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Abstract: This study evaluates an innovative reinforcement method for cold-formed steel (CFS)
upright sections through finite element assessment as well as prediction of the normalized ultimate
load and deflection of the profiles by artificial intelligence (AI) and machine learning (ML) techniques.
Following the previous experimental studies, several CFS upright profiles with different lengths,
thicknesses and reinforcement spacings are modeled and analyzed under flexural loading. The finite
element method (FEM) is employed to evaluate the proposed reinforcement method in different
upright sections and to provide a valid database for the analytical study. To detect the most influential
factor on flexural strength, the “feature selection” method is performed on the FEM results. Then, by
using the feature selection method, a hybrid neural network (a combination of multi-layer perceptron
algorithm and particle swarm optimization method) is developed for the prediction of normalized
ultimate load. The correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe efficiency
(NSE), mean absolute error (MAE) and Wilmot’s index of agreement (WI) are used as the measure of
precision. The results show that the geometrical parameters have almost the same contribution in the
flexural capacity and deflection of the specimens. According to the performance evaluation indexes,
the best model is detected and optimized by tuning other algorithm parameters. The results indicate
that the hybrid neural network can successfully predict the normalized ultimate load and deflection.

Keywords: cold-formed steel; upright; finite element method; feature selection method; multi-layer
perceptron; particle swarm optimization; neural network

1. Introduction

Employing cold-formed steel (CFS) racking systems has been extensively developed
around the world due to their valuable structural benefits and workability, especially for
storage and warehouse applications [1]. In recent years, various researchers and engineers
have investigated different approaches to enhance the overall performance of these systems
by utilizing different CFS upright strengthening methods.

In this regard, many studies indicated that CFS racking systems under flexural loading
experience different types of failures, including distortional buckling failure modes [2],
which can affect the stability status of upright frames [3]. Various studies worked to
improve different characteristics of uprights not only to enhance the bearing capacity, but
also to extend the application of these systems. Following the study of racking system
performances, Put et al. [4] applied a series of eccentrically and concentrically loading on the
CFS upright connections and reported that by increasing the eccentricity, the beams strength
decreases. Wang and Young [5] investigated novel CFS channel sections with double and
single stiffeners and showed that local and distortional buckling can be controlled using
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this method. In another study, Calderoni et al. [6] conducted a series of monotonic and
cyclic experiments on CFS members. Their results indicated that the CFS channels could not
resist the buckling deformations due to the lack of flexural stiffness. Wang and Zhang [7]
studied C-shaped CFS elements with or without edge stiffeners. They employed two types
of stiffeners and reported an increase in the capacity of CFS members due to applying
stiffeners. Taheri et al. [8] evaluated the influence of a new reinforcement approach on
the compressive capacity of racking upright profiles. In another study, Taheri et al. [9]
also performed a series of flexural tests on CFS sections with or without the reinforcement
approach. The results indicated that the proposed reinforcements considerably improved
the ultimate flexural capacity.

The expensive and time-consuming nature of actual experimental tests has encour-
aged researchers to employ other types of approaches for structural evaluations, such as
numerical methods. Since the finite element method (FEM) has major priorities in compari-
son to other numerical approaches, employing this technique has drastically increased for
a variety of engineering problems, especially CFS racking systems. Visy et al. [10] numer-
ically studied the flexural behavior of stiffened CFS slotted beams subjected to different
loading scenarios. Nandini and Kalyanaraman [11], in a numerical investigation, studied
the behavior and strength of Lipped channel beams of various lengths. They suggested
an approach to design these beams under the interaction of local, distortional and overall
lateral–torsional buckling based on the Euro code provisions. There are several other
studies in the literature that simulated the behavior and strength of CFS racking frames
through FEM [12–14].

Artificial intelligence is a group of techniques related to intelligent methods that con-
sider each problem with a defined intelligence algorithm. Most of the applications of these
techniques in engineering problems are focused on either predicting or verifying a problem.
Prediction accuracy depends on a variety of variables, such as error, soft computing ap-
proach, estimation of the problems before the prediction process, etc. Backpropagation (BP)
approaches, which are considered among classic techniques, are generally proposed to train
artificial neural networks (ANN). Machine learning is another type of these algorithms that
benefits from a learning circuit. Some of the rotational properties of CFS racking systems
have been successfully estimated by the machine learning method in the past years [15].
In order to address classic algorithm deficiencies, some approaches, including genetic
algorithm (GA) [16], particle swarm optimization (PSO) [17], and multi-layer perceptron
(MLP) [18], have been proposed and utilized in different prediction cases in recent years.
Generally, the PSO algorithm has been proved as a reliable technique to be combined with
other types of intelligence algorithms based on different studies [19,20].

