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Abstract—The proliferation of novel infotainment services such
as Virtual Reality(VR)-based services has fundamentally changed
the existing mobile networks. These bandwidth-hungry services
expanded at a tremendously rapid pace, thus, generating a
burden of data traffic in the mobile networks. To cope with
this issue, one can use Multi-access Edge Computing (MEC)
to bring the resource to the edge. By doing so, we can release
the burden of the core network by taking the communication,
computation, and caching resources nearby the end-users (UEs).
Nevertheless, due to the vast adoption of VR-enabled devices,
MEC resources might be insufficient in peak times or dense
settings. To overcome these challenges, we propose a system
model where the service provider (SP) might rent Unmanned
Area Vehicles (UAVs) from UAV service providers (USPs) to
serve as micro-based stations (UBSs) that expand the service
area and improve the spectrum efficiency. In which, UAV can
pre-cached certain sets of VR-based contents and serve UEs
via air-to-ground (A2G) communication. Furthermore, future
intelligent devices are capable of 5G and B5G communication
interfaces, and thus, they can communicate with UAVs via A2G
links. By doing so, we can significantly reduce a considerable
amount of data traffic in mobile networks. In order to successfully
enable such kinds of services, an attractive incentive mechanism is
required. Therefore, we propose a contract theory-based incentive
mechanism for UAV-assisted MEC in VR-based infotainment
services, in which the MEC offers an amount reward to a UAV
for serving as a UBS in a specific location for certain time
slots. We then derive an optimal contract-based scheme with
individual rationality and incentive compatibility conditions. The
numerical findings show that our proposed approach outperforms
the Linear Pricing (LP) technique and is close to the optimal
solution in terms of social welfare. Additionally, our proposed
scheme significantly enhanced the fairness of utility for UAVs in
asymmetric information problems.

Index Terms—Augmented reality, Virtual reality, contract
theory, computational caching.
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I. INTRODUCTION

Metaverse is an extension of the Internet to realize the
virtual world through augmented and virtual reality (AR/VR)
[1]. Being a fundamental element of the metaverse, AR/VR has
been studied widely. In particular, AR/VR over wireless has
gained the significant interest of researchers in both academia
and industry. High-definition visuals, sounds, sensory data,
and animations of AR/VR disparate quality of service (QoS)
in correlation to the traditional networks, thus posing differ-
ent communication, computing, and storage challenges. The
various applications of AR/VR require low latency and high
resource allocation, which creates a bottleneck at the air
interface of wireless networks. Multi-access edge computing
(MEC) has contributed well to address this bottleneck by
reducing the transmission and processing latency significantly.
In a three-tier architecture of MEC networks, the cloud server,
the base stations, and edge servers collaborate for VR content
delivery. However, the fixed locations of MEC edge servers
limit the resource management for VR-based contents delivery.
Moreover, the redundant deployment of MEC edge servers is
efficient only during peak traffic hours and remains unused
otherwise.

To address this issue, replacing fixed MEC edge servers
with flying Unmanned Area Vehicle (UAV) edge servers
is a better alternative. Undoubtedly, the salient features of
automation, flexibility, and better signal-to-noise ratio (SNR)
make the UAV-based MEC network more efficient for VR-
based contents delivery. Many research works have studied
the deployment of UAVs as MEC servers in wireless networks.
However, UAV-based MEC networks for VR content delivery
need further investigation.

An example of a VR-based service is an on-demand 360-
degree video over mobile networks [2]. This is an essential
feature of VR-based services that provide UEs with partial or
fully immersive virtual environments on head-mounted devices
(HMD) such as VR gear or commodity phones. Typically, VR-
based contents are stored in high-definition videos such as
8K, 4K, etc., to enhance the quality of experience (QoE) [3]–
[5]. Therefore, it requires a massive amount of bandwidth for
transmitting the VR-based contents in the network [4]. Con-
sequently, serving VR-based contents via only cellular links
at the MEC is a crucial challenge. Intelligibly, a promising
solution for serving VR-based contents in mobile networks
is employing alternative communication technology such as
D2D communication or A2G communication. However, D2D
communication might not be suitable in this scenario, where
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the mobility of users will significantly affect the performance
of D2D links. Therefore, we propose the solution of A2G
communication, where the SP might rent a UAV from USP to
serve as a UBS at a desired location for some time slots. In
such a case, the SP offers an amount of reward to the USP.
Then, the USP might choose to accept or reject the request of
the SP. If the request is accepted, the USP must deploy UAV
according to the requirements of the SP, i.e., the location, and
set of contents to be cached. As a result, a considerable amount
of data traffic can be offloaded via A2G links. However, an
attractive incentive mechanism is required that motivate the
USP to participate in this model.

There are various approaches for designing this kind of
incentive mechanisms such as auction theory, Stackelberg
game, and bargaining game [6]. Nevertheless, most of these
solution approaches are the iterative mechanism that requires
a long convergence time and various information exchange
among players. To tackle these challenges, we employed the
contract theory to design an attractive incentive mechanism
for UAV-assisted MEC in VR-based services. In this solution
approach, the SP offers some rewards to the USP for providing
its UAVs. The reward can be defined as monetary or free
mobile data and proportionally with the amount of effort
that the UAV participates in the system [7]. Moreover, in
the designed approach, the SP only has information related
to the VR-based contents, e.g., content popularity, projection
type popularity, and certain network conditions such as user
request rate. This information is not available on the USP side.
On the other hand, the USP only has information related to
UAVs, such as energy, cache storage capacity, and ability to
serve as UBS. This information determines which type a UAV
might belong to; and thus, it is a critical condition to optimize
the UAV utility in the contract theory model. In such a case,
this imbalance of information between the SP and USP posed
an information asymmetry problem that created an unfairness
in incentive mechanism design. There is a need to tackle
this challenge, but the aforementioned solution approaches
could not solve it. Therefore, in this paper, we proposed a
solution approach that guarantees the fairness of the utility
for UAVs with the information asymmetry problem. Our key
contribution can be summarized as follows:

• We present a system model that allows UAV pre-cache
a set of VR-based contents and serve in the required
location by the base station (BS) for some duration via
air-to-ground (A2G) communication.

• We propose an incentive mechanism that maximizes the
social welfare to benefit both the BS and the UAV’s
service provider (USP). However, obtaining solutions for
the formulated problem is intractable due to the large
constraints and the information asymmetry problem, e.g.,
content popularity, user request rate, and UAV types.

• We reduce the size of constraints by employing contract
theory and constraint reduction via a series of lemmas.
Moreover, we tackle the information asymmetric via two
conditions, e.g., Individual Rationality (IR) and Incentive
Compatible (IC).

• Finally, we derive an optimal contract scheme w.r.t. IR

and IC constraints. Furthermore, we present intensive
numerical results to validate our proposal.

