
Modeling Virtualized Application Performance

from Hypervisor Counters

by

Lawrence L. Chan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A uthor - - - - -

Department of Elec cal Engineering and Computer Science
May 20, 2011

Certified by - -- --. - -... -----

Una-M O'Reilly
Principal Research Scientist

Thesis Supervisor

Accepted by
Kolodziejski

Chair of the Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 2 1 2011

LIBRARIES

ARCHIVES

.. .. I-.. .. \L s ie * .

Modeling Virtualized Application Performance from

Hypervisor Counters

by

Lawrence L. Chan

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Managing a virtualized datacenter has grown more challenging, as each virtual ma-
chine's service level agreement (SLA) must be satisfied, when the service levels are
generally inaccessible to the hypervisor. To aid in VM consolidation and service level
assurance, we develop a modeling technique that generates accurate models of service
level. Using only hypervisor counters as inputs, we train models to predict application
response times and predict SLA violations.

To collect training data, we conduct a simulation phase which stresses the applica-
tion across many workloads levels, and collects each response time. Simultaneously,
hypervisor performance counters are collected. Afterwards, the data is synchronized
and used as training data in ensemble-based genetic programming for symbolic re-
gression. This modeling technique is quite efficient at dealing with high-dimensional
datasets, and it also generates interpretable models. After training models for web
servers and virtual desktops, we test generalization across different content.

In our experiments, we found that our technique could distill small subsets of
important hypervisor counters from over 700 counters. This was tested for both
Apache web servers and Windows-based virtual desktop infrastructures. For the web
servers, we accurately modeled the breakdown points and also the service levels. Our
models could predict service levels with 90.5% accuracy on a test set. On a untrained
scenario with completely different contending content, our models predict service levels
with 70% accuracy, but predict SLA violation with 92.7% acccuracy. For the virtual
desktops, on test scenarios similar to training scenarios, model accuracy was 97.6%.

Our main contribution is demonstrating that a completely data-driven approach
to application performance modeling can be successful. In contrast to many other
works, our models do not use workload level or response times as inputs to the models,
but nevertheless predicts service level accurately. Our approach also lets the models
determine which inputs are important to a particular model's performance, rather
than hand choosing a few inputs to train on.

Thesis Supervisor: Una-May O'Reilly
Title: Principal Research Scientist

Acknowledgments

First and foremost, I would like to thank my thesis adviser Una-May O'Reilly. She

was extremely knowledgeable and experienced with the EB-GPSR modeling technique,

and offered insightful advice on how to structure the experiments. Her excitement

and enthusiasm for EB-GPSR always kept me excited to use the technique, and her

lighthearted personality brought joy to all who worked with her. I also thank her for

her dedication and patience during the thesis writing.

I am also grateful for the support and mentorship of Saman Amarasinghe, who

worked closely with me on this project as another adviser. His expertise in the

virtualization systems was immensely helpful, and his high-level vision for the project

guided the work.

During the summer research portion, I worked closely with Geoffrey Thomas and

Kalyan Veeramachaneni, and I would like to thank them for their helpful discussions

and collaboration in developing some of the software used in the project. During

the year, I also worked with Victor Yarlott, and I am thankful for his help in the

simulations. The Evolutionary Design and Optimization group (of which Una-May and

I are a part) was also immensely supportive, and I am thankful for their camaraderie.

I gratefully acknowledge the funding from VMware, Inc. that supported this work.

None of this would have been possible without the funding and the help of all the

people at VMware that supported and advised this project. In particular, I would

like to acknowledge Ravi Soundararajan, Carl Waldspurger, Haoqiang Zheng, Arkady

Kanevsky, Julia Austin, and Rita Tavilla for their support.

I also thank Evolved Analytics for allowing our research group to beta test the

DataModeler package free of charge. I am grateful for their responsive support in

making sure our issues were addressed, and for making sure their package was as

polished as possible. Their excellent software made our modeling very streamlined,

and it allowed us to focus on how to use EB-GPSR to model rather than spending

our time developing a modeling system.

Finally, I would like to thank my family and friends for their constant encourage-

ment. I could not have accomplished this without their support.

Contents

1 Introduction 13

1.1 O ur A pproach . 15

1.2 R oadm ap . 16

2 Background 17

2.1 Virtualization Infrastructure.. 17

2.1.1 ESX Resource Scheduling . 17

2.1.2 ESX Performance Counters 18

2.1.3 VM ware DRS . 19

2.2 Ensemble-based Genetic Programming

for Symbolic Regression . 19

3 Experimental Results 23

3.1 Web Application Modeling . 24

3.1.1 Limit-based Modeling . 24

3.1.2 Share-based Modeling . 29

3.2 Virtual Desktop Infrastructure Modeling 37

4 Related Work 43

4.1 Performance Modeling .. 43

4.1.1 Probabilistic Response Time Modeling 46

4.1.2 An SLA-oriented Perspective 47

4.1.3 Online Modeling . 48

7

4.2 Datacenter Control

4.2.1 VM Placement Control.....

4.2.2 Resource Allocation Control

4.2.3 Resource Sharing Optimization

4.3 Summary

5 Future Work

6 Summary

51

51

51

52

53

55

59

.

.

.

.

.

List of Figures

1-1 Native operating system versus a virtualized set of operating systems 14

2-1 An example of a symbolic regression tree 20

3-1 Response times on social media Apache application given a linearly in-

creasing load rate. A moving time average line is shown for visualization

purposes (blue line). 25

3-2 Response times on social media Apache application given a linearly

increasing load rate. Each line represents a different CPU limit from

300MHz to 1800MHz in 100MHz increments. The lines with lower

breakdown points correspond to lower CPU limits 26

3-3 Percentage to breakdown at 1800MHz. The upper plot shows the

response times, with a moving time average shown with a red line. . . 27

3-4 Fitness of models for SM web application in limit-based simulation 27

3-5 Model ensemble prediction results for Percentage to Breakdown (PtB)

prediction for SM web application in limit-based simulation 28

3-6 Percentage to breakdown estimate for 1800MHz 28

3-7 Percentage to breakdown estimate for 900MHz 29

3-8 SMI response times for varying request rates on SMI and SM2 31

3-9 Fitness of models for SM web application in share-based simulation . 32

3-10 Model ensemble prediction results for (log) response time of the SMI

web application in share-based simulation with identical SM2 contention

(training set) . 32

3-11 Model ensemble prediction results for (log) response time of the SM1

web application in share-based simulation with identical SM2 contention

(test set) . 32

3-12 95th percentile SMI response times in share-based simulation with

W ordpress contention . 34

3-13 Model ensemble prediction results for SMI web application response

time in share-based simulation with Wordpress contention 35

3-14 95th percentile SMI response times in share-based simulation with

M ySQL contention . 36

3-15 Model ensemble prediction results for SMI web application response

time in share-based simulation with MySQL contention 36

3-16 VDI Response Times . 40

3-17 Pareto front log plots of GPSR models 40

3-18 Ensemble predictions results in the VDI simulation (training set) . . 40

3-19 Ensemble prediction results in the VDI simulation (test set) 41

4-1 Iterative training procedure used in [Kundu et al., 2010] (Figure taken

directly from work) . 45

4-2 Prediction error results from [Kundu et al., 2010] (Table taken directly

from work).............. 45

4-3 Model of response time from CPU contention in [Turner et al., 2010]

(Figure taken directly from work). 49

4-4 Response time data for various CPU allocations and contention levels

in [Turner et al., 2010] (Figure taken directly from work). 49

4-5 Response time data for various CPU allocations and contention levels

in [Turner et al., 2010] (Figure taken directly from work). 50

4-6 Controller results from [Padala et al., 2009] (Figure taken directly from

w ork). 52

List of Tables

3.1 Model table for SMI models . 33

3.2 Variable frequency table for SM1 models 33

3.3 Model table for VDI models . 39

3.4 Variable frequency table for VDI models 41

4.1 Summary of related works (see Table 4.2 for abbreviations) 54

4.2 Abbreviations used in Table 4.1 . 54

12

Chapter 1

Introduction

The resource demands of today's datacenters have grown significantly in the last

decade. To meet these needs in a scalable way, datacenters have adopted virtualization

for server consolidation. In essence, virtualization is the abstraction of hardware from

software. In an unvirtualized system, the operating system communicates with the

hardware directly (see Figure 1-1(a)). In a virtualized environment, the operating

system communicates with the hardware through what is known as the hypervisor,

which in turn relays and schedules the instructions to the hardware (see Figure 1-1(b)).

The primary result of this is that many virtual machines can run on a single physical

system, because the hypervisor emulates a physical host to each virtual machine while

managing the instruction flow to the actual physical host. Prior to virtualization,

system administrators would run an individual physical host for each operating system

that was needed. A datacenter might manage the power, cooling, and physical host

maintenance for the client, but otherwise the physical resources were not shared.

Today, a vast majority of datacenters use virtualization. Consolidation figures in the

tens or hundreds are not uncommon, saving energy in hardware, real estate, and

cooling. In addition, the management of virtual machines can now be centralized and

streamlined, leading to reduced administration costs.

Most current virtualization systems distribute resources according to a systems-

level proportional-share algorithm. The central idea is that each virtual machine is

given a certain number of shares, and the amount of resources that that particular

(b) Virtualized operating systems

Figure 1-1: Native operating system versus a virtualized set of operating systems

virtual machine is given is proportional its shares relative to the total shares of

competing virtual machines. The virtualization system does its best to respect these

guidelines, but it is important to understand that the sharing mechanisms measure

and distribute raw resources.

