offers to train mo-
tifs of up to fourth order.

By default, BaMM learns a second order Markov model
from the input sequences as a background model. The back-
ground model is needed first in the motif discovery to model
the sequence stretches not modeled by the motif model and
second in the motif quality assessment step to generate neg-
ative sequences to estimate motif occurrence P-values. A
second order model is generally preferable to first or zeroth
order as it can better describe sequence biases observed in
open versus closed chromatin, ChIPped versus unChIPped
sequences etc. (15). A model of order 1 or 0 is recommended
for the discovery of very short motifs (e.g. four to five nu-
cleotides) such as to RNA-binding sites, as such short mo-
tifs could be learned to some extent even by a second order
background model, severely reducing the sensitivity to dis-
cover them.

Usage of de-novo motif discovery. After uploading a
FASTA file of up to 50 MB with the input sequences, the
motif discovery can be started. A drop-down menu offers
advanced options in four categories: general settings, seed-
ing stage, model refinement stage and settings for plots and
analyses.

In the general settings category the user can choose
whether the motif can be present on both strands, set the or-
der of the background model (default 2) and upload an op-
tional sequence set to train the background model on. Set-
tings of the seeding stage include the initial pattern length
W, the z-score significance threshold for refining a motif,
and the objective function to optimize in the search for lo-
cally optimal patterns. For the refinement stage the user can
choose the motif model order (default 2) and the number of
flanking positions on the left and right of the core model
found in the seed stage. Finally, the user can choose to skip
motif scanning, motif performance evaluation or motif an-
notation, and change the significance thresholds for scan-
ning and annotation.

By default up to four best-performing seed patterns are
refined to higher-order models. Seed patterns are ranked by
their average recall (AvRec) score (see below). Alternatively,
the user can choose to select seed patterns manually for re-
finement after the seeding stage.

The results page (Figure 2A) lists in a summary table
the discovered enriched motifs with their IUPAC patterns,
the sequence logos of the 0th-order model (forward and
reverse complement), the AvRec motif quality score and
the fraction of sequences with motifs (‘frac. occurrence’),
estimated using the fdrtool (16) (explained in subsection
‘Dataset AvRec and motif AvRec’). By clicking on the mo-
tifs or scrolling down, detailed results for the motifs are
shown: 0th-order (forward and reverse complement), first-
and second-order sequence logos (Figure 2B); four motif
quality assessment plots and a plot of the positional dis-
tribution of the motif occurrences relative to the center of
the sequences (Figure 2C). (Sequences do not have to be of
the same length.) Clicking on the download button in the
summary table above saves a zip file containing motif files
in BaMM format with the extension ihbcp and all analysis
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Figure 2. Selected results from a de-novo motif discovery run. (A) Summary table of discovered motifs. (B) Sequence logos of order 0, 1 and 2 for one
discovered motif. (C) Motif quality analysis and positional distribution. In the dataset-centered analysis (left) all input sequences are defined as positives. In
the motif-centered analysis (right), only input sequences carrying a motif occurrence are positives. Their fraction is estimated using fdrtool (orange broken
line on the upper right). The quality of motifs is quantified by average recall (AvRec), the blue area under the TP-to-FP-versus-recall curves. The curves
for positive-to-negative ratios in the dataset of 1:1, 1:10 and 1:100 are plotted. Recall = TP/(TP + FN), where TP = true positives, FP = false positives,
FN = false negatives. Positional distribution of the motif occurrences relative to the center of the sequences is shown on the bottom. (D) List of database
motifs similar to discovered motif.
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plots for the motif. Last, the database motifs found similar
to the discovered motif are listed (see ‘motif-motif compar-
ison’ below) with links to the database entry (‘Best matches
with our motif database’, Figure 2D). The results page can
later be retrieved by giving the job ID on the ‘Find my job’
page. Results are stored for up to 3 months.

SCAN SEQUENCES FOR MOTIF OCCURRENCES

A set of input sequences can be scanned with a motif or a set
of motifs for motif occurrences. The input motifs can be in
MEME (version 4 and above) or BaMM format and could
have been discovered de-novo by BaMM or they could
come from the BaMM database or some other database.

We developed a motif scanning tool that evaluates the
log odds score for BaMMs (and PWMs) of any order. A
table with the motif occurrences can be downloaded in a
zip file, together with the motif analysis on the supplied se-
quences. The table of motif occurrences contains in each
line the sequence length, motif position, binding sites, P-
value, and E-value of the occurrence. The P-values are com-
puted by maximum-likelihood fitting of the high-scoring
tail of the log-odds score distribution on sequences gener-
ated with the background model with an exponential func-
tion, which gave good fits (see PhD thesis at https://edoc.ub.
uni-muenchen.de/21504/). Each motif is also evaluated us-
ing the dataset and motif-based average recall (AvRec, see
below) and the positional distribution of the motif occur-
rences around the center of the sequences (Figure 2C).

BAMM MOTIF DATABASE

Our database contains 1021 fourth-order BaMMs trained
on ChIP-seq datasets of 620 human transcription factors
(TFs), 345 mouse TFs, 19 rat TFs, 16 zebrafish TFs and 21
yeast TFs from the GTRD database (17). For each motif, a
meta table, details with higher-order sequence logos, posi-
tional enrichment around the centers of training sequences,
and motif quality assessment plots, evaluated on the ChIP-
seq training sequences, are presented. The user can browse
the database or perform a text search through the list of
names of the transcription factor.

SEARCH WITH QUERY MOTIFS THROUGH THE MO-
TIF DATABASE

This tool searches for motifs in our BaMM motif database
that are similar to the query motifs (in MEME or BaMM
format). This motif-motif search is automatically run after
de-novo motif discovery using each of discovered motifs as
query. The query motifs can also be provided by the user.
The output of this tool is shown in Figure 2D.

Motif-motif similarities are computed between the zeroth
order contribution of the motifs. The distance between two
motifs is the minimum distance for any gapless alignment
of their columns that leaves at least four columns aligned.
The similarity between aligned motifs M1 and M2 is defined
as
∑

j

(−dJS(M1 j , M2 j ) + dJS(M1 j , Mbg) + dJS(M2 j , Mbg)
)
.

Here, the sum runs over all aligned columns j. dJS(M1j, M2j)
is the Jenssen-Shannon divergence between the four nu-
cleotide probabilities of model 1 and of model 2 at aligned
column j, and Mbg is the zeroth order background distribu-
tion in the set on which the query model was learned.

The E-values for the motif-motif matches are computed
from these similarity scores by fitting the density of scores
computed between 100 randomized query motifs and the
databases motifs and fitting the high-scoring tail with an
exponential distribution (see PhD thesis of Anja Kiesel at
https://edoc.ub.uni-muenchen.de/21504/). The randomiza-
tion of the query motif is achieved by exchanging A with T
probabilities of each position with probability 0.5, and anal-
ogously for C and G. In addition columns within 2 positions
of each other were randomly swapped. This motif random-
ization keeps the local GC vs. AT content conserved. In our
benchmarks, this score performed as well as the best of the
TOMTOM scores (Pearson correlation) (18). An example
of results of the motif search is shown in Figure 2D.

MOTIF QUALITY ASSESSMENT AND RANKING

P-values do not assess biological relevance of motifs

P-values and E-values have a severe drawback for ranking
motif models: They can be very significant and yet the mo-
tifs have no biological relevance at all. For a fixed x-fold en-
richment of motif occurrences on the input set in compari-
son to the background model, the P-value decreases expo-
nentially with the number of sequences in the zero-or-one-
occurrence-per-sequence (ZOOPS) model. For that reason,
even biologically irrelevant motifs with very slight enrich-
ment factors (e.g. 1.1) can obtain an extremely significant
E-value if the input set is large enough. Small enrichment
factors can occur frequently in practice simply due to an im-
perfect background model that slightly underestimates the
expected frequency of occurrence.

Precision, recall and false discovery rate

To get a more relevant measure of how well the motif model
can separate sequences with a motif (positives) from the
background sequences (negatives), we first generate for each
input sequence one random sequence of the same length
sampled with the second-order Markov background model
learned from the input sequences. The score for an input or
background sequence is the maximum of the log odds scores
of the BaMM over all possible motif positions (ZOOPS
model). Every sequence with a score above a cut-off is pre-
dicted to carry a motif. We rank all sequences by their score
and, for each cut-off score, we count the number of correct
predictions above that score, called true positives (TP), and
the number of incorrect predictions above the cut-off score,
called false positives (FP). The precision is the fraction of
predictions that are correct, TP/(TP + FP), and the recall
(=sensitivity) is the fraction of positive sequences that are
actually predicted, TP/(TP + FN). The false discovery rate
is FDR = 1 − precision = FP/(TP + FP).

If we did this analysis on the same sequences from which
we had trained the model, we could easily overestimate the
motif model performance by overtraining. We therefore use
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four-fold cross-validation to assess the motif model perfor-
mance: We split the input and background sequences into
four equal-sized parts, retrain the model on three. The re-
sults from the four hold-out sets are then combined.

The AUPRC assesses models partly in irrelevant regimes

The area under the recall-precision curve (AUPRC) (see
Supplementary Figure S2B) can be interpreted as mean
model recall (=sensitivity) averaged over the entire range of
precision from 0 to 1. Consider two models: one achieves a
maximum precision of 0.99 and the other achieves at any
recall a 1% higher precision, with a maximum at 0.9999.
Even though the two models have AUPRCs that only dif-
fer by 1%, their minimum false discovery rates differ by two
orders of magnitude (0.01 and 0.0001), which can make a
huge difference in practice.

Consider two application cases. In the first, the expected
ratio of sequences with and without true binding sites is
∼1:1, e.g. for a ChIP-seq experiment, and in the second
case it is 1:100, e.g. when scanning 104 promoter regions
in the human genome for motif occurrences, of which 100
are expected to carry the motif. In the first case, an FDR of
0.1, determined at ratio 1:1 between positive and negative
(background) sequences, is quite satisfactory to identify se-
quences with true binding sites. In the second case, an FDR
of 0.1 would result in 0.1 × 104 = 1000 false predictions,
which would swamp the expected 100 true binding occur-
rences. A model with an FDR of 0.001 determined at ratio
1:1 between positive and negative sequences would give us
0.001 × 104 = 10 false predictions, which would result in an
acceptable FDR of 10/110.

So the FDR (estimated for a ratio 1:1 of positives to neg-
atives) that is relevant to assess the quality of motif models
depends on the application, more precisely, on the expected
ratio of positives to negatives in the sequence data. In con-
trast, the AUPRC puts much weight on very high FDRs,
e.g. the range between 0.9 and 1 has as much weight as the
range between 0 and 0.1. Another popular measure, the area
under the receiver operator curve (AUROC), can be shown
to be even less relevant and difficult to interpret for motif
model assessment.

Average recall (AvRec)

We sought a motif quality analysis plot and associated qual-
ity measure (i) that covers the range of FDRs most relevant
in practical applications and (ii) that allows the user to eas-
ily estimate the performance of the motif in her particular
application, that is, given the ratio between positive and neg-
ative sequences expected for her application.

We replace the precision in the precision-recall plot
by log10 of the ratio R = TP/FP between true and
false positives, log10TP/FP (Figure 2C, middle). From
the ratio R one can immediately obtain the false
discovery rate, FDR = 1/(1 + R), and vice versa,
R = (1 − FDR)/FDR. R = 100 corresponds to
FDR = 1/101, R = 1 corresponds to FDR = 0.5. We
define the AvRec quality measure as the average recall
computed over a range of log10R-values from 0 to 2, which
corresponds to an FDR-range from 1/101 to 0.5. We argue

that this range of FDRs is most relevant in practice, as
illustrated by the two previous examples.

The new quality measure also satisfies the second require-
ment. The user can simply pick the curve in the AvRec
plot that corresponds to the ratio of positive to negative se-
quences that she expects in her application. Nicely, the curve
at ratio 1:10 is the curve at ratio 1:1 shifted down by one unit
(log1010), because R is proportional to the ratio of positive
to negative sequences in the dataset: When the number of
negative sequences is amplified by 10, the number of false
positive predictions will also be increased by a factor of 10.
On the web server, we show the curves with ratios of 1:1,
1:10 and 1:100 (if visible on the y-scale).

Dataset AvRec and motif AvRec

We used two definitions of positive and negative sequences.
In the dataset-centered analysis (Figure 2C, left), the true
positive sequences are all sequences from the input set above
the cut-off score and the false positive sequences are all
background sequences above the cut-off score. The upper
left plot in Figure 2C shows the distribution of the motif
occurrence P-values computed from their scores. The curve
below shows the log10TP/FP values over the recall for this
definition of true and false positives.

In the motif-centered analysis (Figure 2C, right), we con-
sider only those sequences as true positives that actually
contain a motif instance. In order to estimate the number of
TPs for a given score cut-off, we first estimate the fraction of
input sequences that contain motif instances using the fdr-
tool (16). This tool assumes that the negative sequences in
the positive set are uniformly distributed over all P-values
between 0 and 1 and fits a horizontal line giving the fraction
of negatives in the input set to the distribution (orange bro-
ken line in Figure 2C, top right). The definition of TPs and
FPs illustrated in the top right graph of Figure 2C results in
the motif-based AvRec analysis plot below.

When the fraction of motifs in the input sequences is near
100%, both approaches yield very similar results. But when
this fraction is small, the motif model may still be very ac-
curate. The motif-centered analysis takes account of that,
while the dataset-centered analysis severely underestimates
the model performance in these cases.

DOCUMENTATION, USABILITY AND SPEED

Each input parameter is briefly explained in a mouse-over
text. A detailed documentation is accessible via the ’Docu-
mentation’ tab on the top of each page. A motif discovery
run with 10k (100k) sequences of length 200nt takes around
3.0 (12.5) min. Scanning 100k sequences of length 200nt on
both strands for motif matches takes about 6 min per three
motifs. A motif-motif search through the largest subcollec-
tion of motifs in our database (620 models) takes around
3.5 min per three motifs.

IMPLEMENTATION

The BaMM web server is built on the Django Web frame-
work using Nginx as reverse proxy. Jobs are scheduled via
Celery’s asynchronous task queuing system, with the help of
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Redis as a message broker, and executed on a Linux com-
puter with 28 physical cores using 4 cores per job. MySQL
is used as back end database to store results and job param-
eters. The web front end, back end and the database run
in separate Docker containers, enabling easy deployment
(Supplementary Figure S1).

CONCLUSION

We hope the BaMM web server will enable many users to
exploit the greater descriptive power of BaMMs for motif
discovery and regulatory sequence analysis. In the future we
will work on extending the database of motifs, especially by
training on HT-SELEX datasets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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4.2. BaMMmotif2

“Bayesian Markov models improve the prediction of binding motifs beyond first order"

Wanwan Ge, Markus Meier, Christian Roth, and Johannes Söding†

(†) corresponding author

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 1, doi: 10.1093/nargab/lqab026.

4.2.1. Publication abstract

Transcription factors (TFs) regulate gene expression by binding to specific DNA motifs. Accurate models
for predicting binding affinities are crucial for quantitatively understanding transcriptional regulation.
Motifs are commonly described by position weight matrices, which assume that each position contributes
independently to the binding energy. Models that can learn dependencies between positions, for instance,
induced by DNA structure preferences, have yielded markedly improved predictions for most TFs on in-
vivo data. However, they are more prone to overfit the data and to learn patterns merely correlated
with rather than directly involved in TF binding. We present an improved, faster version of our Bayesian
Markov model software, BaMMmotif2. We tested it with state-of- the-art motif discovery tools on a large
collection of ChIP-seq and HT-SELEX datasets. BaMMmotif2 models of fifth-order achieved a median
false- discovery-rate-averaged recall 13.6% and 12.2% higher than the next best tool on 427 ChIP-seq
datasets and 164 HT-SELEX datasets, respectively, while being 8 to 1000 times faster. BaMMmotif2
models showed no signs of overtraining in cross- cell line and cross-platform tests, with similar improve-
ments on the next-best tool. These results demonstrate that dependencies beyond first order clearly
improve binding models for most TFs.

