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ABSTRACT 
 

COMPRESSION OF WEARABLE BODY SENSOR NETWORK DATA USING 
IMPROVED TWO-THRESHOLD-TWO-DIVISOR DATA CHUNKING ALGORITHM 

 
by Robinson Raju 

 
Compression plays a significant role in Body Sensor Networks (BSN) data since 

the sensors in BSNs have limited battery power and memory. Also, data needs to be 

transmitted fast and in a lossless manner to provide near real-time feedback. The paper 

evaluates lossless data compression algorithms like Run Length Encoding (RLE), Lempel 

Zev Welch (LZW) and Huffman on data from wearable devices and compares them in 

terms of Compression Ratio, Compression Factor, Savings Percentage and Compression 

Time. It also evaluates a data deduplication technique used for Low Bandwidth File 

Systems (LBFS) named Two Thresholds Two Divisors (TTTD) algorithm to determine if 

it could be used for BSN data. By changing the parameters and running the algorithm 

multiple times on the data, it arrives at a set of values that give >50 compression ratio on 

BSN data. This is the first value of the paper. Based on these performance evaluation 

results of TTTD and various classical compression algorithms, it proposes a technique to 

combine multiple algorithms in sequence. Upon comparison of the performance, it has 

been found that the new algorithm, TTTD-H, which does TTTD and Huffman in 

sequence, improves the Savings Percentage by 23 percent over TTTD, and 31 percent 

over Huffman when executed independently. Compression Factor improved by 142 

percent over TTTD, 52 percent over LZW, 178 percent over Huffman for a file of 3.5 

MB. These significant results are the second important value of the project.  

Keywords: body sensor network, compression, TTTD, Huffman, data chunking 
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1. INTRODUCTION 

As the population of the world rises and healthcare costs increase worldwide, 

human health monitoring has become a critical research area, since it helps tremendously 

in containing the expenses related to healthcare and enhancing the customer experience 

[1]. Though there have been devices to measure vital statistics from a person's body, they 

have mostly been wired, large and conspicuous. Recent trends towards improvements in 

micro-electro-mechanical systems (MEMS) technology [2], wireless communications, 

and digital electronics have allowed the development of miniature, low-cost, low power, 

multi-functional sensor that can sense and transmit data wirelessly. One family of these 

devices is wearable and implantable Body Sensor Networks (BSNs), which are IoT 

(Internet of Things) devices that can transmit health-related data from a person wirelessly 

to a node. The data can be used to monitor vital signs and provide real-time feedback. 

The data can also be used for machine learning and predictive analytics, to foresee 

medical infrastructure needs and lead the world towards a future of ubiquitous healthcare 

monitoring. Since real-time data analysis is critical in many cases, transmitting the data 

from sensors to sink nodes with speed and ease is vital. The sensors in the BSN have 

limited battery and memory available, and this makes data compression very crucial in a 

BSN. Also, since the data in question is related to health information, it should be 

accurate, and the compression algorithms have to be lossless. As the technology 

improves, the number of sensors and the amount of data that a sensor can capture and 

transmit also increases. This is another reason to focus on data compression at the sensor 

nodes.   
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The primary objective of the paper is to evaluate the performance of classical data 

compression algorithms and Two Thresholds Two Divisors (TTTD) data chunking 

algorithm on BSN data. The paper starts by giving a background on BSN, the general 

architecture, types of sensors, followed by data processing steps common in most BSNs. 

It then reviews existing research on compression of BSN data. After this, it gives a short 

overview of lossless compression algorithms like Huffman, LZW and RLE and data 

chunking technique called TTTD. It then reviews the results of experimental evaluation 

the aforementioned algorithms on BSN data. It establishes that TTTD can be used to 

compress BSN data with a different set of parameters, and has performance that is 

comparable to other algorithms. After the experimental evaluations, the paper proposes 

an approach to combine TTTD and Huffman algorithms to compress data more 

efficiently. This algorithm, TTTD-H is then evaluated on BSN data from multiple sources 

like Fitbit and smartphone datasets. 
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2. BACKGROUND 

2.1 General Architecture of a BSN 

A Body Sensor Network (BSN), is a wireless network of wearable computing 

devices. BSNs may be   

• Embedded inside the body as implants 

• Placed on the body in a fixed position 

• In accompanied devices which people carry around, like in pockets, by hand, 

in a bag, and so forth.  

Figure 1 describes the general architecture of a BSN. The sensor nodes at 

different parts of the body collect physical data and transmit to the sink node which then 

transmits it to the base station. Some sensors directly transmit to the base station or send 

data via Bluetooth to smartphones.  

 
Figure 1. The Architecture of a Body Sensor Network 
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2.2 Sensors in a BSN 

Sensors are IoT devices that connect the physical world with the measuring 

system and eventually, the internet. They collect information about the surrounding and 

are responsible for processing information and transmitting them. A sensor node 

ordinarily comprises the following modules [3]:   

• Sensor module 

• Processor module 

• Wireless communication module  

• Power supply module 

While the sensor module collects and converts physical data into electrical 

signals, the wireless communication module transports the signal to various devices. The 

processor module controls the sensor nodes, and the power supply module provides 

energy to the nodes.  

