75 research outputs found

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Human-centered display design : balancing technology & perception

    Get PDF

    Tone mapping for high dynamic range images

    Get PDF
    Tone mapping is an essential step for the reproduction of "nice looking" images. It provides the mapping between the luminances of the original scene to the output device's display values. When the dynamic range of the captured scene is smaller or larger than that of the display device, tone mapping expands or compresses the luminance ratios. We address the problem of tone mapping high dynamic range (HDR) images to standard displays (CRT, LCD) and to HDR displays. With standard displays, the dynamic range of the captured HDR scene must be compressed significantly, which can induce a loss of contrast resulting in a loss of detail visibility. Local tone mapping operators can be used in addition to the global compression to increase the local contrast and thus improve detail visibility, but this tends to create artifacts. We developed a local tone mapping method that solves the problems generally encountered by local tone mapping algorithms. Namely, it does not create halo artifacts, nor graying-out of low contrast areas, and provides good color rendition. We then investigated specifically the rendition of color and confirmed that local tone mapping algorithms must be applied to the luminance channel only. We showed that the correlation between luminance and chrominance plays a role in the appearance of the final image but a perfect decorrelation is not necessary. Recently developed HDR monitors enable the display of HDR images with hardly any compression of their dynamic range. The arrival of these displays on the market create the need for new tone mapping algorithms. In particular, legacy images that were mapped to SDR displays must be re-rendered to HDR displays, taking best advantage of the increase in dynamic range. This operation can be seen as the reverse of the tone mapping to SDR. We propose a piecewise linear tone scale function that enhances the brightness of specular highlights so that the sensation of naturalness is improved. Our tone scale algorithm is based on the segmentation of the image into its diffuse and specular components as well as on the range of display luminance that is allocated to the specular component and the diffuse component, respectively. We performed a psychovisual experiment to validate the benefit of our tone scale. The results showed that, with HDR displays, allocating more luminance range to the specular component than what was allocated in the image rendered to SDR displays provides more natural looking images

    Head Tracked Multi User Autostereoscopic 3D Display Investigations

    Get PDF
    The research covered in this thesis encompasses a consideration of 3D television requirements and a survey of stereoscopic and autostereoscopic methods. This confirms that although there is a lot of activity in this area, very little of this work could be considered suitable for television. The principle of operation, design of the components of the optical system and evaluation of two EU-funded (MUTED & HELIUM3D projects) glasses-free (autostereoscopic) displays is described. Four iterations of the display were built in MUTED, with the results of the first used in designing the second, third and fourth versions. The first three versions of the display use two-49 element arrays, one for the left eye and one for the right. A pattern of spots is projected onto the back of the arrays and these are converted into a series of collimated beams that form exit pupils after passing through the LCD. An exit pupil is a region in the viewing field where either a left or a right image is seen across the complete area of the screen; the positions of these are controlled by a multi-user head tracker. A laser projector was used in the first two versions and, although this projector operated on holographic principles in order to obtain the spot pattern required to produce the exit pupils, it should be noted that images seen by the viewers are not produced holographically so the overall display cannot be described as holographic. In the third version, the laser projector is replaced with a conventional LCOS projector to address the stability and brightness issues discovered in the second version. In 2009, true 120Hz displays became available; this led to the development of a fourth version of the MUTED display that uses 120Hz projector and LCD to overcome the problems of projector instability, produces full-resolution images and simplifies the display hardware. HELIUM3D: A multi-user autostereoscopic display based on laser scanning is also described in this thesis. This display also operates by providing head-tracked exit pupils. It incorporates a red, green and blue (RGB) laser illumination source that illuminates a light engine. Light directions are controlled by a spatial light modulator and are directed to the users’ eyes via a front screen assembly incorporating a novel Gabor superlens. In this work is described that covered the development of demonstrators that showed the principle of temporal multiplexing and a version of the final display that had limited functionality; the reason for this was the delivery of components required for a display with full functionality

    Gamut extension algorithm development and evaluation for the mapping of standard image content to wide-gamut displays

    Get PDF
    Wide-gamut display technology has provided an excellent opportunity to produce visually pleasing images, more so than in the past. However, through several studies, including Laird and Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut boundary of a given wide-gamut display may not result in optimal results. Therefore, several algorithms were developed and evaluated for observer preference, including both linear and sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion algorithm (GEA) that can be applied to current display technology and produce the most preferable images for observers. The outcome provided preference results from two displays, both of which resulted in large scene dependencies. However, the sigmoidal GEAs (SGEA) were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing reproductions. The SGEAs provide an excellent baseline, in which, with minor improvements, could be key to producing more impressive images on a wide-gamut display