4.2.2. Author contributions

W.G. developed the BaMMmotif2 software. M.M. and J.S. developed the initial version of the seeding
stage software (PEnG), C.R. and J.S. further improved the software by developing new approaches to
local pattern optimization. W.G. implemented the statistical approach and conducted all the benchmarks.
W.G. and J.S. wrote the manuscript. J.S. supervised the research.

4.2.3. Code and data availability

Both BaMMmotif2 and PEnGmotif are implemented in C++ and Python. The code is licensed un-
der GPLv3 and freely accessible without registration at github: soedinglab/PEnG-motif, and soed
inglab/BaMMmotif2, and supports Linux and macOS. Both BaMMmotif and PEnGmotif are also in-
tegrated in our BaMM web server. The analysis scripts are available in Jupyter Notebook format on
github: soedinglab/bamm-benchmark.

https://doi.org/10.1093/nargab/lqab026
https://github.com/soedinglab/PEnG-motif
https://github.com/soedinglab/BaMMmotif2
https://github.com/soedinglab/BaMMmotif2
bammmotif.soedinglab.org
https://github.com/soedinglab/bamm-benchmark


5. Discussion

In this work we developed BaMM web server, a platform for learning higher-order TF binding motifs
from large amounts of next-generation sequencing data and analysing their potential biological impact.
To this end we developed four workflows. (i) Our de-novo motif discovery workflow is designed as a
two stage process: a fast seeding stage presents users a list of enriched PWM models which can be
selected for further higher-order refinement with our BaMMmotif software. (ii) We developed the AvRec
score as a means to quantify the biological relevance of motifs. In contrast to the traditional evaluation
metrics such as statistical significance, area under the receiver operating characteristic curve (AUROC)
and area under the precision recall curve (AUPRC), the AvRec score puts higher emphasis on biologically
relevant regimes of binding affinities. Our motif AvRec score quantifies motif quality independent of the
abundance in the dataset, a property that can help identifying biologically meaningful motifs that are
present only in a small subset of input sequences, such as motifs arising from TF co-binding. (iii) Our
motif scanning identifies positions in the input sequences that are preferentially bound by the motif
and quantifies the binding affinity. (iv) motif-motif comparison with databases of known TF motifs
allows annotating motifs from co-binding factors. (v) Large databases of higher-order models learnt on
public datasets allow browsing known motifs and scanning sequences with our collection of higher-order
models. We hope that BaMM web server provides a toolbox that makes analyzing TF binding data with
higher-order models more attractive and contributes to deriving better biological insight, especially for
factors with binding affinities that are not well modelled by the additivity assumption of individual motif
positions.

In order to achieve the wide range of functionalities of our web server, several standalone tools had to be
developed or extended and improved, such as the fast seed search PEnGmotif, the higher-order refinement
suite BaMMmotif, and various scripts for evaluation and fast motif-motif comparison. PEnGmotif is
especially noteworthy, because by using a k-mer approach instead of the classical EM framework, it
requires the input sequences only for the very fast k-mer counting step and thereby allows generating
non-redundant, enriched PWM motifs at high speed that is in practise nearly independent of the data set
size. This makes PEnGmotif especially suitable for a quick pre-screening for motif seeds that can serve
as initializations to the higher-order refinement procedure with BaMMmotif.

5.1. Challenges when training complex models.

Due to the advancements in next-generation sequencing, the amount of available data is growing, making
it possible to train more complex models. The high explanatory power of more complex models comes
however with the risk of learning too much. I will discussed the arising problems in the context of TF
binding models in the next paragraphs.

Statistical overfitting. Statistical overfitting is a common problem in the machine learning field that
arises out of the bias-variance tradeoff. In the face of limited data, complex models have a high variance
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in their high number of learnt parameters. The variance originates from describing the training data so
well that even random noise is captured by the model parameters, thereby severely limiting the ability
of the models to generalize. A model with fewer parameters cannot capture the noise and will have less
variance in the parameter estimations, albeit at the risk of not having enough complexity to describe the
underlying signal, thereby introducing bias. The success of PWMs as predominant motif models is due
to their low variance (only 3 × L free parameters). Since binding affinity of most TFs adheres to the
additivity approximation, PWMs also have low bias, explaining their success as motif models. Higher-
order Markov models are highly parameterized models and thus also risk overfitting to the training
data. By construction, BaMMs are self-regularizing models: by adding pseudocounts based on the lower
orders, in absence of sufficient evidence in form of k-mer counts, BaMMs fall back to lower orders, thereby
reducing the model complexity. This design makes BaMMs resistant to statistical overfitting, allowing
to train even 5th-order models on small data sets.

Learning experimental biases. Experimental biases are a hallmark of next-generation sequencing
data. Sequence biases are inherent in essential steps such as library amplification and adapter ligation,
making them an unavoidable challenge in the analysis of biological data (Aird et al., 2011; Diaz et al.,
2012). By simultaneously modelling bound and unbound sequences, statistical motif models can correct
out experimental biases that manifest themselves in skewed k-mer composition biases. Ideally, this bias
correction however requires a set of unbound sequences exhibiting the same experimental biases as the
sequences of interest, which is often difficult to obtain. In absence of background binding data, background
binding preferences can be approximated on the sequencing data, by assuming that all but a tiny fraction
of the sequenced DNA fragments bind the protein of interest. By default we train BaMM models using
a 2nd-order homogeneous Markov model as background model, thereby correcting experimental biases
that can be described as a skew the trimer composition. As background binding experiments are rare, it
is important to bear in mind that PEnGmotif and BaMMmotif typically perform an approximative bias
correction.

Learning motif mixtures. When training statistical motif models with the EM framework, a typical
assumption is that sequences contain either zero or one motifs. All motif positions are described by
the motif model, all other positions are described by the background binding model. Especially for in-
vivo data, this assumption is violated due to TF cooperation and thus local clustering of TF binding
sites: ChIP-seq enriched fragments of 100 to 250 bp length typically contain arrays of motifs. Due to
their simplicity, PWM models cannot describe motif mixtures. Depending on the data and the initial
seeding, the EM framework will converge to a strongly enriched motif, often the motif of the TF of
interest. Highly parameterized models such as BaMMs, or DNNs are not constrained to learning only
one motif, but can learn motif mixtures. For DNNs this capability is explicit by the user-defined number
of convolution kernels (Alipanahi et al., 2015; Zeng et al., 2016). Explicit motif models that take inter-
dependencies into account, such as BaMMs can also learn motif mixtures with co-occuring or secondary
motifs, complicating the interpretation of the motif scores as TF binding affinities (Keilwagen and Grau,
2015; Eggeling et al., 2015; Eggeling, 2018).

When evaluating the performance of de-novo motif discovery tools, all these biases have to be taken into
account. Cross-validation benchmarks by iterative train-test splits only account for biases arising from
statistical overfitting. Cross-platform benchmarks that train on in-vitro data and test on in-vivo data
can additionally take protocol-specific biases and undesirable predictive advantages due to learning motif
mixtures of correlated motifs into account. Our group has shown that BaMMs outperform competitors
when trained on in-vitro and evaluated on in-vivo data and vice versa, indicating that higher-order order
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models learn biological signal beyond first-order dependencies (Ge et al., 2021).

Transcription factor binding is ultimately studied as a means to gain a deeper understanding in tran-
scription regulation. The progress towards this goal can be measured by how well we can predict context-
specific gene expression from the sequence alone.

5.2. Limitations

Obliviousness of genomic context. The short motif length compared to the 3 billion bp in the human
genome gives rise to millions of potential binding sites with high binding affinity, of which only a small
fraction are bound in individual cells and cell types (Wasserman and Sandelin, 2004). Understanding the
regulatory code underlying gene expression therefore requires understanding the interplay between a wide
variety of regulatory signals. By taking the interdependencies of neighboring positions in transcription
factor binding motifs into account, higher-order Markov models describe the sequence-dependent binding
affinity of individual transcription factors more accurately, albeit in absence of the biological context.
This higher fidelity in modelling binding affinity can help finding weaker binding sites, an important
mechanism of in transcription regulation (Crocker et al., 2016; Farley et al., 2016; Kribelbauer et al.,
2019). However, due to their inherent ignorance of biological context, providing context falls ultimately
to the user. A potential weak affinity binding site identified in a transcriptionally active enhancer in the
cell type of interest is much more likely to be of biological relevance than sites with similar affinity in
repressed regions of the genome.

Reliance on base-readout in consecutive short nucleotide stretches. The underlying assumption
of motif discovery with simple PWM models is that the studied TF relies on high-affinity base-readout
to find its target locations in the genome. Higher-order models increase the predictive power by their
ability to capture TF shape readout, short variable spacers and variable dimerization partners (Siebert
and Söding, 2016). With their aim of modelling the binding affinity of single transcription factors out
of context, these models intentionally ignore some forms of cooperativity, such as co-recruitment. The
boundary between modelled and unmodelled cooperativity is however fluid: Longer motifs arising from
oligomerization are typically captured as single binding single motif. While complex higher-order models
such as BaMMs can capture variable oligomerization partners to some extend, BaMMs do not model
these cooperative interactions in a principled way and their capabilities in capturing these binding modes
has not yet been studied in detail. Multiple DNA binding domains can lead to cooperative binding
within the same TF that can result in multiple distinct motifs for a single transcription factor, depending
on the combination of bound domains (Siggers and Gordan, 2014). Zinc-finger proteins are especially
complicated due to their high number of DNA binding domains, compared to their observed motifs
(Najafabadi et al., 2015). This hints towards the existence of complex cooperative binding motifs that
are not well captured by current motif models.

Limited biological interpretability. By capturing complicated inter-motif correlation signatures,
higher-order BaMMs learn predictive information beyond first order in a cross-platform benchmark (Ge
et al., 2021). In the meantime, it has been indicated that DNA shape can be well described by first-order
models (Rube et al., 2018), raising the question of what biological signatures BaMMs actually learn.
While higher-order motif logos can visualize the information a specific order adds on top of the previous
orders, it is often difficult to assign meaning to the informative k-mers. Ultimately, it would be desir-
able to be able to quantify the amount of information provided by variable spacers, learning alternate
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binding motifs, and maybe other, still unknown biological signatures. This would not only advance our
understanding of the binding behaviour of the studied TF, but also inspire the development of a new
generation of models that could improve by modeling this information explicitly.

5.3. Outlook

End-to-end learning as a paradigm shift. It is my understanding that until very recently, a widely
held believe in biology was that modelling the whole, requires a deep understanding of its parts. Recent
breakthroughs in AI challenge this philosophy. Flexible, highly parameterized end-to-end differentiable
DNNs have been employed to solve challenging problems in life sciences without relying on previously
derived models and knowledge as feature input. In order to achieve high performance at their trained
task, well-crafted DNNs tend to rediscover biological principles, making it the researchers task to extract
this implicit knowledge from the parameters of the network.

In the field of transcription regulation it has for example been shown that predicting experimental tran-
scription factor binding profiles can elucidate the joint binding syntax of the pluripotency TFs (Avsec
et al., 2021b) and that predicting gene expression can reveal gene-regulatory features such as long-range
enhancer-promoter interactions (Avsec et al., 2021a; Karbalayghareh et al., 2021).

Artificial intelligence and the big picture. For now DNNs are probably our best bet for gaining a
holistic understanding of transcript regulation. The model that ultimately solves this defining challenge
will have to be able to predict gene expression up to measurement errors from sequence alone in any
cell type, possibly even across organisms. Recently the first papers have been published that among
other features predict gene expression from sequence in a multitask learning objective (Avsec et al.,
2021a; Karbalayghareh et al., 2021). Until now, these proposed methods predict gene expression only for
specific cell types. The transformer-based architecture with a visual field of 100 kb is moreover limited to
close and mid-range enhancer-promoter pairs (Avsec et al., 2021a), whereas the the graph-convolutional
network approach can detect enhancers in 2 mb distance, and is thereby able to integrate virtually
all known cis-regulatory promoter-enhancer interactions (Karbalayghareh et al., 2021), while improving
over state-of-the-art gene prediction methods. The currently proposed architectures only integrate cis-
regulatory effects, ignoring trans-effects and therefore will likely not be yet be able to solve the challenge
altogether. Nevertheless they will undoubtedly pave the way to a new era for big data in computational
biology. As these DNNs are end-to-end differentiable, the role of current transcription factor binding
models towards this ultimate goal is unclear.

Should we ever be able to obtain a holistic AI model of transcription regulation, human curiosity will no
doubt demand us to attempt to make sense of it by extracting biological principles that can be described
by human comprehensible biophysical models. Whether this is strictly necessary in order to truly be able
to declare the gene regulation problem solved will ultimately remain a philosophical question.
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6. Introduction

Arguably the most impressive feature of life as we know it is that even the most complex organisms
arise by subsequent divisions starting from one single cell. The necessary genetic information is stored
in long sequences of the four nucleobases Adenine, Cytosine, Guanine and Thymine in double-stranded
DNA molecules, which are redundantly copied in every single cell of the organism. The process of
materializing this information in the cell has been formulated by the central dogma of molecular biology:
DNA is transcribed into mRNA which in turn is translated into proteins. Just like DNA, RNA and
proteins are macromolecules consisting of a small set of repeated building blocks. Due to the differences
in the properties of their building blocks, DNA, RNA and proteins have very different properties and
fulfil distinct, highly specialized purposes in the cells. DNA is a macromolecule specialized in storing,
correcting and copying genetic information and thus contains the blueprints of all cellular structures and
machines together with the logic of their regulation in space and time. Proteins spontaneously fold into
complex three-dimensional structures and make up functional elements in the cell in the form of molecular
machines, structural elements, and regulatory and messaging agents among others. The central dogma of
molecular biology highlights the role of mRNA in information transmission from DNA to proteins. Due
to its high versatility, information transmission is only one of many roles of RNA and other classes of
RNA are involved in a high number of cellular processes. Its similarity with DNA allows RNA to act as
information storage and regulation molecules while their ability to fold into complex three-dimensional
structures allows them to fulfill roles in central processes such as translation and splicing.

Proteins are the protagonists of this chapter, especially their individual three-dimensional structure,
which determines their cellular function. In contrast to DNA and RNA, polymers of 4 different building
blocks, proteins are assembled from 20 different amino acids. At a central carbon atom Cα all amino
acids share a hydrogen atom, and an amino and carboxyl group, but differ in a variable side chain. In
contrast to nucleobases which mainly differ in their hydrogen-bond base-pairing behavior, the side chains
of amino acids are diverse in their chemical properties such as charge, polarity and hydrophobicity and
support a wider range of inter and intra-molecule interactions.

Proteins are synthesized by iteratively joining the carboxyl group of a growing protein chain with the
amino group of an amino acid. This condensation reaction is catalyzed by the ribosomes and a stable
peptide bond forms under the expulsion of a water molecule. The poly-peptide chain spontaneously folds
into a three-dimensional structure with minimal free energy, determined by the chemical properties of the
amino acid side chains (Anson and Mirsky, 1930; Lumry and Eyring, 1954; Anfinsen et al., 1961). From an
evolutionary point of view, protein structure is ultimately a consequence of function and as many functions
demand locally or even globally stable folds, a unique or nearly unique sequence to structure mapping
is often possible. This close relationship between sequence, structure and function makes studying the
structure of proteins a worthwhile endeavour. Both predicting structure from sequence and predicting
function from structure have proven formidable challenges and have been subject to scientific inquiry for
more than a century.
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Figure 6.1.: Protein structure is studied at four levels: The sequence of amino acid residues (primary
structure), locally favorable stable structures, especially α-helix and β-sheets (secondary structure), global
fold of a single chain (tertiary structure) and joint fold of several protein chains (quaternary structure)
(Figure taken from OpenStax CNX).

6.1. Protein structure

Protein structure is studied at four different levels: the amino acid sequence (primary structure), localized
structure elements (secondary structure), global structure (tertiary structure) and multi-chain protein
complexes (quaternary structure) (Figure 6.1), which I now discuss in more depth.

