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Abstract— An increasing number of the elderly population 

wish to live an independent lifestyle, rather than rely on intrusive 

care programmes. A big data solution is presented using wearable 

sensors capable of carrying out continuous monitoring of the 

elderly, alerting the relevant caregivers when necessary and 

forwarding pertinent information to a big data system for 

analysis. A challenge for such a solution is the development of 

context-awareness through the multidimensional, dynamic and 

nonlinear sensor readings that have a weak correlation with 

observable human behaviours and health conditions. To address 

this challenge, a wearable sensor system with an intelligent data 

forwarder is discussed in this paper. The forwarder adopts a 

Hidden Markov Model for human behaviour recognition. 

Locality sensitive hashing is proposed as an efficient mechanism 

to learn sensor patterns. A prototype solution is implemented to 

monitor health conditions of dispersed users. It is shown that the 

intelligent forwarders can provide the remote sensors with 

context-awareness. They transmit only important information to 

the big data server for analytics when certain behaviours happen 

and avoid overwhelming communication and data storage. The 

system functions unobtrusively, whilst giving the users peace of 

mind in the knowledge that their safety is being monitored and 

analysed. 

 
Index Terms—Ambient Assisted Living, Behaviour 

Monitoring, Hidden Markov Model, Locality Sensitive Hashing, 

Wearable Sensors, Big Data. 

 

I. INTRODUCTION 

he number of elderly and infirm living in sheltered 

accommodation is increasing, with more people of 

retirement age in the UK choosing to “age in place” with some 

form of support - 473,000 in 2008/2009 [1]. On the other hand, 

in figures calculated by Help the Aged, the number of those 

actually being supported has decreased by a dramatic 13% in 

the years 2000 to 2006 [2] with the trend declared likely to 

continue in successive years. At the same time, AgeUK [2] 
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noted that “17% of older people have less than weekly contact 

with family, friends and neighbours”.  These facts and figures 

show that there is increased risk for those not being monitored 

or personally cared for: from minor incidents in the home, from 

illness which causes immobility or from other unforeseeable 

scenarios which as such would go undetected if no contact is 

made with the individual over a long period of time. 

For a considerable time, many assistive devices have been 

available for installation into residential environments or for 

wearable sensors with the intention of interacting with a user to 

ascertain their wellbeing, or in some cases their physical health 

[3, 4]. Elderly monitoring systems can be categorised to two 

variations: autonomous problem-determining and human 

problem-determining. Whilst the former category is populated 

with devices such as Zhou et al. [5] and Avci and Passerini [6], 

these require only the gathered data to infer a belief regarding 

the users’ state. The latter category has the need for an element 

of further human involvement in order to assess the status of a 

user. Such applications similarly utilise environmentally 

located sensors or body-worn nodes [7, 8] to gather readings 

relating to the user, before uploading them to some ‘‘server’’ 

which is accessible by a healthcare professional or some other 

monitoring service that can identify any issues being faced by 

the user. These systems have a lower level of processing 

involved and as such require heavier data throughput to the 

server and time-consuming interpretation by healthcare 

professionals, given that storage of the observations in their raw 

form is usually required and inference of a behaviour or state is 

made by a human supervisor. When such healthcare devices 

need to be deployed to a great amount of the elderly population 

for continuous monitoring, acquiring and analysing data from 

the distributed devices become a challenge to data 

communication and processing. The data generated by the 

healthcare devices are often semi-structured or unstructured 

and have the 3Vs characteristics of big data, i.e. Volume, 

Velocity, and Variety [9]. As a consequence, much of the value 

of the data is not currently being fully appreciated and used in 

the healthcare sectors.  

This paper presents a big data pilot system for healthcare of 

the elderly that combines the two categories, i.e. autonomous 

problem-determining and human problem-determining, and 

covers the services of both continuous behaviour monitoring 

and long-term health condition analysis. The system consists of 

a wrist-wearable sensor node for information collection, a 

mobile phone for user interaction and remote access, and a 

centralized big data system as a tool for health condition 
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monitoring. For managing such a system, there is a trade-off 

between distributed processing in the wearable sensors and the 

centralized analytics in the server cluster. Thus, an intelligent 

information forwarder embedded in the mobile devices is 

proposed in this paper to monitor the behaviours of a wearer 

continuously, alert a caregiver if any anomaly is detected, and 

transmit only the interesting information to the healthcare big 

data system for analysis. The intelligent information forwarder 

based on a Hidden Markov Model (HMM) makes the 

distributed sensors context-aware and greatly reduces the 

communication loads and data storage for a large scale system. 

With the ability to recover a hidden state sequence from only 

the visible observations, the HMM is utilised in a broad 

spectrum of applications. Within the bioscience field, for 

example, the model is ideal for gene prediction - where each 

state emits random DNA strings of random length, which are 

observable as a means to determine the gene producing them 

[10] - and in protein structure prediction and genetic mapping 

[11]. Cryptanalysis and cryptography benefit significantly from 

the utilisation of the HMM [12]; and in the measurement of 

partial discharge (PD), the time-varying and sequential 

properties lend themselves to be modelled with an HMM such 

that PD patterns can be classified to inform of insulation system 

defects [13]. 

The traditional HMM uses probability distributions or 

discrete probability values assigned to single observations. In 

the behaviour recognition task, more detailed models take 

observations from a variety of sources to ascertain an intelligent 

estimate of the hidden state.  When the hidden state can be 

determined with greater accuracy if a number of observation 

sources are reviewed, e.g., the wearable sensors developed in 

this paper, the fusion of such inputs must be considered [14-16].  

What must be taken into consideration, however, is that this 

fusion of multiple sensors can in some cases produce worse 

results than the output of the best single sensor. This can be due 

to the possibility of inaccurate sensor readings being combined 

with those evaluated to be more accurate [15]. Nonlinear and 

high dimensional issues of the sensor readings [17, 18] also can 

contribute to this.  

