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1

Introduction: Technology & Perception

We are increasingly surrounded by displays: televisions, movie screens, computer moni-
tors, cameras, smart phones, tablets, GPS devices, electronic billboards, digital signage,
dashboards, control panels, and more. Whether for clear, efficient information communi-
cation or for relaxing, immersive entertainment, displays require visual quality in addition
to clarity and robustness. While the development of a multitude of display types has
taken decades, the current pace of improvement in all aspects, including image quality,
size, price, operating cost, speed, and interactivity, is truly remarkable. Human-centered
improvements to displays are the most important of these, focusing on the experience of
the human end user, and thus human-centered display design is the topic of this thesis.

Research in the area of display design includes two major themes: visual perception
and display technology. The former is primarily interested in understanding and describing
the human visual system, and secondarily in applying models of this understanding to
display design. The latter, display technology, is driven forward with time by innovations
in materials and electronics, sometimes seemingly without regard to the needs of any
human viewer. The aim of this thesis is to show that these two areas of focus cannot
be independent, and that a mutual understanding of both themes and the relationship
between them enables display design that is more oriented toward the needs of the viewer,
and therefore better.

Display design already necessarily leans firmly on the basics of visual perception.
A keystone of color reproduction is metamerism, the phenomenon by which two color
stimuli of vastly different spectral content can appear identical to the human eye, which
has been used in every color imaging system in history. The lucky correlation between the
power-law intensity response of CRT displays and the human perception of brightness
persists in standard image encodings even as the CRT has become obsolete. Persistence
of vision, in which a pulsating stimulus (for example a television flickering along at 60
Hertz) is perceived as temporally constant, is another visual phenomenon that has been
consistently utilized by “moving pictures.”

However, there are plenty of examples of technological developments (and mar-
keting statements promoting them) that do not credibly enhance visual perception. For
example, the push from standard-definition to high-definition television (HDTV) provided

1



1. Introduction: Technology & Perception

Figure 1.1: Cross-section of the human eye. At left, major components of the
human eye are labeled. At right, a close up of the retina shows the layers of
neurons through which light passes before reaching the light sensitive rod and
cone cells. Image used with permission from webvision1.

a welcome improvement in sharpness thanks to the added resolution, but further growth
in pixel count to UHDTV and beyond may never be seen as an improvement by anyone in
a normal-sized living room. Physical contrast in LCDs has indeed slowly improved with
time, but advertised contrast ratios and especially viewing angle ranges have inflated
somehow even further to the point that they have become meaningless.

In the coming chapters, a series of examples of display technology advancements
approached with a user-centered understanding of human perception are presented. This
introductory chapter aims to provide the reader with essential background knowledge on
the topics of visual perception (Section 1.1), current and developing display technology
(Section 1.2), and the tools and techniques of assessing and modeling visual image quality
(Section 1.3). Relevant references are provided to guide the reader to further detail on
the many underlying topics.

1.1 Visual Perception

The human visual system (HVS) is able to interpret many characteristics of the light which
reaches it from the world around us. The most basic is intensity, in physical terms power
or luminance, which we see as brightness. Spatially-varying intensity yields contrast and
allows us to see lines, shapes, and forms. Spectrally-varying intensity gives us discernible
colors. These concepts and more are detailed in Wandell’s excellent text [1]; here, only
very brief highlights are included.

2



1.1. Visual Perception

Figure 1.1 shows a cross-section of the human eye, the instrument through which
we see the world. In this diagram, light enters from the left, passing through the cornea,
pupil, lens, and the fluid-filled eyeball itself (vitreous humor). Finally light reaches the
retina, which is densely populated with photosensitive cells that send signals on to the
visual cortex for further interpretation. Rod cells, highly sensitive to a wide band of the
color spectrum, are the most numerous, making up 108 of the retina’s cells. The three
types of cone cells are much less sensitive than rods, but their different spectral sensitivity
enables color discrimination when enough light is available. There are about 5× 106

cones in the retina, of which about 6% are S cones, sensitive to short-wavelength light,
and the remainder are split between M (middle-wavelength) and L (long-wavelength)
cones in a ratio varying from 1:16 to greater than 1:1 in different people [2]. Cones are
concentrated near the center of the visual field in the region called the fovea, where we
see with greatest detail, while rods are more numerous in the surrounding retina. Note
that a final type of photosensitivity is provided by melanopsin receptors in a small fraction
of the retina’s ganglion cells. This contributes to the body’s regulation of circadian rhythm,
but because such sensitivity is non-visual, it lies outside the scope of this thesis.

Adaptation is an extremely important and complicated phenomenon which occurs
both in the retinal cells and in the visual cortex. Temporal luminance adaption to different
levels of illumination is what enables “night vision,” and is why going quickly from a dark
to a bright environment can be temporarily blinding. Because of luminance adaptation,
there is no fixed translation between luminance (physical intensity) and brightness
(perceived intensity): brightness always depends on the intensity of surroundings and the
recent temporal intensity history.

Chromatic adaptation is due to changes in the relative sensitivity in the cones
and the cortical interpretation of them, and is the reason why a spectrally-white object
appears white both in dim indoor light (warm, yellowish in color) and in outdoor shade
(cool, bluish in color). Perceived color also is heavily dependent on the colors of the
surroundings and the retina’s recent temporal history. The subject of color appearance
and modeling thereof is addressed in detail by Fairchild [3].

1.1.1 Luminance, Contrast, & Glare

Luminance is the perceptually-weighted physical intensity of light coming from an object
to a point in space, for instance a human’s eye. Luminance is quantified in physical units
of candela per square meter, and thus is easily measured; however, the perception of
luminance is of course much trickier to pin down due to temporal and spatial effects
and adaptation within the HVS. Visual perception actually depends more on luminance
differences, or contrast, as explained in Peter Barten’s book [4].

For controlled, periodic luminance variations, specifically sine waves spatially vary-
ing in luminance, the sensitivity of the HVS may be modeled as a function of average

1 http://www.webvision.med.utah.edu
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1. Introduction: Technology & Perception

Figure 1.2: Contrast Sensitivity Function. Human sensitivity versus spatial
frequency for different levels of luminance (labeled, in cd/m2), according to
Barten’s empirical fit of multiple experimental data sets. As the luminance of the
stimulus increases, sensitivity is higher and peaks at higher frequencies. In all
cases, the maximum perceivable frequency is around 50 cycles per degree.

luminance, amplitude of the sine wave modulation, and spatial frequency (in degrees
of visual angle). Further, this model can be explained via signal-to-noise concepts that
describe the behavior of the HVS [5]. The generalized description of contrast sensitivity,
which is defined as the inverse of threshold modulation amplitude, is illustrated in the
contrast sensitivity function (CSF) in Figure 1.2; these curves are an empirical fit to
multiple contrast sensitivity data sets as explained by Barten in 2004 [6]. The dependence
on spatial (angular) frequency is very strong, as shown, with a peak between 3 and 10
cycles per degree, and diminishing substantially around 50 cycles per degree. This model
of visibility is used and extended in Chapter 2 of this thesis.

An important aspect of human vision, especially at the limits of visibility, is glare.
Because the human eye is an imperfect optical system which scatters and absorbs a good
fraction of the light entering it, the image projected by the eye’s lens on the retina is
blurred to some extent. This intra-ocular effect is known as glare, or veiling glare, and
can be thought of conceptually as the eye’s point-spread function. Glare and its visual
effects were characterized in detail by Holladay [7] and Moon & Spencer [8] in the

4



1.1. Visual Perception

Figure 1.3: CIE total glare equation. Veiling glare as specified by the CIE total
glare equation shown in two ways. At left, a log-log plot of veiling luminance
versus visual angle, in cd/m2 per lux illumination on the eye; at right, an image
illustrating the circularly-symmetric glare as a point-spread function that is
conceptually the visual spread of a pinpoint of bright light onto the retina.

first part of the twentieth century, and the basic shape of this effect is a steeply-peaked,
circularly-symmetric falloff with a long tail, roughly proportional to 1/θ 2. A standardized
version of a glare equation was published by the CIE in 1999 [9], which is shown in
Figure 1.3 along with an image interpreting the equation as a point-spread function. Such
a point-spread function is the somewhat-blurred spot the eye sees when looking at a very
small point of light, the size and blurriness of which is proportional to the amount of light
irradiating the eye. Glare is caused by bright light sources, but also by everything in the
visual field – the brighter the object, the more glare it contributes – and the visual result
is always reduced perceived luminance contrast, lower color saturation, and reduced
visibility of details.

1.1.2 Color, Metamerism, & Additive Color Displays

The perception of color is best explained with a clear example; for the sake of this thesis,
an obvious example is a color display, such as a television. All additive color displays
take advantage of metamerism, the visual phenomenon by which two color stimuli with
different spectral power content may be perceived as the same color. A color display
generally has three color primaries, for example red, green, and blue, which can be
modulated in intensity to create images. Thanks to metamerism, the HVS sees not the

5



1. Introduction: Technology & Perception

Figure 1.4: Primary and composite images. Example showing the intensity
images of (left-to-right) the red, green, and blue color channels along with the
resulting full-color image (far right). The relative intensities of these primaries
may be seen in different portions of the image. For example, the white stockings
are high intensity in all three color channels. The pink dress consists of high-
intensity red, low-intensity green, and mid-intensity blue, while the yellow-green
grass consists of mid-intensity red and green and low-intensity blue.

constituent colors of red, green, and blue, but rather their visual sum: for example, a
combination of nearly-equal amounts of red and green is seen as yellow, despite the
absence of an actual yellow primary. In the same way, a wide range of colors is made
available from a few (three, minimum) basic components.

The prevalence of consumer digital cameras and accessible computer graphics
programs such as Adobe Photoshop means that many people understand that a given
color may be a composition of red, green, and blue. In photos, in painting programs, and
in text markup such as in HTML, specifying colors as RGB triads is quite common. This is
due entirely to the additive color system that is a modern display. A display is additive
because it starts with a black background and adds different amounts of intensity from
its primary colors of red, green, and blue — note this is the opposite of paint or ink on
paper, which is a subtractive color system starting with a white page and reducing the
reflectivity selectively with colorants. In an additive RGB color system, combinations of
the primaries always result in brighter, less pure colors; for example, red and green sum
to yellow. A visual example of this is shown in Figure 1.4, where a full-color image is
decomposed into its component primary intensity images, and the relative intensities of
the primaries with respect to the final colors can be seen. The concept in this image is
that each intensity image, shown in black-and-white, is the spatial-varying factor to be
multiplied by its respective primary color.

6



1.1. Visual Perception

Figure 1.5: CIE 1931 standard colorimetric observer. The CIE 2-degree color
matching functions x̄ , ȳ , and z̄, shown as red, green, and blue, respectively. Note
that the color matching functions do not correspond directly to these colors.

Colorimetry

At a more detailed level, it is important to realize that the color primaries are not abstractly
red, green, and blue. In order for a display to perform predictably (read: accurately), they
necessarily represent very specific examples of these colors, which must be unambiguously
described and objectively measurable. Colorimetry, standardized over the years by the
Commission Internationale de l’Éclairage2 (CIE), provides a framework for communicating
about color. A basic way of looking at color is through a “standard observer,” which has
a theoretical color sensitivity based on aggregated measurements of real people. The
CIE 1931 standard observer [10] is defined as a set of three wavelength-by-wavelength
sensitivity curves x̄ , ȳ , and z̄ (plotted in Figure 1.5), which are used as weighting functions
to numerically integrate a color stimulus (truly, a spectral power distribution). The result
is a triad known as XYZ tristimulus values, which is a colorimetric description of the
stimulus.

Two spectral power distributions which integrate to the same XYZ triad are by
definition metamers. A graphical example of metamerism that is common in display

2In English, International Commission on Illumination: http://www.cie.co.at
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1. Introduction: Technology & Perception

Figure 1.6: Metamerism example. A graphical example of metameric spectra:
in black, the spectral power distribution of a standard D65 illuminant, and
in red, the spectral power distribution of the sum of the red, green, and blue
display primaries at appropriate intensity levels so that the result is the same
XYZ tristimulus values as those of D65.

applications is shown in Figure 1.6. In this plot, the spectral power distribution of a
standard D65 illuminant is shown along with the spectral power distribution of a display
showing a color with the same XYZ tristimulus values as those of D65. Each curve is
numerically integrated with the x̄ , ȳ , and z̄ sensitivity functions, resulting in identical
XYZ tristimulus values – meaning, they are identical visual stimuli. Note that the display’s
spectrum is the sum of its red, green, and blue primaries; because the computation is
linearly additive, it is equivalent to sum the power spectra before computing XYZ or to
compute XYZ from each spectrum separately before summing the XYZs.

XYZ tristimulus values generally have photometric units, meaning they refer to
the absolute visual intensity of the spectral power distribution they describe. The Y
value alone represents luminance, which takes units such as candela per square meter,
and correlates well (though non-linearly) with the HVS’ perception of brightness. XYZ
values may be scaled relative to a reference white, for example the luminance of max-
imum white in a display, in which case they are known as XYZ tristimulus factors (or
percent tristimulus factors, if necessary). XYZ may be transformed to other quantities

8



1.1. Visual Perception

for convenience, such as chromaticity spaces, which describe the chromatic composition
of the color stimulus while ignoring the absolute intensity, or luminance. Note that
this dimensional reduction provides convenience but also is potentially misleading! The
prototypical chromaticity space is the CIE 1931 xy space, which is still used despite being
superseded by the more perceptually accurate CIE 1976 uniform chromaticity scales, u’v’,
the best choice for emissive displays and lighting. Chromaticity coordinates are typically
shown in a “top-view” diagram, an example of which appears in Figure 1.7; chromaticity
gamut boundaries shown on such diagrams are informative, but because they ignore the
luminance dimension they should always be interpreted with caution.

Another commonly-used colorimetric description is the CIE 1976 L*a*b* color
space, often abbreviated as CIELAB [11]. CIELAB was designed to mimic human visual
perception, accounting for the nonlinear response to luminance in the achromatic L*
channel (Lightness), and putting colors in opponent channels a* (reddish-greenish) and
b* (yellowish-bluish) which relate to the neural opponent process which is part of the
HVS’ interpretation of colors. L*a*b* are computed from XYZ via a set of nonlinear
formulae, always with respect to a “white reference” which should be the adaptation
white for the viewer looking at the stimulus (in display applications, this is typically
the display’s maximum white point). While L*a*b* provides Euclidean coordinates in
the three-dimensional space, it is also common to use cylindrical coordinates, L*C*h:
Lightness the same as in L*a*b*, chroma C* as a radial distance from the neutral L* axis,
and hue h as a polar angle. The L*C*h representation correlates well with how people
think about color, with L* related to brightness, C* related to colorfulness or color purity,
and h related to hue, often thought of as color names, and for this reason L*C*h is used
frequently in this thesis. Note that chroma C* specifically refers to colorfulness relative to
a similarly-illuminated white, a slightly more specific definition than the general percept of
colorfulness. Details of colorimetric quantities and formulae for transformations between
these different color spaces are given by Hunt [12].

Display Color Standards

Accurate descriptions of color stimuli are essential in the specification of displays and
the communication of colors to be displayed. Many contemporary displays utilize RGB
color primaries that approximate the standard RGB set defined by the High-Definition
Television (HDTV) specification ITU Rec. 709 [13], also used in the internet imaging
standard sRGB [14]. The standard provides a formulaic computation from a RGB triad
to colorimetric XYZ tristimulus values by defining an idealized display model, which
of course is invertable to enable the preparation of images which will be displayed as
intended. However, in the real world, most displays do not perform exactly like this model,
which would objectively result in color errors because the display does not perform as
intended. The magnitude of such errors depends on a lot of things including the display
technology, color processing, and manufacturing variability, but in most cases they can be
suppressed by display models customized to fit the expected behavior of a type of display

9



1. Introduction: Technology & Perception

or, for more accuracy, the measured behavior of a specific display. The field of color
management is concerned with modeling input- and output-device behavior, addressing
device-dependent color spaces, and standardizing translations between color spaces in a
controlled way. A practical guide is offered by Giorgianni & Madden [15].

A display’s color capabilities are often described in terms of color gamut, meaning
the range of colors made available by the display. Color gamut is a three-dimensional
volume, thanks to the trichromatic nature of the HVS, and it is often interesting to
look at color gamut in a color space which utilizes a luminance dimension and two
chromaticity dimensions. Viewed from the top, thus effectively ignoring the luminance
axis, the chromaticity gamut appears as the area enclosed by the display primaries in a
chromaticity diagram. An example of this is shown in Figure 1.7, which is a CIE 1976
uniform chromaticity diagram with axes of u’ (reddish-greenish) and v’ (yellowish-bluish).
The colored horseshoe gives an approximate orientation to the location of colors on the
diagram and indicates the physical limit achievable by visible light. The triangle shows
the sRGB red, green, and blue primaries and the chromaticity gamut they enclose. White
colors lie in the middle, and the standard white point D65 is labeled. On a chromaticity
diagram, points add linearly, meaning that the light resulting from a mix of the sRGB
red and green primaries must lie along the line connecting them, located proportionally
between them according to their relative intensity.

Often a display is asked to display a color which lies outside its gamut, most often
because the gamut does not enable reproduction of the entire range of a standard encoding
like sRGB. In this situation, a decision must be made to choose which in-gamut color to
display in place of the requested out-of-gamut color. Options range from hard clipping,
where out-of-gamut colors are simply clamped to the edge of the real gamut, to elegant
mapping strategies which preserve color differences and smoothly compress colors as
they near the gamut edges. In general, gamut-mapping, the intentional distortion of
colors to account for differences in gamut, is used between different types of media (i.e.,
displays and printers) and between encoding standards and real devices, as described by
Morovič [16].

1.2 Display Technology

Displays, for entertainment and information, come in many forms. At the present moment,
flat panel liquid-crystal displays (LCDs) are firmly dominant in the desktop- and television-
sized display markets, having recently displaced cathode-ray tube (CRT) displays and
fought off the advances of plasma displays and rear-projection displays. Further, LCDs
have actually enabled whole classes of inexpensive and thin mobile devices. Organic
light-emitting diode (OLED) displays have been in development for more than a decade
and have made some inroads in mobile devices but so far have not been successful in
desktop or television sizes. Of course, any attempt to say what is typical or contemporary
in the fast-moving display industry becomes out-of-date nearly immediately, but for the
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1.2. Display Technology

Figure 1.7: RGB system gamut. A CIE 1976 u’v’ chromaticity diagram showing
the chromaticity gamut triangle of an additive RGB display system with the Rec.
709 primaries and display white point D65. In a chromaticity diagram, the sum
of two physical light sources lies along the line joining them, proportional to the
relative power of each. Thus, colors within the triangle are enabled by the display,
while those outside are not. Note that a chromaticity diagram is only a top-view,
ignoring the luminance dimension, and the chromaticity gamut boundary is only
attainable at a specific locus of luminance values. The gamut volume shrinks to
a white point at the bright end of the display’s range.

purposes of this thesis a baseline display is considered to be a television-sized IPS LCD
with a fixed fluorescent backlight and sRGB color gamut of vintage circa 2007. Such a
display is described in the context of the ever-changing market by de Vaan [17], who also
mentions several of the advanced display technologies studied in the coming chapters.

1.2.1 Liquid Crystal Displays

The LCD gets its name from its core element: a liquid crystal (LC) cell that can affect
the polarization of light. Sandwiched between complementary polarizing filters and
responsive to an electric field, the LC can attenuate light over an intensity range on the
order of 1,000:1, thus providing an adjustable light valve to modulate the backlight behind
it. Many different LCD implementations exist, varying in the placement of electrodes,
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direction of the electric field, orientation of the front and back polarizers, and orientation
of the LC material as constrained by rubbed polymer alignment layers. LC cells can be
shaped like individual icons, as in a calculator or a digital watch, or they may be arrayed
in large numbers in order to make a general-purpose display. Details of the components
and design of modern LCDs can be found in textbooks by Lee et al. [18] and Chen [19].

The technology of the LC itself as well as the surrounding addressing and control
hardware have been improving steadily since the first LCDs emerged in digital watches in
the 1960s. A fascinating history of the development of LCD technology spanning several
decades is provided by Kawamoto [20]. The classic implementation, or mode, of LCD,
twisted-nematic (TN), uses electrodes sandwiching the LC material to turn the molecules
perpendicular to the substrate. Depending on the orientation of the polarizers, the LC cell
may be transparent in either the on or off state. TN can only attenuate light strongly in a
perpendicular direction, resulting in light leakage off-axis and with it the characteristic
contrast loss when viewed at different angles.

Other LC modes were designed to alleviate this angular dependence, including
vertical-alignment (VA) and in-plane-switching (IPS). In VA mode, the LC molecules stand
perpendicular to the substrate when voltage is off, producing a a very dark black, and
rotate to parallel to the substrate when voltage is on, allowing light to pass. IPS LC
material is rotated entirely in parallel with the substrate by electrode pairs that are both
on the same side of the LC cavity. Without voltage, the molecules align according to their
rubbed polymer substrate, and when voltage is applied in the plane, molecules rotate
further depending on distance from the electrodes and create a twist through the height
of the LC cavity that affects polarization. The result is a dark black that is very insensitive
to viewing angle. An IPS example using crossed polarizers is illustrated in Figure 1.8,
showing one pixel open and one closed.

Driving the pixels of a display is a complicated feat. Small pixel arrays can be driven
via passive matrix (PM) addressing, which involves row-wise electrode lines on one side
and column-wise electrode lines on the other. These lines are activated one row at a time
in a fast-scan (typically horizontal) direction and a slow-scan direction (vertical) at a pace
that defines the displayed frame rate. Each pixel receives electricity when its combination
of row and column lines are activated, so the pixel may be controlled only 1/R of the time,
where R is the number of rows of pixels.

A modern television-sized LCD typically takes the format of high-definition, or HDTV,
with 1920 columns of 1080 pixels each, usually with three (red, green, and blue) subpixels
per pixel. Thus, there are about six million addressable pixels, each RGB trio of which is
roughly half a millimeter square on a 42 inch diagonal display. Both because of the sheer
number of pixels and because of many image quality benefits, large modern displays are
driven with active-matrix (AM) addressing in which every subpixel has its own dedicated
switching circuit consisting of a set of transistors and a charge-holding capacitor in a
thin-film-transitor (TFT) backplane made of amorphous or polycrystalline silicon. AM
displays have row and column lines for both power and control, and because of the TFT
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Figure 1.8: IPS LCD diagram. Illustration of the open (left) and closed (right)
states of in-plane switching (IPS) liquid crystal cells. The backlight sends light
upward from the bottom of the diagram, through the rear polarizer and the TFT
control circuitry. The twisting (left) and aligned (right) LC cells are illustrated
with ovals representing molecules. Both cells send light through the color filter
layer, but only the light in the left cell, whose polarization state has been twisted
by the LC, is allowed through the front polarizer.

circuits, each pixel can maintain its state between addressing cycles.

The mention of RGB subpixels is important. With rare exceptions, displays distribute
their color primaries spatially, so that any physical point on the display is uniquely red,
green, or blue. Because the subpixels are so small, they are integrated by the HVS and the
spatial separation between them is not perceived. That being said, they are usually just
on the edge of visibility, so that the physical subpixel layout can be important to image
and especially text sharpness. In fact, the spatial separation provides an opportunity for
enhanced resolution via subpixel interpolation algorithms, as discussed in depth in the
thesis of Klompenhouwer [21]. Most current LCDs use a rectangular grid of square pixels
divided into three equal portions corresponding to RGB, and subpixel addressing for text
is provided standard in computer operating systems.

Even with all of the advancements to date, the liquid crystal display system remains
imperfect. As a light valve-based system, it is inherently inefficient because the backlight
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is brighter than the resulting image, and the backlight is always on, regardless of the
requirements of the image content. The contrast range of the LC limits the displayable
image contrast and tends to worsen as it is viewed off-axis because of its angular sensitivity.
And, the color range provided by LCDs is limited either by the color primaries chosen
or by the fixed boundary of standard image encodings such as Rec. 709. Of course,
such challenges have kept research labs throughout the display industry busy brewing
interesting new solutions.

1.2.2 Advancements in Display Technology

With the limitations of LCD well known, and the unstoppable progress of technology,
many new technological ideas are beginning to find their way into the domain of displays.
Of particular interest to the present work are segmented LCD backlights, which are
addressable at a resolution lower than the LC panel, but higher than a single, fixed
backlight; organic light emitting diode (OLED) displays, which obviate both the backlight
and the LC light valve by generating light at each pixel directly; and wide color gamut,
enabled either by wide-gamut RGB displays or multiprimary displays. There are many
other display advancements that will not be discussed in this thesis, such as high frame
rates, ultrahigh resolution, sequential-color, angular-dependence reduction, etc., all of
which could be approached with the methods described herein.

Segmented Backlights

The very idea of a fixed backlight, which is simply “on” regardless of the image being
shown on the display, is recognizably inefficient, yet with older backlight technology,
which could not switch quickly, it was the only possibility. In the mid-2000s, fast-switching
backlight technology, both fluorescent and LED-based, enabled dimmable and scanning
backlights and started a trend toward backlight segmentation and addressability with
advantages for both image contrast and motion portrayal [22].

A major step forward was made by Seetzen et al. [23, 24], in the form of a segmented
backlight, first as a proof-of-concept involving a projector as a backlight, and then as
a more practical implementation using an array of LEDs to turn the backlight into a
relatively low-resolution display behind the high-resolution LC panel. With this system,
low-frequency patterns of light and dark are made entirely by the segmented backlight,
and the high-frequency details are filled in with the LC. The result is extremely high
contrast capability on a large scale, but much more limited (equal to the LC’s inherent
contrast range) on a small scale. Thus, choosing the number, shape, and luminance
profile of the backlight segments is not trivial; in fact, it is essential that such choices be
addressed with a perceptual understanding as promoted by this thesis.
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OLED Displays

The first OLED cell, a single “pixel” of light-emitting material, was reported by Tang and
Van Slyke of Eastman Kodak Company in 1987 [25]. It took another decade until this
concept could be made into an actual RGB OLED display, both with passive-matrix [26]
and active-matrix [27] addressing. Compared to LCD, OLED illustrates the conceptual
extreme of segmented backlights: a backlight segment for every subpixel, in which case
the backlight segment becomes the pixel, obviating the liquid crystal entirely. With this
step comes some interesting advantages and lower system complexity, albeit with some
new complications.

One complication is the difficulty of accurately patterning and aligning separate
red-, green-, and blue-emitting OLED materials onto the substrate during manufacturing.
An alternative arrangement, manufactured with an unpatterned white-emitting OLED
material and using a color filter array similar to that used in LCDs to create colors, was
possible. But, this W-RGB system was rather inefficient because most of the light being
generated was thrown away by the RGB filters. A major efficiency gain was found with
the use of pixels of unfiltered white in addition to RGB, making a four-primary W-RGBW
system, as explained by Arnold et al. [28]. Because they generate light at each pixel
only when needed, the advantages of using RGBW is much greater with OLEDs than with
light-filtering LCD or projection displays. The efficient and easy to manufacture W-RGBW
OLED architecture persists today as the first television-sized OLED displays have begun
to emerge. Utilizing the fourth primary properly is a perfect example, explained in this
thesis, of how a technological advancement provides an opportunity that may be used
well or poorly depending on how perception knowledge is applied.