6.1.1. Primary structure

The primary structure of a protein is the sequence of amino acids that have been fused to obtain the
protein chain. The two ends of the polypeptide chain carry an amino group and a carboxyl group,
respectively, and thus impose a directionality. By convention the directionality of a polypeptide sequence
is defined from amino end to carboxyl end, coinciding with the direction of the biological synthesis process.
The nearly universal genetic code with its translational start and stop signals makes it possible to identify
protein sequences by their blueprints in genomic and transcriptomic sequencing data. Nowadays, billions
of protein sequences are readily available in databases, making primary structure the most well-known
aspect of protein structure (The UniProt Consortium, 2021; Steinegger et al., 2019).

6.1.2. Secondary structure

The secondary structure of a protein describes the local conformations of a polypeptide chain as a
consequence of locally energetically favorable interactions. The structure of the protein backbone is
determined by triplets of torsion angles between the covalent bonds inside the amino acid units: The
nitrogen atom from the amino group to Cα atom (N – Cα: ϕ-angle), Cα atom to the carbon atom from
the carboxyl group (Cα – C: ψ-angle) and the carbon atom from the carboxyl group to the nitrogen atom
of the next residue (C – N: ω-angle). Due to the double bond character of the involved covalent bonds,
the peptide bond is nearly planar and thus ω ≈ 180◦.

The rotational freedom of the ϕ and ψ angles allows polypeptide chains to adopt an enormous variety
of conformations. Hydrogen bonds between the nitrogen atoms of the amino groups as hydrogen bond
donors and oxygen atoms of nearby carboxyl groups as hydrogen bond acceptors are however highly
energetically favorable, leading to reoccurring stable local folding patterns. The most common of these
secondary structure elements are α-helices and β-sheets. In an α-helix, hydrogen bonds form between
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the carboxyl group and the amino group four residues further downstream in the sequence. This leads
to ϕ/ψ angles of around -60◦/-60◦ and a repetitive right-handed helix-like structure in which 3.6 amino
acids complete one helical turn. In contrast to bonding with succeeding residues, the hydrogen bonds
in β-sheets are formed between two linear poly-peptide stretches folded onto each other. Depending on
the relative directionality of the stretches, β-Sheets are further subdivided into parallel and anti-parallel
β-Sheets. Completely straight β-sheets are flat with ϕ/ψ angles of -120◦/+120◦. α-Helix and β-Sheets
are energetically preferred by involving all possible hydrogen bond donors and acceptors in electrostatic
interactions and reducing steric clashes of side-chains. Apart from the more stable secondary structure
elements, less favorable structure elements such as left-handed helices, turns and coils are also possible
but less frequent. Thus despite the enormous degrees of freedom in the ϕ/ψ torsion angles of poly-peptide
chains, the dihedral angles of stably folded proteins are concentrated in regions that support secondary
structure formation (Ramachandran et al., 1963).

6.1.3. Tertiary structure

Tertiary structure describes the global 3D structure of a protein chain in its target medium. There are
four broad classes of protein structures: globular proteins, membrane proteins, fibrous proteins, and
disordered proteins. As with secondary structure, the tertiary structure is determined by a spontaneous
energy minimization process in which the biochemical properties of the amino acid side chains play
an important role. Globular proteins are compact in shape and water soluble with hydrophobic side
chains clustered in a compact core and polar side-chains exposed at the surface. Membrane proteins
are either integrated or associated with a biological membrane. Their native structure often depends on
the membrane context. In their native form, fibrous proteins have elongated shapes and fulfil mainly
structural roles. Disordered proteins are classified by their absence of stable structure and have recently
stepped into the spotlight for their involvement in the formation of membraneless organelles.

The three-dimensional structure of proteins is constrained by physical contacts of residues that while
being far from each other in the linear amino sequence, are spatially close in the native structure. The
contacts are stabilized by strong covalent bonds in case of disulfide bridges, and weaker, non-covalent
electrostatic salt bridges or hydrophobic van der Waals forces.

6.1.4. Quaternary structure

When multiple protein chains fold cooperatively to form a stable multi-chain complex, the resulting
structure is referred to as the quaternary structure of the involved proteins. In order to fulfil their complex
functions in the cells, especially molecular machines are known to be comprised of multiple protein units.
The RNA polymerase II, the central player discussed in the previous part for example, consists of 12
subunits (Cramer et al., 2001). As predicting the binding interfaces connecting the individual protein
chains can facilitate solving structures of protein complexes, the prediction of protein-protein interfaces
naturally extends protein structure prediction problem to the structure prediction of protein complexes.

6.2. Protein evolution

The number of possible polypeptide chains grows exponentially with their length. For lengths of typical
proteins, this space of possible sequences is unimaginably large, exceeding by far the number of particles
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in the known universe. However only a small fraction of the possible polypeptide chains will fold into
stable structures. Stable folds can thus be likened to small islands in a huge sea of unfoldable sequences
(Lupas and Koretke, 2008). How many of these islands have been explored in the process of few billion
years of evolution is not clear, especially because searching for islands far from those already explored by
nature proves difficult (Woolfson et al., 2015).

Inspecting the first available protein structures has revealed that proteins contain independently folding
structural building blocks (Wetlaufer, 1973). These protein domains are also evolutionary building blocks
that are mixed and matched to bring forth a wide variety of proteins with different functions (Riley and
Labedan, 1997; Apic et al., 2001; Ekman et al., 2005). Ontologies have been developed to classify domains
according to structure and function (Andreeva et al., 2014, 2020; Sillitoe et al., 2019; Fox et al., 2014).
SCOP classifies domains by their secondary structure content (class), secondary structure arrangement
(fold), weak and strong sequence and functional homology (super-family, family). CATH uses secondary
structure content (class), secondary structure arrangement (architecture), architecture in the context
of chain connectivity (topology) and sequence homology (super-family) (Schaeffer and Daggett, 2011;
Andreeva et al., 2014; Sillitoe et al., 2019). Currently roughly 1500 distinct folds are annotated with few
new folds being detected over the last years despite ever growing sequence databases (Andreeva et al.,
2020; Sillitoe et al., 2019; The UniProt Consortium, 2021).

Compared to the huge number of known protein sequences, the total number of domain folds they use is
small. The number of naturally evolved folds has been estimated to lie between 1000 and 10000 (Woolfson
et al., 2015; Chothia, 1992; Govindarajan et al., 1999; Kolodny et al., 2013; Orengo et al., 1994). This
surprisingly small number of folds however does not imply that the number of islands of stable folds is
small. More likely, evolution explores folds by assembling existing structure fragments, suggesting a large
number of yet unexplored islands (Woolfson et al., 2015; Remmert et al., 2010; Kopec and Lupas, 2013;
Cossio et al., 2010).

Proteins fulfil their structural and functional roles in their cellular contexts typically under strong evolu-
tionary pressure. This pressure ultimately affects all levels of protein structure, despite levels closer to the
sequence have more more flexibility fulfilling the constraints (Zuckerkandl, 1976). Whereas function and
structure of some core domains is so conserved that it can be traced back to the last universal common
ancestor of all life, the primary sequences sharing the same structure and function can be so diverged
that inferring shared origin on the sequence level alone becomes challenging (Weiss et al., 2016; Rost,
1999; Remmert et al., 2012).

Protein sequences shaped by evolutionary forces thus share a very limited structural diversity. This many-
to-one relationship between sequence and structure makes it possible to transfer structural knowledge to
new sequences, a very important concept in protein structure determination (Bowie et al., 1991; Jones
et al., 1992b; Chothia and Lesk, 1986).

6.3. Protein structure determination

The difficulty of both experimental and computational approaches to structure determination increases
with the level. Due to the decreasing sequencing cost and large-scale metagenomic sequencing efforts,
currently available sequence databases contain billions of protein sequences (Steinegger et al., 2019). The
central database for protein structures (PDB) in contrast contains 170.000 experimentally derived protein
structures at the time of writing, emphasising the desire for computational methods for determining
structure from sequence. In the following sections I will briefly introduce experimental and computational
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approaches to tertiary and quaternary structure prediction.

6.3.1. Experimental approaches to structure determination

There are currently three core methods available for experimental protein structure determination: X-
ray crystallography, NMR spectroscopy and cryogenic electron microscopy. All three methods require
protein-specific, non-automatic sample preparation relying heavily on serendipity and trial and error. I
will briefly discuss the methods in more details.

X-ray crystallography

X-ray crystallography begins with crystallizing a homogeneous sample of a molecule of interest. Using
the diffraction patterns of a powerful X-ray source, the electron density of molecule can be reconstructed,
often at atomic resolution. Finding crystallization conditions however is often not straightforward and
thus despite concerted effort, a non-negligible amount of domain families still do not have a member with
a solved crystal structure. (Ovchinnikov et al., 2017; Montelione, 2012). Close to 90% of all currently
resolved structures have been obtained by X-ray crystallography, making it by far the most widely used
method for experimental structure determination (The Protein Data Bank, 2021; Berman et al., 2000).

NMR spectroscopy

NMR spectroscopy allows to study protein structure and interactions by measuring structural properties
from the magnetic fields induced by spinning nuclei. Having inferred dihedral torsion angles and inter
residue distances from NMR data, the protein structure can be obtained by modeling combined with
energy minimization (Markwick et al., 2008). In contrast to X-ray crystallography, NMR spectroscopy
allows to study soluble molecules in their native environment while additionally resolving protein dy-
namics. NMR does not require crystallization but is limited in the maximum size of proteins that can
be studied. Currently 7.5% of structures deposited in the PDB have been solved with NMR (The Pro-
tein Data Bank, 2021; Berman et al., 2000). It has been suggested that X-ray crystallography and NMR
spectroscopy are complementary tools for the structure determination of small proteins (Yee et al., 2005).

Cryogenic electron microscopy

Cryogenic electron microscopy, short cryo-EM, detects sample interactions with electron beams to obtain
two dimensional projections of biological molecules. To protect the sample from immediate disintegration
under the high-energy beam, it is frozen in near-native form in noncrystalline amorphous ice. While cryo-
EM imaging requires less sample amount, no sample crystallisation and is more forgiving in case of sample
heterogeneity, its limited resolution typically does not yet allow resolving individual side chains (Bai et al.,
2015). Recent advances in detectors and software produced the first cryo-EM models at atomic resolution
(Nakane et al., 2020; Yip et al., 2020) and thus hints towards cryo-EM becoming a worthy competitor of
X-ray crystallography for high-resolution protein structure determination.
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6.3.2. Computational approaches to structure prediction

The cost of determining the sequence of a protein has always been lower than determining the structure.
Since it was well understood from very early on that the amino acid sequence carries the information of
the structure (Anfinsen et al., 1961), computational biologists have long been invested in predicting the
three dimensional structure from the sequence (Anfinsen, 1973; Levitt and Warshel, 1975). Purely energy-
landscape based optimizations however have proven computationally intractable so far. By shifting from
pure theory to methods that can learn from data, protein structure prediction performance has improved
continuously, diligently monitored by the biennial CASP competition (Moult et al., 1995). Due to the high
complexity, the field of predicting tertiary structure of proteins has specialized in sub-disciplines, among
them template-based modeling, template-free modeling, refinement and contact/distance prediction which
are briefly introduced below.

The subdisciplines of structure prediction

Template-based modeling describes the task of predicting protein structure by transferring infor-
mation from evolutionarily related sequences with known structure. As structure is more conserved than
sequence (Illergård et al., 2009), diverging sequences preserve structural similarity over long evolutionary
time. However, identifying structural homologs quickly becomes challenging as sequence identity drops
below 30% (Rost, 1999). Highly sensitive homology detection tools based on profile-profile search have
been developed to facilitate template-based modelling on homologous yet strongly diverged sequences
(Altschul et al., 1997; Söding, 2005; Söding et al., 2005). The query-target alignment produced by ho-
mology prediction software is the input to homology modeling software that build a structural model of
the query sequence based on the query-target alignment and the structure of the target sequence (Krivov
et al., 2009; Webb and Sali, 2016; Waterhouse et al., 2018).

Template-free modeling is the much harder task of predicting protein structure in the absence of
known structure homologs and is thus closer to the original goal of folding based on the sequence alone.
This however proves difficult and successful template-free modeling have been data-driven approaches to
find structures good enough to serve as seeds for successive energy-based structure refinement. Current
approaches are mainly based on the prediction of short-range local protein structure and long-range
pairwise residue interaction data calculated on large alignments of homologous sequences (Kuhlman and
Bradley, 2019). Fragment assembly uses structural knowledge in form of short structure fragments in
combination with statistical sampling methods in order to solve local structure (Simons et al., 1997,
2001; Bonneau et al., 2001; Jones and McGuffin, 2003). In an iterative approach, a structure fragment is
proposed for a short stretch of amino acids by sampling from a fragment library generated from known
structures. The fragment is accepted probabilistically with a high acceptance rate if the proposed change
decreases the energy and is likely rejected otherwise (Kuhlman and Bradley, 2019; Simons et al., 1997).
By allowing changes that increase the energy with low probability, with enough time sampling procedures
can escape local minima in the energy landscape while exploring regions with low overall energy.

Knowledge of amino acids that are far apart in the linear amino acid chain yet close in the three-
dimensional structure simplifies the protein folding problem by restricting the search space. It has been
shown that knowing one contact for every 12 residues suffices to fold proteins (Kim et al., 2014). Predicted
long-range contacts are thus an important source of information in template-free modeling approaches.
With ever advancing deep-learning techniques, the information density in long-range interactions has
been increased by moving from binary contact or no-contact classification to predicting the distance



6.3. Protein structure determination 51

Figure 6.2.: Protein structure, amino-acid pair distances and contacts. The stable structure of a
protein (C) can be viewed as a symmetric distance map, color coding the distances between all pairs of
amino acids in the structure (A). Contact maps are binarized versions of distance maps in which amino
acid pairs with a Cβ − Cβ distance below 8 Å are assigned a value of one, all other pairs are assigned
a value of zero. The goal of contact prediction is to predict contact maps for proteins with unknown
structure. Accurately predicted contact maps can contribute to solving protein structures by constraining
the search space. Figure adapted from Adhikari.

distribution between amino acid pairs (Yang et al., 2020; Xu, 2019; Senior et al., 2019). Due to its
importance for the objectives of this thesis, I have dedicated section 6.3.3 to discuss contact prediction
in more depth.

Model refinement describes the process of improving protein models further by resolving physically
impossible atom configurations with fine-grained energy models. To this end, two strategies have been
successfully applied. Molecular dynamics simulations simulate the protein in solution and calculate the
Newtonian forces acting on the atoms. The motion of the atoms can be simulated for a short time step
followed by recalculation of the forces. Iterative motion and force reevaluation allows to simulate the
trajectories of the protein model towards an energetically more favorable state (Kuhlman and Bradley,
2019; Heo and Feig, 2018). An alternative strategy to model refinement are side-chain rotamer sampling
Monte-Carlo simulations with energy force fields at atomic resolution (Kuhlman and Bradley, 2019;
Raman et al., 2009; Leaver-Fay et al., 2011).

6.3.3. Contact prediction

Contact prediction is the task of predicting structural amino acid interactions (typically Cβ−Cβ distance
smaller than 8Å) in the absence of structural information and thereby gaining information about protein
structure ab-initio (Figure 6.2). Coevolution by compensatory mutations is a central source of informa-
tion in modern contact prediction algorithms (Schaarschmidt et al., 2018). It has long been observed
that amino acids that vary together in the sequence are connected by a shared structural or functional
relationship (Wyckoff, 1968; Fitch and Markowitz, 1970; Altschuh et al., 1987). In order to be able to
withstand the forces of evolutionary pressure, a destabilizing mutation in one amino acid often needs
to be compensated by a re-stabilizing mutation in its interaction partner (Figure 6.3). Over the years,
three classes of methods have been developed to extract coevolutionary signal from multiple sequence
alignments which I introduce in more detail.
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Figure 6.3.: Coevolution signal encodes structural information. Structure and function critical
protein contacts impose evolutionary constraints on the interacting amino acids. When destabilizing
mutations are overcome by compensatory mutations in the interaction partner, the corresponding columns
in the multiple sequence alignment show correlated amino acid exchange patterns (Figure taken from
MISTIC web server).

