1,661 research outputs found

    Enhanced Usability of Managing Workflows in an Industrial Data Gateway

    Get PDF
    The Grid and Cloud User Support Environment (gUSE) enables users convenient and easy access to grid and cloud infrastructures by providing a general purpose, workflow-oriented graphical user interface to create and run workflows on various Distributed Computing Infrastructures (DCIs). Its arrangements for creating and modifying existing workflows are, however, non-intuitive and cumbersome due to the technologies and architecture employed by gUSE. In this paper, we outline the first integrated web-based workflow editor for gUSE with the aim of improving the user experience for those with industrial data workflows and the wider gUSE community. We report initial assessments of the editor's utility based on users' feedback. We argue that combining access to diverse scalable resources with improved workflow creation tools is important for all big data applications and research infrastructures

    Generic Metadata Handling in Scientific Data Life Cycles

    Get PDF
    Scientific data life cycles define how data is created, handled, accessed, and analyzed by users. Such data life cycles become increasingly sophisticated as the sciences they deal with become more and more demanding and complex with the coming advent of exascale data and computing. The overarching data life cycle management background includes multiple abstraction categories with data sources, data and metadata management, computing and workflow management, security, data sinks, and methods on how to enable utilization. Challenges in this context are manifold. One is to hide the complexity from the user and to enable seamlessness in using resources to usability and efficiency. Another one is to enable generic metadata management that is not restricted to one use case but can be adapted with limited effort to further ones. Metadata management is essential to enable scientists to save time by avoiding the need for manually keeping track of data, meaning for example by its content and location. As the number of files grows into the millions, managing data without metadata becomes increasingly difficult. Thus, the solution is to employ metadata management to enable the organization of data based on information about it. Previously, use cases tended to only support highly specific or no metadata management at all. Now, a generic metadata management concept is available that can be used to efficiently integrate metadata capabilities with use cases. The concept was implemented within the MoSGrid data life cycle that enables molecular simulations on distributed HPC-enabled data and computing infrastructures. The implementation enables easy-to-use and effective metadata management. Automated extraction, annotation, and indexing of metadata was designed, developed, integrated, and search capabilities provided via a seamless user interface. Further analysis runs can be directly started based on search results. A complete evaluation of the concept both in general and along the example implementation is presented. In conclusion, generic metadata management concept advances the state of the art in scientific date life cycle management

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    INDIGO-Datacloud: foundations and architectural description of a Platform as a Service oriented to scientific computing

    Get PDF
    Software Engineering.-- et al.In this paper we describe the architecture of a Platform as a Service (PaaS) oriented to computing and data analysis. In order to clarify the choices we made, we explain the features using practical examples, applied to several known usage patterns in the area of HEP computing. The proposed architecture is devised to provide researchers with a unified view of distributed computing infrastructures, focusing in facilitating seamless access. In this respect the Platform is able to profit from the most recent developments for computing and processing large amounts of data, and to exploit current storage and preservation technologies, with the appropriate mechanisms to ensure security and privacy.INDIGO-DataCloud is co-founded by the Horizon 2020Framework Programme.Peer reviewe