The rest of this paper is organized as follows: We covered the
related works in Section II. The system model describes in
Section III. Sections IV present our problem formulation and
proposed solution approach. Simulation results are presented
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

A. MEC for AR/VR Applications
Recently, the provisioning of low latency content to AR/VR

applications by enabling MEC has been studied. The authors
in [8] presented a survey on enabled industrial verticals in
5G. The authors discussed the contributions of MEC-enabled
networks in various AR/VR applications to demonstrate the
severity of AR/VR task demands as a significant bottleneck. In
[9], the authors mentioned several requirements and challenges
for cellular-connected wireless VR such as VR interaction
latency cannot exceed 100(ms), etc. Similarly, the work in
[10] surveyed various aspects of the wireless VR in B5G
with the internet of intelligence such as resource allocation
problems and resource utilization assurance. The common
challenge of VR-based service over the wireless network is
data traffic with a stringent latency requirement. Typically,
VR-based contents represents in a high-definition which re-
quires a massive amount of bandwidth to deliver over the
network. Therefore, in [11] the author proposed a predicting
scheme for VR video streaming in mobile networks, where a
part of the VR-based content in Field-of-View (FoV) will be
transmitted in the highest quality, while the remaining parts
of the content will be delivered in a lower quality or blur.
The authors in [12] proposed a MEC-enabled small-cell net-
work for VR video applications. In the proposed architecture,
horizontal and vertical collaboration among multiple MEC
servers is performed to reduce end-to-end latency in VR. The
authors in [13] proposed MEC-assisted VR video streaming on
Terahertz communication. With the aim to reduce the energy
consumption in Terahertz, the transmit power and rendering
offloading of VR are optimized using deep reinforcement
learning. Similarly, panoramic VR video streaming on mil-
limeter wave communication was proposed in [14]. The MEC-
enabled networks contribute well to providing bandwidth and
energy efficiency. The authors in [15] proposed a proactive
caching for 360-degree video streaming. To meet the field-
of-view (FOV) prediction, caching, computation, and coding
requirements of 360-degree VR, a MEC-enabled network is
exploited. The authors in [16] studied communication, cashing,
and computation (3C) in a VR environment. A collaboration
among MEC and users to cache and offload FOV was pro-
posed.

The works mentioned above demonstrate the efficiency of
MEC-enabled networks for VR applications. However, these
works do not utilize the UAV-based MEC networks in their
frameworks.

B. UAV-Assisted MEC Networks
UAVs are replacing the static MEC servers to exploit their

flexibility, automation, and ease of deployment at the desired
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locations. For instance, the authors in [17] and [18] proposed
using UAVs as a MEC server to deliver better channel quality.
Then, they formulated an energy minimization optimization
problem to optimize UAV beamforming, processing, and tra-
jectory, which was solved by an iterative algorithm. The
authors in [19] involved NOMA in the UAV-MEC network
environment. They studied the security aspects of a flying
eavesdropper and proposed a secure communication scheme.
The authors in [20] performed the resource allocation in
a MEC network with multiple UAVs. They then proposed
a multi-agent federated reinforcement learning algorithm to
design a semi-distributed framework for resource allocation.
The authors in [21] proposed an energy harvesting network
for IoT devices by UAVs. In the proposed UAV-MEC net-
work, the UAVs were further used to offload the IoT data
for processing. A similar approach to offload IoT data to a
UAV-enabled MEC network was proposed in [22]. Then, a
successive convex optimization-based algorithm was proposed
to optimize the UAV position, computation resources, commu-
nication resources, and task-splitting decisions. The authors in
[23] studied a hierarchical infrastructure of UAVs consisting of
a centralized UAV and multiple bottom UAVs for the maritime
communication network. They proposed a deep reinforcement
learning scheme to optimize the UAV trajectory and resource
allocation. In [24], the authors proposed a multi-agent deep
reinforcement learning (MADRL)-based approach for task
offloading and resource allocation that aims to minimize the
overall network computation cost in multi-UAV enabled IoT
edge network. Another solution approach to reduce data traffic
in the network has been proposed in [25]. In which, the author
designed a solution approach based on DRL regarding human-
centric features, random way-point user mobility model for
UAV content caching, and placement in mobile edge network.

However, the works mentioned earlier studied the UAV-
enabled MEC servers and did not consider VR applications
in their formulations.

Very few works have studied the UAV-assisted MEC net-
works for VR applications. The authors in [26] exploited
UAVs’ communication and computing resources to achieve
low end-to-end latency for VR users. The joint optimization
problem of UAV locations and resource allocation was solved
by decomposing into subproblems which are solved sequen-
tially. A similar approach to UAV-based MEC networks for VR
content delivery was proposed in [27]. The problem of UAVs’
association, caching, computation, and location was formu-
lated and solved through successive convex optimization.

In contrast to the related works, we propose UAV-based
MEC-enabled networks for VR content delivery to meet the
research gap among the works mentioned above.

C. Contract Theory

Contract theory is the one of special applications in game
theory, which studies how a principal develops agreements
with asymmetric information to encourage agents to contribute
to specific tasks [28]. For instance, a contract theory-based
inventive mechanism for contents sharing via D2D commu-
nication is proposed in [29]. Similarly, the study in [30]

Fig. 1: System Model

employed contract theory for the cache storage renting model
between the content provider (CP) and network operator (NO).
Additionally, the problem of lightweight satellite resource
allocation based on contract theory has in considered in [31].
Similarly, the work in [32] study the problem of secure
spectrum sharing for the Internet of Vehicles (IoVs). Moreover,
to encourage reliable federated learning has been considered
in [33]. In [34], the authors proposed on-device computational
caching for AR-based services via D2D communication. As
a result, the above work indicates the benefits of employing
contract theory in the real-world.

III. SYSTEM MODEL

In this paper, we consider a network model (shown in Fig. 1)
that includes a single BS equipped with MEC1 capability, a set
N of N users that clustered in L groups based on its geograph-
ical location, denoted as Ωl = {1, 2, . . . , Nl}, l ∈ L, where Nl

is the number of users in cluster l, Ωl∩Ωl′ = ∅,∀l, l′ ∈ L. We
also consider a set of K VR-based contents (VRCs) denoted
as K = {1, 2, . . . ,K} that the BS can serve in its service
area. We assume that the network is dense; and thus, UEs
in any cluster l ∈ L have no direct communication links
or weak channel conditions with the BS. Hence, the service
provider (SP) might have to deploy an extra access point or
physical base station to expand its service area. However,
these solutions are costly and not economically friendly for
the SP. Therefore, we propose a novel system model that SP
might rent a UAV from USP2 to deploy as a micro-base-station
(UBS). We let V denote the set of V USPs, V = {1, 2, . . . , V }.

On the other hand, we assumed that UEs are experiencing
360-video streaming which is one of the essential features of
VR-based services. The VR-based content can be supported
by Head Mounted Devices (HMDs), Oculus Rift, Samsung
GearVR or Sony PlayStation VR, or commodity phones [35].
According to the user equipment, we have various projection
types of VRC such as equirectangular projection (ERP), cube-
map projection (CMP), adjusted cube map projection (ACP),
adjusted equal-area projection (AEP), Equi-angular projection
(EAC) [36], [37]. Let M be the set of M projection types
in the system, M ≜ {0, 1, 2, . . . ,M}. For instance, m = 0
represents the sphere format of VRC, and m = 1 represents
for ERP format. For simplicity, we denote (k,m) as VRC k

1We use the term ”SP”, ”BS” and ”MEC” interchangeably.
2We use the term ”USP” and ”UAV” interchangeably.
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at projection type m, and S(k,m) (in MB) denotes the size of
the VRC (k,m).

