
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

COMPRESSION OF WEARABLE BODY
SENSOR NETWORK DATA USING
IMPROVED TWO-THRESHOLD-TWO-
DIVISOR DATA CHUNKING ALGORITHM
Robinson Raju
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Raju, Robinson, "COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING IMPROVED TWO-
THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM" (2018). Master's Projects. 613.
DOI: https://doi.org/10.31979/etd.9gjm-skbj
https://scholarworks.sjsu.edu/etd_projects/613

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/159401036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/613?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING
IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfilment

of the Requirements for the Degree

Master of Science

by

Robinson Raju

May 2018

 ii

© 2018

Robinson Raju

ALL RIGHTS RESERVED

 iii

The Designated Thesis Committee Approves the Thesis Titled

COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING
IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM

by

Robinson Raju

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

MAY 2018

Dr. Melody Moh Department of Computer Science, SJSU

Dr. Teng Moh Department of Computer Science, SJSU

Mr. Amit Meckoni Software Engineering Architect, PayPal Inc.

 iv

ABSTRACT

COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING
IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM

by Robinson Raju

Compression plays a significant role in Body Sensor Networks (BSN) data since

the sensors in BSNs have limited battery power and memory. Also, data needs to be

transmitted fast and in a lossless manner to provide near real-time feedback. The paper

evaluates lossless data compression algorithms like Run Length Encoding (RLE), Lempel

Zev Welch (LZW) and Huffman on data from wearable devices and compares them in

terms of Compression Ratio, Compression Factor, Savings Percentage and Compression

Time. It also evaluates a data deduplication technique used for Low Bandwidth File

Systems (LBFS) named Two Thresholds Two Divisors (TTTD) algorithm to determine if

it could be used for BSN data. By changing the parameters and running the algorithm

multiple times on the data, it arrives at a set of values that give >50 compression ratio on

BSN data. This is the first value of the paper. Based on these performance evaluation

results of TTTD and various classical compression algorithms, it proposes a technique to

combine multiple algorithms in sequence. Upon comparison of the performance, it has

been found that the new algorithm, TTTD-H, which does TTTD and Huffman in

sequence, improves the Savings Percentage by 23 percent over TTTD, and 31 percent

over Huffman when executed independently. Compression Factor improved by 142

percent over TTTD, 52 percent over LZW, 178 percent over Huffman for a file of 3.5

MB. These significant results are the second important value of the project.

Keywords: body sensor network, compression, TTTD, Huffman, data chunking

 v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Melody Moh, for

her encouragement, patience, expertise and continuous guidance throughout my project

and my earlier research studies. I would like to express my sincere gratitude to Dr. Teng-

Sheng Moh, also my advisor for TTTD research, for his encouragement, patience,

expertise and continuous guidance throughout my graduate studies. I would also like to

thank Mr. Amit Meckoni for his valuable time, inputs and support throughout the project.

I am eternally thankful to my mother, Mrs. Rosamma Raju, without whose hard

work I may never have completed schooling or had a chance at pursuing higher

education. I am also grateful to my wife, Ms. Ashwati Kuruvilla, who extended her

support during my late night and weekend study schedules. Great appreciation is due

towards my current and former employers, eBay Inc. and PayPal Inc, for supporting my

pursuit of a Master’s Degree in Computer Science.

Lastly, a big thank you to the Department of Computer Science at San José State

University for giving me this exceptional opportunity and to all the faculty who

continuously help students succeed at the University.

 vi

TABLE OF CONTENTS

LIST OF FIGURES..viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS ... x

1. INTRODUCTION ... 1

2. BACKGROUND .. 3

2.1 General Architecture of a BSN ... 3

2.2 Sensors in a BSN ... 4

2.2.1 Classification of Sensors ... 4

2.2.3 Commonly Used Sensors in BSNs .. 6

2.3 Data Processing in BSNs ... 6

3. RELATED STUDIES .. 9

3.1 The Need for Compression of BSN Data .. 9

3.2 Review of research on BSN data compression .. 9

4. EXISTING LOSS COMPRESSION TECHNIQUES: ALGORITHMS AND
EXPERIMENTAL EVALUATIONS ... 11

4.1 Review of Existing Lossless Compression Techniques .. 11

4.1.1 Run Length Encoding Algorithm .. 11

4.1.2 Huffman Encoding Algorithm ... 11

4.1.3 Lempel Zev Welch (LZW) Algorithm ... 12

4.1.4 Data Chunking and TTTD Algorithm .. 13

4.2 Experimental Evaluations .. 15

4.2.1 Metrics for Analysis .. 15

4.2.2 Experimental Objectives ... 16

4.2.3 Experimental Configurations ... 16

4.3 Experimental Results ... 18

4.4 Experimental Observations .. 19

5. PROPOSED METHOD .. 21

5.1 Experiment with Combination of Algorithms .. 21

 vii

5.2 Outline of the Proposed Algorithm ... 22

6. PERFORMANCE EVALUATION .. 23

6.1 Fitbit Dataset ... 23

6.2 Smartphone & Smartwatch Dataset ... 28

6.3 Analysis of Energy Consumption.. 31

6.3.1 Formula for Energy Consumption ... 31

6.3.2 Computation of Energy Savings due to compression 33

7. CONCLUSION .. 37

7.1 Summary.. 37

7.2 Future Work .. 37

8. REFERENCES .. 39

 viii

LIST OF FIGURES

Figure 1. The Architecture of a Body Sensor Network ... 3

Figure 2. Sliding Window Algorithm... 14

Figure 3. Outline of the Proposed Algorithm ... 22

Figure 4. Comparison of Compressed file sizes with TTTD-H 25

Figure 5. Comparison of Compression Ratio with TTTD-H ... 25

Figure 6. Comparison of Compression Factor with TTTD-H ... 26

Figure 7. Comparison of Savings Percentage with TTTD-H .. 27

Figure 8. Comparison of Compression Time with TTTD-H ... 28

Figure 9. Comparison of Compressed file sizes with TTTD-H 29

Figure 10. Comparison of Compression Ratio with TTTD-H ... 29

Figure 11. Comparison of Compression Factor with TTTD-H 30

Figure 12. Comparison of Savings Percentage with TTTD-H .. 30

Figure 13. Comparison of Compression Time with TTTD-H ... 31

Figure 14. Dataset 1 - Comparison of Increase in Energy during Computation............... 34

