11 research outputs found

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Radio resource allocation in collaborative cognitive radio networks based on primary sensing profile

    Get PDF
    In this paper, we present a novel power allocation scheme for multicarrier cognitive radio networks. The proposed scheme performs subchannel power allocation by incorporating primary users activity in adjacent cells. Therefore, we first define the aggregated subchannel activity index (ASAI) as an average indicator which characterizes the collective networkwide primary users' communication activity level. The optimal transmit power allocation is then obtained with the objective of maximizing a total utility function at the secondary base station (SBS), subject to the maximum SBS transmit power, and collision probability constraint at the primary receivers. Utilizing ASAI, we further obtain an energy efficient power allocation for the secondary system. Optimal energy efficiency (EE) and spectral efficiency (SE) are contradicting objectives, and thus, there is a tradeoff between these two performance metrics. We also propose a design approach to handle this tradeoff as a function of the ASAI, which provides quantitative insights into efficient system design. In addition to a lower signaling overhead, the simulation results confirm that the proposed scheme achieves a significantly higher achievable rate. Simulation results further indicate that using ASAI enables obtaining an optimal operating point based on the tradeoff between EE and SE. The optimal operating point can be further adjusted by relaxing/restricting the sensing parameters depending on the system requirements

    Security Threats to 5G Networks for Social Robots in Public Spaces: A Survey

    Get PDF
    This paper surveys security threats to 5G-enabled wireless access networks for social robots in public spaces (SRPS). The use of social robots (SR) in public areas requires specific Quality of Service (QoS) planning to meet its unique requirements. Its 5G threat landscape entails more than cybersecurity threats that most previous studies focus on. This study examines the 5G wireless RAN for SRPS from three perspectives: SR and wireless access points, the ad hoc network link between SR and user devices, and threats to SR and users’ communication equipment. The paper analyses the security threats to confidentiality, integrity, availability, authentication, authorisation, and privacy from the SRPS security objectives perspective. We begin with an overview of SRPS use cases and access network requirements, followed by 5G security standards, requirements, and the need for a more representative threat landscape for SRPS. The findings confirm that the RAN of SRPS is most vulnerable to physical, side-channel, intrusion, injection, manipulation, and natural and malicious threats. The paper presents existing mitigation to the identified attacks and recommends including physical level security (PLS) and post-quantum cryptography in the early design of SRPS. The insights from this survey will provide valuable risk assessment and management input to researchers, industrial practitioners, policymakers, and other stakeholders of SRPS.publishedVersio

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202

    Contributions to energy-aware demand-response systems using SDN and NFV for fog computing