Wide Color Gamut

Regardless of the display technology, the choice of color primaries determines the color
gamut, or the range of colors that a display is capable of reproducing. Choosing purer
colors enlarges the chromaticity gamut, and adding additional primaries beyond the
requisite three can open up new areas of color space in the gamut. The effects on the
chromaticity gamut of these two approaches are shown in a chromaticity diagram in
Figure 1.9. Using very saturated (pure) RGB primaries has less impact on the overall
display design than adding additional color channels. However, because the chromaticity
gamut remains triangular, the purity must become extreme in order to gain appreciable
gamut area, which also generally means lower luminance for the same power input.
Wide-gamut RGB displays may be made with RGB LED backlights [29] or with more
selective color filters combined with either white LEDs or fluorescent backlights.

Realizing that a triangular chromaticity gamut can be made more round and spacious
by adding more vertices, a multiprimary display may be made. Conveniently, extremely
saturated RGB primaries are not necessary when they are augmented by additional
primaries. However, using more primaries complicates the display design by requiring
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Figure 1.9: Wide gamut systems. A CIE 1976 u’v’ chromaticity diagram show-
ing the chromaticity gamuts of two hypothetical wide-gamut displays providing
more coverage than the Rec. 709 gamut shaded in gray. The red triangle shows
a wide-gamut RGB display gamut that has expanded area because of extreme
saturation of each primary. The blue polygon shows the resulting gamut of a
6-primary display system with more moderately saturated RGB primaries but
which expands its gamut through the use of additional cyan, magenta, and yellow
(CMY) primaries.

physical subpixels for these new colors [30], either reducing resolution in the process
or increasing pixel density and cost, and it necessitates additional image processing to
address these new color channels. As discussed by Roth et al. [31], either approach to wide
gamut generally comes at the cost of lower efficiency, and because the resulting display
has primaries different from the color primaries expected by typical image encodings,
careful image processing is needed to properly use it. Thus, wide-gamut displays provide
another excellent topic for the approach discussed in this thesis.
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1.3 Relating Perception to Technology

In the development of any technology that will be directly used by humans, it is important
to understand how it will be used, what will be important to the user, and how the limits
of the senses – vision, hearing, and touch, primarily – affect what is visible, audible, and
tangible in the technological implementation.

How bright must a brakelight be to clearly signal that a car is stopping? How
quiet should a CD player mechanism be to not distract from the music? How
tall must the little bumps on the “F” and “J” keys be to facilitate a typist’s hand
orientation without looking?

Display technology is intended primarily for the visual sense, and thus the perception
topics being discussed are all visual. Further, requiring more than simple detection tasks
like those required for brakelights, displays are designed to convey images for information
and entertainment. Thus, the image quality of a display (or actually, of the entire imaging
chain that ends with a display) commands primary interest. What is image quality exactly?
A range of interpretations can be found. At the technical, signal-processing end of this
range, some definitions refer to the “fidelity” of an image with respect to an original
or the real world; such definitions seem well-suited to describe degradations of image
content. At the other end of this range, very human-centered definitions refer to general
“excellence” or mention the context or observer expectations. In this category we find a
favorite definition of image quality from the PhD thesis of Judith Dijk [32], whose concise
honesty necessarily focuses on the human and acknowledges that most human responses
are tempered by internal expectations:

Image quality is the extent to which the image corresponds to the internal
expectation of the human observing the image.

Indeed the range of choices for defining image quality implies some structural
relationships. For example, de Ridder and Endrikhovski [33] propose that the relative
importance of aspects such as fidelity, usefulness, and naturalness is affected by the context
in which an image is viewed. It seems logical that the most human-centered definition of
image quality includes the other aspects in its cognitive sum, including fidelity, context,
expectation, and purpose. In the next sections, a structured way of thinking about how
the technological choices involved in display design can affect the perceived image, and
thereby the impression of overall image quality, is presented.

The next step is to quantify image quality, which may only be done via the subjective
opinions of real human observers, each of whom may have their own biases and ideals.
To many physical scientists, the idea of quantifying a subjective response such as human
opinion seems impossible, but in actuality overall quality or any of the underlying per-
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ceptual attributes may be measured easily enough with well-controlled experiments and
proper methodologies.

1.3.1 Quantifying Perceptual Attributes

Image quality is generally understood to be a mental integration of the quality of multiple
contributors. In his text, Peter Engeldrum [34] provides a helpful framework, describ-
ing perceptual attributes as perceived impressions of the characteristics of an image
which contribute to overall image quality. Examples include sharpness, colorfulness,
and brightness, which explains why he playfully calls perceptual attributes “the nesses.”
By definition, perceptual attributes are perceived by an observer, but indeed they may
be related to measurable quantities. For example, the sharpness of an image may be
predicted based on the physical characteristics of the pixels or ink dots that comprise it. It
is important to remember that people are seldom unanimous in their opinions: practically
speaking, there is a distribution of responses over a population of observers, and even
over multiple observations by the same observer. For these reasons, perceptual attributes
are necessarily quantified by asking a sampling of people their opinions in a controlled
way and aggregating their responses. Engeldrum’s text outlines many of the relevant
concepts of psychometric methods and analyses.

Psychometrics

An example that is relevant to Chapter 2 is the visibility of differences in the black level
of images. As is often the case for fine perceptual measurements, images are presented
in randomized pairs, one image the reference and the other varying in the attribute of
interest – in this case, the luminance of the blackest portion of the image. The observer’s
task is to choose the image with the darker black, and because it is “forced-choice,” if
the difference is not seen he or she must choose one randomly. If the difference is very
large, then observers will reliably see it and indicate so; likewise, if the difference is
zero or close to it, then observers will reliably not see it and be forced to guess. In
the interesting region between, the frequency with which observers see the difference
increases with the size of the difference. The monotonic relationship between the intensity
of a stimulus and the probability of detection is a psychometric function, an example of
which is shown in Figure 1.10. As shown in the figure, a sigmoid shape, in this case the
normal cumulative distribution function, is transformed to the probability range [0.5, 1.0],
which is typical for difference-detection tasks such as paired-comparison experiments.
The visibility threshold, which defines a just-noticeable difference (JND) is found at the
stimulus level where p = 0.75. If instead a basic detection task is used, in which the
probability of detection when the stimulus is very low actually approaches zero, then the
function range is [0.0, 1.0] and the threshold is at p = 0.50.

The methods used to generate such a relationship vary depending on the attribute
under study and the efficiency and accuracy required. In many cases, rather than the
entire psychometric curve, what is needed is simply an estimate of a threshold. This can
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Figure 1.10: Psychometric function for difference detection. This example
curve shows the probability of detection versus the intensity or amount of a
stimulus for a difference-detection task such as is common in imaging. The red
dots show, for various levels of the stimulus, measured frequencies of detection
averaged over multiple observers. The black curve is a normal cumulative
distribution function (erf) fitted to these data. At low levels of the stimulus (far
left), the probability of detection is 0.50, because observers reliably don’t see it
but guess correctly half the time. At high levels of the stimulus, observers see
it consistently (p = 1.00). The stimulus intensity corresponding to p = 0.75 is
taken as the visibility threshold – the point at which half the observers see it, or,
similarly, the point at which a given observer has a 50-50 chance of seeing it.
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be made with various levels of effort and accuracy. For example, a preference threshold
can be estimated quickly and roughly with a tuning task in which each observer looks
at single-stimulus images in sequence and adjusts an image parameter freely until he or
she is satisfied – this is especially useful when there are many images to be considered
and efficiency is important. For a more precise measurement of a threshold, a series of
forced-choice paired comparisons driven by staircase logic, in which the magnitude of the
stimulus or difference is decreased when the observer correctly indicates seeing it and
increased when he or she doesn’t, converges to a threshold with fewer measurements
than would be necessary to estimate the whole psychometric function.

In some cases, rather than a difference or detection threshold, scale values on an
interval scale are desired to quantify differences between stimuli. Observers can rate
stimuli directly on a discrete rating scale, providing a quick response that is fairly accurate
when averaged over many observations and which can be treated with care as interval
data. Or, with more effort and also more precision, paired comparisons can be made
among all combinations of a set of images. Over many observations, a frequency matrix
summing how many times each image is chosen over each other image can be translated
to an interval scale corresponding to relative quality. Such psychometric methods are used
in a variety of experiments in the course of this thesis, and further details are explained in
each chapter as necessary.

Objective Metrics

A measured perceptual response may be described or modeled by an objective metric,
which is a quantity that may be computed directly from either image data or system pa-
rameters. Objective metrics may describe individual perceptual attributes or approximate
the overall image quality of a system or image. They are invaluable for system design
because they provide a venue for the reuse of psychometric data, giving a perceptual
correlate directly rather than requiring constant cycles of experimentation as the system
evolves. A good example (though one that is not used further in this thesis) of an objective
metric which relates physical display characteristics to a single perceptual attribute is
motion picture response time (MPRT), which describes motion blur in a display. MPRT
can be either derived from the physically-measured blurred edge of a moving object on
the screen [35] or computed from display characteristics [36], and it has been shown
to correlate well with perceived motion blur [37]. Thus, MPRT has proven useful in
characterizing the motion blur characteristics of different displays – replacing the older
metric of liquid crystal response time (LC-RT) which describes only the speed of the LC
itself and doesn’t correlate very well with perceived blur – and accurately showing the
value in motion-blur reduction of pulsed and scanning backlight techniques.

Unfortunately there are many examples of poor objective metrics, meaning that
they do not correlate well with a perceptual attribute. One such metric, used to describe
the size of a display’s chromaticity gamut, is %NTSC. This metric is simply the ratio
of the area of the display’s chromaticity gamut in CIE 1931 xy chromaticity space to
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the area of the standard NTSC gamut, expressed as a percentage. Indeed the metric
increases monotonically with display gamut area, but it has a number of flaws: the
xy chromaticity space is not perceptually uniform, which means the relative value of
different colors is misrepresented; it does not take into account gamut overlap, which
means that only size matters, not how much of the NTSC gamut is covered; and the
NTSC baseline itself was obsolete nearly immediately after it was enshrined into American
law in 1953 by the National Television System Committee (NTSC) [38]. Ben Chorin
et al. [39] provide criticism and an alternative; yet, %NTSC is commonly listed in TV
and monitor specifications and even used to market wide-gamut displays with typical
bigger-is-better oversimplification for the consumer market. Chromaticity gamut size and
shape preferences are studied later in this thesis, and %NTSC will not be used to quantify
or describe the gamut results.

At one level higher, objective metrics are sometimes used to quantify overall image
quality rather than single perceptual attributes, but these quality metrics must be used
with care as they typically correlate with perceived quality only over a small range of
system parameters or only within a given class of algorithms. An example is peak signal-
to-noise ratio (PSNR) [40] which can be used to quantify the visual artifacts resulting
from image compression algorithms. PSNR correlates well with perceived quality over a
range of compression amounts, but is known to fail when comparing across compression
methods.

Objective quality metrics like PSNR don’t generalize well because they don’t include
all relevant imaging system parameters and don’t sufficiently model the characteristics of
the human visual system. Accounting for the cumulative effects of different perceptual
attributes requires an image quality model.

1.3.2 Image Quality Models

Throughout the history of the development of imaging systems, there has been a desire to
predict image quality from knowledge of system components. However, image quality
models have consistently proved difficult to build. There is a general understanding
that overall image quality is an integrated sum of many perceptual attributes, each of
which may be affected by the components of the imaging system, yet there remains no
general, robust formula for image quality as a function of its parts. What we do have
are approaches to image quality modeling that may be applied to specific systems or
situations. Note that a related branch of image quality research studies computational
measures for image quality that apply trained machine-learning algorithms to images to
predict the human-perceived quality, but this empirical fitting approach is less interesting
to the present thesis than system quality models.

One conceptually excellent approach provided by Engeldrum is the Image Quality
Circle [34], shown in a diagram in Figure 1.11. Engeldrum realizes that the ideal goal is
to know how technology variables, meaning characteristics of the materials or electronics
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Figure 1.11: Image Quality Circle. The Image Quality Circle as described
by Engeldrum. The relationship between the right and upper blocks is often
desired, as this enables the choice of technology based on overall quality, but it is
impossible to model generally. The long way around, from right to lower to left
to upper, may be generalized, and thus is worth the effort to understand.

of the system, affect overall image quality, but that studying this relationship directly
is not generalizable because the details of exactly what about the perceived image is
affected by the technology are not uncovered. Without such details, every technology
update requires new human observations of image quality, resulting in an endless cycle as
technology changes.

Instead, the Image Quality Circle approach is to take the “long way” around the
circle, by first understanding how technology choices affect physical (measurable) im-
age characteristics, then understanding how physical image characteristics are seen by
observers in terms of perceptual attributes or “nesses,” for example sharpness and colorful-
ness, and finally understanding how the “nesses” sum to overall image quality. A valuable
aspect of this structure is that the latter relationships (between perceptual attributes
and overall quality, and between physical image parameters and perceptual attributes)
can be technology-independent. For example, if it is understood how perceived image
contrast affects overall image quality, it does not matter whether the contrast is affected
by a new liquid-crystal design, a new reflective coating on the display, or something else.
This full-circle approach was utilized successfully for characterizing display artifacts and
communicating specifications in a meaningful way by Teunissen [41].

A very rigorous image quality framework is provided by Keelan [42]. In his full-
system approach, the contributions to overall quality of individual attributes and artifacts
(i.e., sharpness, blockiness, etc.) are measured separately, anchored to a known, physical
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scale. Then, a multivariate system image quality model is constructed which can compute
image quality as a “sum” of each of these perceptual attributes. Crucial to this approach
is the binding of every experimental result to a consistent anchor of known quality such
as a set of ruler images of measured overall image quality. Keelan makes heavy use of a
sharpness ruler containing images whose overall quality is affected by sharpness – typically,
starting with a “perfect” image and degrading each sample in the ruler with increasingly
aggressive blur filters. Other artifacts can then be compared by human observers against
the sharpness ruler, with the observer choosing the “lesser of two evils,” for example
weighing jpeg artifacts versus blurriness.

In order for this approach to succeed, it is important that all of the contributing
attributes and artifacts are known, or else the overall model will be incomplete and quality
possibly over-estimated. Importantly, it begins from the perspective that there is an ideal
imaging system that may be approximated in practice at a lower quality level, which
is obviously helpful in assessing the impact of things like production variability, errors,
and cost-down system changes – but, it seems more difficult to apply this perspective
to ever-improving imaging systems such as displays. Keelan’s rigorous, time-consuming
approach may be well worth the effort for the long-term development of an imaging
system whose failure modes are well-known. But, for many practical questions, it is
unnecessarily burdensome, and because it cannot easily include trade-offs unrelated to
image quality, such as cost or power consumption, even a detailed system model may
never be sufficiently complete.

1.3.3 A Practical Approach to Display Design

For the assessment of the added value of a new technology, a practical, straightforward
understanding of how system quality or preference is affected by the main variable(s)
of that technology is sufficient, and this may be found efficiently and communicated
effectively. Technology improvements come in a long series over time, not all at once, so
they may be studied individually as they come. And, often many aspects of the whole
imaging system are fixed and standardized, so it is beneficial to focus only on the part
that is being changed. Because the implementation of a new technology is typically
parameterized in some way, the design decisions involve not simply whether, but how and
to what extent to use it for greatest human-centered advantage.

It can be helpful to look back to the Image Quality Circle in Figure 1.11 and realize
that in many cases only a portion of this full circle is needed. The approach taken
throughout this thesis may be described generally as follows:

• Determine the most important perceptual attribute affected by the technology
variable under study.

• Measure or model the physical image characteristics that are modulated by the
technology variable.

• Measure or model observers’ perceptual response to a relevant range of visual
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stimuli modulating the physical image characteristics corresponding to the
technology variable.

• Model the measured perceptual response as a function of the technology
variable, and communicate the modeled relationship to enable an informed
technology choice.

The result of such an approach is always a direct answer to the question about
whether or how a new technology should be best implemented. In almost every case,
the answer is a relationship, for example a description of the image quality degradation
associated with a key parameter of a new power-saving scheme. In these cases, a simple
answer is not enough, but the whole relationship must be communicated clearly to
enable decisions later in the product-development chain weighing such a visual quality
cost against other benefits not associated with visual quality. The approach is efficient,
focusing on identifying the most important perceptual effects without unneeded structural
burdens, and effective, providing a useful understanding of the relationships in order for
technology choices to be made.

1.4 Outline of this Thesis

This thesis includes a detailed look at the perceptual implications of the application of
three advanced display technologies. In each of these examples, the primary perceptual
attribute is identified and a relationship between it and the image characteristics that
affect it is created through psychophysics and subsequent modeling.

High dynamic range LCDs: Segmented-backlight LCD technology can provide ar-
bitrarily high contrast over large spatial areas, but always with some restricted
amount of contrast over small spatial areas. Chapter 2 describes the quan-
tification and modeling of the human visual system’s ability to see details in
dark regions while impaired by glare from neighboring bright regions, which
enables the design of segmented backlight tailored to provide as much contrast
as is visible, but no more.

RGBW OLED Displays: OLED displays utilizing white-emitting OLED materials
can be made substantially more efficient with the use of an unfiltered W
primary in addition to the typical R, G, and B primaries. Chapter 3 outlines
a general algorithm for the color processing required for a fourth primary
of arbitrary color with no visual impact on the display’s color reproduction,
relying on the additivity of light and the visual principle of metamerism.
This algorithm was used successfully in several generations of OLED display
prototypes and is embodied in some form in current OLED displays for mobile
devices and televisions. Even greater power efficiency can be gained by
reducing the maximum luminance of the RGB primaries, and a study that
relates the resulting loss of image quality to the reduction in primary luminance
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is described in Chapter 4. This relationship may be used to select a tradeoff
between power efficiency improvement and image quality reduction.

Wide Gamut Displays: Display technology has advanced sufficiently to enable the
creation of arbitrarily-large color gamut. Such capability could be immediately
advantageous as part of an entirely new imaging system; however, because a
world of existing image and video infrastructure conforms to typical industry
standard color encodings such as Rec. 709, taking advantage of wide gamut
requires boosting the color of the input images. Chapter 5 explains a preference-
based approach in which the gamut boundaries are inferred from the desired
or tolerated amount of color boost in a perceptual study using a wide-gamut
RGB LCD. This approach is extended in Chapter 6 in an additional study,
through the use of hue-preserving boost algorithms and a multiprimary display,
resulting in a relationship between gamut size and preference over the observer
population. This relationship enables the quantification of the relative value of
regions in the chromaticity gamut, and thus the added value of any proposed
wide-gamut display.

The three topics are presented in this order, which is not chronological, with a small
nod to one of my early mentors in imaging system modeling and design. He always
insisted that we get the neutral tonescale straightened out first before working out the
details of color. It seems natural then to start with contrast, whose luminance-only details
were studied in neutral black-and-white, move on to accurate color and slightly distorted
color for RGBW OLED, and finally on to enhanced color for wide-gamut displays. Each
chapter includes its own list of relevant references.

Chapter 7 wraps up the thesis with a review of the major points presented and some
conclusions regarding the effectiveness of the proposed framework in display design. A
retrospective critique and a forward-looking proposal are provided.
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2

Perceived Contrast in High Dynamic Range
Displays

Abstract

A perceptual experiment was conducted to measure the visibility of black-level
differences in the proximity of a bright glare source. In a controlled viewing environ-
ment, visual difference thresholds were adaptively measured using dark, shadow-detail
images shown on a high dynamic range liquid crystal display while an external LED
lamp was used to induce intra-ocular glare over a small range of eccentricities. This
high-contrast situation is relevant to HDR displays which may have bright regions in
displayed images as well as to viewing environments which include lamps or other
light sources. The resulting difference thresholds are modeled with a combination of
the CIE total glare equation, the DICOM contrast visibility model, and a new estimate
of adaptation luminance. 1

2.1 Introduction

Technological advances continue to allow brighter and higher contrast displays. One
example of such technology is the class of high dynamic range (HDR) segmented-backlight
LCDs as introduced by Seetzen et al. [1]. The general concept of these displays is a two-
part system, consisting of a low-resolution, segmented backlight (i.e., a grid of addressable
LEDs) behind a high-resolution liquid crystal display. With a segment’s LED(s) turned
off, the luminance in that region can be essentially zero, while with the LED(s) on and
the LCD in the transmissive state, the luminance can be very high (tens of thousands
of cd/m2), thus enabling an arbitrarily high contrast ratio. Such high contrast may be
achievable at the same moment at a large scale, such as across the width of the display.
However, because the backlight segments are larger than the display pixels, neighboring
pixels can never achieve such a high contrast. Within a small region of the display, it

1This chapter has been published in the Journal of the Optical Society of America A, Volume 29, Number 4,
559-566 (2012): "Veiling Glare and Perceived Black in High Dynamic Range Displays," Michael J. Murdoch and
Ingrid E. J. Heynderickx.
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behaves much like a fixed-backlight LCD, in which the contrast is limited by the dynamic
range of the LCD itself. Thus, local luminance errors, known as halos, may result. Halos
may be either lighter or darker than the intended luminance, but in general are areas of
reduced luminance contrast.

Fortunately, early in the development of HDR displays it was recognized that the
limits of the human visual system meant that such localized contrast range reduction
actually did not matter to the perceived image when viewed from a normal viewing
distance. The main reason for this is glare within the eye, caused by intra-ocular reflections
and scattering, which lowers contrast on the retina in the proximity of bright light sources.
The International Commission on Illumination (CIE) has published a general equation for
the effect of intra-ocular glare, which has a general shape of 1/θ 2, where θ is the angle
between the glare source and the eye’s fixation point in degrees [2].

Several authors have used descriptions of glare to create design rules for HDR
displays and to predict visibility of luminance errors. Seetzen et al. [1, 3] cited the glare-
induced impairment of detail perception near high-contrast boundaries as the limitation
of the human visual system that could be exploited in the construction of such displays,
but they did not quantify the reduction in visibility of image detail. McCann and Rizzi [4]
used the CIE glare equation to compute retinal contrast expected from high dynamic
range transparency stimuli. Uniform black and white patches resulted in retinal images
which were very nonuniform and relatively lower in contrast, yet qualitatively observers
still described them as uniform in appearance. Thus, they recognized that even with
well-modeled retinal contrast, the prediction of appearance is still elusive.

Several studies have focused on the optimal number and luminance profile of
backlight segments. Swinkels et al. [5] measured user preference simulating different
numbers of backlight segments using a double-LCD, and found that preference scores
increased up to about 2500 segments for a 30” display viewed at 2.4m. Langendijk
and Hammer [6] studied the relationship between physical black level and the spatial
frequency of image content for segmented-backlight LCDs with different numbers of
addressable segments. They applied the CIE glare equation to estimate the effective rise in
black level caused by glare from the image itself, and they concluded that an LCD with at
least 2048 backlight segments was comparable to an ideal HDR display (i.e. without the
spatial limitations of backlight segments). Langendijk’s modeling-based conclusions and
Swinkels’ experimental findings are similar, and they are corroborated by the successful
examples of segmented-backlight LCD prototypes.

Contrast range is determined by both the black and white luminances, and contrast
reduction often presents itself as a “lifted” black level. Because of the spatial characteristics
of segmented-backlight LCDs, the display black level can vary across the display and with
image content. Mantiuk et al. [7] studied the visibility and contextual interpretation of
black under varied ambient illumination. They measured threshold black level differences
and found that if the visual surround was increased in luminance or visual size, these
threshold differences increased sharply. However, they did not provide a general model.
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The goal of the present paper is to address a general answer to the question:
how black is black enough, at what distance from a bright region of the image? Two
components are critical to this understanding: the behavior of physical glare within
the eye and the visibility of subtle differences in the image which are affected by the
glare. Glare has been studied and modeled extensively. Visibility has been modeled in
low-contrast situations and in limited experimental conditions. Yet so far, a convincing
combination of both has not been made. This paper first explains these two models, then
details an experiment designed to test visibility over a variety of black-level and glare
conditions. Finally, a model incorporating glare, visibility thresholds, and a new, necessary
adaptation component is provided and verified.

2.2 Models

2.2.1 Glare Model

Because of the imperfect optics of the human eye, not all incident light is properly
projected onto the retina. Light may be lost in absorption, blurred by the imperfect lens,
or scattered and/or reflected by the eye’s components. Glare refers to the optical scattering
and reflection of light within the eye that spreads incident light onto the “wrong” part
of the retina, the main effects of which are the lowering of contrast and the hindrance
of the visibility of shadow details. The term veiling glare describes the perceived effect,
which is much like viewing the world through a thin white veil. Veiling glare has been
quantified experimentally as equivalent veiling luminance (EVL). For example, if a viewer
observes a dark alleyway at night, the presence of a streetlamp will cause veiling glare,
which hinders the perception of shadows. The equivalent veiling luminance is literally
what it says – the amount of luminance added uniformly to the physical scene (i.e., the
thin white veil) that would result in an equivalent contrast reduction. Veiling glare always
lowers contrast, defined most generally as a ratio between light and dark, because it is
added uniformly to all light and dark regions of the scene.

CIE 135/1 [2] defines several glare equations which are functions of the visual
angle between the glare source and the eye’s viewpoint, as well as of the age and
eye coloring of the observer. The CIE Total Glare Equation, which combines empirical
measurements of human optical performance from very small (arc minutes) to very large
(100°) visual angles, is roughly similar to 1/θ 2 over a broad range of θ , with the age
and pigment parameters having relatively minor effects at angles above 2 degrees. The
equation provides EVL in cd/m2 per unit of illumination on the eye in lux, meaning it
can be thought of as providing the angle (and age and pigment) dependent scale factor
to convert illuminance incident on the eye from a glare source into equivalent veiling
luminance.

For a streetlamp example, the lamp may be easily treated as a point source at a
single visual angle from the fixation point, and the resulting EVL can be added to the
luminance of the scene as measured from the location of the eye. The EVL of multiple
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Figure 2.1: DICOM curve. DICOM perceptually-uniform luminance differences,
in percent luminance, as a function of average luminance. Beyond the right edge
of this plot, the steps reach a minimum of about 0.8% at 200 cd/m2, and then
rise slowly with higher luminance.

light sources can be added linearly, and extending this the EVL contribution of every point
in the scene may be considered by integrating over the entire field of view. For display
applications, the EVL resulting from the illuminance reaching the eye from every point
on the display may be integrated, and if desired, the EVL due to illuminance from the
surrounding room can be added.

2.2.2 Contrast Visibility Model

The human visual system’s ability to discern luminance differences has been quantified
by the notion of contrast sensitivity, i.e. by finding the detection thresholds of luminance
differences at different spatial frequencies. Barten [8] provided a well-known signal-to-
noise based model of contrast sensitivity that provides a good fit to a variety of earlier
experimental data sets. The model gives the modulation threshold as a function of spatial
frequency, luminance, and image (or object) size. As such, it is well-suited to synthetic
patterns such as sinusoidal gratings, but it remains difficult to apply to natural images
and scenes.
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Barten’s model was adapted to a very specific visual task in the creation of the DICOM
standard display function [9], designed to ensure that the steps between quantized gray
levels in medical imaging systems are distributed in a perceptually uniform way. DICOM
used a contrast-detection task involving a simple sinusoidal grating of 4 cycles per degree
of visual angle, cropped to 2x2 degrees and surrounded by a uniform luminance equal to
the mean of the sinusoid. The Barten model was used to predict the visibility threshold
in terms of amplitude of the sinusoid at different average luminances ranging from
0.05 to 4000 cd/m2. Over a wide luminance range, contrast sensitivity peaks near 4
cycles/degree, so DICOM conceptually describes a conservative estimate of the contrast
threshold, i.e. the size of the smallest detectable luminance difference, as a function of
average luminance. In the low-luminance range especially interesting to the present work,
the threshold luminance differences are between 2 and 10% of the average luminance,
as shown in Figure 2.1. Even though it was designed for a very specific imaging target,
DICOM provides a model of visibility that may be applied with caution to other situations.