Using resource consumption as the explicit service level agreement (SLA) to a

datacenter customer is computationally efficient and resource-wise efficient when it is

clear how the raw system resource allocation affects performance and the customer

can specify what is needed to satisfy expectations. This is true of high performance

computing (HPC) scenarios, where it is known that when the VM is being used, it

will be used to nearly 100% of its capacity.

In many cases, however, the customer is mostly concerned with application perfor-

mance, and this performance is a nonlinear function of resource allocation. Because

every application can be different, datacenters allocate and guarantee resources, not

service levels. It is hence the responsibility of the customer to designate the proper

resource level. Many customers will do this in an ad-hoc way, and almost always,

there is generous overprovisioning to ensure that the system has enough resources to

handle normal workload and a bit of workload variation.

However, to the customer, the nominal resource allocation isn't really the end

goal; they expect a certain service level agreement (SLA), and as long as this is met,

.

(a) Native operating system

the resource allocation is merely a side effect. If the datacenter could guarantee SLA

instead of resources, the customer would have to do less testing to determine the

appropriate resource level to purchase. Further, there could be much more flexibility for

the datacenter to exploit application performance nonlinearities and further consolidate

servers dynamically.

One of the main challenges in implementing such a system is getting around

the isolation of the virtual machine paradigm. Virtual machines are expected to be

isolated, private environments; the hypervisor should avoid looking inside the OS to

and see what is being run1 . Is there a way to ensure SLA without communicating

with the application in some way?

1.1 Our Approach

In this work, we model application performance by looking at hypervisor-level per-

formance counters. Using only these counters as inputs, we train models to predict

application response times and predict SLA violations.

To train each application, we first do a simulation phase and collect large quantities

of data. The simulation stresses the application across many workloads levels, and

collects each response time. Simultaneously, hypervisor performance counters are

collected. The data is then preprocessed to synchronize timestamps and aggregate

the fine-grained requests into larger time slices.

The synchronized data is then used as training data in ensemble-based genetic

programming for symbolic regression. This modeling technique is quite efficient at

dealing with high-dimensional datasets, and it also generates interpretable models (see

Chapter 2.2) for more details). After training models, we test generalization across

different data from the same host configuration, and even across unseen scenarios.

Our main contribution is demonstrating that a completely data-driven approach to

application performance modeling can be successful. In contrast to many other works,

'This is not entirely true; for example, VMware tools can communicate with applications in the
OS. In fact, some VM customers might choose to allow the hypervisor to look at its performance if it
means better, more efficient performance. More on this in Chapter 5

our models do not use workload level or response times as inputs to the models. Our

approach also lets the models determine which inputs are important to a particular

model's performance, rather than hand choosing a few inputs to train on. Indeed,

from over 700 performance counters, the modeling can select a small set of less than 5

counters and generate models that achieve over 95% accuracy.

1.2 Roadmap

Chapter 2 will cover some basic background information on virtualization and VMware-

specific details. Chapter 2 also includes a general overview of ensemble-based genetic

programming for symbolic regression (EB-GPSR). Chapter 3 will show and discuss

results of our experiments. Chapter 4 discusses a selection of related works on

modeling and control in virtualized systems. Chapter 5 will discuss future work and

open questions. Finally, Chapter 6 will provide a high-level discussion of results and

closing remarks.

Chapter 2

Background

2.1 Virtualization Infrastructure

For our experiments, we use VMware ESX 4.1. The next few section will discuss

relevant topics such as resource scheduling in VMware ESX, visible hypervisor-level

performance counters, and the higher-level Distributed Resource Scheduler.

2.1.1 ESX Resource Scheduling

In order for us to build models on top of the virtualization system, it is important

to understand the algorithms behind the low-level resource scheduling. Since we are

primarily attempting to saturate CPU (and memory, to some extent), we will cover

CPU scheduling first. The algorithms introduce complexity which makes us believe

that nonlinear modeling is required.

CPU Scheduling

The ESX CPU scheduler operates at the instruction level, choosing where and when

to execute instructions from each VM. Analogous to process or threads at the OS

level, ESX defines the concept of a vCPU. At each timestep, the scheduler must

decide where to execute the vCPU, or which (if any) of the already running vCPUs to

displace.

ESX uses a proportional-share based algorithm to determine which vCPUs take

priority. For contending vCPUs, the entitled CPU usage is calculated as a simple

ratio of the VMs CPU shares to the sum of the total active CPU shares (i.e. those

from the VMs contending for vCPU executions). A VM that has received less than its

entitled usage will have a higher priority, with increasing priority as the discrepancy

between usage and entitlement increases.

ESX also defines reservations and limits, which are lower bounds and upper bounds

on CPU utilization, respectively. In practice, however, limits are not used, because

they place a hard limit on the CPU usage of a VM. When shares are used, contending

VMs will use up all possible CPU cycles as designated by the CPU shares. When

limits are used, CPU cycles can go to waste if the total CPU level falls below the

configured levels. Limits are thus hard to maintain, and most datacenters work with

shares1 .

Memory, Network, and Disk Scheduling

Memory is shared much like CPU, with shares, reservations, and limits. Analogous to

an OS, ESX can swap memory to disk if memory is overcommitted, although this will

lead to drastic performance impact. In this work, we try to avoid actively saturating

memory as the primary bottleneck because memory is stateful and exhibits hysteresis,

so modeling is more challenging.

Network and disk have schedulers also, but generally speaking the configuration

is static and unsaturated, and we will assume that these are not bottlenecks in our

applications.

2.1.2 ESX Performance Counters

ESX implements the vSphere API to allow the datacenter to collect low level perfor-

mance counters. Analogous to the /proc/$(pid)/ counters in a UNIX system, they

'VMware ESX also defines the concept of resource pools, which are hierarchical groups of VMs
that share some set of resources. Each resource pool can also has its own CPU shares, reservations,
and limits, and these entitlements propagate up the hierarchy. If we use resource pools, it becomes
more manageable to apply resource limits on the pools to micromanage resource allocation.

are quick statistics collected by the resource scheduler periodically. By default, ESX

can collect statistics at 20 second intervals and can be configured to collect faster with

slight performance penalties.

In most of our experiments, we dump the entire set of counters at a 5 second

resolution. This amounts to 799 counters (with some variation depending on the host

hardware and the VM configurations). Our strategy will be to search for correlation

between counters and response time. The low-level nature of the counters and the

complex nature of the CPU, memory, network, and disk scheduling seem to imply

that the modeling will be challenging. Which counters are appropriate, and the

relationships between the counters is not readily apparent and it suggests that that

best way to learn them is from the data.

2.1.3 VMware DRS

VMware vCenter provides a service known as the Distributed Resource Scheduler

(DRS). DRS supports resource pools across multiple physical hosts. It observes

resource utilization by VMs and places them in a complementary way on ESX servers

via migration. Migration is a means of encapsulating the state of a VM in hot standby

mode and moving the VM with its updated data seamlessly to another ESX server.

2.2 Ensemble-based Genetic Programming

for Symbolic Regression

Symbolic regression is a method of modeling a system of observations and actions

via a set of explanatory variables (a.k.a. inputs, predictors) [Keijzer, 2003, 2008]. In

this kind of regression, arithmetic operators are combined with the variables into a

syntactically correct arithmetic expression that is intended to predict an unobserved

behavior. The model can be represented as a parse tree or a nested and bracketed

expression (see Figure 2-1). Variables and constants are leaves of the expression tree,

and mathematical operators such as plus, minus, divide, or multiply are internal nodes.

To obtain a prediction from a model with an observed set of variable states, these

states are bound to the variables and the expression is evaluated in-order.

+ Cos

(2.2 -)+(7*cos(Y))

Figure 2-1: An example of a symbolic regression tree.

Unlike some regression methods like neural networks, symbolic regression has the

particular advantage of being transparent to interpretation: the output is a human-

readable expression that can be understood and modified as necessary. Even compared

to simpler models such as linear regressions, the models are often more interpretable,

especially in high-dimensional situations. This is because symbolic regression often

only uses a subset of the input variables in the tree, and hence we have built-in variable

selection [Smits et al., 2005].

One variant of the symbolic regression idea is the use of an ensemble of models

instead of a single model. An ensemble allows us to consider multiple models that

each offer alternate explanations for the observed responses. This makes sense because

there is always more than one explanation for a given response. By using an ensemble

of models, we can consider alternate explanations (which vary in accuracy and com-

plexity2) and factor in all of them when making a prediction about the response. For

instance, we can look at the mean/median or the standard deviation of the outputs

to determine the ensemble consensus and the uncertainty of that particular output

[Kotanchek et al., 2007, Vladislavleva, 2008].

2Complexity is defined as the length of the in-order path through the expression tree

Evolutionary Algorithms for Symbolic Regression

Because the space of possible operator/variable expressions is enormous, it is usually

difficult to solve directly for the symbolic expression. Search algorithms are far more

effective, and one particularly powerful method that pairs particularly well with

symbolic regression is genetic programming [Vladislavleva, 2008]. In this technique,

a set of candidate models (the population) is evaluated for fitness. Fitness can be

defined in different ways, but often the mean squared error (MSE) or coefficient of

determination (R2 value) is used. R2 is defined as

R = 1 - _

and we will use R2 fitting for our results. Models that fit the function well have higher

fitness values. In our particular style of genetic programming, we use multi-objective

optimization to address the tradeoffs between model complexity and model accuracy.