In this paper, the proposed reinforcement method for CFS uprights (previously pre-
sented by the authors [8,9]) is further investigated through FEM and machine learning
algorithms. First, a finite element model is developed in ABAQUS software to simulate
and analyze the CFS upright frames under flexural loading. Then, the FEM results are
compared and verified by the experimental test data in the literature [9]. Thereafter, the
verified FEM is employed for a parametric study to evaluate the performance of upright
frames with different lengths, thicknesses and reinforcement spacing. Considering the FEM
and test results (current study and test results in [9]), an artificial intelligence approach
is also employed both for predicting the flexural capacity of the proposed system and
verifying the FEM models. First, a feature selection based algorithm is used to find the most
governing property of flexural strength and then a hybrid neural network (MLP algorithm
in combination with PSO) is utilized for verification, optimization and prediction.

2. Finite Element Modeling

The proposed reinforcement method for strengthening the upright frame, which
was previously discussed by Taheri et al. [8,9], is presented in Figure 1. In this paper, a
parametric FE study is conducted on the proposed reinforcement system to obtain a reliable
database for the artificial intelligence approach. All of the FE modeling is conducted in
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the ABAQUS computer program. First, the FE modeling approach is presented in detail
(Sections 2.1–2.4) and then it is verified by the experimental data (Section 2.5) [9]. Finally,
the validated FE method is utilized for a parametric study (Section 2.6). The parametric
study evaluates the influence of various reinforcement spacing, including 50, 100, 150, 250,
and 300 mm, on the strength of the profiles with different thicknesses of 1.6, 2, 2.5 and
3 mm. Moreover, in order to achieve a comprehensive dataset, different upright lengths
are taken into account in this study. The details of the FE models are provided in Table 1
and Figure 1. Further details about the experimental setup, specimen specifications, etc.,
can be found in [8,9].

Figure 1. Schematic of models.

Table 1. Geometrical features of models.

Upright Length (mm) Upright Thickness (mm) Reinforcement Spacing (mm)

1800 1.6
2.0
2.5
3.0

50
100
150
200
250
300

2400
3000
3600

2.1. Material Properties

The Poisson’s ratio and the modulus of elasticity are assumed to be 0.3 and 200 GPa,
respectively [21]. Additionally, other material properties were captured according to the
actual coupon test, which is indicated in Figure 2 and Table 2. The material law of the
frame assembly was modeled using the bi-linear stress–strain relation [21].
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Figure 2. Coupon test results for uprights: (a) with 1.6 mm, and (b) with 2.5 mm thickness [9].

Table 2. Material properties of upright sections.

Thickness (mm) Yield Stress, fy (MPa) Ultimate Stress, fu (MPa) Elongation (%)

2.5 572 608 13

1.6 563 591 11

2.2. Connections and Interactions

The penalty method with a surface-to-surface interaction is employed for models,
where a friction coefficient of 0.3 is considered for the tangential response [21–23]. Hard
contact is also adopted for normal behavior. For simulating the interaction of bolts, the
coupling method is employed. A reference point is defined at the center of the bolt hole
and then the end beam restraints are considered as a beam, using the contact pairs between
the elements at the two opposite sides of the built-up sections. Figure 3 shows the existing
interactions between the bending frame components model.

Figure 3. Interactions between frame elements.
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2.3. Boundary Conditions and Loading

All boundary components are constrained to simulate the test setup illustrated in
Figure 4. The vertical translation on the supports is restrained. The concentrated load
with the displacement method is applied at the shear center of the upright section on the
loading plates, while the rotations and translation are allowed to simulate the actual test
conditions. Details of the test setup about each axis is illustrated in Figure 4 [9].

Figure 4. (a) Minor axis test setup. (b) Major axis test setup [9].

2.4. Mesh

In this paper, shell elements are deployed since the thickness of the open CFS members
is very small in comparison with their width and length; thus, buckling deformations can
be explicitly modeled. The four-node shell element with reduced integration (S4R) is
employed to model the frame elements [24]. A convergence study is performed to capture
the optimum mesh size for the upright and bracing members, and it is observed that
quad-dominated meshes with dimensions of 10 mm are deemed satisfactory for frame
elements. Figure 5 shows the final mesh used for the upright models.

Figure 5. Typical FE mesh of an upright section.
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2.5. FE Model Verification

After establishing the FE models, a loading simulation is conducted through the
ABAQUS program. It should be noted that only specimens with 2400 mm length and
1.6 mm thickness are employed for the verification purpose. In addition, three scenarios of
non-reinforcement, reinforcement with 200 mm spacing, and reinforcement with 300 mm
spacing are considered. In this part, linear regression analyses are applied to the FE results
to assist in validating the obtained results of the numerical models. Additionally, the
verified results are exported to a database for artificial intelligence applications, which will
be discussed in Section 3.