Typically, UE sends a request for VRC (k,m) to the BS,
and if (k,m) is available at the BS storage, it can be served
directly via cellular links. If (k,m) is missing, the BS might
upgrade from (k, 0) to (k,m) via EEOA-ERP and EEOA-
CMP schemes [38]. Otherwise, the BS has to fetch (k,m)
from the content provider (CP) via backhaul links. In dense
settings, the user request rate is huge; and thus, the probability
that the requests dropped by UEs is the highest due to the
limitation on physical resources such as computing capacity,
cache storage, or communication resources. To cope with these
challenges, one can use on-device caching that allows users
to share the cache contents via D2D communication [34]. By
doing so, we can increase the number of cached contents in the
networks and the spectrum efficiency by reusing the spectrum
from the cellular user to D2D users. It is a promising solution,
but tills have some limitations, such as a user’s cache storage
and the device’s power being constrained. Additionally, user
availability varies in the service region; for example, user
mobility reduces the availability of cached content. Therefore,
we propose a system model in which the SP might employ
some UAVs to increase the number of UBS’s in the systems,
which can reduce the requests served by the BS. In such
a scenario, UAVs need to pre-cache some of the VRCs in
set K and fly to location l required by the BS, then hover
there for some duration J . For example, UEs may use VR-
based services during a 1 outdoor event near the BS. As a
result, there may be an overloading problem with the BS’s
communication and computation capabilities due to the rapid
increase in the number of active UEs in the service area. The
BS must therefore rent a set of UAVs to serve as UBSs for
J = 1 hour. In this paper, we discretize the requirement
duration J equally into a set T of T time slots with the
period of each time slot t being j = J/T, t ∈ T . By
doing so, it can increase service quality, expand service area
coverage, and improve spectrum efficiency by utilizing the
A2G communication technique.

Recently, UAV-assisted MEC has been investigated in var-
ious works on the communication network, such as task
offloading [39]–[41], and data offloading [42]–[44]. The UAV
can serve as a base station or mobile-micro computing server
for task offloading and as a relay node for data offloading. In
our model, a UAV must pre-cache some of the VRCs before
flying to a predetermined point provided by the BS. If a request
from a UE is hit, it indicates that the requested VRC is already
cached in the UAV’s storage during the period the UAV is
actively operating. The UAV immediately serves the request
via A2G links. In this case, the UAV serves as a BS. On the
other hand, if the requested VRC is missed, it means the VRC
is not cached in UAV’s storage, then the UAV needs to forward
the request to the BS to fetch the VRC. In this case, the UAV
serves as a relay node. Moreover, we assume that the SP does
not own UAVs; and thus, to deploy a UAV in a designed
location, the SP needs to rent from the USPs. In such a case,
an attractive incentive mechanism is required to motivate the
USP to cooperate with the SP for the UAV-assisted MEC
model. This incentive mechanism is needed to maximize the

utility of both the SP and USPs. Therefore, we propose an
incentive mechanism based on the Contract theory [45] to
solve the UAV-assisted MEC problem. By employing contract
theory, we can deal with the problem of the information
asymmetry, which results in the USP not knowing the user
request rate and content popularity and the SP not knowing
which UAVs are actively using the system during T time
slots. The following sub-sections will present communication,
computational, caching, and contract to model.

A. Communication model

This subsection presents our communication models, in-
cluding communication between UAVs and UEs and between
UAVs and BSs. Similar to our previous work in [46], we
consider A2G and the 5G-based communication technologies
in this work. A2G communication is a technique that supports
the communication between UAVs and ground devices or
BSs. This communication technique is significantly different
from the terrestrial communication channel [47]. Moreover, we
assume that the communication between the BS and CP via a
wired or wireless backhaul link with a fixed WCP (Mpbs)
bandwidth. Firstly, we model the communication between
UAVs and UEs.

1) UAV to UE communication via A2G: In this case, the
communication takes place between the UAV and the UE.
In which, the Line-of-Sight (LoS) PLn,v

LoS [t] and Non-Line-of-
Sight (NLoS) path-loss PLn,v

NLoS [t] of UE n ∈ N associated
with UAV v ∈ V at time slot t is given, respectively by:

PLn,v
LoS [t] = 2ϑ log

(
4πdnv[t]f

c

c

)
+ ηLoS ,

PLnv
NLoS [t] = 2ϑ log

(
4πdnv[t]f

c

c

)
+ ηNLoS ,

(1)

where ηLoS , and ηNLoS are average added losses for LoS
and NLoS link, respectively. ϑ is the path-loss exponent, i.e.,
ϑ ≥ 2. f c is the carrier frequency, c is the speed of light, and
dnv[t] is the instantaneous distance between UAV v and UE n
at time slot t. Let {xn[t], yn[t], zn[t]} and {xv[t], yv[t], zv[t]}
be the coordinates of UE n and UAV v, respectively. The
relative distance between UAV v and UE n is given by:

dnv[t] =
√

(xn[t]− xv[t])2 + (yn[t]− yv[t])2 + (zn[t]− zv[t])2.
(2)

Moreover, the probability of the LoS component depends on
the environment and elevation angle between the UAV and
ground device [46], [47]. Thereby, the probability of the LoS
component between UAV v and UE n is given by:

PrnvLoS =
1

1 + C exp

[
D

(
180
π tan−1 hv[t]

dnv [t]
− C

)] , (3)

where C and D are constant coefficients which depends on
the environment, hv[t] = zv[t] is the hovering altitude of UAV
v at time slot t. Intuitively, the NLoS component probability
is given by:

PrnvNLoS = 1− PrnvLoS . (4)
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Therefore, the average path-loss of UE n associated with UAV
v at time slot t is given by:

PLnv[t] = PrnvLoSPLnv
LoS [t] + PrnvNLoSPLnv

NLoS [t],

∀t ∈ T, ∀n ∈ N, ∀v ∈ V.

Moreover, according the work in [46], [48], the channel gain
between user n and UAV v at time slot t is given by:

Gnv[t] = 10−PLn,v [t]/10,∀n ∈ N, v ∈ V. (5)

Consequently, the instantaneous achievable downlink trans-
mission data rate of UE n associated with UAV v at time
slot t is given by:

Rnv[t] = Bv[t] log2

(
1 +

Pnv[t]Gnv[t]

I0

)
,

∀t ∈ T, ∀n ∈ N, v ∈ V,

where Bv[t] is the system bandwidth available at UAV v,
Pnv[t] is the transmit power of UAV v, I0 is the Gaussian noise
power. We assume that UAVs are using orthogonal frequency;
and thus, there is no co-tier interference among UAVs [46]–
[48]. Furthermore, we assume that UAV is capable with a
higher battery capacity compared to the user equipment, thus,
it can enhance the SINR for weak channel condition UEs via
beam-forming technique [47].

2) UAV to BS communication via A2G: In this case, the
communication that takes place between the UAV and BS for
the case of the requested VRC is missing on the UAV’s side.
We consider the wireless links between UAV v and BS as LoS
links [47], [48]. Moreover, the UAV is capable of a higher
battery capacity compared to the user equipment, and thus,
the SINR between the BS and UAV can be stronger than the
user equipment by increasing the transmit power levels [47].
Let Rv0[t] be the achievable data rate of UAV v and the BS
at time slot t. Rv0[t] can be modeled as follows:

Rv0[t] = B0[t] log2

(
1 +

Pv0[t]Gv0[t]

I0

)
,∀t ∈ T, ∀v ∈ V,

(6)
where B0[t] is the system bandwidth between UAV v and
the BS, Pv0[t] is the transmit power of the BS, Gv0[t] is the
channel gain between UAV v and the BS which has been
define in [46], as follows:

Gv0[t] = 10−(Ψv0+ΥLoS)/10,∀v ∈ V, (7)

where ΥLoS is the additional attenuation factor for LoS link,
and Ψv0 is the path-loss component between UAV v and BS,
given by:

Ψv0[t] = 20 log10(dv0[t]) + 20 log10(fc) + 10 log10(
2π

c
)2,

(8)
where fc is the carrier frequency, dv0[t] is the distance between
UAV v and the BS, c is the speed of light. Next, we define
the computation and caching model.

B. Computational and Caching Model

Due to the limited cache storage, the BS might not be
capable of caching all of VRCs. Therefore, it needs to carefully

consider the problem of cache decisions to maximize the cache
utility. This is an interesting problem and has been done in
many existing works [49]–[51]. These can be considered as
input data for our work. Based on the cache decision, the BS
might offer a UAV to cache those VRCs. Therefore, we focus
more on the problem of UAV deployment and the economic
model for UAV-assisted MEC.