2.2.1 Classification of Sensors 

Sensors could be classified by BSN attributes like types of signals, transmission 

media, deployment position, and so forth [3]. 

Classification by Types of Measured Signals 

a) Sensors that collect continuous time-varying signals: This type of sensor 

collects data continuously, and the main requirement here would be real-

time transfer of information. The continuous signal sensors can also 

generate a lot of data. Accelerometers or gyroscopes used in 
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Smartwatches, ECG, EEG, EMG sensors are examples of these type of 

sensors.  

b) Sensors that collect discrete time-varying physiology signals: This type of 

sensor collects signals in discrete intervals. Temperature and humidity 

sensors capture measurements every ‘x’ minutes or hours,  blood pressure 

monitors and measure BP every hour or day are examples of these types of 

sensors. 

Classification by data transmission media 

a) Wireless sensors: These sensors employ wireless communication 

technologies like Bluetooth, Zigbee, RFID, and so forth to communicate 

with other devices. 

b) Wired sensors: These sensors are physically connected to other devices 

and transmit the data through wires. 

c) Human body communication (HBC) sensors: These sensors use the human 

body as the transmission medium and they adopt sub-GHz frequencies for 

transmission. 

Other Classifications 

a) The sensors can also be classified based on deployment position as 

Wearable, Implantable or Surrounding. They can also be classified based 

on the automatic adjustment ability whether they are self-adapting or not.  
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2.2.3 Commonly Used Sensors in BSNs 

TABLE 1. COMMONLY USED SENSORS IN BSNs 
Sensors Signal Type Frequency Position 

Accelerometer Continuous High Wearable 

Artificial cochlea Continuous High Implantable 

Artificial retina Continuous High Implantable 

Blood-pressure sensor Discrete Low Wearable 

Camera pill Continuous High Implantable 

Carbon dioxide sensor Discrete Low/ 
Very low Wearable 

ECG/EEG/ 
EMG sensor Continuous High Wearable 

Gyroscope Continuous High Wearable 

Humidity sensor Discrete Very low Wearable 

Blood oxygen saturation 
sensor Discrete Low Wearable 

Pressure sensor Continuous High Wearable/ 
Surrounding 

Respiration sensor Continuous High Wearable 

Temperature sensor Discrete Very low Wearable 

Visual sensor Continuous/ 
Discrete 

High/ 
Low 

Wearable/  
Surrounding 

 
2.3 Data Processing in BSNs 

Data Processing, also referred to as Data fusion, is a process for handling the data 

from the sensors in an efficient manner. BSNs produce a considerable amount of data and 

data processing techniques are needed to filter noise efficiently, combine data from 

multiple sensors, extract necessary information and transmit to devices that need the 
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information for analysis. The following is a summarization of different steps in data 

fusion [3]. 

a) Pre-processing: Since the wireless and implantable sensors are constantly in a 

dynamic environment, the data that comes out of these sensors can many 

times have a lot more information than what is pertinent to being measured. 

‘pre-processing’ is a step to remove the noise from the data without losing the 

vital information. Some of the techniques used for preprocessing are Fourier 

Transform, Wavelet Transform [4], Mathematical morphology filters [5], 

Kalman filter [6], Low-pass median value filter, Laplacian Transform, 

Gaussian filter and so forth.   

b) Feature Extraction: The principal objective of this step is to extract features 

that represent the characteristics of the original data accurately. The classifiers 

use the features as inputs. Techniques regularly used in feature extraction 

include Support Vector Machine (SVM), K-Means clustering, Principal 

Component Analysis (PCA), Independent Component Analysis (ICA), and so 

forth. Commonly used features are time-Domain Features like Variance and 

Root Mean Square (RMS), frequency-Domain Features like Spectral Energy 

and Spectral Entropy, time-Frequency Domain Features like Wavelet 

Coefficients, heuristic Features like Signal Magnitude Area (SMA), Signal 

Vector Magnitude, and Inter-Axis Correlation and domain-specific Features 

like Time-Domain Gait Detection [7]. 
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c) Data Processing (Computing): The chief objective of the data computing step 

is to use Algorithms to analyze the data. Machine Learning Algorithms could 

be used to do Classification or Clustering. As per Lai et al. [3], the commonly 

used algorithms include thresh-old-based classification, hierarchical methods, 

decision trees, and K-Nearest Neighbor (KNN), Support Vector Machines 

(SVM), Artificial Neural Networks (ANN), Hidden Markov Models (HMM) 

and so forth.  Peng et al. [8], recognized fourteen physical activities using a 

binary decision-tree with a Naïve Bayes classifier. Krishnan et al. [9], 

conducted research on how AdaBoost, HMM, and KNN, are used to analyze 

data from accelerometers to identify human hand activity. 

d) Data Compression: After noise reduction, feature extraction, and optionally 

data fusion, the sensor nodes do compression of the data before sending it to 

the sink node or the base station. Data compression reduces the amount of 

data transmission and also lowers power consumption. This is important since 

power consumption is one of the main areas of concern in a WSN or a BSN 

[10]. Data Compression is the main topic of exploration in this paper. 
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3. RELATED STUDIES 

3.1 The Need for Compression of BSN Data 

As mentioned in the previous section, it is essential to compress the data from 

WIBSNs since the devices are small and data generated can be very frequent. The 

reasons for compression can be summarized as follows:   

• Battery power: The sensors are small, and the battery has limited power.  