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns worldwide that drive the urgent creation of new energy management and consumption schemes. In this regard, by leveraging the massive connectivity provided by emerging communications such as the 5G systems, this thesis proposes a long-term sustainable Demand-Response solution for the adaptive and efficient management of available energy consumption for Internet of Things (IoT) infrastructures, in which energy utilization is optimized based on the available supply. In the proposed approach, energy management focuses on consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by proposing that each consumer device be part of an IoT infrastructure, it is feasible to control its respective consumption. The proposal includes an architecture that uses Network Functions Virtualization (NFV) and Software Defined Networking technologies as enablers to promote the primary use of energy from renewable sources. Associated with architecture, this thesis presents a novel consumption model conditioned on availability in which consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as the prioritization of the energy supply, workload scheduling using time-shifting capabilities, and quality degradation to decrease- the power demanded by consumers if needed. The adaptive energy management solution is modeled as an Integer Linear Programming, and its complexity has been identified to be NP-Hard. To verify the improvements in energy utilization, an optimal algorithmic solution based on a brute force search has been implemented and evaluated. Because the hardness of the adaptive energy management problem and the non-polynomial growth of its optimal solution, which is limited to energy management for a small number of energy demands (e.g., 10 energy demands) and small values of management mechanisms, several faster suboptimal algorithmic strategies have been proposed and implemented. In this context, at the first stage, we implemented three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs). Then, we incorporated into both the optimal and heuristic strategies a prepartitioning method in which the total set of analyzed services is divided into subsets of smaller size and complexity that are solved iteratively. As a result of the adaptive energy management in this thesis, we present eight strategies, one timal and seven heuristic, that when deployed in communications infrastructures such as the NFV domain, seek the best possible scheduling of demands, which lead to efficient energy utilization. The performance of the algorithmic strategies has been validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and the processing of energy demands. Additionally, the simulation results revealed that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands. This thesis also explores possible application scenarios of both the proposed architecture for adaptive energy management and algorithmic strategies. In this regard, we present some examples, including adaptive energy management in-home systems and 5G networks slicing, energy-aware management solutions for unmanned aerial vehicles, also known as drones, and applicability for the efficient allocation of spectrum in flex-grid optical networks. Finally, this thesis presents open research problems and discusses other application scenarios and future work.El constante aumento del consumo de energía, el agotamiento de los recursos no renovables, el impacto climático asociado con la generación de energía y la capacidad finita de producción de energía son preocupaciones importantes en todo el mundo que impulsan la creación urgente de nuevos esquemas de consumo y gestión de energía. Al aprovechar la conectividad masiva que brindan las comunicaciones emergentes como los sistemas 5G, esta tesis propone una solución de Respuesta a la Demanda sostenible a largo plazo para la gestión adaptativa y eficiente del consumo de energía disponible para las infraestructuras de Internet of Things (IoT), en el que se optimiza la utilización de la energía en función del suministro disponible. En el enfoque propuesto, la gestión de la energía se centra en los dispositivos de consumo (por ejemplo, electrodomésticos). En este sentido, al proponer que cada dispositivo de consumo sea parte de una infraestructura IoT, es factible controlar su respectivo consumo. La propuesta incluye una arquitectura que utiliza tecnologías de Network Functions Virtualization (NFV) y Software Defined Networking como habilitadores para promover el uso principal de energía de fuentes renovables. Asociada a la arquitectura, esta tesis presenta un modelo de consumo condicionado a la disponibilidad en el que los consumidores son parte del proceso de gestión. Para utilizar eficientemente la energía de fuentes renovables y no renovables, se proponen varias estrategias de gestión, como la priorización del suministro de energía, la programación de la carga de trabajo utilizando capacidades de cambio de tiempo y la degradación de la calidad para disminuir la potencia demandada. La solución de gestión de energía adaptativa se modela como un problema de programación lineal entera con complejidad NP-Hard. Para verificar las mejoras en la utilización de energía, se ha implementado y evaluado una solución algorítmica óptima basada en una búsqueda de fuerza bruta. Debido a la dureza del problema de gestión de energía adaptativa y el crecimiento no polinomial de su solución óptima, que se limita a la gestión de energía para un pequeño número de demandas de energía (por ejemplo, 10 demandas) y pequeños valores de los mecanismos de gestión, varias estrategias algorítmicas subóptimos más rápidos se han propuesto. En este contexto, en la primera etapa, implementamos tres estrategias heurísticas: una estrategia codiciosa (GreedyTs), una solución basada en algoritmos genéticos (GATs) y un enfoque de programación dinámica (DPTs). Luego, incorporamos tanto en la estrategia óptima como en la- heurística un método de prepartición en el que el conjunto total de servicios analizados se divide en subconjuntos de menor tamaño y complejidad que se resuelven iterativamente. Como resultado de la gestión adaptativa de la energía en esta tesis, presentamos ocho estrategias, una óptima y siete heurísticas, que cuando se despliegan en infraestructuras de comunicaciones como el dominio NFV, buscan la mejor programación posible de las demandas, que conduzcan a un uso eficiente de la energía. El desempeño de las estrategias algorítmicas ha sido validado a través de extensas simulaciones en varios escenarios, demostrando mejoras en el consumo de energía y el procesamiento de las demandas de energía. Los resultados de la simulación revelaron que los enfoques heurísticos producen soluciones de alta calidad cercanas a las óptimas mientras se ejecutan entre dos y siete órdenes de magnitud más rápido y con aplicabilidad a escenarios con miles y cientos de miles de demandas de energía. Esta tesis también explora posibles escenarios de aplicación tanto de la arquitectura propuesta para la gestión adaptativa de la energía como de las estrategias algorítmicas. En este sentido, presentamos algunos ejemplos, que incluyen sistemas de gestión de energía adaptativa en el hogar, en 5G networkPostprint (published version

    Shaping future low-carbon energy and transportation systems: Digital technologies and applications

    Get PDF
    Digitalization and decarbonization are projected to be two major trends in the coming decades. As the already widespread process of digitalization continues to progress, especially in energy and transportation systems, massive data will be produced, and how these data could support and promote decarbonization has become a pressing concern. This paper presents a comprehensive review of digital technologies and their potential applications in low-carbon energy and transportation systems from the perspectives of infrastructure, common mechanisms and algorithms, and system-level impacts, as well as the application of digital technologies to coupled energy and transportation systems with electric vehicles. This paper also identifies corresponding challenges and future research directions, such as in the field of blockchain, digital twin, vehicle-to-grid, low-carbon computing, and data security and privacy, especially in the context of integrated energy and transportation systems

    Low-latency Data Computation of Inland Waterway USVs for RIS-Assisted UAV MEC Network