This paper proposes a sensor fusion scheme to estimate the 

observational probability of states for HMM based user 

behaviour detection utilising the developed wearable sensors. It 

uses a Locality Sensitive Hashing (LSH) table to carry out 

Instance Based Learning (IBL). Experiments are conducted to 

compare the performance of the proposed method with the 

nonlinear dimension reduction method[18] and the results show 

that the proposed scheme is more efficient for both learning and 

querying. It is obvious that such intelligent processing 

embedded in a mobile device should take a resource saving 

approach due to the limited memory, computational power and 

communication bandwidth available on board. 

The rest of this paper is organized as follows. The system 

architecture and software are described in Section II, including 

the details of operational processes and the signal processing 

for robust measurement. Section III presents the HMM based 

state and anomaly identification that is the key component of 

the intelligent forwarder. Section IV explains how LSH can be 

used as an efficient mechanism to estimate the user’s state from 

the captured multiple sensor signals using probabilistic 

modelling.  Section V presents the developed prototype system 

and results obtained from the system, which are compared with 

another commonly used method, i.e. dimensional reduction 

method. Finally, Section VI contains the conclusions drawn 

from application of the device in the test scenario. 

II.  A BIG DATA SYSTEM FOR HEALTHCARE OF THE ELDERLY 

Public healthcare is facing serious difficulties due to the rapidly 

growing ageing population. These individuals have a desire to 

live independently rather than relying on intrusive care and 

support. They are also at a higher risk of suffering from illness, 

accidents, and injuries in their day-to-day activities. 

Consequently, there is a need for a system that can be 

conveniently wearable to monitor vital physiological 

parameters and check health conditions of a user, whilst 

communicating with the health service providers. The users are 

dispersed in the whole country and with enormous diversity. 

 
Fig.1. System architecture 
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Managing such a diverse user group is a challenge faced by the 

health service providers. The mobile computing and big data 

infrastructure are opening a new era to next generation 

healthcare. Individual users can access a tailored and instant 

health service from the big data system. There can be a great 

variety of services, for example, daily health check, medication 

reminder, first-aid instruction, comparative effectiveness 

research, preventive care, and healthy lifestyle encouragement. 

Some applications can be downloaded from cloud to a mobile 

device to provide instant responses to emergency situations. 

Some others may be computationally intensive in order to 

analyse a huge amount of sensor data for a long-term healthcare 

service. Therefore, design of a big data system for healthcare 

should have a trade-off between distributed intelligence and 

centralised data analytics.    

This paper presents the prototype of a big data system for 

healthcare of the elderly. It can improve not only the long-term 

care of this population but also increase the efficiency of 

healthcare through the integration of distributed monitoring 

with centralised analytics. The developed system includes three 

separate components: wrist device, mobile phone, and a big 

data cluster, as shown in Fig 1. The first version of the system, 

Verity, was reported in [18], which included a customised wrist 

device and mobile phone but without the centralised big data 

system. This paper reports the 2
nd

 version of the system for 

linking wireless measurement with a centralised big data 

system.  

A. Wrist device 

The new wrist device has been redesigned to include more 

sensors and use Bluetooth Low Energy (BLE) technology for 

connecting with an Android phone to form a PAN (Personal 

Area Network). It was developed by using TI CC2540, as 

shown in Fig 2, which is a System-on-Chip (SoC) with BLE 

support. The wrist device board includes an accelerometer to 

measure activities of the wearer, a temperature sensor to 

measure ambient temperature, a thermopile to measure skin 

temperature, and two reflective photoplethysmography sensors 

to measure heartbeat and SPO2 in the blood.   

 

  
Fig. 2. Schematic diagram and picture of the wrist device 

The thermopile, temperature sensor and accelerometer have 

digital serial interfaces for the CC2540 to read. The PPG 

(photoplethysmography) sensor is controlled by an analogue 

switcher to choose the type and intensity of the illumination as 

red (660nm) or infrared (905nm) for heartbeat rate and SPO2 

measurement. An adaptive threshold algorithm was developed 

for robust measurement of the heartbeat rate. 

The adaptive threshold algorithm was an effective extension 

to the peak detection method proposed in [19], which used a 

threshold with a decay constant. The PPG signal is a very 

dynamic signal which can be subject to great variability in the 

amplitude from cycle to cycle. According to [19] this 

variability is due at least in part, to the combination of 

respiratory cycles and motion changes. The adaptation in their 

method was to allow the decay constant to vary with the sample 

frequency, the standard deviation of the signal and the 

amplitude of the previous peak      . The first term is constant 

for any particular sampled signal, the second term does vary but 

only slightly given a reasonable time frame to reduce noise; and 

so effectively the only adaptive term was the previous peak 

height, with no adaption for the timing of the signal used. 

The main idea to improve their algorithm was to extend the 

adaptive decay constant. The extension was to allow the 

previous cycle characteristics to predict a height threshold at 

the next peak arrival time. This sets the decay constant 

accordingly and adaptively at every cycle. So the new 

definition of the decay rate    is 

   
(            ) 

      

                    ( ) 

        
 

 
∑ (     

) 
                     (2) 

where      is the last peak greater than the threshold. 

        is the estimated noise floor that is estimated by the 

average bad peaks detected.        is the period of the 

previous heartbeat.   is the coefficient to determine the decay 

rate.   is the number of bad peaks, pB, to look back over.   

The thresthold is therefore decayed with time t as 

 ( )                                      (3) 

Any detected peaks lower than T(t) are classified as bad 

peaks that are used to estimate the noise floor in Eq. (2). The 

first peak greater than the threshold T(t) is classified as the good 

peak, pn, for the heartbeat rate calculation: 

  ( )      (   )  (   )    ( (  )   (    )) 
(4) 

where  ,      , is the coefficient of the first order 

low-pass filter. 

