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A B S T R A C T   

A reliable prediction of the soil properties mixed with recycled material is considered as an ultimate goal of many 
geotechnical laboratory works. In this study, after planning and conducting a series of laboratory works, some 
basic properties of marine clay treated with recycled tiles together with their unconfined compressive strength 
(UCS) values were obtained. Then, these basic properties were selected as input variables to predict the UCS 
values through the use of two hybrid intelligent systems i.e., the neuro-swarm and the neuro-imperialism. 
Actually, in these systems, respectively, the weights and biases of the artificial neural network (ANN) were 
optimized using the particle swarm optimization (PSO) and imperialism competitive algorithm (ICA) to get a 
higher accuracy compared to a pre-developed ANN model. The best neuro-swarm and neuro-imperialism models 
were selected based on several parametric studies on the most important and effective parameters of PSO and 
ICA. Afterward, these models were evaluated according to several well-known performance indices. It was found 
that the neuro-swarm predictive model provides a higher level of accuracy in predicting the UCS of clay soil 
samples treated with recycled tiles. However, both hybrid predictive models can be used in practice to predict the 
UCS values for initial design of geotechnical structures.   

Introduction 

Nowadays, the availability of suitable foundation soil with desirable 
geotechnical properties for civil engineering structures is considered 
very low due to the increased demand for development and industrial-
ization [1]. Insufficient resources, increase of population, shortage in 
energy, and land scarcity are the main factors resulting in tremendous 
construction development setbacks [2]. Hence, the demand is increased 
for the reclamation of soft and marine soils which are considered 
problematic for construction activities. Soft soils are widely spread 
around the world and when this kind of soil is encountered, soil 
improvement is a must in order to meet the engineering requirements. 

Soft soils are associated with high plasticity and instability, high 
compressibility and void ratio, low shear strength and natural moisture 
content that is higher than the liquid limit [3–7]. The traditional most 
common methods used to stabilize/improve soft soils are the mechanical 
and chemical methods that are in use since the past century. Soil is 
improved mechanically by compaction and chemically using chemical 
additives such as ordinary Portland cement (OPC), lime, sodium and 
magnesium silicate, etc. [8–16]. The chemical additives significantly 
enhanced the strength and the other properties of soils, but the extent of 
improvement is dependent on the type of soil, natural moisture content, 
soil mineralogy, environmental condition, curing time, and type of 
chemical additive used [17]. Although those traditional additives were 
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able as demonstrated by the literature to improve the properties of soft 
soils, but there are many concerns that were recently raised regarding 
the use of chemical additives. They are considered harmful to the sur-
rounding environment, costly, require advanced instruments during the 
application at site, and may pollute the underground water [18]. 

Currently, researchers in the field of geotechnical and coastal engi-
neering are looking for stabilization additives/methods that are sus-
tainable, economical, environmentally friendly, and able to alter the 
mechanical characteristics of problematic soils [19–23]. Rouaiguia and 
Abd El Aal [24] used marble waste and lime to enhance the geotechnical 
properties of soft soil in Algeria. The results revealed an increase in the 
unconfined compressive strength (UCS) of the soil with the increase of 
curing time and the percentages of marble waste and lime. The optimum 
marble content was 6% at which the strength was the highest. Besides, 
the optimum moisture content (OMC) was decreased with a corre-
sponding increase in the maximum dry density (MDD) of the treated soil. 
In addition, Saygili [25] utilized waste marble dust in various percent-
ages to stabilize problematic clayey soil. The results showed that the 
shear strength parameters of the treated soil were improved, and the 
swelling potential was significantly reduced. Sarkar et al. [26] utilized 
the waste of rice to treat the geotechnical properties of clayey soil. The 
properties of soil were modified by the treatment and the UCS value was 
improved. Mirzababaei et al. [27] utilized the waste of carpet fibers to 
stabilize clayey soils. The results showed that the UCS of samples pre-
pared using the same dry density and optimum moisture content was 
significantly improved by the inclusion of the carpet fibers as additive 
and the mode of failure was found to be ductile. Moreover, Li et al. [28] 
used polypropylene fiber and fly ash to improve the mechanical prop-
erties of soil. The inclusion of the fly ash and the polypropylene fiber had 
a positive effect on the UCS, and 30% fly ash and 1% fiber were found to 
be the optimum content. 

In general, the determination of the geotechnical properties of soft 
soils requires energy, time, labor, equipment, and high cost. For 
example, to determine the compaction parameters and the UCS of soil, at 
least six and four tests, respectively must be done in order to obtain 
reliable values. Hence, to evaluate the compaction parameters, UCS and 
the other parameters of soil in an efficient manner, prediction models 
were constructed to address this issue. However, the accuracy of pred-
ication was not very accurate for large data sets and therefore machine 
learning (ML) techniques were employed for high accuracy prediction 
models for most of the soil parameters [29–34]. Motamedi et al. [2] used 
the adaptive neuro-fuzzy inference system (ANFIS) to predict the UCS 
value of treated sand with cement and pulverized fuel ash. To enable the 
accuracy of the predication, series of laboratory tests were conducted for 
checking and training. The results indicated that for the prediction of the 
UCS value, the ANFIS root mean square error (RMSE) value was 0.0617. 
Soleimani et al. [35] used a multi-gen genetic programming (MGGP) to 
predict the UCS value of clayey soil treated with geopolymer. Several 
parameters that have direct effect on the UCS of soil such as plasticity 
index, plastic limit, percentages of additives, and others were incorpo-
rated within the proposed MGGP model. Parametric study was also 
conducted to validate the results and the models used. The results 
indicated a good accuracy of the equations used in the evaluation of the 
UCS. Moreover, Mozumder et al. [36] used 213 samples of soil treated 
with geopolymer based additive for the prediction of the shear strength 
using the support vector machine regression (SVR). The outcome of the 
study revealed the ability of the SVR to accurately predict the shear 
strength of the geopolymer treated soil. Kalkan et al. [37] developed 
ANFIS and artificial neural network (ANN) models for the prediction of 
the UCS value of compacted granular soil. A total of 64 UCS experi-
mental samples were used to train the ANFIS and ANN models and about 
20 experimental samples were used for the prediction of the UCS value. 
The results obtained from both models were compared and those of 
ANFIS model were more encouraging. Güllü and Fedakar [38] used 
various artificial intelligence (AI) techniques to estimate the UCS value 
of soil treated with bottom ash, jute fiber and steel fiber. The results 

obtained from all the employed AI techniques were significantly corre-
lated with the measured UCS value of soil. In addition, Cabalar et al. 
[39] reviewed the application of ANFIS in geotechnical engineering such 
as triaxial testing and triggers for liquefaction. The results of the con-
ducted critical review showed that ANFIS was successfully used in the 
prediction of the UCS value, friction angle of soil, stability of tunnels, 
induced depth around the group piles, and the permeability of soils. For 
instance, the compaction parameters of soil (maximum dry density and 
optimum moisture content) were predicted using multi expression pro-
gramming (MEP). The optimal setting for the MEP code was proposed 
after collecting numerous compaction tests with different compaction 
energies and soil classification to form a large database. The results of 
the model showed the ability of the model to predict the compaction 
parameters for the various types of soils involved within the database 
and with a very high accuracy. It should be mentioned that the suc-
cessful use of AI and ML models has been highlighted in many studies 
related to science and engineering [40–67]. 

Several studies have been conducted using PSO and imperialist 
competitive algorithm (ICA) in estimating the geotechnical properties of 
soil and rock with high accuracy and minimal deficiencies [68–71]. 
Dehghanbanadaki et al. [72] used two types of computational methods 
to predict the UCS of stabilized peat soil. A total of 271 samples were 
tested at different dosages of additives in the laboratory to develop a 
model for the UCS prediction. The model predicted the UCS of the 
treated peat soil through two types of ANN models that were trained 
using particle swarm optimization (ANN-PSO) and back propagation 
(ANN-BP) algorithms. Sensitivity analysis was carried out to evaluate 
the influence of each input on predicting the output and two perfor-
mance indices were examined. The results revealed that ANN-PSO 
model better estimated the UCS compared to the ANN-BP model. On 
the other hand, Ray et al. [73] found that minimax probability machine 
regression (MPMR) outperformed ANN-PSO and ANN-ANFIS in pre-
dicting the settlement of shallow foundations on soils. Armaghani et al. 
[74] developed hybrid ANN-PSO model that is able to predict the ulti-
mate bearing capacity of rock socketed piles. When compared with other 
conventional ANN for predicting the ultimate bearing capacity, the 
developed hybrid model showed higher degree of accuracy. A study was 
conducted by Pham et al. [75] to develop a prediction model for the 
undrained shear strength of soil using the results of 127 samples as 
database for training and validating models. Pearson correlation coef-
ficient (R) was utilized to compare and examine the developed model 
with the single RF model. The results revealed a high accuracy (R =
0.89) of the developed model in predicting the undrained shear strength 
and was found to be superior when compared with the single RF model. 
Kutanaei and Choobbasti [76] performed a series of laboratory tests to 
evaluate the UCS of sand treated with cement and polyvinyl alcohol 
(PVA) fiber. The results were also used to develop a polynomial model 
based on PSO to predict the UCS, axial strain and modulus of elasticity of 
the treated soil. The performance of the developed model was compared 
with the results obtained from the laboratory and was found to have 
good agreement. Moreover, Armaghani et al. [77] developed a hybrid 
model based on ANN enhanced with ICA able to estimate the unconfined 
compressive strength and the Young’s modulus of rock. The model was 
trained using experimental results, and it was compared with a con-
ventional ANN predictive model. The performance indices indicated 
that the predicted UCS and Young’s modulus using the ANN-ICA model 
were of high degree of accuracy. Tian et al. [78] developed a hybrid 
model based on PSO and ICA to solve the shortcomings of the ANN itself 
when predicting the Young’s modulus of rock. The developed model was 
trained and tested, and the results showed good accuracy. 

In this present study, the UCS of marine clay (MC) treated with 
recycled tiles (RT) is estimated by developing two hybrid ANN models 
namely particle swarm optimization (PSO)-ANN and neuro-swarm and 
imperialism competitive algorithm (ICA)-ANN or neuro-imperialism. In 
another words, the index properties, compaction parameters, percent-
age of recycled tiles, and curing time were used as inputs in the proposed 
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ANN-based models to estimate the UCS of treated marine soil. The rest of 
this paper is organized as follows: 

Section “Need for research” explain and discuss the problem state-
ment and the need for conducting this research. Section “Intelligent 
models principles” presents the background of the used intelligence 
techniques in this study together with the used statistical indices for 
evaluating intelligence techniques. Then, in Section “Laboratory in-
vestigations and established database”, the details of laboratory tests 
and the way of selecting input parameter are described. The intelligence 
modelling of the hybrid models in predicting the UCS values of soil 
material is given in Section “Intelligent modelling and assessment”. 
Afterward, Sections “Discussion” and “Conclusions” are about discus-
sions and conclusions of the study, respectively. 

