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Abstract

The conceptual frontier that for many years separated the real-time embedded systems domain
from the high-performance computing domain has been shattered by recent technological ad-
vances and market trends. Nowadays, many contemporary applications have started to cross the
boundaries between the two domains: they are subject to stringent timing requirements and have
huge computation demands, which cannot be successfully satisfied following the sequential exe-
cution paradigm. Intra-task parallelism enables an application to run simultaneously on different
cores, thus allowing for increased performance and offering opportunities to make efficient use of
the emergent many-core embedded architectures. However, parallelization adds another dimen-
sion to the already challenging problem of multiprocessor real-time scheduling.

In this dissertation, we are interested in studying the problem of scheduling a set of hard
real-time parallel tasks atop multiprocessor systems, where each parallel task is represented as
a Directed Acyclic Graph (DAG). The DAG task model reflects general features of parallelism
characteristic of widely used parallel programming models (such as OpenMP). In this model, a
task is defined as a set of concurrent subtasks whose execution has to obey to a set of prece-
dence constraints. Subtasks that are independent of each other may execute either in parallel or
sequentially, depending on the decisions of the real-time scheduler. We address both the global
and partitioned scheduling paradigms, under traditional preemptive scheduling algorithms, while
exploiting the internal structure of the DAGs. Furthermore, we also investigate the applicability of
the DAG model to the schedulability analysis of parallel applications with conditional control-flow
constructs.

First, we address the schedulability of a set of DAG tasks according to a global fixed-priority
scheduling algorithm. To this end, we present a response time analysis based on the concept
of problem window, a technique that has been extensively used to study the schedulability of
sequential task in multiprocessor systems. Such problem window approach usually categorizes
interfering jobs in three different groups: carry-in, carry-out and body jobs. By taking into ac-
count the precedence constraints between subtasks pertaining to the same DAG, we propose two
novel techniques to derive more accurate upper-bounds on the workload produced by the carry-
in and carry-out jobs of the interfering tasks. Using this new characterization, we then derive a
schedulability analysis to compute an improved upper-bound on the worst-case response time of
each parallel task in both the constrained and arbitrary deadline case.

Second, we look at the problem of scheduling a set of partitioned DAG tasks with constrained
deadlines from two different perspectives. Here, partitioning means statically assigning each sub-
task to a specific core, yet allowing multiple subtasks of the same DAG task to run on different
cores. In the first approach, we develop a response time analysis for fixed-priority scheduling,
which can be used under any given subtask-to-core mapping. To solve the issue that arises from
the potential cross-core dependencies, we show that a DAG task can be modeled and analyzed as a
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set of self-suspending tasks and present an algorithm to break the cyclic computations. In order to
increase the effectiveness of this schedulability test, we also propose a response time analysis for
sporadic self-suspending tasks running on a uniprocessor system. In the other approach, we pro-
pose a schedulability analysis based on a workload duplication technique. Specifically, we present
a partitioning algorithm that maps similar paths of a DAG to the same cores, aiming to minimize
the number of cores required for task feasibility and to eliminate cross-core dependencies. Thanks
to the duplication of key subtasks, all resulting partitions become independent of each other. Thus,
the problem of scheduling a set of partitioned DAGs is reduced to the problem of scheduling a set
of sequential tasks on multiprocessors in a partitioned manner.

Third, we deal with the problem of modeling and scheduling a set of DAG tasks with condi-
tional execution. Although it is expected that industrial applications feature conditional operations
that depend on run-time data, the DAG model assumes that each and every instance of the DAG
releases and executes all its subtasks. While conditional statements were not a major concern in
the case of sequential tasks, we are the first to show that they are detrimental for the schedulability
analysis of parallel tasks and thus should be explicitly modeled. Consequently, we generalize the
DAG model by proposing a multi-DAG model where each conditional parallel task is characterized
by a set of execution flows, each of which represented as a separate DAG. Due to conditional state-
ments, only one of such execution flows is undertaken at each task activation. Then, we develop a
two-step algorithm that constructs a single DAG of servers (servers are the scheduling entities) to
handle the execution of a multi-DAG task, and prove that these servers are able to safely and fully
execute any of its execution flows. As a result, each multi-DAG task can be modeled by its single
DAG of servers, which facilitates in leveraging the existing single-DAG schedulability analysis
techniques for analyzing the schedulability of conditional DAG tasks.

Experimental results validate the contributions proposed in this dissertation and show that
they may lead to a substantial reduction in the pessimism of the schedulability analyses for DAG
tasks comparatively to state-of-the-art methods. Such improvements are essential for exploiting
multiprocessors in real-time embedded systems in a more efficient way.



Resumo

A fronteira conceptual que, por muitos anos, separou o domínio dos sistemas embebidos e de
tempo-real do domínio da computação de alto desempenho tem vindo a desmoronar com os re-
centes avanços tecnológicos e tendências de mercado. Nos dias que correm, muitas das aplicações
contemporâneas já começam a evidenciar características associadas aos dois domínios: estas apli-
cações estão sujeitas a requisitos temporais muito rigorosos e exigem elevado desempenho com-
putacional, condições que não podem ser satisfeitas recorrendo apenas ao paradigma de execução
sequencial. O modelo de computação paralela habilita a execução simultânea de uma aplicação
em vários processadores, o que possibilita um aumento considerável do seu desempenho e um uso
mais eficiente do extremo poder computacional oferecido pelas novas arquitecturas many-core.
No entanto, o paralelismo vem tornar o problema de escalonamento de tempo-real ainda mais
desafiante.

Nesta dissertação estamos interessados em estudar o problema de escalonar um conjunto de
tarefas paralelas e de tempo-real num sistema multi-processador, no qual cada tarefa paralela é
representada por um grafo acíclico e direccionado (DAG). O modelo de tarefas DAG espelha tipos
gerais de paralelismo que são característicos dos modelos de programação paralela mais conceitu-
ados (como é o caso do OpenMP). Neste modelo, uma tarefa é definida como um conjunto de
sub-tarefas concorrentes cuja ordem de execução tem de respeitar um conjunto de precedências.
Sub-tarefas que são independentes umas das outras podem executar tanto em paralelo como se-
quencialmente, tudo depende das decisões tomadas pelo escalonador de tempo-real. Neste sentido,
consideramos os paradigmas de escalonamento global e particionado, recorrendo a algoritmos de
escalonamento tradicionais, enquanto tiramos partido do conhecimento da estrutura interna dos
DAGs. Além disso, também investigamos o grau de aplicabilidade do modelo DAG na análise de
escalonabilidade de tarefas paralelas que contêm estruturas condicionais de controlo.

O primeiro problema considerado prende-se com o escalonamento de um conjunto de tarefas
DAG de acordo com um algoritmo global de prioridades fixas. Para este efeito, é apresentada
uma análise de tempo de resposta baseada no conceito conhecido como “problem window”, uma
técnica que tem sido bastante empregue para estudar a escalonabilidade de tarefas sequenciais em
sistemas multi-processador. Tal abordagem normalmente classifica as diferentes instâncias das
tarefas interferentes em três grupos distintos: carry-in, carry-out and body. Através da explo-
ração das precedências entre sub-tarefas do mesmo DAG, são propostas duas técnicas inovadoras
para estimar com mais precisão a carga máxima de trabalho (e consequentemente a interferên-
cia) gerada pelas instâncias carry-in and carry-out das tarefas com mais prioridade. Esta nova
caracterização permite-nos refinar a análise de escalonabilidade tradicional, o que resulta numa
redução do tempo de resposta máximo de cada tarefa paralela no pior cenário, tanto no caso em
que os prazos não podem exceder os períodos de activação constrained deadline, como no caso
geral de prazos arbitrários arbitrary deadline.
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Em segundo lugar, investigamos o problema de escalonar um conjunto de tarefas DAG par-
ticionadas com constrained deadline através de duas abordagens bastante diferentes. Neste con-
texto, particionar significa atribuir estaticamente cada sub-tarefa a um processador específico, mas
permitindo que várias sub-tarefas do mesmo DAG executem em processadores diferentes. Na
primeira abordagem, é desenvolvida uma análise de tempo de resposta para escalonamento por
prioridades fixas, que pode ser utilizada independentemente das particularidades do mapeamento
um-para-um fornecido. De forma a capturar as dependências transversais a vários processadores
devido ao particionamento, é demonstrado que uma tarefa DAG pode ser modelada e analisada
como um conjunto de tarefas que se auto-suspendem (self-suspending tasks). Para este efeito, é
proposto um algoritmo que identifica o pior cenário de escalonamento, estabelece uma ordem para
que as computações sejam fidedignas, e compõe recursivamente as tarefas que se auto-suspendem.
Uma vez que detectamos um erro crítico na literatura relacionada, e para aumentar a qualidade
desta solução, também apresentamos uma análise de tempo de resposta para tarefas esporádicas
que se auto-suspendem em sistemas uni-processador. Relativamente à segunda abordagem, é pro-
posta uma análise de escalonabilidade baseada numa técnica de duplicação da carga de trabalho
(neste caso os nós dos grafos) que tem usufruído de grande sucesso no domínio da computação
de alto desempenho. Em particular, é apresentado um algoritmo de particionamento que mapeia
caminhos semelhantes de um DAG para o mesmo processador, com o objectivo de minimizar
o número de processadores necessários para garantir o cumprimento os requisitos temporais da
tarefa e eliminar as dependências transversais a múltiplos processadores. Graças à duplicação de
certas sub-tarefas, todas as partições resultantes tornam-se independentes umas das outras. Deste
modo, o problema de escalonar um conjunto de tarefas DAG é reduzido ao problema de escalonar
um conjunto de tarefas sequenciais num sistema multi-processador de acordo com o paradigma
particionado.

Por último, enfrentamos o problema de modelar e escalonar um conjunto de tarefas DAG que
exibem execução condicional. Embora seja expectável que as aplicações industriais apresentem
operações condicionais que dependem do estado de certas variáveis em tempo de execução, o mod-
elo DAG assume que cada uma das instâncias da tarefa paralela acciona e executa todas as suas
sub-tarefas. Enquanto a questão das expressões condicionais nunca foi muito relevante no caso
de tarefas sequenciais, esta dissertação expõe que as expressões condicionais são fundamentais
para a análise de escalonabilidade de tarefas paralelas e, como tal, devem ser modeladas explicita-
mente. Consequentemente, generalizamos o modelo DAG ao propor um modelo multi-DAG onde
cada tarefa paralela e condicional é caracterizada por uma colecção de fluxos de execução, cada
um dos quais é representado por um DAG. Devido às estruturas de controlo, apenas um único
fluxo de execução é prosseguido em cada activação da tarefa. Em seguida, é apresentado um al-
goritmo que constrói um DAG de servidores (servidores são as entidades de escalonamento) para
manipular a execução de uma tarefa multi-DAG, juntamente com a demonstração que tal estru-
tura de servidores é capaz de garantir o correcto e completo processamento de qualquer fluxo de
execução. Como resultado, cada tarefa multi-DAG pode ser representada pelo DAG de servidores
correspondente, o que faz com que os métodos de análise de escalonabilidade existentes para
DAGs singulares possam ser aproveitados para verificar a escalonabilidade de tarefas paralelas e
condicionais sem incorrer num grau de pessimismo proibitivo.

Os resultados experimentais validam as contribuições propostas nesta dissertação, e mostram
que as mesmas permitem reduzir substancialmente o pessimismo das análises de escalonabilidade
para DAGs, em comparação com o estado da arte. Estas melhorias são fundamentais para aumentar
os índices de eficiência no uso das arquitecturas multi-processador em sistemas embebidos e de
tempo real.
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Chapter 1

Introduction

1.1 Real-time systems

A real-time system is any information processing system where the correctness of each compu-

tation depends not only on its logical result but also on the time instant at which such result is

produced (Stankovic, 1988). Failure to respond within a specified time interval is considered as

a faulty response. Thus, the key property of a real-time system is time predictability. Real-time

applications are nowadays indispensable in our daily lives spanning areas such as transportation,

telecommunications, healthcare, industrial automation, multimedia, security, energy and financial

services.

While a multimedia application can tolerate some timing delays without major consequences,

it is fundamental that a control application strictly respects its timing constraints. Based on the

different levels of criticality, real-time systems are broadly classified into two groups: hard and soft

real-time systems. In a hard real-time system, catastrophic events (e.g., loss of human life) may

occur if the expected functionality is delivered after the pre-defined temporal requirement. On the

other hand, for soft real-time systems, late results still retain utility despite leading to performance

degradation, as long as the delay is within an acceptable range. In this research work, we focus

exclusively on the former.

Real-time systems are reactive and recurrent in nature. For this reason, real-time applications

are typically modeled as finite collections of processes called "tasks" that are repeated according

to different rates dictated by the environment.

1.1.1 Real-time task model

In the traditional real-time task model (Liu and Layland, 1973), a real-time application is com-

posed by a set of n independent sequential tasks τ = {τ1, . . . ,τn}. Each task τi releases a sequence

of (potentially) infinite identical instances called "jobs" to be executed on the target platform. Each

task τi is characterized by a 3-tuple (Ci,Ti,Di) with the following interpretation:

1
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• The worst-case execution time (WCET) Ci denotes an upper-bound on the execution time

required by any job of τi to complete its computation without interruption. Hence, the

actual execution time of a job must not exceed its WCET under any scenario. The WCET

estimation is critical for the reliability of real-time systems. Although the exact maximum

value is in general impossible to derive, one must guarantee that the computed WCET is both

safe (i.e., the upper-bound is not underestimated) and tight (i.e., marginally pessimistic).

• The period or minimum inter-arrival time Ti represents the frequency at which new jobs

of τi are released in the system. Jobs of a periodic task are released exactly every Ti time

units, whereas two consecutive jobs generated by a sporadic task must be separated by at

least Ti time units.

• The relative deadline Di determines that every job of τi has to complete its execution within

Di time units from its release. While in a hard real-time system all jobs of each task must

meet their deadlines, deadline misses are tolerated in a soft-real-time system if the execution

tardiness of the jobs is not unbounded.

According to the relation between the deadline and the period of each task, a task set τ is said

to have (i) implicit deadlines if Di = Ti, (ii) constrained deadlines if Di ≤ Ti, or (iii) arbitrary

deadlines if Di > Ti is allowed (i.e., there is no constraint between the relative deadline and the

period), ∀τi ∈ τ . For both implicit and constrained deadline tasks, at most one job of each task

is active at any time instant t. In contrast, multiple active jobs of an arbitrary deadline task may

overlap in a given time interval. In this dissertation, we consider primarily sporadic tasks with

constrained deadlines, although the general case of arbitrary deadlines is covered in Section 3.7.

The kth job of task τi denoted by Ji,k becomes ready for execution at arrival time ai,k, has an

absolute deadline di,k = ai,k +Di, and remains active until finishing time fi,k. The difference be-

tween the finishing time and the arrival time corresponds to the response time of the job. Formally,

ri,k = fi,k− ai,k. Additionally, the response time Ri of τi is given by the maximum response time

of all its jobs: Ri = max
∀Ji,k∈τi

(ri,k).

The fraction of the processor’s capacity required by any job of task τi is defined as its utilization

Ui =
Ci
Ti

. Similarly, the utilization Uτ of a task set τ is given by the sum of the utilization of its

tasks, i.e. Uτ =
n
∑

i=1
Ui. On a platform comprised of m ≥ 1 processors, the following inequalities

constitute necessary feasibility conditions:

Ui ≤ 1,∀τi ∈ τ (1.1)

Uτ ≤ m (1.2)
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1.1.2 Schedulability analysis

Let A be a scheduling algorithm. A task set τ is A-schedulable if all jobs of its tasks meet their

deadlines when scheduled by A. That is, Ri ≤Di for each τi ∈ τ . A task set τ is said to be feasible

if it exists at least one scheduling algorithm under which τ is schedulable. Algorithm A is optimal

if all feasible task sets are A-schedulable.

The process to determine at design time whether a task set τ is schedulable under a scheduling

algorithm A and on a given platform is called schedulability test. Schedulability tests can be

sufficient, necessary or exact. A sufficient test guarantees that if the condition is true, then τ is

A-schedulable but the opposite cannot be concluded. On the other hand, a necessary test cannot

deem τ A-schedulable in any case, but if the test fails then τ is definitely not schedulable by

A. An exact test is both sufficient and necessary, since it always precisely classifies τ as either

schedulable or not.

A counter-intuitive effect on the schedulability of a task set provoked by a positive change in

the task parameters is referred to as a "scheduling anomaly". A scheduling algorithm or schedu-

lability test is said to be sustainable if no scheduling anomalies are found. In other words, a

scheduling algorithm A is sustainable if a task set τ deemed A-schedulable does not become un-

schedulable under A when τ is relaxed by, for example, reducing a WCET Ci, enlarging a period Ti

or increasing a deadline Di. (The interested reader is referred to (Cerqueira et al., 2018) for a for-

mal classification). As in practice the execution time of jobs will vary significantly, this property

is of paramount importance to assure the timeliness of the system.

1.1.3 Real-time schedulers

A scheduler is the entity responsible for defining the execution order of tasks on the processors.

Whenever there are more pending jobs than the number of cores available m, the scheduler has to

decide which m pending jobs to allocate to the cores. The main goal of a real-time scheduler is

to take scheduling decisions that allow every task in the system to respect their timing constraints.

Real-time schedulers are commonly divided in two categories:

• Static schedulers take scheduling decisions based on a scheduling table pre-computed at

design time and which stores the task set specific allocation scheme. Constructing a schedul-

ing table requires full knowledge of the tasks activation pattern. For this reason, static

schedulers tend to be too inflexible for sporadic tasks.

• Dynamic schedulers follow scheduling rules defined by a scheduling algorithm to make

scheduling decisions during run-time according to the current system state (e.g., task param-

eters or remaining workload). Therefore, dynamic schedulers do not rely on pre-computed

information. We restrict our attention to a particular class of these schedulers called priority-

driven, where a scheduling algorithm defines the priority assignment of jobs and takes

scheduling decisions that favor the higher priority workload.
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Priority-driven scheduling algorithms can be further categorized according to how the job

priorities may vary over time. Here we distinguish three major classes.

• Fixed-priority (FP): each task is assigned with a constant priority and all of its jobs inherit

such fixed-priority. Thus, the scheduling decisions are not affected by the elapsed time.

Rate Monotonic (RM) and Deadline Monotonic (DM) are representative examples of these

algorithms.

• Job-level fixed-priority (JLFP): although priorities are allowed to change over time, each

distinct job is assigned with a fixed-priority when it arrives in the system. That is, different

jobs of a same task may have different priorities but once assigned the priority of a job never

changes. Earliest Deadline First (EDF) is the most notable JLFP scheduling algorithm.

• Job-level dynamic-priority (JLDP): the priority of a job may change during its execution

as a function of time. An example of this most general class of the schedulers is the Least

Laxity First algorithm.

A scheduling algorithm is said to be work-conserving if no processor stays idle as long as there

are pending jobs waiting to be executed. Furthermore, scheduling algorithms can be differentiated

based on their capability to alter the job-to-processor allocation when the processor is busy. In

preemptive scheduling, the execution of a running job is interrupted (preempted) whenever higher

priority jobs are released. Its execution is resumed only after all the active higher priority jobs

terminate or voluntarily yield the processor. In contrast, in non-preemptive scheduling jobs once

scheduled always run continuously to completion as they cannot be interrupted. Since scheduling

decisions are taken after a job terminates, the execution of a higher priority job may be delayed

by at most one lower priority job. This effect is known as blocking. In this thesis, we mainly

consider fixed-priority preemptive scheduling but EDF preemptive scheduling is also addressed in

Section 4.6.

1.1.4 Uniprocessor real-time theory

The seminal research into uniprocessor real-time scheduling dates back to the late 1960s and early

1970s, and it was primarily applied to schedule computer programs during the first manned space

flight to the moon (Liu, 1969; Liu and Layland, 1973). Remarkably, Liu and Layland (Liu and

Layland, 1973) introduced provably optimal (class wise) FP and JLFP algorithms and respective

tests for the scheduling of periodic tasks. During the 1980s and 1990s, these policies were stud-

ied under more general models, including sporadic arrivals (Mok, 1983), synchronization (Sha

et al., 1990) and overheads (Katcher et al., 1993). Today, this theory is considered mature and

successfully put in practice for industrial purposes.

Under FP scheduling, tasks are commonly indexed in order of decreasing priority, i.e., if i < j

then the priority of τi is higher than that of τ j. Ties are broken arbitrarily. For example, the RM

algorithm introduced in (Liu and Layland, 1973) prioritizes tasks with shorter periods such that if
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Ti < Tj then i < j, while DM (Leung and Whitehead, 1982) prioritizes tasks with shorter relative

deadlines.

For implicit deadline periodic tasks, Liu and Layland showed that RM is optimal among the

FP schedulers (Liu and Layland, 1973) and derived the following sufficient schedulability test

which also applies to sporadic tasks. A task set τ comprised of n implicit deadline sporadic task is

schedulable under RM on a uniprocessor system if Uτ ≤ n(2
1
n −1). When n→ ∞, the utilization

bound n(2
1
n − 1) converges to ln(2) ≈ 0.69. This is the highest-achievable utilization bound for

any FP algorithm, since there are implicit deadline task sets with an utilization slightly larger than

the bound that no FP algorithm can schedule.