Pairwise methods use the amino acid tuples in a pair of alignment columns to assign each possible
column pair a contact score. The output of pairwise methods are two-dimensional, symmetric score
matrices reminiscent of the contact maps derived from known protein structures. To this end different
classes of methods have been proposed: Observed minus expected squared (OMES) methods statistically
test the compatibility of the observed number of amino acid pair combinations with the expected pair
counts derived from the individual column frequencies under the independence assumption (Larson et al.,
2000; Kass and Horovitz, 2002). Methods based on information theory use mutual information to quantify
the information content shared between two columns (Chiu and Kolodziejczak, 1991; Korber et al., 1993;
Wollenberg and Atchley, 2000). Yet another approach calculates for each alignment column a vector of
pairwise similarity scores of all amino acids pairs observed in the alignment column. The contact score
for a column pair is then calculated as the Pearson correlation of its similarity vectors (Göbel et al., 1994;
Olmea et al., 1999). More methods have been developed to the same end but are not discussed in further
detail (Neher, 1994; Shindyalov et al., 1994; Taylor and Hatrick, 1994; Lockless and Ranganathan, 1999).
With the Average Product Correction (APC), developed to remove entropic, phylogenetic and sampling
biases, the mutual information approach became the most sensitive method in 2008 (Dunn et al., 2008)
shortly before global methods displaced pairwise methods in coevolution detection.

Global methods In 2009, direct coupling analysis (DCA), a novel approach based on statistical physics
has revolutionized the field of contact prediction. Instead of calculating interaction scores independently
for pairs of alignment columns, a global approach to contact prediction was proposed by learning a
protein-family specific joint probability distribution p(x) of proteins in a protein alignment. The model
is chosen such that it is able to correctly capture the empirically observed single (Np(xi = a) = nia)
and pairwise (Np(xi = a, xj = b) = nijab) amino acid counts while requiring the least number of
parameters (Weigt et al., 2009).The model specified by these constraints takes the form p(x|v,w) =
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parameters w and a normalization constant Z that ensures that
∑

x p(x|v,w) = 1. It can be interpreted
as an undirected graphical model, with the alignment positions as nodes and couplings as edges. A
competing directed graphical model proposed shortly afterwards has not been able to compete with
improved learning procedures for undirected graphical models (Burger and Van Nimwegen, 2010; Ekeberg
et al., 2014).

The key advantage of the global approach is its ability to dissect the correlations of pairwise approaches
into direct and indirect contributions. When alignment column i is coupled to alignment column j

and alignment column j in turn is coupled to alignment column k, there will be correlation signatures
between all three columns. The correlation signature between i and k is however a non-causal, indirect
effect leading to a misleading correlation that pairwise methods cannot account for (Weigt et al., 2009).
The authors of the original publication derive a direct information score which is reminiscent of the
mutual information score but quantifies only direct contributions (Weigt et al., 2009).

The model formulation of p(x|v,w), while theoretically appealing, is computationally challenging due
to its normalization constant Z summing over the full sequence space (20L), a number of summands so
large that it cannot be computed for realistic alignment lengths L. Several methods have been proposed
to learn the model parameters. A message-passing algorithm, used in the original paper, was limited to
small alignment depths (Weigt et al., 2009). Regularized pseudolikelihood approaches approximate the
likelihood such that the normalization Z becomes tractable (Morcos et al., 2011; Balakrishnan et al., 2011;
Jones et al., 2012; Kamisetty et al., 2013; Ekeberg et al., 2014). In the past, our lab has contributed
an ultra-fast pseudolikelihood implementation for CPU/GPU (Seemayer et al., 2014). A method to
learn the true likelihood based on persistent contrastive divergence has recently been developed in our lab
(Tieleman, 2008; Vorberg et al., 2018). Best performing pseudo-likelihood approaches reduce phylogenetic
effects by reweighting the sequences according to their similarities, use a L2 penalty on the coupling
parameters during learning and calculate raw contact scores cij by taking the Frobenius norm of the 400
coupling parameters for each column pair (i,j): cij = ||wij ||2 (Ekeberg et al., 2013, 2014). Curiously,
normalizing the raw contact scores cij by applying the APC correction developed for mutual information
in pairwise methods proved to increase the quality of predicted contacts and has been the state-of-the-art
correction ever since (Dunn et al., 2008; Ekeberg et al., 2014).

Contact predictions based on DCA became state-of-the-art after outperforming competitors by a large
margin in CASP11 (Monastyrskyy et al., 2016; Kosciolek and Jones, 2016; Jones et al., 2015) and the
derived contact maps have since proven to be an invaluable information source for the next generation
of contact predictors based on deep computer vision models (Schaarschmidt et al., 2018). Their future
value is currently being challenged by Transformer-based architectures of the latest generation of deep
language models which seem to be able to learn the information provided by DCA methods directly
from multiple sequence alignments (Bhattacharya et al., 2020; Rao et al., 2021). Transformer-based
architectures hence paved the way to the current state-of-the-art end-to-end structure prediction method
AlphaFold2 (Jumper et al., 2020).

Transformation due to deep learning

Protein folding is a field with an enormous wealth in available data and it is thus a primary candidate for
disruption by deep learning technologies. Until very recently, state-of-the-art protein structure predictors
have been complex pipelines of independent sub tasks. When in 2016 deep learning methods entered
competitive protein structure prediction, the first landslide improvements were achieved by applying
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breakthroughs in the field of computer vision to the sub task of contact map predictions (Schaarschmidt
et al., 2018; Wang et al., 2017). Subsequent refinement in the deep learning models allowed to go from
contact maps to distance maps (Senior et al., 2019; Xu, 2019; Yang et al., 2020) and the prediction of
more elaborate structural constraints such as pairwise local geometry (Senior et al., 2019; Yang et al.,
2020). In the meantime, the status-quo of protein structure prediction as a pipeline of independent tasks
has been challenged by visionary attempts to learn protein structure from MSA to structure end-to-end
in a single deep learning model (AlQuraishi, 2019; Ingraham et al., 2019). End-to-end learning describes
learning objectives that are differentiable from input to output and hence prediction errors at the output
can propagate all the way back to the input, avoiding the inevitable information bottlenecks arising
from manually crafted features. While in the end the method did not achieve competitive performance,
it surely inspired the out-of-the-box thinking that would enable scientists at DeepMind to rise to the
challenge by leaving the previous methodology behind. Their model AlphaFold2, presented only few
months ago from the time I write this thesis, achieved unprecedented performance with an end-to-end
Transformer model (Protein Structure Prediction Center, 2020; Jumper et al., 2020).

Deep computer vision models. With more and more sequences, structures and contact prediction
methods available, data-integrating machine learning pipelines improved contact prediction by generaliz-
ing in supervised learning objectives (Skwark et al., 2013; Jones et al., 2015). When deep learning models
entered the contact prediction field, they excelled by applying architectural innovations from the com-
puter vision field such as ConvNets and ResNets (Skwark et al., 2014; Wang et al., 2017; Schaarschmidt
et al., 2018). The preceding global methods however retained their importance by providing coevolution
features crucial for competitive performance (Schaarschmidt et al., 2018). The deep neural networks
were not only able to capture local dependencies in protein contact maps arising from local secondary
structure and secondary structure element interactions, but also efficiently integrate large amounts of
supplementary data. Further improvements have been made by refining the network architectures and
integrating large amounts of data and predicting quantitative distances instead of binary contacts (Senior
et al., 2019; Li et al., 2019; Xu, 2019; Yang et al., 2020).

Deep language models. Very recently, Transformer-based language models have proven effective for
extracting structural information from protein sequences (Rives et al., 2019). In contrast to deep convo-
lutional networks that harnessed the power of deep learning by likening contact maps to images, the deep
Transformer-based models liken amino acids to words in long sentences of proteins with the aim of learn-
ing the "grammar of proteins". As with graphical models, but unlike the deep computer vision models,
deep language models can be trained in an unsupervised manner, meaning that the methods capture the
information without generalizing from annotated contacts. The unsupervised training procedure is also
referred to as self-supervised and can be performed by predicting a small subset of intentionally hidden
amino acids from training sequences and propagating the prediction errors back through the network.
Despite having no explicit knowledge of protein evolution and structure, self-supervised training of deep
language models captures deep biological concepts such as sequence homology, alignment within protein
families and secondary structure and long-range contacts when trained on very large number of sequences
(Rives et al., 2019; Elnaggar et al., 2020). Moreover it has been shown that self-attention, a key feature of
the Transformer architecture, can be used to predict contacts as accurately as undirected graphical mod-
els while sharing amino-acid pair specific parameters across protein families (Bhattacharya et al., 2020)
and that Transformers trained directly on a large number of multiple sequence alignments outperform
computer-vision models (Rao et al., 2021). AlphaFold2, by a large margin the best protein structure
predictor in CASP14, uses an end-to-end Transformer-based architecture to extract information directly
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from the alignments Jumper et al. (2020).

Noise and bias in coevolution signal. Three sources of noise have been identified to dilute coevolu-
tion signal: entropic noise, phylogenetic noise and finite sample size effects (Atchley et al., 2000; Martin
et al., 2005; Dunn et al., 2008; Vorberg et al., 2018). Entropic noise describes the effect that the distribu-
tion of amino acids in alignment columns influences coevolution scores. It has been shown that dividing
mutual information by the column entropies improved the signal to noise ratio (Martin et al., 2005).
Phylogenetic noise arises from the common history that sequences in a multiple sequence alignment share
as a consequence of evolution. The theoretical frameworks used for detecting coevolution such as mu-
tual information and DCA assume sequence independence, leading to misleading signal from clusters of
related sequences. Three strategies have been used to correct for phylogenetic noise: (i) down-weighting
closely related sequences with the help of sequence weights (Morcos et al., 2011; Ekeberg et al., 2013), (ii)
using variants of the parametric bootstrap to assign significance (Wollenberg and Atchley, 2000; Colavin
et al., 2020) and (iii) normalizing coevolution matrices (Dunn et al., 2008). Noise due to finite sample
sizes is strongest in multiple sequence alignments with few sequences and is addressed by bootstrapping
approaches and statistical testing, but not by the APC normalization, a current gold-standard (Dunn
et al., 2008). The regularization techniques employed for global models can attenuate the sampling bias
by exerting higher shrinkage on parameters associated with fewer empirical counts. Based on simulations
in previous work from this group, entropy contributes twice as much to the overall noise as phylogeny.

Recently, an attempt to a theoretically principled phylogeny correction has been made by removing the
assumption of sample independence for DCA by assuming a independent column-pair evolutionary model.
Given a phylogenetic tree, new singleton and pair frequencies can be calculated that do not contain the
influences of the underlying phylogeny. By constructing synthetic alignments that obey the corrected
singleton and pair frequencies, standard contact prediction methods such as plmDCA can be applied.
Despite improved parameter estimations on synthetic data, the method did not prove superior on real
proteins (Rodriguez Horta et al., 2019).

Evaluation of contact predictions

As the number of contacts scales almost linearly with the length of the protein (Vendruscolo et al., 1997;
Skwark et al., 2014) contact prediction performance is often evaluated in precision at fixed cutoffs as a
function of alignment length L, such as L/2 and L/5 (Schaarschmidt et al., 2018). It is important to
bear in mind that contact prediction is a means to structure prediction and thus the precision metric
for correctly predicted contacts is merely an easily computable proxy of what we are truly interested in
(Schaarschmidt et al., 2018). Especially a large number of correct yet highly clustered contact predictions
will boost the precision score while contributing mostly redundant information to the task of protein
folding under distance constraints (Jones et al., 2015).

6.4. Aims and scope

The aim of this project was to derive FS-PCD, a novel method for deriving coevolution features adjusted
for the shared evolutionary history of the input sequences. Using the independent-pair model previously
used by Rodriguez Horta et al. (2019), we derive an efficient pair-column variation of Felsenstein’s tree-
pruning algorithm. The resulting phylogenetically corrected sufficient statistics can be used to train a
Markov Random Field with the Persistent Contrastive Divergence algorithm, previously implemented by
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our group (Vorberg et al., 2018). We furthermore compare the performance of FS-PCD to the phylogeny-
unaware counterpart.



7. Methods

7.1. Felsenstein’s pruning algorithm for independent pairs

7.1.1. A family-specific pairwise evolutionary model

In order to correct the phylogeny, we introduce a pairwise model of evolution which expresses our belief
that a pair of amino acids (a, b) mutates into the pair (c, d) after δt units of evolutionary time have passed.
We denote our evolutionary model p(c, d|a, b; δt).

Our first evolutionary model assumes that at each mutation event the new amino acids are drawn from an
equilibrium model independent of the preceding amino acid. After δt time units, there are three possible
outcomes for the amino acids in the pair (a, b): (i) none mutated, (ii) one mutated at least once or (iii)
both mutated at least once. For a single amino acid we can obtain the probability r = e−δt that no
mutations occurred from the Poisson distribution P(x = 0|λ = δt). We assume further that mutation
events occur independently from each other at all sites with the same rate and thus the probabilities of
observing a mutation for the three cases become (i) r2, (ii) r × (1− r) and (1− r)2.

The final part is a model that captures our believe for amino acid replacement in case of mutations. Here
we assume that the replacement process is memoryless and time-invariant. We model the protein-family
specific equilibrium model p(xi = c, xj = d) with a Markov Random Field over the two pair columns i
and j.

p(c, d) := p(xi=c, xj=d) =
exp(vi(c) + vj(d) + wij(c, d))∑

c′,d′ exp (vi(c′) + vj(d′) + wij(c′, d′))
(7.1)

p(c, d|·, d) := p(xi=c|xj=d) =
exp(vi(c) + wij(c, d))∑
c′ exp (vi(c

′) + wij(c′, d))
(7.2)

, and

p(c, d|c, ·) := p(xj=d|xi=c) =
exp(vj(d) + wij(c, d))∑
d′ exp (vj(d′) + wij(c, d′))

. (7.3)

With the amino acid exchange model in hand, we can now express our believe in amino acid exchanges
as a function of the evolutionary time passed:

p(c, d|a, b; δt) =


r2δacδbd none mutated (i)
r(1− r) (p(c, d|·, d) δbd + p(c, d|c, ·) δac) one mutated at least once (ii)
(1− r)2p(c, d) both mutated at least once (iii)

(7.4)

57
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The Kronecker delta δxy – a function that evaluates to 1 if x equals y and 0 otherwise – is used to assign
zero probability to impossible configurations. E.g. case (i) is only possible if we observe the the same
pair of amino acids before and after δt time units have passed. Note that the reverse is not true: If we
observe the same pair, all three cases (i-iii) are possible explanations.

Since the three cases (i-iii) contain all possible outcomes and are pairwise mutually exclusive, we can
obtain the final form of the evolutionary model by summing the individual probabilities.

p(c, d|a, b; tlm) = r2δacδbd + r(1− r) (p(c, d|·, d) δbd + p(c, d|c, ·) δac) + (1− r)2p(c, d) (7.5)

This model is parameterized by the column-pair specific parameters vi, vj (40) and interaction parameters
(400) wij , in total

(
L
2

)
× 440 parameters which are to be estimated by a Maximum-Likelihood approach.

7.1.2. Calculating the likelihood

In this section we derive for a pair of columns (i, j) the likelihood p(X0|T ,vi,vj ,wij) of observing
the amino acid configuration X0 in contemporary species, given the evolutionary tree T and the 440
column-pair specific protein family parameters vi, vj and wij with the goal to optimize vi, vj and wij

numerically. Here we assume that the underlying phylogenetic tree T is known. I will discuss a method
for deriving the tree in section 7.1.7.