2.3 Laboratory Setup

The laboratory setup consisted of three components: a high-contrast display, a glare
source, and a viewing box. The display was used to create visual stimuli for the paired
comparison staircase task. Near the display, in the same visual field, a LED luminaire
was used to create a bright point of light to act as a glare source, inducing veiling glare
in the eyes of the observer. The glare source was decoupled from the display in order
to allow extremely high luminance differences between the glare and the display black,
as well as to eliminate any possibility of flare within the display itself. The arrangement
simulates either a situation in which the glare is part of the image on an HDR display
or a situation with an external glare-inducing light source. To control light reflections,
eliminate ambient light, and create a controlled viewing situation, a viewing box was built
around the display and glare source with black baffles to trap stray light and a chinrest to
fix the observer’s position.

2.3.1 Double-LCD Monitor

The experiment utilized a FIMI-Philips 18” SXGA (1280×1024) monochrome medical
imaging monitor, with two liquid-crystal (LC) panels in series in front of an adjustable
fluorescent backlight. The display’s luminance output was carefully characterized, and its
spatial and temporal inconsistencies were measured and controlled. Spatial luminance
errors did not exceed 2%, and temporal fluctuations were controlled to a standard
deviation of 0.15%.

The main feature of the double-LCD is its extremely high contrast. The two LC
panels in series provide over 5 log units of luminance range, with a contrast ratio of
approximately 40,000:1. The display’s backlight was set to provide a relatively low
white point of 14.67 cd/m2, which resulted in an extremely dark black point of 0.0003
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cd/m2. Note that this black level was reliably measured above the minimum luminance
of the PR-680L spectroradiometer, 0.0002 cd/m2. Based on extensive characterization
measurements, a monotonic path in the 2D code value space (two 8-bit monochrome LC
panels) was chosen which provided a distribution of luminance levels roughly uniform
in ∆luminance/luminance and gave 511 discrete values, effectively 9 bits. Desired
luminance values were mapped through this path to select drive values for each image.

At a viewing distance of 75 cm, the display had 46.7 screen pixels per degree of visual
angle. The center region of 20x20 degrees (about 950 pixels square) was characterized for
spatial uniformity correction and used for the experiment. An image showing a 1-degree
grid on a white background was used for aligning the display measurements. A view of
the experimental set-up, including the visible portion of the display screen, the grid image,
image stimuli positions, and the external glare source, is shown in Figure 2.2.

2.3.2 Glare Source

A Philips Lexel LED DLM1100 downlight module, capable of 1000 lumen, was used as a
glare source near the display. Using a separate glare source ensured an extremely large
luminance contrast between the display and the glare source, allowing the emulation
of the highest-brightness, highest-dynamic range displays without the complications of
segmented backlights and potential uncertainties in light distribution. The LED module
had a flat diffuser surface which provided a uniform circular spot of about 6 cm in diameter.
For the experiment, this diffuser was masked with opaque black paper to provide a small
circular spot with area of one square degree of visual angle. The device’s light output
was characterized by measuring the luminance of the diffuser surface with the PR-680L
spectroradiometer. Luminance levels of 1,000 and 10,000 cd/m2 with a color temperature
of 4400 K, equal to the white point of the display, were used in the experiment.

2.3.3 Viewing Box

Because of the very low luminance levels used in the experiment, the experimental setup
was very sensitive to ambient light and reflections. Additionally, because of the desire to
model the complete visual field, an uncomplicated, preferably zero-luminance surrounding
was desired. For these reasons, a viewing setup was created with a black box, constructed
of matte black foam board, surrounding the viewer’s peripheral vision and incorporating
light traps to control stray light and reflections, thus controlling the entire visual field.
The surfaces visible to the viewer were all angled so that they were not illuminated by the
display or glare source. The result was a completely black visual field with the exception
of the 20-degree square display and the glare source immediately below it. The viewing
position was constrained at 75cm with a chinrest. A top-view of the interior of the box
itself is shown in Figure 2.3.
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Figure 2.2: Observer’s view. Photograph of the double-LCD taken from the
viewpoint of the observer, showing the 1-degree grid image on the center 20x20
degree region of the screen and the lit LED glare lamp at the bottom. The red
shaded squares show the possible positions of the image pairs at distances of 4,
7, and 10 degrees of visual angle from the glare source. The apparent “bloom”
around the glare source which is a result of flare in the camera looks remarkably
similar to the intra-ocular glare seen by the observers in the experiment.
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Figure 2.3: Viewing Box. Top view of the viewing box with its top removed in
a photograph (left) and in a diagram (right), showing the baffles (bold green)
which were angled so that the surfaces facing the observer were not illuminated
by the display. Similar baffles were used above and below the observer’s head, as
can be seen in the photograph. Also visible in the photograph, directly below the
display, is the box housing the LED glare source. The wide horizontal strip visible
is a structural member holding the baffles in place.

2.4 Experiment

An adaptive staircase methodology with paired comparisons was used to measure thresh-
olds for black level difference detection for several combinations of four experimental
factors: glare source luminance, glare source angle in the visual field, image luminance
and image content.

2.4.1 Adaptive Threshold Testing

The experiment was conducted using a two-alternative forced choice (2AFC, a.k.a. paired
comparison) methodology behind which a staircase rule was used to adaptively present
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stimuli to each observer. This means that in successive image pair presentations, one
image, randomly the left or the right, was always a reference image with maximally dark
black level. The other image (the sample) had a lifted black level, and the observer’s task
was to choose the image with the darker black. At the beginning of each staircase the
sample image had a very obviously lifted black level, nearly assuring a correct response.
With each correct choice of the reference image, the sample black level was lowered
closer to the reference image. With each incorrect choice, meaning the observer could not
distinguish the two black levels presented, the sample black level was raised. In general,
this type of staircase methodology converges to a threshold estimate. In this experiment, a
weighted up-down staircase [10] was used, meaning that the up and down step sizes were
unequal; setting their ratio to 1:3 forced the convergence to the X75 point, the sample
black level at which the observer was correct 75% of the time. In a paired-comparison
experimental set-up the X75 point can be assumed to be the level where an observer has a
50% chance of actually seeing the black level difference – which is the definition of a 50%
just noticeable difference (JND).

Each staircase in the experiment was allowed to proceed to 7 inversions, or changes
in direction due to the sequence of incorrect and correct responses. The step size was
halved after the first and fourth inversion to allow quick, rough convergence at the
beginning and precision at the end. The first three inversion points were discarded, and
the remaining four were averaged to result in the threshold.

2.4.2 Design

The experiment used four fixed factors in a partial factorial design. The factors were the
luminance of the glare lamp, the visual angle between the glare lamp and the image pair,
the average luminance of the images being presented, and the six images. Because for
obvious reasons the position of the glare source was fixed, the visual angle between the
image content and glare source was varied by vertically displacing the image pairs on
the display. Figure 2.4 illustrates the experimental conditions in a 3-dimensional space.
Conditions 2 and 3 can be thought of as baseline cases wherein the glare-free black level
threshold was determined for each image luminance. Conditions 4a, 4b, and 4c consisted
of visual angle variations at the high-glare, lower image luminance combination, and
likewise 5a, 5b, and 5c vary visual angle at higher image luminance. Conditions 6 and 7
included the lower glare luminance level at a single visual angle. Finally, Condition 1 (not
shown in the figure, with factor levels the same as 5b) was used as a training staircase to
familiarize observers with the test setup and paired comparison methodology, and was
not analyzed.

With the exception of Condition 1, which was always presented first in the experi-
ment, the presentation order of the remaining conditions was balanced over observers
to avoid any systematic influence of learning effects or observer fatigue. Within each
condition, staircases for all six images were conducted in an intermingled, randomized
fashion until they all reached completion, which made it unlikely that the observers could
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Figure 2.4: Experimental Conditions. Diagram of the experimental conditions
on axes of glare angle, glare luminance, and image luminance. Six images were
presented with each condition. Not shown, Condition 1 was a short training
staircase with factor levels matching 5b; it was excluded from the analysis.

understand or manipulate the staircases’ progress. Further, all images and visual angles
comprising Conditions 4a, 4b, and 4c were intermingled together, and likewise with
those comprising Condition 5. No time constraints were made on the observations, but
observers were given a few minutes to adapt to the low image luminance at the beginning
of the experiment, and they were instructed not to look directly at the glare source to
avoid retinal after-images from reducing their visual sensitivity.

2.4.3 Image Stimuli

The six source images used in the experiment were chosen to include both diagnostic
patterns and pictorial content. Because these were small images, 2x2 degrees of visual
angle, the pictorial content was chosen to be cropped image details, rather than entire
images. The intent was to represent a situation where the image detail was in a shadow
region of a larger image which potentially included high-luminance regions that induce
glare. As shown in Figure 2.5, there were two cosine patterns, cosine at 4 cycles per
degree and cosine2 at 1 cycle per degree. The 4 cyc/deg, 2x2 degree cosine pattern is the
same as is prescribed by the DICOM standard [9]. The image curls is a close-up of curly
dark hair, containing high-frequency, high-contrast detail, and palm is a tight crop of a
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Figure 2.5: Images used in the experiment. Upper, left to right: cosine,
cosine2, curls. Lower, left to right: eye, nose, palm. Each image was presented
at a size of two degrees of visual angle square, which can be approximated by
viewing this page from 60cm.

Figure 2.6: Image processing steps. To create black level variations, first the
images were normalized to the same mean luminance. Next, the normalized
image was scaled to move the mean luminance to the average luminance required
for the experiment, and finally, the black level was raised by scaling the luminance
down and shifting it up, compressing the range while preserving the maximum
luminance value.

human palm and fingers, with low frequency detail and large bright regions. The image
eye is a crop of a black dog’s eye, with a low-key rendering and bright highlights on the
eye and fur. Nose is a relatively low contrast view of a light-haired dog’s face.

The images were all normalized to have the same mean luminance. Starting with
linear luminance values in the interval [0, 1], they were divided by their mean luminance
values, respectively. This resulted in, for example, eye having a much brighter maximum
luminance than palm, but ensured that all images had the same integrated luminance
across their 2x2 degree size, encouraging a uniform state of adaptation and keeping total
eye illuminance fixed as images were displayed in sequence during the experiment. For
each image, at each prescribed average luminance level, a series of 49 images varying in
black level luminance was pre-computed: these comprised all the possible stimuli for a
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staircase. The steps in this processing path are shown in Figure 2.6. The 49 black levels Li
were logarithmically spaced, ranging from 0.0001 to 1. The black level adjustment was
done with an affine transformation of the linear luminance, compressing the luminance
range and shifting it higher.

After these steps were performed in linear luminance, the images were transformed
using the inverse model of the double-LCD display to 8-bit device code values, including
the front- and rear-LC split and the spatial uniformity correction. Because of the uniformity
correction, different output images were created for each spatial location on the display:
both for the left and right versions used in each paired comparison (which also mirrored
the content left-to-right) and for the different vertical displacements used to vary the
visual angle from the glare lamp. The background rectangle of 0.05 cd/m2, also corrected
for uniformity, was included with the saved image stimuli. During the experiment, the
image pairs were composited by a Java program that handled the staircases and image
display. The 8x10 visual degree background rectangle was centered on the display, with
the image pair separated by a 2-degree gutter.

2.4.4 Observers

In total, 23 people participated in the experiment, and the data analysis included 22
of them. One observer’s data showed a surprisingly high mean threshold in black level
difference. Because he explained after the experiment that he found the glare visually
uncomfortable, and indeed it appeared that his results didn’t depend on glare angle like the
rest of the population did, his data were discarded. Of the remaining 22 participants, there
were 20 observers who completed the whole experiment, and two additional observers
who provided partial, balanced results. There were 6 females and 17 males ranging in
age from 22 to 59, with a median of 32 years. Characteristics of their eyes were recorded
because of the potential effect on intra-ocular glare. All reported normal [corrected]
visual acuity: five wore glasses, five wore contact lenses, and 12 had uncorrected (naked
eye) vision. Thirteen had eye color categorized as light (blue, green, or grey), and nine
were categorized as dark (brown and dark brown). Thirteen of the group hailed from
The Netherlands or Belgium. Other nations of Europe, Asia, and North America were
represented by individuals.

2.5 Experimental Results

The result of each staircase (for each observer for each condition for each image) was a
single number, i.e. the computed threshold in units of step levels, which were logarith-
mically spaced in luminance. Each threshold was converted to an actual log luminance,
and all further computations were done in this space. At the end of the analysis, the
mean values were converted to linear luminance. Mean results per condition are shown
in Table 2.1.
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Table 2.1: Table of experimental results. Summary of black level thresholds
measured in the experiment for each condition. For each condition, the factor
levels are shown with mean thresholds in both logarithmic and linear luminance
(cd/m2).

Experimental Factor

Cond
Glare
Lum

Glare
Angle

Image
Average
Lum

Mean
Thresh.
Log Lum

Mean
Thresh.
Lum

2 0 – 0.25 -2.04 0.0092
3 0 – 0.50 -1.88 0.013
4a 10000 4 0.25 -1.40 0.039
4b 10000 7 0.25 -1.67 0.022
4c 10000 10 0.25 -1.84 0.014
5a 10000 4 0.50 -1.26 0.055
5b 10000 7 0.50 -1.53 0.029
5c 10000 10 0.50 -1.67 0.022
6 1000 4 0.25 -1.88 0.013
7 1000 4 0.50 -1.67 0.022

To evaluate the significance of these results, a univariate ANOVA was calculated
with SPSS. In the ANOVA the threshold log luminance was the dependent variable, and
the glare luminance, glare angle, image luminance, and image content were the fixed
factors. Additionally, observer was included as a random factor. The model included
all main effects and two-way interactions. All factors, except observer (p = 0.09), were
significant.

Comparing all the experimental factors, the strongest effects found were for glare
luminance (p < 0.001,η2

p = 0.90) and glare angle (p < 0.001,η2
p = 0.89), followed

by image luminance (p < 0.001,η2
p = 0.41) and finally, much weaker, image content

(p < 0.001,η2
p = 0.19). Several interaction effects were found to be significant (in order

of effect size): image × observer, image × glare angle, and image × glare luminance;
however, the effect sizes for these were all smaller than the weak main effect of image
itself.

Figure 2.7 shows the measured black luminance difference threshold as a function
of visual angle for all ten experimental conditions, averaged over image content and
observer. The conditions with a high glare luminance are shown in blue squares and red
circles, for the high and low image luminance, respectively, and the conditions with a
low glare luminance are shown in magenta triangles and green diamonds. The no-glare
conditions are shown at the far right of the plot. The pronounced increase in luminance
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Figure 2.7: Experimental results. Black luminance thresholds with 95% confi-
dence intervals for all ten experimental conditions (labeled). High-glare (10,000
cd/m2) conditions for two average image luminance levels (0.50 cd/m2 in blue
squares; 0.25 cd/m2 in red circles) and low-glare (1,000 cd/m2) conditions for
two average image luminance levels (0.50 cd/m2 in magenta triangles; 0.25
cd/m2 in green diamonds) are shown as a function of visual angle from the glare
source. The no-glare condition is labeled on the x-axis as “NG.”
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Figure 2.8: Experimental results per image. Mean black luminance thresh-
olds with 95% confidence intervals for the six images used in the experiment. The
pair of images cosine2 and eye is significantly lower than the group of the four
remaining images; however, eye and curls are not significantly different from
one another.

difference at small angles, especially for the conditions with a high glare luminance, shows
the clear impairing effect of glare proximity on black level discrimination, and is similar
to the 1/θ 2 behavior of the CIE glare equation. At the low glare luminance at 4 degrees
from the glare source, a smaller apparent rise in the black threshold is seen.

Effect of Image Content

Image content also had an effect according to the ANOVA, and the thresholds for each
image are compared in Figure 2.8. As the figure suggests, a Tukey post-hoc analysis
confirmed that cosine2 and eye formed one group with a black level difference threshold
significantly lower than the group of the four remaining images. However, eye and curls
were not found to be significantly different from each other. There is no obvious trend
with spatial frequency or pictorial vs. synthetic image content. Rather, the experimenters
observed that the low-threshold images both had relatively large black areas, which were
useful in discerning black level differences slightly more critically than was possible with
the other images.

Observer Variation

Looking only at observers who saw all experimental conditions, another ANOVA was
computed, this time with condition as a fixed factor and observer as a random factor.
Both were found to be significant, and the estimated marginal means for each observer
were obtained. The marginal means were used as the dependent variable in a subsequent
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ANOVA with binary independent variables representing the observers’ characteristics of
glasses, contact lenses, male, young (≤ 32 years), and dark eyes. This analysis found
contact lenses the only significant factor, with a medium effect size (p < 0.01,η2

p = 0.42).
Just not significant was glasses (p = 0.067,η2

p = 0.24). There was no significant effect
of being male (p = 0.24) or young (p = 0.71) or having dark eyes (p = 0.45). It seems
rational that the extra optical surfaces and scattering of contact lenses provided this
significant upward change in measured thresholds, and that eyeglasses provided a similar
trend.

2.6 Modeling Results

An excellent fit of the experimental data was made using a combination of literature
models and an empirical description of adaptation luminance. The DICOM model, based
on Barten’s CSF, predicts the visibility threshold of a luminance difference at a given
average luminance, for low-contrast images in an average surround condition. The
present experiment, however, used high-contrast images and a non-uniform surround,
which means that the DICOM model is somewhat misused. In fact, applying DICOM
directly to the no glare conditions for the average image luminances predicted thresholds
about 20% higher than were measured. It is a step further to apply DICOM to the glare
conditions, requiring an assumption – that the average luminance can be computed by
adding equivalent veiling luminance to the average image luminance. Thus, here enters
the glare model. EVL from the glare lamp is the biggest component, but glare from within
the image and the background cannot be ignored. For each experimental condition, these
glare components can be added in order to compute an effective average luminance, for
which DICOM can be used to predict the corresponding visibility threshold. Doing this, the
results were good, with R2 = 0.90 for the mean data (R2 = 0.24 over all observations), but
showed a systematic under-prediction of the thresholds at smaller visual angles and over-
prediction for the no-glare conditions. The model was further improved by accounting for
adaptation luminance.

It was noted that the average image luminance, even when adding equivalent
veiling luminance, was not the best input into the DICOM relationship because of the
non-homogeneous field of view. To improve the model, a simple conceptual model of
luminance adaptation was made, and its parameters were fit to the experimental data.
The luminance of everything in the field of view was weighted by a pair of circularly-
symmetric Gaussian sensitivities and integrated. One Gaussian was chosen to be very
narrow, corresponding conceptually to foveal sensitivity, and the other much wider, to
take into account the surroundings, including the equivalent veiling luminance and the
glare source itself, which was in the field of view. The resulting adaptation luminance
was used with DICOM to predict luminance difference thresholds, as shown in the
following equation. Working from the inside out, first the the EVL of the image (including
its surround; truly, the entire visual field) is computed using the CIE glare equation,
and added to the image; then the adaptation luminance (Yadap) is computed using the
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Figure 2.9: Experimental results and improved model. Experimental mean
luminance thresholds with 95% confidence intervals for all experimental con-
ditions shown as a function of visual angle from the glare source (the no-glare
condition is labeled on the x-axis as “NG”). The predictions of the improved
model taking into account adaptation luminance are shown as stars near the
corresponding experimental values. The model fit to the mean values resulted in
a R2 = 0.95.

empirical model from this experiment; and finally the DICOM model is used to compute
the corresponding difference threshold.

threshold = DICOM
�

Yadap
�

image+ EVL
�

image
��

�

(2.1)

The standard deviation of the two Gaussians and a coefficient for their linear
combination were optimized to fit the data. The resulting improved model fits the
mean data very well (R2 = 0.95; R2 = 0.25 over all observations). More specifically, the
improved model improves the fit of both the lower threshold in the no glare conditions and
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Figure 2.10: Spatial adaptation sensitivity. Spatial sensitivity curve used in
the computation of adaptation luminance as a function of visual angle. The
dashed red curve (std. dev. 0.67) is weighted 99.35% in linear combination with
the dotted green curve (std. dev. 3.9) weighted 0.65% to create the solid blue
curve. Looking at the area beneath the curve, the central 92%, based on Moon
and Spencer’s suggestion, is shaded gray, corresponding to a 2.2 degree foveal
region.

of the steep behavior at smaller visual angles to the glare source. However, it also predicts
a convergence of the different image luminance conditions at small angles with the glare
source which was not observed in the experiment. The model converges simply because
the modeled EVL contribution of the glare lamp dominates that of image luminance with
close glare proximity, so apparently something minor is still missing from the model. The
experimental results and fitted points (stars) are shown in Figure 2.9. The empirically-
derived spatial sensitivity curve is shown in Figure 2.10. It is a linear combination of
Gaussians, one with standard deviation of 0.67, weighted 0.9935, and another with
standard deviation of 3.9, weighted 0.0065. This distribution of sensitivity was reached
via a model fit, but it corresponds well to an approximation suggested by Moon and
Spencer [11]. They suggested that the luminance reaching the fovea contributes 92%,
and the luminance of the surrounding area integrated by a 1/θ 2 function similar to the
glare equation contributes the remaining 8%. Comparing the present model to the Moon
and Spencer relationship, there is essentially a difference in foveal size approximation, for
which literature values from 1 to 2 degrees exist. The central 92% of the present empirical
fit corresponds to a foveal size of 2.2 degrees, as shown by the shaded region in Figure 10.
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The sensitivity curve as a combination of Gaussians then appears a reasonable description
of foveal/background adaptation.

2.7 Conclusions

In this study, a tightly-controlled paired comparison experiment was conducted to measure
the impairment of the visibility of dark details in a displayed image due to veiling glare,
and this impairment was successfully modeled with components corresponding to intra-
ocular glare, luminance adaptation, and contrast sensitivity. As measured, the black level
difference threshold increases (meaning observer sensitivity decreases) with any of the
following, in order of importance: glare source distance (visual angle) decrease, glare
source luminance increase, or average image luminance increase. Relative to an extremely
low reference black level of 0.0003 cd/m2, a threshold black level was found to be as
small as 0.0092 cd/m2 with no glare source present and as large as 0.055 cd/m2 with
a small glare source of 10,000 cd/m2 at 4 degrees of visual angle from the black level
comparison.

The black level difference threshold was successfully modeled with a combination of
(1) the CIE glare model, which describes the intra-ocular scattering within the human eye
as a function of visual angle to the glare source, (2) an adaptation luminance computed as
a spatially-weighted function of the luminance seen in the visual field, and (3) the DICOM
model, which predicts the visibility of luminance differences as a function of luminance.
The resulting model can be used to predict whether a luminance difference within an
image in a given environment with glare caused by the image itself and/or other light
sources will be visible, which can be beneficial to designing displays as well as viewing
situations.
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3

Utilizing Metamerism in RGBW OLED Displays

Abstract

Displays that employ RGBW primaries have demonstrated greater power efficiency
than similar displays with only RGB primaries. Unfortunately, RGBW systems with
spatial light modulators, such as LCD flat panels and DMD projectors, have typically
traded color accuracy for improvements in power efficiency. This paper presents a
color-processing algorithm for emissive RGBW OLED displays that preserves colori-
metric accuracy while still reaping the efficiency benefits of RGBW. RGBW extensions
of additive RGB color models are discussed, along with a methodology for determinis-
tically choosing RGBW solutions. A flexible image-processing path is illustrated that
may be optimized for power efficiency, uniformity, and color gamut.1

3.1 Introduction

Additive displays have long depended on RGB primaries to synthesize color mixtures.
Recently, displays of a variety of technologies using RGBW primaries have emerged,
promising improved efficiency through higher luminance and/or lower power consump-
tion. Color reproduction in these displays often suffers as a result of the desire to boost
efficiency, but this tradeoff is not always necessary, depending on the display technology
and color processing algorithm applied. “Perfect” color reproduction is always a matter
of perspective. Here, it is asserted that in a display system, perfection means accurate
reproduction of the color specification encoded in the signal it receives.

Many display types, such as LCD and digital micromirror device (DMD), rely on
spatial light modulators to attenuate a backlight, projector bulb, or other always-on,
full-field light source. In these displays, efficiency is determined by how much of the
light generated by the always-on light source is transmitted to the viewer, leading to

1This chapter is based on research presented at the International Congress of Imaging Science, 448-451
(2006), "Perfecting the Color Reproduction of RGBW OLED," Michael J. Murdoch, Michael E. Miller, and Paul J.
Kane, and disclosed in United States Patent 6,897,876 (2005), "Method for Transforming Three Color Input
Signals to Four or More Output Signals for a Color Display," Michael J. Murdoch, Michael E. Miller, and Ronald
S. Cok.

49



3. Utilizing Metamerism in RGBW OLED Displays

drive schemes that maximize the use of all four RGBW primaries to synthesize the display
white point. Algorithms for driving displays with spatial light modulators typically add
an amount of luminance from the W primary that is correlated with the amount of input
RGB, thus augmenting the light output. An example is provided by Sampsell for DMD
displays [1]. Such algorithms result in color reproduction error, displaying at least some
colors less saturated and/or lower in luminance as compared to the color reproduction of
an otherwise similar RGB display.

More sophisticated algorithms for light modulator displays mitigate the color repro-
duction error by modifying the corresponding RGB intensities where possible; however,
this approach cannot both repair the effect for all colors and maintain the efficiency
improvement. Examples are given by Kunzman & Pettit, who describe a DMD RGBW
implementation which preserves color accuracy for some colors [2]; and by Lee et al.,
who give an algorithm for a TFT LCD RGBW display in which white is added to colors in
different amounts to make the color error less objectionable [3].

Emissive displays, such as OLED displays, utilize an array of light-emitting subpixels,
meaning that the efficiency of the display is dependent on the efficiencies of the subpixels
in use. A filtered white RGBW (W-RGBW) OLED uses an independently controlled white
emitter at each subpixel site with color filters for each of the RGB subpixels and no filter
for the W subpixel. Because they are unfiltered, a W-RGBW OLED display’s W subpixels
are much more efficient that its RGB subpixels, so efficient drive schemes utilize the W
primary as much as possible and the RGB primaries as little as possible. It has been shown
that a W-RGBW OLED panel requires half the power, on average, of an otherwise similar
W-RGB OLED panel, without color error [4]. The present paper outlines an algorithm for
accomplishing this combination of power savings and color accuracy.

3.2 Additive Model of RGBW

The light output of many color display systems can be modeled using a combination of a
set of nonlinear characteristic curves and a linear primary matrix. The familiar primary,
or phosphor, matrix is used to describe the linear addition of color in the display by
computing the XYZ tristimulus values that a given linear RGB intensity input triad will
produce. This is simply a linear combination, as in Eq. 3.1.