Fitness values are used to determine the likelihood of the individual producing off-

spring for the next generation of solutions [Kotanchek et al., 2008, Smits and Kotanchek,

2004]. Once selected for mating, a pair of solutions undergoes biology-inspired crossover.

Parts of the child genotype are randomly chosen from those of the parents, and in

this way, there is some chance that the "good" parts of the parents genotypes will be

fused into an even "better" child genotype. The genotype also undergoes mutation,

which adds random perturbations that may improve solutions that cannot be found

via crossover. Over time, the population fitness improves, and it has been shown

empirically that such genetic algorithms are often very competitive with other global

optimization algorithms.

Evolutionary algorithms are also well suited to symbolic regression due to the

tree-like nature of a symbolic regression expression. Crossovers and mutations are

straightforward because trees can be spliced together or reconfigured to form related,

possibly better trees. Furthermore, it is straightforward to extract an ensemble from a

population of models. One way to do so is to bound the complexity and the minimum

fitness value and choose the best models satisfying these criteria.

22

Chapter 3

Experimental Results

We ran experiments using VMware ESX 4.1 as our hypervisor. For the web application

experiments, the physical host used was a Dell PowerEdge SC1435, with two quad-

core AMD Opteron Processor 2384s at 2.693GHz each and 32GB memory. For

the VDI experiments, the physical host used was a Dell PowerEdge R410 with two

hyperthreading quad-core Intel Xeon CPU E5620s at 2.393GHz each and 32GB

memory.

For the stress testing, external clients running a custom libevent-based python

server were used to simulate users and collect data. In each of the experiments, the

cycle time (i.e. delay between successive requests in one thread) for each operation

was sampled from an exponential distribution with a mean of 5 seconds.

For our EB-GPSR modeling, we used a proprietary Mathematica package called

DataModeler [Evolved Analytics, 2011, Kotanchek, 2010], which encapsulates the

EB-GPSR algorithm and includes a set of utilities to handle model archiving and

visualization.

First we will discuss web application modeling and examine the generalizability of

these models. Then we use the same methods to model database server performance,

and finally we shift to a virtual desktop infrastructure and test the performance of

common desktop applications.

3.1 Web Application Modeling

We will focus primarily on the Apache web server for our experiments. There are

certainly other web servers with perhaps better performance, but Apache is still the

predominant web server in use today [Netcraft, 2011], with over 62% market share.

We built a small social media (SM) web application that associated short strings

with a particular user (like Twitter). When queried, the application would query

a subset of the strings and sort them. The application was written using Django,

a python framework for web development. Little time was spent optimizing the

application for performance; we wrote a straightforward implementation and left it

as such. In a datacenter, the customers have free reign over their VMs, and even

unoptimized code should meet the SLA, so we should make no assumption about

code performance and should in fact ensure that unoptimized code is also accounted

for. Also, unoptimized code will perform slower and reach breakdown with less stress,

making it easier for us to stress test the server.

3.1.1 Limit-based Modeling

Initially, we wanted to verify that server response was indeed nonlinear by varying the

load on a web server with a range of CPU allocations (limits). Using this SM server,

each run consisted of setting a CPU limit on the VM and ramping up the request rate

linearly. Intuitively, we would expect the server to respond with minor performance

impact as request rate is increased, since the system will just consume more of the

available resources. At some point, however, the server will reach saturation and start

exhibiting exponentially slow response times.

Indeed, in Figure 3-1, we can see that response time is flat until the breakdown

point, and then the response times jump significantly. One detail to note is that

response times flatten out after reaching saturation. This is because of the way we

are simulating clients. If a client normally waits one second between requests, and the

request takes longer than a second, then the effective rate will be less than it should

be. Thus, after saturation, the request rates actually saturate as well and not reach

the target.

120

100

<V 80

60

0 40

1.5-

F 1.0
4'

0.5-

0.01
0 500 1000 1500 2000 2500

Time [sec]

Figure 3-1: Response times on social media Apache application given a linearly
increasing load rate. A moving time average line is shown for visualization purposes
(blue line).

This response curve is collected for each of the CPU limits from 300MHz up to

1800MHz in increments of 100MHz. Intuitively, the breakdown point should decrease

as the server is allocated less resources, because it takes less to saturate the resources.

The breakdown severity should also be more extreme with lower limits because the

VM capability is lower. The data we collected closely follows this intuition, as shown

in Figure 3-2.

We wish to predict how close we are to breakdown. If we model the response

time, it may not give us enough warning time to react, since response time is fairly

nonlinear and it is unclear what the proper response time threshold should be. Ideally,

we would be able to predict how close we are to breakdown. To do this, we introduce

a metric called "percentage to breakdown" (PtB). Because the request rate is ramped

up linearly from zero, it is straightforward to define this metric: we find the breakdown

point (in request/sec), and the percentage to breakdown is the ratio of the current

request rate to the breakdown request rate. We also bound this metric at 1, because

we are only interested in request rates below breakdown and any breakdown response

.. -- -----------

E

1--

,
C
0
0.

2

0

0 500 1000 1500 2000 2500
Time [sec]

Figure 3-2: Response times on social media Apache application given a linearly
increasing load rate. Each line represents a different CPU limit from 300MHz to
1800MHz in 100MHz increments. The lines with lower breakdown points correspond
to lower CPU limits.

is the same from a user perspective. Expressed mathematically,

PtB = min -1
rsat

where r is the request rate and rsat is the saturation/breakdown request rate.

We have defined PtB, but rsat is still an ad-hoc threshold or a visual label. To

more algorithmically define breakdown, we model the response times as a mixture of

Gaussians (one for the saturated regime and one for the unsaturated regime). The

saturation point is the point when the maximum likelihood estimate of the generating

Gaussian switches from one to the other (i.e. from the unsaturated regime Gaussian

to the saturated regime Gaussian). From this breakdown point, we follow the linear

request rate curve down to zero to create the PtB metric. This metric is shown in

Figure 3-3.

Our objective is to model PtB using the hypervisor-level performance counters

only. From vSphere, we exported the performance counters in every rollup type. We

then selected the counters related to CPU usage to use as inputs to the models. The

150000

100000

50000

0-.

0-

1000 1500 2000 2500 3000
+1.2826869

0

6

4

2

0-

+1.28268e9

Figure 3-3: Percentage to breakdown at 1800MHz. The upper plot shows the response
times, with a moving time average shown with a red line.

results of the modeling are shown in Figure 3-5.

Pareto Front Log Plot

.. ve,

0 20 400 600 800

Complexity

(a) Pareto front log plot of GPSR models

Pareto Front Log Plot

0.014

0.013

0.012

0.01-
50 60 70 8) 90 100

Complexity

(b) Pareto front log plot of GPSR models,
boxed around 1 - R 2 = 0.02 and C = 200

Figure 3-4: Fitness of models for SM web application in limit-based simulation

The GPSR models can then be used to predict the breakdown point, just before

it happens. For illustration purposes, let us say that we want a warning at 95% to

breakdown. Using these models, we can monitor the PtB and raise a flag when the

PtB is above 95%. In Figure 3-6, we can see the predicted 95% breakdown point as

well as the PtB response. Another example at 900MHz is shown in Figure 3-7. The

other CPU limits from 300MHz to 1800MHz all have similar outputs, and every single

one accurately preempts the breakdown point. What's critical to being able to act

is having ample time to react. Because we predict the percentage to the breakdown

workload, the model user is free to choose the level at which reaction should happen.

0.50

0.20

0.10

1002

1500 2000 2500 30001000

0.8

0.6- 0.6

0.4- 0.4-

0.2 -0.2 --

0.2 0.4 0.6 0, 1.0 0.2 0.4 0.6 0.8 1.0

Obsrved Obsrved

(a) Ensemble predictions vs actual inputs (b) Ensemble test predictions

Figure 3-5: Model ensemble prediction results for Percentage to Breakdown (PtB)
prediction for SM web application in limit-based simulation

If workload changes quickly, we might want to threshold at 80%, but if it is slow

moving, 90-95% may be sufficient. Forecasting techniques can dynamically detect the

rate and change this threshold depending on how fast the workload is changing.

1.0

0.8

E 0.6

0.4
0

0.2

0.0
-. 1.0

- 0.8

0.6

0.

0.2
0.0

0 500 1000 1500 2000
Time [sec)

Figure 3-6: Percentage to breakdown estimate for 1800MHz

These results indicate that we can effectively model application performance given

only the hypervisor counters as inputs. Using these models, it is possible to form

thresholds and flags to pass into a control module.

1.8
1.6
1.4

e 1.2
1.0

g 0.8
0.6
0.4
0.2

-0.0
1.0

- 0.8 -
2 0.6

e 0.4

M

0 500 1000 1500 2000
Time [sec]

Figure 3-7: Percentage to breakdown estimate for 900MHz

3.1.2 Share-based Modeling

In the previous scenario, CPU contention was simulated by limiting the CPU usage of

the VM. In industry, however, CPU limits are not often used; instead, datacenters opt

to use shares to designate server priorities. This way, the VMs have more flexibility in

stealing resources from each other.

To more realistically simulate a contention scenario in which VMs share resources,

we placed another VM on the same machine and measured the performance results.

Several content types were placed on the contending VM, and the next few sections

detail the results of each combination.