Need for research 

Soft soil is normally treated mechanically by compaction, chemically 
using the various chemical additives, biologically using bacteria, or 
hydrologically using hydrants. The treatment using chemicals is very 
efficient and the most used, but several adverse impacts by those 
chemicals on the ecosystem made it the last choice for soil treatment. 
Recently, scientists and researchers are looking for a cost effective, 
environmentally friendly and sustainable material that can alter and 
enhance the properties of the soil. Therefore, there is a need to utilize the 
available waste materials to treat soft soils economically and in 
environmental-friendly manner. In this research, the waste of ceramic 
tiles is utilized as an environmentally friendly material to treat soft 
marine clay. Besides, conducting several laboratory tests to evaluate the 
strength of soils is found to be very costly, time consuming, requires 
materials, equipment, and presence in the laboratory. Hence, this pre-
sent study is focused to estimate the strength of marine clay treated with 
recycled tiles (RT) by developing two hybrid ANN models namely par-
ticle swarm optimization (PSO)-ANN and neuro-swarm and imperialism 
competitive algorithm (ICA)-ANN or neuro-imperialism. 

Intelligent models principles 

Artificial neural network 

Artificial neural network (ANN) can be described as a computing 
system built to interpret the way the human beings’ brain processes and 
evaluates data for the purpose of developing an artificial system. The 
ANN-based models can accurately and automatically predict relation-
ships between the input and output information by making a possible 
use of input training patterns. This feature makes those models have big 
difference in functionality compared with any other models available in 
this field [79]. The artificial neurons are employed as basic units by the 
ANN models to process data in a parallel manner like that of a biological 
brain. McCulloch and Walter [80] attempted for the first time to model 
the neural network and successfully modelled an effective artificial 
neurons’ behavior by assembling a binary decision unit. Their system 
was able to obtain outputs of higher correctness by allocating the arti-
ficial node with the total weight of an input signal and applied an 
activating function to those signals. Ch and Mathur [81] explained that 
ANN system is a network of nodes that are interconnected and found in 
an exceptional parallel layer in a computing system. Their outcome 
shows that the neuron connection patterns highly influence the class and 
behavior of those networks. 

The ANN functions can be divided from a structure point of view into 
two classifications named as feedback and feed forward. Multilayer 
perceptron (MLP) is considered the most popular among those that fall 
under the feed forward multi-layer networks. MLP is responsible for 
processing the existing data using the activation functions within back- 
to-back layers. Besides, Simpson [82] introduced the learning algorithm 
known as the back propagation (BP) which usually helps the network to 
learn by making use of a learning procedure-based gradient. BP that is 

comprised of a twofold training cycle can produce an acceptable 
outcome for the networks that are formed of a feed-forward multilayer 
[83]. The twofold training cycle is a forward and a backward stage. The 
operation of each stage was explained in detail in some relevant in-
vestigations conducted by other scholars [84]. Those scholars showed 
that the input signals proceed forward in each phase and transfer error 
signal for each node found in the output layer. This is followed by the 
resultant error rates moving backwards and this is how the weights and 
biases of network are changed. Generally, several activation functions 
are applied to the input to produce the neuron’s output. After that, the 
outputs will be transferred as an input to the neuron found in the next 
layer. Meanwhile, the difficulty of the problem dealing with will 
determine the kind of activation function. As a result, sigmoid transfer 
functions (log or tangent sigmoid) may be employed when encountering 
non-linear situations. Fig. 1 shows a systematic diagram for an artificial 
node j. 

Particle swarm optimization 

Particle swarm optimization (PSO) was introduced as an optimiza-
tion technique for the first time by Kennedy and Eberhart [85]. The idea 
of this computational technique was inspired from the simplified social 
systems such as fish swarms that is similar to the nonlinear procedure 
contained within PSO. It involves particles that are repetitively search-
ing for optimal values/targets. During the search stage, the positions of 
the particles will be altered by using the particles’ gained experiences 
and those other particles found in the system. The particle is trained to 
reach its best position by following two personal and global positions; 
the best personal position (PBEST) and the best global position (GBEST). 
Each particle is trained during the processes of the learning stage to 
accelerate aiming towards its own PBEST and GBEST positions. To 
achieve this, the distance of each particle from its own PBEST and 
GBEST positions will be used as a basis for the calculation of new ve-
locity term. Hence, the new position of the particle in the following 
iteration will depend on the new value of the velocity. For the purpose of 
achieving the value of the updated velocity and movement of the par-
ticle, Eqs. (1) and (2), respectively are employed within the PSO. To be 
more precise, Eq. (1) is used to calculate the actual movement of the 
particle through its specific velocity vector whereas Eq. (2) is employed 
to direct the provided velocity vector into its own PBEST and GBEST. 

vnew
̅̅→ = v→+C1 ×

(

pbest
̅̅̅→

− p→
)

+C2 ×
(

gbest
̅̅̅→

− p→
)

(1)  

pnew
̅̅→ = p→+ vnew

̅̅→ (2) 
In which, vnew

̅̅→ refers to the updated velocity of the particle, v→ stands 
for the current velocity of the particle, pnew

̅̅→ determines the new position 
of the particle, p→ signifies the current position of the particle, C1 and C2 
are pre-specified coefficient, and pbest

̅̅̅→ and gbest
̅̅̅→ denote the personnel 

and global best positions of the particle. Meanwhile, there are many 
research papers published in the literature which provided more 
detailed explanation of the PSO and its structure [86]. Fig. 2 demon-
strates a detailed flowchart for the PSO. 

Imperialist competitive algorithm 

The imperialist competitive algorithm (ICA) was pioneered by 
Atashpaz-Gargari and Lucas [87] to be implemented in solving the 
different problems of optimization. The algorithm used in the ICA is 
based on population and it is utilized for the global search to find the 
optima and the rate of convergence. The operation in ICA starts by 
random initial population solution, while the initial population solution 
in other optimization algorithms (OAs), such as PSO, is comprised of 
individuals that are named as particles and chromosomes, respectively. 
In ICA, the individuals are referred to as countries and the best countries 
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of the highest power are identified as imperialists. While the remainder 
of the countries in the scenario of ICA are described as colonies of the 
imperialists. The design of the ICA originally follows the real socio- 
politic competition at which the imperialists in the real world nor-
mally compete each other trying to control or take the colonies. The 
most powerful countries in the ICA algorithm are those that are asso-
ciated with the least cost and will have the ability to take the ownership 
of more colonies. The ICA is usually consisted of three main operators 
called as assimilation, revolution, and competition. The role of the 
assimilation operator is to guide the colonies to grow into imperialists in 
order to gain more power and control, obtain better cultural level and 
improved economy. The colonies get a good chance during the assimi-
lation and revolution operators to reach a position that is better than 
their respective imperialists and this will result in the colonies taking the 
control of the empire. On the contrary, during the competition operator, 
the imperialists will have great opportunities to adopt more and more 
colonies. This process will result in every empire trying to possess other 
empire’s colonies by force. Hence, every imperialist will be able to adopt 
at least one colony that has been adopted by the weakest empire and this 
will entirely depend on their power. The weakest empire will be totally 
collapsed by the competition operator processes, while the strongest 

empires will be able to have more colonies which will result in 
increasing their power to the most possible level. This process will be 
repeated until only one strongest empire will survive and take control, 
and all the other weak empires will be collapsed and changed into col-
onies. Meanwhile, the available literature demonstrated more details 
and explanation for the applications of the ICA [87,88]. The processes of 
ICA from the beginning until the end are illustrated in Fig. 3. 

Hybrid models 

The capabilities of the ANN models were improved by employing the 
OAs such as PSO, genetic algorithm, and ICA by many scholars working 
in the field of engineering and sciences [89,90]. It is probably possible 
for the ANN models to obtain a wrong or objectionable prediction due to 
the weak ability of BP models in exploring the global minimum in an 
unacceptable accuracy [91]. ANN models have high possibility of giving 
strong local minima when generating the algorithms, but the optimi-
zation algorithms can overcome this situation by determining the weight 
and biases of the ANN. Hence, the space of searching in this case will 
face the global minimum due to the usage of the OAs. In this condition, 
the ANN model will be the determining factor of the most logical 

Fig. 1. Mathematical model for the artificial neuron.  

Fig. 2. Detailed flowchart for the algorithm of PSO [85].  
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outcomes obtained by the hybrid ANN based models. This study used 
two hybrid ANN-based models (i.e., PSO-ANN, and ICA-ANN) for the 
prediction of the UCS of treated soil. This is followed by comparing the 
prediction results obtained by both hybrid ANN-based models in order 
to choose the best model among those. Figs. 4 and 5 show the ways of 
combinations of ANN model with ICA and PSO OAs which can be used 
for prediction purposes. 

Performance index 

The performance index of the hybrid ANN-based models is normally 
evaluated by performing calculation of two different statistical param-
eters named as root mean square error (RMSE) and the determination’s 
coefficient (R2). When the values of RMSE are low, this indicate that the 
predication is good and accurate. While for the R2, the higher value 
represents a good agreement between the measured and the estimated 

Fig. 3. Flow chart illustrating the structure and algorithm of ICA.  

Fig. 4. Neuro-swarm flowchart.  
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values. The following Eqs. (3) and (4) show the calculation of these 
statistical parameters mentioned earlier: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

n

∑n

i=1

(xi − yi)
2

√

(3)  

R2 = 1−

(
∑n

i=1(xi − yi)
2

∑n

i=1(xi − x)2

)

(4)  

where the total number of databases is represented by the symbol n and 
the estimated and targeted values are respectively denoted by xi and yi. 

The R2 and RMSE were used in the evaluation of the accuracy and 
consistency of the developed neutral networks. The RMSE is usually 
implemented in presenting short term data that is considered a guideline 
to show the difference between the predicted data and the one obtained 
during the laboratory testing. When obtaining a low RMSE value, this 
indicates a good and precise evaluation. On the other hand, the inter-
preted variation by the model is evaluated with the R2 that can be the 
decrease in variation while employing the model. The value of R2 is 
measured in the range from zero to one and the good analyzing capa-
bility of the model is observed when the value of R2 is near one and the 
capability is reduced when approaching zero. 