• Network bandwidth: Compressed data needs less bandwidth. A lot of data from 

multiple sensors might be sharing the same channel to send information to the 

base station.  

• Data staleness: Data loses effectiveness if not sent within a short period, 

especially in cases where it is life critical.  

• Data security: Data sent in raw format could be snooped by other devices thereby 

compromising the privacy and security of the individual whose data is collected.  

3.2 Review of research on BSN data compression  

In their survey of BSNs, Lai et al. [3], mention that data compression in BSNs can 

be done using classical compression algorithms such as source encoding, differential 

encoding, and Huffman encoding. Sadler et al. [11] did a study on Data compression 

algorithms for energy-constrained devices and proposed a variant of Lempel Zev Welch 

(LZW) algorithm named s-LZW to reduce the amount of data sent across the network. 

Yoon et al. [12] used the s-LZW scheme as the compression method to improve energy 

utilization in solar-powered WSNs. It is also noted in the paper that s-LZW is a lossless 

compression algorithm widely used in WSNs. Wu et al. [13] did a case study on Pilates 
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motion recognition using BSNs, and they proposed a compression algorithm based on 

interception and differential encoding techniques. Hu et al. [14] analyzed bio-medical 

signals from low power BSNs and utilized an algorithm named Joint Orthogonal 

Matching Pursuit (JOMP) which could control interval times thereby reduce the amount 

of data processing and transmission. Charbiwala et al. [15], evaluated the effectiveness of 

a wireless Neural Recording System (NRS) and proposed using on-chip detection of 

action potentials, combined with compressive sensing techniques. Manikandan et al. [16] 

presented an ECG data compression algorithm based on Discrete Sinc Interpolation (DSI) 

technique which used an efficient Discrete Fourier Transform (DFT) to achieve 

compression and decompression. Tiwari et al. [17] did a survey and experimentation on 

classical lossless compression techniques like LZW, Huffman, and so forth and proposed 

a new algorithm named Aggregated Deflate-RLE (ADR) compression technique which 

combined Deflate and RLE compression techniques and achieved better performance. 
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4. EXISTING LOSS COMPRESSION TECHNIQUES: ALGORITHMS AND 
EXPERIMENTAL EVALUATIONS 

4.1 Review of Existing Lossless Compression Techniques 

A brief description about lossless compression algorithms like Run Length 

Encoding, Huffman Encoding, Lempel Zev Welch is given below.  

4.1.1 Run Length Encoding Algorithm 

Run Length Encoding is an algorithm where characters/symbols that are repeating 

in a sequence are coded just once. E.g., the input of  WWWWWWBBBWWWB, gives 

the output as 6W3B3W1B when it is passed through the RLE algorithm. The algorithm is 

efficient if there are a lot of repeating symbols like an image with a line graph where 

pixels in the background color are the same.  

Pseudocode [18]:  

1 Loop: count = 0 
2  REPEAT 
3   get next symbol 
4   count = count + 1 
5  UNTIL (symbol unequal to next one)        
      output symbol 
6  IF count > 1 
7   output count 
8  GOTO Loop 

 
4.1.2 Huffman Encoding Algorithm 

Huffman encoding is an algorithm where symbols are encoded with bits in such a 

way that more frequently occurring symbols are assigned smaller bit strings. As an input 

Huffman would need an array or lookup table of frequencies for each symbol that may be 

in the dataset. The frequency can be pre-computed using a test dataset.  
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Pseudocode [19]:  

1 Create a leaf node for each symbol and  
     add it to the priority queue. 
2 While there is more than one node in  
     the queue: 
3   Remove the node of highest priority  
      (lowest probability) twice to get  
      two nodes. 
4   Create a new internal node with  
      These two nodes as children and  
      with probability equal to the sum  
      of the two nodes’ probabilities. 
5   Add the new node to the queue. 
6 The remaining node is the root node  
     and the tree is complete. 

 
4.1.3 Lempel Zev Welch (LZW) Algorithm 

LZW compression is an algorithm where a sequence of symbols is mapped to a 

code from a lookup table. The lookup table initially has codes 0-255 to represent single 

bytes and the algorithm adds more symbol-sequences and codes as it reads the text.  

Pseudocode [20]:  

1 Initialize table with single character strings 
2  P = first input character 
3  WHILE not end of input stream 
4    C = next input character 
5    IF P + C is in the string table 
6      P = P + C 
7    ELSE 
8      output the code for P 
9    add P + C to the string table 
10   P = C 
11 END WHILE 
12 output code for P 
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4.1.4 Data Chunking and TTTD Algorithm 

Data Chunking is a technique primarily used in data deduplication systems for 

deduping data in files to reduce storage costs. During data chunking, the algorithm breaks 

data into smaller data elements called ‘chunks’. Chunks are then fingerprinted and used 

later for duplicate detection. The simplest approach of data chunking, called ‘Fixed size 

chunking’, is to break the input into equal, fixed-size chunks. However, this approach has 

some key issues like ‘Boundary Shift problem’ and large Chunk size variances.  