The adaptive threshold is robust to noise because it reduces 

the decay rate if estimated noise floor Pmin is high, which means 

a peak has to overcome a higher noise floor in order to be 

considered as a valid peak. It is also robust to false peaks due to 

motion changes between heartbeats because it adjusts the 

sensitivity of the peak detector by taking previous period 

       as a reference.       

The SPO2 can be calculated and given by the ratio of the two 

reflected intensities from the PPG sensors [20]: 

  (
           

         
)                           (5) 

where            are the peak to valley amplitude 

characteristics of the received red and infrared light intensity 

respectively;            are the average amplitude of 

received light under red and infrared respectively. The SPO2 

value can be obtained by a lookup table using the R.  
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B. Mobile app 

The wrist device sends the measured parameters to the 

mobile phone through BLE communication. An app for 

Android phones was developed to process the gathered data and 

make a subsequent decision.  

The mobile phone houses the data gathering function and 

main intelligence of the system, as shown in Fig 3. It receives 

sensor readings from the wrist device (Fig 3.a) with sampling 

frequencies controlled by different timers, for example 

acceleration every 0.1 sec, skin temperature and RSSI every 2 

sec, heartbeat and SPO2 every 3 sec, and ambient temperature 

every 10 sec.  

The app also enables intelligent behaviour recognition for 

instant and unobtrusive care as shown in Fig 3.b, which will be 

discussed in detail in Sections III and IV. It recognises the 

states of a user and controls voice-based human machine 

interaction when an anomaly is detected, which is mainly for 

avoiding false-positive detections. In this scenario, the user is 

alerted of a situation by communication (through the speaker) 

from the device, which is preloaded with a series of statements 

or questions related to a number of scenarios possible during its 

use, as shown in Fig 4 for a detected fall. The alert follows a 

decision tree where at each stage the user is required to either 

confirm or deny a statement, causing the device to adjust its 

operation accordingly. The states include observable states and 

hidden states, which are onTable, Fall, Nolink, Link, Abnormal, 

Sleep, Sit, Stand, Walk, Run, Turn, Tap, LowBattery, Call, Text. 

The observable states, such as Fall and Nolink (referring to no 

communication between the wrist device and the mobile 

phone), can be determined from sensor and component 

readings directly, with little to no algorithmic processes. The 

typical result of the majority of the Fall and Nolink states is to 

start a voice dialog and dial-out if needed.  

  
Fig. 3.a Sensor information               Fig.3.b State recognition 

 
Fig. 4 Speech dialog tree used to identify the necessity for calling for 

assistance in the event of a detected fall 

The hidden states, e.g. Sleep, Sit, Stand, Walk, Run, and 

Abnormal are estimations of the inferable behaviours of a user 

which are not explicitly determinable from the sensor readings 

alone. A behaviour classifier is developed in this paper for their 

detection.  

C. Big data server 

The sensor readings and the states of a user need to be sent to 

the big data system for analytics, which can improve and 

personalize the quality of care, guarantee efficient use of scarce 

health professional expertise, and provide statistic evidence for 

government strategic planning. There is also a potential to 

reach rural patients without proper access to healthcare and to 

ensure that patients know when and how medication should be 

adjusted.  

In order to enhance efficiency for large scale and 

unstructured data retrieval and analysis, A Mapreduction model 

[21] is used for parallelization with eliminated synchronization 

problems as shown in Fig.1. MapReduction is a software 

framework introduced by Google in 2004 to support distributed 

computing on large data sets using a cluster of computers. It has 

been widely used as a standard model in big data systems. The 

big data cluster includes several indexers in parallel and a 

reduction server for search and statistic operations. It is 

designed to receive the data stream from mobile phones 

through a TCP or UDP ports. Usually UDP is not desirable to 

transmit critical signals because it does not guarantee a delivery. 

However, in some applications with high velocity of data, UDP 

can be more appropriate than TCP if additional delivery 

checking is implemented over it. In addition, the system is 

flexible enough to input various machine generated data 

streams in various formats, which can be in log files, CSV files, 

databases, networking messages, and through scripts. This 

allows the system to connect with a large number of distributed 

information sources with non-standard data and unpredictable 

formats, such as from hospital websites, medical data archives, 

and diagnostic equipment. Data mining and pattern recognition 

algorithms can be developed to achieve context awareness from 
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distributed information for historical behaviour analysis, health 

condition prediction, and anomaly alerts. 

A record in a data stream to log information from a user 

using a mobile phone is shown in JSON as 
 
{ “userName”: “David Carroll” 
 “deviceAdress”:[12,42,46,68,34,12], 

{ 
 “time”:”09:20:11 2013/9/12 UK”,  
 “eventType”:[Sit], 
 “accValue”:[45,23,99], 
 “accL1”:167, 
 “accAngle”:1.5, 
 “RSSI”:-72.4, 
 “verityBattery”:90, 
 “phoneBattery”:65, 
 “ambientTemp”:23.4, 
 “bodyTemp”:35.6, 
 “location”:[77.134235,-0.4354365], 
 “callType”:[0,null] 
 “textType”:[1,”Hi,I am Verity. My friend…”], 
 “PPG”:[12,127,0,0…127], 
 “HB”:83, 
 “SPO2”:97, 
 “voiceRecord”:[{“q31”,1},{“q32”,2},{“q33”,
”neil”}], 
 “interface”:0, 
 “bleState”:1 