Figure 15. Dataset 1 - Comparison of Decrease in Energy during Transmission 34

Figure 16. Dataset 1 - Comparison of Energy Saving due to Compression 35

Figure 17. Dataset 2 - Comparison of Increase in Energy during Computation............... 35

Figure 18. Dataset 2 - Comparison of Decrease in Energy during Transmission 36

Figure 19. Dataset 2 - Comparison of Energy Saving due to Compression 36

 ix

LIST OF TABLES

TABLE 1. COMMONLY USED SENSORS IN BSNs .. 6

TABLE 2. METRICS FOR COMPRESSION ANALYSIS.. 15

TABLE 3. TTTD PARAMETERS .. 17

TABLE 4. DATASETS USED FOR THE EXPERIMENTS (FITBIT DATA) 17

TABLE 5. COMPARISON OF VARIOUS COMPRESSION ALGORITHMS 18

TABLE 6. PERFORMANCE OF ALGORITHMS IN DIFFERENT COMBINATIONS
 .. 22

TABLE 7. PERFORMANCE OF PROPOSED ALGORITHM IN COMPARISON TO
OTHER COMPRESSION ALGORITHMS ... 23

TABLE 8. DATASET USED FOR THE EXPERIMENTS (SMARTPHONE DATA) .. 28

 x

LIST OF ABBREVIATIONS

ANN – Artificial Neural Network
ASCII – American Standard Code for Information Interchange
BSN – Body Sensor Network
CDC – Content Defined Chunking
CF – Compression Factor
CR – Compression Ratio
CS – Compressed File Size
CT – Compression Time
ECG – Electrocardiograph
EEG – Electroencephalograph
EMG – Electromyography
FS – File Size
HBC – Human Body Communication
HMM – Hidden Makhov Model
ICA – Independent Component Analysis
IoT – Internet of Things
KNN – K-Nearest Neighbor
LBFS – Low Bandwidth File System
LZW – Lempel Zev Welch
MEMS – Micro Electro Mechanical Systems
PCA – Principal Component Analysis
RFID – Radio-frequency identification
RLE – Run Length Encoding
RMS – Root Mean Square
SMA – Signal Magnitude Area
SP – Savings Percentage
SVM – Support Vector Machine
TTTD – Two Threshold Two Divisors

 1

1. INTRODUCTION

As the population of the world rises and healthcare costs increase worldwide,

human health monitoring has become a critical research area, since it helps tremendously

in containing the expenses related to healthcare and enhancing the customer experience

[1]. Though there have been devices to measure vital statistics from a person's body, they

have mostly been wired, large and conspicuous. Recent trends towards improvements in

micro-electro-mechanical systems (MEMS) technology [2], wireless communications,

and digital electronics have allowed the development of miniature, low-cost, low power,

multi-functional sensor that can sense and transmit data wirelessly. One family of these

devices is wearable and implantable Body Sensor Networks (BSNs), which are IoT

(Internet of Things) devices that can transmit health-related data from a person wirelessly

to a node. The data can be used to monitor vital signs and provide real-time feedback.

The data can also be used for machine learning and predictive analytics, to foresee

medical infrastructure needs and lead the world towards a future of ubiquitous healthcare

monitoring. Since real-time data analysis is critical in many cases, transmitting the data

from sensors to sink nodes with speed and ease is vital. The sensors in the BSN have

limited battery and memory available, and this makes data compression very crucial in a

BSN. Also, since the data in question is related to health information, it should be

accurate, and the compression algorithms have to be lossless. As the technology

improves, the number of sensors and the amount of data that a sensor can capture and

transmit also increases. This is another reason to focus on data compression at the sensor

nodes.

 2

The primary objective of the paper is to evaluate the performance of classical data

compression algorithms and Two Thresholds Two Divisors (TTTD) data chunking

algorithm on BSN data. The paper starts by giving a background on BSN, the general

architecture, types of sensors, followed by data processing steps common in most BSNs.

It then reviews existing research on compression of BSN data. After this, it gives a short

overview of lossless compression algorithms like Huffman, LZW and RLE and data

chunking technique called TTTD. It then reviews the results of experimental evaluation

the aforementioned algorithms on BSN data. It establishes that TTTD can be used to

compress BSN data with a different set of parameters, and has performance that is

comparable to other algorithms. After the experimental evaluations, the paper proposes

an approach to combine TTTD and Huffman algorithms to compress data more

efficiently. This algorithm, TTTD-H is then evaluated on BSN data from multiple sources

like Fitbit and smartphone datasets.

 3

2. BACKGROUND

2.1 General Architecture of a BSN

A Body Sensor Network (BSN), is a wireless network of wearable computing

devices. BSNs may be

• Embedded inside the body as implants

• Placed on the body in a fixed position

• In accompanied devices which people carry around, like in pockets, by hand,

in a bag, and so forth.

Figure 1 describes the general architecture of a BSN. The sensor nodes at

different parts of the body collect physical data and transmit to the sink node which then

transmits it to the base station. Some sensors directly transmit to the base station or send

data via Bluetooth to smartphones.

Figure 1. The Architecture of a Body Sensor Network

 4

2.2 Sensors in a BSN

Sensors are IoT devices that connect the physical world with the measuring

system and eventually, the internet. They collect information about the surrounding and

are responsible for processing information and transmitting them. A sensor node

ordinarily comprises the following modules [3]:

• Sensor module

• Processor module

• Wireless communication module

• Power supply module

While the sensor module collects and converts physical data into electrical

signals, the wireless communication module transports the signal to various devices. The

processor module controls the sensor nodes, and the power supply module provides

energy to the nodes.

2.2.1 Classification of Sensors

Sensors could be classified by BSN attributes like types of signals, transmission

media, deployment position, and so forth [3].

Classification by Types of Measured Signals

a) Sensors that collect continuous time-varying signals: This type of sensor

collects data continuously, and the main requirement here would be real-

time transfer of information. The continuous signal sensors can also

generate a lot of data. Accelerometers or gyroscopes used in

 5

Smartwatches, ECG, EEG, EMG sensors are examples of these type of

sensors.

b) Sensors that collect discrete time-varying physiology signals: This type of

sensor collects signals in discrete intervals. Temperature and humidity

sensors capture measurements every ‘x’ minutes or hours, blood pressure

monitors and measure BP every hour or day are examples of these types of

sensors.

Classification by data transmission media

a) Wireless sensors: These sensors employ wireless communication

technologies like Bluetooth, Zigbee, RFID, and so forth to communicate

with other devices.

b) Wired sensors: These sensors are physically connected to other devices

and transmit the data through wires.

c) Human body communication (HBC) sensors: These sensors use the human

body as the transmission medium and they adopt sub-GHz frequencies for

transmission.