    Medical Grade Displays in Radiation Oncology

    Get PDF
    In modern day medicine medical images are an integral part of clinical care. They are used in almost every clinical department from diagnosis to treatment and beyond. Medical images are viewed using electronic displays of various sizes, shapes, hardware, and software. Some clinical departments, like diagnostic radiology, require electronic displays with a large dynamic range, high contrast and high resolution. Other departments do not have any requirements and will use any commercially available display in their clinical workflow. Viewing the same medical image on different electronic displays with different hardware, software or calibration setup could influence how observers perceive and analyze these images. This occurs often when a patient is referred from diagnostic radiology to another clinical specialty department such as radiation oncology. In this case, the patient’s tumor would be diagnosed using a high-performance display while their treatment will be planned and delivered using a commercially available display. In this dissertation, at first, an experiment was design to examine and verify the visual contrast sensitivity of observers using the two types of displays used in the clinic. Observers were tasked with detecting a modulating bar pattern using each display under different background luminance levels and ambient room illumination. The luminance response of each display was also measured for proper comparison. Second, a set of visual experiments compared the image quality of both displays in the different sections of the radiation oncology workflow. Observers were tasked with comparing medical images viewed on both displays and ranking them on a rating scale. As part of the workflow, the observers used both displays to contour tumor and healthy tissue volumes, analyze and fuse two sets of images, verify and adjust patient’s treatment position in three degrees of motion. The results show a clear presence for the high-performance display over the commercial grade display in every step of the radiation oncology workflow. It was shown that better visualization of medical images can improve the accuracy and precision of treatment plan and treatment delivery of radiation oncology patients

    Development of Dual View Displays

    Get PDF
    This thesis is about ‘Dual View’ displays. These are displays that can show different images to different people. For example, the driver of a car could view a GPS map, whilst the passenger who looks at the display from a different angle, could watch a movie. This thesis describes some of the research that took the project from an idea to a refined product. Sharp’s first dual view display is prototyped, and problems such as crosstalk between the two views are seen. These problems are analysed and rectified to bring the device up to a high standard. In July 2005 Sharp used this technology to launch the world’s first dual view product. Since then a new design of dual view display has been investigated. This design is theoretically optimised and experimentally tested. The new design is shown to provide dual view with greater head freedom, greater efficiency, and lower crosstalk than the original parallax barrier design.Sharp Laboratories of Europe Lt