2.5.1. Verification under Minor Axis Loading

In order to illustrate the accuracy of the FEM results, each curve is compared with the
corresponding test curve and a linear regression is drawn for each model [25]. Figure 6
compares the normalized bending moment-deflection curves between the FE and experi-
mental results. In addition, Figure 7 shows the linear regression of the FEM curve with
the experimental curve. Table 3 demonstrates the evaluation criteria of the accuracy of
the FEM predictions. Comparison of the experimental and numerical results indicates the
outstanding accuracy and compatibility between the two methods.

Figure 6. Comparison of the FE model against the minor-axis test results for (a) non-reinforced model, (b) 200 mm reinforced
model and (c) 300 mm reinforced model.

Figure 7. Linear regression diagram for (a) non-reinforced model, (b) 200 mm reinforced model, and (c) 300 mm rein-
forced model.

2.5.2. Verification under Major Axis Loading

The same technique is also employed for the FE assessment of the upright section un-
der the major axis loading. Figure 8 compares the normalized bending moment-deflection
curve between the FEM and experimental results of the upright section under major axis
loading. Figure 9 also indicates the linear regression of the FE results with the experimental
curve. The evaluation criteria for the accuracy of the FEM predictions are represented
in Table 4. Based on Figure 9 and Table 4, the FEM results indicate high accuracy and
compatibility with the experimental results.
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Table 3. FEM vs. experimental results accuracy details in terms of evaluation criteria.

Non-reinforced model

Evaluation criteria

Std * 0.0619

Pearson (r) 0.9981

R2 0.9963

200 mm reinforced model

Evaluation criteria

Std 0.0803

Pearson (r) 0.9937

R2 0.998

300 mm reinforced model

Evaluation criteria

Std 0.0698

Pearson (r) 0.998

R2 0.996
* Std = standard deviation.

Figure 8. Comparison of FE model against major-axis test results for (a) non-reinforced model, (b) 200 mm reinforced model
and (c) 300 mm reinforced model.

Figure 9. Linear regression diagram for; (a) non-reinforced model, (b) 200 mm reinforced model, and (c) 300 mm rein-
forced model.

2.6. Parametric Finite Element Study

As discussed in the previous section, the FE model is capable of simulating the actual
testing condition with minimum error. Hence, in this section, the verified FE method is
utilized for a parametric study to investigate various uprights with different heights and
thicknesses as well as different reinforcement spacings under flexural loading. The models
for the parametric study are presented in Table 1. The results of the parametric study are
classified into two groups of loading under major and minor axes, which are presented in
the following sections. The convention used to name the specimens is shown in Figure 10.
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Table 4. FEM vs. experimental results accuracy details in terms of evaluation criteria.

Non-reinforced model

Evaluation criteria

Std * 0.1242

Pearson (r) 0.9989

R2 0.9978

200 mm reinforced model

Evaluation criteria

Std 0.1357

Pearson (r) 0.9957

R2 0.9914

300 mm reinforced model

Evaluation criteria

Std 0.1224

Pearson (r) 0.999

R2 0.9981
* Std = standard deviation.

Figure 10. Designation of models.

2.6.1. Parametric Study: Results of Major Axis

The influence of various reinforcement spacings for the uprights under major axis
loading has been discussed in this section. The normalized moment-displacement curves
of the numerical models for each thickness are indicated in Figures 11–14. As it is observed
from the figures, using more reinforcement to partially close the section leads to improving
the specimen’s flexural capacity.

Figure 11. Normalized moment-deflection curves for 1800 mm models about major axis.
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Figure 12. Normalized moment-deflection curves for 2400 mm models about major axis.

Figure 13. Normalized moment-deflection curves for 3000 mm models about major axis.
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Figure 14. Normalized moment-deflection curves for 3600 mm models about major axis.

Figure 15 displays the normalized ultimate moment of the sections with various
thicknesses at different reinforcement spacings. It is deduced that the shorter reinforcement
spacing increases the ultimate bending capacity of the sections.

Figure 15. The normalized ultimate moment of 1800, 2400, 3000, and 3600 mm models about major axis with respect to
reinforcement spacing.
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The increased ultimate moment percentage utilizing various reinforcement spacing
for the profiles from 1800 mm to 3600 mm length with respect to specimens without
reinforcement is presented in Figure 16. In general, the reinforcement technique influences
the ultimate capacity of the open sections in a range of about 5% to 40%. As it is seen,
reinforcement addition from 300 mm spacing to 50 mm spacing can improve the frame’s
strength by a significant amount. It is also found that reducing reinforcement spacing (up
to 50 mm) can considerably increase the ultimate strength of the upright section under
flexural loading.

Figure 16. Percentage of increased ultimate load of major axis analysis with different reinforcement spacing in length order.