The concerns around the boundary-shift problem were addressed by content-

defined chunking (CDC) algorithm which was proposed in Low Bandwidth Filesystem 

(LBFS) [21]. As shown in Figure 2, CDC uses a basic sliding window (BSW) technique 

where the sliding window W shifts one byte at a time from the beginning to the end of the 

file. During every shift, it computes a hashvalue h for the data in the window. The 

hashvalue is computed using Rabin Fingerprinting which makes it faster. The satisfying 

pre-condition in this instance is (h mod D) = R. The divisor D is a divisor that is chosen 

at the beginning depending on the average chunk size desired. R could be 0 or some 

number that is less than D. If the pre-condition is met, the algorithm sets that point P, as 

the breakpoint for the chunk boundary. Then a hash of the chunk is done and stored in 

memory with the key as the hash and value as either the data or compressed data. Before 

the hash is stored, a lookup is done to see if the hash already exists. If yes, just a pointer 

to the position is stored thereby reducing the space needed.   
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Figure 2. Sliding Window Algorithm 

 
The TTTD algorithm, developed by HP laboratory [22] to solve the problem of 

large chunk sizes, uses the same concept as above with some modifications. As the name 

suggests, there are two thresholds, a maximum threshold (maxT) and a minimum 

threshold (minT), to limit the chunk sizes between two boundaries. In addition to this, 

there is a second divisor (second), which is used to determine backup breakpoint. The 

TTTD-S algorithm, developed at San Jose State University, is an improvement over 

TTTD where a parameter switch is used to improve the probability of using the main 

divisor thereby bringing the average chunk size closer to the middle of the two 

boundaries.  

Though the TTTD algorithm is primarily used to optimize file storage in local or 

cloud storage systems, one of the objectives of this research is to evaluate if this 

algorithm could also be used for small data sizes with different parameters. 

Pseudocode [26]:  

1 int currP = 0, lastP = 0, backupBreak = 0 ; 
2 
3 for ( ; ! endOfFile( input ) ; currP++ ) { 
4    unsigned char c = getNextByte( input ) ; 
5    unsigned int hash = updateHash( c ) ; 
6 
7    if ( currP – lastP < minT ) { 
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8       continue ; 
9    } 
10   if (( hash % secondD ) = = secondD – 1 ) { 
11      backupBreak = currP ; 
12   } 
13   if (( hash % mainD ) = = mainD – 1 ) { 
14      addBreakpoint( currP ) ; 
15      backupBreak = 0 ; 
16      lastP = currP ; 
17      continue ; 
18   } 
19   if ( currP – lastP < maxT ) { 
20      continue ; 
21   } 
22   if ( backupBreak != 0 ) { 
23      addBreakpoint( backupBreak ) ; 
24      lastP = backupBreak ; 
25      backupBreak = 0 ; 
26   } 
27   else { 
28      addBreakpoint( currP ) ; 
29      lastP = currP ; 
30      backupBreak = 0 
31   } 
32 } 
 
4.2 Experimental Evaluations 

The metrics used for the analysis of the runtime results of the compression 

algorithms above are outlined below.  

4.2.1 Metrics for Analysis 

TABLE 2. METRICS FOR COMPRESSION ANALYSIS 

Metric Description Formula 

File Size (FS) File size in bytes - 

Compressed File Size (CS) File size of the compressed 
file in bytes - 
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Metric Description Formula 

Compression Time (CT) Time taken to compress the 
file in milliseconds - 

Compression Ratio (CR) Ratio of compressed file size 
to Original file size CS / FS 

Savings Percentage (SP) Percentage of reduction in 
file size after compression 

100 *  
((FS – CS) / FS) 

Compression Factor (CF) Ratio of Original file size to 
Compressed file size FS / CS  

 
4.2.2 Experimental Objectives   

The main objective of the experiments was to run the various algorithms to 

compute FS, CS, CT, CR, SP and CF for files with varying sizes. The data characteristics 

are similar among files. All files were data from Fitbit [23], a wearable device that has 

sensors like accelerometers and gyroscopes to measure steps and activity intensities 

during the course of a day. Files of smaller sizes were chosen since sensors typically do 

not have large RAMs available.  

4.2.3 Experimental Configurations  

The experiments were conducted on a machine with following hardware:  

• 2.8 GHz Intel Core i7 2.8 GHz processor 

• 16 GB 1600 MHz DDR3 Memory.   

• 500GB Flash hard disk drive.   

The configurations for the algorithms were as follows:  

• RLE: Regex to find letters “[0-9]+|[a-zA-Z]”.  

• Huffman: Size of frequency count table, R = 256.   
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• LZW: Number of input chars, R = 256; Codeword width, W = 12; Number 

of codewords, L = 2^W = 4096. 