Identical Social Media Web Application

In this experiment, we created a replica of the SM web application and varied the

request levels on the two servers (call them SM1 and SM2 for the original and the

replica, respectively). At the hypervisor level, each VM is given the same amount of

shares for CPU, memory, network, and disk.

In Figures 3-8(a) and 3-8(b), we see that the response time of SMI server degrades

as its own request rate increases (horizontal axis). The breakdown point also decreases

when the SM2 request rate is increased. This makes sense because the VMs are now

contending for CPU cycles. However, the breakdown point is not as well-defined as

before. It is unclear how to define a PtB without a clear boundary between saturation

and normal operation. Thus, we model the response times instead. Since SLAs

typically measure the 95th percentile of response time, we parallel this and model the

95th percentile of response time. To make the modeling more closely match human

expectations, we take the log of the 95th percentile response time before we perform

modeling. A 50ms slowdown between 50ms and 100ms is not the same as a 50ms

slowdown between 1.Os and 1.05s; by using the log response times, the slowdowns we

measure are multiplicative slowdown factors. This is also better for modeling, since

the model will not focus too much effort on the additive slowdowns in the breakdown

regime.

We take the performance counters of both the SMI VM and the ESX host and

synchronize them with the response times of SMI by binning the response times into

the 10 second intervals used by ESX (the ESX counters are already synchronized).

For each bin, we take the set of response times and calculate the 95th percentile

of response time. Each 10 second interval becomes a training point, with a set of

hypervisor counters and a 95th percentile of response time.

We then split the data into 1283 training points and 321 test points. The training

data is then passed into the modeler with the full set of hypervisor counters as input.

In contrast to the limit-based modeling in the previous section where we chose a set

of counters, we input all of the counters (794 counters). For our response variable, we

used the 95th percentile of response time.

DataModeler was used to perform the EB-GPSR algorithm. The EB-GPSR model

fitnesses are shown in Figures 3-9(a) and 3-9(b). Ensemble prediction results for the

training set are shown in Figures 3-10(a) and 3-10(b), with the ensemble prediction

ranges for each data point. A similar plot for the test set predictions is shown in

Figure 3-11. Finally, the Pareto front models are shown in Table 3.1.

Prediction results are above 90%. Even on the test set, we have 90.5% accu-

racy. This is good, especially if we consider that the inputs to the model are all

generic vSphere performance counters, and there is nothing monitoring request rate

or throughput. It is also important to notice how nonlinear the models, especially for

higher R2 values.

One of the main advantages of GPSR is that it is capable of handling very high-

dimensional inputs. In this experiment, the input is 794-dimensional. We know that

most of these are irrelevant to the application performance, but we included them to

test the robustness of the EB-GPSR modeling method. It turns out that the models

can reduce the dimensionality quite quickly to the most important subset. The most

frequent variables are shown in Table 3.2. The first few counters are CPU ready counts.

We know intuitively that these are some of the most important counters because they

count the moments where a CPU instruction cannot be executed because no CPU

cores are available. There are also host CPU utilization counters, from which the

models can calculate the relative CPU usage of the VM versus the whole host. The

network traffic also ends up in 18.8% of the models; this also makes sense because the

network traffic can be used to infer the request rate. Heuristically, these explanations

all make sense, but the advantage of a GPSR system is that we can include all the data

and have it learn behavior, rather than us choosing counters and/or model structures.

95th Percentile of MT Response Time [s]

60

- 0.8

-0.6
4

S0.4 30

*** **.I ;--$~* . 0 .102

%0" - 30401

100 20 50 10o 15o 200
150 10 MT1 Request Rate [req/s]

(a) 3D scatterplot of 95th percentiles of SM1 (b) Contour plot of 95th percentiles of SM1
response time. The axes are the same as in response time
(b)

Figure 3-8: SMI response times for varying request rates on SMI and SM2

. --- ---------------

0 100 200 30) 40 500

Complexity

(a) Pareto front log plot of GPSR models

Pareto Front Log Plot

0.09

0.07

005

0.075

30 40 50 60 70 80

Complexity

(b) Pareto front log plot of GPSR models,
boxed around 1 - R2 = 0.1 and C = 100

Figure 3-9: Fitness of models for SM web application in share-based simulation

-3 -2 -1 0 1 2 3

Observed

(a) Ensemble predictions vs actual inputs

Figure 3-10: Model ensemble predicti

web application in share-based simulati

-3.0 -2.5 -2.0 -1.5

Observed

(b) Ensemble predictions vs actual inputs
(zoomed in)

on results for (log) response time of the SMi
on with identical SM2 contention (training set)

-3.0 -2.5 -2.0 -1.5

Observd

Figure 3-11: Model ensemble prediction results for (log) response time of the SM1
web application in share-based simulation with identical SM2 contention (test set)

.

Complexity 1 - R 2 Function

11 0.173 -3.056 + (2.685 x 10-4) X673
14 0.165 -2.984 + (1.834 x 10-8) X440 X673
19 0.149 -3.061+ 0.487X673

x745

22 0.115 -3.010 + (2.188 x 10- 7)X673(931.659 + X729)

23 0.092 -3.048 + (1.225x 10
5

) X440 X673
X433

33 0.091 3.047 + (1.280x io~)(x44o -x433)x673
X$

3
3

35 0.084 -3.115 + (3.286 x 10) X673(1053. + X36 - X72 5 - X72 9)
40 0.083 -3.207 + (3.349 x 10-7) X440 (9.614 + X7 2

X433)
47 0.082 -- 101 + (3.056 x 10-7) (-3.172 + X673 -+ X729) (1053. + X36 -- X725 + X729)

Table 3.1: Model table for SMI models

Models % of Models Variable Meaning

2270 64.8 X673 vm.cpu.ready-summation
1523 43.5 X729 vm.cpu6.ready-summation
1198 34.2 X 7 2 5 vm.cpu2.ready-summation
814 23.3 X724 vm.cpul.ready.summation
657 18.8 X433 host. net.vmnic0packetstx..summation
544 15.5 X746 vm.cpu0.usagemhz.minimum
540 15.4 X440 host.cpu.usagemhz-none
531 15.2 X3o1 host.sys.hostvimresourcememmapped-latest
510 14.6 X36 host.mem.swapused-average
366 10.5 X728 vm.cpu5.ready-summation
344 9.8 X490 host. cpu. utilization-average
333 9.5 X730 vm. cpu0. system.summation
303 8.7 X455 host.cpul.usage-minimum
235 6.7 X722 vm.cpu0.ready.summation

Table 3.2: Variable frequency table for SM1 models

Different Contention Content

To test generalization of our modeling framework, we also placed different content

alongside the SM server.

In the first case, we placed a Wordpress server in a separate VM, with 1000

random posts, each with random chosen tags from 26 categories and up to 8 generated

comments. As before, we varied the request rates on both the SM1 server and the

Wordpress server. Each of the response times from the SMI server was collected and

synchronized with the full set of ESX performance counters as before. The response

time curves are shown in Figures 3-12(a) and 3-12(b).

95th Percentile of SM1 Response Time [s]

6-

-0.4
- 0.

- 0.4

0 4
40 60 3

s0 2 . 2 20 40 60 80 100 120 140
100 1 SM1 Request Rate [reqs]

(a) 3D scatterplot of 95th percentiles of SMI (b) Contour plot of 95th percentiles of SM1
response time. The axes are the same as in response time
(b)

Figure 3-12: 95th percentile SMI response times in share-based simulation with
Wordpress contention

Using the same model ensembles from before, we use this out of sample data to test

prediction performance in untrained scenarios. DataModeler is again used to form

predictions from the ensembles, and the results are shown in Figure 3-13.

The prediction error here is noticeably worse, and we have R2 = 70.1. Because the

models were trained on only one particular case (the identical SM server alongside), the

simulations may not have explored the entire input space. A variable that the models

threw out in the previous case may become important in the Wordpress case due to

changes in the bottleneck resource, and hence the models may overlook scenarios they

were not trained to model. As we can see here, the variance of breakdown regime

.. _

-2

-3 2 - 01 2

Observed

Figure 3-13: Model ensemble prediction results for SMi web application response time
in share-based simulation with Wordpress contention

response time prediction increases, indicating that there is some other explanatory

variable that we are not considering. One advantage of using an ensemble-based

approach, however, is that the ensemble prediction ranges grow with uncertainty. In

many of these data points, the uncertain range actually overlaps the actual response

time. The prediction uncertainty would be larger if we included more models, so the

error may also be due to our aggressive model selection (boxing) scheme. With a more

generous model selection, we would increase robustness in detecting new regimes, at

the cost of lower training/test performance.

Despite the high prediction error from a R2 point of view, the model is still

useful even without training with this contending VM. Using a threshold-based SLA

definition, the model will still be correct most of the time. For example, if we define

the SLA to be a 4x latency increase from the fastest possible response time, our

threshold is at 160ms (-1.8 on the log plot). Using a thresholding SLA definition, the

prediction of whether or not the system is experience breakdown is actually correct

92.7% of the time. Thus, a model that may not perform terribly well from a machine

learning perspective can still provide useful information in practice. Keep in mind

that it is making predictions for regimes it has not experienced before, so the fact that

it can still predict breakdown is noteworthy.

We also tested the model robustness using a MySQL as the contending content.