P3×3







R
G
B






=







X
Y
Z






(3.1)

The columns of the 3 × 3 primary matrix P3×3 are typically filled with the XYZ
tristimulus values of each primary, scaled such that input linear RGB intensities (1,1,1)
result in the tristimulus values of the desired display white point. This implicitly defines
the maximum luminance, or unit intensity, for each primary.
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The primary matrix relationship provides an essential feature through inversion,
allowing the prediction of the necessary RGB triad to provide a desired XYZ tristimulus
output. For a display with stable primary chromaticities and without any crosstalk or
loading effects, the model works very well, and any XYZ tristimulus specification within
the RGB gamut is reproduced accurately. XYZ specifications outside the RGB gamut result
in RGB intensity values outside the interval [0, 1], which still are useful for modeling but
are not physically realizable in the display.

A four primary system can be modeled similarly: the output is the linear combination
of four primaries’ contributions instead of three. Likewise, the 3× 3 primary matrix may
easily be extended to a 3× 4 matrix, as in Eq. 3.2. The 3× 4 primary matrix P3×4 is
formed from the 3×3 RGB matrix appended with a fourth column holding the tristimulus
values of the W primary, such that an input linear RGBW intensity quad results in an XYZ
triad. In this arrangement, two questions are immediately apparent: how to invert the
non-square matrix P3×4, and how to normalize its fourth column.

P3×4
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(3.2)

Normalization for a 3× 3 primary matrix is well understood: using Eq. 3.1, unit
intensity in all three RGB primaries results in the XYZ tristimulus values of the display
white point. Proper normalization for the additional W column in P3×4 is less obvious and
depends on how the display will be used. This discussion will progress focusing on what
is best for W-RGBW OLED displays, which might not be what is best for displays using
spatial light modulators. Some reasons for this distinction will be discussed later.

Unfortunately, the 3× 4 RGBW primary matrix is not invertible, with the practical
implication that given desired XYZ tristimulus values, there is not a unique RGBW solution;
rather, there are many that will give equivalent results. A goal of this paper is to outline a
method for choosing intelligently and deterministically from the possible solutions.

3.3 White Equivalence

Important to the use of a W primary in an additive display is the concept of white
equivalence. Metamerism is the phenomenon whereby two spectrally dissimilar stimuli
integrate to the same XYZ tristimulus values, implying that a viewer with normal color
vision would see them as the same color, assuming similar viewing conditions. A W-
equivalent RGB intensity triad is a combination of RGB intensities that produces a metamer
of some amount of W primary intensity. The normalized W-equivalent RGB intensity triad,
WRGB, is scaled such that the maximum of the RGB intensities is unity. This works for any
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color; as long as the chromaticities of the W primary are within the RGB gamut, all three
WRGB intensities are positive.

This normalization can be used to define the unit intensity of the W primary, and
thus the scaling of the fourth column of the 3×4 RGBW primary matrix. This ensures
that color resulting from the peak intensity of the W primary can be equivalently, i.e.,
metamerically, reproduced using only the RGB primaries. Note that a convenient case
arises when the chromaticities of the W primary are the same as those of the desired
display white point; in this case, the WRGB values are (1, 1,1).

3.4 White Replacement

Because in a W-RGBW OLED display, the W subpixels are much more efficient than are
any of the RGB subpixels, an effective concept is that of white replacement. W intensity is
equivalent to a combination of R, G, and B intensities, thus the W subpixel can be used in
place of a combination of R, G, and B subpixels. Conceptually, this means removing the
neutral luminance from an RGB triad of subpixels and transferring it to the W subpixel
for an equivalent result. A visual example with one image decomposed into its R, G, B,
and W components is shown in Figure 3.1.

A bounding example of this is to compute for each image pixel the min(R, G, B),
which may be thought of generally as neutral luminance, subtract it from each of the
R, G, and B values, and assign it to W. This is termed 100% white replacement, as all
possible neutral luminance has been transferred from the RGB to the W subpixel. Similarly,
some fraction, termed the white mixing ratio (WMR), of the neutral luminance may be
transferred. Equations 3.3 and 3.4 show the transfer from RGB to W, resulting in R’, G’,
B’, and W. Use of varying WMR values offers a range of solutions while maintaining a
metameric match to the original color. They range from WMR = 0, corresponding to
a strictly RGB solution that does not utilize W, to WMR = 100%, corresponding to the
transfer of as much neutral luminance as possible to the W subpixel. When the W subpixel
is more efficient than the RGB subpixels, a WMR of 100% achieves the highest possible
display efficiency.

W =WMR ·min
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Some similarity might be seen between this algorithm and CMYK printing with
undercolor removal (UCR) or gray component replacement (GCR), in which dark colors
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Figure 3.1: Comparison of RGB and RGBW. In the upper row are normal
intensity images of (left-to-right) the red, green, and blue color channels along
with the resulting full-color image (far right). In the lower row are intensity
images of (left-to-right) the red, green, blue, and white color channels using as
much white as possible (WMR = 1). The resulting full-color image is identical to
the top-right image.
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are formed using black ink to replace large amounts of CMY ink. In printing, this is done
for cost, to avoid physical problems with ink quantity, and/or to prevent color errors that
arise when forming neutrals from CMY combinations. Significantly, white replacement in
an additive RGBW display can be justified entirely by efficiency and need not change the
color reproduction at all.

White replacement using WMR between 0 and 100%, assuming that the chromatici-
ties of the W primary are the same as those of the display white point (the combination of
unit intensities of the RGB primaries), results in equivalent color reproduction. Of course,
if the W-equivalent RGB values are not equal, the W primary is not the same color as the
white synthesized from the original three primaries, and the color subtracted from RGB
will not be equivalent to the color produced by W. In this case, further compensation must
be made.

3.5 When W Is Not Quite White

In a display, “white” is generally defined by the display white point, which might be set
manually to meet a specification in a colorimetric space such as xyY, or which might be
the physical result of a light source with light modulators and/or color filters. In a display
that utilizes a broadband source and color filters, it is generally most efficient to choose a
white point equivalent to the broadband color. This is true of both filtered-white OLED
displays and backlit or projection spatial light modulation displays. However, regardless
of the display technology, the inherent broadband color might not be the same as the
desired display white point. When this is true, the basic white replacement algorithm
will introduce color error; for example, a W primary that is yellowish compared to the
display white point will introduce a yellow bias to the extent that it is used to replace
RGB intensity that is equivalent to the white point.

The solution is to account for the color of the W primary when transferring lumi-
nance from the RGB subpixels to the W subpixel, using the concept of W equivalence
introduced earlier. The three W-equivalent RGB intensity, WRGB, values are used to scale
the RGB input before the minimum is computed, as in Eq. 3.5.
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(3.5)

The result of this scaling is to transform the RGB intensity values, which are by defi-
nition normalized such that an equal-RGB triad produces a color having the chromaticity
coordinates of the display white point, to W-normalized RGB, or RnGnBn, in which an
equal-RnGnBn triad produces a color having the same chromaticity coordinates as the W
primary. In the RnGnBn space, the minimum is computed and the WMR fraction of the
minimum is subtracted, resulting in Rn’Gn’Bn’ values as in Eqs. 3.3 and 3.4. Subsequently,
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a renormalization is performed to return to the white point-normalized RGB space, as
in Eq. 3.6. Earlier this process was conceptually described as a transfer of “neutral”
luminance, an intentionally ambiguous descriptor; truly, it is a transfer of luminance of
the color of the W primary, and this is made explicit through the normalization process.
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Again, note the convenient case in which the W primary shares the chromaticities of
the display white point. In this case, Wrgb is (1, 1, 1) and both of the above transformations
become identity matrices. Using a W primary close to the display white point, the
transforms are likely to be close to identity, providing a small but important correction.

3.6 When W Is Not White at All (RGBX)

The normalization and W-equivalency concepts above are also applicable to systems with
a fourth primary that is not near white, in general termed RGBX, where the X can be cyan,
yellow, or another color. As long as the X is still within the RGB gamut, the method works
without modification. If the X is outside the RGB gamut, one required modification is a
change to the definition of W-equivalent RGB intensity. It is useful to define instead the
X-equivalent RGB intensity, XRGB, whose values are now scaled such that max(|XRGB|) is
unity. Taking the absolute value is necessary because mathematically reproducing the XYZ
tristimulus values of an out-of-gamut X primary requires a negative amount of intensity
from at least one of the RGB primaries. A second modification comes in the computation
of the min(Rn, Gn, Bn) value. The negative value or values in XRGB should be used in the
normalization step, making some of the normalized RnGnBn intensity values negative.
However, these negative values must be excluded when computing the minimum RnGnBn
value. Thus, the minimum of the non-negative RnGnBn values should be computed.

Another simple extension can be made to handle more than four primaries. The
replacement algorithm can be applied multiple times in series, minimizing power draw by
successively transferring luminance to more efficient primaries. Each replacement step
transforms three intensities to four; therefore, in subsequent steps when more than three
are present, the largest three values should be used. The result is a multi-step transfer of
luminance from the least to the most efficient primaries.

3.7 Algorithm Summary

The general white replacement algorithm is shown in the form of a flow chart in Fig-
ure 3.2 from linear RGB intensity to linear RGBW intensity. The starting point is linear
RGB intensity values in the device-dependent RGB primary space of the display itself.
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Figure 3.2: RGBW algorithm. Flow diagram for RGB to RGBW via white
replacement.

Importantly, an sRGB-encoded signal must be linearized with the proper gamma decoding
transform, then rotated from the ITU-R Rec. 709 RGB primaries [5] to the display RGB
primaries before proceeding with this algorithm. The first step provides the normalization
of RGB from the display white point to the display’s W pixel, giving (Rn, Gn, Bn), then
the min function computes x from the normalized RGB values, specifically taking the
minimum of the non-negative values, thus delaying the clipping of out-of-gamut colors.
The min x times the WMR becomes the W intensity value as well as the value subtracted
from the normalized RGB values. Thus, the WMR parameter controls the amount of
luminance transferred from the RGB subpixels to the W subpixel. Finally, the (Rn’, Gn’,
Bn’) are normalized back to the display white point, resulting in the output values of R’G’B’
and W. After the algorithm is complete, typical steps must be taken to account for the
actual display characteristics, for example mapping the linear R’G’B’W intensity values
according to the display’s nonlinearity.

3.8 Subpixel Arrangements

In a typical RGB display, each of the addressable, logical pixels is made up of three
spatially separate subpixels, one of each color. These are most often arranged in a stripe
mosaic wherein the three narrow subpixels comprise a square pixel, but may also be
arranged in a delta (or delta-nabla) pattern of triangular pixels. At higher pixel resolution,
of course, the difference disappears, but at lower resolution the stripe pattern is slightly
better for text, and is much more common for monitors and televisions, while the delta
pattern can be beneficial for natural images and thus may be seen in camera displays. A
perceptual measure for the effects of structure of the pattern and related blur on pictorial
content is presented by Nijenhuis & Blommaert [6], and further detailed by Martens [7].
Klompenhouwer [8] discusses the enhancement of text and image sharpness with proper
use of subpixel interpolation, which is useful with any pixel pattern. The pattern variants
are shown in Figure 3.3.
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Figure 3.3: Subpixel arrangements. Each of the above panels shows a 2-
by-2 grid of four logical pixels. Leftmost is the RGB stripe arrangement with
three tall, narrow subpixels comprising a square pixel. Second is the RGB delta
pattern, in which each pixel is a triad of nearly-square subpixels, R & G on top
with B below, or vice-versa. The third panel shows the RGBW stripe, with the
subpixels correspondingly narrower to fit a fourth subpixel in the still-square
pixel. Rightmost is the RGBW quad arrangement, with each subpixel occupying
one quadrant of the pixel.

Adding a fourth primary to a display system also requires adding a fourth subpixel.
Two possible RGBW subpixel mosaics are shown alongside the RGB patterns in Figure 3.3.
The RGBW stripe pattern is similar to RGB stripe, except the subpixels are squeezed even
narrower to fit a fourth subpixel into the square pixel. The RGBW quad pattern intuitively
comprises four square subpixels per pixel. Because the green and white subpixels contibute
relatively more luminance to the pixel, and thus more visual weight, they are placed as far
as possible from each other – in the stripe pattern this means interspersing them with red
and blue, while in the quad pattern this means diagonally opposed. In terms of sharpness
and the value of subpixel interpolation, the RGBW stripe behaves similarly to the RGB
stripe. RGBW quad is more similar to the RGB delta, but without the diagonal offset, the
visible pattern is more gridlike. Comparing RGBW stripe and quad, the stripe’s additional
horizontal subpixel resolution is more beneficial in text while the quad’s equal horizontal
and vertical subpixel resolution only shows benefits in images. In all RGBW cases, proper
subpixel interpolation may be limited by high WMR values because in such cases the W
subpixel carries so much of the pixel’s luminance. Such limitations would also be expected
when using additional constraints such as those employed by Klompenhouwer.

3.9 Visual Impressions

The RGBW algorithm described relies on colorimetry and metamerism, which robustly
model human color vision, and provides what is in principle a perfect match between
RGB and RGBW images. For this reason, no perceptual study was necessary. Regardless,
the success of the algorithm was confirmed visually both with simulated images and
display prototypes. Simulated images were digitally written onto large format Ektachrome
transparency film with all of the subpixels and black inactive areas drawn at actual size.
Because of the black areas and the array of primary colors, these transparencies were
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viewed at a normal display brightness by placing them on a very high brightness backlight.
The high resolution and high dynamic range of the film proved very effective for this task.

A range of images were made with all of the subpixel arrangements seen above, and
comparisons between the RGB originals and RGBW versions with different WMR values
and white pixel colors were made. The visual match in terms of color reproduction was
excellent, and as expected image sharpness and detail were affected to some extent by
both the WMR parameter and the choice between stripe and quad. As soon as OLED RGB
and RGBW prototypes were available, the colorimetric accuracy of the white-replacement
RGBW algorithm was confirmed [4].

Illustrating the result of the RGBW algorithm on paper is difficult because the images
are intended to match exactly: a colorimetric simulation will be trivially perfect, while
an attempt to reproduce the RGBW subpixels will suffer according to the imperfect color
reproduction of the printer. However, it is still instructive to look closely at a detail
level not normally visible to the eye: Figure 3.4 shows what a magnified portion of an
example image looks like with various pixel patterns and WMRs. Image A shows large,
full-color square pixels separated by black lines for clarity. The typical RGB stripe (B)
is visually similar to the RGBW stripe with a low WMR of 0.33 (D), while the RGBW
stripe adopts a slightly different character as the W subpixels are relatively brighter with
a maximized WMR of 1 (F). The RGBW quad images (C & E) look quite different from
the stripes and also show a difference in the dominance of the W channel with different
WMR values. In general an intermediate value for WMR appears the smoothest because
luminance is distributed among all subpixels. Maximizing WMR (and maximizing the
power efficiency benefit of RGBW) means that at least one of the subpixels in each pixel
remains completely black, resulting in more contrast between subpixels and, at least at
low spatial resolution, a more overt pixel pattern. All of these nuances become less visible
as the pixel dimensions of the display get smaller or the viewing distance gets longer.

3.10 Discussion

A flexible algorithm for maximizing the efficiency of emissive W-RGBW OLED displays
while preserving colorimetric accuracy has been presented. It is useful regardless of
the color of the fourth primary and in cases with more than four primaries, working on
the principle of white replacement. Using this principle, luminance is transferred from
less efficient subpixels to more efficient subpixels without changing the display’s color
reproduction.

It is perhaps debatable whether “perfect” color reproduction for a display system is
defined by colorimetric accuracy. If it is assumed that the incoming color signal is indeed
device independent and rendered as desired by elements upstream in the image-processing
chain, then it is easy to argue that reproducing the color faithfully as encoded is correct. A
display designer may decide to “enhance” an incoming image through color modification,
among other things, and the usefulness of such improvement is outside the scope of this
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Figure 3.4: RGB & RGBW pixel patterns. Image A shows a full-color original
image magnified so the pixels are visible. B shows the same image with an RGB
stripe pattern that is typical of LCD displays. C shows an RGBW quad pattern
with WMR of 0.33, while D shows an RGBW stripe pattern with WMR of 0.33. E
shows RGBW quad with WMR of 1.0 and F shows RGBW stripe with WMR of 1.0.
Images B-F appear very dark on paper because the pixels are separated spatially
and only reflect a small amount of the light hitting the page, relative to white.
Images like these on Ektachrome transparencies viewed on a strong backlight
appear as bright as a normal display.
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discussion. It is assumed, however, that lowered saturation and/or luminance of colors
through the use of a high-efficiency primary is not an improvement, and that accurate
color is a preferred result.

An important distinction can be made between RGBW algorithms that use white
to augment luminance and the one discussed here that uses white to efficiently replace
neutral luminance. Algorithms in the former category trade away color accuracy, in at
least some colors, for higher efficiency. The white replacement algorithm preserves color
reproduction and does not modify the white point luminance, yet it provides greater
efficiency by favoring the subpixel with the highest efficiency. Interestingly, specific
display technologies clearly steer the choice of which style of algorithm is to be employed.
Emissive displays such as W-RGBW OLEDs draw power proportionally to their light output.
This makes them well suited to take advantage of white replacement because the efficiency
of the light output of the individual subpixels is important. Utilizing a higher-efficiency W
subpixel in lieu of lower-efficiency RGB subpixels results in lower power consumption.
Also, OLEDs can be driven to very high luminance levels, so there is little need to use W
to augment luminance.

Displays such as backlit LCDs and DMD projectors employ spatial light modulators
and an always-on light source, thus drawing a constant amount of power regardless of the
modulated light output. Because of this, RGBW is most often used to augment luminance,
accepting some amount of color degradation. For these devices, white replacement as
proposed in this paper does not provide much benefit; in fact, it can provide a net loss.
The use of additional primaries typically reduces the relative spatial aperture ratio or
temporal fraction provided for each color, and restricting the use of the RGB results in lost
light and power.

The efficiency benefit realized in a W-RGBW OLED display system depends heavily
on how often the W subpixel is utilized in place of RGB. This means that the nature of the
content displayed has a large effect. In pictorial applications, neutral and near-neutral
colors are extremely frequent, providing a large benefit: in fact, about twice the efficiency
on average using a set of typical consumer digital camera images [4]. Other applications
and content might provide different levels of W primary utilization, and likewise different
efficiency benefits. Designing an RGBW display system requires co-optimizing a large
set of parameters, including the WMR parameter offered by the present algorithm, the
physical pixel layout, including aperture ratio, and the chromaticities of the primaries
themselves. Details on the effects of these variables on image quality, display lifetime, and
power consumption are provided in [9].
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4

Balancing Color and Power in RGBW OLED
Displays

Abstract

Organic light emitting diode (OLED) displays employing white light emitting
OLEDs can be made much more efficient by employing a RGBW color filter array
rather than the typical RGB. Self-luminous OLEDs have a unique advantage over
light-modulator displays such as LCDs because the W channel can be used to efficiently
replace the light of the combination of RGB while preserving colorimetric accuracy. A
generalized algorithm for the required color processing is described. Because RGBW
OLEDs can demand high peak currents to present images with bright, highly saturated
colors, alternative image-processing methods that reduce the peak current and power
of these displays are described. The image-quality impact of these algorithms are
explored to develop a final image processing algorithm. 1

4.1 Introduction

Organic Light-Emitting Diode (OLED) displays can potentially be constructed at lower cost
and lower power consumption than competitive display technologies, such as LCD. These
advantages arise from the construction of solid-state displays that emit light directly, rather
than by modulating light from a high-intensity light source. One format for manufacturing
OLED displays in a particularly cost-effective manner involves the use of an unpatterned
white light-emitting layer in combination with color filters. Such a format does not require
patterning of emissive organic materials, allowing the display to be constructed with high
yield on large substrates. Forming such a display with RGB color filter arrays can result
in displays with unacceptably high power consumption, but fortunately, it is possible to

1This chapter is based on research published in the SID Symposium Digest of Technical Papers, Volume
39, Issue 1, 791-794 (2008), "Distinguished Paper: RGB to RGBW Conversion for OLED Displays," Michael J.
Murdoch and Michael E. Miller, and in the Journal of the Society for Information Display, Volume 17, Number
3, 195-202 (2009), "RGB-to-RGBW conversion with current limiting for OLED displays," Michael E. Miller and
Michael J. Murdoch.
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reduce the power consumption of the display by a factor of two or greater by including
unfiltered, white subpixels [1, 2] to create a display having an RGBW subpixel array.

Taking full advantage of the highly efficient, unfiltered white subpixels involves
using them as much as possible in place of the less efficient RGB subpixels without
distorting the color information within the image. We previously presented such an
algorithm [3], which subtracts a portion of the neutral luminance from an RGB pixel
signal and provides this luminance with the W subpixel. For neutral and near-neutral
colors, the white subpixels provide most of the luminance while the RGB subpixels are
employed only at low intensities, leading to moderate power consumption and current
levels. For bright, highly saturated primary colors, more participation from the RGB
subpixels is required, so the efficiency improvement is minimized and power and current
increase. Further, when producing bright secondary colors, more than one of the RGB
subpixels within a pixel may be employed, requiring higher peak current values. High
peak current values are generally not desirable as they can translate to the need for higher
voltage power supplies and power supply lines, larger drive TFTs, and short-lived RGB
subpixels. Therefore, it is desirable to identify methods to reduce the peak current of the
RGB subpixels.

The uses of RGBW subpixel arrays have been discussed for LCDs and include
algorithms for adding more white luminance to form an image than the sum of the RGB
primaries [4, 5, 6]. In general, this literature demonstrates that it is possible to render
acceptable images by applying RGB primaries that sum to a luminance that is lower
than the peak luminance of the W subpixel. However, these algorithms often distort
the tone scale of the neutral content in an image without affecting the tone scale of the
saturated colors. This manipulation both reduces the saturation of many colors within
the image and provides a higher luminance image on the RGBW display than would be
created on a comparable RGB display. Under these conditions, it has been demonstrated
that most users prefer the increased luminance RGBW rendition to an original RGB
rendition [4]. However, these results do not provide much insight into the effect of the
various manipulations of color when the overall goal is to provide an RGBW display with
a peak luminance equal to that of the reference RGB display but at substantially lower
power consumption.

The current paper explores image-processing methods for rendering images onto
RGBW OLED displays while limiting the peak current to the RGB subpixels. Such a
manipulation provides images having equal peak luminance values but with different ren-
derings of saturated or near-saturated colors. To assess the usefulness of these algorithms,
their effect on perceived image quality and the peak power consumption of RGBW OLED
displays are discussed.
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4.2 Image-Processing Options

To reduce the peak values of the RGB subpixels, two basic options are considered. In both
cases, the peak luminance levels of the RGB primaries are limited. In the first case, this
luminance loss is simply accepted, providing overall lower power consumption. In the
second, a portion of the lost luminance is replaced with luminance from the W primary,
resulting in lower saturation and consuming slightly more power than required when
limiting the RGB primaries.

4.2.1 RGB Limiting

In an RGBW OLED display system, the maximum intensities of the R, G, and B channels
are selected such that when all three are lit together, they produce the display white
point, for example, a luminance of 200 cd/m2 with CIE 1931 chromaticity coordinates
of (0.3127, 0.3290), or D65. In an RGBW system, the RGB subpixels will typically not
simultaneously be driven to their maximum currents, as the W subpixel will be used
in their stead to produce some or all of the luminance when displaying neutral colors.
Despite this fact, accurate color reproduction of all colors in the additive RGB gamut
requires that the RGB channels be able to produce the display white point.

Explaining this further requires the use of a 3× 3 primary matrix (P3×3). Assuming
the Rec. 709 (sRGB) primaries and white point (D65), and working in percent luminance
factor, this matrix is:

P3×3 =







41.2 35.8 18.0
21.3 71.5 7.2
1.9 11.9 95.1






(4.1)

A linear, additive color model says that the color stimulus, in terms of CIE 1931 XYZ
tristimulus values, produced by a display with a given P3×3 and a triad of RGB intensity
values, is determined by the following equation, which helps explain the meaning of the
nine elements of the matrix:

P3×3
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G
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=







X
Y
Z






(4.2)

The first column contains the XYZ tristimulus values of the full-intensity R channel,
the second the G channel, and the third the B channel. The middle row of the P3×3
provides percent luminance factors for the R, G, and B channels. For example, the R
channel at full intensity has a luminance Y of 21.3% of peak display luminance, i.e., the
luminance of the white point of the display.
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An RGBW system adds a fourth column to the primary matrix, the XYZ tristimulus
values of the W channel. In a simple case, the W primary is the same color as the display
white point, meaning it alone can be used to produce white. This simple case is convenient
and maximally efficient but difficult to achieve in practice. However, assuming that the W
primary is the same color as the display white point, the W channel intensity is normalized
such that the RGB channels can reproduce its color. In this case, it means the W column
of the matrix P3×4 is exactly the XYZ tristimulus values of the D65 white point:

P3×4 =







41.2 35.8 18.0 95.0
21.3 71.5 7.2 100
1.9 11.9 95.1 108.9






(4.3)

meaning that there is not a unique solution for converting an input RGB to an RGBW
signal. Additional constraints such as maximizing the value of the W signal can be applied
to choose among the possible solutions. In RGBW OLED displays, color accuracy can be
maintained while maximizing the use of the W signal by calculating the W intensity as
the minimum of the R, G, and B intensity values and calculating the transformed R, G,
and B intensity values by subtracting the W intensity value from the input R, G, and B
intensity values. This manipulation reduces the magnitude of the R, G, and B intensity
values required to form most colors, as any color not on the gamut boundary is formed by
a combination of one or more of the RGB primaries and the white primary. Unfortunately,
bright colors near the color gamut boundary will have nearly the same peak RGB intensity
values within both the RGB and RGBW systems.

In the above discussion, the RGB luminance values sum to 100% of the display white
point luminance. However, it can be useful if these values are limited to some smaller
amount, for example 75%. In such a case, there is no way to produce a full-luminance
red of 21.3% of the white point luminance, as the red maximum is now 75% of 21.3, or
has a 16.0% luminance factor. Given this limit, it is interesting to consider what can be
done in the range from 0 to 75% of the red to eliminate the need for higher red intensity
values. Various signal manipulations can be performed to achieve this goal, including
clipping, scaling, nonlinear compression, desaturation, and adaptive limiting. Some of
these options are obviously better than others, as they are more likely to retain important
information within the original images. Within this paper, we will limit our discussion
to nonlinear compression and desaturation of the input image signal. Further, while the
limit that is applied can be the same or different for each of the color channels that are
manipulated, in this paper it is assumed that a common value will be used for all three
channels.

The algorithm for limiting the peak luminance of the color channels utilizes non-
linear compression and is applied to the RGB intensity values of the RGBW signal. This
nonlinear compression is applied by calculating a scale factor using the equations:
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Figure 4.1: RGB intensity limit. Example image intensity limit transforms
unlimited (black) and limited (red). The limited case shows a limit of 0.75 and
a threshold of 0.75 times the limit.

sR =







1, if R≤ Rthresh
m(R− 1) + Rl im

R
, if Rthresh < R≤ 1,

where m=
Rl im − Rthresh

1− Rthresh

(4.4)

where sR is the scale factor for the red color channel, R is the red channel intensity
value (i.e., code value transformed to remove any nonlinear encoding), Rl im is the
maximum allowed percent luminance, and Rthresh is a threshold below which input values
are unchanged and above which the input code values are reduced.