2.6.2. Parametric Study: Results of Minor Axis

The effect of different reinforcement spacings for the uprights under minor axis
loading is discussed in this section. Minor axis models are provided with the same spacing
and the same thickness as the major axis models. Figures 17–20 indicate the normalized
load-displacement curves for different models and thicknesses under minor axis loading.
According to the figures, thickness and length play important roles in flexural strength.
Additionally, more reinforcement leads to more ultimate strength. Figures 17–20 show that
using reinforcement with shorter spacing increases the strength of the sections. Sections
with a shorter length and thicker cross-sections already have higher flexural strength, but
this strength is improved noticeably by employing reinforcement. Due to the restrained
buckling and better distribution of force along the section’s length, specimens with dense
reinforcements indicate better distortional buckling behavior. Generally, the distortional
buckling behavior is enhanced, and section failure is changed from general global buckling
to local buckling, mostly due to partial closing of the upright section.
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Figure 17. Normalized moment-deflection curves for 1800 mm models about minor axis.

Figure 18. Normalized moment-deflection curves for 2400 mm models about minor axis.
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Figure 19. Normalized moment-deflection curves for 3000 mm models about minor axis.

Figure 20. Normalized moment-deflection curves for 3600 mm models about minor axis.
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Figure 21 indicates the normalized ultimate flexural strength with respect to the
reinforcement spacing for models under minor axis loading. It can be observed that length
has an inverse relation with flexural strength, where both spacing and thickness have a
direct relation with the ultimate load. Hence, shorter models with higher thickness and
shorter reinforcement spacing indicate higher flexural strength. For example, the model
with 1800 mm length and 3 mm thickness (1800–3.0 mm) with 50 mm reinforcement spacing
shows the greatest ultimate load.

Figure 21. The normalized ultimate moment of 1800, 2400, 3000, 3600 mm models about minor axis with respect to
reinforcement spacing.

Figure 22 illustrates a comparison between different increased ultimate loads with
respect to reinforcement spacing with length order. Spacing and thickness have the same
contribution in increasing the flexural strength.
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Figure 22. Percentage of increased ultimate load with different reinforcement.

3. Artificial Intelligence Prediction

Neural network systems are proved as highly valued approaches for data prediction
regarding the different numerical research studies [17,20,26]. The strategy for using a
specific type of network depends on different factors, including data behavior (linear, non-
linear), number of inputs, number of outputs and the research innovation [15,27,28]. The
process of developing the network relies on trial and error identification, which the basis
algorithm and possible supplementary methods detect [29,30]. The combination of the
multi-layer perceptron (MLP) neural network with the particle swarm optimization (PSO)
algorithm, which is based on the random production of the initial population, is employed
in this study. In order to identify the most effective input for this hybrid neural network,
instead of traditional methods and manually testing possible scenarios, the feature selection
technique, which is the best way to identify the features of an issue, is employed in this
paper. The main point of this study is to use the feature selection technique to identify
the most effective parameter on the flexural capacity of the CFS uprights to predict and
identify the deflection and ultimate flexural load simultaneously.

3.1. Algorithm Methodology
3.1.1. Multi-Layer Perceptron (MLP) Algorithm

MLP networks can be used as powerful hyper-surface reconstruction tools, which
can successfully map a set of multi-dimensional input data (xi; i = 1, . . . , N) onto a set
of appropriate multidimensional outputs (yi; i = 1, . . . , N). The MLP configuration is
extensively used for static regression applications and it consists of one input layer, one
or more hidden layer(s) and one output layer. The MLP network utilizes a supervised
learning technique called backpropagation for training the network. The basic element of
the modified un-stabilized MLP neural network is shown in Figure 23, which performs a
projection oriented mathematical operation on its inputs.
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Figure 23. Schematic representation of MLP neuron.

Non-linear activation function (ϕ) performs a pre-defined mathematical operation
over its argument and provides the model predictions (y(x)). Sigmoid, hyperbolic tangent,
threshold and piecewise-linear basis functions are the most popular activation functions
traditionally used for MLP networks. The MLP network is developed by assigning the
synaptic weights deriving from a PSO algorithm in this study. As shown in Figure 24,
additional linear weights (α1, . . . , αM) are used in our modified MLP network.

Figure 24. Visualization of a single hidden layer MLP network.

In the present study, the MLP algorithm was developed and trained by several bending
test data obtained from the experimental tests [9] as well as the FEM results discussed in
the previous sections.

3.1.2. Particle Swarm Optimization (PSO)

PSO is a powerful algorithm for optimization in nonlinear, non-convex and discon-
tinuous environments. This algorithm is very powerful and efficient while defining many
parameters. In this algorithm, particles are the building blocks of the population, and with
the intelligence that they have, a certain amount of intelligence is created that is not compa-
rable to the intelligence of each of them. Figure 25 indicates the PSO sequential flowchart.
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Figure 25. PSO sequential flowchart.