• TTTD: Prior to running this experiment, TTTD algorithm was run on the 

dataset with different sets of parameters. The initial trial was with the 

defaults from the original paper’s optimal values by Eshghi, et al. [22], 

which were window size of 48 bytes, main divisor as 540, secondary 

divisor as 270, maxT and minT as 2800 and 460 respectively. These values 

resulted in the compressed file size being the same as the original file. 

After different trials, the following parameters were arrived at. These gave 

an optimal (>50%) reduction in the file sizes. 

TABLE 3. TTTD PARAMETERS 
Parameter Name Value 

Window Size (bytes) 4 

Main Divisor (mainD) 540 

Second Divisor (secondD) 270 

Maximum Threshold (maxT) 15 

Minimum Threshold (minT) 5 
 

TABLE 4. DATASETS USED FOR THE EXPERIMENTS (FITBIT DATA) 
Dataset 

No. Data Name Data Type File Size 
(Bytes) 

#1 Steps per day *.csv 25,175 

#2 Intensities per day *.csv 70,581 

#3 Intensities per hour *.csv 482,671 

#4 Steps per hour *.csv 796,562 

#5 Steps per minute *.csv 3,481,174 
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4.3 Experimental Results 

The dataset was compressed using the algorithms mentioned above, and results 

were recorded to have a side-by-side comparison.  

TABLE 5. COMPARISON OF VARIOUS COMPRESSION ALGORITHMS 
 FS CS CT CR SP 

H
uf

fm
an

 

25,175  11,971  130 0.476 52.45 

70,581  32,634  138 0.462 53.76 

482,671  242,107  155 0.502 49.84 

796,562  399,955  181 0.502 49.79 

3,481,174  1,137,343  311 0.327 67.33 

LZ
W

 

25,175  9,200  203 0.365 63.46 

70,581  26,825  423 0.380 61.99 

482,671  161,429  7398 0.334 66.56 

796,562  268,850  18865 0.338 66.25 

3,481,174  621,182  199799 0.178 82.16 

R
LE

 

25,175  47,021  135 1.868 -86.78 

70,581  117,753  140 1.668 -66.83 

482,671  851,493  182 1.764 -76.41 

796,562  1,432,065  208 1.798 -79.78 

3,481,174  6,769,007  455 1.944 -94.45 

TT
TD

 

25,175  24,262  199 0.964 3.63 

70,581  65,543  249 0.929 7.14 

482,671  174,672  402 0.362 63.81 

796,562  363,847  459 0.457 54.32 
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 FS CS CT CR SP 

3,481,174  989,000 1090 0.284 71.59 
 
4.4 Experimental Observations 

• Compressed File Size (CS): The compressed file for RLE was larger than the original 

file, and hence RLE would not be a good fit for this type of data. TABLE 5. shows 

that compressed file size grows linearly with input size. LZW performs better than 

Huffman and TTTD algorithms in terms of compressed file size.  

• Compression Ratio (CR): Compression Ratio is consistent for Huffman Algorithm for 

files of 25KB, 71KB, 483KB and 796KB files. For 3.5MB file, the ratio is better than 

smaller files. Of all the algorithms, LZW had the best CR for all sizes of files, 

followed by TTTD and then Huffman. LZW and TTTD algorithms perform much 

better for larger files than smaller ones in terms of CR.  

• Compression Factor (CF): Since Compression Factor is reciprocal of Compression 

Ratio, the observations there apply to this also. Huffman is quite stable and LZW has 

the best compression factor.  

• Savings Percentage (SP): Huffman is stable in terms of Savings percentage. LZW has 

higher SP in comparison to Huffman but not by a great margin. TTTD has lower SP 

in comparison to Huffman for smaller files but better SP in comparison to Huffman 

for larger files.  

• Compression Time (CT): Compression time is very high for LZW in comparison to 

other algorithms. LZW took 199 seconds in comparison to 0.3 seconds for Huffman 
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and 1.1 seconds for TTTD. Huffman is best in terms of Compression time, followed 

by RLE and then TTTD. 
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5. PROPOSED METHOD 

5.1 Experiment with Combination of Algorithms 

Comparisons of algorithms in the last section gave the following insights:  

• TTTD and LZW outranked other algorithms in terms of compressed file 

size, compression ratio, compression factor and savings percentage.  

• TTTD and Huffman outranked other algorithms in terms of Compression 

Time.  

• RLE was not suitable for this type of data since the Compression ratio was 

greater than 1.  

The above insights brought forth the idea that perhaps multiple algorithms could 

be used to compress the compressed data and give an overall efficiency to the system. 

Hence in the next stage of experiments, the algorithms – Huffman, LZW and TTTD were 

run in a sequence in different orders with the output from the first algorithm being the 

input for the second. TABLE 6. has the results of performance of different combinations.  