Within this algorithm, Rthresh is specified as a proportion of the limit value Rl im
to ensure that the threshold value is always less than or equal to the limit value. This
manipulation provides a tone scale for saturated colors as depicted by the red line in
Figure 4.1. This line can be compared to the black line indicating the original 1:1 tone
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Figure 4.2: RGB limitation. Illustration of nonlinear compression with RGB
limit of 1, 0.67, 0.33, and 0 with a threshold of 0.75 of the RGB limit.

scale. Note that within the current implementation, these tone scales overlap for input
intensity values less than 0.5. However, for input image intensity values greater than 0.5,
the output intensity values are reduced as compared to the original, unlimited intensity
values. Through slight modifications of the previous equations, it is also possible to reduce
the slope of the tone-scale values below the threshold; however, this manipulation was not
explored within the present experiments. It is also important to recognize that colors near
neutral will be formed by a combination of the saturated color component rendered with
the limited tone scale and the neutral content that will be provided by the W subpixel,
which will be rendered with the original, unlimited tone scale. Therefore, this algorithm
will modify input saturated colors having high intensity values and will partially modify
less-saturated colors having high-intensity values, with the degree of modification being
dependent upon the saturation of the color.

The scale factors are computed for the R, G, and B channels individually. However,
if each of these scale factors is applied to the individual color channels, colors within
the image will undergo hue rotations, which are generally undesirable. Therefore, the
minimum of these three scale factors can be computed and applied to all three of the
input R, G, and B intensities within each pixel to acquire output intensities with the same
hue as the input intensities.

A pictorial example of the output is shown in Figure 4.2. The yellow sweater in
the image has a high amount of red and a slightly lower amount of green luminance.
The non-linear algorithm compresses R by a scale value between 1 and the RGB limit,
depending on the input intensity. The calculated scale value for the G channel is smaller
than for the R channel because the G intensity is lower than the R intensity. To preserve
the yellow hue, the G and R intensity values are scaled by the same amount (the minimum
of calculated scale values), such that the R:G ratio is maintained. Hue preservation is
demonstrated in Figure 4.2. This algorithm maintains hue and saturation, but because the
R, G, and B channels are scaled, the luminance of all colors having both a high intensity
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Figure 4.3: Desaturation. Illustration of desaturation of RGB with ν parameter
values of 1, 0.67, 0.33, and 0.

and high saturation is reduced.

4.2.2 Desaturation

The previous algorithm modified the RGB channels without adjusting the W channel. As
a result, when tighter RGB limits are applied, the relative luminance of portions of the
image is reduced; often providing images with an unnatural appearance as saturated
colors become dim while the peak white of the display is unchanged. A more natural
manipulation can include desaturating all colors within the image, as shown in Figure 4.3.

Desaturation is a broad term, but here it refers to a full or partial suppression of the
color information without disturbance of the luminance information in an image. This
manipulation is applied before the RGB-to-RGBW transformation by multiplying the RGB
intensity values by a 3× 3 desaturation matrix (D), and the degree of color suppression
can be parameterized as shown below, with the parameter ν indicating the proportion of
saturation retained:

D= ν







1 0 0
0 1 0
0 0 1






+
(1− ν)

100







21.3 71.5 7.2
21.3 71.5 7.2
21.3 71.5 7.2






(4.5)

The matrix D is a linear combination of two 3×3 matrices: an identity matrix and a
luminance matrix. The values in the luminance matrix are replicates of the second row of
the sRGB primary matrix P3×3, which are the Y percent luminance factors of the R, G, and
B channels. Thus, an RGB signal multiplied by the luminance matrix will result in three
identical luminance values, each equal to the sum of the luminance contribution of the
three channels. The luminance matrix, because it is expressed in percent luminance factor,
is divided by 100. With high values of ν , the identity matrix dominates, meaning D has
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no effect on the RGB image. With low values, the luminance matrix dominates, leading to
the luminance image as shown on the far right in Figure 4.3. Intermediate values blend
the two endpoints smoothly. Notice that if ν is assigned a value, such as 0.75, and the
image is transformed into the RGBW color space as described previously, the resulting
maximum R, G, and B intensity values will be equal to the assigned value of 75% and will
reduce the peak current of the R, G, and B channels of the OLED to 75% of the values
required to produce the display white point using these three color channels.

4.3 Image Quality Effects

To evaluate the impact of these algorithms on perceived image quality, a psychophysical
evaluation was performed.

4.3.1 Experimental Setup

A total of 23 observers having 20/40 or better visual acuity and normal color vision, as
assessed using Ishihara’s Tests for Colour Deficiency [7], rated the image quality of seven
scenes rendered with 23 combinations of the two previously discussed algorithms.

The seven scenes were each selected to include an area of bright, highly saturated
color, which was affected by each of the algorithms. The input images were rendered into
sRGB color space before being manipulated. The image-processing chain for these sRGB
images included the following steps.

1. Application of an inverse gamma curve to convert the gamma-encoded sRGB values
to relative intensity values.

2. Application of the desaturation algorithm to preserve between 40 and 100% of the
original saturation.

3. Conversion of RGB intensities to RGBW intensities following the algorithm in
Chapter 3.

4. Application of the RGB limiting algorithm to limit the peak intensities of the RGB
channels in the RGBW image to a value between 20 and 100% of the original RGB
intensities.

5. Conversion of RGBW intensities to gamma-encoded values with primaries matching
the target CRT.

During the experiment, the images were displayed on a CRT calibrated to have
a code value to luminance response that matched the sRGB specification with a peak
luminance of 80 cd/m2. The experiment was completed in a dark room to avoid any
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effects of screen reflections and external glare sources, as these generally reduce the
visibility of differences between experimental conditions.

While a factorial of desaturation and RGB-limiting might seem appropriate, in fact
RGB limiting has no effect on an image if its limit value is lower than the desaturation
parameter value because desaturation is applied first. Therefore, the RGB limit values
were restricted to be equal to or lower than the desaturation value for all experimental
conditions.

During the experiment, the participants performed two different tasks. In the first
task, they viewed each image (7 scenes by 23 manipulations) under single stimulus
conditions and rated it on a five-point category scale of image quality, with descriptors
of “like extremely,” “like moderately,” “neither like nor dislike,” “dislike moderately,” and
“dislike extremely.” During an initial analysis, this set of data was analyzed by applying
Thurstone’s law of categorical judgment [8] to create an interval scale of image quality
based on these descriptors. However, further detail on quality differences was desired, so
a second task was included in the experiment.

In the second task, forced-choice paired comparisons were provided to the observers
with the instruction to select the preferred image. The pairs comprised three groups of
three images (thus, nine pairs), each group made up of neighboring conditions in high-,
medium-, and low-quality regions of the parameter space. The pairs data were used to
determine scale factors between just-noticeable differences (JNDs) in image quality and
the desaturation and RGB limit parameters in each quality region, and the three scale
factors were taken as slopes used to construct a transform between the interval image
quality scale values and JNDs of image quality.

4.3.2 Results

The results of this evaluation are shown in Figure 4.4. Dots within this figure represent the
23 sample points within the design. Contour lines represent lines of equal image-quality
degradation in JNDs of image quality. This figure indicates that the average image in this
experiment underwent about seven JNDs in image-quality degradation as the saturation
is reduced from 100% to about 40% and over six JNDs in image-quality degradation as
the peak RGB luminance is reduced from 100% to 20%.

This figure should not be interpreted as indicating there are only 6–7 levels of
detectable difference between images over the range of levels investigated in this study,
but instead that there are only 6–7 distinct levels over which 50% of the participants
would reliably rate one image as being lower in image quality than the other. In fact,
some participants preferred certain images to be rendered with a desaturation value less
than 100%.

While the desaturation algorithm occasionally resulted in images with a more
natural appearance, the RGB-limiting algorithm generally had less impact on overall
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Figure 4.4: Experimental results. Contour plot of image quality on parametric
axes of saturation and RGB limit, represented as JNDs of image-quality loss
relative to the original (located at the top right). Dots within this figure represent
the 23 sample points tested in the experiment. Contour lines represent lines of
equal image-quality degradation in JNDs of image quality.
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image quality. This is likely due to the fact that the RGB-limiting algorithm affected only
small regions within each image while the desaturation algorithm affected all colors in
each image other than the neutral scale.

A small interaction was also present between the two algorithms. Image quality
near that of the original image occurred for RGB-limiting values between 100% and 67%
for a desaturation value of 90%. However, image quality was degraded if the peak RGB
intensity value was limited to 80% of the intended RGB intensity value without applying
desaturation. This result shows that the combination of slight desaturation with the
limiting algorithm allows some of the luminance of the saturated colors to be transferred
to the white subpixel and avoids the more extreme loss in brightness and a perceived loss
of detail that occurs when the RGB intensity value is reduced without desaturation. This
insight was explored further as discussed in Section 4.4.

Each of the algorithms affect the number of color differences produced by the final
system and change the appearance of some colors within the initial images. Therefore, a
basic colorimetric difference metric can be used to model the impact of these manipula-
tions on image quality. To assess such a metric, the images were converted into CIELAB
color space, and ∆E* values were calculated between corresponding pixels of each pro-
cessed image and the original. Root-mean-squared (RMS) ∆E* values were computed
over all pixels in each image. The averages of these values were then computed across
the seven scenes. The image-quality results are plotted as a function of these averaged
∆E* values in Figure 4.5, with each colored group of points having a constant RGB limit
value and increasing amount of desaturation as they trend to the right.

As shown in Figure 4.5, the RMS ∆E* values averaged across scenes correlate
relatively well with changes in image quality when the images have been highly desatu-
rated. However, for low levels of desaturation, at the left end of each group, this metric
overpredicts the change in image quality; i.e., even though the RMS values increase as
low amounts of desaturation are introduced into the images, the participants did not
indicate that image quality was reduced by this manipulation. In fact, when significant
RGB limiting is applied to the images, image quality was perceived to increase for in-
termediate amounts of desaturation. Although these results would at first appear to be
counterintuitive, reasons for this behavior may be hypothesized. First, the category scaling
experiment was conducted using single stimulus conditions. Therefore, it is possible
that the participants adapted to small changes in saturation of the images as they were
displayed and did not perceive the change in saturation. Alternatively, they may have
perceived these changes but may not have seen these changes as having a significant
effect on image quality. These explanations could account for the initial plateau in these
curves as a function of desaturation.

To understand the slight increase in image quality with increasing desaturation for
small desaturation values, it is important to understand that the RGB-limiting algorithm
decreased the slope of a portion of the tone-scale curve, decreasing contrast within regions
of the image. This decrease in contrast reduced the visibility of detail in portions of some
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Figure 4.5: Results against color error. JNDs of image quality loss shown
versus RMS ∆E* averaged over images. Each colored line shows a series of
desaturation values at a fixed RGB limit value, with lower desaturation (fully
saturated images) at the left end of each series and higher desaturation at the
right.
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scenes. However, the reduction in contrast was effectively reduced when the image
was desaturated as a greater proportion of the image luminance was transferred to the
white channel. Therefore, this increase in image quality with a reduction in saturation
demonstrates a bias towards sacrificing color fidelity over losing spatial detail. This
hypothesis is supported by the fact that the participants preferred larger amounts of
desaturation with increases in RGB limiting.

4.4 Discussion

As was shown in the previous section, both RGB limiting and desaturation can effectively
reduce power consumption and increase the lifetime of an OLED display. Further, the com-
bination of these algorithms improves image quality under some conditions as compared
to images that are produced with the same peak RGB intensities through the application
of only one of the approaches. Therefore, it is important to explore the possibility of a
unified image-processing algorithm to provide enhanced image quality for a given level of
power consumption or lifetime improvement. Such an algorithm might allow the RGB
primaries to be limited while replacing a portion of their luminance with light from the
white subpixel, thus effectively selectively desaturating the image only where the RGB
limit has greatest effect.

With this in mind, an improvement to the algorithm presented here is suggested.
Returning to Equation 4.4, a single scale factor s was taken as the minimum of those
computed for each of the R, G, and B image channels. The difference (1 − s) then
represents the proportion by which the luminance is reduced by RGB limiting. The
decrease in luminance that occurs can be computed by multiplying (1 − s) by a 1 ×
3 matrix containing the primary luminance factors (LR, LG , LB) for the display [i.e.,
(0.213 0.715 0.072) in an sRGB display example] and the linear intensity values for the
respective color channels and summing the result. The intensity of the W subpixel can
then be increased to compensate for this luminance loss. However, it is not necessarily
desirable to replace all of the lost luminance with luminance from the W subpixel as this
manipulation can result in severe desaturation of colors that undergo a large amount of
limiting. Therefore, another free parameter η is added, indicating the proportion of the
luminance loss to be replaced by the W subpixel. The resulting equation for the intensity
to be added to the white subpixel would then be:

Wadd = η(1− s)
�

LR LG LB

�







R
G
B






(4.6)

Wadd then represents the proportion of the lost luminance intensity to be added
to the luminance intensity of the W subpixel. This increase in W subpixel luminance
will result in desaturation of only the pixels for which RGB limiting is applied and will
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not result in desaturation of other pixels in the image as occurred within the earlier
image-quality experiment that was discussed.

Figure 4.6 shows a two-dimensional grid of images that were created by applying this
algorithm. Levels of RGB limiting (including 1.0, 0.67, and 0.33 at a constant threshold
value of 0.75 of the limit value) are shown across the horizontal dimension of the grid and
various levels of luminance replacement (0.0, 0.5, and 1.0) are shown along the vertical
dimension of the grid. As shown in this figure, spatial detail is lost particularly in the
yellow sweater as the RGB limit value is reduced when the luminance replacement value
is zero (i.e., the upper-right image). Increasing the white replacement value increases the
visibility of the spatial detail within the yellow sweater while simultaneously reducing
the color saturation within the sweater. Note, however, that the saturation of other colors
within the scene is virtually unaffected as they lie below the threshold of the RGB-limiting
algorithm. Therefore, this algorithm effectively reduces the peak current to the RGB
subpixels while providing the ability to trade loss of detail for loss of saturation in only
the portions of the image having bright, highly saturated colors. Therefore, this algorithm
supplies the ability to provide higher quality images with very small losses of detail.
Images having an RGB limit of 0.7 and a W replacement proportion in the neighborhood
of 0.3 clearly are improved in quality over the images having an RGB limit of 0.7 and a
saturation limit of 0.9. Such an algorithm provides the ability to reduce the peak current
of RGBW OLEDs to 70% of what would otherwise be required with a very small loss of
image quality.

4.5 Conclusions

Algorithms have been discussed for limiting peak current to the RGB subpixels in an
RGBW-OLED display. The effects of these algorithms on perceived image quality have
been demonstrated. Based upon these results, it appears possible to limit the peak
luminance, and therefore the peak current, to the RGB channels of an RGBW OLED to
70% of their peak with only a very small impact on the overall perceived image quality
of the system. However, this manipulation requires a modification of the tone scale for
saturated colors as well as desaturation of high-intensity, highly saturated colors. This
manipulation requires that the W subpixel be applied to replace a portion of the luminance
of the saturated colors that would otherwise be produced by the RGB subpixels.

A metric based upon changes in CIELAB values was shown to correlate with the
image-quality results for only high levels of desaturation. Additional metrics will be
required to fully explain the image-quality results provided within this paper.

This reduction of the peak current in RGBW OLED displays to 70% of their typical
aim values allows the peak power of the display to be reduced. This reduction results
in many efficiencies, including reduction of the area devoted to power TFTs and power
lines. Further, the peak current densities are reduced for the RGB subpixels, reducing the
overall power consumption of the display.
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Figure 4.6: RGB limit with white-light replacement. A pictorial example
of the effect of RGB limiting with white-light replacement. Horizontally, these
images have RGB limit values of 1.0, 0.67, and 0.33. Vertically, the luminance
replacement portion η values are 0.0, 0.5, and 1.0.
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5

Preferred Color Gamut for Reproducing Natural
Image Content

Abstract

With the development of wide-gamut display technology, the need is clear for
understanding the required size and shape of color gamut from the viewers’ perspec-
tive. To that end, experiments were conducted to explore color gamut requirements
based on viewers’ preferred level of chroma enhancement of standard-gamut images.
Chroma preferences were measured for multiple hues using single-hue images, and
a corresponding hue-dependent preferred chroma enhancement was successfully ap-
plied to natural, multi-hue images. The multi-hue images showed overall success,
though viewers indicated that reds could be decreased even further in colorfulness,
and yellows could be increased, which may argue in favor of multi-primary displays.
Viewer preferences do vary within the population, primarily in overall chroma level,
and the differences can be largely accounted for with a single parameter for chroma
level adjustment that includes the preferred hue dependence. Image content depen-
dencies were also found, but they remain too complex to model. The hue-dependent
chroma preference results can be applied to display design and color enhancement
algorithms.1

5.1 Introduction

Recent technology development has enabled the creation of displays with extremely
wide color gamut. This progress has been driven partly by manufacturers’ desire for
technological leadership in the marketplace and partly by consumers’ appreciation of
enhanced color performance. Specifications for display color rendering such as Rec. 709,
used in the sRGB standard for web graphics and in the HDTV standard for television,
define a reference display with a standard color gamut [1]. Wide-gamut displays have

1This chapter has been published in the Journal of the Society for Information Display, Volume 18, Number
12, 1111-1118 (2010): "Preferred and Maximally-Acceptable Color Gamut for Reproducing Natural Image
Content," Michael J. Murdoch, Dragan Sekulovski, Robert de Volder, and Ingrid E. J. Heynderickx.
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the ability to render more saturated colors than the reference display, a capability that is
generally advantageous to the viewer, according to several perceptual insights. It is known
that not all colors occurring in nature can actually be reproduced on standard displays [2].
However, even a display capable of rendering all natural colors may not be satisfactory.
Displays must physically exaggerate colors in order to create the same impression of
colorfulness that would be seen in reality, due to the relatively lower luminance of the
reproduction [3]. Further, it has been shown that viewers prefer colors to be slightly more
saturated than what they realize is natural [4, 5]. Thus, creating realistic and hyper-real
color reproduction is impossible on standard displays and requires a wider color gamut.
Recent work has addressed the gamut size requirements that may be beneficial to the
viewer.

A display’s color gamut, which is the range of colors that the display is capable of
producing, is the first of three important aspects in the discussion of wide gamut color.
Second is the source image, which, if stored using a typical color encoding standard such
as Rec. 709, implicitly includes the limit of its color palette as defined by its encoding
primaries. Third is the set of choices that make up the image rendering by the display
system, or the gamut mapping that determines how the starting image is modified to take
advantage of the wide color gamut. For the near future, it is reasonable to assume that
the input image would comply with an existing standard-gamut representation such as
Rec. 709, meaning that research has focused on the gamut mapping details and gamut
size requirements.

Starting from standard-gamut images, wide-gamut color must be created by ex-
tending the existing information. The most straightforward way of doing so is by just
using the same drive signals (SDS), as if naively accepting the color gamut difference and
resulting color expansion. However, this approach is difficult to generalize because of its
dependence on the physical display details, and examples in the marketplace produce
unevenly-expanded colors that in some cases are pushed “too far,” in the authors’ opinion.
Other, more intelligent approaches are possible, some of which were considered by Muijs
et al. [6]. This study showed preference for an adaptive mapping that extended the
chroma of a given color non-linearly in a direction dependent on the lightness of the color,
but it also found differences based on the extent to which the mapping algorithms used
the wider color gamut. That is, the mapping algorithms’ success was confounded with
the gamut limits involved. Approaching the problem differently, looking first at gamut
limit requirements, Laird et al. performed an experiment in which the preferred chroma
was measured for images with varied hue and lightness [7]. This study, which included
two images at 6 hues and 3 lightness levels, found chroma preference levels that were
indeed hue-dependent, and that overall were beyond Rec. 709, but still lower than the
limits provided by the wide-gamut display used in the experiment. Hue dependence
was also found in an experiment by Hisatake et al. [8], which used natural images with
different dominant colors. They additionally concluded that because preferred chroma
was higher in the direction of the primaries than in the direction of the secondaries, a
wide-gamut three-primary display has more added value than a multi-primary display. A
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later experiment by Sakurai et al. [9] found that a similarly moderate increase in chroma
was preferred for a larger set of more complex natural images, but did not investigate hue
dependence. Several of these studies [6, 7, 9] identified a strong dependence on image
content but included relatively small numbers of images and did not attempt to model
the effect.

To build on these previous hue- and content-dependent results, two experiments
were performed that investigate color gamut preference. Experiment 1, which used
natural images with very narrow hue ranges, measured the preferred and maximally-
acceptable levels of chroma for selected hues. Experiment 2 measured chroma preference
using a large set of natural images with typical, complicated hue combinations, which
were modified using the results of Experiment 1, and subjectively tested the acceptability
of their inter-hue relationships.

5.2 Experiment 1

5.2.1 Experimental set-up

The goal of this experiment was to measure the preferred level of chroma and the
maximum accepted level of chroma at different hues, using a variety of images, as will be
explained below. These two measurements were performed in subsequent tuning tasks by
42 observers. Half were male and half female, and they ranged in age from 21 to 61 years
with a mean age of 31 years. All of the observers were employed by Philips in various
disciplines; 24 were Dutch, and the rest were primarily from Europe or Asia. All had
normal color vision as tested with the Ishihara color blindness test.

Stimuli were displayed on a 40” RGB LED-backlit, wide-gamut display with a 9000K
whitepoint and a maximum luminance of 341 cd/m2. The CIE 1931 xy chromaticities of
the primaries were (0.699, 0.291) for red, (0.188, 0.700) for green and (0.146, 0.063) for
blue. Compared to the Rec. 709 standard primaries, the wide-gamut red was significantly
more pure and more purple, the green was significantly more pure and more cyan, and
the blue was very similar. Thus, the wide chromaticity gamut was unevenly enlarged
relative to Rec. 709, more so in cyan-green and magenta-red hues, and less so in blue
and yellow hues. Image modifications were made as described below, resulting in target
colorimetric values per pixel, from which display drive values were computed. The
display’s output was characterized with a Photo Research PR680 spectrophotometer, and
the measurements were used to create an additive colorimetric forward model: the CIE
XYZ contributions of the constant display “black” minimum and each of the color channels
as measured individually at each drive value. For each target colorimetric value in the
images, optimal drive values were computed iteratively, using the forward model. This
method proved quite accurate, measured to have an average color error of 0.3 ∆E∗ab over
a set of 10,000 random color patches, which confirmed that the display was both additive
and channel-independent. The experiments were performed in a viewing laboratory, with
the white wall behind the display illuminated at 22 lux without illuminating the display
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Figure 5.1: Single-hue images. Single-hue images used in Experiment 1: rose,
window, room, and paint, shown rendered at exemplary hues.

surface. Observers were seated behind a table at a viewing distance of 3 m from the
display. The images shown varied in size slightly, but all were about 600 pixels tall, and
therefore did not fill the display’s 1360x768 pixels. The remaining screen border was
filled with solid gray at the 9000K color temperature and a CIELAB lightness value of 50.

Four images with very narrow hue ranges are shown Figure 5.1. Each of these
images was modified by changing its CIELAB hue to each of seven different hues of
interest: those of the three wide-gamut display primaries R, G, and B (CIELAB h = 37,
149, and 308, respectively); the display secondaries Y, C, and M (CIELAB h = 104, 191,
and 335); and the Rec. 709 R primary (CIELAB h = 41). Both red hues were used because,
despite their similar hue angles, they appeared very different to the experimenters: Rec.
709 R appearing as the familiar display red, and the wide-gamut display red distinctly
purplish and less pleasant. The hue rotation procedure, which included remapping the
originally-sRGB pixels’ CIELAB lightness and chroma to match the max-chroma cusp of
each destination hue, was explained in more detail in a previous paper [10]. The resulting
28 image-hue combinations, along with eight additional single-hue or narrow-hue-range
images, plus five duplicates, made a total of 41 images that were each presented to the
observers in the experiment.
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The chroma variations used in the tuning task were processed in two steps. First,
in a SDS rendering, the RGB images were input to the wide-gamut display forward
model, using its primaries and gamma nonlinearity, resulting in CIE 1931 XYZ values, and
converted to CIELAB LCh using the display’s D90 white point for a reference white. Then,
to create the chroma variations, the CIELAB chroma values were multiplied by factors
ranging from 0 to 4 in steps of 0.05, implying that the variation with a multiplier of 1
corresponded to the same drive signal applied to the wide-gamut display. In all 81 chroma
variations, the corresponding lightness and hue values were kept constant. The modified
CIELAB LCh images were transformed back to RGB using the colorimetric model of the
wide-gamut display and stored. Because all of the original images included pixels that
reached maximum chroma, in all chroma variations with a multiplier larger than 1, some
LCh values were pushed beyond the wide-gamut display gamut and were hard-clipped to
the maximum chroma at the corresponding L and h.

The experiment employed a tuning methodology in two parts, each part using all 41
image-hue combinations. First, observers were asked to select the level of colorfulness
that they preferred for each image. Starting at a random chroma level, they were able to
adjust the chroma of each image in discrete steps, upward and downward using the arrow
keys, until they were satisfied. Second, starting again at a random chroma level, they
were asked to select the highest level of colorfulness that was still acceptable for each
image. In both parts, images were presented in random order, and no time constraints
were given. The tuning task progressed quite quickly, typically 10-20 seconds per tuning,
and the complete experiment took about 20 minutes.

5.2.2 Results

The main results are the preferred and maximum accepted levels of chroma at each of the
seven hues. Figure 5.2 shows a boxplot of both, per hue, pooled over images. The chroma
level is shown on the y-axis as a percentage of the wide-gamut display chromaticity
gamut boundary at each hue. For reference, the relative size of the Rec. 709 standard
chromaticity gamut at each hue is shown by the small black marks beside the boxes. It
is clear that for most hues, at least half of the preferred chroma levels are beyond Rec.
709 chromaticity gamut boundary, which already shows the added value of a wide-gamut
display. There is also an apparent hue dependency, and especially interesting is the
remarkable difference in preferred chroma between the two red hues used, despite their
proximity in CIELAB hue angle. This difference could be due to a memory color effect,
because the purplish wide-gamut red is noticeably different from the standard Rec. 709
display red, which people may be accustomed to seeing. The median maximally-accepted
chroma reaches the maximum of the wide-gamut display’s capability in several hues (blue,
yellow, cyan, and magenta), but in the other measured hues it does not, which shows that
this wide-gamut display provides unacceptably-wide color in some regions of color space.

It is possible that the preference results for B and Y are limited by the display. At both
hues, the display does not offer much additional chroma beyond the Rec. 709 chromaticity
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Figure 5.2: Experiment 1 results. Boxplot of the preferred level of chroma
(black) and the maximum accepted level of chroma (red) at each of the seven
hues, on a scale that represents the percent of the wide-gamut display’s available
chroma at that particular hue. Each box indicates the the 25th, 50th (median),
and 75th percentiles of observations, and the long whiskers reach to the min
and max values observed. The results may be compared to the green tick marks
overlaying the boxes, which indicate the per-hue size of the Rec. 709 chromaticity
gamut on the same scale. The x-axis label “R” refers to the wide-gamut red
(h=37), whereas the axis label “709R” refers to the Rec. 709 red (h=41).

gamut boundary, which means that the ability to evaluate expansion at these hues is
limited. Further, the preference results at both hues appear clipped at the maximum
available chroma. Looking again at the overall hue dependence, the median preferred
chroma levels, with respect to the Rec. 709 boundary, range from a compression of roughly
20% in blue to an extension of 30% in green. This hue dependence was further confirmed
with an ANOVA performed with preferred chroma level as the dependent variable, image
content (meaning the four named original images that were rotated in hue) and hue as
independent variables, observer as a random factor, and including a 2-way interaction
between image content and hue. The results showed that the preferred chroma depended
on image content (F=38.1, df=3, p<0.001, η2

p = .482) and on hue (F=14.9, df=6,
p<0.001, η2

p =0.267), and was different for the different observers (F=4.97, df=41,
p<0.001, η2

p=0.608).
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Considering the content dependency of the preferred chroma level, post-hoc testing
showed that this effect was driven primarily by a different preferred chroma level for
each of the images window and paint. The image window had the lowest preferred
chroma level, inside the Rec. 709 gamut for all hues. This low preferred chroma was
perhaps due to the image subject for which the expected real-life chroma level was low. A
rough stucco wall with white shutters might evoke the pastel-toned architecture of the
Mediterranean or Caribbean, and therefore might not “look right” with a high-chroma
rendering. Likewise, the image with the highest preferred chroma level, paint, showed an
object with a high expected chroma: a pure, glossy artist’s pigment. The results for the
image paint were beyond the Rec. 709 chromaticity gamut for almost all hues.