In this study, the PSO algorithm is employed along with MLP as a unique intelligence
algorithm. The goal of the PSO algorithm is to find the optimal objective function.

3.1.3. Feature Selection Technique (FS)

“Feature selection” is a process of selecting a subcategory from a category of fea-
tures [31]. It is preferable in contexts where readability and interpretability are issues of
concern because the discounted values of the main features are preserved in the reduced
space. This method of dimension reduction results in a qualitative database, without the
removal of useful information. It also allows for features with different data models to be
combined. The issue is of importance because a large number of features are often used
in different applications. Therefore, the need to select a limited set among them becomes
apparent. The feature selection process is divided into four parts as shown in Figure 26:
generation procedure, evaluation function, stopping criteria and validation procedure.

In this study, some prominent features of CFS racking uprights are produced through
one or more conversions on input features. While mapping points from one space with
higher dimensions into another space with lower dimensions, a large number of points
may overlap. Feature extraction helps to find a new dimension where a minimum number
of points overlap. This approach is associated with the problem area and is commonly
used in image processing where specific features are extracted in accordance with the
requirements of the problem.
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Figure 26. Feature selection technique steps.

3.1.4. MLP–PSO–FS Architecture

The way that the algorithm works is that the MLP neural network starts learning
based on the initial configuration. For data with relatively high complexity, learning a
simple neural network without an optimizer may not be enough, hence using an optimizer
technique is required. PSO is one of these techniques that is based on the collective
movement of birds and fish. The optimizer runs at a higher level than the neural network,
meaning that each MLP neural network calculation itself is one of the PSO optimizer
particles. If the feature selection technique is needed to find the best combination, this
technique must be performed before executing the MLP–PSO set. In this way, first, FS
obtains all possible states from the combination of inputs and then sends the first state to
the hybrid neural network. After obtaining the final result, FS sends the second state to the
neural network and the results are compared with each other. The best result is maintained
and repeated for the third case. This is done until all scenarios are completed, and finally,
the best input combination is identified. Figure 27 presents the diagram of the sequential
PSO–FS and MLP combination.

3.2. Performance Evaluation

In this paper, several performance measures are employed to assess the proposed
models. The R, NSE, RMSE, MAE and WI [32–36] are employed as the measure of precision
in this study, which is represented as follows:

R =
∑M

i=1
(
Oi −Ol

)
.
(

Pi − Pl
)√

∑M
i=1
(
Oi −Ol

)2
∑M

i=1
(

Pi − Pl
)2

NSE = 1− ∑N
i=1(Pi −Oi)

2

∑N
i=1
(
Oi −Ol

)2

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)
2

MAE =
∑M

i=1|Pi −Oi|
N

WI = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(∣∣Pi −Ol

∣∣ + ∣∣Oi −Ol
∣∣)2
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where Oi and Pi are the observed and predicted values, respectively; Oi and Pi indicate
the average of the observed and predicted values, respectively, and the number of data
is shown by N. The R index [Range = (0–1); ideal value = 1] shows the suitability of the
selected predictors applied for the prediction of the target variable. NSE [Range = (−∞, 1);
ideal value = 1] is demonstrated to evaluate the capability of the suggested methods. The
highest value of unity reveals an appropriate fit between the actual and measured value
for which a negative value shows that the performance of the model is worse than the
arithmetic mean of the developed models. The RMSE and MAE [Range = (0, +∞); ideal
value = 0] are measures for assessing the accuracy, which are greater or equal to zero in
value. WI [Range = (0, 1); ideal value = 1] is a standardized indicator for model prediction
error. The values close to 0 demonstrate poor precision, while the values close to unity
reveal the goodness of prediction.

Figure 27. Flowchart of the sequential combination of hybrid MLP–PSO–FS algorithm.

3.3. Algorithm Results and Discussion

The dataset used in this research is the result of several experiments that ultimately
formed 5111 rows of information. This database has six inputs and one target output.
In this investigation, choosing the combination of the influential input for the prediction
matrix of the load MLP, which is tuned by PSO, is carried out as the main neural network
model. The variables affecting load are indicated in the functional relationship as follows:

Load = f (length, bolts, thickness, M/ZY.Fy , Ult Moment, Ult Load)

MLPs are useful in research due to their ability to address the problems stochastically,
which often allows approximate solutions for extremely complicated problems, such as
fitness approximation. In this part, according to the training datasets, MLP is fitted.
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Therefore, MATLAB software is utilized to predict the load by the use of hybrid PSO with
MLP. The best result is given in Tables 5 and 6.

Table 5. Best achieved results in deflection estimation.