The sequence TTTD -> LZW -> Huffman (TLH) performed better than others in terms of 

Compression Ratio. The sequence TTTD -> Huffman -> LZW (THL) performed better in 

terms of Compression Time. Since LZW takes time, when the experiment was run by 

removing LZW from the chain, the TTDD->Huffman (TH) algorithm performed much 

better in terms of time and was only fractionally different in terms of Compression Ratio 

and Savings percentage.  
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TABLE 6. PERFORMANCE OF ALGORITHMS IN DIFFERENT 
COMBINATIONS 

Algorithm FS CS CT CR SP 

HLT (Huffman-LZW-TTTD) 3481174 760956 76087 0.219 78.14 

HTL (Huffman-TTTD-LZW) 3481174 700017 52449 0.201 79.89 

LHT (LZW-Huffman-TTTD) 3481174 613565 194295 0.176 82.37 

LTH (LZW-TTTD-Huffman) 3481174 611280 194090 0.176 82.44 

THL (TTTD-Huffman-LZW) 3481174 455984 18517 0.131 86.90 

TLH (TTTD-LZW-Huffman) 3481174 353831 31703 0.102 89.84 

TH (TTTD-Huffman) 3481174 408642 1249 0.117 88.26 

TL (TTTD-LZW) 3481174 355863 31840 0.102 89.78 
 

Based on the results, the proposal is to run TTTD and Huffman in sequence on the 

data, with the output of TTTD being the input of Huffman.  

5.2 Outline of the Proposed Algorithm  

 
Figure 3. Outline of the Proposed Algorithm 
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6. PERFORMANCE EVALUATION 

The proposed method was run on the data used in the baseline experiments (Fitbit 

data) and also on additional data to support the research. The second set of data was 

obtained from UCI (University of California, Irvine)’s ‘Heterogeneity Activity 

Recognition Data Set’. Fitbit dataset had data about steps and intensities recorded by 

Fitbit wearable device. The Smartphone dataset has data from readings that were 

recorded while users executed activities carrying smartwatches and smartphones. 

6.1 Fitbit Dataset 

The metrics used for the analysis of the runtime results of the proposed 

compression algorithm are as outlined in Section 4. Below, the results are compared with 

the existing techniques.   

TABLE 7. PERFORMANCE OF PROPOSED ALGORITHM IN COMPARISON 
TO OTHER COMPRESSION ALGORITHMS 

 

Sl. 
No Algorithm FS 

(bytes) 
CS 

(bytes) 
CT 

(ms) CR SP CF 

1 Huffman         25,175          11,971  130 0.476 52.45 2.10 

2 Huffman         70,581          32,634  138 0.462 53.76 2.16 

3 Huffman      482,671       242,107  155 0.502 49.84 1.99 

4 Huffman      796,562       399,955  181 0.502 49.79 1.99 

5 Huffman   3,481,174    1,137,343  311 0.327 67.33 3.06 

6 LZW         25,175            9,200  203 0.365 63.46 2.74 

7 LZW         70,581          26,825  423 0.380 61.99 2.63 

8 LZW      482,671       161,429  7398 0.334 66.56 2.99 

9 LZW      796,562       268,850  18865 0.338 66.25 2.96 
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10 LZW   3,481,174       621,182  199799 0.178 82.16 5.60 

11 TTTD         25,175          24,262  199 0.964 3.63 1.04 

12 TTTD         70,581          65,543  249 0.929 7.14 1.08 

13 TTTD      482,671       174,672  402 0.362 63.81 2.76 

14 TTTD      796,562       363,847  459 0.457 54.32 2.19 

15 TTTD   3,481,174       989,000  1090 0.284 71.59 3.52 

16 TTTD-H         25,175          11,520  398 0.458 54.24 2.19 

17 TTTD-H         70,581          30,336  404 0.430 57.02 2.33 

18 TTTD-H      482,671          87,531  566 0.181 81.87 5.51 

19 TTTD-H      796,562       185,465  616 0.233 76.72 4.29 

20 TTTD-H   3,481,174       408,642  1263 0.117 88.26 8.52 

 

1) Compressed File Size: As shown in Figure 4, compressed size for TTTD-H is much 

lower than Huffman, LZW and TTTD. It is almost half of what Huffman or TTTD 

has individually. For small file sizes, LZW is better than other algorithms. For 25KB 

file, LZW compresses it to 9KB while TTTD is only 24KB. The proposed algorithm, 

TTTD-H is closer to LZW in terms of compressed file size, compressing the input to 

11.5KB. As the file size becomes larger, especially after 100KB, TTTD and TTTD-H 

easily trumps other algorithms. For a 3.5 MB file, the output from LZW is 621KB 

while the output from TTTD-H is only 408KB, 50% better than LZW. 
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Figure 4. Comparison of Compressed file sizes with TTTD-H 

 
2) Compression Ratio: As shown in Figure 5, the compression Ratio for TTTD-H is 

lower than Huffman, LZW and TTTD. For smaller files, the compression ratio of 

TTTD-H is comparable to that of Huffman and LZW, but for larger files, TTTD-H is 

much better. The ratio is 11.7% for a 3.5MB file in comparison to 17.8% for LZW 

and 32.7% for Huffman.  