Laboratory investigations and established database 

Material properties 

The materials used in this research are the problematic MC and the 
waste of RT. MC is a soft soil collected from Nusajaya, Johor, Malaysia. 
Few steps were followed for preparing the soil for experiments; MC was 
cleaned from plants and roots, air-dried, grinded and sieved through 2 
mm sieve size before being stored in an airtight plastic container. On the 
other hand, RT were collected from construction site in Taman Pelangi, 
Johor Malaysia that was observed to have plenty of waste for this ma-
terial. Tiles were first cleaned to remove all the foreign materials 
sticking on their surface, crushed manually into small pieces by hammer, 
crushed further using machine into a mixture containing particles of less 
than 5 mm diameter size, and blended into a fine size using Los Angeles 
abrasion machine. The mechanical shaker was used to separate the 
mixture of tiles into the selected sizes. The macro-structural properties 
of MC and RT are listed in Table 1 after Al-Bared et al. [92,93]. 

Conducted laboratory tests 

The untreated and treated specimens of MC underwent the Atterberg 
limits tests to observe the changes induced by the treatment on their 
index properties. The specimens of MC were passed through a sieve size 

Fig. 5. Neuro-imperialism flowchart.  
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of 0.425 mm and then mixed with 10, 20, 30, and 40% 0.063, 0.15 and 
0.30 mm RT in a dry condition. The mixture of MC and RT was admixed 
with distilled water and remained inside airtight plastic bag for 24 h to 
make sure the moisture content is properly distributed within the 
mixture. The sample preparation and testing were performed in accor-
dance with the BS 1377, part 2 [94]. Fig. 6 shows the test set up for the 
Atterberg limits. 

Compaction tests were carried out on untreated and treated MC 
specimens to examine the size and percentage influence of RT on the 
compaction parameters. A compaction mold with diameter and height of 
105 and 115.5 mm, respectively was used for the determination of MDD 
and OMC. The untreated MC specimen was oven dried, sieved through 2 
mm mesh, mixed with the appropriate dried percentage and size of RT, 
and thoroughly stirred with the anticipated amount of distilled water. 
The preparation of specimens and testing methods followed the BS 1377, 
part 4 [95]. 

The UCS specimens for both untreated and treated MC were prepared 
using the predetermined values of MDD and OMC obtained from the 
compaction tests. The specimens were remolded inside a triaxial mold 
with a dimension of 80 mm height and 38 mm diameter. A total of 12 
specimens were used to evaluate the UCS of untreated MC at 0, 7, 14, 
and 28 days curing periods. While for the treated specimens, the MC was 

first mixed with 10, 20, 30, and 40% of 0.063, 0.15 and 0.30 mm RT 
until homogeneity was observed. Then, an equal amount of the pre-
determined OMC was added and mixed thoroughly with MC and RT. The 
wet mix was put into the triaxial mold in three equal layers and com-
pacted each for 27 blows. A hydraulic jack machine was used to extrude 
the cylindrical specimens and the specimens were trimmed using a knife. 
The specimens were then put inside airtight plastic bags and stored in 
humidity chamber (97% humidity and temperature of 27 ◦C) for the 
required curing period. The UCS testing was conducted on 156 un-
treated and treated specimens under strain-controlled condition at 
which the strain was set at 1.52 mm per minute. The specimens prep-
aration and the methods of testing were in accordance with the BS 1377, 
part 4 [96]. 

Results of laboratory investigations 

The results of the compaction, pH, Atterberg limits, and UCS tests for 
both untreated and treated clay specimens are listed in Table 2. The 
Table shows the UCS value as an output while all other influencing 
parameters were presented as inputs. Fig. 7 shows the effect of MDD on 
the UCS value of the treated specimens using different sizes and pro-
portions of the RT additive. The UCS value was significantly affected by 
the increase of the MDD of treated specimens. It was increased with the 
increased MDD until reaching a peak value and then slightly started to 
drop. The size of the additive also influenced the UCS value and the 
smallest micro size resulted with greater UCS value than other sizes. On 
the other hand, the effect of the decrease in the OMC was increasing the 
UCS value of the treated specimens as shown in Fig. 8. The treatment 
resulted in decreasing the OMC and therefore the UCS of the specimens 
was increased for all the utilized sizes of the additive. As observed with 
MDD, the micro size of RT had the most influencing effect compared 
with bigger sizes. 

The pH value of the treated specimens using different sizes of RT is 
plotted in Fig. 9 to reveal the extent of pH impact on the UCS value. The 
decrease in the pH value of the treated specimens was corresponded 
with an increase in the UCS value until approaching maximum value at 
which the UCS value started to decline. In addition, Fig. 10 shows the 
effect of the additive percentage and size and the curing period on the 
UCS value of the treated specimens. The percentage of RT played a 
significant role in either increasing or decreasing the UCS value of the 
treated specimens. For specimens cured for 28 days, higher percentages 
of RT resulted in higher UCS value until reaching the optimum per-
centage and then declined. The optimum RT percentage for 0.063, 0.15 
and 0.3 mm was 20, 30 and 40%, respectively. The size of RT contrib-
uted to increase the UCS value and 0.3 mm indicated the highest value of 
UCS. However, 0.063 mm size attained almost similar UCS value with 
lower percentage of RT compared to 0.3 mm. Hence, 0.063 mm is 
considered to be the optimum size from environmental and economical 
point of view. 

Input selection 

To develop a generic model that would be able to predict the UCS 
value of untreated and treated clay soil, various percentages and sizes of 
additive, curing time, and other influencing parameters are considered. 
The index and mechanical parameters such as the liquid limit, plastic 
limit, plasticity index, MDD, OMC, and pH are observed to have a great 
influencing effect on the prediction of UCS. The liquid limit of clayey 
soils is always correlated with the soil’s behavior due to the importance 
of this parameter. The inter particle cementation of clayey soils is 
indicated using the liquidity index. The significance of the pH value is 
reflected during the stabilization/treatment processes of clayey soils as 
it controls the cementation reaction. When the pH value is high, better 
stabilization can be achieved as this will help to dissolve the existing 
silica and alumina within the soil to react with the calcium forming 
calcium silicate hydrates and calcium aluminum hydrates. Moreover, 

Table 1 
Physical and mechanical properties of MC and RT [93].  

No. Property MC RT 
1 Phase Powder Powder 
2 Size (mm) Less than 2 mm Between 0.063 and 0.30 mm 
3 Texture Fine Fine and coarse 
4 Liquid limit (%) 41 – 

5 Plastic limit (%) 12 – 

6 Plasticity index (%) 19 – 

4 pH 2.8 9  
Gs 2.52 2.56 

7 MDD (Mgm−3) 1590 – 

8 OMC (%) 22 – 

9 UCS (kPa) 50 – 

10 Dominant minerals Quartz Silica and Aluminum dioxide  

Fig. 6. Liquid limit sample and apparatus.  
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Table 2 
Laboratory data used in the estimation of the UCS of untreated and treated MC.  

Input parameter Output 
Mixture % of RT Size of RT (mm) Curing Time (days) MDD kg m-3 OMC (%) pH PI (%) UCS (kPa) 
UMC 0 0 0  1.59 22  2.89 19 50 
UMC 0 0 0  1.59 22  2.89 19 50 
UMC 0 0 0  1.59 22  2.89 19 52 
UMC 0 0 7  1.59 22  2.89 19 50 
UMC 0 0 7  1.59 22  2.89 19 50 
UMC 0 0 7  1.59 22  2.89 19 50 
UMC 0 0 14  1.59 22  2.89 19 50 
UMC 0 0 14  1.59 22  2.89 19 50 
UMC 0 0 14  1.59 22  2.89 19 50 
UMC 0 0 28  1.59 22  2.89 19 50 
UMC 0 0 28  1.59 22  2.89 19 50 
UMC 0 0 28  1.59 22  2.89 19 50 
TMC 10 0.063 0  1.66 19  2.73 18.27 75 
TMC 10 0.063 0  1.66 19  2.73 18.27 80 
TMC 10 0.063 0  1.66 19  2.73 18.27 85 
TMC 10 0.063 7  1.66 19  2.73 18.27 133 
TMC 10 0.063 7  1.66 19  2.73 18.27 143 
TMC 10 0.063 7  1.66 19  2.73 18.27 137 
TMC 10 0.063 14  1.66 19  2.73 18.27 180 
TMC 10 0.063 14  1.66 19  2.73 18.27 181 
TMC 10 0.063 14  1.66 19  2.73 18.27 178 
TMC 10 0.063 28  1.66 19  2.73 18.27 200 
TMC 10 0.063 28  1.66 19  2.73 18.27 202 
TMC 10 0.063 28  1.66 19  2.73 18.27 199 
TMC 20 0.063 0  1.67 19  2.69 15.54 80 
TMC 20 0.063 0  1.67 19  2.69 15.54 88 
TMC 20 0.063 0  1.67 19  2.69 15.54 85 
TMC 20 0.063 7  1.67 19  2.69 15.54 133 
TMC 20 0.063 7  1.67 19  2.69 15.54 142 
TMC 20 0.063 7  1.67 19  2.69 15.54 137 
TMC 20 0.063 14  1.67 19  2.69 15.54 210 
TMC 20 0.063 14  1.67 19  2.69 15.54 217 
TMC 20 0.063 14  1.67 19  2.69 15.54 219 
TMC 20 0.063 28  1.67 19  2.69 15.54 223 
TMC 20 0.063 28  1.67 19  2.69 15.54 217 
TMC 20 0.063 28  1.67 19  2.69 15.54 222 
TMC 30 0.063 0  1.72 18  2.65 15.59 114 
TMC 30 0.063 0  1.72 18  2.65 15.59 109 
TMC 30 0.063 0  1.72 18  2.65 15.59 110 
TMC 30 0.063 7  1.72 18  2.65 15.59 136 
TMC 30 0.063 7  1.72 18  2.65 15.59 138 
TMC 30 0.063 7  1.72 18  2.65 15.59 143 
TMC 30 0.063 14  1.72 18  2.65 15.59 155 
TMC 30 0.063 14  1.72 18  2.65 15.59 154 
TMC 30 0.063 14  1.72 18  2.65 15.59 152 
TMC 30 0.063 28  1.72 18  2.65 15.59 156 
TMC 30 0.063 28  1.72 18  2.65 15.59 159 
TMC 30 0.063 28  1.72 18  2.65 15.59 161 
TMC 40 0.063 0  1.73 16.5  2.61 12.84 116 
TMC 40 0.063 0  1.73 16.5  2.61 12.84 118 
TMC 40 0.063 0  1.73 16.5  2.61 12.84 121 
TMC 40 0.063 7  1.73 16.5  2.61 12.84 125 
TMC 40 0.063 7  1.73 16.5  2.61 12.84 110 
TMC 40 0.063 7  1.73 16.5  2.61 12.84 120 
TMC 40 0.063 14  1.73 16.5  2.61 12.84 137 
TMC 40 0.063 14  1.73 16.5  2.61 12.84 134 
TMC 40 0.063 14  1.73 16.5  2.61 12.84 129 
TMC 40 0.063 28  1.73 16.5  2.61 12.84 158 
TMC 40 0.063 28  1.73 16.5  2.61 12.84 158 
TMC 40 0.063 28  1.73 16.5  2.61 12.84 159 
TMC 10 0.15 0  1.7 18  2.7 13.94 97 
TMC 10 0.15 0  1.7 18  2.7 13.94 96 
TMC 10 0.15 0  1.7 18  2.7 13.94 99 
TMC 10 0.15 7  1.7 18  2.7 13.94 111 
TMC 10 0.15 7  1.7 18  2.7 13.94 124 
TMC 10 0.15 7  1.7 18  2.7 13.94 127 
TMC 10 0.15 14  1.7 18  2.7 13.94 160 
TMC 10 0.15 14  1.7 18  2.7 13.94 170 
TMC 10 0.15 14  1.7 18  2.7 13.94 168 
TMC 10 0.15 28  1.7 18  2.7 13.94 180 
TMC 10 0.15 28  1.7 18  2.7 13.94 177 
TMC 10 0.15 28  1.7 18  2.7 13.94 186 
TMC 20 0.15 0  1.71 18  2.68 13.15 98 