Other Classifications

a) The sensors can also be classified based on deployment position as

Wearable, Implantable or Surrounding. They can also be classified based

on the automatic adjustment ability whether they are self-adapting or not.

 6

2.2.3 Commonly Used Sensors in BSNs

TABLE 1. COMMONLY USED SENSORS IN BSNs
Sensors Signal Type Frequency Position

Accelerometer Continuous High Wearable

Artificial cochlea Continuous High Implantable

Artificial retina Continuous High Implantable

Blood-pressure sensor Discrete Low Wearable

Camera pill Continuous High Implantable

Carbon dioxide sensor Discrete Low/
Very low Wearable

ECG/EEG/
EMG sensor Continuous High Wearable

Gyroscope Continuous High Wearable

Humidity sensor Discrete Very low Wearable

Blood oxygen saturation
sensor Discrete Low Wearable

Pressure sensor Continuous High Wearable/
Surrounding

Respiration sensor Continuous High Wearable

Temperature sensor Discrete Very low Wearable

Visual sensor Continuous/
Discrete

High/
Low

Wearable/
Surrounding

2.3 Data Processing in BSNs

Data Processing, also referred to as Data fusion, is a process for handling the data

from the sensors in an efficient manner. BSNs produce a considerable amount of data and

data processing techniques are needed to filter noise efficiently, combine data from

multiple sensors, extract necessary information and transmit to devices that need the

 7

information for analysis. The following is a summarization of different steps in data

fusion [3].

a) Pre-processing: Since the wireless and implantable sensors are constantly in a

dynamic environment, the data that comes out of these sensors can many

times have a lot more information than what is pertinent to being measured.

‘pre-processing’ is a step to remove the noise from the data without losing the

vital information. Some of the techniques used for preprocessing are Fourier

Transform, Wavelet Transform [4], Mathematical morphology filters [5],

Kalman filter [6], Low-pass median value filter, Laplacian Transform,

Gaussian filter and so forth.

b) Feature Extraction: The principal objective of this step is to extract features

that represent the characteristics of the original data accurately. The classifiers

use the features as inputs. Techniques regularly used in feature extraction

include Support Vector Machine (SVM), K-Means clustering, Principal

Component Analysis (PCA), Independent Component Analysis (ICA), and so

forth. Commonly used features are time-Domain Features like Variance and

Root Mean Square (RMS), frequency-Domain Features like Spectral Energy

and Spectral Entropy, time-Frequency Domain Features like Wavelet

Coefficients, heuristic Features like Signal Magnitude Area (SMA), Signal

Vector Magnitude, and Inter-Axis Correlation and domain-specific Features

like Time-Domain Gait Detection [7].

 8

c) Data Processing (Computing): The chief objective of the data computing step

is to use Algorithms to analyze the data. Machine Learning Algorithms could

be used to do Classification or Clustering. As per Lai et al. [3], the commonly

used algorithms include thresh-old-based classification, hierarchical methods,

decision trees, and K-Nearest Neighbor (KNN), Support Vector Machines

(SVM), Artificial Neural Networks (ANN), Hidden Markov Models (HMM)

and so forth. Peng et al. [8], recognized fourteen physical activities using a

binary decision-tree with a Naïve Bayes classifier. Krishnan et al. [9],

conducted research on how AdaBoost, HMM, and KNN, are used to analyze

data from accelerometers to identify human hand activity.

d) Data Compression: After noise reduction, feature extraction, and optionally

data fusion, the sensor nodes do compression of the data before sending it to

the sink node or the base station. Data compression reduces the amount of

data transmission and also lowers power consumption. This is important since

power consumption is one of the main areas of concern in a WSN or a BSN

[10]. Data Compression is the main topic of exploration in this paper.

 9

3. RELATED STUDIES

3.1 The Need for Compression of BSN Data

As mentioned in the previous section, it is essential to compress the data from

WIBSNs since the devices are small and data generated can be very frequent. The

reasons for compression can be summarized as follows:

• Battery power: The sensors are small, and the battery has limited power.

• Network bandwidth: Compressed data needs less bandwidth. A lot of data from

multiple sensors might be sharing the same channel to send information to the

base station.

• Data staleness: Data loses effectiveness if not sent within a short period,

especially in cases where it is life critical.

• Data security: Data sent in raw format could be snooped by other devices thereby

compromising the privacy and security of the individual whose data is collected.

3.2 Review of research on BSN data compression

In their survey of BSNs, Lai et al. [3], mention that data compression in BSNs can

be done using classical compression algorithms such as source encoding, differential

encoding, and Huffman encoding. Sadler et al. [11] did a study on Data compression

algorithms for energy-constrained devices and proposed a variant of Lempel Zev Welch

(LZW) algorithm named s-LZW to reduce the amount of data sent across the network.

Yoon et al. [12] used the s-LZW scheme as the compression method to improve energy

utilization in solar-powered WSNs. It is also noted in the paper that s-LZW is a lossless

compression algorithm widely used in WSNs. Wu et al. [13] did a case study on Pilates

 10

motion recognition using BSNs, and they proposed a compression algorithm based on

interception and differential encoding techniques. Hu et al. [14] analyzed bio-medical

signals from low power BSNs and utilized an algorithm named Joint Orthogonal

Matching Pursuit (JOMP) which could control interval times thereby reduce the amount

of data processing and transmission. Charbiwala et al. [15], evaluated the effectiveness of

a wireless Neural Recording System (NRS) and proposed using on-chip detection of

action potentials, combined with compressive sensing techniques. Manikandan et al. [16]

presented an ECG data compression algorithm based on Discrete Sinc Interpolation (DSI)

technique which used an efficient Discrete Fourier Transform (DFT) to achieve

compression and decompression. Tiwari et al. [17] did a survey and experimentation on

classical lossless compression techniques like LZW, Huffman, and so forth and proposed

a new algorithm named Aggregated Deflate-RLE (ADR) compression technique which

combined Deflate and RLE compression techniques and achieved better performance.

 11

4. EXISTING LOSS COMPRESSION TECHNIQUES: ALGORITHMS AND
EXPERIMENTAL EVALUATIONS

4.1 Review of Existing Lossless Compression Techniques

A brief description about lossless compression algorithms like Run Length

Encoding, Huffman Encoding, Lempel Zev Welch is given below.

