424 research outputs found

    Machine Learning Models for Inferring the Axial Strength in Short Concrete-Filled Steel Tube Columns Infilled with Various Strength Concrete

    Get PDF
    Concrete-filled steel tube (CFST) columns are used in the construction industry because of their high strength, ductility, stiffness, and fire resistance. This paper developed machine learning techniques for inferring the axial strength in short CFST columns infilled with various strength concrete. Additive Random Forests (ARF) and Artificial Neural Networks (ANNs) models were developed and tested using large experimental data. These data-driven models enable us to infer the axial strength in CFST columns based on the diameter, the tube thickness, the steel yield stress, concrete strength, column length, and diameter/tube thickness. The analytical results showed that the ARF obtained high accuracy with the 6.39% in mean absolute percentage error (MAPE) and 211.31 kN in mean absolute error (MAE). The ARF outperformed significantly the ANNs with an improvement rate at 84.1% in MAPE and 65.4% in MAE. In comparison with the design codes such as EC4 and AISC, the ARF improved the predictive accuracy with 36.9% in MAPE and 22.3% in MAE. The comparison results confirmed that the ARF was the most effective machine learning model among the investigated approaches. As a contribution, this study proposed a machine learning model for accurately inferring the axial strength in short CFST columns

    Sustainable Geotechnics: Theory, Practice, and Applications

    Get PDF

    Sustainable Geotechnics—Theory, Practice, and Applications

    Get PDF
    Today, modern Geotechnical Engineers, who in the past would have considered the phenomena occurring in the (primarily soil) environment, are faced with developments in environmental sciences that are becoming increasingly more detailed and sophisticated, with the natural phenomena and processes surrounding the civil engineering infrastructure being modeled, designed, monitored, and assessed in a more holistic way. This book brings together the state of the art in geotechnics with a focus on sustainable design, resilience, construction, and monitoring of the performance of geotechnical assets from ground investigations, through foundation and drainage design to soil stabilization and reinforcement. Engineers and scientists working in the fields of green infrastructure, nature-based solutions, sustainable drainage, eco-engineering, hydro-geology, landscape planning, plant science, environmental biology or bio-chemistry, earth sciences, GIS, and remote sensing are represented here by articles that show significant geotechnical components or applications. Case studies showcasing the application of the sustainable development principles (e.g., reuse, recycle, reduce; stakeholder engagement; public health; UN Global Sustainability Goals) in Geotechnics are also included in this book

    ENHANCING CONCRETE MANUFACTURING: LEVERAGING A HYBRID SWARM-INTELLIGENT GRAVITATIONAL SEARCH OPTIMIZED RANDOM FOREST MODEL INCORPORATING WASTE GLASS FOR IMPROVED STRENGTH ASSESSMENT

    Get PDF
    Concrete is a fundamental construction material, widely used due to its durability and versatility. However, enhancing its mechanical properties, such as strength, while simultaneously addressing sustainability concerns remains a significant challenge. This study presents a novel approach to optimize concrete mix designs by incorporating waste glass particles, using a Hybrid Swarm-Intelligent Gravitational Search Optimized Random Forest (SIGSORF) model. The primary objective is to improve the strength assessment of concrete while reducing environmental impact through waste glass utilization. The first step in the study is to examine the physical and chemical characteristics of waste glass to see if it may somewhat substitute traditional pebbles in the manufacturing of mortar. Then clean the data and preprocess for use in training and validating the SIGSORF model. The SIGSORF model is designed to intelligently select proportions of waste glass and other concrete components to maximize compressive strength and flexural strength while minimizing environmental impact. The experimental results are then compared with predictions made by the SIGSORF model, demonstrating its effectiveness in optimizing concrete mix designs for improved strength. Ultimately, this study promotes the utilization of waste materials in construction, fostering a more environmentally responsible and economically viable concrete production approach

    Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced‑concrete deep beams

    Get PDF
    This study presents a novel artificial intelligence (AI) technique based on two support vector machine (SVM) models and symbiotic organisms search (SOS) algorithm, called “optimized support vector machines with adaptive ensemble weight- ing” (OSVM-AEW), to predict the shear capacity of reinforced-concrete (RC) deep beams. This ensemble learning-based system combines two supervised learning models—the support vector machine (SVM) and least-squares support vector machine (LS-SVM)—with the SOS optimization algorithm as the optimizer. In OSVM-AEW, SOS is integrated to simulta- neously select the optimal parameters of SVM and LS-SVM, and control the coordination process of the learning outputs. Experimental results show that OSVM-AEW achieves the greatest evaluation criteria for coefficient of correlation (0.9620), coefficient of determination (0.9254), mean absolute error (0.3854 MPa), mean absolute percentage error (7.68%), and root- mean-squared error (0.5265 MPa). This paper demonstrates the successful application of OSVM-AEW as an efficient tool for helping structural engineers in the RC deep beams design process