A significant effect of observer on preferred chroma level was seen in the ANOVA,
meaning that different people preferred different amounts of chroma. This was further
evaluated by means of a principal component analysis, which showed that 65% of the
variance was explained by a first component representing an overall chroma increase. In
other words, if an observer preferred a rather high chroma level for one of the stimuli,
his chroma preference was also high for most of the other stimuli; however, the increase
was not equal for all hues, a fact that was later applied in Experiment 2. The second
and third principal components were significantly weaker, explaining 9.3% and 8.6% of
the variance, respectively, but they roughly represented distortions of the hue circle of
the first component. The second component showed red opposing yellow and cyan, and
the third component showed yellow opposing blue. Thus, a single parameter for overall
image chroma is sufficient to satisfy the vast majority of the differences in preference in
the observer population, while the subsequent, weaker components describe the per-hue
customization each observer would prefer, if given the additional degrees of freedom.
Based on the ANOVA, the effect of content on the preferred chroma level was larger than
the effect of hue. However, understanding the effect of content remains a major challenge.
An attempt was made to model preferred chroma level as a linear function of objective
image statistics, such as average and maximum chroma, size and number of high-chroma
regions, and local contrast in lightness and chroma channels. A combination of these
objective measures seemed promising based on the four images used in Experiment
1, but the model did not perform satisfactorily when applied to additional images in
Experiment 2. A more complicated model, involving object and context recognition and
cognitive modeling, can be envisioned but is far from fruition. Setting content aside,
effectively averaging out its effect, attention was focused on the effect of hue, which can
be straightforwardly implemented in a mapping algorithm. Such a mapping, essentially a
hue-dependent chroma multiplier, was created and studied in Experiment 2.
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5.3 Experiment 2

5.3.1 Experimental set-up

The second experiment tested to what extent the hue-dependent chroma preference,
which was determined from single-hue images, was applicable to natural, multi-hue
images. This was done in two parts: a tuning task, very similar to Experiment 1, and a
painting task, in which observers were asked to paint, using the mouse cursor, regions that
were too high or too low in chroma. The same wide-gamut display and viewing conditions
from the previous experiment were used. Experiment 2 was performed by 43 observers,
of which 27 were male and 16 female. Their ages ranged between 20 and 64 years with a
mean age of 30 years. Twelve of the observers had also performed Experiment 1.

The tuning task utilized single-hue images rotated to a variety of different hues,
including the same paint image used in Experiment 1 plus two new images. Additionally,
the image set contained 51 natural, multi-hue images. The eleven images shown in
Figure 5.3 are representative of the multi-hue set, and also comprise the subset of images
used in the painting task. The multi-hue images were selected for variety of content,
naturalness, and a predominance of high-chroma colors. The intentional bias toward high-
chroma colors (and the avoidance of sensitive colors like skin tones) was meant to weight
the experiment toward the gamut boundaries and to reduce the effect of mid-chroma
colors. As mentioned earlier, the first priority in gamut expansion was to find the gamut
size requirements; later experiments will improve rendering for mid-chroma, memory
colors, and skintones.

The three single-hue images were rotated to different hues in the same way as in
Experiment 1. The ten destination hues were the same seven given above, plus BC and
RM tertiaries (CIELAB h of 240 and 10) and Rec. 709 G (136). These intermediate values
were selected to more completely sample the hue circle and confirm the interpolation. The
30 single-hue images and 51 multi-hue images were all processed to a variety of chroma
levels for presentation in the tuning task. Based on the results of Experiment 1, which
provided preferred chroma levels at seven hues, a smoothly-interpolated hue-dependent
chroma multiplier was created for each chroma level.

5.3.2 Hue-Dependent Chroma Multiplier

The hue-dependent chroma multiplier was implemented in the second step of image
processing. With sRGB images as a starting point, the first step was, similar to Experiment
1, rendering the RGB images using the wide-gamut display primaries, resulting in boosted
chroma for all pixels because of the high purity of the wide-gamut primaries compared to
sRGB’s Rec. 709 primaries. In contrast to the previous experiment, however, the standard
sRGB nonlinearity was used, rather than the display’s native non-linearity, to preserve
tonal accuracy in the multi-hue images. As a second step, the images were varied in
overall chroma level using the hue-dependent chroma multiplier, creating a set of chroma

86



5.3. Experiment 2

Figure 5.3: Multi-hue images. Examples of the 51 multi-hue images used in
Experiment 2. These 11 images were used in the painting task.

variations that were then used in the tuning task.

The principal components analysis performed in Experiment 1 yielded a first compo-
nent that was conceptually an “overall” chroma level preference, to which all seven hues
contributed a similar, but slightly different amount. The raw factor loadings in the analysis
can be interpreted as the relative contribution of each hue to the overall preferred chroma
level. The preferred level (mean preference) and the corresponding relative contribution
per hue were used as offset and gain to create a chroma multiplier relationship for each
hue. Figure 5.4 shows the seven linear relationships as a function of overall chroma level,
a scale on which 1 is the mean preference from Experiment 1. The different slopes visible
show that as the overall chroma level increases, the chroma multipliers at some hues
increase slightly faster than at other hues.

Applying the chroma multipliers based on seven measured hues to natural, multi-hue
images requires interpolating the results to intermediate hues, and that was done via cubic
interpolation of the multipliers themselves as a function of CIELAB hue angle, constrained
for continuity and smoothness around the hue circle. Figure 5.5 shows the smoothly
interpolated result for a range of overall chroma levels. The impact of the different gain
factors per hue can be seen in the different vertical spacing of the colored dots (at each
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Figure 5.4: Chroma multiplier slopes. Each line shows the relative slope
derived from the principle component analysis, colored according to the hue it
represents, with the exception of the black line, which corresponds to Rec. 709 R.

of the seven hues) and the shape change of the curve at different overall chroma levels.
These interpolated relationships were used as lookup-tables in the creation of the chroma
variations: for a given overall chroma level, each image pixel’s hue determined the chroma
multiplier to be applied to that pixel’s CIELAB chroma.

The processing chain was designed for color enhancement, meaning that color
accuracy was not the goal, but it is worth pointing out that chroma variations were not the
only changes introduced. Because the wide-gamut primaries were different in color than
the original images’ Rec. 709 primaries, the first processing step introduced minor hue
and lightness errors throughout the hue range. In the previous experiment, where only
single-hue images were used, this was not an issue, but for multi-hue images, the inter-hue
relationships became somewhat distorted. That being said, the distortion was introduced
at the beginning of the processing path, and the experimental chroma variations held
them constant, ensuring that hue and lightness errors did not correlate with the results.
Regardless, to be confident that the distortions did not introduce distracting artifacts, the
experimenters surveyed all of the experimental images at a “normal” level of chroma
and agreed that the renderings were subjectively pleasant and sufficiently natural to be
reasonable starting points for the chroma variations.

5.3.3 Painting Task

Generally applying the hue-specific results of Experiment 1 requires an assumption that
the chroma preferences for isolated hues would be maintained when multiple hues
are present in the same image. Rather than exhaustively testing hue combinations to
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Figure 5.5: Resulting chroma multipliers. Interpolated chroma multipliers
for different overall chroma levels as a function of CIELAB hue angle. The solid
line represents the mean preference level, and the colored dots show the seven
measured hues.

prove this assumption holds, a secondary task was devised with the multi-hue images in
which the observers were asked to qualitatively indicate their satisfaction with inter-hue
relationships. Each observer was shown an image at the chroma level they had personally
selected moments earlier, and they were asked to paint, using a mouse cursor, areas
they felt were too high in colorfulness, resulting in a binary mask image. Then the same
task was repeated, but they were asked to paint areas that were too low in colorfulness,
making a second mask image. In both cases, they were free to paint nothing, indicating
satisfaction with the colorfulness of all areas of the image. The painting task was done
with a subset of eleven of the multi-hue images, shown in Figure 5.3, and the resulting
masks were saved for analysis.

5.3.4 Results

In the tuning task of this experiment, the observers were asked to select their preference
among images varying in overall chroma level, which incorporated a different linear
scaling function for every hue. The overall chroma level is a convenient parameter;
however, its interpretation is complicated slightly by the gamut limitations of the display
used in the experiment. The full amount of chroma enhancement required by the overall
chroma levels was not always achievable, depending on the hue content of the images,
meaning that the actual chroma of colors in the experiment was sometimes clipped.
Generally, as the overall chroma level was increased, perceived colorfulness increased
as well, to a point, then the colorfulness increase “slowed down” as more image pixels
became clipped. To describe the chroma modulation while properly accounting for hue-
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and image-dependent clipping, a corrected chroma multiplier (CCM) was computed. CCM
was the effective chroma multiplier averaged over all non-neutral pixels (chroma > 12.5)
of an image. CCM included the nonlinear effect of clipping, and as such, might be different
for a given overall chroma level depending on an image’s color distribution. It was defined
such that it corresponded well visually to the colorfulness increase of the images. Values
were normalized such that a CCM of 1 corresponded to the mean preferred chroma level,
per hue, from the results of Experiment 1. Hence, the expected result in Experiment 2,
ignoring differences due to image content, was a CCM of 1.

The results of the two experiments may be compared. Figure 5.6 shows a boxplot
of preferred CCM for the ten different hues of the image paint, which was used in both
experiments. The median CCM is virtually independent of hue for the seven hues used
in Experiment 1, meaning that the previous result is confirmed and showing that the
hue-dependent chroma multiplier performed as expected. Interestingly, the one hue that
deviates is yellow, which was already suspected to be unreliable due to the limitations
of the wide-gamut display. Also, the three additional hues added in this experiment
behave similarly, so it is apparent that the smooth interpolation of the measured hues was
reasonably successful. All the median CCM values are larger than the predicted value
of 1, which is somewhat surprising, but perhaps explained by different image content
and the known but unmodeled content dependence of preference. To make one point
of comparison, the mean chroma preference for the image paint was computed for both
experiments in terms of CCM. The mean CCM for this image in Experiment 1 was 1.16,
while the mean in Experiment 2 was 1.26; this small increase is possibly due to observer
differences.

Pooling over all images, Figure 5.7 shows a boxplot of preferred CCM per hue. The
first ten boxes correspond to the ten hues used for rendering the three original single-hue
images of Experiment 2, and the final box represents the CCM pooled over all 51 multi-hue
images. The median CCM value is fairly independent of hue, demonstrating that the
hue-dependent chroma multiplier concept is also applicable to new content, and even
(on average) to images containing multiple hues. However, again the median CCM is
consistently larger than 1, meaning that the overall preference was for a higher chroma
value in Experiment 2 than in Experiment 1. The reasons for this may include different
content and different observers. There is a strong dependence on content, and it is
interesting to note that for complex, multi-hue content, the preferred CCM more closely
matches that of the images with higher preferred chroma in Experiment 1, namely paint
and room.

An ANOVA was performed on the single-hue stimuli only, with the preferred CCM
as dependent variable, the image content and hue as independent variables including
their 2-way interaction, and the observers as random factor. The analysis yielded a
significant effect of content (F=72.4, df=2, p<0.001, η2

p=0.633), of hue (F=3.29, df=9,
p<0.001, η2

p=0.073) and of observer (F=4.62, df=42, p<0.001, η2
p=0.697) on preferred

chroma level. The hue-dependent chroma multiplier was designed to make the preferred
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Figure 5.6: Partial reference results. Boxplot of preferred chroma (expressed
in CCM) per hue for the image paint. Each box indicates the the 25th, 50th

(median), and 75th percentiles of observations, and the long whiskers reach to
the min and max values observed.

chroma independent of hue, but there remains a significant, though small, effect of hue on
preferred chroma. Once again, suspicion falls on the Y hue, whose result stands out from
the others. For this hue, the predicted chroma multiplier is too small, but this is likely
due to the uncertainty caused by the chromaticity gamut capability of the wide-gamut
display, which at the Y hue is not much wider than Rec. 709. In Experiment 1, there
was a significant interaction effect between hue and observer, but it is not significant
in Experiment 2. This improvement shows that the hue-dependent gain, on top of the
offset, used to compute the hue-dependent chroma multipliers, successfully described
inter-observer differences. The significant content dependence shown by the ANOVA
again shows the importance of this factor, something that should not be forgotten even
though it is not addressed by the current work.

The painting task provides some interesting results. For each of 11 images, each
observer painted 2 masks, on one indicating which regions they considered too colorful,
and on the other indicating which regions were not colorful enough. Most strikingly, 55%
of all masks were blank, indicating satisfaction with the colorfulness of all hues. In cases
where masks were painted, some inferences can be made about the strategy the observers
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Figure 5.7: All preference results. Boxplot of preferred chroma (expressed
in CCM) pooled over the three single-hue images per hue. Each box indicates
the the 25th, 50th (median), and 75th percentiles of observations, and the long
whiskers reach to the min and max values observed. The last box, labeled “mult,”
represents the data pooled over all multi-hue images. The expected value based
on the previous experiment was 1.0, while the present median result over all hues
is 1.2.

used when selecting their preferred level of chroma in the tuning task. In general, if the
one-dimensional tuning of overall chroma level did not provide satisfactory performance
for all colors, the result from the observer’s perspective was a choice among an image with
some colors over-saturated, some colors under-saturated, or some of both. The paintings
indicate which strategy the observer chose; for example, if an observer painted regions
indicating too much colorfulness and didn’t paint regions indicating too little, then he
or she apparently chose an overall chroma level that avoided colors having too little
colorfulness while tolerating too much colorfulness in other colors. The per-observer data
shown in Figure 5.8 are the numbers of masks painted (out of 11 possible) to indicate
image regions with too much color (left plot) and the numbers of masks painted (again
out of 11) to indicate too little color (right plot). For many observers, the left plot shows
more masks painted than the right, which means that these people preferentially tolerated
an image with some over-saturation rather than one with some under-saturation. Overall,
44% of the too-colorful masks were painted, and 38% of the not-colorful masks were
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Figure 5.8: Numbers of image masks painted by each observer. At left, the
green bars show the number of images (of 11 possible) that were painted to
indicate regions of too much colorfulness, and at right, the gray bars shows the
number of images (again 11 possible) that were painted to indicate regions of
too little colorfulness.

painted, and almost all observers painted both kinds of masks, albeit not necessarily for
the same image. In fact, observers very rarely painted both kinds of masks for the same
image – this case occurred in only 8% of all image-observer combinations – which suggests
that the observers were purposefully selecting their strategy on a per-image basis.

Some examples of the painted images are shown in Figure 5.9. Looking at the image
content in the areas that were painted, the hue most commonly indicated too colorful
was red, and the hues most commonly reported not colorful enough were yellow and
lime-green. One interesting example is blue sky, which was painted in both directions: as
too colorful when the original was a deep blue sky, and as not colorful enough when the
original sky was hazy or pale blue. This result points to an optimum chroma for blue sky
and illustrates the importance of memory colors and the contextual complexity of content
dependence.

5.4 Conclusions

The two experiments discussed here provide useful results for the preferred wide chro-
maticity gamut boundaries for the rendering of standard gamut content. Observers
generally preferred image renderings that were moderately higher in chroma than the
standard rendering, while still remaining for most hues within the physical limitations
of display technology available today. Observers were willing to accept chroma levels
somewhat higher than the preferred levels, but for some hues, current wide-gamut dis-
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Figure 5.9: Painting task results. The top row shows the starting image for
three examples, the second row shows the images masked with a thresholded
sum of observers’ paintings that indicate regions too high in colorfulness, and the
third row shows the images masked to indicate regions too low in colorfulness.

play technology provided unacceptably high chroma. The measured chromaticity gamut
boundary preference depended on observer, hue, and image content. The content depen-
dence was complex and not easily modeled, but the observer preference variation could
be largely modeled with a single overall chroma parameter that incorporated first- and
second-order hue dependence. This hue-dependent chroma multiplier was verified to be
successful with real world images, in which observers appeared to systematically balance
regions of too-high and too-low colorfulness, depending on the image content. Overall,
they tended to prefer to err on the high side, more often selecting the higher-chroma
image when the inter-hue balance of colorfulness was not perfect. This suggests that
display design should be biased toward higher chroma, assuming the consumer is given
an overall colorfulness adjustment control that takes into account the hue dependence
described. The results include some uncertainty in yellow hues due to the chromaticity
gamut limit of the display used for the experiments, so this should be confirmed in a
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follow-up with a more capable display, such as a multi-primary display including a yellow
channel. Additionally, results using multi-hue images suggested that the chroma prefer-
ence level for red that was found using single-hue images was too high for general use,
and should be verified.

5.5 Bibliography

[1] ITU-R. BT.709 : Parameter Values for the HDTV Standards for Production and
International Programme Exchange, April 2002.

[2] Adrianus J.S.M. de Vaan. Competing Display Technologies for the Best Image
Performance. Journal of the Society for Information Display, 15(9):657–666, 2007.

[3] R. W. G. Hunt. The Reproduction of Colour. Fountain Press, Kingston-upon-Thames,
5th edition, 1995.

[4] E.A. Federovskaya, H. de Ridder, and F.J.J. Blommaert. Chroma Variations and
Perceived Quality of Color Images of Natural Scenes. In Proc. SPIE, volume 2411,
pages 51–61, 1995.

[5] Huib de Ridder. Naturalness and Image Quality: Saturation and Lightness Variation
in Color Images of Natural Scenes. Journal of Imaging Science & Technology, 40(6):
487–493, 1996.

[6] R. Muijs, J. Laird, J. Kuang, and S. Swinkels. Subjective Evaluation of Gamut
Extension Methods for Wide-Gamut Displays. In Proc. IDW, pages 1429–1432, 2006.

[7] J. Laird and I. Heynderickx. Perceptually Optimal Boundaries for Wide Gamut TVs.
Proceedings of the SPIE - The International Society for Optical Engineering, pages 1–10,
2008.

[8] Y. Hisatake, A. Ikeda, H. Ito, M. Obi, Y. Kawata, and A. Murayama. The Ergonomics
Requirement for Reproducible Area of Color Chromaticity in Electronic Displays. In
Proc. IDW, pages 2301–2304, 2007.

[9] Masato Sakurai, Rodney L. Heckaman, Stacey E. Casella, Mark D. Fairchild, Takehiro
Nakatsue, and Yoshihide Shimpuku. Effects of Display Properties on Perceived
Color-Gamut Volume and Preference. Journal of the Society for Information Display,
16(12):1203–1211, 2008.

[10] Dragan Sekulovski, Robert de Volder, and Ingrid Heynderickx. Preferred and Ac-
ceptable Color Gamut for Reproducing Natural Image Content. In SID Symposium,
pages 1014–1017, 2009.

95



5. Preferred Color Gamut for Reproducing Natural Image Content

96



6

Preferred Color Gamut Boundaries for
Wide-Gamut and Multi-Primary Displays

Abstract

Preferred chroma enhancement and its dependence on hue are studied in a two-
part experiment using a wide-gamut multi-primary display. Earlier research showed
a clear dependence on hue but was limited by the gamut of the display it employed;
the present work builds on this while easing the gamut constraints. In the first part of
the present experiment, a tuning task was used to refine the preference for chroma
boost starting with standard-gamut (Rec. 709) images. The overall median preferred
boost is roughly 20%, but it is not uniform over hues: the preferred boost for orange,
yellow, green, and cyan colors is greater than that for blue, magenta, and red colors.
Dependence on image content and observer is noted, though a content-independent
chroma boost created by aggregating preference over many images performs well.
An adjustment parameter for overall chroma which incorporates the hue dependence
averaged over image content should be sufficient to handle the vast majority of
inter-observer variance in preference. In the second part of the experiment, various
chroma boost algorithms were evaluated through a paired comparison task. The
prescribed hue-dependent chroma boost is preferred over all other variations, and
all hue-preserving chroma boost variations are preferred over both colorimetrically
accurate and naive same-drive-signal renderings. The results may be applied in
display design to select gamut boundaries that maximize satisfaction over the observer
population.1

6.1 Introduction

Despite the recent entry of wide-gamut displays into the marketplace, basic questions of
how wide the gamut must be and how best to address it remain insufficiently answered.

1This chapter has been published in the journal Color Research & Application, doi: 10.1002/col.21780
(2012): "Preferred Color Gamut Boundaries for Wide-Gamut and Multi-Primary Displays," Michael J. Murdoch,
Dragan Sekulovski, and Ingrid E. J. Heynderickx.
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These questions are especially important as long as most input sources remain standard-
gamut content (i.e. Rec. 709, the standard for HDTV broadcast and sRGB internet
images [1] ), because image enhancement is then required in order to use the wide gamut.
While it is well known that people prefer images that are more colorful than what is
recognized as natural or realistic [2, 3, 4], inconsistent and generally poor results are
obtained by simply providing an arbitrarily wide gamut and addressing it naively.

The question of required gamut size has been addressed by several researchers.
Rather than arguments based on surface colors or self-luminous colors, a practical ap-
proach is to study what range of colorfulness people prefer. Early looks at preference-based
image chroma requirements were provided by Hisatake et al. [5] and by Laird and Heyn-
derickx [6]; in both papers, a moderate boost in chroma was appreciated by viewers,
depending on both hue and image content. The present authors previously reported
experimentally-measured hue-dependent chroma preference for highly-chromatic images,
with the intent of providing preference-based guidance on the size and shape of display
gamut boundaries [7]. The results indicated a need for more color gamut in yellow hues
which is addressed in the present paper.

The question of how best to address a wide-gamut display with incoming standard-
gamut images has also been studied to some extent. Historically, gamut mapping research
has focused on gamut compression, with special emphasis on squeezing the gamuts
of additive color spaces (sRGB, Adobe RGB, etc.) into the gamuts of subtractive color
systems, such as CMYK printers and printing presses. Gamut expansion accomplishes
the opposite of this, though both are concerned with how far and in what manner to
modify image colors. The characteristics of the destination wide gamut are of course of
prime consideration, but just as important are the characteristics of the starting image,
including its color space and its content and context. Preferences for the expansion
method itself, meaning how the starting gamut is mapped into the available destination
wide gamut, were reported by Laird et al. [8] They compared matrix-based enhancements,
naive same-drive-signal (SDS) mappings, and hue-preserving linear and nonlinear chroma
boosts, finding a preference for hue-preserving chroma boosts with a nonlinearity that
enhanced high-chroma colors more than low-chroma colors. Additionally, the importance
of treating some colors in special ways, such as protecting skintones from excessive
boosting, is well recognized in gamut mapping. Chen et al. provide a good example in
their method of skintone segmentation and hue mapping which avoids contouring at
segment boundaries [9].

Though the questions of gamut boundaries and gamut expansion cannot be com-
pletely separated, this nonetheless has been the goal throughout the present authors’
research. As reported previously, we intentionally utilized image content biased toward
the outer edges of the gamut area, thereby allowing the use of linear chroma expansion,
and we avoided skintones altogether [7]. In the present paper, we continue with both of
these constraints. Figure 6.1 summarizes the results of our prior paper, showing three
chromaticity gamuts: the standard gamut of the starting image encoding, Rec. 709; the
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Figure 6.1: Previous result. The median result from the authors’ previous work,
shown as a black line on this top-view u’v’ chromaticity diagram, is a moderate
expansion from the starting Rec. 709 chromaticity gamut, shown in red. The
blue chromaticity gamut is that of the display used for the experiments, which
does not offer significant expansion for blue or yellow hues.

median preferred gamut boundary, interpolated between sampled hues; and the available
wide gamut of the RGB LED-backlit LCD that was used in the earlier experiments. It is ap-
parent from the plot that the previous results were potentially limited by the capabilities of
the wide-gamut display in yellow and blue hues. Additionally, viewers explicitly indicated
they would prefer more yellow chroma than was available. To further test hue-dependent
preferences while removing the limitations and potential bias of the wide-gamut RGB
display, we specified a new 5-primary (red-green-blue-cyan-yellow: RGBCY) wide gamut
display and crafted new viewing experiments.

6.2 Methodology

A two-part experiment was designed to take advantage of the color gamut capabilities
of the multi-primary display. The first part of the experiment measured hue-dependent
chromaticity gamut expansion requirements for natural images via a tuning task similar to
the previous work, and the second part of the experiment incorporated paired comparisons
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Figure 6.2: New multi-primary display. Chromaticity gamut comparison in a
u’v’ chromaticity diagram of the starting image color space, Rec. 709 (red), the
previous experiment’s RGB display (blue), and the present experiment’s RGBCY
multi-primary display (black).

between the predicted preferred hue-dependent gamut expansion method and other
methods.

6.2.1 Multi-Primary Display

The multi-primary display (MPD) used in the experiment was a prototype 5-primary
(RGBCY) liquid-crystal display with a customized color filter array providing expanded
chromaticity gamut, especially in the yellow and cyan hues. For comparison, Figure 6.2
shows the chromaticity gamuts of this RGBCY display, the Rec. 709 standard, and the
RGB-LED LCD used in the previous experiment. The advantages in blue and yellow
hues, compared to the previous RGB display, are valuable improvements for the present
experiment, while the reduced capability in green and red is not seen as a disadvantage,
according to the preferences measured previously.

The MPD was measured with full-screen color patches throughout its entire range
using a Photo Research PR-680 spectroradiometer. The maximum luminance of the
display with all 5 channels fully open was 457 cd/m2; however, as discussed in the next
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paragraphs the maximum white luminance used in the experiment was half of this value.
The display was not calibrated in the sense that its behavior or LUTs were modified to
make it behave like a standard monitor, but instead these characterization data were used
as a forward model that accurately described its behavior. This behavior was used in the
generation of a colorimetrically-accurate 3D-LUT that both inverted the forward model
and performed the 3-to-5 channel multi-primary mapping.

Color rendering on a multi-primary display is nontrivial because each additional
primary beyond RGB adds an additional degree of freedom that must be constrained
in some way. Hinnen et al. explained methods of multi-primary mapping, possible
constraints for the additional degrees of freedom, and the additional possibility of sub-
pixel rendering [10]. For the purpose of this experiment, the main conceptual constraint
was visual smoothness, i.e. the avoidance of sharp transitions in color gradients, so sub-
pixel luminances were equalized as much as possible in the 3D-LUT implementation. Note
that colors very close to or beyond the MPD gamut boundary were explicitly soft-clipped
to avoid hard-edged artifacts.