(continued on next page) 
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Table 2 (continued ) 
Input parameter Output 
Mixture % of RT Size of RT (mm) Curing Time (days) MDD kg m-3 OMC (%) pH PI (%) UCS (kPa) 
TMC 20 0.15 0  1.71 18  2.68 13.15 100 
TMC 20 0.15 0  1.71 18  2.68 13.15 96 
TMC 20 0.15 7  1.71 18  2.68 13.15 158 
TMC 20 0.15 7  1.71 18  2.68 13.15 160 
TMC 20 0.15 7  1.71 18  2.68 13.15 166 
TMC 20 0.15 14  1.71 18  2.68 13.15 190 
TMC 20 0.15 14  1.71 18  2.68 13.15 191 
TMC 20 0.15 14  1.71 18  2.68 13.15 190 
TMC 20 0.15 28  1.71 18  2.68 13.15 192 
TMC 20 0.15 28  1.71 18  2.68 13.15 194 
TMC 20 0.15 28  1.71 18  2.68 13.15 190 
TMC 30 0.15 0  1.74 17.8  2.67 11.82 98 
TMC 30 0.15 0  1.74 17.8  2.67 11.82 111 
TMC 30 0.15 0  1.74 17.8  2.67 11.82 102 
TMC 30 0.15 7  1.74 17.8  2.67 11.82 158 
TMC 30 0.15 7  1.74 17.8  2.67 11.82 172 
TMC 30 0.15 7  1.74 17.8  2.67 11.82 170 
TMC 30 0.15 14  1.74 17.8  2.67 11.82 204 
TMC 30 0.15 14  1.74 17.8  2.67 11.82 200 
TMC 30 0.15 14  1.74 17.8  2.67 11.82 188 
TMC 30 0.15 28  1.74 17.8  2.67 11.82 205 
TMC 30 0.15 28  1.74 17.8  2.67 11.82 199 
TMC 30 0.15 28  1.74 17.8  2.67 11.82 201 
TMC 40 0.15 0  1.74 17  2.64 12.76 122 
TMC 40 0.15 0  1.74 17  2.64 12.76 134 
TMC 40 0.15 0  1.74 17  2.64 12.76 128 
TMC 40 0.15 7  1.74 17  2.64 12.76 146 
TMC 40 0.15 7  1.74 17  2.64 12.76 135 
TMC 40 0.15 7  1.74 17  2.64 12.76 132 
TMC 40 0.15 14  1.74 17  2.64 12.76 172 
TMC 40 0.15 14  1.74 17  2.64 12.76 175 
TMC 40 0.15 14  1.74 17  2.64 12.76 165 
TMC 40 0.15 28  1.74 17  2.64 12.76 182 
TMC 40 0.15 28  1.74 17  2.64 12.76 181 
TMC 40 0.15 28  1.74 17  2.64 12.76 179 
TMC 10 0.3 0  1.69 19  2.78 13.99 118 
TMC 10 0.3 0  1.69 19  2.78 13.99 124 
TMC 10 0.3 0  1.69 19  2.78 13.99 122 
TMC 10 0.3 7  1.69 19  2.78 13.99 149 
TMC 10 0.3 7  1.69 19  2.78 13.99 161 
TMC 10 0.3 7  1.69 19  2.78 13.99 154 
TMC 10 0.3 14  1.69 19  2.78 13.99 157 
TMC 10 0.3 14  1.69 19  2.78 13.99 171 
TMC 10 0.3 14  1.69 19  2.78 13.99 163 
TMC 10 0.3 28  1.69 19  2.78 13.99 205 
TMC 10 0.3 28  1.69 19  2.78 13.99 195 
TMC 10 0.3 28  1.69 19  2.78 13.99 203 
TMC 20 0.3 0  1.67 16.7  2.75 12.65 135 
TMC 20 0.3 0  1.67 16.7  2.75 12.65 126 
TMC 20 0.3 0  1.67 16.7  2.75 12.65 129 
TMC 20 0.3 7  1.67 16.7  2.75 12.65 166 
TMC 20 0.3 7  1.67 16.7  2.75 12.65 154 
TMC 20 0.3 7  1.67 16.7  2.75 12.65 159 
TMC 20 0.3 14  1.67 16.7  2.75 12.65 166 
TMC 20 0.3 14  1.67 16.7  2.75 12.65 162 
TMC 20 0.3 14  1.67 16.7  2.75 12.65 158 
TMC 20 0.3 28  1.67 16.7  2.75 12.65 206 
TMC 20 0.3 28  1.67 16.7  2.75 12.65 197 
TMC 20 0.3 28  1.67 16.7  2.75 12.65 200 
TMC 30 0.3 0  1.75 16.5  2.72 12.42 134 
TMC 30 0.3 0  1.75 16.5  2.72 12.42 138 
TMC 30 0.3 0  1.75 16.5  2.72 12.42 132 
TMC 30 0.3 7  1.75 16.5  2.72 12.42 165 
TMC 30 0.3 7  1.75 16.5  2.72 12.42 166 
TMC 30 0.3 7  1.75 16.5  2.72 12.42 163 
TMC 30 0.3 14  1.75 16.5  2.72 12.42 178 
TMC 30 0.3 14  1.75 16.5  2.72 12.42 180 
TMC 30 0.3 14  1.75 16.5  2.72 12.42 168 
TMC 30 0.3 28  1.75 16.5  2.72 12.42 229 
TMC 30 0.3 28  1.75 16.5  2.72 12.42 224 
TMC 30 0.3 28  1.75 16.5  2.72 12.42 222 
TMC 40 0.3 0  1.77 15  2.7 10.57 134 
TMC 40 0.3 0  1.77 15  2.7 10.57 135 
TMC 40 0.3 0  1.77 15  2.7 10.57 136 

(continued on next page) 
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the compaction parameters of soil play an important role in predicting 
the UCS value of clayey soils. The reduction of OMC would definitely 
result in increasing the UCS value of the treated clay specimens as the 
affinity of soil molecules to absorb water is reduced when the soil is 
improved. Besides, the MDD of soil reflects the unit weight at which the 
soil is approximately free from air voids and the soil particles are intact 
or very close to each other. Therefore, the MDD control the strength and 

stiffness of soil and affect the stabilization of soil. When MDD and OMC 
of soil are high and low, respectively, the chances for better improve-
ment are increased. 

The prediction of the UCS value for untreated and treated soils 
usually depends highly on the influencing soil parameters as reported by 
many recent studies. For instance, the prediction of the UCS value of 

Table 2 (continued ) 
Input parameter Output 
Mixture % of RT Size of RT (mm) Curing Time (days) MDD kg m-3 OMC (%) pH PI (%) UCS (kPa) 
TMC 40 0.3 7  1.77 15  2.7 10.57 176 
TMC 40 0.3 7  1.77 15  2.7 10.57 170 
TMC 40 0.3 7  1.77 15  2.7 10.57 165 
TMC 40 0.3 14  1.77 15  2.7 10.57 232 
TMC 40 0.3 14  1.77 15  2.7 10.57 222 
TMC 40 0.3 14  1.77 15  2.7 10.57 225 
TMC 40 0.3 28  1.77 15  2.7 10.57 237 
TMC 40 0.3 28  1.77 15  2.7 10.57 230 
TMC 40 0.3 28  1.77 15  2.7 10.57 225  

Fig. 7. Impact of MDD on the value of UCS of treated MC.  

Fig. 8. Impact of OMC on the value of UCS of improved specimens.  

Fig. 9. Influence of pH on the value of UCS of treated MC using different sizes 
of RT. 

Fig. 10. Effect of inclusion of different percentages and sizes of RT on the UCS 
value of MC. 
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treated soil was investigated by Motamedi et al. [2] using the curing 
time and the percentage of additives. In addition, Soleimani et al. [35] 
used the factors of liquid limit, plastic limit, plasticity index, percentage 
and concentration of additives for the prediction of the UCS value of soil 
treated with geopolymer. Narendra et al. [17] used parameters such as 
liquid limit (LL), liquidity index (LI), pH and sodium ion concentration 
(Na+) for the prediction of the UCS value of soft grounds. 

Intelligent modelling and assessment 

Modelling 

Neuro-swarm model 
The modelling stages should be started by determining the most 

influential parameters of the ANN system itself. However, before that, 
the data should be normalized. A certain equation was suggested by Liou 
et al. [91] for the normalization of the datasets at the beginning of the 
modelling process in a way to make the following process simplified: 
Xnorm = (X −− Xmin) / (Xmax − Xmin) (5)  

where, minimum and maximum values of X are denoted by Xmin and 
Xmax, respectively, X is the measured value, and Xnorm signifies the 
normalized value. 

Some researchers suggested using only one hidden layer in ANN 
[79,97,98] and some others proposed an ANN model with more than one 
hidden layer for solving their problems [99,100]. Therefore, we exam-
ined hidden layers of one, two and three on our data to predict the UCS 
of treated marine soil. The results of this parametric study (PS) showed 
that one hidden layer can receive more accurate prediction performance 
compared to other implemented numbers. The number of neurons is 
another important factor in ANN performance that should be deter-
mined using another PS. According to previous studies, values of 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, and 15 were considered and used in the 
modelling of this part where their RMSE values were evaluated. From 
these analyses, it was found that the hidden neuron number of 10 pro-
vides closer UCS values to the measured ones and due to that this value 
was selected for the best ANN model. Therefore, based on results of these 
PSs, a model with seven input variables, 10 hidden neurons and one 
output neuron as the best ANN model is introduced and the rest of 
modelling in this research is conducted with this model as reference in 
part of ANN. It is worth noting that a combination of 80–20% of the total 
number of data samples was selected and used in this study as training 
and testing datasets, respectively. 