1) Caching Model: Caching at the edge has been consid-
ered in various works [52]–[55], in which MEC might cache
a subset of contents in its storage. If there is a request for
infotainment content, the BS will check whether the request is
cached. If the requested content has been cached, the request
will be served immediately without being forwarded to the
CP. By doing so, the traffic in the backhaul network will be
significantly reduced proportionally to the number of requests
served at the BS. The more cached contents, the larger amount
of data traffic in the backhaul network is reduced, and vice
versa. However, due to the limitation of cache storage, BS
might not cache all of the available contents; and thus, it needs
to carefully choose which contents to cache based on certain
parameters such as the popularity of the content to increase
the utility of caching strategy. Therefore, it is indispensable
to consider the popularity of content in any caching model.
Similar to our work in [34], [49], we employ the Zipf
distribution to calculate the popularity of contents. The Zipf
distribution has been widely used in many applications such
as ranking, population, etc. Hence, the popularity of content
k ∈ K is modeled as follows:

pk =
1/kα∑K
i=1 1/i

α
, (9)

where α is a corresponding parameter of the Zipf distribution,
in which the value of pk is directly proportional to the value of
α, e.g., the higher value of α, the larger value of pk. Similarly,
we can model the popularity of VRC projection type m ∈ M
as follows:

pm =
1/mα∑M
i=1 1/i

α
. (10)

Let δ(k,m)[t] be the utility of the BS when is cached VRC
(k,m) at time slot t.

δ(k,m)[t] = Pr(k,m)[t]S(k,m),∀k ∈ K,∀m ∈ M, (11)

where Pr(k,m)[t] denotes the probability that VRC (k,m) is
being requested at least once in a single time slot t. This
probability can be estimated via the at least once rule, as
follows:

Pr(k,m)[t] = Prk[t]Prm[t],∀k ∈ K,∀m ∈ M,∀t ∈ T,

Prk[t] = Pr(Xk = 1|λ) = 1− (1− pk)
λ−1,∀k ∈ K,

Prm[t] = Pr(Xm = 1|λ) = 1− (1− pm)λ−1,∀m ∈ m,

(12)

where Xk, and Xm are random variables that represent event
VRC k at projection type m being requested at least once in
any given time slot, respectively, and λ is the user request rate
(number of requests per time slot) that is assumed to follow
the Poison distribution.
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Typically, the problem of cache decision-making can be
modeled as follows:

PCD :

max
a

T∑
t=1

K∑
k=1

M∑
m=1

Pr(k,m)[t] log2(S(k,m))a(k,m)

s.t.
K∑

k=1

M∑
m=1

S(k,m)a(k,m) ≤ SBS ,

(13)

where a(k,m) is the decision variable where the BS caches
the VRC (k,m) or not, e.g., a(k,m) = 1 means that the BS
will cache the VRC (k,m), otherwise a(k,m) = 0, and SBS

is the cache capacity of the BS. The problem in (13) can be
solved via various approaches such as ADMM [49] and Deep
Reinforcement Leaning [56]. Let ΩK be the optimal solution
of (13), where ΩK ≜ {(k,m), k ∈ K,m ∈ M} and ΩK ⊂ K.
Next, we present our computation model.

2) Computation model: A computation model is needed in
case of request VRCs are missing. In such a case, the BS
might transform, or upgrade VRC from one to the requested
format, i.e., transform from (k, 0) VRC k in sphere format
to (k, 1) VRC k in the ERP format. Let S(k,0)→(k,m) be
the size of the task that use to transform VRC (k, 0) to
VRC (k,m), C(k,0)→(k,m) be the number of CPU cycles per
second to process a bit of VRC (k, 0) → (k,m), f(k,0)→(k,m)

be the number of CPU cycles that is allocated to process
VRC (k, 0) → (k,m). Let ζ(k,0)→(k,m)[t] be the energy
consumption, and ξ(k,0)→(k,m)[t] be the computation latency
of the BS in order to transform (k, 0) → (k,m) at time slot
t, respectively. ζ(k,0)→(k,m)[t] can be modeled as follows:

ζ(k,0)→(k,m)[t] = κ(f(k,0)→(k,m))
2(1− a(k,m)),

∀k ∈ K,∀m ∈ M, ∀t ∈ T,

where κ = 5 × 10−27 is the power consumption constant
which depends on the CPU architecture [46]. Similarly, the
computational latency is given by:

ζ(k,0)→(k,m)[t] =
S(k,0)→(k,m)C(k,0)→(k,m)

f(k,0)→(k,m)
(1− a(k,m)),

∀k ∈ K,∀m ∈ M, ∀t ∈ T.

Next, we present the utility of caching and computing at the
edge.

3) Utility of caching and computing at the edge: The utility
of a caching model can be evaluated in many ways, such
as minimizing latency, energy consumption, or maximizing
bandwidth saving, the cost for fetching content, hit rate [52]–
[55], [57]. For instance, to fetch content from the CP, the SP
must pay a certain cost for data traffic in the network. Let
C0 be the cost of fetching the VRC from the CP through the
backhaul link per unit of data. The expected utility in terms
of cost saving in a given time slot t is given by:

U(cost)[t] =
K∑

k=1

M∑
m=1

Pr(k,m)[t]S(k,m)(C0 − C(k,m)[t])(1− a(k,m)),

(14)

where C(k,m) is the cost of the BS for caching VRC (k,m).
Similarly, the expected bandwidth saving from backhaul links
depends on the size of the contents and which can be formu-
lated as

U(save)[t] =

K∑
k=1

M∑
m=1

Pr(k,m)[t]S(k,m)a(k,m). (15)

On the other hand, caching and computing might be evaluated
via energy consumption or latency [49]. In which the energy
consumed by UAVs for serving VR-based services as a UBS
is a benefit for the BS. Let Ev[t] be the energy consumption
of UAV v in time slot t for participating in our model. Ev[t]
can be modeled as follows:

Ev[t] = Ehov
v [t] + Ecache

v [t] + Etx
v [t], (16)

where Ehov
v [t] is the energy consumption for hovering,

Ecache
v [t] is cache maintaining, and Etx

v [t] is energy consump-
tion for transmitting. Etx

v [t] can be modeled as follows:

Etx
v [t] =

∑
(k,m)∈Ωv[t]

Pnv[t]
S(k,m)

Rnv[t]
, (17)

where Ωv[t] is the set of request the VRC at UAV v in time slot
t. Let Etotal

v be the energy consumption of UAV v for serving
as the UBS for a total number of time slots △t. Etotal

v can be
formulated as follows:

Etotal
v = Ein

v + Eout
v +

△t∑
t=1

Ev[t],∀v ∈ V, (18)

where Ein
v is the energy consumption for flying to the location

requires by the BS, and Eout
v is the energy consumption

of UAV v to fly back the base of the USP. Based on the
aforementioned equations and theoretical analysis, we can see
that the cost function of the UAV is concave w.r.t. the size
of VRC S(k,m). Generally, we can define the cost function of
VRC (k,m) in any given time slot t as follows

fv(k,m)[t] =


(C0 − C(k,m)[t])S(k,m), Cost saving,
(P(·)[t]/R(·)[t])S(k,m), Energy consumption,
(1/R(·)[t])S((k,m), Latency.