In general, the use of more than three primaries in a filtered-light system such as
an LCD results in lower luminances of the primaries relative to white, when compared
to a typical 3-primary system, as discussed by Hinnen. This can produce unnaturally
dark red and green colors, for example. Though it is known that a moderate amount of
primary-dimming is acceptable [11], in order to avoid any distortion of the results of the
present experiment, the choice was made to lower the display white luminance in software
while leaving the pure primaries unconstrained. In the MPD, there were half as many
green and blue subpixels as would be in a normal RGB display, so that by constraining
white to half of its physical maximum luminance, the relative luminance ratios between
the primaries and white were the same as they would be in a RGB display. Note that while
Heckaman and Fairchild constrained white relative to pure colors in an RGB display with
the goal of increasing colorfulness beyond the display’s native performance [12], in our
case the goal was to maintain colorfulness despite the use of more primaries. Another way
to look at this is that the display efficiency was intentionally lowered by implementing a
luminance limit in the video data. Thanks to this constraint, the 3D-LUT mapping from
RGB to RGBCY was able to preserve luminance for all colors.

For the experiment, images on the MPD were shown with height of 600 pixels,
corresponding to 15 degrees of visual angle from the viewing distance of 2.5m. The
images were presented on a uniform gray background of L* 50 at the display white point
of D65, and the viewing lab utilized dim, indirect lighting amounting to 4 lux horizontal
illumination on the desk surface.

6.2.2 Image Stimuli Preparation

There were two distinct sets of image scenes used in the experiment, one consisting of
single-hue images rendered at a variety of CIELAB hue angles, and the other consisting of
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Figure 6.3: Single-hue stimuli. The 6 single-hue scenes shown at some of the
12 hues used in the first experiment.

Figure 6.4: High-chroma stimuli. Representative scenes from the high-chroma
image set.

natural images with very high-chroma content. Scenes from each set appear in Figure 6.3
and Figure 6.4. For clarity, the image content and source images will be referred to as
scenes, and the rendered variations as images or image stimuli.

The scenes were selected from Creative-Commons licensed content available on web
sites such as Flickr2. Their processing pedigree and capture conditions are unknown, but
this lack of control is typical for display applications and part of the reason for using a
wide variety of scenes. The image processing chain makes the assumption that they are
properly encoded as sRGB.

The six single-hue scenes as shown in Figure 6.3 were intentionally processed
to have a very narrow range of hues. They began as regular sRGB images and were
converted to CIELAB LCh so that the hue channel h could be constrained to the 12 target
hue angles: CIELAB h values of 10, 39, 44, 65, 101, 125, 150, 192, 214, 270, 312, and
335. The target hues are the primary and secondary hues of relevant display systems
(including, for example, the red primaries of both Rec. 709 and the RGB LED display from
previous experiments) as well as some intermediate hues to further sample the hue circle.
The hue-rotation procedure was the same as that explained in detail previously [7, 13].
To summarize, the h values were simply replaced with the target hue, and the L* and
C* values modified to account for the difference in gamut cusp between the start and

2http://www.flickr.com
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Figure 6.5: Stimuli processing. Flow diagram for the creation of chroma level
variations for display on the MPD in the experiment. Input images were 8-bit per
channel sRGB, which were converted to CIELAB LCh. The chroma channel C was
modified using the chroma multiplier LUT for the desired overall chroma level,
then soft-clipped to ensure it would be in-gamut on the MPD. The resulting LCh
values were mapped to 8-bit RGBCY display drive values using the multi-primary
mapping and MPD inverse 3D-LUT.

destination hues. These six starting scenes each at 12 hues made a total of 72 single-hue
scenes.

The 52 high-chroma natural scenes used in the experiment were selected for their
wide variety of content and high-chroma color palette. A preponderance of highly-
saturated colors was chosen in order to bias the experiment toward the gamut boundaries,
because the preferred expansion of colors near the borders of the starting gamut defines
the requirements for a wide gamut display. In all scenes, humans and skintones were
omitted, because no special treatment of skintones was implemented in the experiment.
The worry was that observers would push the chroma expansion of a scene differently,
probably less aggressively, with skintones involved.

In preparation for the experiment, scenes were pre-processed to a set of image
stimuli with a wide range of colorfulness for the observers to select among. The flow
diagram illustrating the creation of the image stimuli is shown in Figure 6.5. The process
used the hue dependence derived in previous experiments; however, the application of
the chroma boost was improved. Previously, a hue error was knowingly introduced in
the image processing because the RGB primaries of the RGB-LED backlit display were
different in hue than the sRGB primaries and the goal was to maximize available color
gamut. In the present experiment, because it was known that the maximum gamut was
not needed, image hues were preserved accurately.

An overall level parameter was used as an index into a family of hue-dependent
chroma multiplier LUTs corresponding to different levels of overall colorfulness. The levels
ranged from 0 to 4 in steps of 0.1 units, on which scale 1.3 was the median preferred
level of chroma enhancement based on previous experiments. At this overall level, the
chroma multiplier per hue ranged from about 0.9 in some hues to about 1.3 in others.
LUTs with overall levels from 0 to 3 are shown in Figure 6.6, and the median level of 1.3 is
emphasized. Note that the hue-dependence (the deviation from a constant value) changes
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Figure 6.6: Hue-dependent chroma multiplier LUTs. These are shown for
overall chroma levels ranging from 0 to 3 (labeled). The previous experiment
median preferred level of 1.3 is emphasized by the heavy black line.

with overall colorfulness level, a feature based on a model of inter-observer preference
variance obtained from previous experiments. In the implementation, for each pixel in an
image and for a given overall chroma level, the LUT value corresponding to the pixel’s
hue was used as a multiplier for the pixel’s CIELAB chroma C*. Then, MPD digital drive
values were computed as explained in the previous section.

For the second part of the experiment, five variations of the chroma enhancement
were created, illustrated schematically in Figure 6.7. Three of the variations consisted of:
the same hue-dependent chroma boost as in the tuning part of experiment, called preferred
chroma (PC); flat chroma (FC), in which the chroma of all hues was boosted uniformly;
and an inverse of the preferred chroma (IC) which boosted the chroma according to the
opposite of the preferred hue dependence. Image stimuli were created for each of these
three variations at all 41 levels of overall chroma level. The two additional variations were
the original sRGB image (sRGB), correctly (colorimetrically) rendered for the MPD, and a
version mimicking RGB same-drive-signal (SDS) rendering, which ignored the cyan and
yellow primaries and treated the MPD as a wide-gamut RGB display, naively stretching the
scene’s colors to fill its gamut (arbitrarily scaling chroma and distorting hues according
to the specifics of the wide-gamut RGB primaries). These two variations did not have
different overall chroma levels.
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Figure 6.7: Chroma variations. These variations were prepared for the second
part of the experiment. At left, the original image, colorimetrically displayed
according to sRGB, and the SDS “naïve” gamut expansion to fill the RGB display’s
gamut. At right, three variants of hue-preserving, hue-dependent chroma boost,
showing mini-plots to illustrate the hue dependence: the preferred chroma, using
the same hue dependence as in the first experiment; flat chroma, meaning hue-
independent chroma scaling; and inverse chroma, a hue dependent mapping
using the opposite relative scaling with respect to what was preferred.

6.2.3 Experimental Tasks

The first part comprised a tuning task using the method of adjustment, in which observers
selected their preferred level of colorfulness among the set of pre-processed variations
for each scene. Observers were asked to “tune” the level of overall colorfulness to
their preference, and the levels presented corresponded to chroma-scaled versions of
the predicted preferred chroma enhancement from prior experiments. Each scene was
presented in randomized order by a Java program that also controlled the user input
and data recording. For each scene, the initial image stimulus had a level of overall
chroma randomly selected to be at or below the median preferred level from the previous
experiments. Using the keyboard arrows, the observer could change the level of overall
chroma in the scene: the left and right arrow keys moved one step, and the up and down
arrow keys moved five steps (out of a total of 41 steps). The observer was free to adjust
the overall chroma at will, higher, lower, and back-and-forth without any time restriction.
When the observer reached a satisfactory overall level of chroma, he or she pressed “Enter”
to register the preference and move on to the next scene. In practice, tuning a single scene
took a typical observer only 20 to 30 seconds, and was considered a rather easy task.

In the second part of the experiment, which was conducted immediately after
the first, paired comparisons allowed each observer to evaluate the preferred chroma
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enhancement along with other methods of chroma enhancement. For this task, twelve
scenes were selected from those used in the first part of the experiment. Because we found
considerable observer variation in overall preferred chroma level in previous experiments,
each observer’s personal preferred chroma from the tuning experiment immediately
preceding was used in the comparisons. The paired comparison task consisted of a series
of 2-alternative forced choice (2AFC) presentations, in which a pair of image stimuli was
shown side-by-side on the screen and the observer selected one of them using the left
or right arrow keys. Observers were instructed to choose the image that they preferred
overall, and if they could not tell a difference or did not have a preference, to select one
randomly. No time constraints were employed. Five variants of chroma enhancement,
yielding 10 pairwise comparisons for each of the 12 scenes, were presented to each
observer in random order by a Java program that also recorded the results.

6.2.4 Observers

27 observers participated in the experiment, all of whom had normal color vision according
to the Ishihara test and Landolt-C visual acuity of 1.0 or better. The group included 14
males and 13 females and had a median age of 29 in a range of 22 to 50 years. All of the
observers were from the Philips Research environment, including students and regular
employees, and they received no additional compensation for their participation.

6.3 Results

The results of the tuning task provide a picture of the dependence of chroma boost
preference on hue, scene content, and observer. The parameter under the control of the
observer during the tuning was the overall chroma level, which ranged from 0 to 4 in
steps of 0.1 units. However, because the MPD had a physical gamut limit, some pixels in
some images at high values of overall chroma level were clipped and thus not displayed
at the correct level according to this parameter. In order to take clipping into account, an
effective chroma multiplier (ECM) was computed, which for a given image is simply the
ratio of output (including chroma boost and clipping) chroma to input chroma averaged
over all pixels with non-zero chroma. The ECM was computed for each scene at each
overall chroma level, and the basic relationship between ECM and chroma level resembled
the clipping function, albeit scaled differently for each image stimulus according to the
particular chroma distribution. The ECM metric was more representative of what the
observers actually saw on the screen than the input parameter of overall chroma level,
and therefore ECM was used in the statistical analysis of the results. Note that ECM was
conceptually the same as the corrected chroma multiplier (CCM) that was reported in
2010 [7], but including all starting chroma values larger than zero rather than using the
unnecessarily conservative constraint of chroma larger than 12.
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6.3.1 Single-hue Scenes

One goal of the present experiment was to verify previous results with a more capable
display, thus a detailed look was made at the hue dependence of the preferred chroma
boost. The 6 single-hue scenes were each presented for tuning at 12 different hues. Using
SPSS, an ANOVA was computed with preferred ECM as the dependent variable, scene
and hue as fixed factors, and observer as a random factor. All factors and their two-way
interactions were found significant (p < 0.001). Medium-sized effects were seen for
observer (η2

p = 0.589), meaning that people prefer different levels of overall chroma;
for scene (η2

p = 0.554), meaning that image content plays a large role in determining
preferred chroma; and of course hue (η2

p = 0.419). The interaction between scene and
observer was also medium in effect size (η2

p = 0.507), showing that different people
respond to image content in different ways. The interaction of hue and observer was
small in effect size (η2

p = 0.218), which means that when the observers’ overall level
preference is accounted for, the relative chroma boost per hue doesn’t differ strongly.
Finally, the interaction between hue and scene, while statistically significant, is extremely
weak (η2

p = 0.076), meaning that the hue dependence does not strongly depend on image
content.

The distributions of results according to hue are shown in detail in Figure 6.8, along
with those for the high-chroma scenes. Though the red violin envelopes show that the
distributions are not strictly normal, the observed mean and median values generally
correspond closely for the single-hue scenes. The hue dependence indicated by the
ANOVA is clearly seen, and indeed a Tukey post-hoc analysis showed several overlapping
subgroups, with the groups of lowest 5 hues (10, 39, 270, 312, 225) and highest 5 hues
(65, 101, 150, 192, 214) distinct.

The results of the present experiment may be compared with the previous experi-
ment [7] as seen in Figure 6.9. In both experiments, biggest contributor to inter-observer
differences is an overall level preference, thus it is not surprising that the mean ECM
of the present experiment over the twelve measured hues, 1.012, was slightly lower
than the mean of the previous result over its seven measured hues, 1.065. For this
reason, both results are shown with their mean values subtracted. The present curve
is a cubic interpolation of the results measured at twelve discrete hues (labeled, and
at which 95% confidence intervals are shown), constrained to be smooth around the
hue circle. The previous curve was interpolated between only 7 hues, but additionally
incorporated the effect of chroma distortions introduced by the RGB LCD used previously:
specifically, the curvature near 10 and 270 degrees that would not have appeared with
simple interpolation between the 7 measured hues.

Comparing the previous and present results, there are some noticeable differences.
Overall, the present result is slightly flatter (meaning smaller differences in preference
with respect to hue). Further, the ECM for red and cyan colors is lower than previously
observed, while for yellow and green it is higher. It appears that the predicted, but
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Figure 6.8: Per-hue results. Violin plots illustrating the distributions of pre-
ferred effective chroma multipliers observed in the experiment. The larger subplot
shows distributions over observer (27) and scene (6) for each of the single hues
indicated on the x-axis, while the smaller plot shows the distribution over ob-
server (27) and all high-chroma scenes (52). The central blue boxes indicate
25th and 75th percentiles, with median as a red tick and mean as a green plus.
The surrounding red violin envelopes represent kernel-smoothed estimates of the
local probability density of the observations.

previously unmeasured bump at 10 degrees was not preferred, while the dip at 270 was
preferred. Based on the confidence intervals, it may be concluded that the present result
is indeed significantly higher in yellow and green hues, as was expected based on the
limitations of the previous research. The results match very well between hue angles
214 and 335, but the deviations at 39, 44, and 192 are moderate. Interestingly, the
distinct difference in chroma preference between the two red hues, 39 and 44, which
was measured in previous experiments, is still clearly seen, even while the absolute levels
differ. It appears that as expected based on the previous experiments, making more color
gamut available in the yellow region was appreciated by the observers. Also as expected,
the extra cyan color gamut enabled by the MPD was not used or appreciated by the
observers.

As can be seen in the confidence intervals, the variation among observers and images
is not constant with hue. That is, at some hues, such as yellow-green, blue, and purple,
the range of preference is tighter, while at other hues, such as green and cyan, the range
is wider.
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Figure 6.9: Previous and present results. Comparison of the hue dependence
of ECM with that from the previous research. The present result (red) and
previous result (black) are shown with their respective mean values (1.012 and
1.065) subtracted. The red curve was interpolated between the 12 marked hues,
and the black curve was interpolated between 7 hues according to the behavior
of the LCD used in previous experiment. Error bars at the measured hues show
95% confidence intervals.

6.3.2 Single-hue vs. Multi-hue Scenes

The single-hue scenes were important to the study of the effect of hue on preferred
chroma boost, but they remain a bit contrived, and multi-hue, high-chroma scenes are
much more representative of real television and internet image content. The two sets
of scenes behave differently: the median ECM for multi-hue scenes is 20% higher than
for single-hue scenes, and the mean is 28% higher. As computed using a 2-sample T-test,
the two populations differ significantly (p < 0.001). Interestingly, where the mean and
median ECM for single-hue scenes are nearly identical, 1.01 and 0.99, they differ more
for the multi-hue, high-chroma scenes, 1.28 and 1.20, respectively, emphasizing the
non-normality of the multi-hue ECM preferences.

109



6. Preferred Color Gamut Boundaries for Wide-Gamut and Multi-Primary Displays

6.3.3 Content Dependence in High-chroma Scenes

In previous experiments [7] , modeling the content dependence of preferred chroma
using objective measures of the scene content, such as average starting chroma, the size
of highly-chromatic regions, and local contrast metrics, did not work satisfactorily. In the
present experiment, the multi-hue scenes were manually categorized according to several
criteria to see if high-level context provided insight into the variance in preferred ECM.
2-sample T-tests were computed to gauge the significance of the effect of each criterion on
differences in mean preferred ECM. Note that compensation for significance errors due to
multiple tests was not included, but this doesn’t interfere with the purpose of discussion.
The presence of luminous objects was significant (p = 0.001), with the mean ECM lower
for luminous objects (mean = 1.17) than for non-luminous objects (mean = 1.30). A
white background made a significant difference (p = 0.005), with preference for higher
ECM when objects are presented against a white background (mean = 1.36 vs. 1.27). The
presence of a rainbow, meaning a wide range of highly chromatic colors, led to slightly
lower preferred ECM (p = 0.019, mean = 1.20 vs. 1.24). The presence of a blue sky was
significant (p = 0.039), with people preferring a little less boost (mean = 1.23 vs. 1.30);
however, naturalness of the image did not make a significant difference (p = 0.77). Also
not significant was whether the subject was a close-up without much surrounding context
(p = 0.47).

6.3.4 Paired Comparison Results

The paired comparison task was included to make a precise comparison among the
different variations of hue dependence, and also to compare these to typical gamut
expansion methods. The pairs data were analyzed using the method of Montag [14],
which provides an estimate of significance based on the numbers of stimuli and observers.
The results are shown in terms of quality scores, similar in concept to Z-scores, in
Figure 6.10. The variation with preferred hue dependence (PC) was found significantly
better than all other variations, and all three hue-preserving variations (PC, FC, IC) were
found better than naive SDS; further, all four of these performed better than the original
color reproduction (SRGB). According to Montag’s method, all differences are significant
with a p = 0.05 threshold except that between FC and IC.

6.4 Discussion

Looking at the results, the hue-dependent chroma boost based on previous experiments
was largely verified with more observers and a more-capable multi-primary display.
Importantly, the value of the hue-dependent boost over a hue-independent boost was
proven by a significant preference in the paired comparison, and further, all of the hue-
preserving chroma boost variations significantly outperformed a naive SDS rendering.
We have now shown the value of hue-dependent chroma boost with both wide-gamut
RGB and multi-primary displays. The MPD provided more yellow, cyan, and blue, and
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Figure 6.10: Chroma variation results. Quality scores for each of the hue
dependence variations used in the paired comparison. PC refers to preferred
chroma, FC to flat chroma, IC to inverse chroma, SDS to same-drive-signal, and
SRGB to colorimetrically accurate color reproduction. Error bars are scaled such
that if a mean value of one variation is outside the bars of another variation, the
difference between those variations is significant. All differences are significant
except for FC-IC.

less red and green than the RGB-LED LCD used in previous experiments, and observers
appreciated the added yellow, and also preferred more green. Blue chroma preference
was the same and red and cyan were lower in comparison to our previous experiment.
Thus, it is not likely that chroma boost preference is simply a question of “headroom,” or
distance from the display’s gamut boundary, and the implied correlation with clipping.

6.4.1 Preferred Hue-dependent Chroma Boost

The present results allow an update of the hue-dependent chroma boost provided in our
previous paper [7]. As in that work, the preference behavior observed throughout the
experiment was analyzed with a principal components analysis (PCA) over hue. The first
principal component corresponds to the overall chroma level. The factor loadings indicate
the rate of change at each hue with changes in the overall chroma level, and as was seen
previously, these are also hue-dependent. Using the experimental mean as an offset and
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Figure 6.11: Hue-dependent chroma multiplier curves. These are shown in
two ways: in blue, every tenth percentile, with the median (50th) indicated in
bold. And, in red, the experimental mean (thick line) is used as an offset and
PCA factor loadings as hue-dependent gains to create parameterized curves at
overall levels which match the percentile-based curves.

the PCA factor loadings as slopes, a parametric family of hue-dependent chroma multiplier
curves was created. These may be compared with their nonparametric analogues, as seen
in Figure 6.11.

From these curves, a family of hue-dependent chroma multipliers can be created
and used directly as LUTs to enhance the chroma of standard-gamut images. Using either
mean-based or percentile-based curves is possible, the latter being more clearly related to
proportions of the observer population, but having the handicap of depending on smaller
and smaller subsets of the population as the extreme percentiles are approached. The
mean-based curves depend on PCA, which linearly models the behavior of the whole
population, and thus is both less likely to be affected by noise and more likely to miss
complicated effects. With the present results, in which for example the 10th percentile
includes only 3 observers, it seems prudent to utilize the parametric, mean-based results,
though if a larger experimental data set were available, the percentile-based approach
would warrant closer study. Both versions are shown in Figure 6.11 for comparison, the
mean-based curves drawn to match the overall mean levels of the corresponding ten
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percentiles. They match reasonably well, worse for the highest-variance hues such as
cyan.

As was stated previously, preference for the chroma boost of the multi-hue, high-
chroma scenes was 20-28% higher than for single-hue scenes. Because the former are
much more similar to real-world images, the chroma multiplier should probably be
implemented with a corresponding factor included. However, because the variation in
preference over people is so large, we maintain that the user should still be given an
overall colorfulness adjustment. In that case, the choice of gamut boundaries specifies
only the maximum chroma, as any lower chroma is still attainable with an appropriate
level choice.

6.4.2 Gamut Requirements

The hue-dependent chroma preference results may be directly applied to the design of
a better display gamut for the display of enhanced standard-gamut (Rec. 709) image
content. Scaling the standard chromaticity gamut boundary by the hue-dependent chroma
multiplier curves, including the 20% higher median preference for high-chroma over
single-hue scenes, provides expanded (and contracted) gamut boundaries, as shown in
Figure 6.12. Calibrating the mean-based curves to percentile is intuitive here, because
the resulting chromaticity gamut boundary provides, with properly adjustable overall
boost, satisfaction for all observers whose preference is at or below that boundary. It is
interesting to note that the Rec. 709 boundary lies at the 40th percentile along the B-R
line and only the 30th percentile along the R-G and G-B lines: thus, the standard gamut
satisfies less than half of the observer population. Some of the contours indeed exceed
the gamut of the MPD and occasionally cross the spectral locus; this is an extrapolated
result including the 20% boost and undoing the effect of clipping, and can be thought of
as what observers would like to see.

Figure 6.12 can be used to assess the value of proposed display chromaticity gamuts,
based on how much high-percentile area they enclose. For example, consider a choice
between enhancing a green primary from Rec. 709 green in either the positive v’ or the
negative u’ directions. Either enlarges the chromaticity gamut, but because the lines of
equal-percentile are very closely spaced in the v’ direction and less so in the u’ direction,
the v’-directed enhancement provides more value in terms of observer preference. This
could be quantified by integrating the proposed chromaticity gamut area weighted by the
cumulative percentiles, and thus provide objective comparisons.

6.4.3 Multi-primary Displays

The present results were obtained using a multi-primary display, but they are applicable
to traditional RGB displays as well. If the goal is to maximize the value of the display
chromaticity gamut with respect to the iso-percentile lines shown in Figure 6.12, this may
be done with arbitrary arrangements of primaries. However, it is important to remember
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Figure 6.12: Gamut boundary requirements. Resulting from the present
experiment, the blue curves show expanded (and contracted) versions of the
standard Rec. 709 chromaticity gamut using the mean-based hue-dependent
chroma multiplier curves corresponding to the percentiles labeled derived from
the present experiment. The underlying red triangle indicates the standard
Rec. 709 gamut.
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that the present experiment with the MPD was done with a luminance limit on the
displays’ white point, which is different from the typical inherent behavior of LCD-based
multi-primary displays. Thus, care must be taken to balance the display’s primaries (or
indeed to limit the white) so that they do not appear darker than anticipated, or else the
results may not apply.

6.4.4 Looking Forward

The present experiment provides a strong result to guide the choice of chromaticity gamut
area for displays. An implementation of hue-dependent chroma enhancement may be
made as well, but it would be wise to include some improvements from elsewhere in
the literature. For example, the simple linear scaling used in the present work may be
improved with other variants – nonlinear, soft-clipping, skintone-preserving, lightness-
adapting, and other creative algorithms – which may be used while still taking advantage
of hue dependence. Another question alluded to earlier has to do with how best to use
multi-primary displays, in which primary luminance is inherently lower than in RGB
displays, for example weighing quality and efficiency.

An improvement could be made by accounting for the content dependence of
chroma preference. The present experiment provides some clues: the preference for less
chroma boost for luminous objects and rainbow colors could be either because of cognitive
expectations or because of their higher starting chroma. Preference for higher chroma
boost for images including a white background could be simply due to compensation
for visual effects that might make an object on a white background appear less colorful,
such as glare, where light from the bright background is scattered within the eye to
contaminate the object’s color, or simultaneous contrast, whereby a bright background
makes an object appear darker and less colorful. The influence of this kind of contextual
information is difficult to model, and for now it is effectively “averaged out” in the results,
which is satisfactory. However, image understanding is becoming more powerful, and as
automated machine learning-based image quality prediction comes of age, this problem
may get easier.

6.5 Conclusions

Based on the present work it is clear that, starting with standard-gamut (Rec. 709)
images, viewers prefer a chroma boost from the original color reproduction. For the
median observer, this boost is roughly 20%. The overall boost preference is distorted
according to hue: preferred boost for orange, yellow, green, and cyan colors is greater
than that for blue, magenta, and red colors. This hue-dependence was determined based
on single-hue images, but the present experiment additionally confirmed that it was
significantly preferred in general for multi-hue, natural images.

Once the preferred hue-dependence of chroma boost is applied, the overall level
of preferred chroma boost depends on both image content and observer variation. The
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content dependence is not readily modeled; however, a content-independent chroma boost
created by aggregating preference over many images performs well, on average. Individual
observers’ preference for chroma boost may be handled by a single overall colorfulness
parameter, because the hue-dependence is relatively consistent over observers. Further,
future display gamuts may be designed with respect to the variation in preference over
observers, for example maximizing the proportion of the population whose preference is
attainable within the gamut boundaries.
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Discussion

This thesis has presented a practical approach to choosing technology based on visual per-
ception, aiming to be both efficient and effective. Four steps were laid out in Section 1.3.3
using the language of the Image Quality Circle (see Figure 1.11) to optimize technology
variables with respect to quality. These steps include determining the perceptual attribute
(which contributes to overall image quality) that is most important to the technology,
modeling the impact on the physical image that the technology makes, measuring and/or
modeling observers’ perceptual response to physical images corresponding to the tech-
nology, and communicating the overall relationship to guide technology selection. In
this chapter, a retrospective look at the examples presented explains their fit into this
framework clearly and emphasizes the relationships which were uncovered between
technology and perception. Some comments toward future work are provided.

7.1 High Dynamic Range LCDs

A basic question regarding the development of high dynamic range liquid-crystal displays
is how much dynamic range is needed? In general, higher dynamic range comes at greater
expense, so a pragmatic answer to this question comes from an understanding of how
much dynamic range is actually visible to the human observer. A detailed answer was
provided in Chapter 2.

HDR LCDs are enabled by segmented-backlight technology, which offers not a
single technology variable to optimize, but a collection of variables including the size,
spacing, and spatial luminance profile of backlight segments. For the purpose of this
research, the effects of all of these variables were distilled to the practical, physical image
characteristic of localized image black level luminance. Never infinitely dark even when a
given backlight segment is dimmed, the black level in a display is raised incrementally by
light leakage through the LC itself and by the light from neighboring backlight segments,
and then incrementally further within the observer’s eyes thanks to glare from the image
content and surrounding environment.