The SysBench benchmark was used as the content, and the request rate was varied

similar to the previous scenario. All other details are the same, so they are omitted for

brevity. Simulation results are shown in Figures 3-14(a) and 3-14(b). Again, we used

the same models from the previous section and tested model accuracy on this out of

sample data to assess prediction performance in untrained scenarios. The results from

this are shown in Figure 3-15.

g -0.16

-0.14

-0.12

-0.10

* f * -0.08

-0.06

4 16

2 12
40 10

60 -8

100 6
120 4

(a) 3D scatterplot of 95th percentiles of SMI
response time. The axes are the same as in
(b)

Figure 3-14: 95th percentile SMi response
MySQL contention

SMI Request Rate (req/s]

b) Contour plot of 95th percentiles
response time

50

of SMI

times in share-based simulation with

From a R2 point of view, we achieve 69.1% accuracy. This is acceptable, considering

it is a novel scenario with very different contending behavior. However, if we look at

the models as a predictor of SLA violation, we achieve 96.6% accuracy. Thus, we can

see that the models are quite robust at predicting breakdown, even in regimes that

Obsered

Figure 3-15: Model ensemble prediction results for SMI web application response time
in share-based simulation with MySQL contention

95th Percentile of SMi Response Time [s]

15-

10

20 40 6 0 80 100 120 14

have not been trained for.

3.2 Virtual Desktop Infrastructure Modeling

We also ran an experiment with a VMware ESX-based virtual desktop infrastructure.

Thirty Windows 7 desktops were deployed to the ESX host and configured according

to the best practices guide [VMware, 2010]. Each host ran a XML-RPC server as an

interface to execute commands. This was used rather than a remote desktop based

interface so that bandwidth is reduced and guaranteed not to be the bottleneck. It

also reduces the computation burden on the stress client, since we can now execute

commands directly rather than interacting with a screen image and performing image

checksums.

Internally, the VDI server utilizes the Microsoft COM to execute commands on

Microsoft Office applications. We used this set of operation sequences:

" Microsoft Word:

1. Launch

2. Open a large document

3. Scroll to the bottom

4. Scroll to the top

5. Close

6. Terminate

* Microsoft Word:

1. Launch

2. Create a new document

3. Type some sample text (Lorem ipsum.. .)

4. Scroll down 30 lines

5. Scroll up 30 lines

6. Close

7. Terminate

* Microsoft Excel:

1. Launch

2. Create a new spreadsheet

3. Input 100 cells of data

4. Scroll down 100 cells

5. Close

6. Terminate

* Microsoft Powerpoint:

1. Launch

2. Open a large presentation

3. Page through the slides in edit mode

4. Close

5. Terminate

e Microsoft Powerpoint:

1. Launch

2. Open a large presentation

3. Start the presentation and advance through slides

4. Close

5. Terminate

During the run, up to 30 client threads simulate desktop users. Each client connects

to a different VM, and executes a series of actions and times the operation times. 30

runs were performed, each with a different number of clients active (i.e. 1, 2, 3, ... ,

30 clients). While a desktop is unused, it remains powered on.

To analyze the data, we choose to look at one particular user (say the VM1 user)

and look at the 95th percentile of Powerpoint response time. Again, we choose to

model the 95th percentile of response time because SLAs are typically defined in

terms of 95th percentiles. Results of the simulation are shown in Figures 3-16(a) and

3-16(b). Median response times are also shown in the plots to show that the variance

also increases as we increase the number of users; they are not used for modeling,

however. Notice that response time is fairly flat up until the 9th user connects, at

which point the response times jump and begin to climb, reaching a slowdown factor

of 3-4x at 30 users.

We can model these response times using the same GPSR procedure as before.

We collected 55 data points from the 30 runs and split it into a 44 point training set

and a 11 point test set, and ran the training set through the modeler. The input data

is the hypervisor counters from VM1 (the selected user whose response times we are

modeling) and from the ESX host.

The model results, shown in a Pareto front log plot, are shown in Figures 3-17(a)

and 3-17(b), and Pareto front individuals are shown in Table 3.3. Model predictions

are shown in Figure 3-18, and test results in Figure 3-19. The results are once again

quite good, achieving 96-97% R2 on the training set with modest complexity. On the

test set, the model achieves a 97.63% R2 value.

It is interesting to note that the most important variables for this VDI simulation,

shown in Table 3.4 are very different from the variables used in the SM application

(Table 3.2). On the one hand, this is an advantage, because this means the modeling

procedure is adaptive and learns specifically how a particular application will perform

without any prior assumptions about resource usage or application class. On the

other hand, this almost surely means the models will not generalize across application

classes given this training procedure.

These models were not plugged into a control module. One way in which they could

be used is a model could be trained for each application/operation in a representative

basket. The models could then produce real time estimates of application performance,

and if any of them violate a SLA, action could be taken.

Complexity 1 - R2 Function

23 0.030 2.097+ (7-996)(6 X160

35 0.029 2.072+ (3.3780
7

16 0
X

4 2 7
V V663

42 0.028 2.138 + (-8.282 x 10-6) X2 4 3 -

50 0.027 1.904+ 7.162X10 6)(-6 2X160 X183+X3 8l X571)

2.097 ~ ~ -I' +- (796x1-3 c

63 0.026 1.900 + (-7.162 X 10--
6

)(--2 X1 6 0 -X183-+X381 -X571-X663)

77 0.025 1.880 + (14.768 x 10 -
6

)(2 X16o+Xs 3 -X 3 8 1+X 6 6 3 +x 3)
-427 V' -

Table 3.3: Model table for VDI models

VDI Response Time Slowdown
4.5

* 0 Median Reseponse Time

4,0- 0 95th Percentile of Response Time e

3.5-

3.0
00

2.5 0
0

0

2.0 0 0 0

1.5 - .g : g

1 .00

5 10 15 20
Number of Users

I

25 30

(a) VDI Response Time

VDI Response Time Slowdown

0 Median Reseponse Time
1.35 * 0 95th Percentile of Response Time

1.30

1.25

1.20

1.15

1.10

1.05

00 '

2 4 U ser
Number of Users

Figure 3-16: VDI Response Times

Pareto Front Log Plot
00 00

004

0.0

0.10 - r

100 200 3

Complexity

(a) Pareto front log plot of GPSR models

0.03

0.029

0.026

0-027

0.026

Pareto Front Log Plot

A-,.

30 40 50 60 70

Complexity

(b) Pareto front log plot of GPSR models,
boxed around 1 - R2 = 0.04 and C = 80

Figure 3-17: Pareto front log plots of GPSR models

Mwsrv,.d

Figure 3-18: Ensemble predictions results in the VDI simulation (training set)

10 12

(b) VDI Response Time (zoomed in to the
breakdown point)

....... - " -''- - - - .= - - -- --

1.

Ensemble Prediction Plot

3.0 0

2.8

2.6

2.4

2.4 2.6 2.8 3.0

Observed

Figure 3-19: Ensemble prediction results in the VDI simulation (test set)

Models % of Models Variable Meaning

99 90.8 X663 vm.rescpu.runavl -latest
90 82.6 x160 host.mem.active-none
30 27.5 X93 host.cpu9.usage-minimum
24 22.0 X381 host. mem.activewrite-average
20 18.3 X84 host.cpu7. usage-maximum
16 14.7 x427 host.sys.uptime-latest
16 14.7 x163 host. mem. active-maximum
11 10.1 X379 host.sys. hostuserresourcememtouched-latest
11 10.1 X183 host.mem.zero-minimum
10 9.2 X327 host.rescpu.actpkllatest

Table 3.4: Variable frequency table for VDI models

.

42

Chapter 4

Related Work

The growing importance of virtualization in the last few years has attracted substantial

research into the modeling and control of virtualized systems. Systems are growing to

the point where human management and heuristics are reaching the limits of their

scale, and automated management systems are becoming more critical.

4.1 Performance Modeling

In [Stewart and Shen, 2005], modeling and datacenter management is achieved primar-

ily through application profiling. Each VM or application layer is modeled individually

to determine the CPU/memory/disk/network usage for a given workload. The mod-

eling is performed offline in the linear (unsaturated) regime, and the assumption is

that the placement of the VMs will not violate the resource requirements estimated

in this modeling phase. This is similar to the assumptions underlying the VMware

Distributed Resource Scheduler (DRS). DRS estimates VM resource requirements

based on current resource usage, and the optimizer uses those estimates to consolidate

VMs as a bin packing problem (see [VMware, 2006a] for more details).

These works make the assumption that resource oversubscription is to be avoided.

However, it has been shown that oversubscription is not necessarily always or strongly

detrimental to application performance [Urgaonkar et al., 2009]. There is thus much

more flexibility in server consolidation than resource utilization may indicate. Thus, a

SLA-oriented optimization approach can offer room for more aggressive consolidation.

[Tickoo et al., 2010] raises the question of performance effects from unobservables

such as cache misses. They propose heuristics to estimate the cache miss rate based on

CPU core sharing, and the results seem to indicate that even a relatively simple model

can capture much of the information. On a broad scale, this work shows that although

unobservable performance counters can impact application performance, they can often

be estimated using a model based on observable counters. By using statistical machine

learning, one is attempting to capture some of these hidden effects by a data-driven

approach rather than relying upon a deep technical understanding of a complicated

system (like cache managements) and an indication from the understanding as how to

craft the models.