Starting from the formulation of the likelihood, we use the law of total probability and condition
p(X0|T ,vi,vj ,wij) on the 400 possible pairwise amino acid configurations at the root node to obtain:

p(X0|T ,vi,vj ,wij) =

20∑
a,b=1

p(X0|a, b, T ,vi,vj ,wij) p(a, b|vi,vj ,wij) (7.6)

In order to facilitate readability I will keep the dependencies on the tree T and the model parameters vi,
vj , wij implicit in the following and thus equation 7.6 becomes:

p(X0) =

20∑
a,b=1

p(X0|a, b) p(a, b) (7.7)

The phylogenetic relationship is modelled by a rooted binary tree and thus at each internal node the flow
of information splits into two independent branches. We can therefore express the conditional likelihood
p(Xl|a, b) of an arbitrary parent node l recursively as the product of the likelihoods of their two child nodes
n and m. As the internal nodes represent ancestral species with unknown amino acid configurations, we
sum over all 400 possible amino acid pair combinations.

p(Xl|a, b) =

 20∑
c,d=1

p(Xm|c, d) p(c, d|a, b; tlm)

 20∑
e,f=1

p(Xn|e, f) p(e, f |a, b; tln)

 (7.8)
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Plugging in the evolutionary model from equation 7.5, we can rewrite the two sums as:

p(Xm|a, b; r) :=
20∑

c,d=1

p(Xm|c, d) p(c, d|a, b; r)

= (1−r)2p(Xm) + r(1−r) (p(Xm|·, b) + p(Xm|a, ·)) + r2p(Xm|a, b) (7.9)

where we defined

p(Xm) :=

20∑
c,d=1

p(Xm|c, d) p(c, d) (7.10)

p(Xm|·, b) :=
20∑
c=1

p(Xm|c, b) p(c, b|·, b) (7.11)

p(Xm|a, ·) :=
20∑
d=1

p(Xm|a, d) p(a, d|a, ·) (7.12)

With all this in hand, we can derive a recursive evaluation schema that evaluates the likelihood p(X0|T ,vi,vj ,wij)

bottom-up from the leafs to root. For given i, j, T , vi, vj , wij :

1. Calculate p(c, d), p(c, d|·, d) and p(c, d|c, ·) from vi, vj , wij according to equations 7.1–7.3.

2. Initialize the N leaf nodes with p(Xn|a, b) = δa,xniδb,xnj and calculate p(Xn), p(Xn|·, b) and
p(Xn|a, ·) according to equations 7.10–7.12.

3. From bottom-up calculate p(Xl|a, b) for each internal node by evaluating equation 7.8 and p(Xl),
p(Xl|·, b) and p(Xl|a, ·) according to equations 7.10–7.12.

4. Having arrived at the root, the final likelihood can be calculated by equation 7.7.

For one pair (i, j), a sequence alignment of N sequences and the amino acid alphabet A, this algorithm
requires O(|A|2) computations for each node, and thus has a time complexity of O((2N − 1)|A|2).

7.1.3. Derivatives of the likelihood w.r.t to the model parameters

Our goal is to determine the model parameters that maximise the likelihood using a gradient-based
numerical optimization scheme. As we have seen in section 7.1.2, the likelihood of a column pair (i, j)

only depends on the 440 model parameters vi, vj , wij . With the partial derivatives ∂p(X0)
∂wijab

, ∂p(X0)
∂via

∂p(X0)
∂vjb

in hand, we can obtain the
(
L
2

)
× 440 model parameters by solving

(
L
2

)
independent optimization tasks.

In this section we derive the partial derivatives of the likelihood with respect to the model parameters:

Taking the partial derivatives with respect to θ we obtain

∂p(X0)

∂θ
=

20∑
a,b=1

∂p(X0|a, b)
∂θ

p(a, b) + p(X0|a, b)
∂p(a, b)

∂θ
(7.13)

∂p(Xm|a, b; r)
∂θ

= (1−r)2 ∂p(Xm)

∂θ
+ r(1−r)

(
∂p(Xm|·, b)

∂θ
+
∂p(Xm|a, ·)

∂θ

)
+ r2

∂p(Xm|a, b)
∂θ

(7.14)
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∂p(Xl|a, b)
∂θ

=
∂p(Xm|a, b; rlm)

∂θ
p(Xn|a, b; rln) + p(Xm|a, b; rlm)

∂p(Xn|a, b; rln)
∂θ

. (7.15)

for Equations 7.8, 7.7 and 7.9.

∂p(Xm)

∂θ
=

20∑
c′,d′=1

∂p(Xm|c′, d′)
∂θ

p(c′, d′) +

20∑
c′,d′=1

p(Xm|c′, d′)
∂p(c′, d′)

∂θ
(7.16)

∂p(Xm|·, b)
∂θ

=

20∑
c′=1

∂p(Xm|c′, b)
∂θ

p(c′, b|·, b) +
20∑

c′=1

p(Xm|c′, b)
∂p(c′, b|·, b)

∂θ
(7.17)

∂p(Xm|a, ·)
∂θ

=

20∑
d′=1

∂p(Xm|a, d′)
∂θ

p(a, d′|a, ·) +
20∑

d′=1

p(Xm|a, d′)
∂p(a, d′|a, ·)

∂θ
(7.18)

for equations 7.10–7.12.

Finally the partial derivatives of the amino acid replacement model (equations 7.1–7.3) by the the model
parameters:

∂p(a, b)

∂wijcd
= (δacδbd − p(c, d)) p(a, b) (7.19)

∂p(a, b|·, b)
∂wijcd

= δbd (δac − p(c, d|·, d)) p(a, b|·, b) (7.20)

∂p(a, b|a, ·)
∂wijcd

= δac (δbd − p(c, d|c, ·)) p(a, b|a, ·) (7.21)

∂p(a, b)

∂vic
= (δac − p(c, ·)) p(a, b) (7.22)

∂p(a, b)

∂vjd
= (δbd − p(·, d)) p(a, b) (7.23)

∂p(a, b|·, b)
∂vic

= (δac − p(c, b|·, b)) p(a, b|·, b) (7.24)

∂p(a, b|·, b)
∂vjd

= 0 (7.25)

∂p(a, b|a, ·)
∂vic

= 0 (7.26)

∂p(a, b|a, ·)
∂vjd

= (δbd − p(a, d|a, ·)) p(a, b|a, ·) (7.27)

With derivatives 7.13–7.27 in hand, the 440 partial derivatives ∂p(X0)
∂wijab

, ∂p(X0)
∂via

∂p(X0)
∂vjb

can be calculated
with a recursive scheme analogous to that in section 7.1.2:

1. Calculate the partial derivatives of p(c, d), p(c, d|·, d) and p(c, d|c, ·) with respect to all model
parameters via, vjb and wijab according to equations 7.19–7.27.

2. Initialize the partial derivatives at the N leaf nodes with 0 and calculate the partial derivatives of
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p(Xn), p(Xn|·, b) and p(Xn|a, ·) with respect to the model parameters according to equations 7.16–
7.18.

3. From bottom-up, calculate the partial derivatives of p(Xl|a, b) with respect to the model parameters
for each internal node using evaluating equation 7.15 and the partial derivatives of p(Xl), p(Xl|·, b)
and p(Xl|a, ·) according to equations 7.16–7.18.

4. Having arrived at the root, ∂p(X0)
∂wijab

, ∂p(X0)
∂via

and ∂p(X0)
∂vjb

can be calculated by equation 7.13.

For one pair (i, j), a sequence alignment of N sequences and the amino acid alphabet A, this algorithm
requires O(|A|4) computations for each node, and thus has a time complexity of O((2N − 1)|A|4).

7.1.4. Optimizing the likelihood

With algorithms to calculate the likelihood and its partial derivatives with respect to the model param-
eters in hand, we can now derive a gradient-based optimization scheme for the model parameters. The
input is a multiple sequence alignment with N sequences and L columns and a rooted phylogenetic tree
with nodes representing species and the branch lengths quantifying the units of evolutionary time passed
between two species. The output are the

(
L
2

)
×440 protein-family specific model parameters as introduced

in section 7.1.1.

For each column pair (i, j), do the following:

1. Initialize via, vjb with the logarithm of the relative amino acid frequency in the column, i.e.
log[p̂(xni=a)] and log[p̂(xnj=b)], respectively. Initialize all wijab with 0.

2. Until convergence calculate updates ∆via, ∆vjb and ∆wijab that increase the likelihood with L-
BFGS Virtanen et al. (2020); Byrd et al. (1995). Calculate p(X0), ∂p(X0)

∂wijab
, ∂p(X0)

∂via
and ∂p(X0)

∂vjb

according to the algorithms presented in sections 7.1.2 and 7.1.3 as required for L-BFGS’s line-
search.

3. Upon convergence, store the 440 parameters v∗
i , v∗

j , w∗
ij as part of the output.

After processing all
(
L
2

)
column pairs, the

(
L
2

)
× 440 parameters are returned as the output.

7.1.5. Improvements to the core algorithm

Transformation to logspace

The likelihood is a probability and as such a non-negative real value between 0 and 1. Real numbers by
representing them as the product s×m× 2e, commonly referred to as floating-point representation. The
mantissa 1 <= m < 2 carries the precision, the exponent e determines the magnitude of the number,
finally s is the sign (−1 for negative numbers and +1 else). Modern computer architectures offer high-
performance arithmetic on signed single precision (1-bit sign + 23 bit mantissa + 8 bit exponent) and
signed double precision (1 bit sign + 52 bit mantissa + 11 bit mantissa). Signed double precision can
capture probabilities of orders of magnitudes as small as 10−308. While this number is incomprehensible
small to human minds (the visible universe is estimated to consist of 1080 particles!), the likelihoods
of medium-large alignments can be magnitudes smaller than 10−308 and thus become numerically not
representable by double precision floating point numbers. This is a result by the exponential growth of
possible number of leaf configurations as the number of leaves increases. A phylogenetic tree with 128
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leaf nodes has already 400128 ≈ 10333 possible leaf configurations. As the law of total probably demands
that the sum of likelhihood over all leaf-configurations

∑
X0
p(X0|T ,vi,vj ,wij) = 1, independent of the

initial choice of v0
i , v0

j and w0
ij there are already at least one leaf configuration that is not representable

with signed double precision floating-point numbers. While in practise the initial parameters v0
i , v0

j

and w0
ij are chosen such that likelihoods for N = 128 are still representable with double precision, with

growing N this is not possible and such the aforementioned algorithm is limited to small phylogenetic
alignments.

A common way to represent numbers outside the range of floating-point numbers is to represent them
in logarithmic scale, i. e. as their logarithm in floating-point representation. Apart from expanding the
range of representable numbers, the logarithm is also a monotonous function and therefore parameters
that maximize the likelihood also maximise the log likelihood. We can thus obtain optimal parameters of
the likelihood without having to switch from the logarithmic back to the linear scale and thus not running
into the risk to have non-representable numbers (floating-point overflow). When performing calculations
in logarithmic scale it is important that all operations that require bridging logarithmic and linear scale
are performed such that overflows are not possible.

The logsumexp trick The most important operation bridging the linear and logarithmic scale is
calculating the logarithm of the sum of exponentials, short logsumexp.

logsumexp(x) := log
∑
i

expxi (7.28)

This operation arises when calculating the logarithm of sum of numbers yi in linear scale log
∑

i yi, where
yi is represented in logarithmic scale (yi := exp(xi)) and requires leaving the logarithmic scale (exp(xi))
to calculate the sum and thereby risking floating-point overflows.

In order to avoid overflows, the largest exponent, often a good approximation of total sum, is pulled out
of the sum:

log
∑
i

expxi = xmax + log
∑
i

exp(xi − xmax) (7.29)

While this formulation still bridges logarithmic and linear scales, this calculation is not affected by
numerical overflows as exp(xj−xmax) never surpasses 1. When xj−xmax is a large negative number, the
exponentiation will yield 0 in linear scale. This is however not a problem as the number yj := exp(xj) is
so small compared to ymax := exp(xmax) that its contribution to the total sum

∑
i yi is negligibly small.

While logarithms are only defined for positive numbers, the logsumexp trick can be used to represent both
positive and negative numbers by storing the sign separately from the logarithm of the absolute value
yi := sgn yi × exp(xi), where xi := log(|yi|). We can then calculate z and sgn z so that sgn z × exp(z) =∑

i sgn yi × exp(xi) as follows:

z = xmax + log

∣∣∣∣∣∑
i

sgn yi exp(xi − xmax)

∣∣∣∣∣ (7.30)

sgn z = sgn

(∑
i

sgn yi exp(xi − xmax)

)
(7.31)
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We will make use of the signed logsumexp trick when calculating derivatives in log scale which unlike
probabilities can take any value in the real number space.

The likelihood in logarithmic scale With the logsumexp trick in hand, we can write the equa-
tions 7.7–7.12 in logarithmic scale:

log p(X0) = log

20∑
a,b=1

exp [log p(X0|a, b) + log p(a, b)] (7.32)

log p(Xl|a, b) = log p(Xm|a, b; rlm) + log p(Xn|a, b; rln) (7.33)

log p(Xm|a, b; r) :=

exp [2 log(1−r) + log p(Xm)]

+ exp [log r + log(1−r) + log (exp (log p(Xm|·, b)) + exp (log p(Xm|a, ·)))]

+ exp [2 log r + log p(Xm|a, b)]

(7.34)

log p(Xm) := log

20∑
c,d=1

exp [log p(Xm|c, d) + log p(c, d)] (7.35)

log p(Xm|·, b) := log

20∑
c=1

exp [log p(Xm|c, b) + log p(c, b|·, b)] (7.36)

log p(Xm|a, ·) := log

20∑
d=1

exp [log p(Xm|a, d) + log p(a, d|a, ·)] (7.37)

and finally the equations of the substitution model 7.1–7.3:

log p(c, d) = vi(c) + vj(d) + wij(c, d)− log
∑
c′,d′

exp (vi(c
′) + vj(d

′) + wij(c
′, d′)) (7.38)

log p(c, d|·, d) = vi(c) + wij(c, d)− log
∑
c′

exp (vi(c
′) + wij(c

′, d)) (7.39)

log p(c, d|c, ·) = vj(d) + wij(c, d)− log
∑
d′

exp (vj(d
′) + wij(c, d

′)) (7.40)

The logarithm of the likelihood can be computed with the algorithm introduced in Section 7.1.2 by
computing and storing the logarithmic equivalents calculated in Equations 7.32–7.40. In order ensure
numerical stability, sums of exponentials are computed with the logsumexp trick. For illustration, the
pseudo-code for the numerically stable calculation of 7.32 and 7.34 are presented below.
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Input: log p(X0|a, b), log p(a, b), A
Result: log p(X0)
A← |A|
q ← new array of size A2

for a ∈ A do
for b ∈ A do

q[a×A+ b]← p(X0|a, b) + log p(a, b)
end

end
log p(X0)← logsumexp(q)

Algorithm 1: Numerically stable implementation of Equation 7.32

Input: log p(Xm), log p(Xm|·, b), log p(Xm|a, ·), log p(Xm|a, b), log r, log(1− r),A
Result: log p(Xm|a, b; r)
for a ∈ A do

for b ∈ A do
q1 ← 2 log(1− r) + log p(Xm)
q2 ← logsumexp(log p(Xm|·, b), log p(Xm|a, ·))
q3 ← 2 log(r) + log p(Xm|a, b)
log p(Xm|a, b; r)← logsumexp(q1, q2, q3)

end
end

Algorithm 2: Numerically stable implementation of Equation 7.34

The derivative in logarithmic scale In the previous section I showed how to calculate the likeli-
hood log p(X0) in logarithmic scale. In order to apply the numerical optimization scheme introduced
in Section 7.1.4 we additionally have to obtain the partial derivatives of the log likelihood ∂ log p(X0)

∂θ

with respect to the model parameters vi, vj and wij . The chain rule of calculus can be used to ex-
press the derivative of the log likelihood as the quotient of derivative of the likelihood and its derivative:
∂ log p(X0)

∂θ = ∂p(X0)
∂θ /p(X0), or in logarithmic scale:

∂ log p(X0)

∂θ
= sgn

(
∂p(X0)

∂θ

)
exp

(
log

∣∣∣∣∂p(X0)

∂θ

∣∣∣∣− log p(X0)

)
(7.41)

Note that in contrast to probabilities, derivatives can take negative values and thus the sign of the
derivative needs to be taken into account.