However, RM is not optimal for uniprocessor systems because every implicit deadline tasks

set where Uτ ≤ 1 is feasible on a uniprocessor. Similarly, RM is not optimal when tasks may have

deadlines different than their periods. Instead, DM priority assignment, where i < j if Di < D j,

is optimal for constrained deadline tasks (Leung and Whitehead, 1982). Nevertheless, the RM

schedulability test also holds for DM by simply replacing the term Uτ with στ = ∑
∀τi∈τ

Ci
min(Di,Ti)

,

where στ denotes the density of the task set.

Although the above schedulability test is very efficient, it fails to identify those implicit dead-

line task sets whose utilization exceeds the bound but are still RM-schedulable. To this end, Joseph

and Pandya (Joseph and Pandya, 1986) proposed a response time analysis (RTA) to compute the

exact worst-case response time (WCRT) of each sporadic task explicitly. The key concept behind

the analysis is the existence of a critical instant, which defines a release pattern for all the tasks

so that the response time of the first job released by the task under analysis is maximized. Their

approach considers constrained deadline task sets under any FP priority assignment. Given such

WCRTs, Ri ≤ Di for each τi ∈ τ provides a straightforward schedulability test. The response time

of a task τi is given by the smallest value that satisfies the following recursion and Ri ≥Ci:

Ri =Ci +
i−1

∑
j=1
dRi

Tj
eC j (1.3)

Starting with Ci as an initial value for Ri, Ri is computed by iteratively evaluating the right-

hand side until the equation converges. Convergence is guaranteed by the necessary feasibility

condition Uτ ≤ 1. Response time analyses have been proven sustainable in (Baruah and Burns,

2006) and are therefore invaluable to determine schedulability in real-time systems. Response

time analyses for arbitrary deadline task sets are also available in the literature (Tindell et al.,

1994), but require a longer time interval to be checked as multiple jobs of a same task may be

active simultaneously. Such interval is known as busy-period.

Despite FP scheduling being widely used in practical systems, the JLFP policy EDF theoreti-

cally dominates any other preemptive algorithm for uniprocessor platforms. EDF is very intuitive,

since it schedules in order of urgency. That is, EDF prioritizes jobs according to their absolute

deadlines so that the job with the nearest deadline is always the one executing.

A very simple example may clarify how EDF works. Let us consider the task set detailed in

Table 1.1, which has four tasks and utilization: Uτ =
2

13 +
3

13 +
2
15 +

3
17 = 72.2%. Fig. 1.1 shows
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the timeline execution for the first job of each task. Parameter Oi denotes the offset of τi, i.e., the

release time of the first job of τi w.r.t. the reference time. The only task released at instant 0 is

τ4, so it starts executing immediately. At instant 1, τ3 arrives with an earlier deadline. Since τ4

needs more 2 times units to finish its instance, it is preempted by τ3. It goes like this until instant

6, when τ1 finishes his job. Now that the remaining three tasks are ready, the earliest deadline task

is selected for execution: τ3. The schedule goes on this descending way until instant 10 when the

last first job terminates.

Table 1.1: A task set example for EDF schedule.

Task Ci Ti Di Oi
τ1 2 11 11 3
τ2 3 13 13 2
τ3 2 15 15 1
τ4 3 17 17 0

Figure 1.1: An EDF schedule example.

The theoretically superiority of EDF comes from the fact that if there exists a feasible sched-

ule for a sporadic task set, then the task set is EDF-schedulable irrespective of the deadline con-

straints (Dertouzos, 1974). Thus, EDF is optimal among all preemptive scheduling algorithms

on uniprocessors. In the case of implicit deadline tasks, the utilization bound Uτ ≤ 1 constitutes

a simple exact schedulability condition (Liu and Layland, 1973). However, when generalized to

arbitrary deadline tasks, the density bound στ ≤ 1 is no longer an exact schedulability test. In fact,

this test is considerably pessimistic if some of the tasks have constrained deadlines. Exact tests

have been proposed to close such gap at the cost of increased computational complexity (more

precisely, they run in pseudo-polynomial time) (Albers and Slomka, 2005). The interested reader

is referred to (Sha et al., 2004) for an excellent survey in the field of uniprocessor scheduling.

1.1.5 Multiprocessor real-time theory

Unfortunately, multiprocessor real-time scheduling has not yet enjoyed the success as its unipro-

cessor counterpart. As early as in 1969, Liu (Liu, 1969) observed the intrinsic complexity of

multiprocessor scheduling and how hardly uniprocessor algorithms could be extended to it:
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"Few of the results obtained for a single processor generalize directly to the mul-

tiple processor case; bringing in additional processors adds a new dimension to the

scheduling problem. The simple fact that a task can use only one processor even when

several processors are free at the same time adds a surprising amount of difficulty to

the scheduling of multiple processors."

In a multiprocessor system, the scheduling problem consists not only on deciding which m

jobs to execute at any given point in time, but also on how to distribute (map) jobs among the

processors. Hence, multiprocessor scheduling encompasses a priority assignment problem and

an allocation problem. Regarding the allocation and consequent migration behavior of the jobs,

multiprocessor scheduling can be distinguished in three major categories (Carpenter et al., 2004):

• In global scheduling, a job is allowed to execute on any processor at any point in time and

therefore can migrate between processors during its activity. Broadly speaking, the system

has one scheduler which dispatches jobs to the processors according to a single shared ready

queue, where the priority ordering is maintained. While global scheduling shall overcome

the algorithmic capacity loss intrinsic to partitioned approaches, it has practical downsides

related to costly overheads due to preemption and migration operations.

• In partitioned scheduling, tasks are statically assigned to processors in a fixed manner so

that all jobs of the same task must execute in the allocated processor. Thus, migrations are

not supported. In this case, each processor has its own independent scheduler. Consequently,

the multiprocessor scheduling problem is reduced to a set of uniprocessor scheduling prob-

lems. This problem reduction implies that the task set must first be partitioned such that

every task is assigned to a processor and no processor is overloaded. To find valid task

assignments, bin-packing heuristics (such as First-Fit, Best-Fit and Worst-Fit) are usually

employed since the allocation problem is NP-hard.

• In semi-partitioned scheduling, some tasks are pinned to specific processors while other

tasks are allowed to migrate across processors. Semi-partitioning can be seen as a com-

promise between partitioned and global scheduling that aims at combining the best of both

approaches.

Table 1.2: A task set example causing the Dhall effect.

Task Ci Ti Ui
τ1 2ε 1 → 0
τ2 2ε 1 → 0
τ3 1 1 + ε → 1

Highlighting the complexity of multiprocessor scheduling, Dhall (Dhall, 1977) reported that

when globally enforcing the typical scheduling policies (e.g., RM or EDF) on a multiprocessor

host, some task sets may miss deadlines even though very low system utilization is requested. To
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Figure 1.2: A Dhall effect schedule example.

provide an understanding of the so-called Dhall effect, let us consider an example. Consider a

system with 2 processors (m = 2) and 3 implicit deadline tasks (n = 3), as specified by Table 1.2,

to be scheduled according to the EDF policy. Since all tasks are released at t = 0, the first job of

τ1 and τ2 with deadline equal to 1 will have higher priority over the first job of τ3, whose deadline

is 1 + ε . Consequently, processors P1 and P2 are assigned to J1,1 and J2,1 during the time interval

[0,2ε], leaving a maximum of 1 - ε time units for J3,1 before its deadline, which is not enough for

it to be completely executed (see Fig. 1.2). Hence, this task set is not schedulable under EDF on a

2-processor computing system although
n
∑

i=1
Ui→ 1 as ε → 0.

This finding discouraged the research community to study global scheduling algorithms for

two decades, until Phillips et al. (Phillips et al., 1997) showed that the Dhall effect is mostly related

to tasks with high utilization, and not an inherent global scheduling issue. Nevertheless, even in

the case of implicit deadline tasks, the utilization bound of any global FP (GFP) scheduler is upper-

bounded by m+1
2 , which matches the best results on partitioned scheduling. For a given priority

assignment and a specific task set, global worst-case response time bounds can be computed using

multiprocessor response time analysis (see (Davis and Burns, 2011) for a comprehensive survey).

In particular, Bertogna and Cirinei (Bertogna and Cirinei, 2007) derived a response time analysis

for constrained deadline sporadic tasks under global EDF (GEDF) based on a problem window

introduced by Baker (Baker, 2003) to estimate the maximum interfering workload that can be

generated by each higher priority task.

By taking into consideration the maximum utilization Umax among tasks within a task set,

Goossens et al. (Goossens et al., 2003) showed that a set of independent periodic tasks with im-

plicit deadlines can be successfully schedulable by GEDF on m processors if

Uτ ≤ m− (m−1)Umax. (1.4)

Later, it was proven that this bound also holds for sporadic tasks with arbitrary deadlines

by factoring in density instead of utilization (Bertogna et al., 2005; Baker and Baruah, 2007). Al-

though no optimal schedulers exist for both constrained and arbitrary task sets (Fisher et al., 2010),

optimality as been achieved by more complex global JLDP algorithms (for example, PD2 (Srini-
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vasan and Anderson, 2006)) when all tasks have implicit deadlines.

The aforementioned results were derived for homogeneous (also known as identical) mul-

tiprocessors, where every processor in the system has the same computing capabilities and the

execution rate of the tasks is equal on each one of them. The type of multiprocessor systems can

be further classified as uniform or heterogeneous. Although in both types different processors may

have different speed, such speed determines the execution rate of a task in the former, while in the

latter the execution rate also depends on the characteristics of the task itself. In this research work,

we restrict our attention to a multiprocessor platform composed of m homogeneous cores. This

abstraction comes from the fact that schedulability analyses are assumed to be independent from

the low-level timing analyses which account for the architecture-specific details. Furthermore, we

use both the term processor and core as a synonym for a single processing unit in the same host

platform.

1.2 Research motivation

More than forty years ago, in 1973, Chang Liu and James Layland proposed in (Liu and Lay-

land, 1973) a simplistic model to characterize the timing behavior of time-critical control and

monitor functions that they termed “pure process control”. Their model abstracts each of these

pure process controls by two numbers: a worst-case execution requirement and an execution rate

(called period). Since then the real-time community has developed an extensive set of task models,

platform models and scheduling techniques by relaxing some of the assumptions originally made

by Liu and Layland to incorporate the requirements of new systems, applications and architec-

tures (Davis and Burns, 2011; Sha et al., 2004). Although researchers have built an impressive

body of knowledge that gives a deep understanding of the broad variety of scheduling problems,

today’s applications in the real-time embedded systems (RTES) domain are neither designed nor

implemented the way it used to be back in 1973, and most of the models available today are not

expressive enough to correctly model the timing behavior of most of the contemporary embedded

applications.

In fact, the conceptual frontier that segregated high-performance computing (HPC) and RTES

domains for many years is becoming thinner every day. In a nutshell, HPC designers have been

challenged to speed up applications with continuous input streams that involved massive compu-

tational and/or memory-intensive operations. On the other hand, RTES designers have been chal-

lenged to guarantee at design time that recurrent applications with specialized functionalities meet

their timing requirements under worst-case scenarios. Nowadays, HPC systems face an increasing

demand for energy-efficiency and bounded response times, whereas RTES strive for extra flexibil-

ity and computational performance. Unsurprisingly, many modern applications (e.g., intelligent

transportation systems and autonomous driving) have started to cross the boundaries between the

two domains: they have huge computational demands and are subject to strong timing constraints,

which cannot be answered by the sequential execution paradigm.
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Figure 1.3: Typical multicore architecture. Figure 1.4: A many-core architecture.

In the last few years, multicore processors have erupted into both computing markets due to

physical limitations facing scalable performance of classic uniprocessor architectures. By integrat-

ing multiple cores within a chip, different applications can be scheduled concurrently on the same

platform. More importantly, a single application can be executed simultaneously on multiple cores

through parallelization. These features allow for an efficient exploitation of the hardware comput-

ing capabilities, while also reducing size, weight, power and cost requirements. Hence, multicore

architectures are increasingly considered as the solution to meet the ever-more demanding cost

and performance requirements across the whole computing spectrum (Ungerer et al., 2010). How-

ever, traditional multicore architectures have not enjoyed an enduring all-around success in either

computing domain mainly due to the shared resources and interconnect topology employed. In the

RTES domain, we have witnessed the existence of timing anomalies which compromised a pre-

dictable execution pattern and worst-case estimates. In the HPC domain, increasing the number

of cores stopped translating into proportional performance scalability due to the communication

bottleneck observed in the bus-based interconnect, which is shared for inter-core, memory and

I/O accesses. In order to overcome such limitations, main hardware manufactures have recently

started shipping chips containing dozens or hundreds of simpler cores, interconnected by mod-

ular networks-on-chip. Kalray MPPA (de Dinechin et al., 2013) (shipping versions feature 256

cores) in the embedded domain and the Intel MIC (Intel, 2017) (Intel Xeon Phi features up to 72

cores) in the HPC domain are examples of these new powerful and scalable architectures known as

“many-core”. Figures 1.3 and 1.4 illustrate typical differences between multicore and many-core

platforms.

Given the recent market trends for predictable performance and the advent of many-core sys-

tems, there is a strong push towards parallel computing. The parallelization is typically achieved

by splitting applications into multiple smaller sequential computation units which may run si-

multaneously on different cores, thus benefiting from the cooperation between processing ele-

ments. This intra-task parallelism can be expressed by the programmers using parallel program-

ming models such as Cilk (Frigo et al., 1998), Intel’s Parallel Building Blocks (Intel, 2010),

OpenMP (OpenMP Architecture Review Board, 2018) and Java Fork/Join (Lea, 2000). These

high-level parallel frameworks seek to reduce the complexity of multicore programming by giving

programmers abstract execution models, where programmers annotate their applications to sug-

gest the parallel decomposition. In some cases, the annotations act simply as hints that can be
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ignored and safely replaced with sequential counterparts. Both the parallel decomposition itself

and mapping of computations to cores are the responsibility of the language implementation and,

more specifically, of the run-time scheduler. While parallel programming models offer the degree

of flexibility and optimization desired in HPC systems, they are not easily applicable to RTES

since they compromise the ability of deriving reliable time bounds. Similarly conclusions can be

drawn both ways. Therefore, it is of paramount importance to investigate new techniques that ad-

dress the time predictability and parallel execution challenges now transverse to both computing

domains.

In order to capture such parallelization opportunity and overcome the limitations of the se-

quential task models, the RTES community has been actively proposing new parallel task mod-

els and respective schedulability analysis to the new many-core embedded designs (Lakshmanan

et al., 2010; Axer et al., 2013; Baruah et al., 2012; Li et al., 2013; Saifullah et al., 2011; Chwa

et al., 2013; Andersson and de Niz, 2012). These important initial steps towards the integration

of high-performance and real-time requirements have been strengthen by the outcome of two Eu-

ropean projects. The parMERASA project (parMESARA Project, 2014) developed a customized

multicore hardware design that is timing analyzable, and specialized software parallel patterns to

parallelize industrial applications, together with WCET analysis and verification tools. Recently,

the P-SOCRATES project (P-SOCRATES Project, 2016) devised a complete and coherent soft-

ware system stack for the design, analysis and execution of real-time parallel applications onto

COTS-based many-core embedded architectures such as Kalray MPPA and Texas Instruments

Keystone II.

This dissertation takes further steps in addressing the time-criticality and parallelization chal-

lenges, with particular emphasis on proving guarantees on the timing behavior of the system in

the presence of execution parallelism. That is, we focus on scheduling and analysis methodolo-

gies to determine if a set of real-time parallel applications is able to meet their stringent deadlines

when executing jointly on a multi/many-core platform. Application’s performance is boosted by

the features of the targeted parallel programing model. To this end, we consider a task model that

supports general parallel applications with functional and extra-functional dependencies, called

the DAG model. It reflects sophisticated types of dynamic, fine-grained and irregular parallelism

typical from HPC applications, while having strong similarities with the current OpenMP task-

ing model (the de facto standard for parallel programming on shared memory systems (OpenMP

Architecture Review Board, 2018)). We believe that the outcome of these research studies will

contribute to significantly improve the performance capabilities of future real-time embedded sys-

tems, while also broadening the spectrum of target applications.

1.3 The sporadic directed acyclic graph (DAG) model

In this section, we define the base parallel task model and notation used throughout this disserta-

tion. Extensions or deviations will be handled in the corresponding chapters.
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We consider a set of n sporadic real-time tasks τ = {τ1, . . . ,τn} to be scheduled by a preemp-

tive fixed-priority algorithm on a platform Π composed of m unit-speed processors. We assume

that priorities are per-task and that task τi has higher-priority than τk if i < k. Each task τi is char-

acterized by a 3-tuple (Gi,Di,Ti) with the following interpretation. Task τi is a recurrent process

that releases a (potentially) infinite sequence of jobs, with the first job released at any time during

the system execution and subsequent jobs released at least Ti time units apart. Every job released

by τi has to complete its execution within Di time units from its release. We consider that τ is

comprised of constrained deadline tasks, i.e., Di ≤ Ti,∀i.
Each job of τi is modeled by a DAG Gi = (Vi,Ei), where Vi = {vi,1, . . . ,vi,ni} is a set of ni

nodes and Ei ⊆ (Vi×Vi) is a set of directed edges connecting any two nodes. Each node vi, j ∈ Vi

represents a computational unit (referred to as subtask) that must execute sequentially. A subtask

vi, j has a worst-case execution time (WCET) denoted by Ci, j. Each directed edge (vi,a,vi,b) ∈ Ei

denotes a precedence constraint between the subtasks vi,a and vi,b, meaning that subtask vi,b cannot

execute before subtask vi,a has completed its execution. In this case, vi,b is called a successor of

vi,a, whereas vi,a is called a predecessor of vi,b. A subtask is then said to be ready if and only

if all of its predecessors have finished their execution. For simplicity, we will omit the subscript

i when referring to the subtasks of task τi if there is no possible confusion. A subtask with no

incoming (resp., outgoing) edges is referred to as a source (resp., a sink) of the DAG. Without loss

of generality, we assume that each DAG has a single source v1 and a single sink vni . Note that

any DAG with multiple sinks/sources complies with this requirement, simply by adding a dummy

source/sink with zero WCET to the DAG, with edges from/to all the previous sources/sinks.

For each subtask v j ∈ Vi, its set of direct predecessors is given by pred(v j), while succ(v j)

returns its set of direct successors. Formally, pred(v j) = {vk ∈ Vi | (vk,v j) ∈ Ei} and succ(v j) =

{vk ∈ Vi | (v j,vk) ∈ Ei}. Furthermore, ances(v j) denotes the set of ancestors of v j, defined as the

set of subtasks that are either directly or transitively predecessors of v j. Analogously, we denote

by desce(v j) the descendants of v j. Formally, ances(v j) = {vk ∈ Vi | vk ∈ pred(v j)∨ (∃v`,v` ∈
pred(v j)∧ vk ∈ ances(v`))} and desce(v j) = {vk ∈ Vi | vk ∈ succ(v j)∨ (∃v`,v` ∈ succ(v j)∧ vk ∈
desce(v`))}. Any two subtasks that are not ancestors/descendants of each other are said to be

independent. Independent subtasks may execute in parallel.

Definition 1 (Path). For a given task τi , a path λ = (v1, . . . ,vni) is a sequence of subtasks v j ∈Vi

such that v1 is the source of Gi , vni is the sink of Gi , and ∀v j ∈ λ \{vni}, (v j,v j+1) ∈ Ei.

Informally, a path λ is a sequence of subtasks from the source to the sink in which there is

a precedence constraint between any two adjacent subtasks in λ . Thus, there is no concurrency

between the subtasks that belong to a same path. The length of a path λ , denoted len(λ ), is the

sum of the WCET of all its subtasks, i.e., len(λ ) = ∑∀v j∈λ C j.

Definition 2 (Length of a task). The length Li of a task τi is the length of its longest path.

Definition 3 (Critical path). A path of τi that has a length Li is a critical path of τi.

Note that when the number of cores m is greater than the maximum possible parallelism of

τi (for instance, m ≥ ni), the length Li represents the worst-case response time (WCRT) of τi in



1.4 Problem description and thesis statement 13

isolation (also known as the makespan of the graph). Therefore, an obvious necessary condition

for the feasibility of τi is Li ≤ Di.

Definition 4 (Workload). The workload Wi of a task τi is the sum of the WCET of all its subtasks,

i.e. Wi = ∑
ni
j=1C j.

Finally, we prove the following property on τi’s execution and its critical path.

Lemma 1. At most Wi−max{0, Li− `} units of workload can be executed by a job of τi in a

window of length `.

Proof. By Def. 1, all subtasks in a critical path have precedence constraints and must therefore

execute sequentially. Since the length of every critical path is Li, ` time units after its release, a

job of τi must still execute during at least max{0, Li− `} time units to complete. Hence, at most

Wi−max{0, Li− `} units executed in the interval of length `.

Since the workload of a DAG task τi implies that each subtask of a critical path must execute

to its WCET, which takes in total no less than Li time units irrespective of the schedule, the next

corollary follows.

Corollary 1. No schedule of Gi whose length is shorter than Li can accommodate Wi units of

workload.

1.4 Problem description and thesis statement

In this dissertation, we study the problem of scheduling and mapping real-time parallel applica-

tions modeled as DAG tasks on top of homogeneous multiprocessor systems. The prime goal is

to address the time-criticality intrinsic to real-time systems, while tackling the challenges facing

parallelization. Hence, we focus on design choices that favor or simplify the worst-case behavior

of the overall system, and on static analysis to guarantee a priori that all these highly concurrent

and work-intensive applications will fulfill their stringent timing requirements. Nevertheless, we

acknowledge that the benefits of parallelization may be wasted if the functional properties of the

DAGs are neglected.