4.1.1 Run Length Encoding Algorithm

Run Length Encoding is an algorithm where characters/symbols that are repeating

in a sequence are coded just once. E.g., the input of WWWWWWBBBWWWB, gives

the output as 6W3B3W1B when it is passed through the RLE algorithm. The algorithm is

efficient if there are a lot of repeating symbols like an image with a line graph where

pixels in the background color are the same.

Pseudocode [18]:

1 Loop: count = 0
2 REPEAT
3 get next symbol
4 count = count + 1
5 UNTIL (symbol unequal to next one)
 output symbol
6 IF count > 1
7 output count
8 GOTO Loop

4.1.2 Huffman Encoding Algorithm

Huffman encoding is an algorithm where symbols are encoded with bits in such a

way that more frequently occurring symbols are assigned smaller bit strings. As an input

Huffman would need an array or lookup table of frequencies for each symbol that may be

in the dataset. The frequency can be pre-computed using a test dataset.

 12

Pseudocode [19]:

1 Create a leaf node for each symbol and
 add it to the priority queue.
2 While there is more than one node in
 the queue:
3 Remove the node of highest priority
 (lowest probability) twice to get
 two nodes.
4 Create a new internal node with
 These two nodes as children and
 with probability equal to the sum
 of the two nodes’ probabilities.
5 Add the new node to the queue.
6 The remaining node is the root node
 and the tree is complete.

4.1.3 Lempel Zev Welch (LZW) Algorithm

LZW compression is an algorithm where a sequence of symbols is mapped to a

code from a lookup table. The lookup table initially has codes 0-255 to represent single

bytes and the algorithm adds more symbol-sequences and codes as it reads the text.

Pseudocode [20]:

1 Initialize table with single character strings
2 P = first input character
3 WHILE not end of input stream
4 C = next input character
5 IF P + C is in the string table
6 P = P + C
7 ELSE
8 output the code for P
9 add P + C to the string table
10 P = C
11 END WHILE
12 output code for P

 13

4.1.4 Data Chunking and TTTD Algorithm

Data Chunking is a technique primarily used in data deduplication systems for

deduping data in files to reduce storage costs. During data chunking, the algorithm breaks

data into smaller data elements called ‘chunks’. Chunks are then fingerprinted and used

later for duplicate detection. The simplest approach of data chunking, called ‘Fixed size

chunking’, is to break the input into equal, fixed-size chunks. However, this approach has

some key issues like ‘Boundary Shift problem’ and large Chunk size variances.

The concerns around the boundary-shift problem were addressed by content-

defined chunking (CDC) algorithm which was proposed in Low Bandwidth Filesystem

(LBFS) [21]. As shown in Figure 2, CDC uses a basic sliding window (BSW) technique

where the sliding window W shifts one byte at a time from the beginning to the end of the

file. During every shift, it computes a hashvalue h for the data in the window. The

hashvalue is computed using Rabin Fingerprinting which makes it faster. The satisfying

pre-condition in this instance is (h mod D) = R. The divisor D is a divisor that is chosen

at the beginning depending on the average chunk size desired. R could be 0 or some

number that is less than D. If the pre-condition is met, the algorithm sets that point P, as

the breakpoint for the chunk boundary. Then a hash of the chunk is done and stored in

memory with the key as the hash and value as either the data or compressed data. Before

the hash is stored, a lookup is done to see if the hash already exists. If yes, just a pointer

to the position is stored thereby reducing the space needed.

 14

Figure 2. Sliding Window Algorithm

The TTTD algorithm, developed by HP laboratory [22] to solve the problem of

large chunk sizes, uses the same concept as above with some modifications. As the name

suggests, there are two thresholds, a maximum threshold (maxT) and a minimum

threshold (minT), to limit the chunk sizes between two boundaries. In addition to this,

there is a second divisor (second), which is used to determine backup breakpoint. The

TTTD-S algorithm, developed at San Jose State University, is an improvement over

TTTD where a parameter switch is used to improve the probability of using the main

divisor thereby bringing the average chunk size closer to the middle of the two

boundaries.

Though the TTTD algorithm is primarily used to optimize file storage in local or

cloud storage systems, one of the objectives of this research is to evaluate if this

algorithm could also be used for small data sizes with different parameters.

Pseudocode [26]:

1 int currP = 0, lastP = 0, backupBreak = 0 ;
2
3 for (; ! endOfFile(input) ; currP++) {
4 unsigned char c = getNextByte(input) ;
5 unsigned int hash = updateHash(c) ;
6
7 if (currP – lastP < minT) {

 15

8 continue ;
9 }
10 if ((hash % secondD) = = secondD – 1) {
11 backupBreak = currP ;
12 }
13 if ((hash % mainD) = = mainD – 1) {
14 addBreakpoint(currP) ;
15 backupBreak = 0 ;
16 lastP = currP ;
17 continue ;
18 }
19 if (currP – lastP < maxT) {
20 continue ;
21 }
22 if (backupBreak != 0) {
23 addBreakpoint(backupBreak) ;
24 lastP = backupBreak ;
25 backupBreak = 0 ;
26 }
27 else {
28 addBreakpoint(currP) ;
29 lastP = currP ;
30 backupBreak = 0
31 }
32 }

4.2 Experimental Evaluations

The metrics used for the analysis of the runtime results of the compression

algorithms above are outlined below.

4.2.1 Metrics for Analysis

TABLE 2. METRICS FOR COMPRESSION ANALYSIS

Metric Description Formula

File Size (FS) File size in bytes -

Compressed File Size (CS) File size of the compressed
file in bytes -

 16

Metric Description Formula

Compression Time (CT) Time taken to compress the
file in milliseconds -

Compression Ratio (CR) Ratio of compressed file size
to Original file size CS / FS

Savings Percentage (SP) Percentage of reduction in
file size after compression

100 *
((FS – CS) / FS)

Compression Factor (CF) Ratio of Original file size to
Compressed file size FS / CS

4.2.2 Experimental Objectives

The main objective of the experiments was to run the various algorithms to

compute FS, CS, CT, CR, SP and CF for files with varying sizes. The data characteristics

are similar among files. All files were data from Fitbit [23], a wearable device that has

sensors like accelerometers and gyroscopes to measure steps and activity intensities

during the course of a day. Files of smaller sizes were chosen since sensors typically do

not have large RAMs available.

4.2.3 Experimental Configurations

The experiments were conducted on a machine with following hardware:

• 2.8 GHz Intel Core i7 2.8 GHz processor

• 16 GB 1600 MHz DDR3 Memory.  

• 500GB Flash hard disk drive.  