In the previous section we derived a numerically stable computation of the log likelihood log p(X0). The
derivatives 7.13-7.27 can similarly be transformed into logarithmic scale by storing the log of the absolute
and the sign separately.

The log absolute of Equation 7.13 becomes

log

∣∣∣∣∂p(X0)

∂θ

∣∣∣∣ = log

20∑
a,b=1

∣∣∣∣sgn(∂p(X0|a, b)
∂θ

)
exp

[
log

∣∣∣∣∂p(X0|a, b)
∂θ

∣∣∣∣+ log p(a, b)

]

+ sgn

(
∂p(a, b)

∂θ

)
exp

[
log p(X0|a, b) + log

∣∣∣∣∂p(a, b)∂θ

∣∣∣∣]∣∣∣∣
(7.42)



7.1. Felsenstein’s pruning algorithm for independent pairs 65

and the log absolute of Equation 7.15 is

log

∣∣∣∣∂p(Xl|a, b)
∂θ

∣∣∣∣ = ∣∣∣∣sgn(∂p(Xm|a, b; rlm)

∂θ

)
exp

[
log

∣∣∣∣∂p(Xm|a, b; rlm)

∂θ

∣∣∣∣+ log p(Xn|a, b; rln)
]

+ sgn

(
∂p(Xn|a, b; rln)

∂θ

)
exp

[
log p(Xm|a, b; rlm) + log

∣∣∣∣∂p(Xn|a, b; rln)
∂θ

∣∣∣∣]∣∣∣∣
(7.43)

Input: log p(X0|a, b), log
∣∣∣∂p(X0|a,b)

∂wcd

∣∣∣ , sgn(∂p(X0|a,b)
∂wcd

)
,

log p(a, b), log
∣∣∣∂p(a,b)∂wcd

∣∣∣ , sgn(∂p(a,b)
∂wcd

)
,

A
Result: log

∣∣∣∂p(X0)
∂wcd

∣∣∣ , sgn(∂p(X0)
∂wcd

)
A← |A|
q ← new array of size 2×A2

s← new array of size 2×A2

for c ∈ A do
for d ∈ A do

for a ∈ A do
for b ∈ A do

i← 2(a×A+ b)

q[i]← log
∣∣∣∂p(X0|a,b)

∂wcd

∣∣∣+ log p(a, b)

s[i]← sgn ∂p(X0|a,b)
∂wcd

q[i+ 1]← log p(X0|a, b) + log
∣∣∣∂p(a,b)∂wcd

∣∣∣
s[i+ 1]← sgn ∂p(a,b)

∂wcd

end
end
log
∣∣∣∂p(X0)

∂wcd

∣∣∣ , sgn(∂p(X0)
∂wcd

)
← signed_logsumexp(q, s)

end
end
Algorithm 3: Example of a numerically stable implementation of the 400 derivatives ∂p(X0)

∂wcd

in logarithmic scale (Equation 7.42).

The remaining derivatives are transformed similarly by separating sign from log absolute and then ap-
plying the logarithm to Equations 7.16–7.27. We define the logarithm of the logarithm of the Kronecker
Delta as

log δab =

{
0 if a = b

log0 if a ̸= b
(7.44)

where we define log0 as a large negative number.

As with the log likelihood we can use the algorithm for calculating the derivatives in the linear space
for calculating the derivatives of the log likelihood by storing all intermediate results in logarithmic
representation. Unlike the likelihood that is always positive, for the derivatives we have to store the
signs separately. With numerically stable calculation for the log likelihood log p(X0) and its derivatives
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Input: log p(Xm|a, b; rlm), log
∣∣∣∂p(Xm|a,b;rlm)

∂wcd

∣∣∣ , sgn(∂p(Xm|a,b;rlm)
∂wcd

)
,

log p(Xn|a, b; rln), log
∣∣∣∂p(Xn|a,b;rln)

∂wcd

∣∣∣ , sgn(∂p(Xn|a,b;rln)
∂wcd

)
,

A
Result: log

∣∣∣∂p(Xl|a,b)
∂wcd

∣∣∣ , sgn(∂p(Xl|a,b)
∂wcd

)
for c ∈ A do

for d ∈ A do
for a ∈ A do

for b ∈ A do
qm ← log

∣∣∣∂p(Xm|a,b;rlm)

∂wcd

∣∣∣+ log p(Xn|a, b; rln)

sm ← sgn
(
∂p(Xm|a,b;rlm)

∂wcd

)
qn ← log p(Xm|a, b; rlm) + log

∣∣∣∂p(Xn|a,b;rln)
∂wcd

∣∣∣
sn ← sgn

(
∂p(Xn|a,b;rln)

∂wcd

)
log
∣∣∣∂p(Xl|a,b)

∂wcd

∣∣∣ , sgn(∂p(Xl|a,b)
∂wcd

)
← signed_logsumexp(qm, sm, qn, sn)

end
end

end
end
Algorithm 4: Example of a numerically stable implementation of the 400× 400 derivatives
∂p(Xl|a,b)

∂wcd
in logarithmic scale (Equation 7.43).

∂ log p(X0)
∂via

, ∂ log p(X0)
∂vjb

, ∂ log p(X0)
∂wijab

in hand, we can use gradient-based optimization routines to obtain v∗
i ,

v∗
j , w∗

ij that optimize the likelihood.

Reducing alphabet size

The alphabet size of canonical amino acids is |A| = 20. The number of gradient computations at each
node is in the order of O(|A|4) and thus is the bottleneck for realistic alignment sizes. However not all
20 amino acids are typically present in every alignment column. This can be due to limited evolutionary
time passed so that not all viable amino acids have been observed and evolutionary constraints imposed
by selection pressures that strongly favor a limited set of possible combinations. If a column i does not
contain the amino acid a, the corresponding via will tend towards −∞, and thus p(xi = a, xj = d) = 0 for
all d (see Equation 7.1). As the likelihood is a sum weighted by the pairwise probability (see Equation 7.7),
all pairs with amino acids that do not occur in either of the columns do not contribute to the final sum.

This observation allows a drastic speedup for columns that have not observed all 20 possible amino acids:
if only Ai and Aj amino acids have been observed at least once in columns i and j, respectively, only
Ai × Aj terms in the summation of Equation 7.7 are non-zero and thus have to be computed. One can
thus introduce reduced alphabets Ai = {a ∈ A : nia > 0} and Aj = {b ∈ A : njb > 0}, where nia is
defined as the total number of aminoacid a is observed in column i. This reduces the order of required
computations per node from O(|A|4) to O(|Ai|2|Aj |2), a reduction by factor 16 if in each column only
10 out of the 20 possible amino acids are observed.
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Polynomial approximations to log2 and exp2

The likelihood optimization in logarithmic scale requires a large number of logarithm and exponenti-
ation operations when bridging logarithmic and linear scales in the logsumexp trick. Unlike addition
and multiplication, which is readily available by specialized hardware units on the CPU, logarithms and
exponents are complex operations that are composed of a large number of simple instructions. By per-
forming the logsumexp trick with base 2 operations log2(x) and 2x and using polynomial approximations
plog(x;θlog) ≈ log2(x) and pexp(x;θexp) ≈ 2x can increase the speed by trading-off accuracy. The poly-
nomial approximation can be expressed by series of simple CPU operations, a benefit that will allow us
to achieve further speed-up by using SIMD instructions in section 7.1.5.

Approximating 2x Floating point numbers x are internally stored as mantissa and exponent in follow-
ing form: x = 1.mmm . . . m×2e, where mmm . . . m and e are integers storing the precision and the magnitude,
respectively. We can represent y := 2x as y = 1.aaa . . . a× 2b, by splitting x into the two parts r := ⌊x⌋
and q := x− r:

y := 2x

= 2q+r

= 2q × 2r

= 1.aaa . . . a× 2r

(7.45)

As by construction 0 ≤ q < 1, it follows that 1 ≤ 2q < 2 and therefore the equation yields y in its floating
number representation. We approximate the calculation 2q, required by the mantissa with a polynomial:
2q ≈ pexp(x,θ). The parameters θ are chosen such that

pexp(0,θ) = 1 (7.46)

pexp(1,θ) = 2 (7.47)

||pexp(x,θ)− 2x||2 → min, for x ∈ [0, 1[ (7.48)

The accuracy of the approximation is determined by the order of the polynomial pexp(x). The coefficients
of a 6th order polynomial θ that satisfy the three conditions 7.46 to 7.48 with a maximum deviation of
||pexp(x,θ)− 2x||∞ < 4.2× 10−9 up to double precision accuracy:
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θ1 = 0.0002187767014305746279

θ2 = 0.001238881395488288005

θ3 = 0.009684327747431309072

θ4 = 0.05548068064239377456

θ5 = 0.2402303737183841825

θ6 = 0.693146959794871842

θ7 = 1.0

(7.49)

The polynomial is evaluated by successive multiplications and additions and thus requires only fast,
efficient hardware-provided instructions:

pexp(x,θ) = (((((θ1x+ θ2)× x+ θ3)× x+ θ4)× x+ θ5)× x+ θ6)× x+ θ7 (7.50)

Combining the calculation of the mantissa 2q, the exponent r with detection of numerical overflow (setting
y :=∞) and underflow (setting y := 0) yields the efficient approximation of 2x.

Approximating log2(x) Again starting from x in floating point representation x = 1.mmm . . . m×2e, we
obtain:

y := log2(x)

= log2(1.mmm . . . m) + e

(7.51)

Here we approximate the mantissa log2(1 + x) ≈ plog(x,θ) that satisfies following conditions:

plog(0,θ) = 0 (7.52)

plog(1,θ) = 1 (7.53)

||plog(x,θ)− log2(x+ 1)||2 → min, for x ∈ [0, 1[ (7.54)

The 9th-order polynomial approximation that satisfied the criteria 7.52–7.54 has a maximum deviation
||plog(x,θ)− log2(x+ 1)||∞ < 1.3× 10−8.
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θ1 = 0.00539574483271335

θ2 = −0.033134075405641866

θ3 = 0.09571929135783046

θ4 = −0.18043327446159182

θ5 = 0.26625227022774905

θ6 = −0.3553426744739997

θ7 = 0.4801415033950581

θ8 = −0.7212923532638644

θ9 = 1.4426935677917467

θ10 = 0

(7.55)

For valid inputs, the logarithm operation never overflows nor underflows and thus adding the exponent
to the polynomial evaluation on the mantissa subtracted by one yields the approximation of log2(x).

Parallelization

Modern CPU architectures are designed for efficient parallel processing. This is achieved on the one hand
by using multiple widely independent processing units (cores), but on the other hand by each core having
access to independent, specialized computation units that can perform their computations in parallel in
one time unit (clock cycle). With more and more computation units available to each core, one of the
key challenges of modern CPUs is to break the code into enough independent instructions to maintain
high computation unit utilisation in each clock cycle. Code that is designed to use the CPU’s capabilities
of parallel computing efficiently thus can run orders of magnitudes faster than unoptimized code. In the
following we

Core level parallelization Our algorithm consists of
(
L
2

)
independent optimization tasks. For realistic

L > 100, the number of tasks is much larger than the number of cores of modern CPUs, a fortunate
situation termed embarrassingly parallel. By distributing the optimization of the column pairs across the
available processors we can achieve optimal core with no further optimizations required.

Unit level parallelization In the computation heavy parts, our algorithm manipulates floating point
numbers. For parallel floating point operations CPUs offer specialized long SIMD registers that fit
multiple floating point numbers and a limited set of instructions applied in parallel to all floating point
numbers in the register. The size of the registers are currently between 128bit and 512bit in size, therefore
fitting 4 to 16 single precision or 2 to 8 double precision floating point numbers. The size and the available
instruction set of the registers are continuously growing with newer CPU generations.

As an example consider the task of performing the operation z[i] = x[i] + y[i] for all i ∈ {0, . . . , N}.

While a simple implementation in the C language may look like this:

void add_array ( double∗ z , double∗ x , double∗ y , s i z e_t N) {
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for ( int n = 0 ; n < N; n++) {
z [ n ] = x [ n ] + y [ n ] ;

}
}

an explicitly vectorized implementation will take following form:

void add_array ( double∗ z , double∗ x , double∗ y , s i z e_t N) {
for ( int n = 0 ; n < N; n+=VECSIZE_DOUBLE) {

simdf64 x_chunk = simdf64_load ( x + n ) ;
s imdf64 y_chunk = simdf64_load ( y + n ) ;
s imdf64_store ( z + n , simdf64_add (x_chunk , y_chunk ) ) ;

}
}

ťInstead of processing each number at a time as the simple version, the vectorized version loads blocks
of VECSIZE_DOUBLE double numbers into the SIMD registers and performs the VECSIZE_DOUBLE sum
operations for the whole block in parallel. To harness the full potential of the vectorized version two
conditions have to be met: (1) the number of computed blocks N has to be sufficiently large and (2) x, y
and z have to be stored contiguously and linearly in memory, so that the load and store operations can
make optimal use of the CPU’s internal caching optimizations.

While modern compilers will try to perform vectorization automatically, for performance critical code it
is often necessary to transform the code and vectorize explicitly, as it may take conscious reorganising of
the memory layout in order to achieve highly efficient code. While the effort can be significant so are the
potential gains: On top of the potential speedup by cache alignment, perfectly vectorized code can gain
up to a factor of 16 times and 8 in speed on modern CPU architectures for single and double precision
respectively.

Our fastest implementation relies on vectorized implementations of the logarithmic scale versions of
Equations 7.14–7.18.

7.1.6. Calculating phylogenetically corrected pair counts

For each column pair (i, j) the Felsenstein-like algorithm developed in the previous sections calculates the
single column parameters ṽia and pair parameters w̃ijab under the assumption of the independent-pair
model. Our goal is to use the pairwise parameters to calculate phylogenetically corrected pair counts
nijab. As sufficient statistics of the MRF model, the corrected pair counts can be used to calculate
phylogenetically corrected MRF parameters with the PCD algorithm.

By deriving the objective function of the MRF optimization and setting the derivative to zero, we can
obtain a closed form expression of the pair counts nijab.

nijab −Nij p(xi=a, xj=b|vi,vj ,wij)− λw̃ijab = 0

nijab = Nij
exp(ṽia + ṽjb + w̃ijab)∑20

a′,b′=1 exp(ṽia′ + ṽjb′ + w̃ija′b′)
+ λw̃ijab (7.56)

In Equation 7.56 λ is a user-defined parameter and ṽia and w̃ijab are known from the Felsenstein-like



7.1. Felsenstein’s pruning algorithm for independent pairs 71

optimization. In order to calculate the pair counts nijab, we need to know Nij , the total number of
independent pair counts for the column pair (i, j). For independent sequences Nij is the total number of
sequences with no gaps in both column i and j and can be counted from the alignment. For dependent
sequences Nij has to be estimated.

One approach to estimate the Nij is by quantifying how strongly the coupling parameters w are shrunk
by the prior in the pairwise optimization of the Felsenstein-like algorithm: having determined optimal
pairwise parameters (ṽi, ṽj , w̃ij) and (ṽ′

i, ṽ
′
j , w̃

′
ij) for two different regularization strengths λ and λ′,

following equations hold due to the vanishing gradient in the optimum:

nijab −Nij p(xi=a, xj=b|ṽi, ṽj , w̃ij , λ)− λw̃ijab = 0

nijab −Nij p(xi=a, xj=b|ṽ′
i, ṽ

′
j , w̃

′
ij , λ

′)− λ′w̃′
ijab = 0 (7.57)

The two equations can be solved for N2
ij .

Nij

(
p(xi=a, xj=b|ṽi, ṽj , w̃ij , λ)− p(xi=a, xj=b|ṽ′

i, ṽ
′
j , w̃

′
ij , λ

′)
)
= −λw̃ijab + λ′w̃′

ijab

N2
ij

20∑
a,b=1

(
p(xi=a, xj=b|ṽi, ṽj , w̃ij , λ)− p(xi=a, xj=b|ṽ′

i, ṽ
′
j , w̃

′
ij , λ

′
ij)
)2

=

20∑
a,b=1

(
λw̃ijab − λ′w̃′

ijab

)2

N2
ij =

∑20
a,b=1

(
λw̃ijab − λ′w̃′

ijab

)2
∑20

a,b=1

(
p(xi=a, xj=b|ṽi, ṽj , w̃ij , λ)− p(xi=a, xj=b|ṽ′

i, ṽ
′
j , w̃

′
ij , λ

′)
)2 (7.58)

Together with λ, ṽia and w̃ijab the nijab can be calculated using Equation 7.56.