We consider a priority assigment only at the task-level to further increase the synergy with

current run-time environments for parallel workloads. Accordingly, we addressed a set of schedu-

lability analysis problems for multiprocessor systems under classical preemptive scheduling al-

gorithms by exploring the internal structure of the DAGs. Namely, both global and partitioned

paradigms, as well as applications with conditional execution.

The central preposition of this dissertation is that:

Schedulability analysis for real-time multiprocessor systems composed of DAG tasks can
be significantly improved by exploiting the internal structure of such parallel tasks.



14 Introduction

1.5 Contributions

In order to evaluate the thesis, we derive a set of scheduling and mapping methods that leverage

the internal parallel structures to tighten the schedulability of general DAG tasks running atop a

multiprocessor systems. Our contributions include:

• C1 - A sufficient schedulability test for GFP scheduling of sporadic DAG tasks both with

constrained and arbitrary deadlines (Fonseca et al., 2017).

(a) A characterization of a DAG’s execution pattern under a certain schedule, called work-

load distribution;

(b) A new worst-case scenario and respective sliding window algorithm for maximizing the

interfering workload generated by a higher priority task;

(c) Two novel techniques to derive workload distributions and upper-bounds for the worst-

case workload produced by both the carry-in and carry-out jobs of an interfering task;

(d) A response time analysis for constrained deadline DAG tasks that dominates the re-

sponse time analysis proposed by (Melani et al., 2017). The RTA is based on the concept of

problem window, a technique that has been extensively used to study the schedulability of

sequential tasks in multiprocessor systems;

(e) An extension of the response time analysis to the general case of DAG tasks with arbi-

trary deadlines, which accounts for the interference exerted by multiple carry-in jobs.

• C2 - Two sufficient schedulability tests for the partitioned scheduling of sporadic DAG tasks

with constrained deadlines (Fonseca et al., 2016).

(a) A novel path-based response time analysis for fixed-priority DAG tasks with arbitrary

given mappings;

(b) A model transformation and respective analytical enhancements so that theory on self-

suspending tasks can be used to analyze partitioned DAG tasks;

(c) An algorithm to parse a path of a DAG, while characterizing its worst-case scheduling

behavior and inter-core dependencies;

(d) A DAG partitioning algorithm to minimize the number of cores required to guarantee

the feasibility of a partitioned DAG task;

(e) A duplication-based mapping strategy that allows a DAG task to be modeled as a set

of independent sequential tasks, one sequential task for each partition derived. As a result,

traditional multiprocessor partitioned schedulability tests and allocation methods can be

safely applied.

• C3 - A task model for real-world applications with conditional execution (Fonseca et al.,

2015).
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(a) The identification of an open problem: control-flow information cannot be neglected in

the analysis of conditional parallel tasks;

(b) A new parallel task model, called multi-DAG, which generalizes the sporadic DAG

model by capturing the different flows of execution that stem from conditional statements;

(c) A two-step algorithm to construct a DAG of servers1 that encapsulate the execution of a

multi-DAG task. With the equivalence, existing schedulability analysis for non-conditional

DAG tasks under a work-conserving scheduling algorithm can safely be applied to condi-

tional DAG tasks;

(d) A mapping rule to arbitrate the assignment of subtasks to servers and guarantee that a

multi-DAG task can be fully and correctly executed by the corresponding DAG of servers,

irrespective of the conditional branches taken at run-time.

• C4 - A relevant sufficient schedulability test for uniprocessor FP scheduling of sporadic

self-suspending tasks with constrained deadlines, supporting contribution C2, was also de-

veloped in a collaborative effort (Nelissen et al., 2015).

(a) A counter-example showing that a well-established claim, regarding the critical instant

for a sporadic self-suspending task scheduled together with higher priority sequential tasks,

was incorrect.

(b) A new set of conditions for such critical instant which highlights the complexity of the

problem;

(c) An algorithm to compute the exact WCRT of a self-suspending task with a single sus-

pension region when every higher priority task is sequential;

(d) A mixed-integer linear programming (MILP) formulation to estimate the WCRT of

multiple self-suspending tasks with an arbitrary number of suspension regions.

It is our belief that, together, these four contributions (C1, C2 and C3 as main, and C4 as

secondary) successfully achieve the main goal of this thesis, and play an important role in advanc-

ing the state-of-the-art on the modeling and analysis of real-time systems comprised by general

parallel tasks.

1.6 Outline

The remainder of this manuscript is structured as follows.

Chapter 2 presents a concise description of the state-of-the-art on real-time parallel task models

and respective schedulability results.

1In the context of this PhD, the term “server” is employed with the same meaning as in (Baruah et al., 2002),
for instance. Servers are the entities to be scheduled on the cores. Each server has a pre-defined cpu-budget to be
“consumed” through the execution of ready tasks, every time a server is granted a core. A task cannot execute within a
server if its budget is exhausted. However, our DAG of servers only executes subtasks of the corresponding multi-DAG
and each server cannot be released if its precedence constraints are not satisfied.
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In Chapter 3 and related to contribution C1, we derive a schedulability analysis for sporadic

DAG tasks scheduled by GFP. More specifically, throughout Sections 3.1 to 3.3 we motivate the

need to take into account the precedence constraints within the DAGs, while providing the nec-

essary background on the multiprocessor response time analysis for parallel tasks (Section 3.2)

and introducing the proposed worst-case scenario for the interfering workload of the higher prior-

ity tasks (Section 3.3). In Sections 3.4 and 3.5, we show how to more accurately characterize and

upper-bound the worst-case carry-in and carry-out workloads, respectively. We then leverage these

new upper-bounds to derive improved response time analysis both for constrained (Section 3.6)

and arbitrary deadline tasks (Section 3.7). Finally, Section 3.8 reports the experimental results,

showing substantial schedulability improvements in comparison to state-of-the-art techniques.

In Chapter 4 and related to contribution C2, we propose two schedulability analysis for spo-

radic DAG tasks scheduled according to the partitioned paradigm. Section 4.3 introduces a novel

response time analysis for DAG tasks under partitioned FP (PFP) scheduling, in which each sub-

task is statically assigned to a specific core. In Section 4.4, we (1) show that a partitioned DAG task

can be modeled as a set of self-suspending tasks, (2) present an algorithm to traverse a DAG and

characterize its worst-case scheduling behavior, and (3) discuss how to enhance existing response

time analyses for sporadic self-suspending tasks in order to estimate the WCRT of a partitioned

DAG task. Section 4.5 generalizes the analysis to the case of multiple partitioned DAG tasks.

Throughout Section 4.6, we present a schedulability test under partitioned EDF (PEDF) schedul-

ing and a subtask-to-core mapping based on a duplication technique. First, in Section 4.6.1, we

discuss the complexity and pessimism in the previous analysis. Then, in Section 4.6.2, we pro-

pose a DAG partitioning algorithm to reduce the number of cores required for feasibility via the

duplication of key subtasks. This algorithm also eliminates every single cross-core dependency

such that all resulting partitions are independent of each other. Thus, the problem of scheduling a

set of partitioned DAGs becomes equivalent to the problem of scheduling a set of sequential tasks

on multiprocessors in a partitioned manner, as we show in Section 4.6.3. Finally, the performance

of both schedulability tests is compared against other scheduling methods in Section 4.7.

Related to contribution C3, Chapter 5 exposes the problem introduced by conditional DAGs

and presents a transformation technique so that existing schedulability tests for non-conditional

parallel tasks can be applied to such general model. In Sections 5.1 and 5.2, we highlight the im-

portance of explicitly modeling conditional parallel constructs by showing that is rather complex

to determine the actual worst-case DAG structure for the overall system. Hence, in Section 5.3,

we propose a multi-DAG model that captures control-flow information through the enumeration

of all feasible execution flows. Sections 5.4 and 5.5 then present a two-step algorithm to construct

a unique DAG of servers for each multi-DAG task, and a mapping rule to arbitrate the assign-

ment of subtasks to servers, so that any execution flow can fully and correctly be executed by the

corresponding DAG of servers. The transformation ensures that schedulability analysis can be

performed over the derived DAGs, bridging the gap between previous parallel task models and

the vicissitudes of conditional DAG tasks. Finally, we discuss the benefits and limitations of this

original solution in Section 5.6.
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Chapter 6 presents concluding remarks and future research directions.

In Appendix A and related to contribution C4, we present a uniprocessor response time anal-

ysis for sporadic self-suspending tasks. In particular, Section A.4 debunks some conceptions

regarding the worst-case release pattern for this task model formalized in Section A.3. In Sec-

tion A.5, we then develop an algorithm to compute the exact WCRT of a self-suspending task with

a single suspension region when the higher priority tasks are sequential. Since the exact test is

intractable in the general case, Section A.6 proposes a MILP formulation for computing an upper-

bound on the WCRT of a self-suspending task with an arbitrary number of suspension regions.

This formulation is extended in Section A.7 to consider the case where multiple self-suspending

tasks interfere with each other. Finally, an experimental evaluation is provided in Section A.8.

Counter examples to previously published works are provided in Appendix B.





Chapter 2

Related Work

Most results in real-time scheduling for multiprocessor systems concentrate on sequential task

models (see (Davis and Burns, 2011) for a comprehensive survey). While these works enable

several tasks to execute concurrently on the same multiprocessor host and meet their deadlines,

they do not allow individual tasks to take advantage of a multiprocessor platform by exploiting

their parallelization opportunities.

The parallelization is typically achieved by splitting applications into multiple smaller sequen-

tial computation units (the subtasks) which may run simultaneously on different cores. Such intra-

task parallelism grants a more efficient use of the new powerful architectures and boosts applica-

tions performance. Software parallelism can be expressed by the programmers using frameworks

such as Cilk (Frigo et al., 1998), Intel’s Parallel Building Blocks (Intel, 2010), OpenMP (OpenMP

Architecture Review Board, 2018) and Java Fork/Join (Lea, 2000). For real-time systems, this

means that a task τi with utilization higher than one (Ui > 1), or execution requirements exceeding

the deadline (Ci > Di), now has the chance to fulfill its stringent timing constraints.

The problem of scheduling parallel tasks has been extensively studied in the general purpose

and high-performance computing domains (Kwok and Ahmad, 1999; Drozdowski, 2009). Algo-

rithms such as work-stealing (Blelloch et al., 1999), list scheduling (Kwok and Ahmad, 1996),

clustered-based scheduling (Yang and Gerasoulis, 1994) and duplication-based scheduling (Ah-

mad and Kwok, 1998) provide invaluable solutions to many graph-theoretical computing prob-

lems — this list is by no means exhaustive. However, all such work focuses on non-recurrent

tasks and concerns mostly with load balancing, energy-consumption, minimization of schedule

length (makespan) or admission control. Since real-time constraints and worst-case scenarios are

typically not contemplated, these works are not fully applicable to real-time embedded systems.

For the real-time community, a shift from sequential to parallel programming paradigms en-

tails the adoption of more expressive task models to characterize (i) the distinct subtasks that

compose a parallel application, and (ii) all the precedence constraints that define the relation be-

tween the subtasks, and (iii) internal timing properties. Several works have already been proposed

to tackle the schedulability of real-time parallel tasks running atop a multicore platform, as we

shall revise next. Related work on self-suspending tasks is deferred to Section A.2.

19
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2.1 Early work

First results applicable to real-time parallel tasks date from 1989 when Han and Lin (Han and Lin,

1989) have shown the NP-hardness of preemptive scheduling parallel jobs, and the intractability

of many parallel scheduling problems. The non-preemptive case was later studied by Wang and

Cheng (Wang and Cheng, 1992) which also proposed a heuristic based on the makespan metric.

From an optimization point of view, some research has studied cache-aware schedulers for

multi-threaded tasks (Anderson and Calandrino, 2006; Calandrino and Anderson, 2009). The

former considers Pfair algorithm and encourage tasks of the same weight to be co-scheduled in

order to minimize cache misses, whereas the latter shows a significant performance improvement,

with a slight overhead trade-off, when their cache-aware scheduler performs an accurate profiling.

According to the way parallel tasks may exploit the available computing resources, Goossens

and Berten (Goossens and Berten, 2010) classified a parallel task as: rigid, if the number of

processor assigned to the task is specified at design time; moldable, if the number of processors

assigned to the task is determined at run-time but cannot change throughout its execution; or

malleable, if the number of processors assigned to the task can change during its execution. The

work in (Goossens and Berten, 2010) also presented a gang-based scheduling algorithm for rigid

tasks. Regarding moldable tasks, Manimaran et al. (Manimaran et al., 1998) considered non-

preemptive EDF, whereas Kato and Ishikawa (Kato and Ishikawa, 2009) proposed the Gang EDF

algorithm. For malleable tasks, Lee and Lee (Lee and Lee, 2006) proposed an algorithm that

derives a feasible schedule using as few processors as possible, while Collete et al. (Collette et al.,

2008) study the feasibility problem under global scheduling.

In the context of distributed systems, Tindell and Clark (Tindell and Clark, 1994) introduced an

end-to-end schedulability analysis for a sequence of events called transactions, which was later re-

fined by Palencia et al. (Palencia et al., 1997). Parallelism is expressed through these transactions.

Enhancements to this analysis were then proposed in (Palencia and Gonzalez Harbour, 1998) by

considering offsets and in (Palencia and Harbour, 1999) by considering precedence relations. EDF

systems have also been addressed (Palencia and Harbour, 2003).

Regarding task models whose jobs are not parallel themselves but that allow partial parallelism

within a task due to the high expressiveness of the model, Stigge et al. introduced in (Stigge

et al., 2011) the digraph real-time task model. In their model, arbitrary directed graphs express

the release pattern of different types of jobs in terms of timing and order. Nevertheless, only

uniprocessor systems are considered.

2.2 Fork-join model

Owing to the intra-task parallelism generated by the prominent parallel programming models (e.g.,

OpenMP (OpenMP Architecture Review Board, 2018) and Cilk (Frigo et al., 1998)), one the first

more realistic parallel task models proposed in the literature was the fork-join model. In this

model, a task is represented as an interleaved sequence of sequential and parallel segments, always
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Figure 2.1: Different models of parallel real-time tasks.

starting with a sequential segment. Thus, nested parallelism is not allowed. Parallel segments

comprise multiple subtasks. Any subtask within a segment becomes eligible for execution only

when the preceding segment is completed. Usually, the number of subtasks spawned in each

parallel segment is fixed and may not exceed the number of cores in the system. Conceptually,

the fork-join model characterizes a master thread of execution that at certain points is divided in

multiple smaller threads that may execute in parallel. As soon as all such threads complete their

execution, the master thread is resumed. The fork-join model is depicted in Fig. 2.1 inset a).

In (Lakshmanan et al., 2010) the authors studied the scheduling of periodic implicit deadline

fork-join tasks through a decomposition algorithm, and proved a capacity augmentation bound1

of 3.42 for partitioned DM (PDM). The “decomposition” process consists in assigning indepen-

dent release offsets and virtual deadlines to each subtask in a DAG, in order to bypass the internal

execution semantics. Different subtasks may then be scheduled and analyzed as independent se-

quential tasks even if they belong to the same DAG.

The work by Lakshmanan et al. was extended in (Kim et al., 2013a) to global DM (GDM) and

an arbitrary number of subtasks in the parallel segments. GDM scheduling was shown to have a

capacity augmentation bound of 3.73. Maia et al. (Maia et al., 2017) considered a semi-partitioned

approach using work-stealing. Axer et al. (Axer et al., 2013) proposed a response time analysis

for tasks with arbitrary deadlines under partitioned fixed-priority scheduling. Unfortunately their

analysis is flawed as we report in the Appendix B.

2.3 Synchronous parallel model

The synchronous parallel model extends the fork-join model by allowing successive parallel seg-

ments and arbitrary number of subtasks in each segment. Still, this model imposes synchroniza-

tion points at every segment’s boundary, meaning that all the subtasks in a segment may begin

execution only when all the subtasks of the previous segment have finished their execution. The

synchronous model is depicted in Fig. 2.1 inset b).

1A scheduling algorithm A provides a capacity augmentation bound of b if it can schedule any task set τ satisfying
the following two conditions: (i) the total utilization of τ is at most m/b, and (ii) the critical path length of each task
τi is at most 1/b of its relative deadline (Li et al., 2013). Note that a capacity augmentation bound directly leads to a
schedulability test, similarly to a utilization bound.
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Capacity augmentation bounds of 4 and 5 were derived in (Saifullah et al., 2011) for GEDF

and PDM, respectively, after decomposing each periodic implicit deadline parallel task into a set

of constrained deadline sequential tasks. Nelissen et al. (Nelissen et al., 2012) proposed decom-

position techniques to optimize the number of cores needed to schedule sporadic synchronous

parallel tasks with constrained deadlines, and proved a resource augmentation bound2 of 2 for a

class of optimal scheduling algorithms (e.g., PD2 and U-EDF). For GEDF scheduling without de-

composition, the authors in (Andersson and de Niz, 2012) proved a resource augmentation bound

of 2, while Chwa et al. (Chwa et al., 2013) presented a response time analysis which extends the

traditional concept of interference to cope with the parallel behavior of the tasks.

Later, Maia et al. (Maia et al., 2014) borrowed the concept of critical interference introduced

in (Chwa et al., 2013) and derived an improved response time analysis for GFP scheduling. Their

work considers the worst-case workload that can be generated by both carry-in and carry-out jobs,

while taking into account the precedence constraints between the different segments. In the next

chapter, we apply this idea to the general case of DAG tasks and borrow from (Maia et al., 2014)

the concept of “sliding window”.

2.4 DAG model

A more flexible and general parallel structure is captured by the DAG model, as considered in

this dissertation and formalized in Section 1.3, where a task is instead represented by a directed

acyclic graph. Nodes represent subtasks to be sequentially executed and edges define precedence

constraints between nodes. According to this model, a subtask becomes ready for execution as

soon as all its precedence constraints are satisfied, and independent subtasks may execute in par-

allel. The DAG model is depicted in Fig. 2.1 inset c).

A task set comprised of a single arbitrary deadline DAG was studied in (Baruah et al., 2012)

and a resource augmentation bound of 2 was derived for GEDF. Considering multiple DAGs, Boni-

faci et al. (Bonifaci et al., 2013) proved a resource augmentation bound of 2−1/m and 3−1/m for

GEDF and GDM, respectively. Efficient schedulability tests were also proposed in both works.

Later, Baruah (Baruah, 2014) generalized the analytical techniques of (Bonifaci et al., 2013) to

improve the effectiveness of the schedulability tests in the case of constrained deadlines. Saifullah

et al. (Saifullah et al., 2014) extended their result in (Saifullah et al., 2011) to DAG tasks and non-

preemptive GEDF. Li et al. (Li et al., 2013) proved a capacity augmentation bound of 4−2/m for

sporadic DAGs with implicit deadlines under GEDF scheduling, which Qamhieh et al. (Qamhieh

et al., 2013) also analyzed considering explicitly the precedence constraints between subtasks.

Decomposition algorithms have been proposed in (Qamhieh et al., 2014) and (Jiang et al., 2016)

also for GEDF. Serrano et al. (Serrano et al., 2017) proposed a response time analysis for both

2A scheduling algorithm A provides a resource augmentation bound (also called speed-up factor) of b as long as the
following condition holds: if an optimal scheduling algorithm can schedule any task set τ on m unit-speed cores, then
A can schedule τ on m cores of speed b (Kalyanasundaram and Pruhs, 2000). Note that a resource augmentation bound
may not provide a schedulability test, since there may be no way to tell whether the optimal scheduling algorithm can
schedule a given task set on m unit-speed cores.
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the eager and the lazy preemption approaches, under GFP scheduling and a limited preemption

model.

While most of these schedulability tests are computationally very efficient, they either (i) do

not benefit from the specific timing and functional properties of the task set under analysis (they

are derived based on worst-case configurations), or (ii) they rely on decomposition, which incurs

severe system overheads due to the magnitude of subtasks and introduces pessimism during the

transformation from parallel to sequential workloads. In contrast, we are interested in analyzing

the response time of each DAG task without assigning intermediate parameters, according to gen-

eral fixed-priority preemptive scheduling (which so far has not received much attention) under

both global and partitioned paradigms.

In the case of global scheduling, only the works proposed in (Melani et al., 2015) (described

briefly in the next subsection and in detail in Section 3.2) and (Parri et al., 2015) are strictly related

to our contribution C1, presented in Chapter 3. Parri et al. (Parri et al., 2015) proposed a response

time analysis for GEDF and GDM that accounts for the interference suffered and exerted by each

subtask instead of each task. According to the authors, their analysis is essentially tailored for

arbitrary deadline tasks, and thus it often leads to prohibitive pessimism in the case of constrained

deadlines where the self-interference should not take into account multiple job releases. For this

reason, experimental results including these two schedulability analyses are reported indepen-

dently in Section 3.8. In the case of partitioned scheduling, to our knowledge, apart from the

results obtained for distributed systems, no work is directly comparable to our contribution C2,

presented in Chapter 4. Nonetheless, one may find some similarities in regard to the federated

scheduling paradigm (Li et al., 2014).