 
Figure 5. Comparison of Compression Ratio with TTTD-H 
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3) Compression Factor: Compression factor is the reciprocal of Compression Ratio and 

the values mirror the results in Compression Ratio chart in the other direction. As 

illustrated in  

4)  

5) Figure 6, the Compression Factor for TTTD-H is higher than Huffman, LZW and 

TTTD. Compression factor for TTTD-H is 8.52 for a 3.5MB file in comparison to 

that of 5.6 for LZW and 3.06 for Huffman.  
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Figure 6. Comparison of Compression Factor with TTTD-H 

 
6) Savings Percentage: From Figure 7, it is clear that the Savings Percentage for TTTD-

H is higher than Huffman, LZW and TTTD. The Savings Percentage is 54% for 

TTTD-H for 25KB file in comparison to 63% for LZW and 52% for Huffman. For 

larger files, however, TTTD-H has much better savings which are in line with 

Compression Ratio. For a 3.5MB file, the Savings percentage is 88% for TTTD-H 

much higher than other algorithms.  
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Figure 7. Comparison of Savings Percentage with TTTD-H 

 

7) Compression Time: Illustrated in  

8)  

9) Figure 8, the Compression Time for TTTD-H is higher than that of TTTD or 

Huffman but lower than LZW. LZW took close to 200,000 milliseconds to compress 
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a file of size 3.5MB. TTTD-H in comparison took only 1,200 milliseconds. As 

mentioned earlier, the value for TTTD-H is higher than other but the Compression 

Ratio and Savings Percentages are much higher. Since the value is only 0.2 seconds 

higher than TTTD for 3.5 MB file, this is the small increase to pay for the extra 

compression ratio. The benefit from making network bandwidth better by reducing 

the amount of data sent during I/O calls outweighs the Compression Time concerns. 

 
Figure 8. Comparison of Compression Time with TTTD-H 

 

6.2 Smartphone & Smartwatch Dataset 

Further experiments were conducted with different sets of wearable sensor data to 

determine if the results were consistent. UCI dataset on Heterogeneity Activity 

Recognition [28] was used for this experiment. This dataset contains the readings of 

motion sensors from smartphones to track activities like ‘Biking’, ‘Walking’, ‘Walking 
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up the stairs’, and so forth. The data was from devices like Samsung Galaxy S3, LG 

Nexus, Galaxy Gear, and so forth.  

TABLE 8. DATASET USED FOR THE EXPERIMENTS (SMARTPHONE DATA) 
Dataset No. Data Name Data Type File Size (Bytes) 

#1 Phones accelerometer *.csv 498,034 

#2 Phones gyroscope *.csv 1,100,585 

#3 Samsung Galaxy Gear *.csv 2,038,622 

#4 Watch accelerometer *.csv 4,322,183 

#5 Watch gyroscope  *.csv 6,512,577 
 

1) Compressed File Size: As shown in 

 

2) Figure 9, compressed size for TTTD-H is much lower than Huffman, LZW and 

TTTD. It is almost half of what Huffman or TTTD has individually. 
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Figure 9. Comparison of Compressed file sizes with TTTD-H 

 
3) Compression Ratio: As shown in 

 

4) Figure 10, the compression Ratio for TTTD-H is lower than Huffman, LZW and 

TTTD.  
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Figure 10. Comparison of Compression Ratio with TTTD-H 

5) Compression Factor: As illustrated in 

 

6) Figure 11, the Compression Factor for TTTD-H is higher than Huffman, LZW and 

TTTD.  
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Figure 11. Comparison of Compression Factor with TTTD-H 

 
7) Savings Percentage: From Figure 12, it is clear that the Saving Percentage for TTTD-

H is higher than Huffman, LZW and TTTD. 

 
Figure 12. Comparison of Savings Percentage with TTTD-H 
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Compression Time: Illustrated in  

 
8) Figure 13, the Compression Time for TTTD-H is higher than that of TTTD or 

Huffman but much lower than LZW. The Savings Percentage and Compression Ratio 

is much higher for TTTD-H.  

 



 

 35 

Figure 13 

 
Figure 13. Comparison of Compression Time with TTTD-H 

   
6.3 Analysis of Energy Consumption 

6.3.1 Formula for Energy Consumption 

Another important criteria to decide on the compression algorithm for BSN data is 

the rate of energy consumption at the sensor. As mentioned in Section 3.1 The Need for 

Compression of BSN Data, reducing the battery power is one of the main goals of 

compression. Thus, the amount of extra energy needed for compression should be less 

than the amount of energy that is saved due to the reduced number of bits that are 

transmitted. Shin et al. [29], in their paper on ‘Analysis of Low Power Sensor Node Using 

Data Compression’ formulated this as follows –  

Pno_compression = Pmemory + Psensing + Pprocessing + Ptransmission 

Pwith_compression = Pno_compression + DPmemory + DPprocessing - DPtransmission 
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where  

• DPmemory + DPprocessing are the power consumption increases for extra 

memory and processing that occurs due to compression.  

• DPtransmission is the power saving due to lesser amount of data that is being 

sent.  