In [Kundu et al., 2010], the objective is to model system performance on a set of

benchmarks given a particular set of resource allocations. For each data collection run,

they set the CPU caps (CAP), memory allocations (MEM), and 10 priority (IONICE),

and they collect the number of competing IO operations per second (CDIOPS). The

system performance is measured with several benchmarks: SysBench to measure CPU

performance, a custom memory benchmark to test memory performance, PostMark to

test IO performance, and SysBench to test overall system performance as an OLTP

server. Linear/quadratic regressions and artificial neural networks (ANNs) are used to

model benchmark performance. To more effectively collect data, an iterative training

procedure is used to adaptively collect more data when the modeling error is above

a threshold (see Figure 4-1). The best prediction error is achieved by ANNs (see

Figure 4-2). This shows that nonlinear models are much better estimators of system

performance.

One key difference between our work and this work is the use of benchmarks versus

real applications. Benchmarks essentially push the system to saturation with respect to

its resources, and assess the best-possible performance using each resource configuration.

The focus in [Kundu et al., 2010] is thus modeling the boundary of possible application

performance. In many cases, modeling benchmark performance is a close proxy to

application performance, but in some scenarios, it is important to model the application

HALT

HALT

Figure 4-1: Iterative training procedure used in [Kundu et al., 2010] (Figure taken
directly from work).

Benchmark CPU Memory Postmark OLTP
Modeling % prediction error % prediction error % prediction error %prediction error
Technique avg. I med. stdev. 90p. avg. med. stdev. |90p. avg. med. stdev. 9p. avg. med. | stdev. 90p.
Regres-L 24.91) 20.12 20.11 54.88 19.87 20.24 1298 34.87 64 4.73 5.6) 11.42 23.95 1791 19.29 50.54
Regres sQ 21.69 17.81 17.83 48.88 8.66 6.47 8.12 1936 6.27 5.)9 5.51 1119 73.51 53.12 74.75 19.49
Regress-Ll 21.89 19.35 16.36 49.31 19.80 16.71 14.80 37.19 6.58 5.71 5.53 12.60 71.36 46.31 75.04 213.53

ANN-linear 18.72 1402 1741 46.46 18.57 8.53 12.45 34.43 4.36 3.57 5.25 8.53 24.87 16.72 22.93 57.53
ANN-Gauss 27.42 21.13 23.84 57.16 47.34 46.53 29.73 96.15 25.58 21.0W 24.54 33.34 40.00 2).89 48.22 120.4
ANN-Eliot 11,50 6.65 14.02 29.60 2.50 1.16 3.68 6.1) 7.31 3.34 1)0.95 16.24 8.48 4.24 12.36 21.95

Figure 4-2: Prediction error results from [Kundu et al., 2010] (Table taken directly
from work).

directly because it is difficult to interpolate generic application performance from

benchmark performance. This is especially important when consolidating VMs, because

the use of resource sharing instead of hard resource caps makes it harder to translate

benchmark performance to application performance. Furthermore, the resource acting

as the bottleneck can change as resources demands of other VMs change over time.

Thus, the relationship between benchmark performance and application performance

is nonlinear and varies with the behavior of the other VMs as well.

Another key difference from our work is that the modeling inputs are the control

parameters (allocation levels). In our work and other works in this section, the inputs

are usually resource usage, workload, or other performance counters. Modeling using

allocations is appropriate for benchmark performance, but in modeling application

performance, where the VM may not be at saturation, it is important to also include

actual usage and other counters.

4.1.1 Probabilistic Response Time Modeling

Many works on performance modeling estimate the mean (and sometimes variance) of

response time. According to [Watson et al., 2010], if we examine the response time

distributions, it turns out that they are usually not Gaussian. The response times are

lower bounded by the computational requirements of the request. Above this lower

bound, response times vary due to instruction queueing and IO waits. Intuitively,

very long response times are much more rare than short response times due to the

FIFO nature of request queues. Thus, the distribution is usually lower bounded and

clustered close to the lower bound, but also heavy-tailed with some chance of very

long response times. Queueing theory models the response times with exponential

distributions, and this turns out to be a good approximation.

Some works account for the non-normal distribution shapes by modeling medians

and percentiles, which have been shown to be more appropriate for queue modeling

because they make less assumptions about the shape of the distribution [Bodik et al.,

2009b]. From a practical point of view, modeling percentiles is also advantageous since

service levels are often provided in terms of the 99th percentile of response time (e.g.

on [Amazon, 2011]).

Another way to tackle skewed distribution is to model the distributions themselves.

[Watson et al., 2010] chooses to take this approach and model response time distribu-

tion using quantile regression. Quantile regression is a modeling technique that finds

the times T such that P[t < T] = q for a set of quantiles q. From these estimates,

an empirical CDF estimate can be formed, and from the CDF a PDF can be derived.

Because quantile regression models quantiles instead of moments, the absolute value

of the residual is used as the loss function. Linear programming is usually used to

optimize the parameters. This is more computationally intensive than linear regression

with a squared residual loss function, but allows us to model quantiles instead of

moments.

The testbed in [Watson et al., 2010] consists of a 3-tiered RUBiS application: one

for the web layer, one for the application layer, and one for the database layer. For

each resource allocation configuration a, the utilizations ui, Uy, Uk are measured (one

for each application layer) while the application is loaded externally. For simplicity,

the variables are all binned into M discrete units. They assume an exponential

model of response time versus resource utilization, motivated by queuing theory and

performance modeling work in [Bodik, 2010, Bodik et al., 2009b]. Using the fitted

exponential model, they construct a CDF and compare that to the experimental

CDF using a mean absolute difference loss function. This seems to work very well in

practice, yielding low distribution estimation errors.

4.1.2 An SLA-oriented Perspective

It is possible to take a perspective centered on resource allocation and VM placement

according to simply fulfilling a Service Level Agreement. This is advantageous as it

allows much more flexibility in resource allocation and VM placement. [Turner et al.,

2010] develops such an allocation controller. It tries to minimize allocated resources

while meeting the SLA. The application used is a multi-tiered implementation of

the TPC-W standard. First, an exponential model is used to estimate the effect of

CPU contention on response time (see Figure 4-3). In this paper, CPU contention

is defined as "the total CPU utilization minus the amount used by the VM itself."

Contention is simulated using a custom Apache server with CPU-intensive requests.

For various contention levels, the mean response times then are collected for a range

of allocation levels (see Figure 4-4). Since this is a multi-tiered application, there are

too many resource contention combinations to exhaustively store a model for each. To

effectively overcome this, this work models a small subset of the possible contention

combinations, and uses linear interpolation to estimate the other points. After these

models are trained, the controller can estimate response time based on allocation

and contention levels, and dynamically adjust the allocations to reflect changes in

contention while still respecting the SLA. The results indicate that dynamic resource

allocation is less wasteful when the contention levels are low, and also more adaptive

in high-contention regimes (see Figure 4-5). Indeed, the SLA violations in the static

allocation (50% and 10% cases) are mitigated in the SLA-based cases. One point to

note is that the resource allocation works well equally for both SLA levels, and more

aggressively reduces allocation when the SLA is more lenient. In industry, this could

translate to datacenters offering various tiers of SLA, as opposed to various tiers of

resource allocation. Not only would this allow for the datacenter to manage resources

more aggressively, but the end customer would also get a clearer picture of application

performance.

This approach is at odds with our goals because it relies upon modeling the

application which we presume is opaque to the ESX host. When the application is

complex, more than model will be required.

4.1.3 Online Modeling

Few works directly model application performance online (though many reference this

as future work). Online modeling is tricky, because we are often concerned with the

breakdown point in the response time curves, but during online runs we prefer to

stay below the breakdown point to satisfy the SLA. Extrapolating from models of the

unsaturated regime are often unreliable, because the unsaturated, linear regime is a

poor predictor of the breakdown behavior. On the one hand, we want to collect data

CPU contention effect on response time

Figure 4-3: Model of
(Figure taken directly

response time from CPU contention in
from work).

[Turner et al., 2010]

350

300

E
250

CLo200

cc,

150

100

TPC-W response time

I -- 40% contention
- 30% contention
- 20% contention
- 10% contention

-%

% %tam

0 20 30 40 50 60 70 80 90 100
Web Server CPU allocation (%)

Figure 4-4: Response time data for various CPU allocations and contention levels in
[Turner et al., 2010] (Figure taken directly from work).

1400

1200

1000

800

600

400

200

0

- Observed data

Exponential prediction

P0 0 0 0 0

CPU contention

..........

SLO 150ms

50% resource
allocation

10% resource
allocation

CPU contention
levels

2W0 10 2001

15 I - 4 A
ro - 7b 1", - VV-yVW I I V I
200 I-t-

0 10 003040 0

300!

0 100 200 300 400 000

100 1 1 1 I

100 - - -I~-- -SQL-nt-ti-

I -Web Contention
Q

0 100 200 300 400 00

Experiment period (10s)

Figure 4-5: Response time data for various CPU allocations and contention levels in
[Turner et al., 2010] (Figure taken directly from work).

about breakdown to know how to prevent it. On the other hand, we want to avoid

such behavior in an online system.

[Bodik et al., 2009b] proposes one approach to addressing this difficulty. While

exploration around the critical SLA violation threshold is happening, hot standby

servers are running as backup servers in case response time crosses a safety threshold.