The configurations for the algorithms were as follows:

• RLE: Regex to find letters “[0-9]+|[a-zA-Z]”.

• Huffman: Size of frequency count table, R = 256.

 17

• LZW: Number of input chars, R = 256; Codeword width, W = 12; Number

of codewords, L = 2^W = 4096.

• TTTD: Prior to running this experiment, TTTD algorithm was run on the

dataset with different sets of parameters. The initial trial was with the

defaults from the original paper’s optimal values by Eshghi, et al. [22],

which were window size of 48 bytes, main divisor as 540, secondary

divisor as 270, maxT and minT as 2800 and 460 respectively. These values

resulted in the compressed file size being the same as the original file.

After different trials, the following parameters were arrived at. These gave

an optimal (>50%) reduction in the file sizes.

TABLE 3. TTTD PARAMETERS
Parameter Name Value

Window Size (bytes) 4

Main Divisor (mainD) 540

Second Divisor (secondD) 270

Maximum Threshold (maxT) 15

Minimum Threshold (minT) 5

TABLE 4. DATASETS USED FOR THE EXPERIMENTS (FITBIT DATA)
Dataset

No. Data Name Data Type File Size
(Bytes)

#1 Steps per day *.csv 25,175

#2 Intensities per day *.csv 70,581

#3 Intensities per hour *.csv 482,671

#4 Steps per hour *.csv 796,562

#5 Steps per minute *.csv 3,481,174

 18

4.3 Experimental Results

The dataset was compressed using the algorithms mentioned above, and results

were recorded to have a side-by-side comparison.

TABLE 5. COMPARISON OF VARIOUS COMPRESSION ALGORITHMS
 FS CS CT CR SP

H
uf

fm
an

25,175 11,971 130 0.476 52.45

70,581 32,634 138 0.462 53.76

482,671 242,107 155 0.502 49.84

796,562 399,955 181 0.502 49.79

3,481,174 1,137,343 311 0.327 67.33

LZ
W

25,175 9,200 203 0.365 63.46

70,581 26,825 423 0.380 61.99

482,671 161,429 7398 0.334 66.56

796,562 268,850 18865 0.338 66.25

3,481,174 621,182 199799 0.178 82.16

R
LE

25,175 47,021 135 1.868 -86.78

70,581 117,753 140 1.668 -66.83

482,671 851,493 182 1.764 -76.41

796,562 1,432,065 208 1.798 -79.78

3,481,174 6,769,007 455 1.944 -94.45

TT
TD

25,175 24,262 199 0.964 3.63

70,581 65,543 249 0.929 7.14

482,671 174,672 402 0.362 63.81

796,562 363,847 459 0.457 54.32

 19

 FS CS CT CR SP

3,481,174 989,000 1090 0.284 71.59

4.4 Experimental Observations

• Compressed File Size (CS): The compressed file for RLE was larger than the original

file, and hence RLE would not be a good fit for this type of data. TABLE 5. shows

that compressed file size grows linearly with input size. LZW performs better than

Huffman and TTTD algorithms in terms of compressed file size.

• Compression Ratio (CR): Compression Ratio is consistent for Huffman Algorithm for

files of 25KB, 71KB, 483KB and 796KB files. For 3.5MB file, the ratio is better than

smaller files. Of all the algorithms, LZW had the best CR for all sizes of files,

followed by TTTD and then Huffman. LZW and TTTD algorithms perform much

better for larger files than smaller ones in terms of CR.

• Compression Factor (CF): Since Compression Factor is reciprocal of Compression

Ratio, the observations there apply to this also. Huffman is quite stable and LZW has

the best compression factor.

• Savings Percentage (SP): Huffman is stable in terms of Savings percentage. LZW has

higher SP in comparison to Huffman but not by a great margin. TTTD has lower SP

in comparison to Huffman for smaller files but better SP in comparison to Huffman

for larger files.

• Compression Time (CT): Compression time is very high for LZW in comparison to

other algorithms. LZW took 199 seconds in comparison to 0.3 seconds for Huffman

 20

and 1.1 seconds for TTTD. Huffman is best in terms of Compression time, followed

by RLE and then TTTD.

 21

5. PROPOSED METHOD

5.1 Experiment with Combination of Algorithms

Comparisons of algorithms in the last section gave the following insights:

• TTTD and LZW outranked other algorithms in terms of compressed file

size, compression ratio, compression factor and savings percentage.

• TTTD and Huffman outranked other algorithms in terms of Compression

Time.

• RLE was not suitable for this type of data since the Compression ratio was

greater than 1.

The above insights brought forth the idea that perhaps multiple algorithms could

be used to compress the compressed data and give an overall efficiency to the system.

Hence in the next stage of experiments, the algorithms – Huffman, LZW and TTTD were

run in a sequence in different orders with the output from the first algorithm being the

input for the second. TABLE 6. has the results of performance of different combinations.

The sequence TTTD -> LZW -> Huffman (TLH) performed better than others in terms of

Compression Ratio. The sequence TTTD -> Huffman -> LZW (THL) performed better in

terms of Compression Time. Since LZW takes time, when the experiment was run by

removing LZW from the chain, the TTDD->Huffman (TH) algorithm performed much

better in terms of time and was only fractionally different in terms of Compression Ratio

and Savings percentage.

 22

TABLE 6. PERFORMANCE OF ALGORITHMS IN DIFFERENT
COMBINATIONS

Algorithm FS CS CT CR SP

HLT (Huffman-LZW-TTTD) 3481174 760956 76087 0.219 78.14

HTL (Huffman-TTTD-LZW) 3481174 700017 52449 0.201 79.89

LHT (LZW-Huffman-TTTD) 3481174 613565 194295 0.176 82.37

LTH (LZW-TTTD-Huffman) 3481174 611280 194090 0.176 82.44

THL (TTTD-Huffman-LZW) 3481174 455984 18517 0.131 86.90

TLH (TTTD-LZW-Huffman) 3481174 353831 31703 0.102 89.84

TH (TTTD-Huffman) 3481174 408642 1249 0.117 88.26

TL (TTTD-LZW) 3481174 355863 31840 0.102 89.78

Based on the results, the proposal is to run TTTD and Huffman in sequence on the

data, with the output of TTTD being the input of Huffman.

5.2 Outline of the Proposed Algorithm

Figure 3. Outline of the Proposed Algorithm

 23

6. PERFORMANCE EVALUATION

The proposed method was run on the data used in the baseline experiments (Fitbit

data) and also on additional data to support the research. The second set of data was

obtained from UCI (University of California, Irvine)’s ‘Heterogeneity Activity

Recognition Data Set’. Fitbit dataset had data about steps and intensities recorded by

Fitbit wearable device. The Smartphone dataset has data from readings that were

recorded while users executed activities carrying smartwatches and smartphones.

