7,188 research outputs found

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    Server virtualization in higher educational institutions: a case study

    Get PDF
    Virtualization is a concept in which multiple guest operating systems share a single piece of hardware. Server virtualization is the widely used type of virtualization in which each operating system believes that it has sole control of the underlying hardware. Server virtualization has already got its place in companies. Higher education institutes have also started to migrate to virtualized servers. The motivation for higher education institutes to adopt server virtualization is to reduce the maintenance of the complex information technology (IT) infrastructure. Data security is also one of the parameters considered by higher education institutes to move to virtualization. Virtualization enables organizations to reduce expenditure by avoiding building out more data center space. Server consolidation benefits the educational institutes by reducing energy costs, easing maintenance, optimizing the use of hardware, provisioning the resources for research. As the hybrid mode of learning is gaining momentum, the online mode of teaching and working from home options can be enabled with a strengthened infrastructure. The paper presents activities conducted during server virtualization implementation at RV College of Engineering, Bengaluru, one of the reputed engineering institutes in India. The activities carried out include study of the current scenario, evaluation of new proposals and post-implementation review

    Survey on dynamic resource allocation strategy in cloud computing enviornment

    Get PDF
    Abstract-Cloud computing becomes quite popular among cloud users by offering a variety of resources. This is an on demand service because it offers dynamic flexible resource allocation and guaranteed services in pay as-you-use manner to public. In this paper, we present the several dynamic resource allocation techniques and its performance. This paper provides detailed description of the dynamic resource allocation technique in cloud for cloud users and comparative study provides the clear detail about the different techniques

    Modeling virtualized application performance from hypervisor counters

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 61-64).Managing a virtualized datacenter has grown more challenging, as each virtual machine's service level agreement (SLA) must be satisfied, when the service levels are generally inaccessible to the hypervisor. To aid in VM consolidation and service level assurance, we develop a modeling technique that generates accurate models of service level. Using only hypervisor counters as inputs, we train models to predict application response times and predict SLA violations. To collect training data, we conduct a simulation phase which stresses the application across many workloads levels, and collects each response time. Simultaneously, hypervisor performance counters are collected. Afterwards, the data is synchronized and used as training data in ensemble-based genetic programming for symbolic regression. This modeling technique is quite efficient at dealing with high-dimensional datasets, and it also generates interpretable models. After training models for web servers and virtual desktops, we test generalization across different content. In our experiments, we found that our technique could distill small subsets of important hypervisor counters from over 700 counters. This was tested for both Apache web servers and Windows-based virtual desktop infrastructures. For the web servers, we accurately modeled the breakdown points and also the service levels. Our models could predict service levels with 90.5% accuracy on a test set. On a untrained scenario with completely different contending content, our models predict service levels with 70% accuracy, but predict SLA violation with 92.7% accuracy. For the virtual desktops, on test scenarios similar to training scenarios, model accuracy was 97.6%. Our main contribution is demonstrating that a completely data-driven approach to application performance modeling can be successful. In contrast to many other works, our models do not use workload level or response times as inputs to the models, but nevertheless predicts service level accurately. Our approach also lets the models determine which inputs are important to a particular model's performance, rather than hand choosing a few inputs to train on.by Lawrence L. Chan.M.Eng
    • …
    corecore