} 

To support monitoring of many users, each record has a 

unique 48-bit IEEE address as the identity of a wearable sensor 

and a username to identify its wearer. Every record includes a 

timestamp to define a time series of information. The 

information stored can include events detected by the 

intelligent algorithm, readings from sensors, geolocation, voice 

dialog, machine triggered call and text, and so on. If the whole 

time series of information is sent to the cluster of servers, for 

example 1 record (assume 1KB/record) sent to the system every 

3 seconds, Table I can be used to estimate the amount of storage 

required by the big data system similar to [21], where the 

system is expected to manage 10,000 users with a replication 

factor of 3 to have data redundancy in the big data system. 
TABLE I  

STORAGE ESTIMATION OF THE BIG DATA SYSTEM FOR 10,000 USERS  

Average daily ingest rate 288GB Users×logging rate × 

3600×24 

Daily raw consumption 864GB Ingest × replication 

1 year 315TB Ingest × 

replication×365 
Node raw storage 24TB 12 × 2 TB SATA II 

HDD 

MapReduce temp storage 25% For intermediate 
MapReduce reserve 

Node-useable raw storage 18TB Node raw 

storage-MapReduce 
reserve 

Big data systems can compress incoming data for their 

storage and index, for example the compressed rawdata file is 

approximately 10% of the incoming data and the associated 

index files range in size from approximately 10% to 110% of 

the compressed rawadata file in Splunk, which is what we used 

for our implementation. For 10 years running with a 5% growth 

per year in users, we need to store 4PB data, which needs 4× 

10
3
/18=222 nodes in the cluster at least. Running such a cluster 

of servers can be very expensive, which requires significant 

power, cooling, rack space, network port density, etc.  

Avoiding over-sampling is important for any big data system 

design that needs to deal with the properties of 3Vs, especially 

the high velocity of data from distributed sensors. It is expected 

that only valuable information is forwarded to the server and 

ignores the other irrelevant data. An efficient method is to 

provide remote sensor nodes with local intelligence that feed 

data to the big data system when an interesting event happens. 

In this paper, we use an HMM based hidden state estimation to 

schedule a data forwarder to achieve context-aware 

communication.      

III. STATE BASED DATA FORWARDER  

A big data system manages high volume, high velocity, and/or 

high variety information assets, which are often from wireless 

sensors, handhelds, and websites. It is important to develop 

intelligent data forwarders in individual data sources for 

feeding meaningful data to the system. This requires a balance 

between distributed intelligence and centralized analytics in the 

big data system to avoid missing information or overwhelming 

the system. Big data systems are often goal/objective-driven. 

For example, a big data healthcare system can be designed to 

collect vital parameters of the elderly for understanding general 

health conditions and exercise engagement through temporal 

and geographical statistics. Therefore, distributed data sources 

could be provided with intelligence to determine when and 

what to feed to the system according to the objectives. This 

paper develops a data forwarder that is embedded in each data 

source with context-aware capability, as shown in Fig 5. 

In this intelligent forwarder, a configurable schedule is 

developed. The schedule includes a set of rules about the 

conditions for triggering a voice tree, as discussed in Section II, 

and logging data to the big data system. According to different 

analytic objectives, users can specify the rules using 

meaningful states, for example, “sending sensor data when 

running OR anomaly detected OR any state transition”. The 

context-awareness of the forwarder is achieved by an HMM 

that is used to detect a user’s hidden behaviors, such as running 

and anomaly, from its sensor readings.    
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A. Viterbi algorithm for optimal state estimation 

The HMM in Fig 5 has N hidden states,         ,     ,  
and M observations from sensors          ,     , t=1…T, 

where aij denotes the transition probability, i.e.,      

 (             ) , and bj(Ot) represents the observation 

probability that particular sensor readings Ot are measured in 

the state j, bj(Ot)=P(Ot| qt=Sj). 

Given an observation sequence O=[O1, O2, …, OT] and a 

model λ=(aij, bj, πj), where i,j=1…N and πj is the initial 

probability of state j, the probability of the optimal state 

sequence      
    

    
   can be obtained by Viterbi 

algorithm [22].  

Define  

  ( )     
            

                                

where   ( )  is the highest probability along a single state 

sequence as calculated at time t, accounting for the first t 

observations and terminating with state Si. The state sequence 

itself is given in array ψ, which is populated with the state 

maximizing that probability calculated by    at each step. 

(1) Initialize:  

  ( )  𝜋   (  )         𝑁 

  ( )           𝑁   

(2) Recursion Step: 

  (𝑗)     
  ≤   ≤  

[    ( )   ]  (  )  

  (𝑗)   rg   
  ≤   ≤  

[    ( )   ]   

2             𝑁 

 

(3) Terminate: 

      
  ≤   ≤  

   ( )  

  
   rg   

  ≤   ≤  

   ( )  
 

(4) The backtracking procedure: 

  
      (    

 )       
        2     

 

The resulting state sequence, ψ, is the most possible 

sequence that has emitted the observation at time T, given 

transitions from previous states.  

B. Anomaly detection 

The HMM can provide the most likely state sequence based 

on observations. The probability returned for any state not only 

provides information about the certainty of the activation of the 

state, but it can also be interpreted as a value which classifies its 

degree of anomalousness, where low probabilities denote 

deviations from the norm [23, 24]. For an identified anomaly, 

reactions are often to send the current sensor readings to the big 

data system or contact a caregiver, which can be specified by 

the user in the schedule. The following 3 types of anomalies are 

defined in this paper:  

Type_1 Anomaly 

A type_1 anomaly is based on the certainty of the winning 

state. If the probability of the winning state occurring P
*
 is 

close to the other states’ probabilities, it has very little 

dominating likelihood of occurring in the current winning state. 

The proximity to the mean of the probability over all states is 

calculated as a reference. When the winning probability is close 

to the mean, the instance can be deemed uncertain. 

