1,030 research outputs found

    DYNAMIC VOLTAGE SCALING FOR PRIORITY-DRIVEN SCHEDULED DISTRIBUTED REAL-TIME SYSTEMS

    Get PDF
    Energy consumption is increasingly affecting battery life and cooling for real- time systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to substantially reduce the energy consumption of uniprocessor real-time systems. It is worthwhile to extend the efficient DVS scheduling algorithms to distributed system with dependent tasks. The dissertation describes how to extend several effective uniprocessor DVS schedul- ing algorithms to distributed system with dependent task set. Task assignment and deadline assignment heuristics are proposed and compared with existing heuristics concerning energy-conserving performance. An admission test and a deadline com- putation algorithm are presented in the dissertation for dynamic task set to accept the arriving task in a DVS scheduled real-time system. Simulations show that an effective distributed DVS scheduling is capable of saving as much as 89% of energy that would be consumed without using DVS scheduling. It is also shown that task assignment and deadline assignment affect the energy- conserving performance of DVS scheduling algorithms. For some aggressive DVS scheduling algorithms, however, the effect of task assignment is negligible. The ad- mission test accept over 80% of tasks that can be accepted by a non-DVS scheduler to a DVS scheduled real-time system

    MCFlow: Middleware for Mixed-Criticality Distributed Real-Time Systems

    Get PDF
    Traditional fixed-priority scheduling analysis for periodic/sporadic task sets is based on the assumption that all tasks are equally critical to the correct operation of the system. Therefore, every task has to be schedulable under the scheduling policy, and estimates of tasks\u27 worst case execution times must be conservative in case a task runs longer than is usual. To address the significant under-utilization of a system\u27s resources under normal operating conditions that can arise from these assumptions, several \emph{mixed-criticality scheduling} approaches have been proposed. However, to date there has been no quantitative comparison of system schedulability or run-time overhead for the different approaches. In this dissertation, we present what is to our knowledge the first side-by-side implementation and evaluation of those approaches, for periodic and sporadic mixed-criticality tasks on uniprocessor or distributed systems, under a mixed-criticality scheduling model that is common to all these approaches. To make a fair evaluation of mixed-criticality scheduling, we also address some previously open issues and propose modifications to improve schedulability and correctness of particular approaches. To facilitate the development and evaluation of mixed-criticality applications, we have designed and developed a distributed real-time middleware, called MCFlow, for mixed-criticality end-to-end tasks running on multi-core platforms. The research presented in this dissertation provides the following contributions to the state of the art in real-time middleware: (1) an efficient component model through which dependent subtask graphs can be configured flexibly for execution within a single core, across cores of a common host, or spanning multiple hosts; (2) support for optimizations to inter-component communication to reduce data copying without sacrificing the ability to execute subtasks in parallel; (3) a strict separation of timing and functional concerns so that they can be configured independently; (4) an event dispatching architecture that uses lock free algorithms where possible to reduce memory contention, CPU context switching, and priority inversion; and (5) empirical evaluations of MCFlow itself and of different mixed criticality scheduling approaches both with a single host and end-to-end across multiple hosts. The results of our evaluation show that in terms of basic distributed real-time behavior MCFlow performs comparably to the state of the art TAO real-time object request broker when only one core is used and outperforms TAO when multiple cores are involved. We also identify and categorize different use cases under which different mixed criticality scheduling approaches are preferable

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Towards Scalable Design of Future Wireless Networks

    Full text link
    Wireless operators face an ever-growing challenge to meet the throughput and processing requirements of billions of devices that are getting connected. In current wireless networks, such as LTE and WiFi, these requirements are addressed by provisioning more resources: spectrum, transmitters, and baseband processors. However, this simple add-on approach to scale system performance is expensive and often results in resource underutilization. What are, then, the ways to efficiently scale the throughput and operational efficiency of these wireless networks? To answer this question, this thesis explores several potential designs: utilizing unlicensed spectrum to augment the bandwidth of a licensed network; coordinating transmitters to increase system throughput; and finally, centralizing wireless processing to reduce computing costs. First, we propose a solution that allows LTE, a licensed wireless standard, to co-exist with WiFi in the unlicensed spectrum. The proposed solution bridges the incompatibility between the fixed access of LTE, and the random access of WiFi, through channel reservation. It achieves a fair LTE-WiFi co-existence despite the transmission gaps and unequal frame durations. Second, we consider a system where different MIMO transmitters coordinate to transmit data of multiple users. We present an adaptive design of the channel feedback protocol that mitigates interference resulting from the imperfect channel information. Finally, we consider a Cloud-RAN architecture where a datacenter or a cloud resource processes wireless frames. We introduce a tree-based design for real-time transport of baseband samples and provide its end-to-end schedulability and capacity analysis. We also present a processing framework that combines real-time scheduling with fine-grained parallelism. The framework reduces processing times by migrating parallelizable tasks to idle compute resources, and thus, decreases the processing deadline-misses at no additional cost. We implement and evaluate the above solutions using software-radio platforms and off-the-shelf radios, and confirm their applicability in real-world settings.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133358/1/gkchai_1.pd
    • …
    corecore