In the neuro-swarm modelling, the first stage involves the selection 

of swarm size and number of iterations at the same time. With the help of 
PS, the swarm size was set to a range from 50 to 500 with the incre-
mental step of 50, and the maximum number of iterations was set to 500. 
As a result, 10 neuro-swarm predictive models were configured for the 
purpose of predicting the UCS value of the treated marine soil on the 
basis of RMSE given in Fig. 11. To do these analyses, in initial iterations, 
the RMSE values were considerably reduced for all models; after that, 
the alteration of the values was minimized gradually until reaching a 
constant value. As depicted in Fig. 11, the minimum error was achieved 
in the case where the swarm size was fixed at 450. In addition, it can be 
clearly observed that RMSE reached to a constant value after 300 iter-
ations. Therefore, for the modelling purposes in the present paper, the 
swarm size and the number of iterations were fixed at 450 and 300, 
respectively, in order to predict the UCS of the treated marine soil. 

Then, in the second stage, the C1 and C2 parameters are determined. 
Similar to the former stages, PS was implemented with a range of C1 and 
C2 values to explore the best suited to our model. To this end, the neuro- 
swarm models were constructed with the following setting: (C1 = 2 and 
C2 = 2), (C1 = 1.5 and C2 = 1.5), (C1 = 1,75 and C2 = 1.75), (C1 = 2 and 
C2 = 1.5), (C1 = 1.5 and C2 = 2), and (C1 = 2.5 and C2 = 2.5). RMSE and 
R2 were taken into consideration as the criteria for evaluating the pre-
dictive performance of the models (see Table 3). As confirmed by the 
results given in Table 3, the velocity coefficients have significant effects 
on the neuro-swarm models because the results significantly differ from 
one combination to another. Though, it is not easy to select the optimal 
model just by considering PIs since, as can be observed, there are only 
small differences among the relevant statistics. To cope with this chal-
lenge, the present paper makes use of a simple ranking approach 
introduced by Zorlu et al. [101] in which each neuro-swarm model can 
be graded separately on the basis of its capacity of training and testing 
data sets. The best PI within this ranking system receives the highest 
rank, 6, whereas the worst one is assigned with the lowest rank. As 
shown by the assigned entire rank scores given in Table 3, amongst the 
six neuro-swarm models designed in this study, the first model (or No. 1) 
with the ranking of 23 was found the most efficient model in terms of 
accuracy in predicting UCS. As a result, both C1 and C2 were set to 2 and 
applied to the last modelling part, which was dedicated to determining 
the inertia weight (IW). This parameter in all models was fixed at 0.25. 

Another parameter with a high impact on the neuro-swarm models is 
IW that, more specifically, affects the accuracy level of these models 
[102]. Consequently, the values of 0.25, 0.5, 0.75, and 1 were set for this 
parameter in the four neuro-swarm models presented in this paper. 
Table 4 presents the results obtained by this setting. The ranking system 
was implemented on these PIs in both training and testing phases. Based 
on the total rank values (i.e., 16, 8, 8, and 8), among all, Model 1 with IW 

Fig. 11. A simultaneous selection of both swarm size and number of iterations in predicting the UCS of treated marine soil.  
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of 0.25 and the total rank of 16 demonstrated the highest capacity for 
fitting the measured and predicting UCS values. For that reason, the 
mentioned neuro-swarm model was chosen as the optimal model ob-
tained from 3 PSs. Its accuracy level in the prediction of UCS of the 
treated marine soil is discussed later in detail. 

Neuro-imperialism model 
Here, the modelling steps taken by the neuro-imperialism technique 

to estimate the UCS values of treated marine soil are described. As 
mentioned earlier, three parameters, i.e., the number of IMPs, number of 
decades, and number of countries, significantly affect the performance 
capacity of the neuro-imperialism model. Therefore, there is need to 
design these parameters and achieve the optimum values for the pa-
rameters with the use of different PSs. To simultaneously select the 
numbers of countries and decades, the first PS was carried out. For that 
purpose, comparable to the former section and on the basis of a number 
of previously-conducted studies [58,103], in the first PS, the number of 
countries was ranged between 50 and 500 with incremental step of 50, 

and the maximum number of decades was fixed at 500. Fig. 12 presents 
the results obtained from various numbers of countries based on their 
number of decades in terms of the prediction of the UCS value of the 
treated marine soil. As the figure clearly depicts, most of the numbers of 
countries are converged in RMSE values in the range of 0.09–0.11. When 
the number of countries was fixed at 350, the minimum RMSE was ob-
tained. In addition, when the number of decades was fixed at 350, no 
more reduction was observed in RMSE. As a result, this value was chosen 
as the optimum number of decades applicable to modelling the neuro- 
imperialism model. 

Up to this point, the optimal numbers of countries and decades were 
determined; now, it is the time to execute another PS to determine the 
best value of the number of IMPs. To do this, IMP was ranged from 5 to 
10. Table 5 presents the results obtained by this PS on the basis of R2, 
RMSE and the ranking system. The R2 values ranging from 0.8 to 0.95 
were obtained for training and testing, respectively, which show a high 
efficiency of the neuro-imperialism models regarding the UCS predic-
tion. The neuro-imperialism models of numbers 1 to 6 obtained the rank 
values of 14, 14, 19, 11, 16, and 10, respectively. It reveals the highest 
predictive capability of Model 3 (with IMP of 7). As a result, this model 
was chosen for the purpose of this study to estimate the UCS value of the 
treated marine soil. For this model, 350, 350 and 7 were obtained as the 
optimal values for the number of countries, number of decades and 
number of IMPs, respectively. The following section discusses this model 
and its obtained results. 

Model assessment 

In this sub-section, the results of the hybrid ANN-based models in the 
prediction of the UCS of the treated marine soil are discussed. Numerous 
PIs, as noted earlier, can be used for the aim of evaluating the prediction 
capability of a model. In this part, R2 and RMSE were chosen to be 
computed for the developed models. The mentioned PIs were calculated 

Table 3 
Six neuro-swarm models with different C1 and C2 values.  

Stage PIs Model No. 1 Model No. 2 Model No. 3 Model No. 4 Model No. 5 Model No. 6   
C1 = 2, C2 = 2 C1 = 1.5, C2 = 1.5 C1 = 1.75, C2 = 1.75 C1 = 2, C2 = 1.5 C1 = 1.5, C2 = 2 C1 = 2.5, C2 = 2.5 

Train R2 0.9345 Rank = 5 0.7774 Rank = 1 0.8929 Rank = 3 0.8301 Rank = 2 0.8985 Rank = 4 0.9371 Rank = 6  
RMSE 0.0601 Rank = 6 0.1106 Rank = 1 0.0819 Rank = 3 0.1024 Rank = 2 0.0798 Rank = 4 0.0646 Rank = 5 

Test R2 0.9556 Rank = 6 0.7321 Rank = 1 0.8307 Rank = 3 0.7921 Rank = 2 0.8813 Rank = 4 0.9147 Rank = 5  
RMSE 0.0641 Rank = 6 0.1575 Rank = 1 0.1021 Rank = 3 0.1172 Rank = 2 0.0827 Rank = 4 0.0648 Rank = 5 

Total Rank  23 4 12 8 16 21  

Table 4 
Four neuro-swarm models with different IW values.  

Stage PIs Model No. 1 Model No. 2 Model No. 3 Model No. 4   
IW = 0.25 IW = 0.5 IW = 0.75 IW = 1 

Train R2 0.9345 
Rank = 4 

0.8992 
Rank = 1 

0.9087 
Rank = 2 

0.9178 
Rank = 3  

RMSE 0.0601 
Rank = 4 

0.0784 
Rank = 1 

0.0739 
Rank = 2 

0.0705 
Rank = 3 

Test R2 0.9556 
Rank = 4 

0.9174 
Rank = 3 

0.9063 
Rank = 2 

0.8577 
Rank = 1  

RMSE 0.0641 
Rank = 4 

0.0742 
Rank = 3 

0.0805 
Rank = 2 

0.1006 
Rank = 1 

Total 
Rank  

16 8 8 8  

Fig. 12. A simultaneous selection of both No. of countries, No. of decades in predicting the UCS of treated marine soil.  
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based on their formulas for the best neuro-swarm and neuro-imperialism 
models achieved within the former section. 

Figs. 13–15 present the results of the neuro-swarm model and 
Figs. 13 and 14 depict the results of the calculated and estimated soil 
UCS values using the neuro-swarm model in both training and testing 
stages, respectively. Moreover, Fig. 15 illustrates the R2 values of the 
training and testing stages of the developed neuro-swarm model. 
Figs. 16–18 demonstrate the same details for the neuro-imperialism 
model in the prediction of the UCS value of the treated marine soil. 

Regarding the estimation capability, the hybrid neuro-swarm model 
was clearly capable of offering a better correlation between the 
measured and estimated UCS of the soil. In case of the training stage, the 
R2 values of 0.8415 and 0.9345 for the neuro-imperialism and neuro- 
swarm models, respectively, revealed that the latter outperformed the 
other one in the model development stage. The results of an efficient 
model development stage can be observed in the testing stage as the R2 

values of 0.9538 and 0.9556 were achieved for the testing stage of and 
the neuro-imperialism and neuro-swarm models, respectively. The 
predicted and measured soil UCS values given in the mentioned figures 
show clearly the high capability of PSO in the optimization of the 
weights and biases of ANN. With appropriately optimizing the weights 
and biases of ANN, the performance capability of the neuro-swarm 
model could be higher than that of the neuro-imperialism model. 

As well proved by the modelling process results, both the neuro- 
swarm and the neuro-imperialism models presented in the current 
paper are capable of accurately predicting the UCS values of soil. 
Nevertheless, when a new data is available, the neuro-swarm model was 
found more successful than the other one. Remember that the intelligent 
models developed in the current research are applicable with the same 
range of the input parameters used in the modelling process of this 
paper. 

Discussion 

During soil stabilization using cementitious or recycled based 

cementitious materials, the improvement in UCS value of soil is first 
indicated by the increase of the MDD and the decrease of OMC during 
compaction. In this study, the addition of the recycled ceramic in various 
percentages and sizes increased the MDD and reduced the OMC as 
illustrated in Figs. 7 and 8. The increase in MDD with the additions of 
additive is dependent on the particle size and specific gravity of RT at 
which the MC particles with low specific gravity and fineness were 
coated by RT particles of high specific gravity forming bigger aggregates 
that occupied larger spaces [104]. Whereas the reduction in OMC can be 
due to the decrease in the affinity of the MC particles to absorb higher 
quantities of water molecules. Similar results were obtained by various 
researchers who used cementitious/recycled based cementitious mate-
rials to treat soils [105]. The slight decrease in the pH value of the 
treated soil resulted in slight increase in acidity of treated soil. This 
slight increment in acidity of treated soil increased the free hydrogen 
ions (H+) within the soil and increased the chances for soil reactions. 
Consequently, the UCS value was increased and the soil become more 
intact [18]. 