Federated scheduling can be seen as an extreme type of partitioned scheduling where each

heavy task (i.e., a task with a density greater than one) is assigned to a set of dedicated processors,

and light tasks (i.e., those whose density is smaller than or equal to one) are partitioned on the

remaining processors such that all their subtasks execute in a sequential manner. Note that the

light tasks can also be globally scheduled, despite the sequential behavior enforced. Li et al. (Li

et al., 2014) proposed a federated scheduling algorithm for implicit deadline DAGs which has a

capacity augmentation bound of 2 by dedicating γi = d(Wi−Li)/(Di−Li)e cores to each heavy

task τi, but there have also been generalizations to constrained deadlines (Baruah, 2015a), arbitrary

deadlines (Baruah, 2015b) and mixed-criticality systems (Li et al., 2016a). Jiang et al. (Jiang

et al., 2017) proposed a semi-federated approach, where the fractional processing capacity required

by a heavy task is scheduled sequentially together with the light tasks instead of dedicating an

extra processor, i.e., γi = b(Wi−Li)/(Di−Li)c. In order to control the interference suffered by

the fractional part, an heavy task is executed through a set of container tasks with a fixed load

bound and a dynamic deadline, such that the container task with largest load bound is always

occupied and container tasks become empty when time reaches their absolute deadline (causing

the execution of some subtasks to be split). However, this solution to the resource waste problem

implies frequent migrations (which are non-existent in partitioned scheduling) and sophisticated

run-time dispatchers. More details regarding the federated scheduling algorithms are given in
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Section 4.7, where we perform an experimental evaluation.

On a side note, work-stealing strategies addressing soft real-time constraints have also been

studied in (Nogueira and Pinho, 2012) and (Li et al., 2016b), as well as heterogeneous multipro-

cessor platforms (Yang et al., 2016).

2.5 Conditional DAG model

Consequently to our contribution C3 and research developments reported in Chapter 5, researchers

have recently started addressing conditional parallel tasks, by taking into consideration the differ-

ent flows of execution that a parallel task may experience due to control structures (for example,

if-then-else) within their code. The conditional DAG model extends the DAG model by defin-

ing a new type of node called conditional node. Conditional nodes come in start/end pairs. A

conditional start node denotes that only one of its direct successors non-conditional nodes can

be selected for execution during one instance of the parallel task. Hence, only one branch be-

tween the start and end of the conditional nodes can be undertaken. The model also specifies a set

of rules to avoid violating the correctness of the conditional constructs and the semantics of the

DAG. Namely, there cannot be any incoming or outgoing edge connecting a node inside a condi-

tional branch to nodes outside that conditional statement or within other conditional branchs. The

conditional DAG model is depicted in Fig. 2.1 inset d).

Melani et al. (Melani et al., 2015, 2017) identified two meaningful parameters to characterize

the worst-case behavior of a conditional DAG task and presented a response time analysis based

on such parameters for GFP and GEDF. The schedulability test proposed in (Melani et al., 2015,

2017) is effective for both conditional and non-conditional DAG tasks as shown by their experi-

mental evaluation. The analysis is based on the concept of “problem window” (Baker, 2003) and

assumes that every interfering task τi executes as a uniform block that occupies all m cores for

Wi/m time units. In this context, the parameter Wi denotes the worst-case workload among every

possible execution flow. Although such abstraction is powerful for conditional DAGs due to the

complexity of the problem, it is overkill for regular DAG tasks, where a precise and sound work-

load characterization can be derived efficiently. Based on this observation, next chapter builds

on top of the results of (Melani et al., 2015) considering the case of non-conditional DAG tasks

schedule by GFP.

Baruah et al. (Baruah et al., 2015) proved that the speedup factor of 2− 1/m derived for the

GEDF scheduling of non-conditional DAG tasks also holds for systems of conditional DAGs, and

proposed a sufficient GEDF schedulability test that has pseudo-polynomial run-time. Later, the

federated scheduling approach has been applied to conditional DAG tasks (Baruah, 2015c).



Chapter 3

Schedulability Analysis for Global
Fixed-Priority Scheduling

One of the major sources of pessimism in the RTA of globally scheduled real-time tasks resides

on the computation of the interference that tasks impose on each other. This problem is further

exacerbated when intra-task parallelism is permitted, because of the complex internal structure of

parallel tasks. This chapter considers the GFP scheduling upon m processors of a set of sporadic

real-time tasks T = {τ1, . . . ,τn}, where each task τi is modeled by a DAG of concurrent subtasks

as formalized in Section 1.3. Tasks in T are sorted by decreasing priorities. In Section 3.7, we

address the general case of arbitrary deadline tasks.

Next, we present a RTA based on the concept of problem window, a technique that has been

extensively used to study the schedulability of sequential tasks in multiprocessor systems. The

problem window approach of RTA usually categorizes interfering jobs in three different groups:

carry-in, carry-out and body jobs. We propose two novel techniques to derive more accurate upper-

bounds on the workload produced by the carry-in and carry-out jobs of the interfering tasks. Those

new bounds take into account the precedence constraints between subtasks pertaining to the same

DAG. We show that with this new characterization of the carry-in and carry-out workload, the

proposed schedulability test offers significant improvements on the schedulability of general DAG

tasks for randomly generated task sets in comparison to state-of-the-art techniques. In fact, we

show that, while the state-of-art analysis does not scale with an increasing number of processors

when tasks have constrained deadlines, the results of our analysis are barely impacted by the

processor count in both the constrained and the arbitrary deadline case.

3.1 Motivation

A key challenge in the RTA of globally scheduled multiprocessor task systems is to compute

an upper-bound on the interference that a task under analysis suffers from the higher priority

tasks. The complexity of computing such inter-task interference bound is exacerbated for parallel

tasks, DAGs in particular, due to their rich and irregular internal structure. Furthermore, a DAG

25
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Table 3.1: Performance of the schedulability test proposed in (Melani et al., 2015).

Schedulability ratio (%) 94 63 49 32 24 16 14 10

Number of cores 2 4 6 8 10 12 14 16

task may also be subject to intra-task interference because its own parallel computations will

eventually contend with each other for processing time. Addressing these new challenges without

overlooking the precedence constraints between subtasks is fundamental to derive scalable and

less pessimistic schedulability analysis.

To the best of our knowledge, the work proposed by Melani et al. (Melani et al., 2015) rep-

resents the first attempt at analyzing the schedulability of a set of sporadic DAG tasks with a

general GFP scheduling policy. Their RTA is based on the concept of problem window developed

originally by Baker (Baker, 2003). This technique consists in estimating the maximum interfer-

ing workload produced by a higher priority task in a time interval of arbitrary length by breaking

down the interference into different types of jobs. While the work in (Melani et al., 2015) indeed

succeeded in upper-bounding the interfering workload generated by DAG tasks, it does so by con-

sidering that every higher priority job in the problem window is a compact block of execution

which uniformly occupies all the available processors until its completion.

Since most DAGs exhibit different degrees of parallelism throughout their execution and do

not necessarily require to constantly access all processors, such abstraction leads to a significant

overestimation of the inter-task interference. This extra level of pessimism in the schedulability

analysis is evident in the experimental results reported in Table 3.1 (more details about the system

configuration are deferred to Section 3.8). Table 3.1 shows the percentage of task sets that are

deemed schedulable by the schedulability test proposed in (Melani et al., 2015) when increasing

the number of available cores but keeping the platform utilization fixed at 70% and the number

of tasks proportional to the number of cores. The steady schedulability performance deterioration

visible in Table 3.1 for the aforementioned test is counter-intuitive, as one would expect at least a

constant schedulability ratio when the parallelism of the platform is increased and the average task

utilization remains unchanged. Motivated by these observations, we propose techniques to derive

improved bounds on the inter-task interference by exploiting the knowledge of the precedence

constraints in the internal structure of the DAGs.

3.2 Interference among DAG tasks

In this section, we introduce the concept of interference for DAG tasks. We also summarize the

RTA introduced by Melani et al. (Melani et al., 2015) as it sets the foundations for the schedulabil-

ity analysis proposed in the upcoming sections. Although their work targets a more general task

model, known as “conditional DAG model”, empirical evaluation in (Melani et al., 2015) shows

that it is also state-of-the-art for the non-conditional DAG tasks considered in this chapter.
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A key challenge in the RTA of globally scheduled multiprocessor systems is the computation of

the interference among tasks. For sequential tasks, the interference exerted on a task τk is defined

as the cumulative length of all the time intervals in which τk is ready but cannot be scheduled on

any processor due to the concurrent execution of m higher priority tasks. In order to adapt this

definition to the parallel structure of DAG tasks, we introduce the notion of critical chain.

Definition 5 (Critical chain). The critical chain λk of a DAG task τk is the path of τk that leads to

its worst-case response time Rk, with ties broken arbitrarily.

To determine the worst-case response time of τk, we then need to identify such critical chain

and compute the maximum possible interference exerted on it. We start by characterizing the

interference on a DAG task τk.

Definition 6 (Interference). The interference Ik on a DAG task τk is the cumulative length of all the

time intervals in which at least one subtask that belongs to τk’s critical chain is ready but cannot

be scheduled on any processor because all m cores are busy.

Alternatively, the total interference can be expressed as a function of the worst-case interfering

workload generated by each task in the system.

Definition 7 (Interfering workload). The interfering workload W i
k imposed by a DAG task τi on a

DAG task τk represents the total workload executed by subtasks of τi, while at least one subtask

that belongs to τk’s critical chain is ready but cannot be scheduled on any processor.

Defs. 6 and 7 also allow us to formulate a bound on the worst-case response time of τk under

any work-conserving scheduling algorithm:

Rk ≤ len(λk)+ Ik = len(λk)+
1
m ∑
∀τi∈τ

W i
k (3.1)

Furthermore, under fixed-priority scheduling, a task τk cannot suffer interference from lower

priority tasks. That is, W i
k = 0, ∀i > k. However, when i = k, we have W i

k ≥ 0. That is because

other subtasks of τk that do not belong to its critical chain may also delay the completion of τk

itself. This phenomenon peculiar to parallel tasks is called self-interference.

Unfortunately, deriving concrete values for either the overall term Ik or the individual terms W i
k

is computational intractable for non-trivial task sets, otherwise a schedulability test would easily

follow from Eq. 3.1. For this reason, an established workaround is to bound the total worst-case

interfering workload by analyzing the maximum possible workload that can be produced by each

interfering task during the worst-case instance of τk. In the sequel, we present the upper-bounds

derived in (Melani et al., 2015) for both the self-interference (i=k) and inter-task interference (i<k)

components in the context of GFP scheduling, as well as the resulting response time equation.

Regarding the self-interference, in a constrained deadline setting two jobs of a same task τk

cannot interfere with each other. That is because one job must finish before the next one is re-

leased, otherwise τk would fail to meet its deadline and the system would immediately be deemed
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Figure 3.1: Worst-case interfering workload produced by a higher priority task τi in a window of
length ∆, as considered in (Melani et al., 2015).

unschedulable. Therefore, the self-interfering workload is independent of the response time of τk.

Furthermore, due to the absence of priorities at the subtask-level, every subtask that is not part

of τk’s critical chain may potentially contribute to the overall response time of τk and thus to its

self-interfering workload W k
k .

Let Mk denote the contribution of DAG task τk to its own response time, i.e., Mk
def
= len(λk)+

W k
k /m. It was proven in (Melani et al., 2015) that, for constrained deadline tasks, an upper-bound

on Mk is given by

Mk ≤ Lk +
1
m
(Wk−Lk) (3.2)

That is, the self-interfering workload is upper-bounded by W k
k ≤Wk−Lk (i.e., the remaining

workload of τk after excluding the length of its critical path). Importantly, Eq. 3.2 not only provides

a bound on the maximum makespan of τk (i.e., its WCRT in isolation) but also ensures that the

critical chain λk can be safely replaced by a critical path of τk in the response time analysis, as

long as such critical path is subject to at least the same amount of inter-task interference. Hence,

we hereinafter restrict our attentions to a single critical path of τk, fixed arbitrarily.

Contrary to the self-interference, the amount of inter-task interfering workload depends on the

length of the time interval that we consider. The longer the time interval, the more workload can

be generated by the higher priority tasks and thus the larger is the inter-task interference on the

analyzed task τk. For a time window of length ∆ starting at τk’s release, the contribution of a higher

priority task τi to the inter-task interfering workload W i
k is divided in three portions (see Fig. 3.1):

1. Carry-in: it accounts for the contribution of jobs of τi with release times before the be-

ginning of the problem window (i.e., before τk’s release at time rk) and a deadline after the

beginning of the problem window, i.e., after rk. The carry-in jobs workload corresponds to

the portion of those jobs execution that could not finish prior to rk. Note that for constrained

deadline systems, if τi is schedulable, then τi has at most one carry-in job.

2. Body: it takes into account the contribution of all subsequent job releases of τi that are

fully contained in the window. The contribution of each of the body jobs to the interfering

workload is upper-bounded by its total execution time Wi (i.e., τi’s workload).
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3. Carry-out: in the related literature, it usually accounts for the contribution of a job of τi

with release time within the problem window and deadline after the end of the window (i.e.,

after rk +∆). Yet, in this work we will slightly bend the definition and instead consider

that a carry-out job is a job that is released within the problem window less than Ti time

units before its end (i.e., the carry-out job of τi is released at time t such that (rk +∆−
Ti)< t < (rk +∆)). Note that our definition is compliant with the state-of-the-art definition

when tasks have implicit deadlines (i.e., Di = Ti). The interfering workload of the carry-out

job corresponds to the portion of its execution that actually overlaps with the time interval

[rk,rk +∆).

In (Melani et al., 2015), the authors formulated a generic bound on the worst-case workload

generated by an interfering task τi with constrained deadline within such window of length ∆.

This upper-bound, which we state below, relates to the maximum interfering workload imposed

by τi on task τk under analysis by fixing ∆ = Rk. Hence, W i
k ≤Wi(Rk), where Wi(∆) is defined as

follows:

Wi(∆)
def
=

⌊
∆+Ri−Wi/m

Ti

⌋
Wi +min(Wi,m((∆+Ri−Wi/m)modTi)) (3.3)

Notice that Eq. 3.3 ignores completely the structure of the DAG Gi of τi and corresponds to the

scenario depicted in Fig. 3.1. The first term includes both the contributions from the carry-in and

body jobs, whereas the second term represents the carry-out component. The interference imposed

by τi on τk within the problem window is maximized when: (1) the carry-in job starts executing

at the start of the time window and finishes by its WCRT Ri, (2) all subsequent jobs are released

and executed as soon as possible and (3) every job of τi is assumed to execute on all the m cores

during Wi/m time units.

Putting all the pieces together, for a given DAG task τk, the schedulability condition Rk ≤ Dk

relies on a classic iterative RTA. Starting with Rk = Lk, an upper-bound on the response time of

task τk under GFP scheduling can be derived by a fixed-point iteration on the following expression:

Rk = Lk +
1
m
(Wk−Lk)+

1
m ∑
∀i<k

Wi(Rk) (3.4)

3.3 Proposed worst-case scenario

Looking at the RTA described in the previous section, it is obvious that one of the major sources of

pessimism in the computation of the WCRT is the estimation of the inter-task interference within

the problem window. This is clear by examining the execution pattern assumed for every job of

the tasks τi that interferes with the analyzed task τk (see Fig. 3.1). All these jobs are assumed to

execute as a big compact block which uniformly occupies the m cores during Wi/m time units.

Although this assumption provides a safe upper-bound on the interference that they cause, the

upper-bound may be greatly improved by not overlooking the rich internal structure of their DAG.

Both the precedence constraints and the number of subtasks in the DAG define the possible shapes
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that the execution of τi entails. In general, wider and uneven shapes limit the amount of workload

that effectively enters the problem window. In fact, most DAGs do not exhibit a constant degree

of parallelism equal to m throughout their entire execution (as it is assumed in the state-of-the-art

analysis). Instead, the maximum workload they may execute in a given time interval is limited

by their internal structure. Such situation is illustrated in Fig. 3.2, where we present the proposed

worst-case scenario to maximize the workload of an interfering task τi. This observation is further

emphasized in the example below.

Example 1. Consider the execution of the task of Fig. 3.3a on m = 5 cores. The maximum par-

allelism attained by the DAG Gi is equal to 5, when subtasks {v2,v3,v4,v5,v6} execute simul-

taneously. Such concurrent execution can only last for 4 time units. After that, the degree of

parallelism drops to 2 as v7 becomes ready but v2 has not finished yet. We point out that different

execution patterns are possible between the subtasks mentioned so far if we include, for example,

interference from higher priority tasks. However, they cannot increase the amount of time during

which Gi requires all the available cores. Moreover, both the source v1 and the sink v8 cannot

execute concurrently with any other subtask of Gi. Therefore, the maximum workload that can be

generated by Gi in a window of length 5 is at most 22. Yet, the state-of-the-art analysis presented

in Section 3.2 assumes that 25 time units of interfering workload have been generated in a window

of length 5.

Accordingly, we use the internal structure of each DAG to derive more accurate upper-bounds

on their contributions to the carry-in and carry-out interfering workload. Notice that, according

to this analysis method, the DAG’s internal structure does not affect the contribution of the body

jobs to the interfering workload since they are fully contained in the problem window. Thus, their

exact execution pattern is irrelevant.

Similar to the work in (Melani et al., 2015), our analysis of the inter-task interference is based

on the notion of a problem window of length ∆. However, as depicted in Fig. 3.2, we model more

accurately the worst-case scenario by taking into account different execution patterns for the carry-

in and carry-out jobs. Therefore, the workload produced by task τi is maximized in the problem

window [rk,rk +∆) of τk when: (i) every subtask of the body jobs of τi executes for its WCET;

(ii) the carry-in job released at a time ri < rk finishes its execution at time ri +Ri and executes

as much workload as possible as late as possible (to maximize its workload contribution to the

problem window); (iii) all subsequent jobs are released Ti time units apart; and (iv) the carry-out

job starts its execution as soon as it is released and executes as much workload as possible as early

as possible (hence maximizing its workload in the problem window).

Our main problem to solve is the lack of a relative reference point between the release time of

the carry-in job of τi and the window [rk,rk +∆). More specifically, the value rk− ri is unknown

a priori because, as it will become clear in forthcoming sections, the worst-case schedules of the

carry-in and carry-out jobs are incomparable. Let ∆CI
i and ∆CO

i denote the length of the carry-in

portion and the length of the carry-out portion of τi’s schedule, respectively. Formally, we have
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Figure 3.2: New worst-case scenario for the computation of τi’s interfering workload.

that1 (see Fig. 3.2 for visual reference)

∆
CI
i

def
= ri +Ti− rk (3.5)

∆
CO
i

def
= max{0, (rk +∆)− (rk +∆

CI
i + b∆−∆CI

i
Ti

c0×Ti)} (3.6)

We seek to derive (i) an upper-bound on the interfering workload executed by τi’s carry-in job

as a function of ∆CI
i , (ii) an upper-bound on the interfering workload executed by τi’s carry-out job

as a function of ∆CO
i , and (iii) determine concrete values for ∆CI

i and ∆CO
i such that the interfering

workload of τi on task τk cannot be larger under any possible execution scenario.

To characterize the execution pattern of a carry-in and a carry-out job of τi, we introduce the

notion of workload distribution.

Definition 8 (Workload distribution). For a given task τi and a given schedule S of τi’s subtasks,

the workload distribution WDS
i = [B1, . . . ,B`] describes S as a sequence of consecutive blocks.

Each block Bb ∈WDS
i is a tuple (wb,hb) with the interpretation that there are hb subtasks (height)

of Gi executing during wb time units (width) in S, immediately after the completion of the subtasks

that execute in the (b−1)th block.

Note that WDS
i does not provide any information about the precedence constraints in the DAG

Gi, neither it is required for S to be a valid schedule of Gi. Also, according to Def. 8, every

interfering job of a task τi is modeled in (Melani et al., 2015) with a workload distribution WDS
i

that comprises only one block B1 = (Wi
m ,m). In the next two sections, we will derive more accurate

workload distributions in order to model the schedules of τi’s carry-in and carry-out jobs that

maximize their contribution to the interference suffered by a lower priority task τk.

3.4 Carry-in workload

This section presents the analysis to compute the carry-in workload of a higher priority task τi in

the problem window [rk,rk +∆) of τk. Recall that a carry-in job is a job of τi such that its release

time ri is earlier than rk and its deadline falls after rk. Therefore, to upper-bound the interfering

workload generated by the carry-in job, we need to determine which subtasks of τi may execute

1The operator bxc0
def
= max{0, bxc}.
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(a) Example of a DAG task.
(b) Workload distribution WDUCI

i .
Numbers in blocks represent their height.

Figure 3.3: Example for the carry-in workload.

within the carry-in window [rk,rk +∆CI
i ), either fully or partially. Intuitively, to maximize the

interfering workload the carry-in job should execute as much workload as possible as late as

possible.

For ease of understanding, we will use Fig. 3.3a as an example task throughout our discussion

on the carry-in job.

3.4.1 Workload distribution of the carry-in job

When the degree of parallelism of the DAG Gi is not constrained by the number of cores (assuming

m = ∞ for instance), the schedule of Gi that yields the maximum makespan is simply that in which

every subtask executes for its WCET. Note that because there are always available cores, each

subtask is scheduled as soon as it becomes ready. We call this particular schedule “unrestricted

carry-in” (UCI). If f j denotes the relative completion time of each subtask v j ∈Vi in UCI, then it

holds that:

f j =


C j if v j is the source

C j + max
vh∈pred(v j)

( fh) otherwise
(3.7)

Note that the length (makespan) of UCI is given by the completion time fni of the sink of Gi

and according to Eq. (3.7), fni is equal to the critical path length Li.