    Serverless Strategies and Tools in the Cloud Computing Continuum

    Full text link
    Tesis por compendio[ES] En los últimos años, la popularidad de la computación en nube ha permitido a los usuarios acceder a recursos de cómputo, red y almacenamiento sin precedentes bajo un modelo de pago por uso. Esta popularidad ha propiciado la aparición de nuevos servicios para resolver determinados problemas informáticos a gran escala y simplificar el desarrollo y el despliegue de aplicaciones. Entre los servicios más destacados en los últimos años se encuentran las plataformas FaaS (Función como Servicio), cuyo principal atractivo es la facilidad de despliegue de pequeños fragmentos de código en determinados lenguajes de programación para realizar tareas específicas en respuesta a eventos. Estas funciones son ejecutadas en los servidores del proveedor Cloud sin que los usuarios se preocupen de su mantenimiento ni de la gestión de su elasticidad, manteniendo siempre un modelo de pago por uso de grano fino. Las plataformas FaaS pertenecen al paradigma informático conocido como Serverless, cuyo propósito es abstraer la gestión de servidores por parte de los usuarios, permitiéndoles centrar sus esfuerzos únicamente en el desarrollo de aplicaciones. El problema del modelo FaaS es que está enfocado principalmente en microservicios y tiende a tener limitaciones en el tiempo de ejecución y en las capacidades de computación (por ejemplo, carece de soporte para hardware de aceleración como GPUs). Sin embargo, se ha demostrado que la capacidad de autoaprovisionamiento y el alto grado de paralelismo de estos servicios pueden ser muy adecuados para una mayor variedad de aplicaciones. Además, su inherente ejecución dirigida por eventos hace que las funciones sean perfectamente adecuadas para ser definidas como pasos en flujos de trabajo de procesamiento de archivos (por ejemplo, flujos de trabajo de computación científica). Por otra parte, el auge de los dispositivos inteligentes e integrados (IoT), las innovaciones en las redes de comunicación y la necesidad de reducir la latencia en casos de uso complejos han dado lugar al concepto de Edge computing, o computación en el borde. El Edge computing consiste en el procesamiento en dispositivos cercanos a las fuentes de datos para mejorar los tiempos de respuesta. La combinación de este paradigma con la computación en nube, formando arquitecturas con dispositivos a distintos niveles en función de su proximidad a la fuente y su capacidad de cómputo, se ha acuñado como continuo de la computación en la nube (o continuo computacional). Esta tesis doctoral pretende, por lo tanto, aplicar diferentes estrategias Serverless para permitir el despliegue de aplicaciones generalistas, empaquetadas en contenedores de software, a través de los diferentes niveles del continuo computacional. Para ello, se han desarrollado múltiples herramientas con el fin de: i) adaptar servicios FaaS de proveedores Cloud públicos; ii) integrar diferentes componentes software para definir una plataforma Serverless en infraestructuras privadas y en el borde; iii) aprovechar dispositivos de aceleración en plataformas Serverless; y iv) facilitar el despliegue de aplicaciones y flujos de trabajo a través de interfaces de usuario. Además, se han creado y adaptado varios casos de uso para evaluar los desarrollos conseguidos.[CA] En els últims anys, la popularitat de la computació al núvol ha permès als usuaris accedir a recursos de còmput, xarxa i emmagatzematge sense precedents sota un model de pagament per ús. Aquesta popularitat ha propiciat l'aparició de nous serveis per resoldre determinats problemes informàtics a gran escala i simplificar el desenvolupament i desplegament d'aplicacions. Entre els serveis més destacats en els darrers anys hi ha les plataformes FaaS (Funcions com a Servei), el principal atractiu de les quals és la facilitat de desplegament de petits fragments de codi en determinats llenguatges de programació per realitzar tasques específiques en resposta a esdeveniments. Aquestes funcions són executades als servidors del proveïdor Cloud sense que els usuaris es preocupen del seu manteniment ni de la gestió de la seva elasticitat, mantenint sempre un model de pagament per ús de gra fi. Les plataformes FaaS pertanyen al paradigma informàtic conegut com a Serverless, el propòsit del qual és abstraure la gestió de servidors per part dels usuaris, permetent centrar els seus esforços únicament en el desenvolupament d'aplicacions. El problema del model FaaS és que està enfocat principalment a microserveis i tendeix a tenir limitacions en el temps d'execució i en les capacitats de computació (per exemple, no té suport per a maquinari d'acceleració com GPU). Tot i això, s'ha demostrat que la capacitat d'autoaprovisionament i l'alt grau de paral·lelisme d'aquests serveis poden ser molt adequats per a més aplicacions. A més, la seva inherent execució dirigida per esdeveniments fa que les funcions siguen perfectament adequades per ser definides com a passos en fluxos de treball de processament d'arxius (per exemple, fluxos de treball de computació científica). D'altra banda, l'auge dels dispositius intel·ligents i integrats (IoT), les innovacions a les xarxes de comunicació i la necessitat de reduir la latència en casos d'ús complexos han donat lloc al concepte d'Edge computing, o computació a la vora. L'Edge computing consisteix en el processament en dispositius propers a les fonts de dades per millorar els temps de resposta. La combinació d'aquest paradigma amb la computació en núvol, formant arquitectures amb dispositius a diferents nivells en funció de la proximitat a la font i la capacitat de còmput, s'ha encunyat com a continu de la computació al núvol (o continu computacional). Aquesta tesi doctoral pretén, doncs, aplicar diferents estratègies Serverless per permetre el desplegament d'aplicacions generalistes, empaquetades en contenidors de programari, a través dels diferents nivells del continu computacional. Per això, s'han desenvolupat múltiples eines per tal de: i) adaptar serveis FaaS de proveïdors Cloud públics; ii) integrar diferents components de programari per definir una plataforma Serverless en infraestructures privades i a la vora; iii) aprofitar dispositius d'acceleració a plataformes Serverless; i iv) facilitar el desplegament d'aplicacions i fluxos de treball mitjançant interfícies d'usuari. A més, s'han creat i s'han adaptat diversos casos d'ús per avaluar els desenvolupaments aconseguits.[EN] In recent years, the popularity of Cloud computing has allowed users to access unprecedented compute, network, and storage resources under a pay-per-use model. This popularity led to new services to solve specific large-scale computing challenges and simplify the development and deployment of applications. Among the most prominent services in recent years are FaaS (Function as a Service) platforms, whose primary appeal is the ease of deploying small pieces of code in certain programming languages to perform specific tasks on an event-driven basis. These functions are executed on the Cloud provider's servers without users worrying about their maintenance or elasticity management, always keeping a fine-grained pay-per-use model. FaaS platforms belong to the computing paradigm known as Serverless, which aims to abstract the management of servers from the users, allowing them to focus their efforts solely on the development of applications. The problem with FaaS is that it focuses on microservices and tends to have limitations regarding the execution time and the computing capabilities (e.g. lack of support for acceleration hardware such as GPUs). However, it has been demonstrated that the self-provisioning capability and high degree of parallelism of these services can be well suited to broader applications. In addition, their inherent event-driven triggering makes functions perfectly suitable to be defined as steps in file processing workflows (e.g. scientific computing workflows). Furthermore, the rise of smart and embedded devices (IoT), innovations in communication networks and the need to reduce latency in challenging use cases have led to the concept of Edge computing. Edge computing consists of conducting the processing on devices close to the data sources to improve response times. The coupling of this paradigm together with Cloud computing, involving architectures with devices at different levels depending on their proximity to the source and their compute capability, has been coined as Cloud Computing Continuum (or Computing Continuum). Therefore, this PhD thesis aims to apply different Serverless strategies to enable the deployment of generalist applications, packaged in software containers, across the different tiers of the Cloud Computing Continuum. To this end, multiple tools have been developed in order to: i) adapt FaaS services from public Cloud providers; ii) integrate different software components to define a Serverless platform on on-premises and Edge infrastructures; iii) leverage acceleration devices on Serverless platforms; and iv) facilitate the deployment of applications and workflows through user interfaces. Additionally, several use cases have been created and adapted to assess the developments achieved.Risco Gallardo, S. (2023). Serverless Strategies and Tools in the Cloud Computing Continuum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202013Compendi