(19)
Without loss generality, the cost function of UAV v can be
rewritten by any concave, non-decreasing w.r.t. the size of
VRC S(k,m). Moreover, based on the works in [34], [45],
[58], we employed the logarithm function as our cost function,
where we can guarantee the properties of the utility function
without violating the law of small number in a probabilistic
model. Intuitively, fv(k,m)[t] can be rewritten as follows:

fv(k,m)[t] = Ξ(k,m)[t] log2(S(k,m)),

∀t ∈ T, ∀k ∈ K,m ∈ M,
(20)

where Ξ(k,m)[t] is a control parameter related to power con-
sumption, latency, cost, and bandwidth in time slot t. Then,
the expected utility for the BS in terms of UAV v is cached
VRC (k,m) is given by:

fBS(v, k,m)[t] ≜ Pr(k,m)[t]fv(k,m)[t],

∀k ∈ K, ∀m ∈ M.
(21)
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Consequently, the total utility of caching model for the BS at
time slot t can be formulated as follows:

fBS(ΩK)[t] =
∑
v∈V

∑
(k,m)∈ΩK

fBS(v, k,m)[t]. (22)

Furthermore, we assume that the BS expects a UAV serves as
a UBS in a predetermined location for maximum T time slots.
Thus, the probability of τ number request VRC over T time
slots can be formulated as follows.

Pr(X = τ |λl) =
(λlT )

τe−(λlT )

τ !
,∀k ∈ K,∀m ∈ M, (23)

where τ ! is the fractional of τ , λl is the user request rate at
location l. On the other hand, let △t be the total number of
time slots that UAV v can participate in the system. Based on
the Taylor series and the Homogeneous Poison Point Process
(HPPP), we can formulate the cost function of UAV v for
caching the set of ΩK VRCs that is equivalent to the utility
function of the BS for renting UAV v over △t time slots as
follows:

fv(ΩK) = fBS(v,△t) = (λl△t)
∑

(k,m)∈ΩK

fv(k,m)[t],∀v ∈ V.

(24)
It must be noted that, in practical settings, the BS is unaware of
the number of time slots a UAV will serve as a UBS. It means
that △t ̸= T . Therefore, the cost function of the UAV which is
the utility function of the BS in (24), is conjecture. Therefore,
an attractive incentive scheme is required to motivate the USP
to deploy UAVs to serve as the UBS. In the next section, we
propose a solution contract theory-based incentive mechanism
that aims to motivate the USP to deploy UAVs as long as
possible such that the utility in the contract of both the USP
and the SP is maximized.

IV. CONTRACT MODEL AND PROPOSED SOLUTION

To motivate USP to cooperate with BS, we present an
incentive mechanism based on contract theory. We maximize
the payoff for both SP and USP, commonly known as social
welfare. In this paper, BS is considered the principal, and UAV
is considered an agent. In any contract model, the principal
will offer a contract bundle [E(·), R(·)] to the agent, where
E(·) is the amount of effort that the agent needs to spend to
receive an amount of reward R(·). The agent chooses declines
or a proper contract bundle to maximize its payoff. Firstly, we
design the agent type that is a significant parameter for the
agent’s feasible contract model and payoff.

A. UAV Types

In this paper, we consider a scenario that a UAV is willing
to serve as a UBS at a desired location offered by the SP.
Therefore, we assume that UAV is served at a fixed location;
and thus, the total number of time slots for serving at a UBS
of UAV is the main parameter to estimate its effort and reward.
Therefore, we consider the UAV’s type is the number of time
slots △t = t − t0, t0 = 0 that are serving at location l. For
instance, If the number of time slot that UAV v can serve at
location l is △t = 8, it means that UAV v belong to type-8,

TABLE I: Summary of the key notations.

Notation Definition
N Set of UEs.
K Set of VRCs.
M Set of projection types.
Ωl Set of UEs at location l.
V Set of UAVs.
κ Coefficient of power consumption of the proces-

sor.
LoS Line-of-sight.
NLoS Non-Line-of-sight.
PL Pathloss.
Pr Probability.
X(·) Random variable of (·).
Rnv Achievable data rate of UE n associated with

UAV v.
(k,m) VRC k at projection type m, m ∈ M,k ∈ K.
pk, pm popularity of (k,m).
C,D Terrains parameter.
ηLoS , ηNLoS Additional losses for LoS and NLoS link.
ϑ Pathloss exponent.
α The parameter of Zipf distribution.
λ The parameter of the Poison distribution.
θ Set of UA types.
θt UAV type associated with t.
E(θ) Cost function of type θ.
R(θ) Reward function type θ.[
E(·), R(·)

]
The contract bundle form.

R(·) The rewards function.
Uv(θ) Utility function of UAV v associated with con-

tract bundle type θ.
UBS(·) Utility function of the BS associated with con-

tract bundle type θ .

or the type of UAV v is θv,△t = 8. Moreover, if more than
one UAV have the same number of active time slots △t, we
can say that they have the same type-△t and can be classified
in a group type-△t. Based on the cost function of UAV in
(24), the cost function for UAV associated with the number of
active time slots △t can be rewritten as follows:

fv(ΩK) = △tλl

∑
(k,m)∈ΩK

fv(k,m)

= θv,△tλl

∑
(k,m)∈ΩK

fv(k,m) = Ev(θv,△t),
(25)

where θv,△t = △t, and E(v, θ△t) is the cost function of UAV
v to serve at location l for △t time slots. The BS needs to solve
a contract model for a single location l and single UAV v, but
the solution pertains to the rest of the system. Therefore, for
simplicity we denote θt represents for θv,△t, E(θt) represents
for Ev(θv,△t), and λ represents for λl.

Definition 1. The type of UAV strictly depends on the number
of active time slots △t that will be served as a UBS. If the
UAV is serving for less time slot, it will be associated with a
lower type, and vice versa.

It means that, if there are two UAVs v1 and v2 are serving
as a UBS for a total number of time slots △t1 and △t2,
respectively, such that △t1 < △t2, and thus, θt1 < θt2 . We
assume that the SP expects a UAV is serving as a UBS for
maximum T time slots; and thus, the set of the type of UAVs
can give as follows:

θ ≜ [0, 1, . . . , t, . . . , T ], (26)
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where θt ∈ θ can be represented in seconds, hours, etc. Based
on this information, the SP designs a proper contract according
to each type of UAVs.

It must be noted that we consider the number of time slots
that a UAV participated in in the proposed system model as
the main feature to identify its types that belong to a single-
dimensional type. However, our proposed solution approach
remains consistent in the case of multi-dimensional UAV
types by employing dimension reduction via the weighted sum
method [59], [60].

B. The Utility of the UAV

Given any contract bundle [E(·), R(·)], the utility of UAV
v associated with type-t (θt) is given by:

Uv(θt) = θtν
(
R(θt)

)
− ρE(θt), (27)

where ρ is an additional effort [7] put into by the UAV in
order to generate an amount of caching utility model E(θt).
ρ can be an amount of energy that the UAV hovers during
t time slots, cache maintenance, etc. And, ν(·) is the self
evaluation function [45]. ν(·) must be a strictly concave,
increasing function and satisfy the following conditions:

ν(0) = 0;
∂ν

(
R(θt)

)
∂R(θt)

> 0;
∂2ν

(
R(θt)

)
∂R(θt)2

< 0. (28)

Moreover, the UAV must know exactly its type to choose a
proper contract bundle that maximizes its payoff represented
in (27).