Phase
Network Result

R NSE RMSE MAE WI

Test 0.948 0.886 5.415 3.235 0.972

Train 0.943 0.878 5.702 3.303 0.970

Table 6. Best achieved results in normalized load estimation.

Phase
Network Result

R NSE RMSE MAE WI

Test 1.000 1.000 1.000 0.001 0.000 1.000

Train 1.000 1.000 1.000 0.000 0.000 1.000

The parameters of the PSO algorithm are population size, iterations, inertia weight,
damping ratio, personal and global learning coefficient, which are provided in Table 7. The
MLP neural network parameters are the hidden layers and training function as shown in
Table 8. The parameter characteristics used for FS are also indicated in Table 8.

Table 7. Parameter characteristics used for PSO in this study.

FIS Clusters Population Size Iterations Inertia Weight Damping Ratio
Learning Coefficient

Personal Global

10 150~350 45~100 1 0.99 1 2

Table 8. Parameter characteristics used for MLP and FE in this study.

Parameter characteristics used for MLP

Hidden Layers Training Function

10 Levenberg–Marquardt Backpropagation (LMBP)

Parameter characteristics used for FS

Number of runs Number of functions (nf)

3 1~6

Before reviewing the results, it is necessary to have a comparison between the feature
selection technique and other neural networks and algorithms in selecting the best inputs.
A database may have a large amount of input data but, certainly, not all inputs are suitable
for use in the neural network, as some of them have virtually no effect on output prediction,
and some may cause network deviation. Therefore, finding the best combination is very
time consuming and tedious if there is a large number of work inputs. It should be noted
that the implementation of the neural network and the study of its results for this number of
repetitions is impossible considering the different combinations of neural network settings.
Therefore, the only way to select different input modes and settings is based on previous
experiences and initial assumptions. Using the feature selection technique, with only six
runs, all possible input states are checked and the best combination is determined.
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3.3.1. Normalized Ultimate Load Prediction

Following the prediction process, to predict the normalized ultimate load, available
inputs are tested with different scenarios. Table 6 indicates the best possible input scenario
to estimate the normalized ultimate load. As shown in Tables 9–11, different prediction
patterns are presented by accuracy criteria (by adjusting best population and iteration).
From Figures 28–30, it is noted that the normalized ultimate load estimation is perfectly
predicted by the proposed algorithm. Furthermore, as shown in the tables and graphs, the
prediction accuracy in this study is 100%.

Table 9. The calculated accuracy criteria for the performance of the implemented models (Iteration = 150).

Population

Network Result

Training Phase Testing Phase

R NSE RMSE MAE WI r NSE RMSE MAE WI

150 0.996 0.992 7.193 5.041 0.998 0.905 0.780 7.227 5.035 0.948

250 0.996 0.992 7.244 5.270 0.998 0.907 0.798 7.199 5.246 0.951

350 0.996 0.991 7.381 5.578 0.998 0.900 0.776 7.534 5.679 0.946

Table 10. The calculated accuracy criteria for the performance of the implemented models (population = 250).

Iteration

Network Result

Training Phase Testing Phase

r NSE RMSE MAE WI r NSE RMSE MAE WI

100 0.995 0.990 7.837 5.751 0.998 0.882 0.711 8.333 5.953 0.934

150 0.996 0.992 7.244 5.270 0.998 0.907 0.798 7.199 5.246 0.951

200 0.995 0.991 7.504 5.339 0.998 0.899 0.762 7.421 5.250 0.944

Table 11. The calculated accuracy criteria for the performance of the implemented models for different inputs.

Number of
Inputs

Network Result

Training Phase Testing Phase

R2 r NSE RMSE MAE WI R2 r NSE RMSE MAE WI

1 0.885 0.941 0.870 0.035 0.026 0.969 0.991 0.935 0.854 0.038 0.028 0.965

2 0.971 0.985 0.970 0.018 0.003 0.993 0.997 0.978 0.955 0.022 0.004 0.989

3 1.000 1.000 1.000 0.002 0.000 1.000 1.000 1.000 0.999 0.003 0.001 1.000

4 1.000 1.000 1.000 0.001 0.000 1.000 1.000 1.000 1.000 0.001 0.000 1.000

5 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.001 0.000 1.000

6 0.822 0.996 0.992 7.244 5.270 0.998 0.823 0.907 0.798 7.199 5.246 0.951

After finding the best population, the calculations to find the optimal number of
repetitions are performed. According to Table 12, the optimal number of repetitions in the
test phase is obtained as 150.