Assuming that the source of τi starts executing at a relative time 0, the number of subtasks in

UCI that execute at any time t ∈ [0,Li) can be computed by the function AS(t) defined as

AS(t) = ∑
v j∈Vi

actv(v j, t) (3.8)

where actv(v j, t) is equal to 1 if v j is executing at time t and 0 otherwise. That is,

actv(v j, t) =

1 if t ∈ [ f j−C j, f j)

0 otherwise
(3.9)
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Let Fi be the set of finishing times of the subtasks v j ∈ Vi (without duplicates) sorted in non-

decreasing order. We build a workload distribution WDUCI
i modeling the schedule UCI as follows:

• WDUCI
i has as many blocks as there are elements in Fi;

• The bth block of WDUCI
i is represented by the tuple (tb+1− tb,AS(tb)) such that tb is the bth

time instant in the ordered set {0}∪Fi.

Built that way, WDUCI
i models the maximum parallelism of τi at any time t assuming that all

subtasks execute for their WCET and are scheduled when they are ready. An example of such

workload distribution is depicted in Fig. 3.3b for the DAG presented in Fig. 3.3a.

3.4.2 Upper-bounding the carry-in workload

Based on both the workload distribution WDUCI
i and the WCRT Ri estimated by Eq. (3.4), we

compute an upper-bound on the interfering workload produced by one carry-in job of τi within its

carry-in window [rk,rk +∆CI
i ). To do so, we push the workload distribution WDUCI

i as much as

possible “to the right”. We first align the end of WDUCI
i with the worst-case completion time of

the carry-in job of τi. That is, we align the end of WDUCI
i with the time-instant rk+∆CI

i −(Ti−Ri)

(see Fig. 3.2). This assumes that the carry-in job of τi is released at rk +∆CI
i −Ti and completes at

most at rk +∆CI
i −Ti +Ri.

Since the problem window starts at rk and the carry-in job must complete by rk +∆CI
i − (Ti−

Ri), the part of the carry-in job that effectively interferes with τk is given by the subtasks of that

job executed in the last ∆CI
i − (Ti−Ri) time units of its schedule. Therefore, under the schedule

UCI, the maximum interfering workload released by τi’s carry-in job is upper-bounded by the

function2:

CIi(WDUCI
i ,∆CI

i ) =
|WDUCI

i |

∑
b=1

hb×
[
ri +Ri−

|WDUCI
i |

∑
p=b+1

wp

]wb

0
(3.10)

where ri
def
= ∆CI

i −Ti is the latest time at which τi’s carry-in job may be released (assuming that rk

happens at time 0).

Eq. (3.10) returns 0 if ∆CI
i is less than or equal to (Ti − Ri) (i.e., if the carry-in job of τi

completes before the beginning of the problem window). Otherwise, it sums the height hb of the

workload distribution WDUCI
i in its last ∆CI

i −Ti +Ri time units.

Example 2. If ∆CI
i = 9, Ti = 20, Ri = 15 and WDUCI

i is given by the workload distribution pre-

sented in Fig. 3.3b, then Eq. (3.10) sums the height of the blocks in the last ∆CI
i −Ti +Ri = 4 time

units of WDUCI
i . Hence, it gives us CIi(WDUCI

i ,∆CI
i ) = 2×2+1×2 = 6. If ∆CI

i was equal to 4,

then Eq. (3.10) would return 0 since ∆CI
i −Ti +Ri is then smaller than 0.

2[x]yz = max{min{x,y},z}, that is, y and z are an upper-bound and a lower-bound on the value of x, respectively.
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(a) Before delaying the critical path. (b) After delaying the critical path.

Figure 3.4: Interference (blue block) on WDUCI
i critical path.

We now prove that the interfering workload imposed by the carry-in job of τi is upper-bounded

by the workload distribution WDUCI
i , when the end of WDUCI

i is aligned with the time-instant

(rk +∆CI
i −Ti +Ri). Recall that Ri is computed by Eq. (3.4).

The carry-in workload computed by Eq. (3.10) assumes that (i) all subtasks of τi execute

for their WCET, (ii) the number of cores does not limit τi’s parallelism and (iii) the carry-in

job of τi executes following the workload distribution WDUCI
i just before its completion time

at rk +∆CI
i − Ti + Ri. We prove in Lemmas 2 to 4 that those three assumptions maximize the

interfering workload of τi in the carry-in window.

Lemma 2. The interfering workload generated by the carry-in job of a higher priority task τi is

maximized when all its subtasks execute for their WCET.

Proof. If a subtask v j ∈Vi executes for less than its WCET C j, then either v j contributes less to the

interfering workload (assuming that v j is executed within the carry-in window), or it may allow

its successors (and subsequently its descendants) to be released earlier (note that the release time

of subtasks that are not descendant of v j is not impacted). In the latter case, it may cause those

descendants to start executing before (instead of within) the carry-in window and thus reduce

the total interfering workload. Similarly, descendants of v j that were already starting before the

beginning of the carry-in window, may complete before the start of the carry-in window, or earlier

within the carry-in window. In both cases, the interfering workload in the carry-in window is

reduced.

Lemma 3. Let Ri be an upper-bound on the worst-case response time of τi and let WDi be any

workload distribution of length Li representing any possible schedule of τi. Assume that WDi is

aligned to the right with the time-instant rk +∆CI
i −Ti +Ri. The workload that can be generated

by WDi in the carry-in window cannot be increased by delaying subtasks in τi’s critical path.

Proof. Remember that the length of the workload distribution WDi is Li, i.e., the length of WDi

is equal to the length of the critical path of τi. Therefore, there must be a subtask of each τi’s
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(a) Before delaying subtasks not in the crit-
ical path.

(b) After delaying subtasks not in the criti-
cal path.

Figure 3.5: y units of workload (green blocks) of WDUCI
i are moved in the carry-in window.

critical path executing at any time instant between (rk +∆CI
i −Ti+Ri−Li) and (rk +∆CI

i −Ti+Ri)

(because WDi is aligned to the right with rk +∆CI
i −Ti +Ri). This case is illustrated in Fig. 3.4a.

Now consider the case where WDi is subject to self- and/or higher priority interference such

that the execution of at least one subtask v j of a critical path of τi is delayed by x time units.

Postponing the execution of v j by x time units leads to move both the workload of v j and its

descendants x units “to the right”. Because v j belongs to a critical path of τi, the length of τi’s

carry-in job schedule is increased by x (see Fig. 3.4b). However, because Ri is assumed to be an

upper-bound on τi’s worst-case response time, τi’s carry-in job cannot complete later than rk +

∆CI
i −Ti +Ri. Therefore, as visualized in Fig. 3.4b, it is not the subtask v j or its descendants that

are moved by x time units “to the right”, but instead it is all the workload executed by predecessors

of v j that is pushed by x time units to the left. Hence, the workload executed by τi in the carry-in

window [rk,rk +∆CI
i ) can only decrease.

Lemma 4. Let Ri be the upper-bound on the worst-case response time of τi computed by Eq. (3.4).

Aligning WDUCI
i to the right with the time-instant rk +∆CI

i −Ti +Ri gives an upper-bound on the

maximum interfering workload that can be generated by τi in the carry-in window, independently

of the interference imposed on τi.

Proof. Remember that the length of WDUCI
i is Li. Hence, Lemma 3 proved that the workload gen-

erated in the carry-in window cannot increase by interfering with the critical paths of τi. Therefore,

this proof needs to show that the claim is still true even when the interference exerted on τi does

not interfere with its critical paths but may delay the execution of other subtasks of τi.

The proof is by contradiction. Assume that there is a schedule of τi such that, by delaying

subtasks of τi, y extra units of workload of τi enter the carry-in window [rk,rk+∆CI
i ) comparatively

to the workload generated by WDUCI
i (see Fig. 3.5a for an illustration of y extra units of workload,

colored in green, moved in the carry-in window). By Lemma 3, the delayed subtasks do not belong
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to any critical path of τi and the length of τi’s schedule is therefore not affected, i.e., it remains

equal to Li.

Let v j be any of the delayed subtasks and let δ j be the minimum time for which its execution

has to be delayed, in comparison to the schedule based on WDUCI
i , so that v j enters the carry-in

window. Let x be the maximum δ j over all the delayed subtasks, i.e., x def
= max j{δ j} (see Fig. 3.5a

for an illustration of x). That is, at least one subtask has been delayed by at least x time units to

enter the carry-in window.

Since m subtasks are allowed to execute in parallel on m cores and the critical path of τi is

not delayed, postponing a subtasks by x time units implies that at least (m− 1)× x interfering

workload executes in parallel with the critical path to prevent the delayed subtask to execute on

any of the m cores. Additionally, note that the y units of shifted workload do not interfere with the

critical path either, and hence execute in parallel with the critical path, since by assumption the

schedule length is not increased. Therefore, we have at least

(m−1)× x+ y

units of workload that do not interfere with the critical path but execute in parallel with it instead.

Let R′i be an upper-bound on the actual response time of τi’s carry-in job under this modified

schedule. Since Ri is computed with Eq. (3.4), and Eq. (3.4) assumes that all higher priority jobs

and all subtasks that do not belong to the critical path of τi interfere with it, R′i must be smaller

than Ri and we have

R′i ≤ Ri−
((m−1)× x+ y

m

)
≤ Ri−

(m× y
m

+
(m−1)× (x− y)

m

)
≤ Ri− y− (m−1)× (x− y)

m
(3.11)

We analyse two cases:

• If y≤ x, then the last term in (3.11) is positive and we have R′i ≤ Ri−y. Hence, the response

time of τi and thus the length of τi’s schedule in the carry-in window has been reduced by at

least y time units (see Fig. 3.5b). Since at least one subtask of each critical path of τi must

execute at each of those time units (because the length of the schedule is Li), the workload

in the carry-in window has decreased by at least y time units. This is in contradiction with

the assumption that the workload increased in the carry-in window.

• If y > x, then the last term of (3.11) is negative and we have R′i ≤ Ri− y− (x− y) = Ri− x.

Hence, τi’s response time has reduced by at least x time units. Therefore, the subtasks that

were delayed by x time units could not enter the carry-in workload since the whole schedule

of τi is pushed to the left by x time units too (see Fig. 3.5b). Therefore, it contradicts the

assumption that extra workload of τi entered the carry-in window by delaying subtasks by x

time units.
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The two cases above prove the claim.

We are now ready to state the main result regarding the worst-case carry-in workload of τi.

Theorem 1. The interfering workload WCI
i generated by the carry-in job of a higher priority task

τi in a window of length ∆CI
i is upper-bounded by CIi(WDUCI

i ,∆CI
i ).

Proof. The proof follows directly from Lemmas 2 to 4.

3.4.3 Improved carry-in workload

The bound on the worst-case carry-in workload of τi as computed in Equation 3.10 may in some

cases be pessimistic since the number of subtasks executing simultaneously in the workload dis-

tribution WDUCI
i (i.e., the height of the blocks) could be greater than the number of cores in the

platform. As we know for a fact that no more than m subtasks can run in parallel on m cores, this

leads to another upper-bound.

Lemma 5. An upper-bound on the maximum workload that can be generated by a task τi in a

carry-in window of length ∆CI
i is given by max{0, ∆CI

i −Ti +Ri}×m.

Proof. Since τi cannot complete later than Ri, we know that τi does not execute during the last

(Ti−Ri) time units of the carry-in window (see Fig. 3.2). Therefore, τi executes during at most

max{0, ∆CI
i − (Ti−Ri)} time units on m processors within the carry-in window of length ∆CI

i ,

hence the claim.

Since this new upper-bound cannot be compared with that given by Equation 3.10, Theorem 2

below shall present an improved upper-bound on WCI
i that is simply the minimum between that

given by Equation 3.10 and that presented in Lemma 5.

Theorem 2. The interfering workload WCI
i generated by the carry-in job of a higher priority task

τi in a window of length ∆CI
i is upper-bounded by min{CIi(WDUCI

i ,∆CI
i ), max{0, ∆CI

i −Ti+Ri}×
m}.

Proof. Follows from Theorem 1 and Lemma 5.

3.5 Carry-out workload

This section presents the analysis for computing an upper-bound on the carry-out part of the in-

terfering workload of a higher priority task τi in the problem window [rk,rk +∆) of a task τk. The

carry-out job is the last job of τi released in the problem window, i.e., its release time is within

the open interval (rk +∆− Ti, rk +∆). Contrary to the carry-in job, the maximum interference

generated by the carry-out job of τi is found when it starts executing as soon as it is released and

at its highest possible concurrency level. That is, we are interested in pushing the workload of that

job as much as possible “to the left” of the schedule.
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(a) An example DAG task. (b) Workload distribution WDUCO
i .

Figure 3.6: Example for the carry-out workload.

Also, contrary to the carry-in and the body jobs, finding an upper-bound on the interfering

workload generated by the carry-out job does not necessarily imply that its subtasks execute for

their WCET. Indeed, unless the entire carry-out job can contribute to the interference generated by

τi, one must consider that any of its subtask may instead be instantly processed (i.e., its execution

time is ε → 0). With this assumption, some dependencies may be immediately resolved and the

degree of parallelism in the DAG is potentially increased, leading to more workload at the begin-

ning of the carry-out job and potentially within the carry-out window. This remark is emphasized

in the example below.

Example 3. Consider the DAG in Fig. 3.6a (including the edge (v4,v5) colored red). If every

subtask executes for its WCET, then initially only one subtask is active (v1) for 5 time units. On

the other hand, if the subtasks v1 and v4 both execute for ε time units, then the subtasks v2,v3,v6

and v7 are instantly ready and there are four subtasks active during the first time unit. Thus, if the

carry-out window is only one time unit long, the latter case generates more workload.

Hence, we seek to derive a schedule that maximizes the cumulative parallelism throughout the

execution of the carry-out job. We call this schedule “unrestricted carry-out” (UCO).

3.5.1 DAG’s maximum parallelism

In order to maximize the workload produced by the carry-out job of τi within the problem window,

we need to find an execution pattern such that the overall parallelism cannot be further increased.

If the carry-out window is sufficiently short, then the maximum degree of parallelism of Gi max-

imizes the carry-out workload, as described in Example 3. Ideally, we would like to take the

maximum parallelism of the DAG at each time instant as a solution to the problem of maximizing

its cumulative parallelism within a time interval of arbitrary length. Unfortunately, this method-

ology cannot be applied to DAGs, since the scenario that maximizes the parallelism at a certain

step may compromise the concurrency among subtasks later on. In fact, as shown in the example
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below, whether or not the DAG’s maximum parallelism must be considered depends on the length

of the carry-out window.

Example 4. Consider the DAG in Fig. 3.6a. The maximum parallelism is four, given by the

subtasks v2,v3,v6 and v7 that can execute in parallel for at most 1 time unit. Note, however,

that every schedule which maximizes the DAG’s parallelism does not allow any of the remaining

subtasks to execute in parallel — subtasks v1,v4,v5 and v8 have to execute sequentially due to

their precedence constraints. Hence, if the maximum parallelism is reached, then the carry-out

job cannot produce more than 5 units of workload within a window of length equal to 2. On the

other hand, if subtask v4 executes for 1 time unit, we can have three subtasks executing in parallel

for 2 time units: first, subtasks v2,v3 and v4 execute in parallel for 1 time unit, and then subtasks

v5,v6 and v7 also execute in parallel for 1 time unit. As a result, the latter schedule generates more

interfering workload if the carry-out window is 2 time units long, but it produces at most 3 units

of workload when the length of the window is reduced to 1.

The issue highlighted in Example 4 comes from the potentially very complex connection struc-

tures between subgraphs composing the DAG task. Maximizing the parallelism in one subgraph

may constrain and hence reduce the achievable parallelism in another subgraph. We simplify the

problem at hand by transforming the initial DAG that describes the task in a well-structured, less

general, type of DAG, which we call “nested fork-join DAG” (NFJ-DAG) (see below for an expla-

nation on how the transformation is performed and why the transformation is correct). We define

a NFJ-DAG3 recursively as follows.

Definition 9 (Nested fork-join DAG). A DAG comprised of two nodes connected by a single edge

is NFJ. If G1 and G2 are two independent NFJ-DAGs, then the DAG obtained through either of

the following operations is also NFJ:

a) Series composition: merge the sink of G1 with the source of G2.

b) Parallel composition: merge the source of G1 with the source of G2 and the sink of G1 with the

sink of G2.

The series composition links two NFJ-DAGs one after another, whereas the parallel compo-

sition juxtaposes two NFJ-DAGs by merging their sources and sinks. For example, the DAG of

Fig. 3.6a is not a NFJ-DAG because it cannot be constructed without violating the rules in Def. 9.

However, if the edge colored red (v4,v5) is removed, then the DAG becomes NFJ. It is clear from

the definition of a NFJ-DAG that maximizing the parallelism of any of its subgraphs cannot limit

the maximum parallelism achievable by other subgraphs composing the NFJ-DAG.

3.5.1.1 Transforming a DAG into a NFJ-DAG

Many efficient algorithms exist in the literature to identify if a DAG is NFJ (Valdes et al., 1979; He

and Yesha, 1987). However, it is out of the scope of this dissertation to describe how those algo-

rithms work. We assume here that one of those tests is performed on the graph Gi describing τi’s

3In graph theory, it is known as two terminal series parallel digraph (He and Yesha, 1987).
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structure. If it turns out that the original DAG Gi is not NFJ, a transformation is required. Tradi-

tionally, in graph theory, the transformation is performed by adding new edges between conflicting

subtasks, so that the original precedences are preserved (González-Escribano et al., 2002). How-

ever, we are interested in removing edges so as to reduce the number of precedence constraints.

This way, the set of all the valid schedules of τi (those that satisfy the precedence constraints of its

original DAG Gi) is a subset of all the valid schedules of the resulting NFJ-DAG. That is because

any schedule derived according to the DAG Gi will always respect all the precedence constraints

of the NFJ-DAG. As a result, the maximum carry-out workload that can be generated by the NFJ-

DAG is at least as large as the maximum carry-out workload that can be generated by the initial

DAG Gi.

Let us refer to a subtask v j as a join-node if its “in-degree” is larger than one, i.e. |pred(v j)|>
1. Similarly, we refer to a subtask v j as a fork-node if its out-degree is larger than one, i.e.

|succ(v j)| > 1. According to Def. 9, a DAG (as defined in Section 1.3) is NFJ if and only if it

respects the following property.

Property 1. Let Ji be the set of join-nodes in Vi and let Fi be the set of fork-nodes in Vi. DAG Gi

is a NFJ-DAG iff ∀v j ∈ Ji, there exists a subgraph G′ of Gi such that v j is the sink of G′, the source

of G′ is a fork-node v f ∈ Fi and

∀va ∈ G′ \{v f ,v j},∀vb ∈ {succ(va)∪ pred(va)},vb ∈ desce(v f )∪ v f ∧ vb ∈ ances(v j)∪ v j.

Proof. The property directly follows from Def. 9, which enforces that any join-node is the result

of a parallel composition. Hence, for every join-node v j there must exist a fork-node v f such

that the subgraph G′ that has v f as a source and v j as a sink is NFJ. Moreover, according to

the construction rule defined in Def. 9, there cannot be any edge between a node va ∈ G′ and

a node vb 6∈ G′. Therefore, ∀va ∈ G′,∀vb ∈ {succ(va)∪ pred(va)},vb ∈ G′, implying that vb ∈
desce(v f )∪ v f ∧ vb ∈ ances(v j)∪ v j.

Using Property 1, a high-level algorithm for transforming a DAG Gi into a NFJ-DAG GNFJ
i

can be defined as follows.

1. Select the unvisited join-node v j ∈ Ji that is the closest to the source of Gi.

2. Find all the edges (vc,v j) in Ei for which there is no fork-node v f ∈ Fi such that Prop. 1 is

true. Call this set the set of conflicting edges EC.

3. Remove as many edges in EC as needed for join-node v j to respect Prop. 1 or its in-degree

become equal to 1.

4. For each edge (vc,v j) ∈ EC that was removed, if succ(vc) = /0, add an edge (vc,vni) from

node vc to the sink of Gi.

5. Mark v j as visited. Repeat until all join-nodes have been visited.
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Figure 3.7: Decomposition tree of the NFJ-DAG in Fig. 3.6a.

Example 5. The DAG of Fig. 3.6a has two join-nodes {v5,v8}. The above algorithm starts by

analyzing join-node v5. Since its ancestor v4 has two direct successors {v6,v7} which are not

ancestors of v5, (v4,v5) is a conflicting edge. Because there is no other conflicting edge with

respect to join-node v5, our only choice is to remove the edge (v4,v5) from the DAG. In the next

iteration, the DAG is already NFJ as join-node v8 does not violate Property 1.

3.5.1.2 Maximum parallelism in a NFJ-DAG

By Def. 9, a NFJ-DAG can be reduced to a collection of basic DAGs by successively applying

series and parallel binary decomposition rules. Therefore, a NFJ-DAG GNFJ
i can be represented

by a binary tree Ti, called decomposition tree (see Fig. 3.7 for an example). Each external node

(leaf) of the decomposition tree corresponds to a subtask v j ∈ Vi, whereas each internal node

represents the composition type (series or parallel) applied to its subtrees. That is, the children

of a internal node are either smaller NFJ-DAGs or subtasks. A node depicting a parallel or series

composition is labeled P or S, respectively. The algorithm proposed by Valdes et al. (Valdes et al.,

1979) can be used to efficiently build the decomposition tree of any NFJ-DAG. Fig. 3.7 shows the

decomposition tree of the NFJ-DAG depicted in Fig. 3.6a (without the red edge).