C. The Utility of the BS

The utility of the BS can be calculated by the expected
utility of cached VRCs ΩK of the UAV and serving as the UBS
for a number of time slots △t in a predetermined location (e.g.,
E(θθt)) minus for the cost for utilizing UAV’s resources (e.g.,
R(θt)). Generally, we can say that the BS offers an amount
of reward R(θt) to the USP, in order to deploy the UAV to
serve as UBS for some duration △t. Therefore, the utility of
BS in the contract model at type θt can be given by:

UBS(θt) = E(θt)− γR(θt), (29)

where γ is the cost that the BS needs to pay for a unit of
payoff U(θt). However, there are T types of UAV, which
means that BS is unaware of which is the exact type of
UAV. Consequently, based on our previous work in [34], and
the works in [7], the BS might play a role that uniformly
distributed the probability of a UAV belonging to some type
t. Let Pr(Xv = θt) denote the probability that UAV v is belong
to type t. The expected utility of the BS can be modeled as
follows:

UBS =

T∑
t=1

Pr(Xv = θt)UBS(θt). (30)

Typically, when the principal has complete information about
UAV types, it will play a role that only maximizes its payoffs.
However, in this model, we have to deal with the problem
of information asymmetry. Therefore, we design a game that
balances the payoff of both sides, which is named maximizing
social welfare. This will be presented in the next subsection.

D. Social welfare model

In social welfare maximization, we have to maximize the
sum of utility on both sides, such as the BS and UAVs. In this
work, we assume that a UAV is chosen to serve at only one
location and belongs to only one type-t (θt). For simplicity,
we assume that the unit cost per unit or effort that the BS
needs to pay for UAV ρ = 1, and

∑T
t=1 Pr(Xv = θt) = 1.

Definition 2. A feasible contract bundle [E(θ), R(θ)] is called
maximum social welfare if and only if the sum of the payoffs of
principal and agents for the choice of this bundle is maximal.

Hence, the social welfare of the contract model can be
defined as follows:

Π =

T∑
t=1

Pr(Xv = θt)
(
UBS(θt) + Uv(θt)

)
,

=

T∑
t=1

Pr(Xv = θt)
(
θtν(R(θt))− γR(θt)

)
.

(31)

Basically, the BS is unaware of information of Pr(Xv = θt)
such as probability density function. Meanwhile, the UAV is
unaware of information about user request rate and content
popularity. Therefore, we can not employ any existing conven-
tional optimization approach to solve this problem. However,
in this work, to tackle this challenge, we employ contract
theory and leverage the information asymmetry problem into a
set of constraints such as IC, and IR constraints. It is named the
feasibility conditions of the contract model. Next, we describe
the feasibility conditions of the contract model.

E. Contract Feasible Conditions

In this paper, we assume that the set of users in each location
is disjoint, and the set of contents offered by the BS to UAVs
is identically independent. In such a case, we can analyze the
solution for a single location and apply it to a vast system
model (i.e., multiple locations). For any contract model, two
conditions, such as the Individual Rationality (IR) condition
and Incentive Compatibility (IC) [45] must be guaranteed
to hold the feasibility of the contract. These conditions are
defined as follows:

Definition 3. Individual Rationality (IR): The utility of a
UAV, when participating in any contract bundle, must be non-
negative.

θtν(R(θt))− E(θt) ≥ 0,∀t ∈ T, ∀θt ∈ θ. (32)

This condition aims to ensure the payoff of any UAVs
participating in the contract model. The amount of reward
R(·) that a UAV received from the BS must compensate with
the amount of effort or cost E(·) for any UAV participating
in the contract model. If a UAV declines the offers of the
BS, we can say that the BS and UAV sign a contract bundle
[E(0), R(0)]. On the other hand, a UAV must choose a valid
contract according to its type. By doing so, UAVs might have
the highest payoffs. This can be defined as the following:
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Definition 4. Incentive Compatible (IC): The utility of a UAV
achieves the highest value if and only if it chooses the right
contract bundle designed for its type.

θtν(R(θt))− E(θt) ≥ θtν(E(θt′))−R(θt′), t ̸= t′, t, t′ ∈ T.
(33)

Moreover, the amount of reward that a UAV can receive
must be monotonicity. Generally, we can say that the more
effort UAV put in, the higher rewards must be achieved. Based
on the definitions above and conditions, the optimization
problem of incentive mechanism based on contract theory is
defined as follows:

max
(E,R)

T∑
t=1

(
θtν(R(θt))− γR(θt)

)
(34a)

s.t.
θtν(R(θt))− E(θt) ≥ 0, (34b)
θtν(R(θt))− E(θt) ≥ θtν(R(θt′))− E(θt′), (34c)
R(0) < R(θ1) < . . . < R(θt) < . . . < R(θT ), (34d)
t ̸= t′, t, t′ ∈ T,

where constraints (34b) and (34c) represents for IR and IC
conditions, respectively. The monotonicity condition is shown
in constraint (34d). As shown in problem (34), we can see that
the size of constraint (34b) is O(T × (T −1)), and the size of
constraint (34c) is O(T ). As a result, obtaining a solution for
such a problem is time-consuming and intractable. Therefore,
we use constraint reduction techniques like IR constraints
reduction, and incentive compatible constraint reduction to
reduce the number of constraints to a minimum size while still
ensuring the feasibility condition for the original problem.

To begin with, we reduce the size of IR constraints as
follows:

Lemma 1. Given any feasible contract bundle, the IR con-
straints are always held if and only if the utility of UAV at
type-1 (θt = 1) is held.

Proof: Based on Definition 3, and 4, we can see that:

θtν(R(θt))− E(θt) ≥ θt−1ν(R(θt−1))− E(θt−1),

θt−1ν(R(θt−1))− E(θt−1) ≥ θt−2ν(R(θt−2))− E(θt−2),

θt−2ν(R(θt−2))− E(θt−2) ≥ θt−3ν(R(θt−3))− E(θt−3),

. . . ,

θ1ν(R(θ1))− E(θ1) ≥ θ0ν(R(θ0))− E(θ0) = 0.
(35)

Consequently, we can see that if θ1ν(R(θ1))−E(θ1) ≥ 0 the
entire of the IR constraints always hold.

Lemma 2. Incentive Compatible Constraints Reduction: For
any feasible contract bundle type-t (θt), the IC constraints are
always held if and only if the following conditions are held.

θtν(R(θt))− E(θt) ≥ θtν(R(θt+1))− E(θt+1), (36a)
θtν(R(θt))− E(θt) ≥ θtν(R(θt−1))− E(θt−1), (36b)

∀t ∈ T.

Proof: Let a and b are two positive number such that
a, b ∈ T , and a < b. Based on Definition 4, we can the
following:

θaν(R(θa))− E(θa) ≥ θaν(R(θb))− E(θb), (37a)
θbν(R(θb))− E(θb) ≥ θaν(R(θa))− E(θa). (37b)

Since, ν(·) is concave, increasing function (28), and thus, the
equality occur if and only if a = b. Therefore, we omit the
trivial case a = b. Intuitively, we consider a case that a < b,
after some manipulations, we can achieve the following:

ν(R(θa))(θa − θb) > ν(R(θb))(θa − θb). (38)

Then, we can see that ν(R(θa)) < ν(R(θb)) due to (θa−θb) <
0. Furthermore, by using the idea of authors in [34], [7], we
can see it expressed as follows:

θaν(R(θa))− E (θa) ≥ θaν(R(θa−1))− E (θa−1) , (39a)
θaν(R(θa−1))− E (θa−1) ≥ θaν(R(θa−2))− E (θa−2) ,

(39b)
. . .

θaν(R(θ2))− E (θ2) ≥ θaν(R(θ1))− E (θ1) . (39c)

Intuitively, we can have:

θaν(R(θa))− E (θa) ≥ θaν(R(θ1))− E (θ1) . (40)

Similarly, we can have:

θaν(R(θa))− E (θa) ≥ θaν(R(θa+1))− E (θa+1) , (41a)
θaν(R(θa+1))− E (θa+1) ≥ θaν(R(θa+2))− E (θa+2) ,

(41b)
. . .