7.1.7. Deriving the tree with a family-specific model

In the course of evolution the substitution rates of amino acids depend on their their biochemical proper-
ties. Typically, phylogenetic tree reconstruction is using independent-site models with empirically derived
universal substitution matrices.

By describing each protein family with an MRF, we use family-specific models that can take pairwise site-
interactions into account. Neglecting the site interactions, we can approximate t, the number of mutations
that occurred between two sequences x and y, and thereby derive protein family-specific evolutionary
distances:

p(y|x, t,v) =
L∏

i=1

p(yi|xi, t,v) (7.59)

Assuming a Poisson model, a site is unchanged with a probability of r = e−t, and therefore:

p(yi|xi, t,v) = r δxi,yi
+ (1− r) p(yi|vi) (7.60)

Using the notation pi := p(Yi = yi|vi) = evi(yi)/
∑

a e
vi(a) and the exponential prior p(t|τ) = e−t/τ/τ ,

the log posterior can be written as:
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log p(t|x,y,v) =
L∑

i=1

log [r δxi,yi
+ (1− r) pi]−

t

τ
+ const (7.61)

The scalar t can be efficiently optimized with by finding the root of the first derivative with Newton-
Raphson iterations: t← t− α f ′(t)

f ′′(t) (with α < 1), where

f ′(t) =
d

dt
log p(t|x,y,v) (7.62)

=
dr

dt

L∑
i=1

δxi,yi − p(yi|vi)

r δxi,yi
+ (1− r) pi

− 1

τ

= −r

 L∑
i:xi=yi

1− pi
r + (1− r) pi

−
L∑

i:xi ̸=yi

��pi
(1− r)��pi

− 1

τ

= − r

1− r

 L∑
i:xi=yi

(1− pi)(1− r)
r + (1− r) pi

− L+

L∑
i:xi=yi

1

− 1

τ

= − r

1− r

 L∑
i:xi=yi

1

pi + r(1− pi)
− L

− 1

τ
(7.63)

and

f ′′(t) =
d2

dt2
log p(t|x,y,v)

=
r

(1− r)2
L∑

i:xi=yi

1

r + pi − rpi
− r

1− r

L∑
i:xi=yi

r(1− pi)
(r + pi − rpi)2

− r

(1− r)2
L

=
r

(1− r)2

 L∑
i:xi=yi

r + pi − rpi − r(1− r)(1− pi)
(r + pi − rpi)2

− L


=

r

(1− r)2

 L∑
i:xi=yi

pi + r2(1− pi)
(pi + r(1− pi))2

− L

 (7.64)

.

We estimate the column parameters v empirically from the MSA by assuming independent sequences.
From the calculated pairwise evolutionary distances t a phylogenetic tree can be calculated with a standard
neighbor-joining algorithm.



8. Results

8.1. Validation on simulated data

Our first objective is to validate the FS-PCD’s ability to correct out phylogenetic dependencies in well-
controlled simulations in three steps: (i) simulate v∗, w∗ and the evolutionary tree T ; (ii) use v∗, w∗, and
T with CCMgen (Vorberg et al., 2018) to simulate sequence alignments; (iii) learn back the parameters
v̂, ŵ by applying PCD and our FS-PCD method informed by the underlying evolutionary history.

8.1.1. FS-PCD on independent sequences

The independence assumption of standard DCA methods emerges naturally as a special case of FS-PCD,
when a high number of mutations occur between every sequence along the phylogeny. This corresponds
to a phylogenetic tree T with long edge lengths. As sufficient statistics of the MRF, the amino acid pair
counts suffice to learn the parameters of the MRF with PCD. For independent sequences the pair counts
can be directly counted on the MSA, therefore allowing PCD to train the MRF on MSAs.

In order to validate FS-PCD’s properties on independent sequences, I simulated N = 2056 sequences of
length L = 5 using an artificial phylogeny with long branches. The short alignment size allows to calculate
the sequence probabilities p(x|v∗,w∗) analytically. On these sequences, our Felsenstein-like algorithm
accurately recovers the pair counts n from the v and w parameters obtained by the

(
L
2

)
Felsenstein

optimizations (Figure 8.1). Thereby, FS-PCD falls back to PCD and the learnt parameters v̂, ŵ are close
to those obtained from the PCD algorithm (Figure 8.2A and Figure 8.2B).

When applied to protein families, the number of parameters of MRFs outnumber the number of sequences
by several orders of magnitude, requiring regularization to prevent poor generalization due to overfitting.
The commonly applied L2 regularization on the coupling parameters w acts as a Gaussian prior with
mean 0, thereby shrinking the learnt ŵ towards zero. The shrinkage strength increases with the regu-
larization parameter λ and decreases with increasing evidence provided by the number of observed pair
counts. FS-PCD can recapture the implanted coupling parameters w, but the accuracy is limited in the
regime of realistic MSA sizes (Figure 8.3A). Due to the evidence-dependent parameter shrinkage, coupling
parameters corresponding to few observed pair counts are strongly pushed towards zero. By weighting
the points according to their expected pair probability, the Pearson correlation between implanted and
recovered coupling parameters measures the performance of FS-PCD more faithfully by de-emphasizing
the coupling parameters for which no or only little information is available in the data. Naturally, this
impreciseness in the ŵ also affects the accuracy of the estimated sequence probabilities p(x|v̂, ŵ), with
higher deviation for less likely sequences (Figure 8.3B).

As the MRF is trained in a limited data regime, it is instructional to study the interplay of the spread of
the implanted w∗ and the regularization strength λ.

For weak contact strengths w∗
ijab ≈ 0 the deviations of the observed pair frequencies from the frequencies
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Figure 8.1.: FS accurately recovers pair counts on independent sequences. For independent
sequences, the pair probabilities of the MRF model can be estimated by counting the amino acid pair
frequencies of all column pairs from the MSA. Our Felsenstein-like method can recover the pair counts
accurately from the estimated v̂ and ŵ.

A B

Figure 8.2.: FS-PCD falls back to PCD for independent sequences. As the pair counts are the
sufficient statistics of the PCD algorithm, FS-PCD falls back to PCD for independent sequences, leading
to high correlations between the learnt v̂, ŵ.
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A Bp(a,b)

Figure 8.3.: FS-PCD’s parameter estimation is limited by number of sequences. A) Correlation
of implanted w∗ and recovered v colored by their corresponding pair probability. w associated with higher
pair probabilities can be learnt more accurately, leading to higher Pearson correlation when observations
are weighted with the pair probability (ρw = 0.78 vs. ρ = 0.30). B) Pearson correlation of probability
assigned to the 10000 most probable sequences by the implanted parameterization of the MRF with the
probabilities assigned by the recovered MRF parameterization.

expected by the amino acid frequencies of the involved columns are small and thus the w∗ cannot be
reconstructed accurately (Figure 8.4A). Despite the poor approximation of w∗, the Pearson correlation
between implanted and recaptured sequence probabilities p(x|v,w) are highest for small w∗, especially in
combination with strong regularization (Figure 8.4B). In this case the coupling parameters are negligible
compared to columns frequency parameters v∗ and setting a high regularization strength λ effectively
simplifies the model to L × A column frequency parameters which can be estimated accurately. With
increasing size of w∗ and thus increased impact of the coupling parameters on the sequence probabilities,
the optimal regularization shifts towards smaller values. The lowest sequence probability correlations
correspond to the largest w∗ for which the limited accuracy of the coupling parameter estimation has a
strong influence.

For independent sequences, the reconstruction of the pair counts from the estimated pairwise parameters
v̂ and ŵ is accurate irrespective of the underlying coupling strength, the number of sequences and of the
choice of the regularization parameter λ (Figure 8.6).

Using the independent-pair approximation, our Felsenstein-like optimization yields
(
L
2

)
×A×A pairwise

coupling parameters ŵfs which play similar roles as the coupling parameters in the MRF, except for
their obliviousness of the influences of all but the two inspected columns. Just like the correlations of
the MRF coupling parameters ŵ inferred by our FS-PCD method, we can compare the pairwise coupling
parameters ŵfs to the simulated ground truth coupling parameters w∗. The pendants to Figure 8.4A
and Figure 8.5A) but correlating w∗ with ŵfs instead of ŵ show similar overall correlation patterns, but
slightly lower correlations ρw expected from the inaccuracies due to the violation of the independent-pair
assumption: 0.56 vs. 0.58 and 0.60 vs. 0.63 for Figure 8.7A and Figure 8.7B, respectively.
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Figure 8.4.: FS-PCD’s parameter estimation at varying coupling and regularization strengths.
A) Weighted Pearson correlation between implanted w∗ and recovered ŵ. B) Pearson correlation of
probability assigned to the 10000 most probable sequences by the implanted parameterization of the
MRF with the probabilities assigned by the recovered MRF parameterization. The highest correlation of
each row is highlighted by a red box.
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Figure 8.5.: FS-PCD’s parameter estimation for varying number of sequences and regulariza-
tion strengths. A) Weighted Pearson correlation between implanted w∗ and recovered ŵ. B) Pearson
correlation of probability assigned to the 10000 most probable sequences by the implanted parameteriza-
tion of the MRF with the probabilities assigned by the recovered MRF parameterization.
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Figure 8.6.: FS accurately recovers pair counts on independent sequences irrespective of cou-
pling and regularization strength. The Pearson correlation between the implanted pairwise proba-
bilities p(a, b|v∗,w∗) with the estimation from the Felsenstein-like algorithm. The highest correlation in
each row is highlighted by a red box.
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Figure 8.7.: Column-pair derived coupling parameters approximate MRF parameters.
Weighted Pearson correlation between implanted w∗ and recovered ŵfs by our Felsenstein-like algorithm.
A) Weighted correlations with varying contact strength and regularization strength. B) Weighted cor-
relations with varying alignment depth and regularization strength.
The coupling parameters derived under the independent-pair approximation have a slightly lower av-
erage correlation than the parameters derived under the MRF model (0.56 vs. 0.58 in case of (A) vs.
Figure 8.4A and 0.60 vs. 0.63 in case of (B) vs. Figure 8.5A). The highest correlation in each row is
highlighted by a red box.
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8.1.2. FS-PCD on dependent sequences

In the previous section I showed that the parameters obtained with FS-PCD are close to the parameters
learnt by PCD for independent sequences, thus validating the FS-PCD approach in this special case.
In this section I generalize the simulations to phylogenetically dependent sequences. By reducing the
number of mutations that occur along the phylogeny, information is shared between leaf nodes through
their ancestors, thereby invalidating the independence assumption.

Just like in section 8.1.1, I choose alignments with L = 5 columns to allow calculating the sequence and
pair probabilities from the simulated ground truth parameters analytically. To partially compensate for
the the loss of information due to sequence dependence, I increased the number of simulated sequences
fourfold from from N = 211 = 2048 to N = 213 = 8192. The underlying phylogeny is described by a
binary tree averaging m mutations per position from root to leaf. The average number of mutations per
position between leaf sequences thus range from 2m

13 for sequences sharing the same direct ancestor to 2m

for sequences sharing the root as the lowest common ancestor. In the following I will present and analyze
the FS-PCD results averaging one (m = 1) and two (m = 2) mutations from root to leaf.

In the case of independent sequences the empirical pair counts as sufficient statistics suffice to infer
the parameters of the underlying MRF. For dependent sequences, the pair counts are distorted by the
dependency structure imposed by the underlying phylogenetic tree. As the corrected pair counts are
input to PCD in order to obtain phylogeny-corrected MRF parameters in our FS-DCA approach, the
accuracy of the pair count correction is studied in the following:

The corrected pair counts derived by our Felsenstein-like pair-column optimization correlate better with
the pair counts expected from independent sequences (32% and 10% increase in mean correlation for m =

1 andm = 2, respectively, Figure 8.8). This is in line with our expectation that the benefits with increasing
sequence dependencies. For small couplings the underlying MRF model can be well approximated by
a independent-column model, reducing the impact of errors in the 400 coupling parameters on the pair
counts. Our Felsenstein-like algorithm accurately corrects the pair counts in this case. It is noteworthy
that for higher coupling strengths we see a high variance in the pair count correlations which can be
ameliorated but not entirely corrected by our approach.

Contacts are predicted from the coupling parameters, therefore as a next step I analyse how well the
inferred coupling parameters correlate with the simulated coupling strengths. I compare three different
methods: (1) PCD with the assumption of independent sequences, (2) Felsenstein-like algorithm with
independent pair-column assumption and (3) FS-PCD based on corrected pair counts. Again phylogeny
with stronger (m=1) and weaker (m=2) dependencies are compared.

For stronger sequence dependencies (Figure 8.9 left column), the phylogeny correction with the indepen-
dent-pair assumption yields a 10% increase in coupling parameter correlations over the independence
assumption (A to C). The average weighted correlation of PCD with corrected pair counts drops to 34%
percent (A to E). For weaker sequence dependencies (Figure 8.9 right column), the average weighted
correlation of coupling parameters under the independent-pair assumption increases by 5% (B to D) and
drops to 26% (B to F). Similar drops in average correlation is also observed across varying alignment
depths (Figure 8.10) with FS-PCD reaching 64% (A to E) and 56% (B to F) of the average weighted
correlation of PCD.

The low performance of FS-PCD compared to standard PCD (Figure 8.9 and Figure 8.10) is curious,
given the higher accuracy of the corrected pair counts (Figure 8.8). Despite the higher correlation, the
independent-pair model has an underlying consistency issue that I will illustrate in the following. For
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Figure 8.8.: Phylogeny correction improves pair-count accuracy. Correlations between simulated
and estimated pair-counts. Rows: pair-counts by assuming sequence independence (A, B) and Felsenstein
correction (C, D). Columns: average number of mutations in phylogeny from root to leaf: m = 1 (A, C)
and m = 2 (B, D). The phylogeny correction by our Felsenstein-like algorithm increases the correlations
by 32% and 10% (A to C and B to D, respectively).
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Figure 8.9.: PCD based on corrected pair counts does not improve pair coupling estimation
Weighted correlations between simulated and estimated coupling parameters. Rows: coupling parameters
inferred by PCD by assuming sequence independence (A, B), phylogeny-corrected independent-pair cou-
plings (C, D), and PCD based on corrected pair counts (E, F). Columns: average number of mutations
in phylogeny from root to leaf: m = 1 (A, C, E) and m = 2 (B, D, F). The average correlation of pair
couplings derived by FS-PCD drops to 34% and 26% compared to PCD for m=1 and m=2, respectively.
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Figure 8.10.: PCD based on corrected pair counts does not improve pair coupling estimation.
Figure layout reassembles Figure 8.9, but with alignment depth instead of coupling strength on the y-axis.
The correlation of pair couplings derived by FS-PCD drop compare to standard PCD to 64% and 56%
for m=1 and m=2, respectively.
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independent sequences the observed counts for an amino acid a in a given column i can be calculated
consistently, irrespective of the chosen partner column (nia =

∑
b nijab). Due to the independent-pair

approximation this is however not true for the corrected counts, and slightly different nia are obtained
based on the choice of the partner column (Figure 8.11). It is plausible that choosing the average nia as
input to PCD is not a robust strategy to obtain the corresponding pair couplings.

8.2. Pairwise couplings for contact prediction

In the previous section I showed that our FS-PCD method does not recover more accurate MRF coupling
parameters for phylogenetically dependent sequences. However our phylogenetically corrected pairwise
coupling parameter correlate better with the MRF parameters than the parameters estimated under the
sequence independence assumption with PCD (Figure 8.9 and Figure 8.10). In the following I investigate
whether the phylogenetically-corrected pairwise couplings can be used in protein contact-prediction for
sequence with strong phylogenetic dependencies.

