7,826 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Energy and Accuracy Trade-Offs in Accelerometry-Based Activity Recognition

    No full text
    Driven by real-world applications such as fitness, wellbeing and healthcare, accelerometry-based activity recognition has been widely studied to provide context-awareness to future pervasive technologies. Accurate recognition and energy efficiency are key issues in enabling long-term and unobtrusive monitoring. While the majority of accelerometry-based activity recognition systems stream data to a central point for processing, some solutions process data locally on the sensor node to save energy. In this paper, we investigate the trade-offs between classification accuracy and energy efficiency by comparing on- and off-node schemes. An empirical energy model is presented and used to evaluate the energy efficiency of both systems, and a practical case study (monitoring the physical activities of office workers) is developed to evaluate the effect on classification accuracy. The results show a 40% energy saving can be obtained with a 13% reduction in classification accuracy, but this performance depends heavily on the wearer’s activity

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM

    Get PDF
    Compression plays a significant role in Body Sensor Networks (BSN) data since the sensors in BSNs have limited battery power and memory. Also, data needs to be transmitted fast and in a lossless manner to provide near real-time feedback. The paper evaluates lossless data compression algorithms like Run Length Encoding (RLE), Lempel Zev Welch (LZW) and Huffman on data from wearable devices and compares them in terms of Compression Ratio, Compression Factor, Savings Percentage and Compression Time. It also evaluates a data deduplication technique used for Low Bandwidth File Systems (LBFS) named Two Thresholds Two Divisors (TTTD) algorithm to determine if it could be used for BSN data. By changing the parameters and running the algorithm multiple times on the data, it arrives at a set of values that give \u3e50 compression ratio on BSN data. This is the first value of the paper. Based on these performance evaluation results of TTTD and various classical compression algorithms, it proposes a technique to combine multiple algorithms in sequence. Upon comparison of the performance, it has been found that the new algorithm, TTTD-H, which does TTTD and Huffman in sequence, improves the Savings Percentage by 23 percent over TTTD, and 31 percent over Huffman when executed independently. Compression Factor improved by 142 percent over TTTD, 52 percent over LZW, 178 percent over Huffman for a file of 3.5 MB. These significant results are the second important value of the project

    Ensemble approach on enhanced compressed noise EEG data signal in wireless body area sensor network

    Get PDF
    The Wireless Body Area Sensor Network (WBASN) is used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements. One of the important applications of WBASN is patients’ healthcare monitoring of chronic diseases such as epileptic seizure. Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and compressed in order to reduce its transmission time. However, at the same time, this contaminates the overall data and lowers classification accuracy. The current work also did not take into consideration that large size of collected EEG data. Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work is to design a unified compression and classification framework for delivery of EEG data in order to address its large size issue. EEG data is compressed in order to reduce its transmission time. However, at the same time, noise at the receiver side contaminates the overall data and lowers classification accuracy. Another goal is to reconstruct the compressed data and then recognize it. Therefore, a Noise Signal Combination (NSC) technique is proposed for the compression of the transmitted EEG data and enhancement of its classification accuracy at the receiving side in the presence of noise and incomplete data. The proposed framework combines compressive sensing and discrete cosine transform (DCT) in order to reduce the size of transmission data. Moreover, Gaussian noise model of the transmission channel is practically implemented to the framework. At the receiving side, the proposed NSC is designed based on weighted voting using four classification techniques. The accuracy of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The experimental results showed that the proposed technique exceeds the conventional techniques by achieving the highest accuracy for noiseless and noisy data. Furthermore, the framework performs a significant role in reducing the size of data and classifying both noisy and noiseless data. The key contributions are the unified framework and proposed NSC, which improved accuracy of the noiseless and noisy EGG large data. The results have demonstrated the effectiveness of the proposed framework and provided several credible benefits including simplicity, and accuracy enhancement. Finally, the research improves clinical information about patients who not only suffer from epilepsy, but also neurological disorders, mental or physiological problems
    • …
    corecore