    An optimized prediction of FRP bars in concrete bond strength employing soft computing techniques

    Get PDF
    The precise estimation of the bonding strength between concrete and fiber-reinforced polymer (FRP) bars holds significant importance for reinforced concrete structures. This study introduces a new methodology that utilizes soft computing methods to enhance the prediction of FRP bars’ bonding strength. A significant compilation of experimental bond strength tests is assembled, covering various variables. Significant variables that affect bonding strength are found in the study of this database. The prediction process is optimized using soft computing methods, particularly Gene Expression Programming (GEP) and the Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR).The proposed soft computing approaches accommodate complex relationships and optimize prediction accuracy depending on the input variables. Results demonstrate its effectiveness in predicting bond strength and comparing it with existing codes and other models from the literature. The results have shown that the MOGA-EPR and the GEP models have high R2 values between 0.91 and 0.94. The proposed new models enhance the reliability and efficiency of designing and assessing FRP-reinforced concrete

    Experimental and numerical investigation of an innovative method for strengthening cold-formed steel profiles in bending throughout finite element modeling and application of neural network based on feature selection method

    Get PDF
    This study evaluates an innovative reinforcement method for cold-formed steel (CFS) upright sections through finite element assessment as well as prediction of the normalized ultimate load and deflection of the profiles by artificial intelligence (AI) and machine learning (ML) tech-niques. Following the previous experimental studies, several CFS upright profiles with different lengths, thicknesses and reinforcement spacings are modeled and analyzed under flexural loading. The finite element method (FEM) is employed to evaluate the proposed reinforcement method in different upright sections and to provide a valid database for the analytical study. To detect the most influential factor on flexural strength, the “feature selection” method is performed on the FEM results. Then, by using the feature selection method, a hybrid neural network (a combination of multi-layer perceptron algorithm and particle swarm optimization method) is developed for the prediction of normalized ultimate load. The correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE) and Wilmot’s index of agree-ment (WI) are used as the measure of precision. The results show that the geometrical parameters have almost the same contribution in the flexural capacity and deflection of the specimens. According to the performance evaluation indexes, the best model is detected and optimized by tuning other algorithm parameters. The results indicate that the hybrid neural network can successfully predict the normalized ultimate load and deflection

    Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive

    Get PDF
    A reliable prediction of the soil properties mixed with recycled material is considered as an ultimate goal of many geotechnical laboratory works. In this study, after planning and conducting a series of laboratory works, some basic properties of marine clay treated with recycled tiles together with their unconfined compressive strength (UCS) values were obtained. Then, these basic properties were selected as input variables to predict the UCS values through the use of two hybrid intelligent systems i.e., the neuro-swarm and the neuro-imperialism. Actually, in these systems, respectively, the weights and biases of the artificial neural network (ANN) were optimized using the particle swarm optimization (PSO) and imperialism competitive algorithm (ICA) to get a higher accuracy compared to a pre-developed ANN model. The best neuro-swarm and neuro-imperialism models were selected based on several parametric studies on the most important and effective parameters of PSO and ICA. Afterward, these models were evaluated according to several well-known performance indices. It was found that the neuro-swarm predictive model provides a higher level of accuracy in predicting the UCS of clay soil samples treated with recycled tiles. However, both hybrid predictive models can be used in practice to predict the UCS values for initial design of geotechnical structures

    Evaluation of the performance of a composite profile at elevated temperatures using finite element and hybrid artificial intelligence techniques

    Get PDF
    It is very important to keep structures and constructional elements in service during and after exposure to elevated temperatures. Investigation of the structural behaviour of different components and structures at elevated temperatures is an approach to manipulate the serviceability of the structures during heat exposure. Channel connectors are widely used shear connectors not only for their appealing mechanical properties but also for their workability and cost-effective nature. In this study, a finite element (FE) evaluation was performed on an authentic composite model, and the behaviour of the channel shear connector at elevated temperature was examined. Furthermore, a novel hybrid intelligence algorithm based on a feature-selection trait with the incorporation of particle swarm optimization (PSO) and multi-layer perceptron (MLP) algorithms has been developed to predict the slip response of the channel. The hybrid intelligence algorithm that uses artificial neural networks is performed on derived data from the FE study. Finally, the obtained numerical results are compared with extreme learning machine (ELM) and radial basis function (RBF) results. The MLP-PSO represented dramatically accurate results for slip value prediction at elevated temperatures. The results proved the active presence of the channels, especially to improve the stiffness and loading capacity of the composite beam. Although the height enhances the ductility, stiffness is significantly reduced at elevated temperatures. According to the results, temperature, failure load, the height of connector and concrete block strength are the key governing parameters for composite floor design against high temperatures
    • …
    corecore