6.1 Fitbit Dataset

The metrics used for the analysis of the runtime results of the proposed

compression algorithm are as outlined in Section 4. Below, the results are compared with

the existing techniques.

TABLE 7. PERFORMANCE OF PROPOSED ALGORITHM IN COMPARISON
TO OTHER COMPRESSION ALGORITHMS

Sl.
No Algorithm FS

(bytes)
CS

(bytes)
CT

(ms) CR SP CF

1 Huffman 25,175 11,971 130 0.476 52.45 2.10

2 Huffman 70,581 32,634 138 0.462 53.76 2.16

3 Huffman 482,671 242,107 155 0.502 49.84 1.99

4 Huffman 796,562 399,955 181 0.502 49.79 1.99

5 Huffman 3,481,174 1,137,343 311 0.327 67.33 3.06

6 LZW 25,175 9,200 203 0.365 63.46 2.74

7 LZW 70,581 26,825 423 0.380 61.99 2.63

8 LZW 482,671 161,429 7398 0.334 66.56 2.99

9 LZW 796,562 268,850 18865 0.338 66.25 2.96

 24

10 LZW 3,481,174 621,182 199799 0.178 82.16 5.60

11 TTTD 25,175 24,262 199 0.964 3.63 1.04

12 TTTD 70,581 65,543 249 0.929 7.14 1.08

13 TTTD 482,671 174,672 402 0.362 63.81 2.76

14 TTTD 796,562 363,847 459 0.457 54.32 2.19

15 TTTD 3,481,174 989,000 1090 0.284 71.59 3.52

16 TTTD-H 25,175 11,520 398 0.458 54.24 2.19

17 TTTD-H 70,581 30,336 404 0.430 57.02 2.33

18 TTTD-H 482,671 87,531 566 0.181 81.87 5.51

19 TTTD-H 796,562 185,465 616 0.233 76.72 4.29

20 TTTD-H 3,481,174 408,642 1263 0.117 88.26 8.52

1) Compressed File Size: As shown in Figure 4, compressed size for TTTD-H is much

lower than Huffman, LZW and TTTD. It is almost half of what Huffman or TTTD

has individually. For small file sizes, LZW is better than other algorithms. For 25KB

file, LZW compresses it to 9KB while TTTD is only 24KB. The proposed algorithm,

TTTD-H is closer to LZW in terms of compressed file size, compressing the input to

11.5KB. As the file size becomes larger, especially after 100KB, TTTD and TTTD-H

easily trumps other algorithms. For a 3.5 MB file, the output from LZW is 621KB

while the output from TTTD-H is only 408KB, 50% better than LZW.

 25

Figure 4. Comparison of Compressed file sizes with TTTD-H

2) Compression Ratio: As shown in Figure 5, the compression Ratio for TTTD-H is

lower than Huffman, LZW and TTTD. For smaller files, the compression ratio of

TTTD-H is comparable to that of Huffman and LZW, but for larger files, TTTD-H is

much better. The ratio is 11.7% for a 3.5MB file in comparison to 17.8% for LZW

and 32.7% for Huffman.

Figure 5. Comparison of Compression Ratio with TTTD-H

 26

3) Compression Factor: Compression factor is the reciprocal of Compression Ratio and

the values mirror the results in Compression Ratio chart in the other direction. As

illustrated in

4)

5) Figure 6, the Compression Factor for TTTD-H is higher than Huffman, LZW and

TTTD. Compression factor for TTTD-H is 8.52 for a 3.5MB file in comparison to

that of 5.6 for LZW and 3.06 for Huffman.

 27

Figure 6. Comparison of Compression Factor with TTTD-H

6) Savings Percentage: From Figure 7, it is clear that the Savings Percentage for TTTD-

H is higher than Huffman, LZW and TTTD. The Savings Percentage is 54% for

TTTD-H for 25KB file in comparison to 63% for LZW and 52% for Huffman. For

larger files, however, TTTD-H has much better savings which are in line with

Compression Ratio. For a 3.5MB file, the Savings percentage is 88% for TTTD-H

much higher than other algorithms.

 28

Figure 7. Comparison of Savings Percentage with TTTD-H

7) Compression Time: Illustrated in

8)

9) Figure 8, the Compression Time for TTTD-H is higher than that of TTTD or

Huffman but lower than LZW. LZW took close to 200,000 milliseconds to compress

 29

a file of size 3.5MB. TTTD-H in comparison took only 1,200 milliseconds. As

mentioned earlier, the value for TTTD-H is higher than other but the Compression

Ratio and Savings Percentages are much higher. Since the value is only 0.2 seconds

higher than TTTD for 3.5 MB file, this is the small increase to pay for the extra

compression ratio. The benefit from making network bandwidth better by reducing

the amount of data sent during I/O calls outweighs the Compression Time concerns.

Figure 8. Comparison of Compression Time with TTTD-H

6.2 Smartphone & Smartwatch Dataset

Further experiments were conducted with different sets of wearable sensor data to

determine if the results were consistent. UCI dataset on Heterogeneity Activity

Recognition [28] was used for this experiment. This dataset contains the readings of

motion sensors from smartphones to track activities like ‘Biking’, ‘Walking’, ‘Walking

 30

up the stairs’, and so forth. The data was from devices like Samsung Galaxy S3, LG

Nexus, Galaxy Gear, and so forth.

TABLE 8. DATASET USED FOR THE EXPERIMENTS (SMARTPHONE DATA)
Dataset No. Data Name Data Type File Size (Bytes)

#1 Phones accelerometer *.csv 498,034

#2 Phones gyroscope *.csv 1,100,585

#3 Samsung Galaxy Gear *.csv 2,038,622

#4 Watch accelerometer *.csv 4,322,183

#5 Watch gyroscope *.csv 6,512,577

1) Compressed File Size: As shown in

2) Figure 9, compressed size for TTTD-H is much lower than Huffman, LZW and

TTTD. It is almost half of what Huffman or TTTD has individually.

 31

Figure 9. Comparison of Compressed file sizes with TTTD-H

3) Compression Ratio: As shown in

4) Figure 10, the compression Ratio for TTTD-H is lower than Huffman, LZW and

TTTD.