The sharp increase in the unconfined compressive strength of un-
treated MC by the addition of various percentages and sizes of RT could 
be due to the availability of high quantities of silica and alumina within 
MC and RT and also cementitious based minerals within RT such as 
calcium, sodium and magnesium. The silica and alumina react with the 
cementitious minerals to form new cementitious compounds such as 
sodium aluminum silicate and aluminum silicate hydrates responsible 
for the increased UCS value. As a result, the UCS value of the treated 
specimens was increased with the increased of curing time which allow 
the hydration and the pozzolanic reactions to be completed. When 
comparing the UCS results of the different sizes of RT, it is observed that 
the micro size (less than 0.063 mm) was the optimum size and the 
amount required of this size to achieve the highest strength was lower 
than the other sizes. Those results were in a close agreement with the 
limited available literature on improving the strength of soft soils using 
ceramic tile materials either in a crushed or powdered forms [106]. 

In terms of intelligence modelling, this study introduces two new 

Table 5 
Six neuro-imperialism models with different IMP values.  

Stage PIs Model No. 1 Model No. 2 Model No. 3 Model No. 4 Model No. 5 Model No. 6   
IMP = 5 IMP = 6 IMP = 7 IMP = 8 IMP = 9 IMP = 10 

Train R2 0.8908 Rank = 6 0.8711 Rank = 5 0.8415 Rank = 3 0.8138 Rank = 1 0.8576 Rank = 4 0.8325 Rank = 2  
RMSE 0.0844 Rank = 6 0.0913 Rank = 5 0.0930 Rank = 4 0.1011 Rank = 2 0.0970 Rank = 3 0.1030 Rank = 1 

Test R2 0.7979 Rank = 1 0.8218 Rank = 2 0.9538 Rank = 6 0.9042 Rank = 5 0.8735 Rank = 4 0.8568 Rank = 3  
RMSE 0.1023 Rank = 1 0.0958 Rank = 2 0.0574 Rank = 6 0.0942 Rank = 3 0.0784 Rank = 5 0.0913 Rank = 4 

Total Rank  14 14 19 11 16 10  

Fig. 13. Train stage results of the introduced neuro-swarm model in predicting the UCS of treated marine soil.  
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hybrid ANN models namely neuro-swarm and neuro-imperialism 
models. These techniques are able to optimize ANN weights and bia-
ses to get a higher level of accuracy for prediction purposes using PSO 
and ICA OAs, respectively. After performing a series of PSs, the best 
neuro-swarm and neuro-imperialism models were selected to predict the 
UCS of treated marine soil. However, when considering system error, it 
is obvious that the PSO optimization algorithm is more powerful 

compared to the ICA technique. The optimum weights and biases of the 
ANN model cause the lowest system error in a hybrid ANN-based system. 
Therefore, RMSE values of (0.0601 and 0.0641) for training and testing 
datasets respectively, can be expected for the neuro-swarm model based 
on the above discussion. It can be expressed that to solve the defined 
problem related to the soil UCS prediction, the developed neuro-swarm 
(because of PSO optimization technique) model was found more 

Fig. 14. Test stage results of the introduced neuro-swarm model in predicting the UCS of treated marine soil.  

Fig. 15. R2 values of the introduced neuro-swarm model.  

Fig. 16. Train stage results of the introduced neuro-imperialism model in predicting the UCS of treated marine soil.  
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powerful and applicable compared to the developed neuro-imperialism 
model. Hence, the predicted soil UCS values obtained by the neuro- 
swarm model are more accurate than those obtained by the neuro- 
imperialism predictive technique. This study introduces the neuro- 
swarm (i.e., PSO-ANN) as a powerful and accurate model to solve soil 
UCS problem in the treated marine soil. 

Conclusions 

In this study, several laboratory tests were conducted such as liquid 
limit, plastic limit, pH, moisture content, compaction, and UCS to assess 
the behavior of untreated and RT-treated marine clay and to predict the 
UCS value of the samples. These tests were conducted according to the 
standards on remolded samples (38 mm diameter and 76 mm height) 
obtained from Nusajaya, Johor, Malaysia and prepared using different 
percentages and sizes of RT additive. This study was limited to remolded 
samples of marine clay of 80 mm height and 38 mm diameter. The 
findings of this research are drawn in the following conclusions:  

• The measured UCS value of the RT-treated samples was improved 
with the increased of the curing time regardless of the material 
contents. The addition of the recycled additive resulted in decreasing 
the pH and the optimum moisture content of the improved soil while 
increasing the maximum dry density which significantly influenced 
the results of the UCS.  

• The results of the hybrid ANN-based models used to predict the UCS 
of the treated marine clay samples showed that the neuro-swarm 
model was better than the neuro-imperialism model in model 
development stage. Results of a good attempt in model development 
stage can be seen in testing stage as R2 values of 0.9556 and 0.9538 
were obtained for testing stage of the neuro-swarm and the neuro- 
imperialism models, respectively.  

• The proposed models can be used in initial design of geotechnical 
structures when soil strength value is required. The accuracy of the 
developed models is good enough for such projects. However, in 
order to develop models with a higher degree of accuracy, some 
newer optimization techniques such as gray wolf optimization, and 
moth flame optimization can be combined with ANN and ANFIS and 
fuzzy models for the UCS prediction. 
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[23] Yilmaz F, Kamiloʇlu HA, Şadoʇlu E. Soil stabilization with using waste materials 
against freezing thawing effect. Acta Phys Pol A 2015;128:392–4. https://doi. 
org/10.12693/APhysPolA.128.B-392. 

[24] Rouaiguia A, El Aal AKA. Enhancement of the geotechnical properties of soils 
using marble and lime powders, Guelma city. Algeria Geotech Geol Eng 2020;38: 
5649–65. https://doi.org/10.1007/s10706-020-01368-5. 

[25] Saygili A. Use of waste marble dust for stabilization of clayey soil. Mater Sci 2015; 
21:601–6. https://doi.org/10.5755/j01.ms.21.4.11966. 

[26] Sarkar G, Islam R, Alamgir M, Rokonuzzaman M. Interpretation of rice husk ash 
on geotechnical properties of cohesive soil. Glob J Res Eng Civ Struct Enginering 
2012;12:1–7. 

[27] Mirzababaei M, Miraftab M, Mohamed M, McMahon P. Unconfined compression 
strength of reinforced clays with carpet waste fibers. J Geotech Geoenvironmental 
Eng 2013;139:483–93. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000792. 

[28] Li L, Zhang J, Xiao H, Hu Z, Wang Z. Experimental investigation of mechanical 
behaviors of fiber-reinforced fly ash-soil mixture. Adv Mater Sci Eng 2019;2019: 
1–10. https://doi.org/10.1155/2019/1050536. 

[29] Nazari A, Rajeev P, Sanjayan JG. Modelling of upheaval buckling of offshore 
pipeline buried in clay soil using genetic programming. Eng Struct 2015;101: 
306–17. https://doi.org/10.1016/j.engstruct.2015.07.013. 

[30] Nguyen MD, Pham BT, Ho LS, Ly HB, Le TT, Qi C, et al. Soft-computing 
techniques for prediction of soils consolidation coefficient. Catena 2020;195: 
104802. https://doi.org/10.1016/j.catena.2020.104802. 

[31] Kurugodu HV, Bordoloi S, Hong Y, Garg A, Garg A, Sreedeep S, et al. Genetic 
programming for soil-fiber composite assessment. Adv Eng Softw 2018;122: 
50–61. 

[32] Shahmansouri AA, Akbarzadeh Bengar H, Ghanbari S. Compressive strength 
prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. 
J Build Eng 2020;31:101326. https://doi.org/10.1016/j.jobe.2020.101326. 

[33] Ly HB, Pham BT, Van Dao D, Le VM, Le LM, Le TT. Improvement of ANFIS model 
for prediction of compressive strength of manufactured sand concrete. Appl Sci 
2019;9:1–16. https://doi.org/10.3390/app9183841. 

[34] Momeni E, Yarivand A, Bagher Dowlatshahi M, Jahed Armaghani D. An efficient 
optimal neural network based on gravitational search algorithm in predicting the 
deformation of geogrid-reinforced soil structures. Transp Geotech 2020:100446. 
doi:10.1016/j.trgeo.2020.100446. 

[35] Soleimani S, Rajaei S, Jiao P, Sabz A, Soheilinia S. New prediction models for 
unconfined compressive strength of geopolymer stabilized soil using multi-gen 
genetic programming. Meas J Int Meas Confed 2018;113:99–107. https://doi. 
org/10.1016/j.measurement.2017.08.043. 

[36] Mozumder RA, Laskar AI, Hussain M. Empirical approach for strength prediction 
of geopolymer stabilized clayey soil using support vector machines. Constr Build 
Mater 2017;132:412–24. https://doi.org/10.1016/j.conbuildmat.2016.12.012. 

[37] Kalkan E, Akbulut S, Tortum A, Celik S. Prediction of the unconfined compressive 
strength of compacted granular soils by using inference systems. Environ Geol 
2009;58:1429–40. https://doi.org/10.1007/s00254-008-1645-x. 

[38] Güllü H, Fedakar Hİ. On the prediction of unconfined compressive strength of 
silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence. 
Geomech Eng 2017;12:441–64. https://doi.org/10.12989/gae.2017.12.3.441. 

[39] Cabalar AF, Cevik A, Gokceoglu C. Some applications of adaptive neuro-fuzzy 
inference system (ANFIS) in geotechnical engineering. Comput Geotech 2012;40: 
14–33. 

[40] Asteris PG, Douvika MG, Karamani CA, Skentou AD, Chlichlia K, Cavaleri L, et al. 
A novel heuristic algorithm for the modeling and risk assessment of the covid-19 
pandemic phenomenon. C - Comput Model Eng Sci 2020;124:1–14. https://doi. 
org/10.32604/CMES.2020.013280. 

[41] Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, et al. Slope stability prediction for 
circular mode failure using gradient boosting machine approach based on an 
updated database of case histories. Saf Sci 2019;118:505–18. 

[42] Khari M, Dehghanbandaki A, Motamedi S, Armaghani DJ. Computational 
estimation of lateral pile displacement in layered sand using experimental data. 
Measurement 2019;146:110–8. 

[43] Mohamad ET, Koopialipoor M, Murlidhar BR, Rashiddel A, Hedayat A, 
Armaghani DJ. A new hybrid method for predicting ripping production in 
different weathering zones through in-situ tests. Measurement 2019. https://doi. 
org/10.1016/j.measurement.2019.07.054. 