θaν(R(θT−1))− E (θT−1) ≥ θaν(R(θT ))− E (θT ) . (41c)

Then,

θaν(R(θa))− E (θa) ≥ θaν(R(θT ))− E (θT ) . (42)

From (40), and (42), we can see that if θaν(R(θa))−E (θa) ≥
θaν(R(θa+1)) − E (θa+1), and θaν(R(θa)) − E (θa) ≥
θaν(R(θa−1))−E (θa−1) are held, the IC constraints always
hold. Consequently, we complete the proof for Incentive
Compatible Constraints Reduction.

In summary, we reduce the size of IC constraints from
O(T × (T − 1)) to O(2 × T ), and the size of IR constraints
from O(T ) to O(1). Thus, we rewrite the original problem
stated in (34) by the following:

max
(E,R)

T∑
t=1

(
θtν(R(θt))− γR(θt)

)
(43a)

s.t.
θ1ν(R(θ1))− E(θ1) ≥ 0, (43b)
θtν(R(θt))− E(θt) ≥ θtν(R(θt−1))− E(θt−1), (43c)
θtν(R(θt))− E(θt) ≥ θtν(R(θt+1))− E(θt+1), (43d)
R(0) < R(θ1) < . . . < R(θt) < . . . < R(θT ), (43e)
∀t ∈ T,

Since the size of constraints has been reduced and the
monotonicity constraint always held. Hence, we can bind the
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Algorithm 1 Optimal Incentive Mechanism-based Contract
Theory for UAV-assisted MEC in 5BG

1: Input: K,N, V, V, L,Ξ, λ, α,p, θ
2: Output:

(
E(·), R(·)

)
3: Initialization;
4: Obtaining optimal solution for contract:
5: The BS solve problem (43);
6: Offers contract bundle to USP;
7: for Each USP v ∈ V do
8: Finding a proper location of the USP nearby location

of the BS
9: if The USP has available UAV then

10: Offer an optimal contract bundles from (43),
(E(θt), R(θt));

11: Waiting to receive decision of the USP either reject
or accept;

12: end if
13: end for
14: Contract Execution:
15: if A USP accept a bundle contract type-θt then
16: USP must deploy a UAV at the location offered by BS

during the next t time slots;
17: if A request is hit then
18: The UAV serves the request via A2G;
19: else
20: The UAV forwards the request to the BS;
21: end if
22: end if
23: return

constraint (43e) into the feasible set as a projection function
to quantify the feasibility of our solution. Moreover, our
formulated problem in (43) remains in a strong convexity,
where the objective function is linear and constraints are either
linear or closed-convex sets. Thus, according to [61], there
always exists a stationary solution or global optimal solution
for such kind of problem. Therefore, we employed CVXPY
[62] as a solver to obtain the optimal solution in this work.

Furthermore, the detail of our proposed framework is pre-
sented in Algorithm 1. In which, we have reduced the com-
plexity to solve the problem (34) from O(T 3) to O(T log(T )
[61] in problem (43).

Moreover, if the environment is dynamic and the parameter
varies during the contracting time, it will fall into the category
of Ex-Ante Contracting [45]. In such a scenario, there is a
need to re-execute our proposed Algorithm 1 according to the
parameters changed in the network.

V. NUMERICAL RESULTS

A. Simulation setup

In this paper, we choose a network model that has L = 10
number of clusters, where the K-means algorithm can be
employed to cluster UEs based on their geographic location.
And, the number of users Nl in each cluster is randomly
in range [100 ∼ 150], number of VR content K = 100,
number of projection type M = 5. We assume that UAVs

TABLE II: Simulation parameters.

Parameter Value
Total number of VR content (K) 100 contents

White-noise (I0) −174 dBm/Hz [7]
System bandwidth 3 GHz [47]

Number of UAV type (T ) 100
Terrain parameters C and D 11.95 and 0.136 [47]

Additional pathloss ηLoS and ηNLoS 2 and 20 dB[47]
Transmission power P0 and Pv 10 W and 50 mW[47]

Moving energy consumption Ein
v , Ein

v 1.0 ∼ 5.0 mAh/m[47]
Hovering energy consumption of UAV Ehov

v 20.0 mAh[47]
Cache maintenance energy Ecache

v 6.25× 10−12 W/bit [57]
System bandwidth Wv 3 MHz [46]

Bandwidth of each RB(Wb) 180 kHz [34]
The Zipf’s parameter (α) {1.0, 2.0, 5.0}

The Poisson’s parameter (λ) {0.3, 0.6, 0.9}

have compatible caching and power capability to participate
in this model or that the USP plays an honor role in providing
compatible UAVs. Moreover, we assume that the BS requires
maximum T = 100 time slots which is equivalent to the
number of UAV’s types T = 101 (include t = 0), the self-
evaluation is considered as a logarithm function which satisfies
the conditions state in (28). In this work, we assume that the
centroid of each cluster is the location to deploy UAV, and the
hovering height hv can be obtained via the work in [47]. The
other parameters used in our numerical results are stated in
Table II.

Furthermore, we have no such kind of real data set for
this model; thus, we use synthesis data that is generated
by the Poison distribution, the at least once rule, the Zipf
distribution, and the homogeneous Poisson point process for
our numerical results. Moreover, we use Python3 [63], and
CVXPY [62] as our simulation tools and the base platform to
conduct numerical results with specification as follows: Intel
core i5− 4690 3.5 (GHz), 16(GB) of memory. The numerical
results are computed by taking an average of 100 runs per
result to show the validity of our proposed approach.

It must be noted that our performance metric is based
on the works in [34], [45] and, [58], where we take into
account the performance benchmark of contract theory such
as the information asymmetry problem and no information
asymmetry problem. Moreover, linear pricing is the based
performance benchmark to evaluate the efficiency of any
contract-based solution approach [45].

B. Impact of stochastic parameters to the proposed system
model

To begin with, we show the popularity of VR content in our
network according to the Zipf parameter α = {1.0, 2.0, 3.0}.
As shown in Fig. 2a, we can see that depending on α, the
popularity of VR content varies and is almost approximately
zero for some content with a lower rank. In Fig. 2b, we
use them at least once rule to calculate the probability mass
function (PMF) of our synthesis data. In which, the probability
of content k is being requested at least once in a single
time slot with user request rate λ and popularity pk, e.g.,
Pr(Xk = 1|λ, pk). We can see that content that has higher
popularity will have a higher chance of being requested in the
next time slot. For instance, given α = 2.0, λ = 0.3 (30%
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Fig. 2: Impact of popularity, user request rate to the caching model: (a) Popularity according to α, (b): Probability Mass Function (PMF) of
at least one request w.r.t user request rate λ, and (c) Expected utility versus user request rate and popularity.

of the number of users in a cluster), content k = 1 have
Pr(X1 = 1|λ = 0.3, p1 = 0.6) = 1.0 mean while content
k = 5 only have Pr(X5 = 1.0|λ = 0.3, p5 = 0.3) = 0.4.
In Fig. 2c, we demonstrate the expected utility for individual
cache content in the network according to α = 2. It shows that
the expected utility is direct proportionally to the popularity
and user request rate and significantly related to the size of
contents. It means that is concrete with our formulated utility
function in (20). We can see that some of the content have a
very less chance of being requested but have a higher utility
than the other content that fluctuates point in the figure. For
instance E(U3) = 8.1 and E(U2) = 7.2 mean while p2 = 0.7
greater than p3 = 0.56, and Pr(X2 = 1) = 0.87 greater than
Pr(X3 = 1) = 0.705.