A linear model estimates average server throughput and activates safety replicas

if the linear model predicts unacceptable performance degradation. More complex

models could certainly be plugged into this framework. However, the work focuses

on a particular application within a large managed virtual infrastructure (Amazon

EC2). In this case, contention is taken to be approximately a constant given the large

scale of the infrastructure. Thus, powering on an additional VM essentially scales

the throughput linearly and hence linear models are theoretically (and empirically)

a good fit. The work focuses primarily on the user side and provisioning VMs in a

large managed infrastructure. We focus more on a limited infrastructure attempting

to consolidate more aggressively. Nevertheless, the idea of hot standby servers can be

translated to a datacenter-side exploration algorithm in future work.

.....:- - -.-- --

4.2 Datacenter Control

Most of the work thus far has focused on modeling, because many traditional control

methods require a model of the system. There are, however, a few notable works on

the control side.

4.2.1 VM Placement Control

The coarsest granularity for VM control is VM placement. Even without managing

individual resource allocations too much, VM placement can drastically change the

VM performance if the VMs are placed effectively. If VMs are placed efficiently, more

VMs can be run on the same set of physical hosts and extra hosts can be powered off

for power savings.

In [Petrucci et al., 2010], a control optimization algorithm is proposed which

structures the VM allocation problem to resemble bin-packing with known application

resource usages. The authors demonstrate that their dynamic control saves considerable

energy from the normally bundled "Performance" and "On Demand" options on most

systems. This work takes the model of application performance (in this case, the

required resource allocation to satisfy a given performance objective) as a given and

uses it to solve an interesting control problem.

As a special case of VM placement, [Bodik et al., 2009b] considers VM replica-

tion. However, the work focuses more on the user side and assumes a large cloud

infrastructure capable of expanding without noticeable contention penalties.

4.2.2 Resource Allocation Control

Padala et al. [2009] implements an online controller that dynamically optimizes re-

source allocation via share manipulation. The application performance is estimated

using local linear models around recent performance measurements. The control

optimizer minimizes a cost function, which contains a squared term for deviation from

target performance and another squared term for control action cost. The results are

quite good, reducing overprovisioning when the SLA is lenient and reducing latency

when the SLA is tighter (see Figure 4-6). However, the approach requires looking at

response times on line. If the models derived from the approach of this thesis were

suffciently accurate to run online, or, if the response rate was recoverable as data

without stepping inside the guest VM, and, if share manipulation is not too risky, this

approach could be blended for the goals of this thesis.

800 800
-6 250 AutoControl -e- AutoControl - A-Conro 0.

25 work-conserving - - work-conserving - - 700 - work-cons rol -0-
static 60 static ... 00 static .-..

200 - tprot - - target ---- target .----
:3 : 500 a 0

~150 1L(
1 400 - 1 400

C 100 .. 300 "* 300

Ar&.~ 200 200
50 .. DB CB : 100 - 100 -

0 0 0
0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90

Time intervals (every 20 secs) Time intervals (every 20 secs) Time intervals (every 20 secs)

Figure 4-6: Controller results from [Padala et al., 2009] (Figure taken directly from
work).

4.2.3 Resource Sharing Optimization

In some virtualization systems, resource shares are used in practice to allow for

more efficient resource usage (see Chapter 2). While resource allocations are a

good approximation to use for research, a resource sharing-based model would more

effectively capture the complexities of the resource sharing used in practice.

In [Ardagna et al., 2010], a toy Apache Tomcat application and SPECweb2005 are

modeled using linear parameter varying (LPV) models. LPV models describe systems

as

Xk+1 AkXk + Bkuk

Yk = CkXk + Dkuk,

and the time-varying state space matrices Ak, Bk, Ck, Dk are modeled as affine combi-

nations of constant matrices that are parameter-varying. It is unclear what the exact

inputs to the model are (possibly resource counters of some sort), but the response

variable is the application response time. The LPV technique is efficient enough to

work as a dynamic controller, and it is also flexible enough to model transients that

traditional queueing network models cannot model.

[Wang et al., 2010] also manages VM resource allocations using shares. There are

three application priority tiers (gold, silver, and bronze) to designate the relative

importance of a VM's operations. One critical part of the infrastucture is a dispatcher

that handles all requests and dispatches based on the VM shares and the incoming

workload. A quadratic model is trained offline to relate workload to the response

time given a CPU allocation. Local controllers then optimize the relative shares in

each physical host. Finally, the dispatcher gets the controller decisions and updates

its dispatching behavior based on the estimated of performance from the quadratic

models. Experimentally, the Trade6 application is used to simulate a trading system,

and it is deployed on all three tiers, with a simulated userbase for each tier. The

results show that the system can handle changes in request rates and adjust the shares

such that each tier continues to meet performance requirements.

4.3 Summary

Much of the virtualization research in recent years has investigated modeling and

control as a means for increasing efficiency and scalability. A wide spectrum of

modeling classes are represented, and the model inputs range from application specific

request rates to application agnostic resource utilizations. In our work, we work

towards a modeling system that uses a richer collection of performance counters (all

that ESX can provide), using application-specific training in simulation.

Recent work has also shown that shifting towards SLA-based optimization rather

than resource utilization-based optimization can lead to higher efficiency without

sacrificing performance. We focus primarily on this paradigm because it is potentially

the most flexible from the datacenter's point of view, and hence there is more room

for cost savings.

Model

Work Application RA Method Input Output Class Online Control

Stewart and Shen [2005] RUBiS, StockOnline - Request Rate CPU% Linear No No
Kundu et al. [20101 Benchmarks Limits Allocations Resp. Time Exp No No
Ardagna et al. [2010] SPECweb2005 Shares ? Resp. Time LPV Yes No
Watson et al. [2010] RUBiS Limits Utilizations RT Dist. QR No No
Petrucci et al. [2010] WC98 Placement - - - - Yes
Turner et al. [2010] TPC-W Limits Allocations Resp. Time Linear No No
Wang et al. [2010] DVDStore, RUBiS Shares Request Rate Resp. Time Quad No Yes
Bodik et al. [2009b] Cloudstone Replicas Request Rate Throughput Linear Yes Yes
Padala et al. [2009] RUBiS, TPC-W Limits Utilizations Resp. Time LocLin Yes Yes

Table 4.1: Summary of related works (see Table 4.2 for abbreviations)

Abbreviation Meaning

LocLin Local linear
RA Method Resource allocation method
Resp. Time Response time
RT Dist. Response time distribution
QR Quantile Regression
Exp Exponential model
CPU% CPU Usage Percentage
WC98 World Cup 1998 traces

Table 4.2: Abbreviations used in Table 4.1

Chapter 5

Future Work

Our results demonstrate a promising method of achieving SLA-based resource man-

agement. However, our current system is quite application-specific and training-data

specific. For example, if our training data has a multi-vCPU VM spending most of its

time on a particular CPU core, the models could end up using that particular vCPU's

counters, rather than coming up with a general placement-agnostic model.

Genetic programming for symbolic regression works very well for extracting useful

information from a deluge of unprocessed data, but in future work, human understand-

ing of the CPU counters could be used to preprocess the data into more meaningful

aggregate variables. For example, the simulation may happen to place the VM exe-

cutions on a particular core, and the model will pick that core out, but in general,

it is desirable to have a scheduling-independent model. The variables are also often

correlated because many different ways of measuring the same resource consumption

exist (e.g. percentage of CPU used vs MHz CPU usage). Principle component analysis

(PCA) or hand-picking the variables of the models would also help reduce correlation.

This would help the models learn faster by reducing the possible inputs to a smaller

set.

Future work would include pursing an application-agnostic model. It would be

trained using data from all application types and learns a general model that implicitly

determines the type of application from features in the hypervisor counter behavior.

The generality of this model would likely prohibit it from be very accurate across all

application types, but it would be robust to application differences.

This performance modeling naturally fits into a broader framework that includes

control alongside the modeling. One could imagine a controller that determines VM

placement based not on resource contention, but on the constraint that all SLAs must

be met. The controller would use the model to predict impending SLA violation or

service degradation in advance. Using using this advanced warning, the controller

could take action in many ways. One way of mitigating minor SLA violations is to

change the relative resource shares between VMs. Our preliminary work has already

shown that this feedback mechanism can bring a system in breakdown back down

to a level that satisfies the SLA. [Ardagna et al., 2010] also shows that changing

relative CPU shares can lead to better overall performance. Another action could be

voltage scaling to minimize power consumption when SLAs are fully met. Finally VM

migration (i.e. vMotion in the VMware products) could be used for more drastic SLA

violations where rebalancing shares will not be sufficient.

Finally, we could consider online modeling. One way to accomplish this is using

EB-GPSR as variable selection. The EB-GPSR models would indicate which counters

to record, and a more refined model could be trained online using only the selected

counters. With a smaller variable set, more efficient modeling techniques could be

used to train online models. For instance, one could use gradient descent to fit

parameters in arithmetic expressions or structures discerned from the GP models.

Genetic programming could be performed online, but usually it requires lots of model

sampling, so it is perhaps not the most efficient choice for online learning.

To tie this into the controller framework, one would require a means of capturing

response time data in a deployed system (i.e. not collecting data from the client side).

One way to do so is to include a module in the hypervisor kernel that can listen to

information from inside the VM (e.g. VMware Tools). The system could then be

monitored for performance changes like in [Bodik et al., 2009b]. When the system

detects that the underlying behavior is no longer stationary, an updated model could

be learned online.