[44] Huang J, Zhang Y, Sun Y, Ren J, Zhao Z, Zhang J. Evaluation of pore size 
distribution and permeability reduction behavior in pervious concrete. Constr 
Build Mater 2021;290:123228. https://doi.org/10.1016/j. 
conbuildmat.2021.123228. 

[45] Zhou J, Li X, Shi X. Long-term prediction model of rockburst in underground 
openings using heuristic algorithms and support vector machines. Saf Sci 2012; 
50:629–44. 

[46] Huang J, Zhang J, Ren J, Chen H. Towards the potential usage of eggshell powder 
as bio-modifier for asphalt binder and mixture: Workability and mechanical 
properties. Int J Pavement Eng 2021:1–13. https://doi.org/10.1080/ 
10298436.2021.1905809. 

[47] Huang J, Duan T, Zhang Y, Liu J, Zhang J, Lei Y. Predicting the permeability of 
pervious concrete based on the beetle antennae search algorithm and random 
forest model. Adv Civ Eng 2020;2020. 

[48] Huang J, Sun Y, Zhang J. Reduction of computational error by optimizing SVR 
kernel coefficients to simulate concrete compressive strength through the use of a 

M.A.M. Al-Bared et al.                                                                                                                                                                                                                        

https://doi.org/10.1007/s11440-020-00954-4
https://doi.org/10.1016/j.powtec.2015.02.045
https://doi.org/10.1016/j.powtec.2015.02.045
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0015
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0015
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0015
https://doi.org/10.12989/gae.2019.17.5.453
https://doi.org/10.12989/gae.2019.17.5.453
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0025
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0025
https://doi.org/10.1016/j.clay.2016.04.005
https://doi.org/10.1016/j.clay.2016.04.005
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0035
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0035
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0035
https://doi.org/10.1016/j.enggeo.2015.01.018
https://doi.org/10.1016/j.enggeo.2015.01.018
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0045
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0045
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0045
https://doi.org/10.1051/e3sconf/20183401012
https://doi.org/10.1051/e3sconf/20183401012
https://doi.org/10.1016/j.sandf.2014.04.021
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0060
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0060
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0060
https://doi.org/10.1016/j.enggeo.2013.09.007
https://doi.org/10.1007/s11204-017-9459-z
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0080
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0080
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0080
https://doi.org/10.1016/j.compgeo.2006.03.006
https://doi.org/10.1016/j.compgeo.2006.03.006
https://doi.org/10.1016/j.measurement.2018.08.053
https://doi.org/10.1016/j.measurement.2018.08.053
https://doi.org/10.1007/s12205-018-1532-2
https://doi.org/10.1007/s12205-018-1532-2
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0100
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0100
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0105
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0105
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0105
https://doi.org/10.5402/2011/138149
https://doi.org/10.5402/2011/138149
https://doi.org/10.12693/APhysPolA.128.B-392
https://doi.org/10.12693/APhysPolA.128.B-392
https://doi.org/10.1007/s10706-020-01368-5
https://doi.org/10.5755/j01.ms.21.4.11966
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0130
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0130
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0130
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000792
https://doi.org/10.1155/2019/1050536
https://doi.org/10.1016/j.engstruct.2015.07.013
https://doi.org/10.1016/j.catena.2020.104802
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0155
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0155
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0155
https://doi.org/10.1016/j.jobe.2020.101326
https://doi.org/10.3390/app9183841
https://doi.org/10.1016/j.measurement.2017.08.043
https://doi.org/10.1016/j.measurement.2017.08.043
https://doi.org/10.1016/j.conbuildmat.2016.12.012
https://doi.org/10.1007/s00254-008-1645-x
https://doi.org/10.12989/gae.2017.12.3.441
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0195
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0195
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0195
https://doi.org/10.32604/CMES.2020.013280
https://doi.org/10.32604/CMES.2020.013280
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0205
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0205
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0205
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0210
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0210
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0210
https://doi.org/10.1016/j.measurement.2019.07.054
https://doi.org/10.1016/j.measurement.2019.07.054
https://doi.org/10.1016/j.conbuildmat.2021.123228
https://doi.org/10.1016/j.conbuildmat.2021.123228
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0225
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0225
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0225
https://doi.org/10.1080/10298436.2021.1905809
https://doi.org/10.1080/10298436.2021.1905809
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0235
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0235
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0235


Transportation Geotechnics 30 (2021) 100627

17

human learning optimization algorithm. Eng Comput 2021. https://doi.org/ 
10.1007/s00366-021-01305-x. 

[49] Huang J, Kumar GS, Sun Y. Evaluation of workability and mechanical properties 
of asphalt binder and mixture modified with waste toner. Constr Build Mater 
2021;276:122230. 

[50] Huang J, Zhang J, Ren J, Chen H. Anti-rutting performance of the damping 
asphalt mixtures (DAMs) made with a high content of asphalt rubber (AR). Constr 
Build Mater 2021;271:121878. 

[51] Yang H, Wang Z, Song K. A new hybrid grey wolf optimizer-feature weighted- 
multiple kernel-support vector regression technique to predict TBM performance. 
Eng Comput 2020. https://doi.org/10.1007/s00366-020-01217-2. 

[52] Zhou J, Asteris PG, Armaghani DJ, Pham BT. Prediction of ground vibration 
induced by blasting operations through the use of the Bayesian Network and 
random forest models. Soil Dyn Earthq Eng 2020;139:106390. https://doi.org/ 
10.1016/j.soildyn.2020.106390. 

[53] Yang HQ, Li Z, Jie TQ, Zhang ZQ. Effects of joints on the cutting behavior of disc 
cutter running on the jointed rock mass. Tunn Undergr Sp Technol 2018;81: 
112–20. 

[54] Yang H, Wang H, Zhou X. Analysis on the damage behavior of mixed ground 
during TBM cutting process. Tunn Undergr Sp Technol 2016;57:55–65. 

[55] Liu B, Yang H, Karekal S. Effect of water content on argillization of mudstone 
during the tunnelling process. Rock Mech Rock Eng 2019. https://doi.org/ 
10.1007/s00603-019-01947-w. 

[56] Asteris PG, Cavaleri L, Ly H-B, Pham BT. Surrogate models for the compressive 
strength mapping of cement mortar materials. Soft Comput 2021. https://doi. 
org/10.1007/s00500-021-05626-3. 

[57] Zhao J, Nguyen H, Nguyen-Thoi T, Asteris PG, Zhou J. Improved 
Levenberg–Marquardt backpropagation neural network by particle swarm and 
whale optimization algorithms to predict the deflection of RC beams. Eng Comput 
2021. https://doi.org/10.1007/s00366-020-01267-6. 

[58] Khandelwal M, Mahdiyar A, Armaghani DJ, Singh TN, Fahimifar A, 
Faradonbeh RS. An expert system based on hybrid ICA-ANN technique to 
estimate macerals contents of Indian coals. Environ Earth Sci 2017;76:399. 
https://doi.org/10.1007/s12665-017-6726-2. 

[59] Khandelwal M, Faradonbeh RS, Monjezi M, Armaghani DJ, Majid MZBA, Yagiz S. 
Function development for appraising brittleness of intact rocks using genetic 
programming and non-linear multiple regression models. Eng Comput 2017;33: 
13–21. 

[60] Khandelwal M, Singh TN. Evaluation of blast-induced ground vibration 
predictors. Soil Dyn Earthq Eng 2007;27:116–25. 

[61] Armaghani DJ, Asteris PG. A comparative study of ANN and ANFIS models for the 
prediction of cement-based mortar materials compressive strength. Neural 
Comput Appl 2020. https://doi.org/10.1007/s00521-020-05244-4. 

[62] Asteris PG, Kolovos KG. Self-compacting concrete strength prediction using 
surrogate models. Neural Comput Appl 2019;31:409–24. 

[63] Zhou J, Li X, Mitri HS. Classification of rockburst in underground projects: 
Comparison of ten supervised learning methods. J Comput Civ Eng 2016;30: 
4016003. 

[64] Zhou J, Li X, Mitri HS. Comparative performance of six supervised learning 
methods for the development of models of hard rock pillar stability prediction. 
Nat Hazards 2015;79:291–316. 

[65] Murlidhar BR, Armaghani DJ, Mohamad ET. Intelligence prediction of some 
selected environmental issues of blasting: a review. Open Constr Build Technol J 
2020;14:298–308. https://doi.org/10.2174/1874836802014010298. 

[66] Momeni E, Yarivand A, Dowlatshahi MB, Armaghani DJ. An Efficient Optimal 
Neural Network Based on Gravitational Search Algorithm in Predicting the 
Deformation of Geogrid-Reinforced Soil Structures. Transp Geotech 2020: 
100446. 

[67] Bunawan AR, Momeni E, Armaghani DJ, Rashid ASA. Experimental and 
intelligent techniques to estimate bearing capacity of cohesive soft soils 
reinforced with soil-cement columns. Measurement 2018;124:529–38. 

[68] Mohamad ET, Armaghani DJ, Momeni E, Abad SVANK. Prediction of the 
unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull 
Eng Geol Environ 2015;74:745–57. 

[69] Wang J, Xing Y, Cheng L, Qin F, Ma T. The prediction of mechanical properties of 
cement soil based on PSO-SVM. 2010 Int Conf Comput Intell Softw Eng CiSE 2010 
2010:1–4. doi:10.1109/CISE.2010.5677256. 

[70] Huang L, Asteris PG, Koopialipoor M, Armaghani DJ, Tahir MM. Invasive weed 
optimization technique-based ANN to the prediction of rock tensile strength. Appl 
Sci 2019;9:5372. 

[71] Suman S, Mahamaya M, Das SK. Prediction of maximum dry density and 
unconfined compressive strength of cement stabilised soil using artificial 
intelligence techniques. Int J Geosynth Gr Eng 2016;2. doi:10.1007/s40891-016- 
0051-9. 

[72] Dehghanbanadaki A, Khari M, Arefnia A, Ahmad K, Motamedi S. A study on UCS 
of stabilized peat with natural filler: a computational estimation approach. KSCE 
J Civ Eng 2019;23:1560–72. 

[73] Ray R, Kumar D, Samui P, Roy LB, Goh ATC, Zhang W. Application of soft 
computing techniques for shallow foundation reliability in geotechnical 
engineering. Geosci Front 2021;12:375–83. https://doi.org/10.1016/j. 
gsf.2020.05.003. 

[74] Armaghani DJ, Bin Raja RSNS, Faizi K, Rashid ASA. Developing a hybrid 
PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed 
piles. Neural Comput Appl 2017;28:391–405. 