The structure of the decomposition tree allows us to compute the sets of subtasks yielding

the maximum parallelism of a NFJ-DAG GNFJ
i in an efficient manner. The recursive function

par(TU
i ) defined below returns a set of subtasks in a decomposition tree TU

i such that all subtasks

in par(TU
i ) can execute in parallel and the size of par(TU

i ) is maximum. Note that, in Eq. (3.12)

below, T L
i and T R

i denote the left and right subtrees of the binary tree TU
i rooted in node U ,
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respectively.

par(TU
i ) =



par(T L
i )∪ par(T R

i ) if U is a P-node

par(T L
i ) if U is a S-node and

|par(T L
i )| ≥ |par(T R

i )|

par(T R
i ) if U is a S-node and

|par(T R
i )|> |par(T L

i )|

{U} otherwise

(3.12)

Eq. (3.12) works as follows. When node U denotes a parallel composition, the maximum

parallelism corresponds to the sum of the maximum parallelism of its children. On the other hand,

the maximum parallelism in a series composition is given by the maximum parallelism among its

children. The recursion of Eq. (3.12) stops when U is a leaf of the decomposition tree and hence

corresponds to a subtask in the associated NFJ graph. The set of subtasks in GNFJ
i with maximum

parallelism is obtained by calling par(.) for GNFJ
i ’s decomposition tree.

3.5.2 Workload distribution of the carry-out job

As discussed earlier in this section, the carry-out job of an interfering task τi generates the max-

imum interfering workload when it starts executing as soon as it is released and at its highest

possible concurrency level. Therefore, we use the par(.) function defined above to build the

workload distribution WDUCO
i that characterizes the UCO schedule for the carry-out job of τi.

The workload distribution WDUCO
i is constructed using Algorithm 1. In short, the algorithm

identifies the maximum number of subtasks that can run in parallel at any point during the exe-

cution of the carry-out job as follows. It finds the largest list of subtasks which may execute in

parallel according to the decomposition tree of GNFJ
i (line 3). Then, it adds a new block (line

5) to the workload distribution WDUCO
i with a width equal to the minimum WCET among those

subtasks (line 4) and a height equal to the number of elements in the list. Finally, it proceeds by

updating the subtasks’ execution times in the reduction tree, i.e., decreasing their execution time

by the amount of time they executed in parallel (line 6). When a subtask reaches an execution

Algorithm 1: Constructing WDUCO
i .

Input : GNFJ
i , T NFJ

i - A NFJ-DAG and its decomposition tree.
Output: WDUCO

i - Workload distribution of the schedule UCO.

1 WDUCO
i ← /0;

2 while T NFJ
i 6= /0 do

3 P← par(T NFJ
i );

4 width← min{Cp | vp ∈ P};
5 WDUCO

i ← [WDUCO
i , (width, |P|)];

6 ∀vp ∈ P : Cp←Cp−width;
7 ∀v j ∈ T NFJ

i such that C j = 0 : remove v j from T NFJ
i ;

8 end
9 return WDUCO

i ;
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time equal to 0 (it finishes), its corresponding leaf is removed from the decomposition tree (line

7). Whenever a node of the decomposition tree has no children anymore, it is also removed from

the tree. Algorithm 1 is called iteratively until all leaves have been removed.

Example 6. The workload distribution WDUCO
i for the DAG of Fig. 3.6a is presented in Fig. 3.6b.

It tells us that the NFJ-DAG in Fig. 3.6a (i.e., the resulting DAG after removing the red edge) can

execute with a parallelism of 4 during 1 time unit. It can execute with a parallelism of 2 during

3 more time units and then it can finally execute with a parallelism of 1 during 8 additional time

units. Therefore, WDUCO
i upper-bounds the cumulative parallelism of the original DAG.

3.5.3 Upper-bounding the carry-out workload

Similarly to what was presented for the carry-in workload, an upper-bound on the carry-out inter-

fering workload generated by τi is calculated using the workload distribution WDUCO
i . Recall that

∆CO
i denotes the length of the carry-out window of τi (see Eq. (3.6)).

The maximum workload executed by τi in any window of length ∆CO
i is upper-bounded by the

cumulative workload found in the first ∆CO
i time units of the workload distribution WDUCO

i . Such
cumulative workload is denoted by COi(WDUCO

i ,∆CO
i ) and can be computed by the function:

COi(WDUCO
i ,∆CO

i ) =
|WDUCO

i |

∑
b=1

hb×
[
∆

CO
i −

b−1

∑
p=1

wp

]wb

0
(3.13)

Example 7. If ∆CO
i = 3 and WDUCO

i is given by the workload distribution presented in Fig. 3.6b,

then Eq. (3.13) sums the height of the blocks in WDUCO
i up to 3 time units. As a result, we get

COi(WDUCO
i ,∆CO

i ) = 4×1+2×2 = 8. If ∆CO
i was equal to 10, then COi(WDUCO

i ,∆CO
i ) would

be equal to 16.

We now prove that COi(WDUCO
i ,∆CO

i ) is indeed an upper-bound on WCO
i .

Theorem 3. The interfering workload WCO
i generated by the carry-out job of a higher priority

task τi in a carry-out window of length ∆CO
i is upper-bounded by COi(WDUCO

i ,∆CO
i ).

Proof. We recall that τi’s carry-out job generates the maximum interfering workload when it starts

executing as soon as it is released and at its highest possible concurrency level.

First, we note that the NFJ-DAG GNFJ
i , built from Gi by removing some of Gi’s edges, has

a concurrency level at least as high as Gi. Hence, the workload distribution WDUCO
i constructed

based on GNFJ
i has at least as much workload than Gi in the carry-out window.

Since WDUCO
i is constructed with Algorithm 1, and because Algorithm 1 computes the max-

imum parallelism of GNFJ
i at each time t, the height of WDUCO

i on its first ∆CO
i time units maxi-

mizes the workload that τi can generate in the carry-out window.

Finally, because COi(WDUCO
i ,∆CO

i ) provides the cumulative workload in WDUCO
i over its first

∆CO
i time units, COi(WDUCO

i , ∆CO
i ) upper-bounds the interfering workload that can be generated

by τi’s carry-out job.
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3.5.4 Improved carry-out workload

Note that because the workload distribution WDUCO
i is built based on the NFJ-DAG of τi and not

on its DAG, the length of the schedule UCO may become shorter than Li when any of the removed

edges belongs to the critical path of Gi. In fact, the length of WDUCO
i matches the critical path

length of GNFJ
i , which may be shorter than the critical path of the initial DAG Gi (since precedence

constraints might have been removed).

Example 8. The workload distribution WDUCO
i presented on Fig. 3.6b has a length of 12, while

the original DAG (with the red edge) in Fig. 3.6a has a critical path composed of v1, v4, v5 and v8

of length Li = 14.

As stated by Corollary 1, task τi cannot execute Wi time units in less than Li time units. This

allow us to derive a new bound on the worst-case interfering workload of τi’s carry-out job.

Lemma 6. The interfering workload WCO
i generated by the carry-out job of a higher priority task

τi in a window of length ∆CO
i is upper-bounded by Wi−max{0,Li−∆CO

i }.

Proof. Directly follows from Lemma 1.

Combining Theorem 3 with Lemma 6, we get an improved upper-bound on WCO
i .

Theorem 4. The interfering workload WCO
i generated by the carry-out job of a higher priority

task τi in a window of length ∆CO
i is upper-bounded by min

{
COi(WDUCO

i ,∆CO
i ), ∆CO

i ×m, Wi−
max{0,Li−∆CO

i }
}

.

Proof. Because at most m subtasks can execute simultaneously on m cores, ∆CO
i ×m is an upper-

bound on the workload that can execute in a window of length ∆CO
i . Since COi(WDUCO

i ,∆CO
i )

(Theorem 3) and Wi−max{0,Li− ∆CO
i } (Lemma 6) are also upper-bounds on WCO

i , so is the

minimum between the three values.

3.6 Schedulability analysis for constrained deadline tasks

In Sections 3.4 and 3.5 we have derived upper-bounds on the workload produced by the carry-in

and carry-out jobs of τi as a function of ∆CI
i and ∆CO

i , respectively. Now we show how to balance

∆CI
i and ∆CO

i such that the interfering workload in the problem window of length ∆ is maximized.

In this section, we assume that all tasks have constrained deadlines (i.e., Di ≤ Ti). The case of

arbitrary deadlines is considered in Section 3.7. If tasks have constrained deadlines, then at most

one job of each higher priority task τi can be a carry-in job, i.e., at most one job of τi can be

released before rk and have a deadline after rk. Similarly, at most one job of τi may be a carry-out

job, i.e., there is at most one job of τi that can be the last job of τi released in the problem window.

The difficulty in computing the values ∆CI
i and ∆CO

i comes from the fact that the worst-case

scenario for τk does not necessarily happen when the problem window is aligned with the start

of the carry-in job or the end of the carry-out job (see Fig. 3.2). Furthermore, the positioning of
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Figure 3.8: Scenario that maximizes the number of body jobs released by τi over ∆.

the problem window of τk relatively to the release pattern of τi may have to vary according to the

value of ∆ in order to guarantee that the workload imposed by τi on τk is maximized.

Let ∆C
i be the sum of the carry-in and the carry-out windows lengths, i.e, ∆C

i = ∆CI
i +∆CO

i , and

let WC
i (∆

C
i ) be the maximum workload produced by the carry-in and carry-out jobs of τi over ∆C

i .

An upper-bound on the total interfering workload generated by τi in a time interval of length ∆ is

therefore given by

Wi(∆) =WC
i (∆

C
i )+max

{
0,
⌊

∆−∆C
i

Ti

⌋}
×Wi (3.14)

where the first term is the maximum workload produced by both the carry-in job and the carry-out

job of τi and the second term is the maximum number of body jobs that can be released by τi

within (∆−∆C
i ), multiplied by their maximum workload. To use Eq. (3.14), we need to compute

∆C
i and WC

i (∆
C
i ). The value of ∆C

i can be computed as follows.

∆
C
i = ∆−max

{
0,
⌊

∆−Bi

Ti

⌋}
×Ti (3.15)

where Bi is the best-case response time (BCRT) of τi when it executes for its worst-case workload.

It is given by

Bi = max{Li,
Wi

m
} (3.16)

which was derived using Corollary 1 (i.e., the BCRT of τi cannot be smaller than Li) and the fact

that τi cannot execute on more than m processors at a time, hence Bi is lower-bounded by Wi
m .

The length ∆C
i is thus obtained by aligning the problem window with the earliest completion

time of the carry-out job of τi (which takes no less than Bi time units to execute) and removing all

the body jobs of τi from the problem window of length ∆ (see Fig. 3.8). This way, the number of

full jobs of τi in the problem window is maximized, and so is its interference. Note that the fact

that ∆C
i is computed by aligning the problem window with the end of τi’s carry-out job does not

mean that τi’s interference is maximized when ∆CO
i contains the full carry-out job of τi. Instead,

the window may be shifted left (yet without changing the number of body jobs) to include a larger

portion of τi’s carry-in job if it increases the total interfering workload generated by τi.
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Lemma 7. The interfering workload Wi(∆) generated by a higher priority task τi in a window of

length ∆ is maximized when ∆C
i is computed by Eq. (3.15).

Proof. In this proof, we assume that ∆>Bi since otherwise ∆≤ Ti (i.e., assuming that τi is schedu-

lable, its BCRT must be no larger than Di ≤ Ti) and there cannot be any body job released by τi.

This would imply that ∆C
i is by default equal to ∆, thereby proving the claim for that case.

Thus, if ∆ > Bi, we note that Bi ≤ ∆C
i < Bi +Ti when computed with Eq. (3.15). Two cases

must be considered.

Case 1. If ∆C
i is shortened then at most one more body job can be added to the problem

window ∆ (remember that ∆C
i < Bi +Ti and Bi ≤ Ti and each body job executes in a window of

length Ti). Therefore, the interfering workload generated by τi’s body jobs increases by at most

Wi (i.e., the workload of exactly one job). Moreover, because ∆C
i is now Ti time units shorter, one

less job can execute in ∆C
i and the interfering workload WC

i (∆
C
i ) generated by τi’s carry-in and

carry-out jobs must decrease by at least Wi time units too. Hence, in total, the interfering workload

Wi(∆) does not increase.

Case 2. The length of ∆C
i is increased. Using Eq. (3.15), the computed value of ∆C

i is ∆

minus an integer multiple of Ti and thus, when injecting Eq. (3.15) into Eq. (3.14), we get that⌊
∆−∆C

i
Ti

⌋
=

∆−∆C
i

Ti
. By increasing ∆C

i by a positive value ε , it thus holds that
⌊

∆−(∆C
i +ε)

Ti

⌋
<
⌊

∆−∆C
i

Ti

⌋
for ε > 0. Therefore, at least one less body job can execute in the time window of length ∆ and the

interfering workload generated by τi’s body jobs is decreased by at least Wi. Furthermore, since

the carry-out job is already completely included in ∆C
i (i.e., ∆C

i ≥ Bi), in the best case increasing

the length of ∆C
i will allow us to fully integrate τi’s carry-in job in WC

i (∆
C
i ). Hence, WC

i (∆
C
i )

may be increased by at most Wi time units (the workload of τi’s carry-in job). Summing all the

contributions to the interfering workload Wi(∆), we have that Wi(∆) does not increase.

The problem of computing WC
i (∆

C
i ) can be formulated as the maximization of CIi(WDUCI

i ,x1)+

COi(WDUCO
i ,x2) subject to ∆C

i = x1+ x2. The optimal solution of this optimization problem is

an upper-bound on WC
i (∆

C
i ), whereas the final values of the decisions variables x1 and x2 corre-

spond to ∆CI
i and ∆CO

i , respectively. We solve this problem by using Algorithm 2 that is based on

a technique named “sliding window” introduced in (Maia et al., 2014). It computes the maximum

solution to the optimization problem defined above in linear time by checking all possible scenar-

ios in which the problem window is aligned with any block of WDUCI
i or WDUCO

i . Specifically,

the scenarios tested can be divided into two groups: (i) the beginning of the problem window co-

incides with the start of a block in WDUCI
i (lines 7 to 14); or (ii) the problem window ends at the

completion of a block in WDUCO
i (lines 15 to 22). Algorithm 2 also tries the configuration where

the carry-out workload in the problem window is maximized (lines 1 to 3) and where the carry-in

workload in is maximized (lines 4 to 6). It was proven in (Maia et al., 2014), that the maximum

interfering workload is obtained in one of those scenarios.

By replacing the terms Wi(Rk) (1 ≤ i < k) with Eq. (3.14) in Eq. (3.4), a schedulability con-

dition for task τk is stated in the next theorem.
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Algorithm 2: Computing WC
i for constrained deadline tasks.

Input : ∆C
i , WDUCI

i , WDUCO
i .

Output: WC
i - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */

1 x2←min{∆C
i , Bi};

2 x1← ∆C
i − x2;

3 WC
i ←CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2);

/* We maximize the carry-in workload inside the problem window */

4 x1←min{∆C
i , Bi +(Ti−Ri)};

5 x2← ∆C
i − x1;

6 WC
i ←max{WC

i , CIi(WDUCI
i ,x1)+COi(WDUCO

i ,x2)};

/* We align the start of the problem window with the boundaries of every block

in WDUCI
i */

7 x1← Ti−Ri;
8 foreach (wb,hb) ∈WDUCI

i in reverse order do
9 x1← x1+wb;

10 x2← ∆C
i − x1;

11 if x2≥ 0 then
12 WC

i ←max{WC
i , CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2)};

13 end
14 end

/* We align the end of the problem window with the boundaries of every block

in WDUCO
i */

15 x2← 0;
16 foreach (wb,hb) ∈WDRCO

i in order of appearance do
17 x2← x2+wb;
18 x1← ∆C

i − x2;
19 if x1≥ 0 then
20 WC

i ←max{WC
i , CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2)};

21 end
22 end

23 return WC
i ;

Theorem 5. A task τk is schedulable under GFP iff Rk ≤ Dk, where Rk is the smallest ∆ > 0 to

satisfy ∆ = Lk +
1
m(Wk−Lk)+

1
m ∑∀i<kWi(∆).

The task set is declared schedulable if all tasks are schedulable. This can be checked by apply-

ing Theorem 5 to each task τi ∈ τ , starting from the highest priority task (i.e., τ1) and proceeding

in decreasing order of priority.

3.7 Schedulability analysis for arbitrary deadline tasks

In the previous section, we presented a RTA for the special case where all tasks have constrained

deadlines. In this section, we treat the general case where tasks may have arbitrary deadlines.

The difficulty with arbitrary deadline tasks is twofold:
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1. Let Jk be the job of τk for which we compute the WCRT and assume that Jk is released at

time rk. Since it may be that Dk > Tk, more than one job of τk may execute in the problem

window [rk, rk +∆). That is, jobs of τk released before rk (i.e., at time t ≤ rk−Tk) may not

have completed their execution at rk and yet τk may still be schedulable (i.e., it completes

all jobs before their deadlines). Therefore, Eq. (3.4) that computes the WCRT of τk must

be updated to integrate the residual workload of jobs of τk released before rk but interfering

with Jk’s execution.

2. The second difficulty is that higher priority tasks may have more than one carry-in job.

Specifically, if Di > Ti, more than one job of τi may be released before rk and have a deadline

after rk. This property, which is formally proven in Lemma 8 in Section 3.7.3, requires to

derive a new bound on the carry-in wokload released by each higher priority task interfering

with τk.

We address the first issue in Section 3.7.1 and the second in Section 3.7.3.

3.7.1 Response time analysis

In this subsection, we update Eq. (3.4) and derive a new bound on the WCRT of a task τk. We

integrate the fact that, for arbitrary deadline tasks, a job Jk,l of task τk may be released before the

completion of its preceding job Jk,l−1. Indeed, let us assume that Jk,l−1 and Jk,l were released at

time rk,l−1 and rk,l , respectively. In the worst-case scenario we have that rk,l = rk,l−1 + Tk and

Jk,l−1 may complete its execution at any time smaller than or equal to (rk,l−1 +Dk). Therefore, if

Dk > Tk, job Jk,l−1 may not have completed its execution when Jk,l is released. In such situation,

we assume that Jk,l does not start executing before the completion of Jk,l−1
4. Hence the earliest

instant at which Jk,l may start executing is not its release time rk,l anymore, but the maximum

between its release time and the completion time of Jk,l−1.

We now consider the two cases mentioned above:

1. if job Jk,l can start executing as soon as it is released (i.e., at rk,l), then the previous job

Jk,l−1 of τk has already completed by time rk,l . In such case, the situation is identical, with

respect to Jk,l , to the worst-case scenario considered for constrained deadline tasks. That is,

there is no additional interference by previous jobs of τk and the WCRT of Jk,l is therefore

obtained using Eq. (3.4) and maximizing the higher priority task interference. This scenario

is encountered for the first job released by τk. Let Xk,1 be the completion time of that job.

Without any loss of generality we can assume that that job was released at time 0. Hence we

have rk,1 = 0 and, using Eq. (3.4), Xk,1 is upper-bounded by the smallest positive solution to

Xk,1 = Lk +
1
m
(Wk−Lk)+

1
m ∑
∀i<k

Wi(Xk,1) (3.17)

4We enforce this execution behavior to avoid data inconsistencies between successive jobs of a same task. Indeed,
a job may require the computation results of its preceding job to be able to proceed correctly.
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2. if job Jk,l−1 is not yet completed when Jk,l is released, then Jk,l cannot start executing be-

fore the completion of Jk,l−1. Therefore, the worst-case scenario for Jk,l happens when the

overlap between the execution window of Jk,l−1 and the active window of Jk,l is maximized.

This happens when Jk,l−1 completes as late as possible and Jk,l is released as early as pos-

sible. Assume that Xk,l−1 and Xk,l are the worst-case completion times of Jk,l−1 and Jk,l ,

respectively. The WCRT of Jk,l is then given by

Rk,l = Xk,l− rk,l

= Xk,l− (l−1)×Tk (3.18)

where

Xk,l = Xk,l−1 +Lk +
1
m
(Wk−Lk)+

1
m ∑
∀i<k

(
Wi(Xk,l)−Wi(Xk,l−1)

)
(3.19)

Eq. (3.19) is composed of four terms detailed hereafter.

• Xk,l−1 is the worst-case completion time of the preceding job Jk,l−1, i.e., the earliest

time at which Jk,l may start executing;

• Lk is the minimum amount of time required by Jk,l to complete its execution when it

executes for its WCET and does not suffer any interference;

• 1
m(Wk−Lk) is an upper-bound on Jk,l’s self-interference (as proven in (Melani et al.,

2017));

• 1
m ∑∀i<k (Wi(Xk,l)−Wi(Xk,l−1)) is the maximum interfering workload that can be re-

leased by higher priority tasks in the problem window of length Xk,l that has not yet

been accounted for in the term Xk,l−1, i.e., the worst-case completion time of Jk,l−1.

The WCRT of a task τk is thus given by its job with the largest response time. Formally,

Rk = max
l>0
{Xk,l− (l−1)×Tk} (3.20)

where Xk,l is the worst-case completion time of the lth job released by τk in the problem window.