For compression to be useful, the following condition should be satisfied 

DPmemory + DPprocessing < DPtransmission 

The amount of energy needed for computation is more than that needed for 

storing data in memory. Since DPprocessing is the upper-bound, we could simplify the above 

formula as  

2DPprocessing < DPtransmission 

In their paper on ‘Energy-aware lossless data compression’, Barr & Asanović 

[30], performed experiments and summarized the energy consumptions for computations 

and transmissions of sensor data. As per the analysis, the energy used by the processor 

for a single ADD is 0.86 nJ (0.86 x 10-9 J) and the energy used for sending a single bit is 

between 417 nJ (417 x 10-9 J) and 1090 nJ (1090 x 10-9 J). The paper mentions that 

sending a single bit is equivalent to performing 485 to 1267 ADD operations.  For our 

computations, we take the average as 700 nJ for sending a single bit. Also, cache miss 

consumes 78.34 nJ of energy per bit for writing data into memory and cache hit needs 

2.41 x 10-9 J of energy. To summarize,  

• The energy used for computation = 0.86 x 10-9 J 

• The energy used for writing data into memory = 78.34 x 10-9 J 
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• The energy used for reading data from memory = 2.41 x 10-9 J 

• The energy used for transmission of 1 bit = 700 x 10-9 J 

If we take the first experiment with Huffman as an example,  

DPprocessing = DPcache_hit + DPcache_miss 

DPprocessing =  (FS – CS) * 8 * 2.41 * 10-9 + CS * 8 * 78.34 * 10-9 = 7.76 x 10-3 J 

 where FS = File Size and CS = Compressed File Size, both in bytes.  

DPtransmission = (FS – CS) * 8 * 700 * 10-9 = 73.94 x 10-3 J  

We see that 2DPprocessing < DPtransmission holds true and Energy saved can be 

calculated as DPtransmission – 2DPprocessing = 58.43 mJ.  

6.3.2 Computation of Energy Savings due to compression 

Figures 14-19 show the Increase in processing time, decrease in transmission time 

and the energy saved due to compression for datasets #1 & #2. The actual energy saved 

due to compression might be larger than the values in the table since we made 

assumptions on upper bounds for energy consumption due to increased storage in 

memory.  
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Figure 14. Dataset 1 - Comparison of Increase in Energy during Computation 

 

 
Figure 15. Dataset 1 - Comparison of Decrease in Energy during Transmission 
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Figure 16. Dataset 1 - Comparison of Energy Saving due to Compression 

 
TTTD-H consumes more energy during compression as expected and since 

compresses more data, the energy saving is higher because the transmission cost is much 

higher than the power used during computation.  

 
Figure 17. Dataset 2 - Comparison of Increase in Energy during Computation 
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Figure 18. Dataset 2 - Comparison of Decrease in Energy during Transmission 

 

 
Figure 19. Dataset 2 - Comparison of Energy Saving due to Compression 
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7. CONCLUSION 

7.1 Summary 

In this paper, we reviewed the concept of wearable and implantable BSN and their 

lossless compression techniques, including RLE, LZW and Huffman. We also reviewed a 

data chunking algorithm used in many deduplication systems named TTTD. Experiments 

showed that Huffman is a stable algorithm, LZW had better compression ratio but takes 

more time. TTTD had lower compression ratio than LZW but was much faster. After this, 

we ran experiments by combining algorithms, and found that the sequence TTTD -> LZW 

-> Huffman performed better than others in terms for Compression Ratio and the 

sequence TTTD -> Huffman -> LZW performed better in terms of Compression Time. 

Finally, we proposed TTTD -> Huffman (TTTD-H) algorithm which performed 

significantly better than all the individual algorithms, with a slight increase in 

compression time. The result on improved compression factor implied a substantial 

reduction on sensor data to be transmitted; and therefore, a sizable saving on transmission 

energy.  

7.2 Future Work  

From LifeShirt (intelligent medical garment), STARPATCH (wireless cardiac 

monitoring) and IntelliDrug (implantable drug dispensing) reviewed by D Konstantas 

[24] in 2007, to implantable chips the size of a grain of rice in 2017, the last decade has 

seen an explosion of new sensors enter the market. Processes to analyze and store data 

analysis need to adapt to the growing demand and this area that needs more research. 

Since wireless data transmission uses most of the power in the sensor, there is a need to 
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have new methods to reduce the power consumption. That could be achieved by reducing 

the amount of data sent across by compression as discussed in the paper, reducing the 

amount of data sent across by sampling or by doing local processing. These efforts, 

especially ‘local processing’ would need sensors to have bigger memories. Sensors with 

more computing capability is another hot topic of research. The algorithm proposed in the 

paper can further be enhanced in multiple ways. Data from TTTD algorithm can be 

stored in a compressed form after a chunk is found. The chunk key lookup can be done 

using BloomFilter to make the lookup faster.  

Another area of future research and development could be to store the data from 

sensors in the cloud after running through a data deduplication algorithm like TTTD. 

TTTD-S [26] which is an improvement over TTTD would be better suited to dedupe 

large amount of sensor data before storing them in the cloud. Storage in the cloud would 

help in getting more insights from historical data. Processing data using TTTD can also 

be parallelized. That means a large amount of data from multiple sensors can be deduped 

and stored by using Map Reduce frameworks like Hadoop. In summary, data 

compression and analyses of Wearable and Implantable BSN data is an important and 

growing field of research. 
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