           , where    
 

 
∑   ( )

 
         (6) 

In the case where the value of ρ falls within a specified 

threshold β1, it indicates significant uncertainty of the identified 

state. The illegible state means a wrongly defined model that 

faces an unmodeled state or needs model parameter 

re-estimation using the Baum-Welch algorithm [25].  

Type_2 Anomaly 

An equally likely scenario develops when the observation 

witnessed does not belong at all in the sequence.  Detecting 

such an error primarily requires monitoring of the relevant 

observation probability. If the probabilities over all states 

having seen observation Ot is low, the inference is that the 

model has not seen such an observation before and therefore 

requires either reassessing or triggering an alert. 

∑   (  )    
 
                                (7) 

An instance where this form of anomaly could occur is likely, 

if not all of the possible observations and associated states were 

captured during the training phase, or if the user exhibits a 

behavior typical of an unprogrammed state which is 

subsequently required to be included.  In an instance where the 

observation is indicative of a serious issue with the user, e.g., a 

stroke or heart attack indicated by an increase in temperatures 

and heart rates, the observation would trigger this type of 

anomaly due to the state not having been seen during training. 

Type_3 Anomaly 

A type_3 anomaly is a slight variant on the type_2 anomaly 

and can occur simply when the state at a time step differs for 

each state determining method within the HMM e.g. the Viterbi 

state   
  and the winning state according to pure observation 

probability bj(Ot) do not match significantly. For example, if 

the observation probability is highest for perhaps the state of 

Running, yet the determined state according to the Viterbi 

method   
   returns Sleeping with much higher probability over 

its Running probability, this may in fact indicate a period of 

distress for the user such as in the instance of a heart attack or 

some other such observable problem. The probability from 

Viterbi is first normalized as 

 ̂ (𝑗)  
  ( )

∑   ( )
 
   

 𝑗    𝑁                     (8) 

If   
   rg   

  ≤  ≤  
[  (  )]    

 , a type_3 anomaly is 

identified by: 

  ̂ (  
 )   ̂ (  

 )                             (9) 

where β3 is a threshold to identify whether or not the difference 

between the two differing states is significant enough to trigger 

an alarm.   

As well as identifying possible occurrences of serious health 

problems, when viewing the entire state determining process as 

a whole sequence - perhaps after a significant period of 

monitoring - this type_3 anomaly will prove quite useful for the 
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detection of behavior changes as it has the potential to highlight 

instances where the user exhibits a behavior not considered 

likely according to the transition probabilities programmed at 

the start of the process. Where a non-threatening state is 

observed (i.e., the user has in fact begun a higher level of 

exertion immediately from a rest period, thereby triggering a 

Sleeping to a Running state change) then the transition 

probability between the two requires amending to allow for 

such an observation sequence.  

The schedule in Fig 5 can be configured to select under 

which states or anomalies the sensor data should be sent to the 

big data system for analytics. In order to avoid missing 

important information when an event happens, an FIFO buffer 

is used to hold a series of latest information and will be sent to 

the big data system once fired by the schedule. 

The context-awareness of the intelligent forwarder relies on 

correct behaviour detection. In case of an outdated Markov 

model, detected states could be wrong and important 

information could be missed. It will cause an increasing 

number of abnormal behaviours to be detected, which may be 

due to health problems or due to outdated models. Thanks to the 

voice verification mechanism of the system, false anomalies 

can be easily identified and used to trigger a modelling process 

for learning HMM parameters, such as using the Baum-Welch 

algorithm.      

IV. INSTANCE BASED LEARNING OF OBSERVATION 

PROBABILITY 

The HMM in Section III defines two probabilities, i.e. 

transition probabilities aij and observation probability bj(Ot) 

representing the probability that state j has observation Ot. 

Utilising these probabilities it is possible to identify the most 

probable state at a specific time step based on the observations 

made at that point along with the preceding states. It is also able 

to provide a solid estimate of the most likely state sequence for 

an entire set of observations over a prolonged period of time. 

As the observation Ot includes readings from multiple sensors, 

determining the observation probability becomes more difficult 

due to involving high dimensional similarity measures. In terms 

of the wrist device developed in this paper, the dimensionality 

of the sensor readings can reach eight, which includes skin and 

ambient temperatures, heartbeat, two PPGs, and accelerations 

in three axes. There is also a considerable chance of 

nonlinearity between data clusters present because the data may 

lie on nonlinear manifolds, which make classification based on 

data distance unreliable given its tendency to misrepresent true 

topology. Physiological parameters often have such inherent 

nonlinearity, for example, acceleration and heart rate exhibits a 

hysteresis relation. 

The greater the number of data attributes (dimensions) the 

lesser the ability to make sense of the data due to the fact that 

with nonlinearity in a higher dimension, standard Euclidean 

distance functions lose their usefulness and so clustering with 

such methods becomes less accurate.There are a multitude of 

techniques for dealing with nonlinear, high dimensional data, 

with many sharing basic underlying principles to reach the 

lower dimensional representation of a complex nonlinear data 

set: Sammon’s mapping[26], Isomap[27], Curvilinear 

Component (and Distance) Analysis[28, 29] all seek to 

replicate similar distances between points located in a high 

dimension after placement in the lower dimension, by a means 

of gradient descent or iterative error reduction methods.  

A Curvilinear Distance Analysis algorithm was presented by 

the authors in [18] for determining the observation probability 

bj(Ot). The observation Ot may be in a high dimensional and 

nonlinear space. If it lies on a nonlinear manifold, Euclidean 

distance makes less sense for classification but has to be 

replaced by Curvilinear Distance to measure the distance along 

the manifold. The algorithm unfolds high-dimensional 

manifold data to low dimension by retaining topology and 

forces the clusters to be linearly separable. The algorithm’s 

effectiveness was validated by experiments using the Verity 

platform, however, it is quite time consuming for the data 

unfolding because it involves intensive computation to project 

prototypes in high dimension space to a low dimension space 

and maintain equivalent curvilinear distances. Sometimes, such 

equivalence may even not exist. Instance Based Learning is 

proposed in this paper as an alternative to facilitate learning of 

bj(Ot) from demonstration.  