Our contact prediction simulation is based on protein contact maps and MRF parameters chosen such
that the coupling parameters are non-zero only when the corresponding positions are in contact according
to the contact map. The goal is to predict the contact positions i.e. the positions with non-zero coupling
parameters from the simulated alignments. In order to make the simulations more realistic, we use
contact maps from solved structures and corresponding MRF parameters derived by a constrained PCD
from a previous study in our lab (Vorberg et al., 2018). For faster computation, we randomly select 25
protein-families with between 75 and 125 alignment columns as our benchmark set (Table 8.1).

8.2.1. Simulations with artificial phylogenies

Using the pre-trained family-specific models, I simulate 256 sequences, learn the pairwise pair-couplings
with our Felsenstein-like algorithm with λ = 5. The underlying phylogenies have on average m mutations
from root to leaf just like the simulations in section 8.1.2. We compare the performance of standard
PCD with the true underlying phylogeny (simulated tree), three phylogenies inferred from the alignment
(RAxML FastTree2, family-specific tree) and a phylogeny describing independent sequences (indep se-
quences) (Figure 8.13 and Figure 8.12). For the tree inference we use RAxML (Stamatakis, 2014) with
the Dayhoff substitution matrix (Dayhoff et al., 1978), FastTree2 (Price et al., 2010) with the JTT model
(Jones et al., 1992a) and our family-specific model introduced in section 7.1.7.

Even without the entropy correction of the average product correction, the pairwise coupling without
phylogeny-correction (indep sequences) shows systematically lower precision when predicting contacts
than the global coupling parameters learnt from PCD. While the phylogenetically corrected methods
(simulated tree, RAxML, FastTree2, family-specific tree) outperform the pairwise predictions with the
independent sequence assumption, the high noise makes it difficult to compare the contact prediction
performance with PCD. (Figure 8.12).

The entropy-corrected predictions support the trend that PCD outperforms pairwise contact predictions
without phylogeny correction (PCD vs. indep sequences). With reduced entropy, the pairwise phylogeny
corrected methods (simulated tree, RAxML, FastTree2, family-specific tree) systematically outperform
PCD in predicting contacts. As expected, phylogeny correction based on trees inferred from the simulated
alignments (RAxML, FastTree2, family-specific tree) overall perform slightly worse than the ground truth
(simulated tree). Taken together the simulations suggest that phylogenetically corrected pairwise coupling
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Figure 8.11.: The independent-pair approximation causes inconsistencies in amino acid counts.
Estimations of nia counts based on the four possible partner columns for independent sequences (m =∞),
strong phylogeny (m = 1) and weak phylogeny (m = 2). While the striping pattern reveals that the
estimated nia tend to be similar across all four partner column choices, the variance increases as the
sequences become less independent (D).
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PDB id # sequences # columns
1avsA 11693 81
1bdoA 8179 80
1cxyA 2453 81
1d0qA 2513 102
1dlwA 1217 116
1fk5A 882 93
1fnaA 20176 91
1g2rA 933 94
1g9oA 10561 91
1gmxA 11304 107
1h98A 12004 77
1i1jA 1092 106
1iibA 1167 103
1josA 1742 100
1nrvA 3414 100
1p90A 1258 123
1rw1A 2736 114
1smxA 1445 87
1tifA 1590 76
1tqgA 2197 105
1vmbA 1788 107
1whiA 2163 122
1wjxA 1755 112
2hs1A 72784 99
2mhrA 950 118

Table 8.1.: PDBs used for the benchmark set. 25 alignments with known structure and between 75
and 125 alignment columns from the PSICOV dataset have randomly been assigned to the benchmark
data set.
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scores have a potential to outperform PCD in contact prediction with suitable underlying phylogenies.
In the following we make the simulations more realistic by using phylogenetic trees trained from real
multiple sequence alignments instead of the artificially simulated sequence dependencies.

A

B

Figure 8.12.: Phylogeny correction on simulated phylogenies (without APC). Due to high noise
the performance of contact prediction with phylogeny-corrected pairwise coupling parameters compared
to PCD is not clear. (A) one mutation per position on average from root to leaf (m = 1), (B) two
mutation per position on average from root to leaf (m = 2).

8.2.2. Simulations with learnt phylogenies

In the previous section, I showed that our phylogeny-corrected pairwise coupling parameters predict con-
tacts simulated under a MRF model with higher precision than the traditional PCD method. With equal
branch lengths throughout the phylogeny, the simulated trees however do not resemble real-world evolu-
tionary phylogenies. In order to perform more realistic simulations, I use FastTree2 to infer phylogenetic
trees from the alignments in our benchmark set (Table 8.1).

As a high number of diverse sequences are available for each protein family in the benchmark set, contacts
can be accurately predicted with standard methods such as PCD (Figure 8.14). In this case phylogenetic
correction is not required for distinguishing the coevolution signal from the phylogenetic noise. Our goal
is to predict contacts and thereby structures of protein families with few sequences and low sequence
diversity. In order to obtain phylogenies that more closely resemble the trees in our target objective, I
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A

B

Figure 8.13.: Phylogeny correction on simulated phylogenies (with APC). After the Average
Produce Correction (APC), phylogeny corrected pairwise coupling parameters predict contacts better
than PCD. (A) one mutation per position on average from root to leaf (m = 1), (B) two mutations per
position on average from root to leaf (m = 2).



8.2. Pairwise couplings for contact prediction 87

subsample the phylogenetic trees. The sampling strategy consists of two steps: (1) sampling a subtree
whose number of leaf nodes falls between an accepted range, weighted by the total number of mutations
(2) further randomly subsampling a fixed number of leaf nodes. This strategy is chosen such that the
chosen sequences are taken from a real phylogenetic tree, and the alignments are small, with enough
information content to derive contact predictions from co-evolution signal. For the first subsampling
step I chose two different ranges: subtrees with 200–600 leaf nodes and 200–1000 leaf nodes, leading to
less and more diverse sequences, respectively. With the phylogenies in hand, I simulate alignments with
CCMgen using the protein-family models generated by constrained PCD and perform contact prediction,
as described in section 8.2.1 (Figure 8.15).

Compared to the artificial phylogenies, the contact prediction performance on the realistic phylogenies is
generally lower. While the trend that phylogeny-corrected pair-wise predictions (FS RAxML/simulated
tree) outperform the uncorrected pair-wise predictions (FS indep sequences) persists, the improvement
over PCD disappears, especially for the more diverse sequences.

8.2.3. Applying pair-wise methods to real sequences

As the phylogenetic trees from the previous section have been inferred from sequence alignments with
known protein structures, we can apply our methods to real protein sequences instead of sequences simu-
lated under a MRF model (Figure 8.16). Interestingly, the overall contact prediction performance is much
higher than expected from the simulations, with a wide margin between PCD and the pairwise methods.
While for the more diverse sequences phylogeny correction generally improves pairwise predictions, no
improvements are observed for the less diverse sequences.
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Figure 8.14.: Contact prediction with PCD on all benchmark sequences. The protein families in
the benchmark set (Table 8.1) contain a high number of sequences. For such large alignments existing
DCA methods such as PCD in combination with APC correction can predict contacts with high precision.
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A

B

Figure 8.15.: Contact prediction simulation with real phylogeny. After the Average Produce
Correction (APC), phylogeny corrected pairwise coupling parameters learnt on simulated sequences with
real underlying phylogeny do not predict contacts better than PCD. (A) subsample with lower sequence
diversity (B) subsample with higher sequence diversity.
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Figure 8.16.: Contact prediction simulation on real sequences. A wide performance gap between
pairwise and global methods emerges when predicting contacts from real sequences after Average Product
Correction.



9. Discussion

The aim of this work was to improve the state-of-the-art of protein-contact prediction by contributing
a principled method for correcting out phylogenetic noise in the coevolution features provided by direct
coupling analysis (DCA) methods. At the time of the conception of the project, the best contact prediction
methods were based on deep neural network architectures repurposed from the computer vision field and
all competitive contact-prediction methods relied on coevolution features derived by DCA methods as an
input. Denoised coevolution features promised a path towards computationally solving the structures of
protein families which have been out of reach for current methods due to having only few members that
are evolutionarily highly related.

Traditionally, phylogenetic noise in DCA methods is reduced by clustering and downweighting similar
input sequences (Ekeberg et al., 2013), but more recently also bootstrapping (Colavin et al., 2020) and
principled methods (Rodriguez Horta et al., 2019) have been suggested as alternative strategies. Sequence
reweighting and bootstrapping are robust strategies with few assumptions and work beyond simulated
data. It has however been suggested that the improvements due to reweighting are limited (Hockenberry
and Wilke, 2019).

Using a phylogenetic tree we were able to derive more accurate pair counts based on a novel pairwise
algorithm based on Felsenstein’s pruning algorithm. With FS-DCA we introduced a method with concep-
tual similaries to a method previously developed by Rodriguez Horta et al. (2019). While methods share
the same independent-pair evolutionary model and propose a phylogenetic correction of the pair counts,
our method does not rely on inaccurate sampling techniques at the cost of model inconsistencies. Ulti-
mately, the inaccuracies originating from the independent-pair approximation introduced inconsistencies
that prevented their use in PCD algorithm.

We further showed that for certain dependency structures, phylogeny-corrected pairwise couplings cor-
relate better with MRF coupling parameters than coupling parameters derived with PCD under an
independent sequence model. When comparing our pairwise methods on simulated protein families based
on real phylogenies and the corresponding real sequences, we observe a strong mismatch of overall contact
prediction performance and a wide gap between our pairwise methods and PCD. This result is consistent
with the observation that global methods based on MRF displace pairwise methods and is in line with the
speculation that overcoming phylogenetic noise may not be the main bottleneck in MRF-based contact
prediction (Rodriguez Horta et al., 2019).

9.1. Shortcomings and limitations

FS-DCA suffers from inconsistencies in the profile probabilities. The independent-pair model
estimates a higher number of profile parameters

(
L
2

)
×2A compared to L×A of the MRF model in DCA.

Unlike in the MRF model, Rodriguez Horta et al. noticed that in the independent pair-model the profile
frequencies p(xi = a) =

∑
b p(xi = a, xj = b) depend on the choice of the partner column j, giving rise

to inconsistencies in the model parameters of the desired MRF model. The authors used a constrained
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stochastic optimization scheme to ensure the consistency of the profile probabilities. Our approach
does not address this inconsistency in favor of a more accurate optimization with a gradient-descent
optimization, with the assumption that the inconsistencies are negligible for small coupling strengths.
Based on simulations, I show that this assumption does not hold and that the introduced inconsistencies
induce large errors in the couple parameter estimations. The observation that the constrained stochastic
optimization did not outperform DCA on real world data (Rodriguez Horta et al., 2019) indicates at
the very least that solving the inconsistencies may not be the only problem with pylogeny-aware DCA
methods.

Pairwise methods cannot account for indirect correlation. Global methods such as DCA and
Bayesian networks have been introduced in the contact prediction field to distinguish direct from indirect
contributions to the observed coevolution (Weigt et al., 2009; Burger and Van Nimwegen, 2010). Our FS-
DCA approach is theoretically appealing because it is a phylogeny-aware generalization of PCD, and thus
has all advantages of the global models. I could show that phylogenetically corrected pairwise couplings
can produce more accurate pair counts and depending on the underlying sequence dependencies can
outperform PCD in predicting contacts. The pairwise methods will however outperform PCD only if the
benefit of the corrected phylogentic noise surpasses the cost of being oblivious to indirect effects, making
the pairwise method less robust for practical application.

Inadequacy of the evolutionary model. Based on the observation that in the course of evolution
the frequency of amino acid exchanges varies with the biochemical properties of the involved amino acids,
traditional methods to phylogeny rely on amino acid substitution matrices that quantify the substitution
likelihoods based on a given evolutionary time frame. In addition, position specific mutation rates are
used to account for function-critical positions being disproportionally highly conserved and thus seemingly
mutate at a slower rate.

In contrast to the traditional models, the evolutionary model used in this work is protein-family specific.
A protein family is described by a sequence-generating model, parameterized by time-invariant profile
and pair-coupling parameters. In case of a mutation, the new amino acid is chosen according to the
sequence-generating model. The model is oblivious to the nature of the replaced amino acid present
at the time of the mutation event. In reality, evolution is based on both mutation and selection and
thus variants created by mutation have to compete with the existing variants. Our independent-pair
evolutionary model may very well be too simple to reflect realistic evolutionary amino acid exchanges.

Highly parameterized domain-unspecific model. MRFs capture amino-acid pair interactions with
400 parameters for each possible column pair, yielding highly complex models that are difficult to train
accurately on the hundreds to thousands of sequences in each sequence family. In agreement with this,
contact prediction based on DCA tends to only work well for large diverse sequence families (Ovchinnikov
et al., 2017). Typical strategies in machine learning to overcome this bottleneck are increasing the
amount of data and capturing more domain knowledge in the learning objective. MRF models are,
however, neither flexible enough to generalize across protein families, nor can they encapsulate biological
information such as amino-acid properties by sharing parameters across columns.
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9.2. End-to-end revolution

DCA revolutionized the contact prediction field when it was conceived more than 10 years ago. The
advent of pseudolikelihood methods allowed to quickly and accurately obtain approximate solutions for
MRFs on large data sets, whereas DNNs based on computer vision were introduced to extract high-
confidence contacts, effectively recognizing patterns of common local structural motifs from the DCA
coevolution features.

More recently, self-attention has been applied to the field as a more flexible model for capturing the inter-
action graph. MRFs can be understood as statistical graphical models in which nodes represent alignment
positions and the edges represent couplings. It has been shown that a model based on factored-attention,
a simplified version of the Scaled Dot-Product Attention used in the Transformer architecture, achieves
comparable performance to MRFs (Bhattacharya et al., 2020) with a reduced model complexity by sharing
parameters across protein families. Moreover, jointly learning protein families with a Transformer-based
architecture outperforms the traditional MRF models by a large margin (Rao et al., 2021). Unlike
the previously employed computer visions models that integrated features from different sources, the
new generation of Transformer learns all necessary information directly from sequence alignments. To-
gether with the drastic increase in protein-structure prediction accuracy by AlphaFold2 which is also
based on the Transformer architecture, it is plausible that end-to-end Transformer networks will displace
coevolution-based methods such as MRFs in the near future.

The switch to end-to-end differentiable protein-structure prediction models is arguably among the most
transformative innovations in the computational structural biology field. Not only do Transformer models
predict the structure of protein domains at an unparalleled accuracy, they also reunify formerly inde-
pendent subtasks to one single learning objective that, given enough computational resources, can be
solved and innovated upon with general-purpose software. By formulating the protein-folding problem
as an end-to-end objective, the latest generation of machine learning models does not rely on externally
engineered features. This will likely reduce the impact of methods that produce or correct coevolution
features in the near future.

9.3. Outlook

With AlphaFold2, DeepMind solved a defining challenge in the computational biology field - the accurate
prediction of protein domain structure from evolutionarily related sequences. With billions of sequences,
hundred thousands of structures and well-developed evaluation strategies available, the folding problem
solved by AlphaFold2 is however among the most well-defined learning tasks in the field and it remains
an open question whether other crucial tasks such as unravelling folding paths, predicting the structure
of dynamic and multi-domain proteins, as well as protein complexes and protein interactions with DNA,
RNA or small molecules can be solved by similar principles.

The protein folding problem, as it was originally formulated, demanded an algorithm that assigns a
stable structure to any foldable amino acid sequence, and thus encapsulates the biophysical mechanisms
of folding. The current machine learning models learn their folding logic by generalizing from sequences of
protein families together with their known structures. It is however not yet clear how well state-of-the-art
models generalize beyond sequences that evolved in the natural course of evolution, a property that could
be a milestone in the field of protein engineering for exploring fundamentally new stable folds.

The current generation of machine learning models excel at solving problems with large amounts of
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clean data and clear learning objectives. Problems that do not meet these criteria will likely stay fields
to be explored by structural biologists. As with so many innovations, machine learning models such
as AlphaFold2 are unlikely to end the structural biology field nor replace experimental scientists, but
become yet another powerful tool to venture into exploring the complexities in nature.
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