According to the results obtained in the test phase, cases with 4 and 5 inputs obtain the
same results. However, because it is more efficient to obtain the result with less number of
inputs, the number of optimal inputs is chosen to be 4. As shown in Table 12, the ultimate
moment has the greatest impact on finding results. In addition, the distance between the
bolts causes the results to be skewed and negatively impacts the results.
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Figure 28. Comparison of the predicted and measured load: (a) One input, (b) two inputs, (c) three inputs, (d) four input,
(e) five inputs, (f) six inputs through MLP–PSO–FS model.
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Figure 29. MLP–PSO–FS (4 inputs) prediction vs. experimental diagram: (above) train phase, (below) test phase.

Figure 30. MLP–PSO–FS (4 inputs) Error histograms: (above) train phase, (below) test phase.
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Table 12. Most effective inputs based on feature selection.

Feature
Number of Inputs

1 2 3 4 5 6

Length X X

Bolt X

Thickness X X X X X

Deflection X X X

Ult moment X X X X X X

Ult load X X X X

Figure 28 illustrates the predicted and measured load by the MLP–PSO–FS model in
scatter diagrams. Figure 28a reveals the train and test phase of the model with a single input for
which the performance parameters are shown in Table 11 (R2test = 0.8848, R2train = 0.9914).
Figure 28b shows the testing and training phase of the model with two inputs (R2test = 0.9707,
R2train = 0.997). According to this procedure, it is obvious that the MLP–PSO–FS model shows
acceptable performance where the number of inputs is increased to five inputs. Nevertheless,
the MLP–PSO–FS model with six inputs does not perform well enough in comparison with
other models. Figure 28d,e represents the best-achieved predictions amongst other models,
although there is a little difference between these two models in the prediction capability
which is shown in Table 11. As can be seen, some improvements in the performance of the
MLP is captured by utilizing the PSO algorithm in such a way that the r and R2 values are
increased and the RMSE value is decreased. The testing phase is also improved with respect
to the MLP–PSO–FS model.

Figure 29 indicates the capability of the models in the testing phase to predict each of
the measured values of the test samples. As can be observed, both of the MLP–PSO–FS
with four input models are capable of predicting most of the test samples closely. As shown
in Table 9 and Figure 30, the best performance parameters for the PSO–FS neural network
are RMSE = 0.001, r = 1.000, R2 = 1.000, NSE = 1.000, MAE = 0, and WI = 1.000. Considering
that the best result for RMSE is the lowest result and for r, the best positive correlation
coefficient is 1, then numbers closer to 1 are considered better results. Additionally, for
NSE and MAE, smaller results and for WI, larger results, indicate better performance.

3.3.2. Deflection Prediction

Firstly, the best number of populations needs to be found by considering a constant
number of repetitions equal to 45. In Table 13, the population of 250 is identified as the best
result in the test phase.

Table 13. The calculated accuracy criteria for the performance of the implemented models (iteration = 45).

Population

Network Result

Training Phase Testing Phase

r NSE RMSE MAE WI r NSE RMSE MAE WI

150 0.948 0.886 5.434 3.186 0.972 0.933 0.852 6.200 3.567 0.964

250 0.942 0.874 5.706 3.409 0.970 0.943 0.878 5.702 1.457 0.970

350 0.944 0.879 5.594 3.354 0.971 0.936 0.856 6.093 3.623 0.966

After finding the best population, the calculations to find the optimal number of
repetitions are carried out. According to Table 14, the optimal number of repetitions in the
test phase is 45.
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Table 14. The calculated accuracy criteria for the performance of the implemented models (population = 250).

Iteration

Network Result

Training Phase Testing Phase

r NSE RMSE MAE WI r NSE RMSE MAE WI

45 0.942 0.874 5.706 3.409 0.970 0.943 0.878 5.702 1.457 0.970

75 0.948 0.886 5.415 3.235 0.972 0.932 0.848 6.297 3.583 0.964

100 0.947 0.884 5.492 3.137 0.972 0.938 0.862 5.936 3.310 0.967

Following finding the best parameters for the neural network, the optimal input
combination is found through the feature selection technique. As mentioned earlier, this
technique does not require testing all possible combinations, and it is sufficient to test them
only once for each set of k members. For example, if the best combination of inputs with
four members is required to be determined, the network needs to be run only once and
the value of nf needs to be set to six. Additionally, the network of six inputs that has the
most impact on the answer should be selected. In Table 15 and Figure 31, the best value of
k is specified.

Table 15. The calculated accuracy criteria for the performance of the implemented models for different inputs.