A. Locality sensitive hashing for instance based learning  

Instance based learning (IBL)[30] takes directly sampled 

data from any system at a known state and constructs a 

hypothesis regarding similarity without the need to generalise a 

model based on the often high dimensional and nonlinear data. 

Through learning, data instances are stored in some form of 

memory. This is then accessible for subsequent classification 

operations, where a query is submitted and compared with all 

trained values according to some distance metric in order to 

ascertain its membership to the encoded classes. IBL has 

multiple advantages over parametric and model-based 

algorithms, especially in the storage of new, unseen instances. 

Other algorithms would typically require a complete 

re-examination of the data set in order to be wholly inclusive of 

the new data points where IBL methods simply “insert” the new 

data instance without disrupting any previously determined 

model. 

It is commonly accepted that the genus of and starting point 

for IBL algorithms are the simple kNN(k-Nearest Neighbour) 

classifier[30]: saving training instances to some data structure 

such that other instances may be compared distance-wise with 

those local data already classified to return a possible 

containing state for the new instance [31]. As highlighted in 

[32], for large data sets with high dimensionality (M), searching 

through n instances of a data set in order to determine those 

within the closest proximity can take an extensive amount of 

time, given that all pairs require evaluation using a distance 

measure such as Euclidean or Hamming.   

Locality Sensitive Hashing (LSH) [33, 34] provides 

adequate means to speed up the process of nearest neighbour 

searching, overcoming the above issue by storing the data in 

another variable-tolerance, compressed format which is easily 

searchable and requires only simple look-up operations to 

determine possible immediate neighbours, which can take O(1) 
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by using E
2
LSH[34] for example.  The principle behind LSH is 

to hash the sample data in such a way that the probability of two 

points, p and q,  hashing to the same bucket is higher for objects 

that are close to each other than for those that are further apart. 

    ( )   ( )         ‖   ‖              (10) 

    ( )   ( )         ‖   ‖             (11) 

where                .  

A family of LSH functions can be defined by p-stable 

distributions[35], for example projection to linear bins: 

                       

h
h

z v b
LSH



  
  
                                (12) 

 
(1) 

where  ⃗ is the M-dimensional vector to be hashed and  ⃗  is a 

random vector from a p-stable distribution, such as from a 

N(0,1) Gaussian distribution. Another random value b 

uniformly in the range [0, ω) is then added to the scalar 

projection which is then quantised by ω. ω is the width of the 

bin in which a data point may fall into.  
    is the floor 

operator.   

This paper presents an LSH based IBL for obtaining the 

observation probability bj(Ot) from high-dimensional and 

nonlinear sensor readings. It includes two stages, i.e. learning 

and querying. 

B. Learning 

The learning process is to sample typical sensor readings for 

different states and encode into a hash table H with L 

independent LSH functions h1 , h2, …, hL defined in Eq. (12).   

For a given state, Sj, each sampled Ot(j) is first normalised, i.e., 

 ̂     ‖  ‖. All sampled sequence of Ot(j), t=1..T, for state j 

are clustered with a tolerance of ϵ, i.e., if the L2 distance 

between any two samples is less than ϵ, they are merged using 

the k-means algorithm. A set of prototypes Vt(j), t=1,…,Tj , is 

obtained with Tj <T. 

The prototypes Vt(j), t=1,…,Tj , are then projected to L bins 

in Eq. (12) as shown in Fig 6. 

     Element to be stored  
     [X1, X2, X3, … XM] = V1  
        ↓     
     HASH OUTPUTS  
     h1 = 07  
     h2 = 09  
        ↓     

h1 
01 02 03 04 05 06 07 08 09 10 

- - - V9 V2 
V4 

V7 
V5 V3 

V1 
V10 V8 V6 

h2 
01 02 03 04 05 06 07 08 09 10 

- - V2 
V7 

V9 V5 
V3 V8 V6 - V4 

V1 

V10 
- 

 

 
Fig. 6. Construction of LSH table with 10 prototypes and 2 hash functions, 

h1 and h2 where prototypes V1 … V10 are projected into 10 bins(numbered from 

1 to 10 in the figure) along two lines h1 and h2.  

After feeding in Vt(j) for all states j=1, …, N, we have learnt 

the typical readings of different states. This will be saved for 

real-time querying about bj for any sensor reading Ot. 

C. Querying  

 The retrieval method for any Ot is a LSH recall procedure 

with “bucket” checking. Different from the conventional LSH 

for kNN, we want to calculate the density of observations of a 

given state j near Ot in a given radius     for the probability 

bj(Ot) estimation.  

First, Ot is projected to L bins in the L hash functions in Eq. 

(12) with  ⃗    , i.e., we have h1(Ot), h2(Ot),…, hL(Ot). The 

prototypes of state j, Vt(j), encoded in the same bins as Ot are  

counted α1(j), where j=1, …, N.  

Increasing the searching radius by 1, with additional 2L 

neighbour bins, h1(Ot)±1, h2(Ot) ±1,…, hL(Ot) ±1,  are checked. 

The prototypes encoded in them are counted to have α2(j), 

where j=1, …, N. The search is expanded to radius R to have the 

total numbers of prototypes in the radius R,   (𝑗), j=1, …, N.  