 32

Figure 10. Comparison of Compression Ratio with TTTD-H

5) Compression Factor: As illustrated in

6) Figure 11, the Compression Factor for TTTD-H is higher than Huffman, LZW and

TTTD.

 33

Figure 11. Comparison of Compression Factor with TTTD-H

7) Savings Percentage: From Figure 12, it is clear that the Saving Percentage for TTTD-

H is higher than Huffman, LZW and TTTD.

Figure 12. Comparison of Savings Percentage with TTTD-H

 34

Compression Time: Illustrated in

8) Figure 13, the Compression Time for TTTD-H is higher than that of TTTD or

Huffman but much lower than LZW. The Savings Percentage and Compression Ratio

is much higher for TTTD-H.

 35

Figure 13

Figure 13. Comparison of Compression Time with TTTD-H

6.3 Analysis of Energy Consumption

6.3.1 Formula for Energy Consumption

Another important criteria to decide on the compression algorithm for BSN data is

the rate of energy consumption at the sensor. As mentioned in Section 3.1 The Need for

Compression of BSN Data, reducing the battery power is one of the main goals of

compression. Thus, the amount of extra energy needed for compression should be less

than the amount of energy that is saved due to the reduced number of bits that are

transmitted. Shin et al. [29], in their paper on ‘Analysis of Low Power Sensor Node Using

Data Compression’ formulated this as follows –

Pno_compression = Pmemory + Psensing + Pprocessing + Ptransmission

Pwith_compression = Pno_compression + DPmemory + DPprocessing - DPtransmission

 36

where

• DPmemory + DPprocessing are the power consumption increases for extra

memory and processing that occurs due to compression.

• DPtransmission is the power saving due to lesser amount of data that is being

sent.

For compression to be useful, the following condition should be satisfied

DPmemory + DPprocessing < DPtransmission

The amount of energy needed for computation is more than that needed for

storing data in memory. Since DPprocessing is the upper-bound, we could simplify the above

formula as

2DPprocessing < DPtransmission

In their paper on ‘Energy-aware lossless data compression’, Barr & Asanović

[30], performed experiments and summarized the energy consumptions for computations

and transmissions of sensor data. As per the analysis, the energy used by the processor

for a single ADD is 0.86 nJ (0.86 x 10-9 J) and the energy used for sending a single bit is

between 417 nJ (417 x 10-9 J) and 1090 nJ (1090 x 10-9 J). The paper mentions that

sending a single bit is equivalent to performing 485 to 1267 ADD operations. For our

computations, we take the average as 700 nJ for sending a single bit. Also, cache miss

consumes 78.34 nJ of energy per bit for writing data into memory and cache hit needs

2.41 x 10-9 J of energy. To summarize,

• The energy used for computation = 0.86 x 10-9 J

• The energy used for writing data into memory = 78.34 x 10-9 J

 37

• The energy used for reading data from memory = 2.41 x 10-9 J

• The energy used for transmission of 1 bit = 700 x 10-9 J

If we take the first experiment with Huffman as an example,

DPprocessing = DPcache_hit + DPcache_miss

DPprocessing = (FS – CS) * 8 * 2.41 * 10-9 + CS * 8 * 78.34 * 10-9 = 7.76 x 10-3 J

 where FS = File Size and CS = Compressed File Size, both in bytes.

DPtransmission = (FS – CS) * 8 * 700 * 10-9 = 73.94 x 10-3 J

We see that 2DPprocessing < DPtransmission holds true and Energy saved can be

calculated as DPtransmission – 2DPprocessing = 58.43 mJ.

6.3.2 Computation of Energy Savings due to compression

Figures 14-19 show the Increase in processing time, decrease in transmission time

and the energy saved due to compression for datasets #1 & #2. The actual energy saved

due to compression might be larger than the values in the table since we made

assumptions on upper bounds for energy consumption due to increased storage in

memory.

 38

Figure 14. Dataset 1 - Comparison of Increase in Energy during Computation

Figure 15. Dataset 1 - Comparison of Decrease in Energy during Transmission

 39

Figure 16. Dataset 1 - Comparison of Energy Saving due to Compression

TTTD-H consumes more energy during compression as expected and since

compresses more data, the energy saving is higher because the transmission cost is much

higher than the power used during computation.

Figure 17. Dataset 2 - Comparison of Increase in Energy during Computation

 40

Figure 18. Dataset 2 - Comparison of Decrease in Energy during Transmission

Figure 19. Dataset 2 - Comparison of Energy Saving due to Compression

 41

7. CONCLUSION

7.1 Summary

In this paper, we reviewed the concept of wearable and implantable BSN and their

lossless compression techniques, including RLE, LZW and Huffman. We also reviewed a

data chunking algorithm used in many deduplication systems named TTTD. Experiments

showed that Huffman is a stable algorithm, LZW had better compression ratio but takes

more time. TTTD had lower compression ratio than LZW but was much faster. After this,

we ran experiments by combining algorithms, and found that the sequence TTTD -> LZW

-> Huffman performed better than others in terms for Compression Ratio and the

sequence TTTD -> Huffman -> LZW performed better in terms of Compression Time.

Finally, we proposed TTTD -> Huffman (TTTD-H) algorithm which performed

significantly better than all the individual algorithms, with a slight increase in

compression time. The result on improved compression factor implied a substantial

reduction on sensor data to be transmitted; and therefore, a sizable saving on transmission

energy.

7.2 Future Work

From LifeShirt (intelligent medical garment), STARPATCH (wireless cardiac

monitoring) and IntelliDrug (implantable drug dispensing) reviewed by D Konstantas

[24] in 2007, to implantable chips the size of a grain of rice in 2017, the last decade has

seen an explosion of new sensors enter the market. Processes to analyze and store data

analysis need to adapt to the growing demand and this area that needs more research.

Since wireless data transmission uses most of the power in the sensor, there is a need to

 42

have new methods to reduce the power consumption. That could be achieved by reducing

the amount of data sent across by compression as discussed in the paper, reducing the

amount of data sent across by sampling or by doing local processing. These efforts,

especially ‘local processing’ would need sensors to have bigger memories. Sensors with

more computing capability is another hot topic of research. The algorithm proposed in the

paper can further be enhanced in multiple ways. Data from TTTD algorithm can be

stored in a compressed form after a chunk is found. The chunk key lookup can be done

using BloomFilter to make the lookup faster.

Another area of future research and development could be to store the data from

sensors in the cloud after running through a data deduplication algorithm like TTTD.