Number of
Inputs

Network Result

Training Phase Testing Phase

R2 r NSE RMSE MAE WI R2 r NSE RMSE MAE WI

1 0.493 0.702 0.046 12.000 8.788 0.807 0.496 0.704 0.097 12.504 3.893 0.803

2 0.783 0.885 0.723 7.993 5.684 0.936 0.782 0.884 0.734 7.889 2.437 0.937

3 0.853 0.924 0.828 6.511 4.034 0.959 0.805 0.897 0.758 7.626 1.914 0.943

4 0.892 0.944 0.880 5.608 3.342 0.971 0.857 0.926 0.831 6.512 1.610 0.960

5 0.897 0.947 0.885 5.441 3.242 0.972 0.870 0.933 0.839 6.279 1.545 0.963

6 0.888 0.942 0.874 5.706 3.409 0.970 0.890 0.943 0.878 5.702 1.457 0.970

As shown in Table 16, the results are almost the same for four or more inputs. As it is
clear, the ultimate moment has the smallest effect and the effect of the other parameters is
almost the same. In Figures 31–33, the diagrams related to the six compounds are presented.

Table 16. Most effective inputs based on feature selection.

Feature
Number of Inputs

1 2 3 4 5 6

Length X X X X

Bolt X X X X

Thickness X X X

(M/ZY.Fy) X X X X

Ult moment X X

Ult load X X X X
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Figure 31. MLP–PSO–FS regression charts (iteration = 100): (a) P150, (b) P250, (c) P350.

Figure 32. MLP–PSO–FS regression charts (iteration = 75): (a) P150, (b) P250, (c) P350.
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Figure 33. MLP–PSO–FS regression charts (iteration = 45): (a) P150, (b) P250, (c) P350.

Figures 31–33 demonstrate the results of the MLP–PSO–FS models in the prediction of
the deflection. It is obvious that predicting the deflection is faced with more challenges
than flexural load prediction. Figure 31 illustrates the training and testing phase of the
MLP–PSO–FS model with 100 iterations. Performance indices of the model in Figure 31a
with 150 show that the population is noticeably better than the other two populations
(R2test = 0.8804, R2train = 0.89). Figure 32 illustrates optimal regression against two other
population with 75 iterations (R2test = 0.8772, R2train = 0.8946). Figure 33 illustrates that
the case with 250 population represents an enhanced model in comparison with other
population models with 45 iterations (R2test = 0.8896, R2train = 0.888). As can be realized,
the MLP–PSO–FS model performs better with 100 iterations in the training phase. The
testing phase is also improved in the 45-iteration model. Most importantly, the close values
of performance indices in the training and testing phases confirm the high reliability of
the models.

The capability of the models in the prediction of each test sample is indicated in
Figure 34. A significantly close prediction of the models and the better performance of
the MLP–PSO model can be seen in this figure. As shown in Table 13 and Figure 35, the
best performance parameters for the PSO–FS neural network are RMSE = 5.702, r = 0.943,
R2 = 0.890, NSE = 0.878, MAE = 1.457, and WI = 0.970. The best result for RMSE is the
minor value, and for r, the best positive correlation coefficient is 1. The numbers closer to 1
are considered better results. For NSE and MAE, smaller results and for WI, larger results
indicate better performance.
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Figure 34. MLP–PSO–FS (6 inputs) prediction vs. experimental diagram: (above) train phase, (below) test phase.

Figure 35. PSO–FS (6 inputs) error histograms: (above) train phase, (below) test phase.
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4. Conclusions

In this study, in order to investigate the flexural performance of the CFS upright frames
strengthened by an innovative reinforcement method, FEM models were developed in
ABAQUS and verified by experimental test data. Then, in a parametric study, uprights with
different thicknesses and lengths and reinforcement spacing were modeled and analyzed
under flexural loading, and the results were obtained. Using ABAQUS, FEM results
indicated that with closer reinforcements, the models show a stiffened behavior. According
to the literature, FEM is capable of simulating CFS section structural behavior. Additionally,
in this study, the MLP–PSO hybrid neural network by combining the evolutionary feature
selection technique was used to predict some major characteristics of CFS upright frames,
such as “flexural strength” and “deflection”. The feature selection technique was used
to avoid trying all possible input modes and wasting time. It provided the best possible
input combination that may be overlooked in other methods. The neural network results
illustrated noticeable accuracy and a fascinating prediction ability of the MLP algorithm
along with the feature selection technique, which has compatibility with the literature.

According to the FEM results, both in major and minor axis simulations, all models
indicated a unique behavior with respect to length/thickness variation. The thicker models
showed higher flexural capacity, especially those with shorter lengths. Moreover, taller
uprights faced capacity loss due to buckling. This deficiency was somehow addressed
by the proposed reinforcements. The proposed fasteners played a noticeable role as
reinforcement not only in longer uprights, but also in thinner ones. By reducing the
fastener spacing, the ultimate load of the models was increased.

According to the analytical study, the FEM results were verified and proved to be
authenticated through the training phase of the analytical analysis. The predictions were
performed for both the deflection value and ultimate flexural load, and the accuracy of
the prediction was evaluated. Employing a hybrid neural network based on the feature-
selection technique successfully predicted the normalized ultimate load and the deflection.
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