We define a Radius Density of state j with r=1..R: 

                    (𝑗)  
  ( )     ( )

∑ (  ( )     ( )) 
   

        (𝑗)      (13)   

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

v9 

h1 

v2 v7 

v3 

v5 

v8 

v6 

v4 v1 v10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

h2 

v9 

v2 v7 

v3 

v5 

v8 

v6 

v4 v1 v10 



 9 

The State Weighted Density(SWD) can then be defined by 

taking into account the distance between the query point and 

the prototypes, i.e. inverse distance weighting: 

   (𝑗)  ∑    (𝑗)  

 

   

                             (  ) 

The Observation Probability bj(Ot) can then be estimated by 

the state weighted density in the R radius. 

  (  )  
   (𝑗)

∑    ( ) 
   

                         (  ) 

It estimates the likelihood of a state happening by 

considering the local distributions of the prototypes sampled 

during the learning stage. This is considered to be robust to 

nonlinearity and fast in both learning and querying stages, with 

only hash table insertion and check operations.  

V. TESTING AND EXPERIMENTS 

A. State detection 

The LHS based HMM for state identification has been 

implemented and compared with the dimensional reduction 

method reported in [18], which can be depicted in Fig 7. 

 
Fig. 7. The dimensional reduction method implemented in [18] 

The set of two classes   NMT

BA RXXX  ,  is projected to 

a lower dimension   NnRXX nMT

ba   ,, , where the 

curvilinear distances in a single class are kept, thus “flattening” 

the high dimension data and linearly separating the clusters Xa 

and Xb in the lower dimensional space.  Based on distance to 

their closest prototype, successive points can be interpolated 

efficiently and projected from the high to the low dimension 

and once separated a simple classifier, e.g. a single layer 

perceptron, can be used to identify their parent cluster. 

 The same sensor readings as the experiments in [18] were 

used for the comparison, which included ambient temperature, 

skin temperature, heart rate, acceleration magnitude, and its 

direction with an attributed state which was observed to have 

produced such readings.   

Five states are expected to be identified, which are S=[Sleep, 

Sit, Stand, Walk, Run] corresponding to states from 0 to 4. The 

transition parameters of the HMM remain the same, with aij  

specified as in (16) and the initial state probability vector π as in  

(17), where there is an observed higher likelihood that the 

starting state is Standing over all others. 

























50.025.015.010.00

25.040.025.010.00

10.035.020.035.00

010.030.035.025.0

0020.035.045.0

ija

 

 (16) 

 0.1 0.2 0.4 0.2 0.1    (17) 

The readings and the known state that were producing them 

were first submitted to the dimensional reduction algorithm 

detailed in [17, 18]. It successfully took the readings from their 

initial 5 dimensions to the more easily viewable 2, without loss 

of structure and resulting in the creation of 4 linearly separable 

state clusters with which subsequent classification of unseen 

data points can occur (note that the state of Sleeping was not 

observed in this test of Verity and data gathering procedure due 

to the conditions indicating such a state not being easily 

obtainable during testing). A single layer perceptron network 

was trained for the classification. Table II illustrates some 

examples of classification with the perceptron for unseen data 

points. 
TABLE II RESULT OF STATE DETECTION USING DIMENSIONAL REDUCTION 

METHOD ON UNSEEN DATA POINTS 

Ambient Contact Pulse Motion Orient. Actual 
Result 

(Probability) 

28.699 28.838 80.213 0.000 0 1 1 (0.98) 
28.699 28.838 76.142 0.170 0 1 1 (0.98) 

28.699 28.849 81.967 0.114 8 2 2 (0.99) 

28.699 28.797 81.967 0.458 6 3 3 (0.98) 
28.699 28.662 80.213 1.799 0 4 4 (0.98) 

28.699 28.704 81.967 1.799 10 4 4 (0.99) 

  

The same training instances were submitted to the LSH table. 

Table III shows the results, returning 100% classification 

correctness on the same unseen data as used in the previous 

experiment. 
TABLE III RESULT OF CLASSIFICATION WITH LSH SCHEME FOR UNSEEN DATA 

POINTS 

     State Probability  

Ambient Contact Pulse Motion Orient. 1 2 3 4 Actual 

28.699 28.838 80.213 0.000 0 0.985 0.011 0.003 0.001 1 

28.699 28.838 76.142 0.170 0 0.501 0.369 0.000 0.129 1 
28.699 28.849 81.967 0.114 8 0.000 0.782 0.198 0.020 2 

28.699 28.797 81.967 0.458 6 0.005 0.385 0.498 0.112 3 

28.699 28.662 80.213 1.799 0 0.385 0.188 0.035 0.392 4 
28.699 28.704 81.967 1.799 10 0.000 0.003 0.014 0.983 4 

 

Table IV details a comparison between the two different 

state probability determining methods, with key parameters 

that resulted in the best classification rates during 

experimentation. 

 
TABLE IV PERFORMANCE TIMES FOR THE STATE DETERMINING METHODS  

Method Key Parameters 
Training 

Time (ms) 

Classification 

Time (ms) 

Dimension 

Reduction with 
Linear 

Perceptrons 

_ 0.1tolerable loss  , 

min 0.02alpha  , 

max 0.5alpha   
5713 154 

Locality 
Sensitive Hash 

Table 

R=10, 
ω=0.001, 

L=30 

32 94 

 



 10 

The classification with dimension reduction scheme took 

154ms for querying, however it is in the training (projection) of 

the prototypes that took an outlay of nearly 6 seconds to 

prototype and project the 30-member training set.  

Classification is 100% accurate for the experiment, with the 

returned membership values tending very close to 1 due to the 

certainty through dimension reduction that the unseen data 

points fall within the newly created linear boundaries between 

classes through the perceptron. 

The LSH provides a better result over the dimensional 

reduction methods, with a much shorter training period (32ms) 

and classification speed (94ms), the 100% correctness and 

format of probability values seems most appropriate for use in 

the proceeding Hidden Markov Model as the observation 

probability. The number of hash functions used in the 

experiment to produce the results was 30.  