Visually, the perceptual attributes related to the physically-lifted black level lumi-
nance are both a worsening of perceived blackness (i.e., lighter than black) and a lowering
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Figure 7.1: Black level visibility results. Black level luminance thresholds
measured in the experiment described in Chapter 2, shown as a function of visual
angle from the glare source (the no-glare condition is labeled on the x-axis as
“NG”). Fitted model points are shown as stars near the corresponding exper-
imental points. The thresholds indicate the black level luminances which are
indistinguishable from much-darker blacks for each combination of glare lumi-
nance, glare distance (visual angle), and average image luminance. Luminance
values listed in the legend are in cd/m2.

in perceived contrast. Of these two, blackness was assumed to be more intuitively de-
scribed, so it was chosen as the perceptual attribute to be evaluated in the experiment.
The experiment uncovered the visibility threshold of black level luminance differences
over different images and physical glare intensities and proximities. The experimental
results depend not only on black level, but importantly on intra-ocular glare, so a model
was assembled that describes the visibility of black level differences as a function of the
distance and luminance of a glare source.
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The measured and modeled final relationship is repeated here as Figure 7.1 (same
as Figure 2.9). The thresholds indicate the black level luminances which are indistin-
guishable from much-darker blacks for each combination of glare source luminance,
glare source distance (visual angle), and average image luminance. Tying this back to
the original question about HDR LCDs, it is apparent that sufficient dynamic range is
any that keeps the black level luminance below these thresholds under all or the most
likely combinations of image luminance, glare luminance, and glare distance. In fact,
this visibility threshold-based relationship may be conservative. It is possible that an
acceptability-based relationship, which presumably would have thresholds above those
for visibility, would allow for more relaxed display specifications.

As a practical example, consider a full-HD 46" TV viewed in a dark room from 2m.
According to the modeled results, if at the center of the screen there is a 100 pixel square
block of full-white, 500 cd/m2, then at 14 cm (4 degrees of visual angle) from the center
the black level visibility threshold is about 0.18 cd/m2. Because a typical LCD can only
attenuate 3 log units of luminance, meaning 1000:1 contrast, a fixed backlight would
produce a black level of 0.5 cd/m2, which is visibly poor. To produce a sufficiently-dark
black, a segmented backlight would need a spatial luminance profile which dropped to
about 0.36 times its maximum over those 14cm. This sort of calculation can easily guide
segment design in an HDR LCD.

7.2 RGBW OLED Displays

OLED displays employing a white-emitting material and color filter arrays can benefit
from using a fourth, white primary in addition to the typical red, green, and blue. The
benefit is not visual at all, but rather to reduce power consumption. However, the
implementation can affect the visual image, generally in an adverse way, depending on
how this technology is employed – technology variables can include how much white to
use, how much RGB remains, and any color pre-processing parameters that affect these.
Myriad options present themselves, some adding image luminance, some reducing color
saturation, others having little visual effect. Options were assessed in two steps, effectively
asking separate questions.

In Chapter 3, the essential question being asked was how can a W primary be
incorporated without degrading the visual image? Because the goal is to not affect the
image appearance at all, we must preserve all relevant perceptual attributes, importantly
brightness, colorfulness, and hue. Using the solid foundation of colorimetry, it is possible
to compute a metameric match, in which the colorimetry of the pixels of the RGBW image
matches those of the original RGB image. The extension from colorimetric match to
appearance match is a reasonable one when viewing conditions are identical. Colorimetric
models of the additive RGB and RGBW systems were used to develop an algorithm that
adds W to the image without visual effect. Conceptually, the subtraction of common
luminance from the color channels and transferring to a neutral channel is similar to

121



7. Discussion

algorithms employed in subtractive CMYK printing; however, an important generalization
was made in this RGBW work to allow for colorimetric precision with an arbitrarily-colored
(i.e., not pure white) W primary.

Because the underlying colorimetry is well-understood and because OLED displays
may be straightforwardly additively modeled, a perceptual user study was not conducted –
the only example in this thesis in which it was not necessary – but indeed a series of visual
verifications were made using simulated images on CRT displays and digitally-written
transparency films. Prototype OLED displays confirmed that the W-RGBW system with the
proposed algorithm yielded no adverse impact on image quality relative to a reference
RGB OLED [1]. The degradation-free method that was developed is still used in W-RGBW
OLED displays currently in the market.

In Chapter 4 the RGBW implementation was pushed toward more power savings
(as well as electronic design freedom) by using less of the red, green, and blue primaries
relative to white, and a second question was asked, how degraded does the image become if
the use of W is increased further? The technology variables of interest build on the list from
the preceding chapter, adding two important image processing algorithm parameters: the
magnitude of RGB intensity limitation and amount of color desaturation.

These parameters result in visual image distortion that may be described as a loss of
colorfulness and color contrast, but identifying a single important perceptual attribute
was difficult. However, because the goal was to understand potential image degradation
at a higher level, the experiment focused on overall image quality. This means that while
the immediate question of quality optimization was answered without a problem, we have
not built an easily-reusable basic understanding of how the different perceptual attributes
contribute to the measured quality degradation.

The experimental results shown in Chapter 4 are repeated here as Figure 7.2 (same
as Figure 4.4). This diagram, which shows the image quality degradation from the original
image (at top right) as a contour plot over the two parameters of desaturation and RGB
limit, makes it clear that there is a substantial plateau of high quality surrounded by
declines in quality as either parameter is reduced. The pictured measured relationship
between these physical image characteristics and overall quality informs the design
decision on the quality half of the quality-power tradeoff.

7.3 Wide Gamut Displays

The potential for color gamut enlargement via a variety of technologies is almost unlimited;
however, wider gamut generally comes with increased cost and power consumption. Thus,
an obvious question which was addressed in Chapter 5 and Chapter 6 is how much color
gamut is necessary for pleasing reproduction of natural images? The technology variables
of interest are the color primaries chosen through the combination of light source (i.e.,
backlight) and color filter array materials. These define the size and shape of the three-
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7.3. Wide Gamut Displays

Figure 7.2: RGB limitation image quality results. Contour plot of image
quality, represented as JNDs of image-quality loss relative to the original, due
to parameters of desaturation (percent) and RGB intensity limit (percent). A
large plateau of image quality nearly matching the original image at position
(100,100) is seen, with eventual falloff as either parameter is reduced.
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dimensional color gamut, which are physical image characteristics contributing to the
perceptual attributes of colorfulness and hue.

Within the gamut boundaries provided by the display, some enhancement of chroma
or colorfulness of the standard-gamut input image is required. Early work on this
enhancement showed that preference for colorfulness is hue-dependent, which pointed
toward studying the physical image characteristic of gamut size per hue. This is interesting
regardless of whether the gamut is implemented with a RGB or multiprimary architecture.
Especially with multiprimary displays, the luminance dimension of the color gamut is very
important, because the relative luminance of colors to white affects perceived colorfulness
strongly. In the experiments conducted, this known effect was controlled and avoided,
which means caution should be given to applying these results to a multiprimary system
without similar control of luminance.

The primary perceptual effect of gamut is on colorfulness of the image, but it is well
known that observer preference (which is assumed to be driven by overall image quality)
is not monotonic with colorfulness – preference increases with colorfulness to a point,
then levels off and declines. Because of this lack of monotonicity and the general interest
in maximizing overall image quality, preference and overall quality were studied in the
set of experiments described.

The two chapters on this topic provide a first look and then a more refined answer
to the basic question of gamut requirement. Utilizing first a wide-gamut RGB and second
a multiprimary RGBCY display, the preferred image colorfulness as a function of hue was
probed with highly-saturated natural image content by a large number of observers. A
clear hue-dependent result emerged, within which the main inter-observer preference
variation is in overall magnitude. The powerful result of this is a relationship showing the
added value of enlarging color gamut into any given portion of color space, presented
in terms of observer percentiles, illustrated in Figure 7.3 (same as Figure 6.12). Such
a relationship can guide the choice of number and chromaticity coordinates of display
primaries with a clear understanding of how satisfied a population will be with the result.
Such preferential predictions can be weighed against other, non-imaging constraints such
as cost and power consumption.

7.4 Comments, Connections, & Extrapolations

The display system and advanced technologies described herein were not chosen with a
global view on what is most important or most academically rigorous. To the contrary,
they were real examples from industrial research, tackled as they came, with all the
practical and industrial constraints that that implies. That being said, if the most impor-
tant perceptual attributes of displayed images include brightness, contrast, colorfulness,
sharpness, temporal stability, and motion smoothness, it is no surprise that industrial
research (whose goal is feature-based market leadership) led to research on three of
these topics. Overall image quality is generally dominated by the worst contributor in
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Figure 7.3: Hue-dependent gamut preference results. Gamut boundary re-
quirements shown as a contour plot of the percent of observers satisfied. The
underlying red triangle indicates the standard Rec. 709 gamut, and the blue
curves show expanded (and contracted) versions of the standard using the mean-
based hue-dependent chroma multiplier curves corresponding to the observer
percentiles labeled.
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the multidimensional sum of perceptual attributes, which has the practical result that
industrial research tends to address the “currently-worst” characteristic of a system in its
series of improvements.

This is certainly an applied, pragmatic thesis, which is why there is strong em-
phasis on efficiently uncovering the relationships between technology and perception
and effectively communicating those relationships to inform design and development
choices. The realistic pragmatism gives further validation to the approach of identifying
key attributes and optimizing technological advances: it has been used successfully in
real-life application and not only as an exercise. In the next sections, some retrospective
connections and future directions are revealed.

7.4.1 Perception & Preference

In perceptual research in general it is useful to keep the difference between perception
and preference clear. As described in this thesis, perception relates to detection thresholds
and similar measures, such as the black level differences studied in Chapter 2. Thresholds
at the level of detectability have more to do with fidelity than expectations. Preference
is by definition a suprathreshold task, meaning that a difference must be perceptible in
order to get a meaningful response as to whether it is preferred. The studies described
for RGBW OLED image degradation in Chapter 4 and wide-gamut color in Chapter 6
all have to do with preference. They support a holistic and human-centered definition
of image quality as a concept tempered by observer expectations. This distinction also
implies that perception results are more robust over population differences, because they
are more physiological in nature, while preference results may vary over populations due
to things like cultural biases, or vary over time as improvements raise expectations. For
this reason, use caution in applying the OLED degradation preference results obtained
in North America, or the gamut preference results obtained with a primarily northern
European population, to a global display market.

Logic says in some cases perception is the appropriate thing to measure; in others,
preference is more important. In certain studies it may not matter much which is studied
– for example in the perception of black level differences, if indeed people generally
prefer darker blacks and higher dynamic range, then a similar study done with preference-
based pairs may have resulted in similar trends though perhaps with higher thresholds.
However, using a perception task in place of preference doesn’t work in most cases. For
example, it would not make sense to ask observers to choose the more colorful image in
the gamut experiments rather than the preferred level of colorfulness, because they would
presumably just find the physical boundary of the proxy display used in the experiment.

7.4.2 Optimizing Uni- versus Multi-Variate Quality

An important assumption made in this work is that new technologies and their perceptual
implications may be studied separately, sequentially, rather than together in a multivariate

126



7.4. Comments, Connections, & Extrapolations

way. This is of course debatable. For example, it is unlikely that simply combining
wide-gamut and RGB-limiting using separately-derived parameters would result in an
optimal implementation. However, this situation may be unlikely to arise, practically
speaking. Each of the advanced display technologies studied in this thesis is a separate
advancement, and history shows that such advances happen in series with the baseline
evolving along with progress. Fortunately, the tools used in image quality research are
effective even in the absence of a full model of overall image quality as a function of
relevant contributing attributes.

Engeldrum’s Image Quality Circle (see Figure 1.11) provides a useful guide regard-
less of whether the entire circle is ever completely described. Even after decades of
research, a generalizable model of image quality has not emerged; a recent review article
by Chandler [2] explores some of the reasons why, including the difficulty of modeling the
human interpretation of natural images, the effects of multiple simultaneous distortions,
and the effects of geometric or image-enhancement changes. Yet, despite the incomplete
model, the structure of the IQC is valuable. Simply being conscious of whether a new tech-
nology affects primarily a single perceptual attribute or multiple perceptual attributes such
that they cannot be easily disentangled can guide experimentation and model-building
in a positive way. In a case such as the RGB-limiting example, studying overall quality
directly is more efficient than studying the mix of attributes such as colorfulness, hue,
and lightness, but it does not build as much basic understanding. In that example at
the time of the research, the high-level understanding gained was sufficient because it
confirmed that a moderate amount of RGB-limiting was tolerable, a fact that opened up
design freedom in the display electronics. If the situation had been different and repeated
re-use of the results had been foreseen, then the benefits of a larger-scale image quality
model like those discussed in Section 1.3.2 would be valuable. And, the extra work that
building them up entails would be worthwhile.

That being said, one real obstacle to creating a multivariate quality model for
advanced display technologies is that in order to evaluate the combined impact of a
multitude of new technologies, a “super-prototype” display must exist with capabilities at
least as great – higher brightness, better contrast, larger gamut, etc. – as expected in real
implementations. The two chapters on wide color gamut build knowledge in two steps,
relying on prototypes with wide- and then even wider-gamut capabilities, nevermind one
that can simultaneously provide ultra-high contrast. Such super-prototypes are few and
far between, which also explains why, for example, Keelan’s approach to imaging system
quality focused on consumer-grade cameras and utilized an impairment approach to image
quality. The reference system was already in existence, and the cheaper versions in “real
life” could be assessed against it. In contrast, the coming advanced display technologies
can (and should) make displays ever better, with the practical reality that a new prototype
may only be able to showcase the effect of one or a few of these new capabilities. This
is the reality that was explored in this thesis: a series of qualitative studies on non-
independent attributes, approached with the hope that the serially-optimized system will
be nearly as good as the hypothetical, globally-optimized version.
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Another potential problem with a multivariate image quality model is one of un-
known unknowns: the completeness of a model can never be verified, and a newly-
discovered imaging artifact can render a model obsolete. For example, imagine an image
quality model which accurately predicts overall quality based on brightness, colorfulness,
hue accuracy, contrast, noise, and sharpness, all of which are interesting perceptual
attributes. An image flaw that doesn’t directly affect one of those attributes will cause
unknown problems: for example JPEG artifacts may affect noise, sharpness, and possibly
other attributes, but if such artifacts were not included in the fitting of the model, it is
very unlikely that the model will accurately predict the effect of JPEG artifacts on overall
quality. The impossibility of incorporating all possible physical image characteristics
makes a full image quality model a fragile concept.

It is interesting to note that the thesis approach lies somewhere between highly-
structured image quality modeling approaches and a pragmatic full-system approach that
is typically known as a “beauty contest:” simply lining up competing displays and voting
on a winner based on overall image quality (a good example is provided by Heynderickx
& Langendijk [3]). Such beauty contests are not mentioned to point at their weaknesses;
in fact they are the closest to the real-life experience of a customer choosing a new display
in a showroom. And, as described in that paper, much insight may be gained about the
perceptual attributes affecting observers’ choices by asking them not only which display
they prefer, but why. However, what the beauty contest can never uncover are the effects
of single technology variables as discussed in this thesis. Each in this range of approaches
has its merits and should be used when appropriate.

7.4.3 Extrapolating these Results & Methods

Extrapolating image quality results is always a difficult task. Image quality models always
seem to be constrained to similar systems; our understanding of the human visual system
is never sufficient; effects of image content, saliency, and emotion cannot be excluded or
easily predicted; and something new always seems to appear. For these reasons, some
big questions remain difficult or impossible to answer. For example, it would be great to
know what would a truly optimal display look like? Perhaps the impossibility of an answer
is forgivable without a very wise (and very high image-quality) crystal ball.

But, more practically (and admittedly somewhat disappointingly), a question like, is
it more beneficial to provide the viewer with additional color gamut or additional dynamic
range? remains difficult. Here, if anywhere, the limitations of serial univariate study of
new technologies manifest themselves. As long as each perceptual attribute is studied
separately, it remains impossible to weigh them against one another. Keelan’s approach
solves this by comparing every attribute directly to a common, understandable image
quality attribute, sharpness. This anchoring technique could certainly be applied, even
without building a multivariate final model, if the anticipated value of answering such
cross-attribute questions were high. In this work it was not, thanks to time constraints
and disconnected industrial projects, but in future work it could be valuable.

128



7.4. Comments, Connections, & Extrapolations

While the different technology variables studied herein relate to non-independent
perceptual attributes, combinations may still be discussed. For example, it is reasonable
to assume that black-level visibility limits discussed in Chapter 2 would remain the same
with or without the kinds of color enhancement and distortion processing presented
in later chapters. While the perceived benefit of the combination is not specifically
studied, we remain confident that the optimum for each variable is stable regardless of
the presence of the other. A perceptual interaction would be expected, however, between
color enhancement and overall brightness, because luminance is known to have a strong
effect on perceived colorfulness. The different color processing approaches presented
would be expected to interact: at first glance, the hue-dependent color gamut expansion
shown in Chapter 6 and the color distortion and desaturation processing in Chapter 4
appear to counteract one another; but, a nuanced combination may be possible – perhaps
the RGB color limit would be preferentially applied in a hue-dependent way – an idea
that is neither studied nor adequately predicted by the present work, but which seems a
logical step.

Extrapolating the presented results to different display modalities and even lighting
applications is eminently doable. As a simple example, the visibility model based on con-
trast perception explained in Chapter 2, which was built up in reference to HDR displays,
could be used to predict whether differences between the lowest-reflectance bit values
of a reflective electrophoretic display would be visible under specific lighting conditions
when considering screen-surface specular reflections. A simple extrapolation of this is
to the lighting requirements in a projection theater. The visibility of image degradation
due to unwanted spill light from a lighted “EXIT” sign, given theater specifications and
projected image content, could be computed with the visibility model described. As
another example, the quality implications of primary luminance, studied in Chapter 4
with W-RGBW OLED displays, could be applied to multiprimary (often RGBW or RGBCY)
projection displays, in which the importance of efficiency, generally in terms of screen
brightness, must be balanced with image quality. Beyond image quality, the perceptual
insight derived from this work can be applied to other visual experiences; for example,
Vogels proposed using an analogue of the Image Quality Circle to describe the experience
of atmospheric lighting [4]. The structural way of thinking about physical characteristics,
perceptual attributes, and overall visual experience is analogously useful. Even without
further experiments, the results described in this thesis inform requirements for LED
lighting, for example with respect to intra-ocular glare, the design and operation of
RGBW LED luminaires, as well as the preferential enhancement of object colorfulness
with appropriate spectral content in the light.

The approach promoted by this thesis is a way to make the best of technology trends
as they arise, finding a balance between system-level and attribute-specific optimization
as a result of practical considerations and efficiency. Even better than following technol-
ogy trends, perhaps, would be to lead the technology advancements directly based on
perceptual understanding. This does not mean obvious, empty direction like, let’s make a
holographic display whose visual experience is imperceptibly different from reality. Rather, it
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might include an insight such as, based on the HVS’ ability to discern smaller variations in
green and yellow than in other hues, a display design would be more visually efficient if it
distributed its bit-depth and addressability accordingly.

Next steps beyond this thesis could take several interesting paths. One, of course, is
to continue to address the sequence of technology advancements in the display industry.
Many additional chapters could be added to a book like this about new display technologies
such as active or passive 3D stereo, lenticular autostereoscopic structures, active and
adaptive image processing algorithms, motion portrayal, ultra-high resolution for TV,
monitor, and mobile use, and yet-unknown advancements that are sure to come. Another
is to apply these techniques to a different, visually-rich industry, such as lighting. This has
already begun, of course, with an analog of the Image Quality Circle theorized to describe
quality of light. This is an interesting development because both the methodology and the
perceptual insights on visibility and preference may be transfered to this adjacent field and
extended. Yet another path would be to formalize the study of an approach to perception
in industrial research, addressing the efficiency in terms of benefit per effort invested and
the effectiveness in terms of informed decisions or product and market impact. Whether
creating technological innovations with perceptual insights, using perception to steer
innovations, or studying the role of perception research in innovation itself, this thesis
provides a departure point based on practical examples in the display industry.

7.5 Concluding Remarks

Through this thesis, a practical approach to technology choice guided by visual perception
insights for display design has been presented. Examples of the most important advanced
display technology applications were provided, with key perceptual attributes identified,
measured, and modeled relative to the technologies in question. In some cases, this means
pushing a new technology only as far as is necessary for visibility or preference, and not
wastefully further; in other cases, this means trading off image quality for a different
benefit, understanding exactly the perceptual or preferential impact of such a decision. In
each case, the goal of making optimal human-centered use of these new technologies was
achieved.

HDR LCDs may be constructed with knowledge of the visibility limits of black level
differences, which means this advanced technology may be implemented with maximal
visual impact at minimal cost and complexity. RGBW OLED displays may be designed that
take full advantage of the highly efficient white subpixel with no image quality penalty,
thanks to thorough modeling of color perception; or, with a clear understanding of the
image quality loss that is caused by a cost- and power-saving technology choice to limit
the current to the display’s subpixels. Wide-gamut displays, RGB or multiprimary, may
be crafted cleverly, with the added value of the additional color gamut area directly
computable based on an understanding of observer preference for hue-dependent color
gamut limits.
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These examples are real, practical examples from industrial research, and the
relationships between technology and perception that were uncovered and modeled in
every case were efficiently found and effectively expressed. The efficiency of this approach
means not expending unneeded effort to construct a complete model of system image
quality as a function of all system components because of the time involved and the
potential for obsolescence. Rather, full focus is given to each technology variable in order
to understand clearly its impact on a most-relevant image quality attribute, revealing
relationships through studies that are relatively narrow but which still take advantage of
the structure of the Image Quality Circle. The effectiveness of the approach is shown by
the use of these relationships while weighing the other factors such as cost and lifetime
that together determine how and which technologies make their way into new displays.
Performing industrial research in this way means that quantified perceptual insights can
be used to positively impact decisions in the technology and product development cycle.

With this approach, each of the still-unforeseen ideas that will come as display tech-
nology continues its unyielding progress can be evaluated efficiently on its image quality
merits, ensuring a properly human-centered implementation that balances technology
and perception.
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Human-Centered Display Design: Balancing Technology & Perception

Displays for entertainment, such as televisions and cinema screens, and displays for
information, such as control panels and digital signage, have become ubiquitous in
the human environment. Both the range of devices with displays and the number of
applications for which they are used continue to increase, so it is important to take a close
look at the human-centered aspects of display design. Humans perceive displays with
their visual sense, the human visual system (HVS), which is both wonderfully effective
and complex. Designing displays is best done at the meeting point between the details
of advanced display technology and an understanding of the performance and limits of
human visual perception. The goal of this thesis is to emphasize the intersection of these
themes and to present a general approach with concrete examples of the implementation
of advanced display technologies in a human-centered way.

The first chapter lays a conceptual foundation of visual perception, display technol-
ogy, and how they meet. We perceive light with our eyes, seeing patterns of brighter and
darker, the difference between which is contrast. Adaptation allows the HVS to function
over a huge luminance range, but intra-ocular glare limits perceivable contrast. We see
color thanks to the three differently sensitive types of cone cells in the retina of the eye.
Because of this, color displays can present a wide range of colors to the HVS with as few
as three different color primaries: this is a realization of metamerism, meaning physically
different light sources can provide the same color stimulus to the observer. In images,
we perceive attributes such as brightness, contrast, sharpness, and colorfulness. These
perceptual attributes contribute to an overall impression of image quality, which is also
tempered by the expectations of the observer. Overall quality, as well as its component
perceptual attributes, can be quantified through experiments presenting images to human
observers using psychometric methods. This in turn allows the quantification of the
perceptual effect of the underlying display technology choices.

The approach espoused by the thesis to implement new display technologies in a
human-centered way is to focus on the perceptual attribute which is most important to the
technology in question. In the framework of an image quality circle, two relationships are
paramount: that between the technology and the physical image, which explains how that
specific technology affects what is physically and measurably on the display screen; and
the relationship between the physical image characteristics and the relevant perceptual
attribute, which should remain general and independent of specific technologies. For
a series of examples, such relationships are uncovered and analyzed, and they can
subsequently be used to guide implementation and to weigh perceptual quality with other
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non-visual characteristics such as cost. The advanced display technologies discussed are
designed to improve contrast, efficiency, and color reproduction over a baseline display
system, the television-sized LCD technology prevalent around 2007.

In Chapter 2, the requirements for increased display contrast are studied. Replacing
an LCD’s fixed backlight with addressable backlight segments enables the creation of a
high dynamic range display capable of a much wider contrast range than was possible
previously. But, the design of a segmented backlight may only be optimized with an
understanding of the spatial limits of human contrast sensitivity considering the glare
induced by nearby bright regions which are inevitable in displayed content and in normal
viewing environments. A psychometric experiment was conducted to find the visibility
limits of black-level differences in proximity to a bright glare source, varying the intensity
and distance of the glare. These results were successfully modeled using the CIE model of
intra-ocular glare, the DICOM contrast-visibility model, and a new estimate of adaptation
luminance which depends on the surrounding visual field. The result is a model which
can be used to assess the design of backlight segment size and spatial luminance profile
so that perceived contrast is maximized.

The implementation of OLED display technology, which offers an alternative to LCD
with lower system complexity and potentially better color and contrast characteristics, is
addressed in Chapters 3 and 4. For manufacturability reasons, OLED displays are better
implemented with a white-emitting OLED material and color filters, but this implies a low
efficiency due to light absorption by the filters. Leaving some subpixels unfiltered results
in a more efficient RGBW system, but care must be taken with such an architecture to
avoid color degradation. Based on colorimetry, which is a robust model of color matching
in the HVS, a basic method is presented for making the best use of the efficiency of
RGBW without disturbing color reproduction at all. Further, an advanced method is
explained which gives even more efficiency and design freedom at the expense of limiting
the maximum displayed RGB luminance relative to white. Because this method results
in color degradation, a perceptual experiment was done in which the image quality loss
due to a combination of limited maximum RGB and intentional color desaturation was
quantified. The results enable the implementation of RGBW OLED over a wide range
of color accuracy and power efficiency and make the image quality implications of that
range clear. Currently the first OLED televisions are reaching the consumer market, and
they utilize this RGBW OLED architecture.

The implementation of wide color gamut is explored in Chapters 5 and 6. As a
first step, experiments were conducted using a wide-gamut RGB display to determine
the preferred level of color saturation of natural images presented at a variety of single
hues. A strong hue dependence for maximal and preferred color saturation was found
which was notably different from the per-hue capability of the RGB display. This led to a
hue-dependent chroma boost algorithm which was then verified using multi-hue natural
images. Because the capabilities of the wide-gamut RGB display were not sufficient,
especially due to limitations in yellow hues, a second study was undertaken using a
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prototype 5-primary (RGBCY) display which offered additional color gamut where needed.
This experiment verified the previously-measured hue dependence and confirmed the
expected need for increased yellow gamut. Further, observers significantly preferred
images transformed with the hue-dependent chroma boost algorithm over those with
hue-independent chroma boost and those presented colorimetrically. Throughout the
gamut experiments, the primary inter-observer variation relates to an overall chroma
preference, meaning that some people prefer higher color saturation than others, but the
hue dependence of that preference remains similar for all observers. Thus, based on these
results, a display may be designed with color gamut boundaries wide enough to satisfy
the observer population and a single control parameter given to the end user for overall
chroma.

Through these examples, a practical approach to technology selection based on
quantifying the effects on visual perception has been illustrated. In each example, critical
perceptual attributes were measured and modeled with respect to the technologies in
question. The results are generally relational, showing the perceptual effect over a
range of a technology variable or parameter. Such relationships clarify the impact of
technology choices, some of which are made to improve image quality, others of which
incur quality degradations while gaining other benefits such as power savings. Using this
practical human-centered approach, future display advancements may be implemented
by successfully balancing technology and perception.
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