Combining Eq. (3.17) and (3.19) we get that

Xk,l = l× (Lk +
1
m
(Wk−Lk))+

1
m ∑
∀i<k

Wi(Xk,l) (3.21)

Note that we can stop iterating over l when

• we reach the first l > 0 such that Xk,l ≤ (l×Tk), i.e., the first job of τk released in the problem

window that completes before the release of the next job of τk;

• we reach the first l > 0 such that Xk,l > (l−1)×Tk +Dk, i.e., at the first job of τk released

in the problem window that has a response time larger than its deadline.
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In the first case the task τk is schedulable while in the second it is not. One of these two termi-

nation conditions holds eventually in most cases. However, it cannot be guaranteed that Eq. (3.20)

always terminates in the general case, as it has already been shown for sequential tasks (Guan

et al., 2009). Such rather special corners cases have not been detected at all during our experimen-

tal evaluation. Nonetheless, one can simply define a threshold for the values of l. Whenever the

threshold is reached, the procedure terminates and the task τk is declared unschedulable. Note that

this may decrease the effectiveness of the response time analysis.

The term Wi(Xk,l) in Eq. (3.21) is computed using Eq. (3.14). Eq. (3.14) uses an upper-bound

WC
i on the carry-in and carry-out workload that can be released by higher priority task τi. As

discussed at the beginning of this section, each higher priority task may execute more than one

carry-in job in the problem window and a new bound on WC
i must be derived. We present this

bound in the next subsections.

3.7.2 Carry-out workload

As defined in Section 3.2, a carry-out job is a job that is released in the problem window less than

Ti time units before the end of that window. Hence the carry-out job of τi is the last job that can be

released by τi in the problem window (remember that job releases are at least Ti time units apart).

Therefore, each higher priority task τi can release at most one carry-out job, even when τi has an

arbitrary deadline. It results that the upper-bound on the carry-out workload proven in Theorem 4

is still valid for arbitrary deadline tasks.

3.7.3 Carry-in workload

As mentioned in Section 3.2, a carry-in job is defined as a job released before the start of the

problem window and with a deadline after the problem window start. When a higher priority task

τi has a deadline smaller than or equal to its minimum inter-arrival time (i.e., Di ≤ Ti), at most one

such carry-in job may exist. However, this result does not hold for tasks with arbitrary deadlines.

Indeed, it may happen that Di > Ti, in which case a job of τi may have its deadline after the release

of one (or several) other job(s) of τi. Yet, the number of carry-in jobs may still be upper-bounded

as proven in Lemma 8.

Lemma 8. Each higher priority task τi with an arbitrary deadline has at most dDi
Ti
e carry-in jobs.

Proof. Let Ji be the earliest carry-in job released by τi. Let ri be its release time and di its absolute

deadline. By definition of Ji, all jobs released before ri are not carry-in jobs. Let c = dDi
Ti
e. Let Ji+c

be any job of τi released at or later than (ri + c×Ti). Then, Ji+c is released at or after di (because

di = ri +Di ≤ ri + dDi
Ti
e× Ti = ri + c× Ti). Since Ji is a carry-in job, di is necessarily after the

problem window start. Hence any job Ji+c is released after the problem window start and is not a

carry-in job. Since at most c−1 jobs of τi can be released between ri and ri + c×Ti, we conclude

that there are at most c−1 other jobs than Ji that may be carry-in jobs. This proves the claim.
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Figure 3.9: Worst-case interfering workload released by τi in τk’s problem window when Di > Ti.
Yellow jobs are carry-in jobs.

Note that Lemma 8 covers the case of constrained deadline tasks too since dDi
Ti
e = 1 in that

particular case.

Example 9. Consider the worst-case interfering scenario of task τi depicted in Fig. 3.9. We have

that Di = 2.6×Ti. Hence three jobs may be released by τi before rk and have their deadline after

rk. Further, because in this example Ri = Di, the three carry-in jobs (in yellow in the picture)

execute at least partially in the problem window starting at time rk.

Since there might be more than one carry-in job released by τi, we must update the definition of

∆CI
i (Eq. (3.5)) and the upper-bound on the worst-case carry-in interfering workload (Eq. (3.10)).

As depicted in Fig. 3.2 for constrained deadline tasks and in Fig. 3.9 for arbitrary deadline

tasks, we define the carry-in window of τi as the interval starting at the beginning of the problem

window (i.e., at time rk) and ending at the earliest release of a body job of τi. Therefore, if rbody is

the release time of that job, we have that

∆
CI
i

def
= rbody− rk (3.22)

By Lemma 8, we know that there are at most dDi
Ti
e carry-in jobs released before rbody. There-

fore, the jth carry-in job of τi (with 1≤ j ≤ dDi
Ti
e) cannot be released later than time

ri, j
def
= rbody− j×Ti (3.23)

= rk +∆
CI
i − j×Ti (3.24)

Similar to the constrained deadline case, the carry-in workload generated by τi would be max-

imized if each carry-in job of τi is released as late as possible and executes as much workload

as possible in the problem window. Now, let Ri be the upper-bound on the worst-case response

time of τi computed with Eq. (3.21). Lemma 9 (see below) proves that aligning WDUCI
i to the

right with the time-instant (ri, j +Ri) and calculating the part of WDUCI
i ’s workload released after
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rk (using Eq. (3.10)) provides an upper-bound on the maximum interfering workload that can be

generated by the jth carry-in job of τi. Formally, we have that the interfering workload executed

by the jth carry-in job of τi in the problem window is upper-bounded by

CIi, j(WDUCI
i ,∆CI

i ) =
|WDUCI

i |

∑
b=1

hb×
[
∆

CI
i − j×Ti +Ri−

|WDUCI
i |

∑
p=b+1

wp

]wb

0
(3.25)

This is stated in Lemma 9 below.

Lemma 9. Let Ri be the upper-bound on the worst-case response time of τi computed by Eq. (3.21).

Aligning WDUCI
i to the right with the time-instant (ri, j +Ri) gives an upper-bound on the maxi-

mum interfering workload that can be generated by τi’s carry-in job released at ri, j in the carry-in

window, independently of the interference imposed on τi.

Proof. Since Eq. (3.4) and Eq. (3.21) both compute the WCRT of a task based on the following

algorithm (i) summing all the self interfering workload and all the workload released by higher

priority tasks in the problem window, (ii) dividing it by the number of cores m, and (iii) adding the

result to τk’s critical path length, the proof of this lemma is identical in every word to the proof of

Lemma 4, replacing Eq. (3.4) with Eq. (3.21).

Since there are up to dDi
Ti
e carry-in job, we have that the maximum interfering carry-in work-

load generated by τi is given by the sum of the interfering workload generated by each of its

carry-in jobs. That is,

CIi(WDUCI
i ,∆CI

i ) =

dDi
Ti
e

∑
j=1

|WDUCI
i |

∑
b=1

hb×
[
∆

CI
i − j×Ti +Ri−

|WDUCI
i |

∑
p=b+1

wp

]wb

0

 (3.26)

Note that the actual implementation of Eq. (3.26) can be drastically simplified using two sim-

ple mathematical facts on Eq. (3.26):

1. for each carry-in job j such that (∆CI
i − j×Ti+Ri−Li)≥ 0, the contribution of the inner-sum

to the carry-in workload will always be Wi;

2. for each carry-in job such that (∆CI
i − j×Ti +Ri) ≤ 0, the contribution of the inner-sum to

the carry-in workload will always be 0.

This means that there is at most one carry-in job and therefore only one j for which the summation

on b needs to be done. For all the other dDi
Ti
e − 1 carry-in jobs, the interfering workload can

readily be considered to be equal to Wi or 0 depending on whether (∆CI
i − j×Ti +Ri−Li)≥ 0 or

(∆CI
i − j×Ti +Ri)≤ 0, respectively.
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Figure 3.10: Worst-case interfering workload released by τi in τk’s problem window when Di > Ti

but Ri < Di. Yellow jobs are carry-in jobs.

Example 10. Consider the example in Fig. 3.10 where Di = 2.6×Ti. As in Example 9, task τi

releases three carry-in jobs. However, because the WCRT Ri of τi is smaller than Di, the carry-in

job released at (rbody−3×Ti) completes no later than time (rbody−3×Ti+Ri) which is before the

start of the problem window (i.e., time rk). Therefore, we have that (∆CI
i −3×Ti +Ri)< 0 and the

contribution of that carry-in job to the interfering workload is 0. On the other hand, the carry-in

job released at time (rbody−Ti) respects the inequality (∆CI
i −Ti +Ri−Li)≥ 0 since it starts and

completes after the beginning of the problem window. Therefore, its contribution to the interfering

workload is equal to its total workload Wi. For the carry-in job released at time (rbody− 2×Ti),

none of the two conditions holds. Hence its execution overlaps with the beginning of the problem

window and its contribution to the interfering workload is a portion of its workload distribution

WDUCI
i .

Theorem 6. The interfering workload WCI
i generated by the carry-in jobs of a higher priority task

τi in a window of length ∆CI
i is upper-bounded by Eq. (3.26).

Proof. It directly follows from the combination of Lemmas 8 and 9.

Similar to the constrained deadline case covered in Section 3.4.3, an improve bound on the

carry-in workload can be derived using Lemma 10 proven below.

Lemma 10. An upper-bound on the maximum interfering workload that can be generated by

a carry-in job of task τi released at time ri, j in a carry-in window of length ∆CI
i is given by

max{0, ∆CI
i − j×Ti +Ri}×m.

Proof. Since no job of τi can complete later than Ri time units after its release, we know that

the carry-in job released at ri, j completes no later than ri, j +Ri = rk +∆CI
i − j× Ti +Ri (using

Eq. (3.24)). Therefore, the carry-in job executes during at most max{0, ∆CI
i − j×Ti +Ri} time

units on m processors within the carry-in window [rk, rk +∆CI
i ), hence the claim.
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Combining Theorem 6 with Lemma 10, we derive an improved bound on the carry-in workload

of an interfering task τi with arbitrary deadline.

Theorem 7. The interfering workload WCI
i generated by the carry-in jobs of a higher priority task

τi in a window of length ∆CI
i is upper-bounded by

dDi
Ti
e

∑
j=1

min

{
max{0, ∆

CI
i − j×Ti +Ri}×m,

|WDUCI
i |

∑
b=1

hb×
[
∆

CI
i − j×Ti +Ri−

|WDUCI
i |

∑
p=b+1

wp

]wb

0

}
(3.27)

Proof. Follows from Theorem 6 and Lemma 10.

3.7.4 Upper-bounding the carry-in and carry-out interference

In the previous subsections, we have upper-bounded the carry-in and carry-out interference that

a higher priority task τi can generate in windows of length ∆CI
i and ∆CO

i , respectively. However,

as already discussed in Section 3.6 for the constrained deadline case, the difficulty is to identify

the lengths of ∆CI
i and ∆CO

i that maximize the total interference generated by τi. For constrained

deadline tasks, this optimization problem was solved using Algorithm 2. In this section, we adapt

Algorithm 2 to support systems composed of arbitrary deadline tasks. The result is presented in

Algorithm 3.

Like for the constrained deadline case, Algorithm 3 uses the sliding window technique to

maximize the interfering workload released by a task τi in the problem window. First, the distance

∆C
i , which by definition is equal to ∆CI

i +∆CO
i , is computed using Eq. (3.15) (note that the proof of

Lemma 7 is still valid for arbitrary deadline tasks). Then, Algorithm 3 is called.

Algorithm 3 is identical to Algorithm 2 for lines 1 to 3 and lines 17 to 24, which are related to

the carry-out workload. However, as it was to be expected, Algorithm 3 differs from Algorithm 2

for parts that are related to the carry-in workload (lines 4 to 16).

Algorithm 3 first tries to maximize the carry-out workload released by τi in the problem win-

dow (lines 1 to 3). To this end, it aligns the end of the problem window with the earliest time at

which τi’s carry-out job may complete (i.e., setting ∆CO
i to Bi), or by setting ∆CO

i to ∆C
i if ∆C

i is

smaller than the BCRT of τi. Then, Algorithm 3 similarly tries to maximize the carry-in workload

released by τi in the problem window (lines 4 to 6). This is achieved by aligning the beginning of

the problem window with the latest time at which the earliest carry-in job of τi may start executing.

Hence we set ∆CI
i to (Bi + dDi

Ti
e×Ti−Ri), where (dDi

Ti
e×Ti−Ri) is the smallest possible distance

between the completion of the earliest carry-in job of τi and the release of its first body job at

rbody. The length (Bi + dDi
Ti
e×Ti−Ri) is thus the smallest possible distance between the time at

which the earliest carry-in job of τi starts executing and rbody. Line 4 also ensures that ∆CI
i cannot

be larger than ∆C
i .
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Algorithm 3: Computing WC
i for arbitrary deadline tasks.

Input : ∆C
i , WDUCI

i , WDUCO
i .

Output: WC
i - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */

1 x2←min{∆C
i , Bi};

2 x1← ∆C
i − x2;

3 WC
i ←CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2);

/* We maximize the carry-in workload inside the problem window */

4 x1←min{∆C
i , Bi + dDi

Ti
e×Ti−Ri};

5 x2← ∆C
i − x1;

6 WC
i ←max{WC

i , CIi(WDUCI
i ,x1)+COi(WDUCO

i ,x2)};

/* We align the start of the problem window with the boundaries of every block

in WDUCI
i for every carry-in job of τi */

7 forall the j = 1 to dDi
Ti
e do

8 x1← j×Ti−Ri;
9 foreach (wb,hb) ∈WDUCI

i in reverse order do
10 x1← x1+wb;
11 x2← ∆C

i − x1;
12 if x1≥ 0 and x2≥ 0 then
13 WC

i ←max{WC
i , CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2)};

14 end
15 end
16 end

/* We align the end of the problem window with the boundaries of every block

in WDUCO
i */

17 x2← 0;
18 foreach (wb,hb) ∈WDRCO

i in order of appearance do
19 x2← x2+wb;
20 x1← ∆C

i − x2;
21 if x1≥ 0 then
22 WC

i ←max{WC
i , CIi(WDUCI

i ,x1)+COi(WDUCO
i ,x2)};

23 end
24 end

25 return WC
i ;

Lines 6 to 16 iterate over the dDi
Ti
e carry-in jobs released by τi. For each carry-in job it computes

the latest time at which that job may complete (line 8) and then aligns the beginning of the problem

window with the start of every block in the workload distribution WDUCI
i of that job (lines 10

to 14).

Lines 17 to 24 are identical to Algorithm 2 and align the end of the problem window with the

end of every block in the workload distribution WDUCO
i of τi’s carry-out job.

The maximum interfering workload released by carry-in and carry-out jobs of τi is the maxi-

mum over the interfering workload computed for each of the scenarios described above (as already

discussed in (Maia et al., 2014)).
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3.8 Experimental evaluation

The analysis presented in this chapter has been implemented within the MATLAB framework

released by the authors of (Melani et al., 2015). We follow the same technique as in (He and

Yesha, 1987) and (Melani et al., 2015) to generate random task sets composed of DAG tasks.

Each DAG in the task set is initially a composition of two NFJ-DAGs connected in series. The

NFJ-DAGs are constructed by recursively expanding their nodes. Each node has a probability ppar

to fork and a probability pterm to join, where pterm+ ppar = 1. Each parallel branch has a maximum

depth that limits the number of nested forks. Additionally, the number of parallel branches leaving

from a fork node is randomly chosen within a uniform distribution bounded by [2,npar]. Finally,

a general DAG is obtained by randomly adding directed edges between pairs of nodes, granted

that such randomly-placed precedence constraints do not violate the “acyclic” semantics of the

DAG. The probability of adding an edge between two nodes is given by padd , with the restriction

that any two nodes with a common fork-node as direct predecessor cannot be connected. This last

restriction avoids generating degenerated DAGs that behave as sequential tasks.

Once the DAG Gi of a task τi is constructed, the task parameters are assigned as follows. The

WCET C j of a subtask v j ∈Vi is uniformly chosen in the interval [1,100]. The task length Li, the

workload Wi and the maximum makespan Mi (see Eq. 3.2) of τi are computed based on the internal

structure of the DAG and the WCET of its nodes. The minimum inter-arrival time Ti is uniformly

chosen in the interval [Mi,Wi/β ], where the parameter β is used to define the minimum utilization

of all the tasks. Therefore, the task utilization becomes uniformly distributed over [β ,Wi/Mi].

For all experiments that have a varying total utilization Utot (i.e., Fig. 3.11 and 3.16), we keep

generating and adding new tasks to the task set until the target total utilization Utot is met. Utot is

achieved exactly by adjusting the period of the last task added to the system. Otherwise, for all

other experiments, we use UUnifast (Bini and Buttazzo, 2005) to derive individual task utilizations

(and consequently their period) for a fixed value of n. Priorities are assigned following the DM

policy.

For each tested system configuration, we generated and assessed the schedulability of 500 task

sets. Unless stated otherwise, in all experiments reported herein, we have set ppar = 0.8, pterm =

0.2, depth = 2, npar = 5, padd = 0.2, β = 0.035×m, Utot = 0.7m, n = 1.5m and m = 8. These

settings lead to a rich variety of internal DAG structures, some of which resemble real-world appli-

cations as noted in (Melani et al., 2017): we observed both heavy and unbalanced workloads with

different degrees of parallelism and sequential segments in each task set. The maximum paral-

lelism of a DAG (i.e., the number of subtasks that can execute in parallel) with such configuration

is 25.

3.8.1 Evaluation for constrained deadlines

We compare our response time analysis for DAG tasks with constrained deadlines (referred to

as IRTA-FP) to the schedulability analysis described in (Melani et al., 2015) (referred to as Mel-
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Figure 3.11: IRTA-FP varying Utot . Figure 3.12: IRTA-FP varying n.

DAG) for GFP scheduling. In an attempt to maximize the schedulability ratios of these tests, we

restrict our attentions to the case where the relative deadline Di is set equal to the period Ti.

In the first set of experiments, the system utilization Utot was varied in (0,m] by steps of 0.25.

Fig. 3.11 shows the number of schedulable task sets when m = 8. For both low and very high

utilization (i.e., when all or none of the task sets are schedulable), IRTA-FP and Mel-DAG are

indistinguishable. However, for Utot ∈ [4,6], IRTA-FP performs substantially better. In particular,

when Utot = 5.25, IRTA-FP schedules 341 task sets against 156 for Mel-DAG. Instead, Fig. 3.12

reports the schedulability as a function of the number of tasks n, with n ranging from 4 to 20.

The values of Utot and m were kept constant and equal to 0.7m and 8, respectively. IRTA-FP

outperforms Mel-DAG for any value of n with an average gain of approximately 20%, although

both tests converge to full schedulability for larger n. Intuitively, it is easier to schedule many light

tasks than few heavy tasks.

We then study the impact of the DAG structures on the outcome of the two schedulability tests.

Figure 3.13: IRTA-FP varying npar. Figure 3.14: IRTA-FP varying padd .
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Figure 3.15: IRTA-FP varying m.

A trend similarly to that of Fig. 3.12 can be observed in Fig. 3.13, where we varied the maximum

number of parallel branches npar in the interval [2,8]. Mel-DAG has clear limitations when the

average parallelism of the DAGs is up to half of the platform’s parallelism (i.e., npar ≤ 4) and only

admits a large share of tasks sets for npar ≥ 6. On the other hand, IRTA-FP accepts at least 50% of

the task sets for npar≥ 4 even though the schedulability ratio reduces when the tasks become nearly

sequential (i.e., npar becomes close to 2). As expected, both approaches are comparable when the

task parallelism is consistently greater than m. Fig. 3.14 reports the results obtained for different

types of DAGs, as the probability of adding edges padd between two nodes is increased from 0

to 1 by steps of 0.1. To clarify, padd = 0 corresponds to generating NFJ-DAGs, while padd = 1

leads to synchronous parallel tasks. In between we have arbitrary DAGs. IRTA-FP attains a solid

40% schedulability improvement over Mel-DAG for any value of padd . Interestingly, such gain

is not maximized when IRTA-FP benefits from a more accurate characterization of the carry-out

workload (i.e., in the case of NFJ-DAGs). This stresses the importance of exploring the precedence

constraints within a DAG when deriving bounds on the interfering workload. Furthermore, we

remark that IRTA-FP could achieve better results had we transformed the final DAGs into NFJ

instead of considering the original ones. In conjunction with an average increase in the individual

critical path lengths, this also justifies the slow degradation when increasing padd .

In Fig. 3.15, we illustrate how IRTA-FP performs when m varies according to the sequence

[2,4,6,8,10,12,14,16], with Utot and n scaling with m. Mel-DAG degrades for higher values of

m, while IRTA-FP maintains a schedulabity ratio around 72%. Such improvement is due to the

characterization of the carry-in and carry-out workload distribution. IRTA-FP exploits the internal

structure of the DAGs to bound the parallelism of such jobs, hence limiting the number of cores

on which they execute for larger m; whereas Mel-DAG assumes that all interfering jobs always

use the m cores.
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Figure 3.16: IRTA-FP2 varying Utot . Figure 3.17: IRTA-FP2 varying αmax.