Finally, a model-free approach could be used for control. An application that

needs to meet a certain SLA would broadcast a health signal to the kernel based on

its performance level, similar to the data that an online modeler would use. The VM

could then control VM configurations directly from this signal. This is similar in

concept to some work in [Hoffmann et al., 2010], except at the hypervisor level rather

than the OS level. This has the drawback that migration is difficult to handle, since

the system cannot predict behavior in completely novel environments. However, for

minor adjustments to shares, this may be a viable approach.

58

Chapter 6

Summary

We have shown a fully data-driven approach to virtual application performance mod-

eling. Through simulations, we generated training data for application performance,

stress testing the VMs at various performance levels. During these simulations, hyper-

visor counters were collected as well as service levels (defined as 95th percentiles of

response time).

Using EB-GPSR, we learned models of application service level. The full set

of hypervisor counters were taken as inputs, and without a priori assumptions of

model structure or variable selections, EB-GPSR successfully learned accurate models

of application service level. Most test sets exceeded 90% accuracy. Generalization

with different contending VM content was more challenging, with only 70% accuracy.

However, given a SLA threshold, generalization accuracy rose up to 96%, indicating that

the models are still useful in scenarios where an unknown environment is contending

for resources.

Our models take inputs from visible hypervisor counters, and do not require direct

interaction with the applications to determine response time. Thus we have demon-

strated a successful method of modeling application performance from hypervisor-level

information. The procedure is highly data driven, and can perform variable selection

depending on the application.

60

Bibliography

Agarwal, A., Santambrogio, M., Wingate, D., and Eastep, J. (2009). Smartlocks:
Self-aware synchronization through lock acquisition scheduling. Strategy, pages
1-15.

Amazon (2011). Amazon Elastic Compute Cloud (Amazon EC2). http: //aws. amazon.
com/ec2/.

Ardagna, D., Tanelli, M., Lovera, M., and Zhang, L. (2010). Black-box performance
models for virtualized web service applications. In Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering, pages 153-164,
New York, New York, USA. ACM.

Bodik, P. (2010). Automating Datacenter Operations Using Machine Learning. PhD
thesis.

Bodik, P., Armbrust, M., Canini, K., Fox, A., Jordan, M., and Patterson, D. (2008). A
case for adaptive datacenters to conserve energy and improve reliability. University
of California at Berkeley, Tech. Rep. UCB/EECS-2008-127, (Vm):1-5.

Bodik, P., Goldszmidt, M., Fox, A., Woodard, D. B., and Andersen, H. (2010).
Fingerprinting the datacenter: Automated classification of performance crises. In
ACM European Conference on Computer Systems EuroSys, pages 111-124. Microsoft
Research, ACM.

Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., and Patterson, D. (2009a).
Automatic exploration of datacenter performance regimes. In Proceedings of the 1st
workshop on Automated control for datacenters and clouds, ACDC '09, pages 1-6.
ACM.

Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., and Patterson, D. (2009b).
Statistical machine learning makes automatic control practical for internet data-
centers. In Proceedings of the 2009 conference on Hot topics in cloud computing,
HotCloud'09, pages 12-12. USENIX Association.

Downey, A. (2005). Lognormal and Pareto distributions in the Internet. Computer
Communications, 28(7):790-801.

Du, J., Sehrawat, N., and Zwaenepoel, W. (2010). Performance profiling in a virtualized
environment. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud
Computing, page 2. USENIX Association.

Eastep, J., Wingate, D., Santambrogio, M., and Agarwal, A. (2010). Smartlocks:
lock acquisition scheduling for self-aware synchronization. In Proceeding of the 7th
international conference on Autonomic computing, ICAC '10, pages 215-224. ACM.

Evolved Analytics (2011). Evolved Analytics' DataModeler. http://www.
evolved-analytics . com/?q=datamodeler.

Hoffmann, H., Eastep, J., Santambrogio, M., Miller, J., and Agarwal, A. (2010).
Application heartbeats for software performance and health. In Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice of parallel computing,
pages 347-348, New York, New York, USA. ACM.

Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., and Rinard, M. (2009).
Using Code Perforation to Improve Performance, Reduce Energy Consumption, and
Respond to Failures. Technical report.

Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear
scaling. In Proceedings of the 6th European conference on Genetic programming,
EuroGP'03, pages 70-82, Berlin, Heidelberg. Springer-Verlag.

Keijzer, M. (2008). Symbolic regression. In GECCO (Companion), pages 2895-2906.

Koenker, R. and Hallock, K. (2001). Quantile regression. The Journal of Economic
Perspectives, 15(4):143-156.

Kotanchek, M. (2010). Real-world data modeling. In Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation, GECCO '10, pages
2863-2896, New York, NY, USA. ACM.

Kotanchek, M., Smits, G., and Vladislavleva, E. (2007). Trustable symbolic regression
models. In Riolo, R. L., Soule, T., and Worzel, B., editors, Genetic Programming
Theory and Practice V, Genetic and Evolutionary Computation, chapter 12, pages
203-222. Springer, Ann Arbor.

Kotanchek, M., Smits, G., and Vladislavleva, E. (2008). Exploiting trustable models
via pareto GP for targeted data collection. In Riolo, R. L., Soule, T., and Worzel, B.,
editors, Genetic Programming Theory and Practice VI, Genetic and Evolutionary
Computation, chapter 10, pages 145-163. Springer, Ann Arbor.

Kundu, S., Rangaswami, R., Dutta, K., and Zhao, M. (2010). Application perfor-
mance modeling in a virtualized environment. In HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer Architecture, pages 1-10.
Ieee.

Netcraft (2011). May 2011 Web Server Survey. http: //news. net craft. com/
archives/2011/05/02/may-2011-web-server-survey.html.

Padala, P., Hou, K., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., and Merchant,
A. (2009). Automated control of multiple virtualized resources. In Proceedings of
the 4th ACM European conference on Computer systems, number HPL-2008-123,
pages 13-26. ACM.

Pedram, M. and Hwang, I. (2010). Power and Performance Modeling in a Virtualized
Server System. In 2010 39th International Conference on Parallel Processing
Workshops, pages 520-526. IEEE.

Petrucci, V., Loques, 0., and Moss6, D. (2010). A dynamic optimization model for
power and performance management of virtualized clusters. In Proceedings of the
1st International Conference on Energy-Efficient Computing and Networking, pages
225-233, New York, New York, USA. ACM.

Sangpetch, A., Turner, A., and Kim, H. (2010). How to tame your VMs: an automated
control system for virtualized services. In Proceedings of the 24th international
conference on Large installation system administration, pages 1-16. USENIX Asso-
ciation.

Sharf, M. (2005). On the response time of the large-scale composite Web services.
In Proceedings of the 19th International Teletraffic Congress (ITC 19), Beijing.
Citeseer.

Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., and Kotanchek, M. (2005).
Variable selection in industrial datasets using pareto genetic programming. In Yu,
T., Riolo, R. L., and Worzel, B., editors, Genetic Programming Theory and Practice
III, volume 9 of Genetic Programming, chapter 6, pages 79-92. Springer, Ann Arbor.

Smits, G. and Kotanchek, M. (2004). Pareto-front exploitation in symbolic regres-
sion. In O'Reilly, U.-M., Yu, T., Riolo, R. L., and Worzel, B., editors, Genetic
Programming Theory and Practice II, chapter 17. Springer, Ann Arbor.

Stewart, C. and Shen, K. (2005). Performance modeling and system management for
multi-component online services. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pages 71-84. USENIX
Association.

Tickoo, 0., Iyer, R., Illikkal, R., and Newell, D. (2010). Modeling virtual machine per-
formance: challenges and approaches. ACM SIGMETRICS Performance Evaluation
Review, 37(3):55-60.

Turner, A., Sangpetch, A., and Kim, H. (2010). Empirical virtual machine models
for performance guarantees. In Proceedings of the 24th international conference on
Large installation system administration, pages 1-15. USENIX Association.

Urgaonkar, B., Shenoy, P., and Roscoe, T. (2009). Resource overbooking and applica-
tion profiling in a shared Internet hosting platform. ACM Transactions on Internet
Technology, 9(1):1-45.

Vladislavleva, E. (2008). Model-based Problem Solving through Symbolic Regression
via Pareto Genetic Programming. PhD thesis, Tilburg University, Tilburg, the
Netherlands.

VMware (2006a). Resource management with VMware DRS. Technical report.

VMware (2006b). Virtualization overview. Technical report.

VMware (2009). Understanding Memory Resource Management in VMware ESX.
Technical report. http: //www. vmware. com/pdf /usenix resourcemgmt .pdf.

VMware (2009). VMware vSphere 4: The CPU Scheduler in VMware ESX 4. Technical
report.

VMware (2010). VMware View Optimization Guide for Windows 7. Technical report.

VMware (2011). vSphere Resource Management Guide. Technical report.

Wang, R. and Kandasamy, N. (2009). A distributed control framework for performance
management of virtualized computing environments: some preliminary results. In
Proceedings of the 1st workshop on Automated control for datacenters and clouds,
pages 7-12. ACM.

Wang, R., Kusic, D., and Kandasamy, N. (2010). A distributed control framework for
performance management of virtualized computing environments. In Proceeding of
the 7th international conference on Autonomic computing, pages 89-98. ACM.

Watson, B. J., Marwah, M., Gmach, D., Chen, Y., Arlitt, M., and Wang, Z. (2010).
Probabilistic performance modeling of virtualized resource allocation. In Proceeding
of the 7th international conference on Autonomic computing - ICAC '10, pages
99-108, New York, New York, USA. ACM Press.