    High dynamic range images: processing, display and perceptual quality assessment

    Get PDF
    2007/2008The intensity of natural light can span over 10 orders of magnitude from starlight to direct sunlight. Even in a single scene, the luminance of the bright areas can be thousands or millions of times greater than the luminance in the dark areas; the ratio between the maximum and the minimum luminance values is commonly known as dynamic range or contrast. The human visual system is able to operate in an extremely wide range of luminance conditions without saturation and at the same time it can perceive fine details which involve small luminance differences. Our eyes achieve this ability by modulating their response as a function of the local mean luminance with a process known as local adaptation. In particular, the visual sensation is not linked to the absolute luminance, but rather to its spatial and temporal variation. One consequence of the local adaptation capability of the eye is that the objects in a scene maintain their appearance even if the light source illuminating the scene changes significantly. On the other hand, the technologies used for the acquisition and reproduction of digital images are able to handle correctly a significantly smaller luminance range of 2 to 3 orders of magnitude at most. Therefore, a high dynamic range (HDR) image poses several challenges and requires the use of appropriate techniques. These elementary observations define the context in which the entire research work described in this Thesis has been performed. As indicated below, different fields have been considered; they range from the acquisition of HDR images to their display, from visual quality evaluation to medical applications, and include some developments on a recently proposed class of display equipment. An HDR image can be captured by taking multiple photographs with different exposure times or by using high dynamic range sensors; moreover, synthetic HDR images can be generated with computer graphics by means of physically-based algorithms which often involve advanced lighting simulations. An HDR image, although acquired correctly, can not be displayed on a conventional monitor. The white level of most devices is limited to a few hundred cd/mÂČ by technological constraints, primarily linked to the power consumption and heat dissipation; the black level also has a non negligible luminance, in particular for devices based on the liquid crystal technology. However, thanks to the aforementioned properties of the human visual system, an exact reproduction of the luminance in the original scene is not strictly necessary in order to produce a similar sensation in the observer. For this purpose, dynamic range reduction algorithms have been developed which attenuate the large luminance variations in an image while preserving as far as possible the fine details. The most simple dynamic range reduction algorithms map each pixel individually with the same nonlinear function commonly known as tone mapping curve. One operator we propose, based on a modified logarithmic function, has a low computational cost and contains one single user-adjustable parameter. However, the methods belonging to this category can reduce the visibility of the details in some portions of the image. More advanced methods also take into account the pixel neighborhood. This approach can achieve a better preservation of the details, but the loss of one-to-one mapping from input luminances to display values can lead to the formation of gradient reversal effects, which typically appear as halos around the object boundaries. Different solutions to this problem have been attempted. One method we introduce is able to avoid the formation of halos and intrinsically prevents any clipping of the output display values. The method is formulated as a constrained optimization problem, which is solved efficiently by means of appropriate numerical methods. In specific applications, such as the medical one, the use of dynamic range reduction algorithms is discouraged because any artifacts introduced by the processing can lead to an incorrect diagnosis. In particular, a one-to-one mapping from the physical data (for instance, a tissue density in radiographic techniques) to the display value is often an essential requirement. For this purpose, high dynamic range displays, capable of reproducing images with a wide luminance range and possibly a higher bit depth, are under active development. Dual layer LCD displays, for instance, use two liquid crystal panels stacked one on top of the other over an enhanced backlight unit in order to achieve a dynamic range of 4 Ă· 5 orders of magnitude. The grayscale reproduction accuracy is also increased, although a “bit depth” can not be defined unambiguously because the luminance levels obtained by the combination of the two panels are partially overlapped and unevenly spaced. A dual layer LCD display, however, requires the use of complex splitting algorithms in order to generate the two images which drive the two liquid crystal panels. A splitting algorithm should compensate multiple sources of error, including the parallax introduced by the viewing angle, the gray-level clipping introduced by the limited dynamic range of the panels, the visibility of the reconstruction error, and glare effects introduced by an unwanted light scattering between the two panels. For these reasons, complex constrained optimization techniques are necessary. We propose an objective function which incorporates all the desired constraints and requirements and can be minimized efficiently by means of appropriate techniques based on multigrid methods. The quality assessment of high dynamic range images requires the development of appropriate techniques. By their own nature, dynamic range reduction algorithms change the luminance values of an image significantly and make most image fidelity metrics inapplicable. Some particular aspects of the methods can be quantified by means of appropriate operators; for instance, we introduce an expression which describes the detail attenuation introduced by a tone mapping curve. In general, a subjective quality assessment is preferably performed by means of appropriate psychophysical experiments. We conducted a set of experiments, targeted specifically at measuring the level of agreement between different users when adjusting the parameter of the modified logarithmic mapping method we propose. The experimental results show a strong correlation between the user-adjusted parameter and the image statistics, and suggest a simple technique for the automatic adjustment of this parameter. On the other hand, the quality assessment in the medical field is preferably performed by means of objective methods. In particular, task-based quality measures evaluate by means of appropriate observer studies the clinical validity of the image used to perform a specific diagnostic task. We conducted a set of observer studies following this approach, targeted specifically at measuring the clinical benefit introduced by a high dynamic range display based on the dual layer LCD technology over a conventional display with a low dynamic range and 8-bit quantization. Observer studies are often time consuming and difficult to organize; in order to increase the number of tests, the human observers can be partially replaced by appropriate software applications, known as model observers or computational observers, which simulate the diagnostic task by means of statistical classification techniques. This thesis is structured as follows. Chapter 1 contains a brief background of concepts related to the physiology of human vision and to the electronic reproduction of images. The description we make is by no means complete and is only intended to introduce some concepts which will be extensively used in the following. Chapter 2 describes the technique of high dynamic range image acquisition by means of multiple exposures. In Chapter 3 we introduce the dynamic range reduction algorithms, providing an overview of the state of the art and proposing some improvements and novel techniques. In Chapter 4 we address the topic of quality assessment in dynamic range reduction algorithms; in particular, we introduce an operator which describes the detail attenuation introduced by tone mapping curves and describe a set of psychophysical experiments we conducted for the adjustment of the parameter in the modified logarithmic mapping method we propose. In Chapter 5 we move to the topic of medical images and describe the techniques used to map the density data of radiographic images to display luminances. We point out some limitations of the current technical recommendation and propose an improvement. In Chapter 6 we describe in detail the dual layer LCD prototype and propose different splitting algorithms for the generation of the two images which drive the two liquid crystal panels. In Chapter 7 we propose one possible technique for the estimation of the equivalent bit depth of a dual layer LCD display, based on a statistical analysis of the quantization noise. Finally, in Chapter 8 we address the topic of objective quality assessment in medical images and describe a set of observer studies we conducted in order to quantify the clinical benefit introduced by a high dynamic range display. No general conclusions are offered; the breadth of the subjects has suggested to draw more focused comments at the end of the individual chapters.XXI Ciclo198
    • 

    corecore