In Fig. 3a, we present the cumulative distribution function
(CDF) of the number of requests for VRC given T time
slots and user request rates λ = {0.3, 0.6, 0.9}. In which
we have a probability of number quest for VRC less than
50 times with λ = 0.3 is approximate to 1. Meanwhile, when
λ = 0.9 the number of VRC requests during T time slot
is mostly approximate to 100 requests with the probability
Pr(X <= 100) = 0.9. In Fig. 2c, we analyze the effect of user
request rate λ, popularity α, and UAV types θt into the total
expected utility caching model for the BS. We can see that the
higher type of UAVs, the more benefits the BS can achieve.
For instance, expected utility of type-100 is approximate to
104 with λ = 0.9, and the expected utility for caching in case
of θt = 100 with λ = 0.6 is 6 × 103. On the other hand,
given λ = 0.3, we can see that the expected utility of the
BS at type θt = 25 is 2 × 103, meanwhile when θt = 50,
the utility of caching is 5 × 103. Similarly, we have shown
the total power consumption of a UAV that is participating in
our model in Fig. 3c. The higher type of UAV (θt), the more
power consumed and vice versa. For instance, θt = 25, the
total power consumption of an UAV is 2 × 103 (mW), and
θt = 50 the total power consumption is 6 × 103 (mW). It
means that the BS needs to design a contract that guarantees
the monotonicity condition in (34d).

C. Optimum Contract solutions
In Fig. 4, we present the performance of our proposed ap-

proach, which is a contract theory-based incentive mechanism

and compared to the other two conventional methods, which
are No information asymmetry (NIA), and Linear Pricing (LP).
These two approaches are typically considered benchmark
schemes used in various works in [7], [34], [58]. Note that
in NIA, the BS is assumed to have complete information on
UAVs that is UAV types (θt). It means that BS can design a
selfish contract bundle to maximize its payoffs. On the other
hand, LP is an approach that the BS that defines a price for a
single time slot t and applies system-wise. Fig. 4a shows that
our approach guarantees the utility of the BS is strictly non-
negative which is only equal to zero at contract type θt = 0.
Our proposed approach is to achieve a close performance of
NIA, which is the maximum utility for the BS. On the other
side, the utility of a UAV in NIA is approximately zero due to
the BS always designing a scheme that maximizes utility for
itself only. Moreover, we can see that our proposed solution
approach can guarantee the utility of the UAV is better than
NIA and LP that, as shown in Fig. 4b. In Fig. 4c, we have
shown the performance of our proposed scheme via social
welfare maximization. As shown in the figure, our proposed
scheme achieved the same performance as NIA in terms
of social welfare maximization while outperforming the LP
scheme. According to the results, our proposed scheme not
only maximizes social welfare but also maximizes the utility
of UAVs.

D. Feasibility conditions

In Fig. 4, we can see that the IR constraints (34b) always
hold for any UAV type (θt). For instance, in Fig. 4a, the utility
of BS at type θt = 50 is 150, and θt = 75 is 250. Similarly, in
Fig. 4b, the UAV utility at type θt = 25 is 22, and θt = 75 is
68. Furthermore, in Fig. 5, we have validate the IC constraint
by showing 3 example of θt = {30.0, 60.0, 90.0} for a
better visualization. We can claim that our proposed approach
guarantees the IC conditions based on the numerical results.
The UAV achieves maximum utility if and only if it chooses
a proper contract according to the UAV type. For instance, if
the number of time slots that the UAV can participate is 30,
as shown in the figure, we can see that the utility of type-
30 θt = 30 is the highest at t = 30. Similarly for θ=60 and
θt = 90 is highest at t = 60 and t = 90, respectively.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

0 25 50 75 100
Number of requests ( )

0.0

0.2

0.4

0.6

0.8

1.0
CD

F 
(P

r(X
k

))

=0.3
=0.6
=0.9

(a)

0 25 50 75 100
Type of UAV ( t)

102

103

104

To
ta

l c
ac

hi
ng

 u
til

ity
 o

f B
S

=0.3
=0.6
=0.9

(b)

0 25 50 75 100
Type of UAV ( t)

101

102

103

To
ta

l p
ow

er
 c

on
su

m
pt

io
n 

of
 U

AV

=0.3
=0.6
=0.9

(c)

Fig. 3: Stochastic model versus UAV’s type: (a) Cumulative Distribution Function (CDF) of the number of requests for a single time slot
according to user request rate, (b): Expected caching utility of the BS versus the type of UAVs, and (c) Total power consumption of UAVs
versus its type.
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Fig. 4: Performance of proposed framework: (a) Utility of the BS versus UAV types, (b): Utility of UAV versus its type, and (c) Social
welfare.
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E. Impact of UAV caching model

We analyze the impact of the UAV caching model by
taking to account our proposed approach and without the UAV
caching model. In which, we evaluate the hit ratio on cached
VRCs, we fix the user request rate λ = 0.3 and vary the
Zipf parameter α = {1.0 ∼ 3.5}. The total number of UEs
in a cluster is Nl = 20, and the number of VRC in ΩK ,
|ΩK | = 100. As shown in Fig. 6, our proposal has improved
the hit ratio by an average 25% compared to the case that
without UAV-assisted MEC.
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Fig. 6: Impact of proposal model onto the caching model.

F. Optimality of contract theory-based solution approach

In this paper, our solution approach is a game theoretic-
based approach; thus, the Nash Equilibrium (NE) is considered
as the optimal solution [6]. Therefore, we simply integrate the
IR and IC conditions into the solution of problem UBS(θt) =
Uv(θt),∀v ∈ V,∀t ∈ T . We can easily see that the utility
function of BS is linear in (29), and the utility function of
UAV is logarithm in (27); thus, exclude the trivial solution at
UBS(0) = Uv(0) = 0 it always exists a solution for the NE
that is visualized in Fig. 7.
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VI. CONCLUSION

In this paper, we investigated the problem of UAV-assisted
MEC on VR-based services in B5G. We designed an attractive
incentive mechanism based on contract theory, and we derided
an optimal contract design solution under the problem of
information asymmetry. By taking comprehensive numerical
results, we have shown that the performance of our proposed
approach can enhance the social welfare and utility of both BS
and UAVs. Moreover, our proposed approach is suitable for
A2G communication in B5G. By employing our model, we
can increase the network’s spectrum efficiency and caching
utility. Furthermore, we can improve the quality of VR-
based services by utilizing a UAV as a UBS to bring more
computation, communication, and caching nearby the end-
users.

REFERENCES

[1] S.-M. Park and Y.-G. Kim, “A metaverse: Taxonomy, components,
applications, and open challenges,” IEEE Access, vol. 10, pp. 4209–
4251, Jan. 2022.

[2] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 1, pp. 43–57, Feb. 2019.

[3] D. V. Nguyen, H. T. Tran, A. T. Pham, and T. C. Thang, “An optimal
tile-based approach for viewport-adaptive 360-degree video streaming,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 1, pp. 29–42, Feb. 2019.

[4] M. Hosseini and V. Swaminathan, “Adaptive 360 vr video streaming:
Divide and conquer,” in 2016 IEEE International Symposium on Multi-
media (ISM). IEEE, Feb. 2016, pp. 107–110.

[5] S. Park, A. Bhattacharya, Z. Yang, M. Dasari, S. R. Das, and D. Samaras,
“Advancing user quality of experience in 360-degree video streaming,”
in 2019 IFIP Networking Conference (IFIP Networking). IEEE, Jan.
2019, pp. 1–9.

[6] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game
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