    Get PDF
    Unmanned Surface Vehicles (USVs) in inland waterways have drawn increasing attention for their excellent capability to serve maritime time-consuming missions such as autonomous navigation and intelligent monitoring. However, USVs struggle to accomplish emerging computation-intensive tasks (e.g., sensor, telemetry, etc) timely due to the limited on-board resources. This paper proposes a novel reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) multi-access edge computing (MEC) network architecture to support low-latency USVs data computation with time window. Aiming to enhance USVs task processing efficiency, the minimization of USVs task processing time is formulated by jointly considering UAVs flight route selection, USVs execution mode selection, UAVs hovering coordinates and RIS phase shift vector. A heuristic solution is proposed to tackle the formulated challenging problem iteratively. The original problem is decoupled into three subproblems: an enhanced deferred acceptance algorithm is proposed to solve UAVs flight route selection subproblem; an enhanced Lagrangian relaxation method is proposed to solve USVs execution mode selection subproblem; a joint alternating direction method of multipliers (ADMM)-successive convex approximation (SCA)-based algorithm is proposed to solve UAVs hovering coordinates subproblem. Experiment results demonstrate that the proposed solution can decrease task processing time by approximately 54% compared with numerous selected advanced algorithms. Moreover, the performance of the proposed solution under typical UAVs caching capability and the number of UAVs has been investigated

    A contract theory-based incentive mechanism for UAV-enabled VR-based services in 5G and beyond

    Get PDF
    The proliferation of novel infotainment services such as Virtual Reality(VR)-based services has fundamentally changed the existing mobile networks. These bandwidth-hungry services expanded at a tremendously rapid pace, thus, generating a burden of data traffic in the mobile networks. To cope with this issue, one can use Multi-access Edge Computing (MEC) to bring the resource to the edge. By doing so, we can release the burden of the core network by taking the communication, computation, and caching resources nearby the end-users (UEs). Nevertheless, due to the vast adoption of VR-enabled devices, MEC resources might be insufficient in peak times or dense settings. To overcome these challenges, we propose a system model where the service provider (SP) might rent Unmanned Area Vehicles (UAVs) from UAV service providers (USPs) to serve as micro-based stations (UBSs) that expand the service area and improve the spectrum efficiency. In which, UAV can pre-cached certain sets of VR-based contents and serve UEs via air-to-ground (A2G) communication. Furthermore, future intelligent devices are capable of 5G and B5G communication interfaces, and thus, they can communicate with UAVs via A2G links. By doing so, we can significantly reduce a considerable amount of data traffic in mobile networks. In order to successfully enable such kinds of services, an attractive incentive mechanism is required. Therefore, we propose a contract theory-based incentive mechanism for UAV-assisted MEC in VR-based infotainment services, in which the MEC offers an amount reward to a UAV for serving as a UBS in a specific location for certain time slots. We then derive an optimal contract-based scheme with individual rationality and incentive compatibility conditions. The numerical findings show that our proposed approach outperforms the Linear Pricing (LP) technique and is close to the optimal solution in terms of social welfare. Additionally, our proposed scheme significantly enhanced the fairness of utility for UAVs in asymmetric information problems

    Toward Dynamic Social-Aware Networking Beyond Fifth Generation

    Get PDF
    The rise of the intelligent information world presents significant challenges for the telecommunication industry in meeting the service-level requirements of future applications and incorporating societal and behavioral awareness into the Internet of Things (IoT) objects. Social Digital Twins (SDTs), or Digital Twins augmented with social capabilities, have the potential to revolutionize digital transformation and meet the connectivity, computing, and storage needs of IoT devices in dynamic Fifth-Generation (5G) and Beyond Fifth-Generation (B5G) networks. This research focuses on enabling dynamic social-aware B5G networking. The main contributions of this work include(i) the design of a reference architecture for the orchestration of SDTs at the network edge to accelerate the service discovery procedure across the Social Internet of Things (SIoT); (ii) a methodology to evaluate the highly dynamic system performance considering jointly communication and computing resources; (iii) a set of practical conclusions and outcomes helpful in designing future digital twin-enabled B5G networks. Specifically, we propose an orchestration for SDTs and an SIoT-Edge framework aligned with the Multi-access Edge Computing (MEC) architecture ratified by the European Telecommunications Standards Institute (ETSI). We formulate the optimal placement of SDTs as a Quadratic Assignment Problem (QAP) and propose a graph-based approximation scheme considering the different types of IoT devices, their social features, mobility patterns, and the limited computing resources of edge servers. We also study the appropriate intervals for re-optimizing the SDT deployment at the network edge. The results demonstrate that accounting for social features in SDT placement offers considerable improvements in the SIoT browsing procedure. Moreover, recent advancements in wireless communications, edge computing, and intelligent device technologies are expected to promote the growth of SIoT with pervasive sensing and computing capabilities, ensuring seamless connections among SIoT objects. We then offer a performance evaluation methodology for eXtended Reality (XR) services in edge-assisted wireless networks and propose fluid approximations to characterize the XR content evolution. The approach captures the time and space dynamics of the content distribution process during its transient phase, including time-varying loads, which are affected by arrival, transition, and departure processes. We examine the effects of XR user mobility on both communication and computing patterns. The results demonstrate that communication and computing planes are the key barriers to meeting the requirement for real-time transmissions. Furthermore, due to the trend toward immersive, interactive, and contextualized experiences, new use cases affect user mobility patterns and, therefore, system performance.Cotutelle -yhteisväitöskirj

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G
    corecore