    Exploring digital preservation requirements: a case study from the National Geoscience Data Centre (NGDC)

    Get PDF
    Purpose This case study is based on an MSc dissertation research undertaken at Northumbria University. The aim was to explore digital preservation requirements within the wider NGDC organisational framework in preparation for developing a preservation policy and integrating associated preservation workflows throughout the existing research data management processes. Design/methodology/approach This mixed methods case study used quantitative and qualitative data to explore the preservation requirements and triangulation to strengthen the design validity. Corporate and the wider scientific priorities were identified through literature and a stakeholder survey. Organisational preparedness was investigated through staff interviews. Findings Stakeholders expect data to be reliable, reusable, and available in preferred formats. To ensure digital continuity, the creation of high quality metadata is critical, and data depositors need data management training to achieve this. Recommendations include completing a risk assessment, creating a digital asset register, and a technology watch to mitigate against risks. Research limitations/implications The main constraint in this study is the lack of generalisability of results. As the NGDC is a unique organisation, it may not be possible to generalise the organisational findings although those relating to research data management may be transferrable. Originality/value This research examines the specific nature of geoscience data retention requirements and looks at existing NGDC procedures in terms of enhancing digital continuity, providing new knowledge on the preservation requirements for a number of national datasets

    KoopaML, a Machine Learning platform for medical data analysis

    Get PDF
    Machine Learning allows facing complex tasks related to data analysis with big datasets. This Artificial Intelligence branch allows not technical contexts to get benefits related to data processing and analysis. In particular, in medicine, medical professionals are increasingly interested in Machine Learning to identify patterns in clinical cases and make predictions regarding health issues. However, many do not have the necessary programming or technological skills to perform these tasks. Many different tools focus on developing Machine Learning pipelines, from libraries for developers and data scientists to visual tools for experts or platforms to learn. However, we have identified some requirements in the medical context that raise the need to create a customized platform adapted to end-user found in this context. This work describes the design process and the first version of KoopaML, an ML platform to bridge the data science gaps of physicians while automatizing Machine Learning pipelines. The platform is focused on enhanced interactivity to improve the engagement of physicians while still providing all the benefits derived from the introduction of Machine Learning pipelines in medical departments, as well as integrated ongoing training during the use of the tool’s features

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany
    corecore