B. Healthcare big data system 

A prototype of the big data system has been developed by 

using Splunk Enterprise 6.0 for analytics of the behaviours of 

wearers, as shown in Fig.8. Splunk is a time-series engine that 

can collect, index and analyse machine generated data. It can 

support large-scale data collection and processing with 

parallelizing analytics via the MapReduce mechanism. 

Therefore, it can handle distributed information with the 3V 

characteristics from a great amount of wearable sensors very 

well. 

 
Fig. 8. Architecture of the healthcare big data prototype system 

In this prototype system, we used the Dropbox system as a 

medium to transfer distributed user’s information to Splunk 

engines via WiFi or cellular networks. Each user’s mobile 

phone was deployed with the intelligent forwarder that carries 

out HMM based state detection continuously as presented in 

Sections III and IV. The forwarder can be scheduled to log the 

records or start a voice dialog for alerting a caregiver based on 

the detected states. Because of the HMM based state detection, 

the forwarder is aware of the wearer’s behaviours and only the 

records associated with certain events are saved to local files 

according to the schedule. The files are then synced with a 

folder in Dropbox by using Android sync API once 

communication becomes available. If the Dropbox folder is 

shared with the big data system, Splunk can monitor any 

changes in the folder and index the data for analytics. It is a 

concern that big data poses big privacy risks[36]. Therefore, the 

approach using personal Dropbox folders gives individual users 

the right to decide if they want to keep the collected information 

privately or share with someone they trust; for example, they 

can select to share the folder with caregivers or family members, 

rather than an insurance company.  

 

 

 

 
Fig. 9. Forwarding statistics for all events, state changes, walk, and 

abnormal states  

Small scale field trials have been carried out since September 

2013 with 3 subjects. An example is shown in Fig.9. A subject, 

David Carroll, with the wrist sensor was monitored about two 

hours from 09/18/2013:21:40:00 to 09/18/2013:24:00:00. 

Without scheduling the forwarder, events were sent to the big 

data system every 3 seconds, with a total number of 1875 in this 

period. The forwarder can be scheduled according to the 

subject’s behaviours. If only the information during walking is 

of interest to a caregiver, 150 records would then be sent to the 
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big data system. Sometimes the state change could be 

important; the forwarder can be configured to send only when a 

change happens, with 315 changes in the example. As 

discussed in Section III, anomalies can imply an alarm on the 

health conditions or indicate the HMM is no longer valid which 

needs a re-estimation of the model. Detected abnormal events 

should be sent to the big data system for analysis. There were 

62 events during the period. A dramatic increasing in anomalies 

often indicates a poor model to describe behaviours of the 

wearer and needs a re-calibration. A big data system can be an 

effective tool to manage distributed models remotely. 

    As an example, a dashboard with several panels was 

developed to provide useful clues about a subject’s lifestyle and 

health conditions. Fig 10.a shows the body temperature of the 

subject, which is an important physiological parameter for 

healthcare. Fig 10.b illustrates the geolocation distribution of 

the subject’s activities in a month. A change in the distribution 

usually indicates a change of health conditions, lifestyle or 

social engagement. Fig 10.c shows the behaviours of the 

subject during a day. It indicates that the subject did not walk 

enough as recommended by the caregiver to gain health 

benefits. A reminder needs to be sent to promote a healthy 

lifestyle. Fig 10.d shows the average ambient temperature in the 

home. The system monitors living conditions of the subject that 

can also provide added value for energy management etc. 

 The preliminary field trials reported here are only with a 

small scale and a single server implementation of Splunk 

Enterprise. However, it is sufficient to prove the concept of the 

proposed architecture and intelligent forwards to be a big data 

solution for the healthcare of a great amount of the elderly 

population. Splunk Enterprise can be deployed into a 

distributed architecture following the Mapreduction model. It 

can scale flexibly from a single server to multiple datacentres to 

cloud, considering the amount of users to be monitored and 

analysed. Its parallel architecture also means search and 

indexing performance scales linearly across servers.       

 

 
Fig. 10.a Body temperature                                                                                       Fig.10.b Geolocation statistics 

 
Fig. 10.c State statistics                                                                                              Fig.10.d Ambient temperature 

VI. CONCLUSIONS 

This paper presented a big data healthcare system for elderly 

people. The system connects with remote wrist sensors through 

mobile phones for monitoring wearers’ well-being. Due to a 

tremendous number of users involved, collecting real-time 

sensor information to the centralised servers becomes very 

expensive and difficult. However, such a big data system can 

provide rich information to healthcare providers about 

individuals’ health conditions and their living environment. 

Therefore, this paper proposed an intelligent information 

forwarder embedded in a mobile phone. It can be configured by 

a user to determine under which circumstances data should be 

logged to the system. It uses an HMM to estimate a wearer’s 

behaviours, which includes an LSH table to determine the 

observation probability of a state. Considering nonlinear and 

high dimensional aspects of the sensor observations, the LSH 

table is proposed to improve efficiency. It can be learnt by 

inserting sample data and queried by checking their local 

density. Experiments have verified that the LSH based 

behaviour estimation is more efficient than the dimensional 

reduction method, which is important for implementation on a 

mobile device. A prototype of the big data system to work with 

distributed wearable sensors has been built up for use in the 

healthcare of the elderly. It demonstrates that the state based 

forwarder makes the remote sensing context-aware when 

feeding information to the big data healthcare system.  

  There could be a large group population of the elderly to be 

monitored using this system.  All of them will have their own 

behaviour models, e.g. HMMs, about their daily life. Possible 

future work will be on how the models can be maintained 

remotely and automatically by the big data system. As section 

III discussed, frequent false anomalies would be an indication 

of a mismatching model. With rich information collected in the 

big data system, the model could be rectified or recreated to fit 

a user’s actual behaviour pattern automatically or through 

active remote instructions.            
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