[75] Pham BT, Qi C, Ho LS, Nguyen-Thoi T, Al-Ansari N, Nguyen MD, et al. A novel 
hybrid soft computing model using random forest and particle swarm 

optimization for estimation of undrained shear strength of soil. Sustain 2020;12: 
1–16. https://doi.org/10.3390/su12062218. 

[76] Kutanaei SS, Choobbasti AJ. Prediction of combined effects of fibers and cement 
on the mechanical properties of sand using particle swarm optimization 
algorithm. J Adhes Sci Technol 2015;29:487–501. https://doi.org/10.1080/ 
01694243.2014.995343. 

[77] Armaghani DJ, Mohamad E, Momeni E, Monjezi M, Sundaram Narayanasamy M. 
Prediction of the strength and elasticity modulus of granite through an expert 
artificial neural network. Arab J Geosci 2015;9:1–16. https://doi.org/10.1007/ 
s12517-015-2057-3. 

[78] Tian H, Shu J, Han L. The effect of ICA and PSO on ANN results in approximating 
elasticity modulus of rock material. Eng Comput 2019;35:305–14. https://doi. 
org/10.1007/s00366-018-0600-z. 

[79] Armaghani DJ, Koopialipoor M, Marto A, Yagiz S. Application of several 
optimization techniques for estimating TBM advance rate in granitic rocks. J Rock 
Mech Geotech Eng 2019. https://doi.org/10.1016/j.jrmge.2019.01.002. 

[80] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous 
activity. Bull Math Biophys 1943;5:115–33. 

[81] Ch S, Mathur S. Particle swarm optimization trained neural network for aquifer 
parameter estimation. KSCE J Civ Eng 2012;16:298–307. 

[82] Simpson PK. Artificial neural systems: foundations, paradigms, applications, and 
implementations. Pergamon; 1990. 

[83] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, 
design, and application. J Microbiol Methods 2000;43:3–31. https://doi.org/ 
10.1016/S0167-7012(00)00201-3. 

[84] Mohandes MA. Modeling global solar radiation using Particle Swarm 
Optimization (PSO). Sol Energy 2012;86:3137–45. 

[85] Kennedy J, Eberhart RC. A discrete binary version of the particle swarm 
algorithm. Comput. Cybern. Simulation., 1997 IEEE Int. Conf., IEEE, 1997, p. 
4104–4108. 

[86] Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S. Development 
of hybrid intelligent models for predicting TBM penetration rate in hard rock 
condition. Tunn Undergr Sp Technol 2017;63:29–43. https://doi.org/10.1016/j. 
tust.2016.12.009. 

[87] Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for 
optimization inspired by imperialistic competition. Evol. Comput. 2007. CEC 
2007. IEEE Congr., IEEE, 2007, p. 4661–7. 

[88] Koopialipoor M, Jahed Armaghani D, Hedayat A, Marto A, Gordan B. Applying 
various hybrid intelligent systems to evaluate and predict slope stability under 
static and dynamic conditions. Soft Comput 2019;23:5913–29. https://doi.org/ 
10.1007/s00500-018-3253-3. 

[89] Koopialipoor M, Fahimifar A, Ghaleini EN, Momenzadeh M, Armaghani DJ. 
Development of a new hybrid ANN for solving a geotechnical problem related to 
tunnel boring machine performance. Eng Comput 2019. https://doi.org/ 
10.1007/s00366-019-00701-8. 

[90] Bashir ZA, El-Hawary ME. Applying wavelets to short-term load forecasting using 
PSO-based neural networks. IEEE Trans Power Syst 2009;24:20–7. 

[91] Liou SW, Wang CM, Huang YF. Integrative discovery of multifaceted sequence 
patterns by frame-relayed search and hybrid PSO-ANN. J Univers Comput Sci 
2009;15:742–64. https://doi.org/10.3217/jucs-015-04-0742. 

[92] Al-Bared MAM, Marto A, Latifi N, Horpibulsuk S. Sustainable improvement of 
marine clay using recycled blended tiles. Geotech Geol Eng 2018;36:3135–47. 
https://doi.org/10.1007/s10706-018-0525-8. 

[93] Al-Bared MAM, Harahap ISH, Marto A. Sustainable strength improvement of soft 
clay stabilized with two sizes of recycled additive. Int J GEOMATE 2018;15: 
39–46. 

[94] British Standards Institution. BSI methods of test for soils for civil engineering 
purposes: part 2. classification tests. London (BS1377); 1990. 

[95] British Standards Institution. BSI 1377 methods of test for soils for civil 
engineering purposes: Part 4, compaction related tests, London, BS1377, Milton 
Keynes, U.K.; 1990. 

[96] BSI 1377: Part 7. British Standard Methods of Test for Soils for Civil Engineering 
Purposes: Part 7, Shear Strength Tests (Total Stress), BS1377, Milton Keynes, U. 
K.; 1990. 

[97] Hecht-Nielsen R. Kolmogorov’s mapping neural network existence theorem. Proc. 
Int. Conf. Neural Networks, vol. 3, New York: IEEE Press; 1987, p. 11–3. 

[98] Mohamad ET, Armaghani DJ, Noorani SA, Saad R, Alvi SV, Abad NK. Prediction 
of flyrock in boulder blasting using artificial neural network. Electron J Geotech 
Eng 2012;17:2585–95. 

[99] Saghatforoush A, Monjezi M, Faradonbeh RS, Armaghani DJ. Combination of 
neural network and ant colony optimization algorithms for prediction and 
optimization of flyrock and back-break induced by blasting. Eng Comput 2016; 
32:255–66. 

[100] Ebrahimi E, Monjezi M, Khalesi MR, Armaghani DJ. Prediction and optimization 
of back-break and rock fragmentation using an artificial neural network and a bee 
colony algorithm. Bull Eng Geol Environ 2016;75:27–36. 

[101] Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S. Prediction of 
uniaxial compressive strength of sandstones using petrography-based models. Eng 
Geol 2008;96:141–58. 

[102] Alavi Nezhad Khalil Abad SV, Yilmaz M, Jahed Armaghani D, Tugrul A. 
Prediction of the durability of limestone aggregates using computational 
techniques. Neural Comput Appl 2016. doi:10.1007/s00521-016-2456-8. 

[103] Jahed Armaghani D, Mohd Amin MF, Yagiz S, Faradonbeh RS, Abdullah RA. 
Prediction of the uniaxial compressive strength of sandstone using various 
modeling techniques. Int J Rock Mech Min Sci 2016;85:174–86. https://doi.org/ 
10.1016/j.ijrmms.2016.03.018. 

M.A.M. Al-Bared et al.                                                                                                                                                                                                                        

https://doi.org/10.1007/s00366-021-01305-x
https://doi.org/10.1007/s00366-021-01305-x
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0245
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0245
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0245
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0250
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0250
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0250
https://doi.org/10.1007/s00366-020-01217-2
https://doi.org/10.1016/j.soildyn.2020.106390
https://doi.org/10.1016/j.soildyn.2020.106390
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0265
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0265
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0265
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0270
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0270
https://doi.org/10.1007/s00603-019-01947-w
https://doi.org/10.1007/s00603-019-01947-w
https://doi.org/10.1007/s00500-021-05626-3
https://doi.org/10.1007/s00500-021-05626-3
https://doi.org/10.1007/s00366-020-01267-6
https://doi.org/10.1007/s12665-017-6726-2
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0295
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0295
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0295
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0295
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0300
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0300
https://doi.org/10.1007/s00521-020-05244-4
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0310
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0310
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0315
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0315
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0315
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0320
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0320
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0320
https://doi.org/10.2174/1874836802014010298
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0335
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0335
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0335
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0340
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0340
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0340
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0350
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0350
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0350
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0360
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0360
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0360
https://doi.org/10.1016/j.gsf.2020.05.003
https://doi.org/10.1016/j.gsf.2020.05.003
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0370
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0370
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0370
https://doi.org/10.3390/su12062218
https://doi.org/10.1080/01694243.2014.995343
https://doi.org/10.1080/01694243.2014.995343
https://doi.org/10.1007/s12517-015-2057-3
https://doi.org/10.1007/s12517-015-2057-3
https://doi.org/10.1007/s00366-018-0600-z
https://doi.org/10.1007/s00366-018-0600-z
https://doi.org/10.1016/j.jrmge.2019.01.002
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0400
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0400
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0405
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0405
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0410
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0410
https://doi.org/10.1016/S0167-7012(00)00201-3
https://doi.org/10.1016/S0167-7012(00)00201-3
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0420
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0420
https://doi.org/10.1016/j.tust.2016.12.009
https://doi.org/10.1016/j.tust.2016.12.009
https://doi.org/10.1007/s00500-018-3253-3
https://doi.org/10.1007/s00500-018-3253-3
https://doi.org/10.1007/s00366-019-00701-8
https://doi.org/10.1007/s00366-019-00701-8
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0450
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0450
https://doi.org/10.3217/jucs-015-04-0742
https://doi.org/10.1007/s10706-018-0525-8
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0465
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0465
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0465
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0490
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0490
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0490
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0495
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0495
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0495
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0495
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0500
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0500
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0500
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0505
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0505
http://refhub.elsevier.com/S2214-3912(21)00117-3/h0505
https://doi.org/10.1016/j.ijrmms.2016.03.018
https://doi.org/10.1016/j.ijrmms.2016.03.018


Transportation Geotechnics 30 (2021) 100627

18

[104] Pourakbar S, Asadi A, Huat BBK, Fasihnikoutalab MH. Stabilization of clayey soil 
using ultrafine palm oil fuel ash (POFA) and cement. Transp Geotech 2015;3: 
24–35. https://doi.org/10.1016/j.trgeo.2015.01.002. 

[105] Etim RK, Eberemu AO, Osinubi KJ. Stabilization of black cotton soil with lime and 
iron ore tailings admixture. Transp Geotech 2017;10:85–95. https://doi.org/ 
10.1016/j.trgeo.2017.01.002. 

[106] Sumayya K, Rafeequedheen KM, Sameer V, Firoz, Khais P, Jithin K. Stabilization 
of expansive soil treated with tile waste. Int J Civ Eng 2016;3:67–75. doi: 
10.14445/23488352/ijce-v3i3p112. 

M.A.M. Al-Bared et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.trgeo.2015.01.002
https://doi.org/10.1016/j.trgeo.2017.01.002
https://doi.org/10.1016/j.trgeo.2017.01.002

	Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with rec ...
	Introduction
	Need for research
	Intelligent models principles
	Artificial neural network
	Particle swarm optimization
	Imperialist competitive algorithm
	Hybrid models
	Performance index

	Laboratory investigations and established database
	Material properties
	Conducted laboratory tests
	Results of laboratory investigations
	Input selection

	Intelligent modelling and assessment
	Modelling
	Neuro-swarm model
	Neuro-imperialism model

	Model assessment

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