TTTD-S [26] which is an improvement over TTTD would be better suited to dedupe

large amount of sensor data before storing them in the cloud. Storage in the cloud would

help in getting more insights from historical data. Processing data using TTTD can also

be parallelized. That means a large amount of data from multiple sensors can be deduped

and stored by using Map Reduce frameworks like Hadoop. In summary, data

compression and analyses of Wearable and Implantable BSN data is an important and

growing field of research.

 43

8. REFERENCES

[1] Dimitrov, D. V. (2016). Medical internet of things and big data in healthcare.
Healthcare informatics research, 22(3), 156-163.

[2] Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor
network solutions for healthcare monitoring. Sensors, 11(6), 5561-5595.

[3] Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., & Han, G. (2013). A survey of body
sensor networks. Sensors, 13(5), 5406-5447.

[4] Song, K. T., & Wang, Y. Q. (2005, November). Remote activity monitoring of the
elderly using a two-axis accelerometer. In Proceedings of the CACS Automatic
Control Conference (pp. 18-19).

[5] Chen, Y., & Duan, H. (2006, January). A QRS complex detection algorithm based on
mathematical morphology and envelope. In Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the (pp.
4654-4657). IEEE.

[6] Dong, L., Wu, J., Bao, X., & Xiao, W. (2006, June). Extraction of gait features using
a wireless body sensor network (BSN). In ITS Telecommunications Proceedings,
2006 6th International Conference on (pp. 987-991). IEEE.

[7] Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., & Havinga, P. (2010,
February). Activity recognition using inertial sensing for healthcare, wellbeing and
sports applications: A survey. In Architecture of computing systems (ARCS), 2010
23rd international conference on (pp. 1-10). VDE.

[8] Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on pattern analysis and machine intelligence, 27(8), 1226-1238.

[9] Krishnan, N. C., Juillard, C., Colbry, D., & Panchanathan, S. (2009). Recognition of
hand movements using wearable accelerometers. Journal of Ambient Intelligence and
Smart Environments, 1(2), 143-155.

[10] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless
sensor networks: a survey. Computer networks, 38(4), 393-422.

[11] Sadler, C. M., & Martonosi, M. (2006, October). Data compression algorithms for
energy-constrained devices in delay tolerant networks. In Proceedings of the 4th

 44

international conference on Embedded networked sensor systems (pp. 265-278).
ACM.

[12] Yoon, I., Kim, H., & Noh, D. K. (2017). Adaptive Data Aggregation and
Compression to Improve Energy Utilization in Solar-Powered Wireless Sensor
Networks. Sensors, 17(6), 1226.

[13] Wu, C. H., & Tseng, Y. C. (2011). Data compression by temporal and spatial
correlations in a body-area sensor network: A case study in Pilates motion
recognition. IEEE Transactions on Mobile Computing, 10(10), 1459-1472.

[14] Hu, F., Li, S., Xue, T., & Li, G. (2012). Design and analysis of low-power body
area networks based on biomedical signals. International Journal of Electronics,
99(6), 811-822.

[15] Charbiwala, Z., Karkare, V., Gibson, S., Markovic, D., & Srivastava, M. B.
(2011, May). Compressive sensing of neural action potentials using a learned union

 45

of supports. In Body Sensor Networks (BSN), 2011 International Conference on (pp.
53-58). IEEE.

[16] Manikandan, M. S., & Dandapat, S. (2005, December). ECG signal compression
using discrete sinc interpolation. In Intelligent Sensing and Information Processing,
2005. ICISIP 2005. Third International Conference on (pp. 14-19). IEEE.

[17] Tiwari, B., & Kumar, A. (2012, September). Aggregated Deflate-RLE
compression technique for body sensor network. In Software Engineering
(CONSEG), 2012 CSI Sixth International Conference on (pp. 1-6). IEEE.

[18] Kriegl, A. (2003, July). 3.3.1 Run-length encoding. Retrieved March 08, 2018,
from http://www.mat.univie.ac.at/~kriegl/Skripten/CG/node44.html.

[19] Rosettacode.org. (2018, March). Huffman coding. Retrieved March 10, 2018,
from https://rosettacode.org/wiki/Huffman_coding.

[20] Saikia, A. R. (n.d.). LZW (Lempel–Ziv–Welch) Compression technique.
Retrieved March 10, 2018, from https://www.geeksforgeeks.org/lzw-lempel-ziv-
welch-compression-technique.

[21] Muthitacharoen, A., Chen, B., & Mazieres, D. (2001, October). A low-bandwidth
network file system. In ACM SIGOPS Operating Systems Review (Vol. 35, No. 5,
pp. 174-187). ACM.

[22] Eshghi, K., & Tang, H. K. (2005). A framework for analyzing and improving
content-based chunking algorithms. Hewlett-Packard Labs Technical Report TR,
30(2005).

[23] Ismail, S. (2018). Health datasets from Fitbit, Retrieved Feb 2018 from
https://github.com/health-hacks/datasets/tree/master/fitbit.

[24] Konstantas, D. (2007). An overview of wearable and implantable medical sensors.
Yearbook of medical informatics, 7(1), 66-69.

[25] Rabin, M. O. (1981). Fingerprinting by random polynomials. Cambridge, MA:
Center for Research in Computing Techn., Aiken Computation Laboratory, Univ.

[26] Moh, T., & Chang, B. (2010). A running time improvement for the two thresholds
two divisors algorithm. Proceedings of the 48th Annual Southeast Regional
Conference on - ACM SE '10. doi:10.1145/1900008.1900101.

[27] Bo, C., Li, Z. F., & Can, W. (2013). Research on Chunking Algorithms of Data
De-duplication. Proceedings of the 2012 International Conference on

 46

Communication, Electronics and Automation Engineering Advances in Intelligent
Systems and Computing, 1019-1025.doi:10.1007/978-3-642-31698-2_144.

[28] UCI Machine Learning Repository: Heterogeneity Activity Recognition Data Set.
(2015, October). Retrieved Feb 2018 from
https://archive.ics.uci.edu/ml/datasets/Heterogeneity Activity Recognition

[29] Shin, H. D., Ahn, S. W., Song, T. H., & Baeg, S. H. (2009). Analysis of Low
Power Sensor Node Using Data Compression. IFAC Proceedings Volumes, 42(3),
34-39.

[30] Barr, K. C., & Asanović, K. (2006). Energy-aware lossless data compression.
ACM Transactions on Computer Systems (TOCS), 24(3), 250-291.

	San Jose State University
	SJSU ScholarWorks
	Spring 2018

	COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM
	Robinson Raju
	Recommended Citation

	RAJU_ROBINSON_thesis_05_14