3.8.2 Evaluation for arbitrary deadlines

We now compare the performance of our response time analysis for DAG tasks with arbitrary

deadlines (referred to as IRTA-FP2) to the schedulability test proposed by Parri et al. (Parri et al.,

2015) for GDM scheduling (referred to as Parri(16)), which was shown to outperform the tests

in (Bonifaci et al., 2013), and hence, as far as we know, the only competitor to our test for arbitrary

deadline DAG tasks. The number 16 added to Parri’s test name denotes the maximum number of

iterations allowed for the convergence of the outer loop in their RTA, which in most cases is

sufficient to satisfy the convergence of the analysis, as suggested by the authors. Furthermore,

since the analysis in (Parri et al., 2015) assumes that multiple jobs of the same DAG tasks may

execute in parallel (instead of a job becoming ready only after the previous one completes its

execution, as we do), for the sake of fairness, we enforce that no task is assigned with a period

smaller than its maximum makespan. That is, Ti ≥ Mi, ∀τi ∈ τ . By default, the deadline Di is

uniformly selected in the interval [Ti,αmaxTi], with αmax = 3 controlling the maximum ratio of

Di/Ti; meaning that Ti ≤ Di ≤ 3Ti.

Fig. 3.16 reports the number of schedulable tasks sets as a function of the total utilization Utot

for m = 8. While IRTA-FP2 stops deeming any task set schedulable at Utot = 7, for Parri(16)

such drop happens 10% earlier. Notably, when Utot ∈ [5.25,6.75], IRTA-FP2 greatly outperforms

Parri(16), with a schedulability gain peaking at 75%. This suggests that the way we handle the

multiple interfering jobs carried-in by the higher priority tasks largely compensates the handicap

on the self-interference component due to the different run-time assumptions.

In order to study the effectiveness of both approaches for different values of Di, we varied αmax

in the range [1,5]. The results are depicted in Fig. 3.17 for constant values of Utot , n and m. In the

case of implicit deadlines (i.e., αmax = 1 =⇒ Di = Ti), Parri(16) performs very poorly, confirming

the author’s observation that their analysis is specifically tailored for arbitrary deadlines and as

such is overly pessimistic for more restrictive models. On the other hand, IRTA-FP2 is able to

schedule 328 task sets as it was already witnessed in the constrained deadline case studied above.
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Figure 3.18: IRTA-FP2 varying m. Figure 3.19: IRTA-FP2 varying n.

As αmax is increased, both tests rapidly achieve nearly full schedulablity. It is worth noting that

larger values of Di strongly benefit Parri(16) since they assume that several jobs of the same task

can execute in parallel, whereas in IRTA-FP2 assumes that a job cannot start executing before its

preceding job has been completed.

In Fig. 3.18, we show the schedulability results as a function of the number of cores m. Both

tests are robust to platforms with increased parallelism, although IRTA-FP2 succeedes in schedul-

ing most task sets for any value of m, Parri(16) requires m ≥ 12 to perform similarly. Finally,

Fig. 3.19 illustrates how IRTA-FP2 performs when the number of tasks n is varied according to

the sequence [2,4,6,8,10,12,14,16]. IRTA-FP2 substantially outperforms Parri(16) when n < 14,

with an average schedulability improvement close to 35%. Nevertheless, both approaches are in-

distinguishable when the amount of tasks is at least twice the number of cores. From these last

sets of experiments, we can conclude that the workload distributions derived to characterize the

carry-in and carry-out jobs are also effective for the analysis of DAG tasks with arbitrary deadlines.

3.9 Summary

In this chapter, we studied the sporadic DAG model under GFP scheduling. Motivated by the

fact that a poor characterization of the higher priority interfering workload leads to pessimistic

analysis of parallel task systems, we presented new techniques to model the worst-case carry-

in and carry-out workload. These techniques exploit both the internal structure and worst-case

execution patterns of the DAGs.

Following a sliding window strategy that leverages from such workload characterization, we

then derived a schedulability analysis to compute an improved upper-bound on the WCRT of each

DAG task. Experimental results not only attest the theoretical dominance of the proposed analysis

over its state-of-the-art counterpart (in the constrained deadline case), but also showed that its

effectiveness is independent of the number of cores and it substantially tightens the schedulability

of DAG tasks on multiprocessor systems for both constrained and arbitrary deadline task sets.



Chapter 4

Schedulability Analyses for Partitioned
Scheduling

In Chapter 3, we studied DAG tasks under a work-conserving scheduler, where every subtask

may migrate among processors to guarantee that no processor is idle when there is backlogged

workload to execute. Instead, this chapter considers the partitioned scheduling of a set of sporadic

constrained deadline DAG tasks T= {τ1, . . . ,τn}, where each subtask vi, j ∈Vi is statically assigned

to a processor Pi, j, with Pi, j ∈ [1,m]. That is, subtasks are not allowed to migrate and thus they can

run in parallel only with other independent subtasks mapped to different processors.

Next we present a response time analysis for FP scheduling that is not tied down to a spe-

cific subtask-to-core mapping strategy: the partitioning is assumed to be given. We show that a

partitioned DAG task can be modeled as a set of self-suspending tasks. We then propose an algo-

rithm to traverse a DAG and characterize such worst-case scheduling scenario. As a result, with

minor modifications, any state-of-the-art uniprocessor RTA for sporadic self-suspending tasks can

thus be used to analyze partitioned DAG tasks. We also present a second schedulability analysis,

based on the concept of task-duplication, which is much simpler and results in reduced pessimism.

More specifically, we developed a partitioning algorithm with the goal of minimizing the number

of cores that guarantees feasibility and eliminating cross-core dependencies. Thanks to the dupli-

cation of key subtasks, all resulting partitions are independent of each other. Thus, the problem

of scheduling a set of partitioned DAGs becomes equivalent to the problem of scheduling a set of

sequential tasks on multiprocessors in a partitioned manner.

4.1 Motivation

As noted in (Altmeyer et al., 2015), on a multicore system there are strong inter-dependencies

between timing and schedulability analysis, since the worst-case execution times are heavily de-

pendent on the amount of cross-core interference generated on shared resources. This phenomenon

is further amplified with parallel tasks due to the intense communication and concurrency between

their sequential computational units. Due to its flexible execution environment, global schedul-

61
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ing adds uncertainty and variability to the lower-level timing analysis, which then become overly

pessimistic, spoiling most of the benefits of having a centralized scheduler. In this sense, it is our

belief that partitioned scheduling is the most promising approach to support parallel tasks in hard

real-time systems.

Partitioned scheduling is a well-studied topic in real-time distributed systems. Different re-

sponse time analyses, priority assignment techniques and mapping heuristics that allow for task

parallelism have been proposed in the past years (Tindell and Clark, 1994; Palencia et al., 1997;

Palencia and Gonzalez Harbour, 1998; Palencia and Harbour, 1999). Although these works pro-

vide a strong understanding of the worst-case behavior of parallel tasks, they are inevitably less

effective when applied to multicore systems due to the absence of the network component and

local release jitters. Results concerning the schedulability of partitioned parallel tasks in multipro-

cessors are very limited. In (Axer et al., 2013), the authors presented a response time analysis for

sporadic fork-join tasks with arbitrary deadlines under fixed-priority scheduling. Unfortunately,

the paper was found flawed as shown in Appendix B. Therefore, to the best of our knowledge only

the results transposed from distributed systems provide an answer to the problem of scheduling

partitioned parallel tasks atop multiprocessors.

4.2 Additional definitions

Consider a set of n sporadic DAG tasks τ = {τ1, . . . ,τn} with constrained deadlines to be sched-

uled by a partitioned scheme on a multiprocessor platform Π composed of m identical cores. First

and foremost, we study FP scheduling as it was the case in the previous chapter for global schedul-

ing. EDF scheduling is considered in Section 4.6.3. We differentiate partitioned DAG tasks from

partitioned sequential tasks by not forcing an entire DAG task to be executed on one processor.

Clearly, the sequential approach is ineffective when we have Wi > Di for any DAG task τi. That

is, for heavy tasks which have density greater than one.

While each DAG task τi is still characterized by a 3-tuple (Gi,Di,Ti) as defined in Section 1.3,

we extended the properties of each individual subtask to cope with the execution restrictions.

More precisely, a subtask vi, j is characterized not only by a WCET Ci, j but also by the processor

Pi, j to which it is statically assigned. Formally, vi, j = (Ci, j,Pi, j), ∀vi, j ∈ Vi. We assume that each

subtask can execute only on the single pre-defined core (subtask partitioning), and the complete

subtask-to-core mapping to be given. The mapping assumption is relaxed in Section 4.6, where

we propose a partitioning and allocation strategy. Note that a mapping phase is essential to derive

tighter estimates on WCETs under such parallel settings due to the presence of shared resources

and the magnitude of memory-alike transactions. Although the mapping of parallel tasks subject

to strict timing constraints is an open problem, for schedulability purposes, it suffices to consider

that the WCETs of the subtasks have been computed accordingly.

For any subtask vi, j, its set of ancestors assigned to a particular core p is given by ances(vi, j, p).

Analogously, desce(vi, j, p) returns the set of descendants of vi, j assigned to core p. Independent

subtasks may execute in parallel whenever they are mapped to different cores.
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Figure 4.1: Example of a partitioned DAG task with twelve subtasks. Each label indicates the
WCET and the core affinity of the corresponding node, respectively.

Let `i denote the number of different paths λi,` that can be extracted from DAG Gi, i.e. ` ∈
{1,2, . . . , `i}. The set proc(λi,`) contains all the distinct cores associated to a path λi,`, whereas

vp
i,a and vp

i,z represent the first and the last subtasks in λi,` assigned to core p, respectively. We

further define the length of a path len(λi,`) as the sum of the WCET of all its subtasks. Formally,

len(λi,`) = ∑
∀vi, j∈λi,`

Ci, j.

Note that, under partitioned scheduling, Li may not represent the WCET of τi (also its WCRT

in isolation) when the number of cores available is sufficiently large. Indeed the degree of paral-

lelism is constrained by the subtask-to-core mapping, thus two concurrent subtasks assigned to the

same core are forced to execute sequentially. Besides Li ≤ Di, partitioned scheduling allows us to

define further necessary feasibility conditions. Hence, we introduce the notion of p-workload.

Definition 10 (p-workload). The worst-case workload of a DAG task τi on a core p, denoted

by W p
i , is the maximum processing time that any instance of τi requires from p. That is, W p

i =

∑
ni
j=1{Ci, j | Pi, j = p}.

The following additional relations must then hold for the feasibility of a DAG task system:

W p
i ≤ Di and ∑

n
i=1

W p
i

Ti
≤ 1,∀p ∈ [1,m].

Example 11. Fig. 4.1 illustrates our extended model for a DAG task τi comprised of twelve sub-

tasks (ni = 12) Vi = {v1, . . . ,v12} and twelve precedence constraints. For simplicity, we omit the

subscript i on the subtasks of τi as well as its dummy source and sink nodes. The label next to each

node represents the 2-tuple v j = (C j,Pj). For instance, subtask v6 has a WCET of C6 = 4 and is

assigned to core P6 = 2. There is a total of ten paths (`i = 10) in the DAG. The critical path length

of τi equals to Li = 26 and is found on the path λi,` = (v2,v3,v7,v8,v9,v6,v11). The workload of τi

is Wi = 45, whereas its maximum p-workload resides on core p = 3 with the value W 3
i = 16, which

results from the subset of subtasks {v5,v7,v11}. Note that this subset imposes no sequencing of

subtasks and thus is not a path of the DAG. To clarify, both v5 and v7 are transitive predecessors

(or ancestors) of v11, but v5 and v7 are independent of each other.

4.3 Response time analysis of partitioned DAG tasks

In this section, we present a schedulability analysis for sporadic DAG tasks with constrained dead-

lines scheduled in a partitioned fashion with any fixed-priority scheduling algorithm. The schedu-
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lability analysis is based on the notion of per-path interference. Unlike its sequential counterpart,

partitioned DAG tasks may allocate subtasks to different cores, potentially creating cross-core de-

pendencies. Unless each path is entirely allocated to a single core, the traditional uniprocessor

analysis for fixed-priority sequential tasks that relies on the concept of critical instant (Liu and

Layland, 1973) cannot be applied on a per-path basis. Therefore, we introduce a novel RTA to

cope with the notion of partitioned DAG tasks.

Recall that τk is the DAG task under analysis and T is sorted by decreasing priority. For

simplicity and clarity of presentation, we assume that all the higher priority tasks are sequential.

That is, τi
def
= (Ci,Pi,Di,Ti,Ji), ∀i < k; meaning τi has a release jitter J j, and each of its jobs can

execute only on core Pi for at most Ci time units. In Section 4.5, we generalize the analysis for the

case where every task in the system is a DAG task.

We seek to derive an upper-bound on the WCRT of each path λk,` of τk. To do so, we first

introduce some definitions to characterize the different worst-case interference contributions. We

remark that the following definitions are a generalization of those presented in Section 3.2 for GFP

scheduling, since λk,` can suffer interference even when some processors are idle.

Definition 11 (Inter-task interference). The inter-task interference Ii(λk,`) imposed by a higher

priority task τi on the `th path of a partitioned DAG task τk is the maximum cumulative time

during which any subtask v j ∈ λk,` is ready but cannot be scheduled because τi is executing on

processor Pj.

Definition 12 (Self-interference). The self-interference Ik(λk,`) imposed by a partitioned DAG

task τk on its own `th path is the maximum cumulative time during which any subtask v j ∈ λk,` is

ready but cannot be scheduled because processor Pj is busy executing other subtasks of τk that do

not belong to λk,`.

Defs. 11 and 12 combined provide a characterization of the maximal overall interference ex-

erted on a path λk,` of task τk during the execution of any of its jobs. The response time of the

worst-case instance for λk,` can then be expressed as follows.

Theorem 8. The worst-case response time of a path λk,` of a partitioned DAG task τk is given by

R(λk,`) = len(λk,`)+ Ik(λk,`)+ ∑
∀i<k

Ii(λk,`) (4.1)

Proof. Let ra be the release time of the first subtask in the path λk,`. In the scheduling window

[ra,ra +R(λk,`)], the entire path requires at most len(λk,`) time units of execution. The maximum

interference caused by self-interfering subtasks on λk,` is Ik(λk,`) according to Def. 12. By Def. 11,

the maximum interference exerted on λk,` by each higher priority task (i.e., tasks τi such that i < k)

is Ii(λk,`). The theorem follows by noting that the set of lower priority tasks cannot influence the

schedule of τk in fixed-priority preemptive scheduling.

To obtain the WCRT of τi we apply Equation 4.1 to each of its paths. The next corollary

directly follows from Theorem 8.
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Corollary 2. The worst-case response time of a partitioned DAG task τk is given by

Rk = max`i
`=1 R(λk,`). (4.2)

As a direct consequence of Corollary 2, DAG task τk is deemed schedulable if Rk ≤ Dk.

4.3.1 Self-interference

Conceptually, the self-interference corresponds to the delay on the completion time of task τk

caused by the concurrency among its own subtasks. Since the computing resources are typically

scarce, subtasks of τk that could execute in parallel (i.e., they share no direct or transitive prece-

dence constraint) will eventually contend for core-access, thus increasing the response time of τk

itself. Under partitioned scheduling this phenomenon is easier to observe as the subtask-to-core

assignment dictates which independent subtasks may interfere with each other. In other words,

there is no self-interference between two independent subtasks mapped to different processors.

On a particular path λk,`, Ik(λk,`) accounts for all the time intervals where any subtask v j′ ∈
Vk \λk,` is executing, while there is a ready subtask v j ∈ λk,` with pending work on the same core

Pj. Thus, if Pj′ 6∈ proc(λk,`), then v j′ can never interfere with λk,`. Contrary to the inter-task

interference, only one instance of such self-interfering subtasks have to be accounted in Ik(λk,`)

because they belong to the same job of τk. The absence of individual priorities assigned to the

subtasks, together with variability in their execution times, makes self-interference a problem

mutual to all the paths of τk. That is, if a path A interferes with a path B, then it is also possible

to construct a scenario where path B interferes with path A. Furthermore, we observe that when a

subtask v j′ ∈Vk \λk,` shares precedence constraints with every subtask v j ∈ λk,`, such that Pj = Pj′ ,

v j′ cannot interfere with λk,`. This allows us to derive a less conservative upper-bound on Ik(λk,`).

Lemma 11. For any partitioned constrained deadline DAG task τk partitioned on m cores, an

upper-bound on the interfering workload imposed by τk on its path λk,` is given by

Ik(λk,`)≤ ∑
∀p ∈ proc(λk,`)

W p
k − len(λk,`)− ∑

∀v j ∈ Θk,`

C j, (4.3)

where Θk,` is the set of subtasks of τk that cannot interfere with λk,` and is defined as

Θk,`
def
=

⋃
∀p ∈ proc(λk,`)

ances(vp
a , p)∪desce(vp

z , p). (4.4)

Proof. By definition of a constrained deadline task, two instances of τk cannot interfere with each

other when Dk is met. Therefore, the maximum interference that τk can impose on its path λk,`

is upper-bounded by the sum of the WCET of all subtasks assigned to a core p ∈ proc(λk,`)

excluding the subtasks in λk,`, i.e. Ik(λk,`) ≤ ∑
∀p ∈ proc(λk,`)

W p
k − len(λk,`). Any subtask v j that
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is a successor, either directly or transitively, of vp
z (i.e., the last subtask of λk,` assigned to core

p), where p = Pj, cannot interfere with λk,` because v j becomes ready only after all subtasks in

λk,` assigned to Pj complete. Similarly, any subtask v j that is a predecessor, either directly or

transitively, of vp
a (i.e., the first subtask of λk,` assigned to core p), where p = Pj, can be safely

discarded because any delay caused by v j on the start of vp
a will be accounted in some path λk,`′ ,

where `′ 6= ` and {v j,v
p
a} ⊆ λk,`′ (from Eq. 4.2). As given by Eq. 4.4, the set Θk,` contains all those

non-interfering subtasks. Hence, Ik(λk,`) ≤ ∑∀p ∈ proc(λk,`)W
p

k − len(λk,`)−∑∀v j ∈ Θk,`
C j, which

concludes the proof.

Henceforth, let sel f (λk,`) denote the set of self-interfering subtasks with λk,`.

Example 12. Consider the DAG depicted in Fig. 4.1 and let λk,` = (v2,v3,v4,v12) be the path

under analysis (the sequence of light nodes). This path spans over two cores proc(λk,`) = {1,2}
and has a length equal to len(λk,`) = 13. Since the path never reaches core p = 3, the p-workload

on such core is not accounted as interfering workload. Moreover, subtasks v1 and v10 cannot

interfere with the path on core p = 1 because they are a ancestor and a descendant of subtasks

v4 = v1
a = v1

z , respectively; meaning Θk,` = {v1,v10}. Thus, we have Ik(λk,`) ≤ 29− 13− 9 = 7,

which corresponds to the sum of the WCET of the subtasks in sel f (λk,`) = {v6,v8,v9}.

4.3.2 Inter-task interference

The inter-task interference Ii(λk,`) accounts for all the time intervals during which any subtask

v j ∈ λi,k is ready but it cannot execute since higher priority task τi is holding the processor. Hence,

τi may interfere with multiple subtasks in λk,` as long as they are mapped to core Pi. Despite τi

being any task with higher priority than τk, if Pi 6∈ proc(λk,`), then τi cannot interfere with λk,`.

We denote by hp(λk,`) the set of higher priority tasks that can effectively interfere with λk,`.

Although in global multiprocessor scheduling one must consider carry-in jobs as part of the

individual interference contributions (Davis and Burns, 2011), this is not the case for the fixed-

priority partitioned scheduling of a DAG task when the higher priority tasks are sequential, as

the problem boils down to single core scheduling (or a collection of). In this context, Ii(λk,`)

is a function of the maximum number of interfering jobs released by τi in a scheduling window

[rp
a , f p

z ), where rp
a is the release time of subtask vp

a ∈ λk,` and f p
z is the completion time of subtask

vp
z ∈ λk,` with p = Pi, as τi cannot interfere with subtasks on a core different than Pi. No job

released by τi at any instant prior to rp
a interferes with λk,` because otherwise there would exist a

valid scheduling window [rp
a − t, f p

z ) that would increase the response time of the path.

A simple solution to upper-bound Ii(λk,`) is to assume that τi is allowed to release jobs syn-

chronously with every subtask v j ∈ λk,` such that Pi = Pj. Subsequent job releases are then sepa-

rated by Ti time units. A similar technique to this independent worst-case scenario for each subtask

in λk,` was adopted in (Palencia et al., 1997). Clearly, it is not always possible for any τi to interfere

with all the workload of λk,` assigned to Pi, thus this technique is often overly pessimistic.
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Unfortunately, finding tight upper-bounds on the interfering workload of the higher priority

tasks is difficult. The challenge comes from the fact that the workload of the path λk,` on a certain

core p may not be continuous, as some of the intermediate subtasks are assigned to different cores.

As a result, cross-core dependencies on the execution flow of the path exist. The length of these

discontinuous intervals is not fixed since the release of a transitive successor on p depends on the

response time of the intermediate subtasks mapped to other cores. Therefore, Ii(λk,`) is not only a

function of the response time of the subtasks in λk,` on core Pi = p, but it also has to account for

the gaps within the different parts of the workload, and for the relation between the duration of the

gaps and the response time of the subtasks in λk,` on any core p′ ∈ proc(λk,`)\Pi.

To overcome this problem, we propose in the next section an alternative technique to Eq. 4.1,

for computing an upper-bound on the response time of any path λk,`, which is based on the self-

suspending tasks theory.

4.4 Worst-case response time (WCRT) of an execution path

We now explain how to bound the worst-case response time of each path λk,` of task τk. To

capture the worst-case interference suffered by a path on the different cores to which it is mapped,

we model a path as a set of self-suspending tasks. More precisely, one self-suspending task for

each core. For the sake of notation conciseness, let λ denote the specific path λi,k under analysis.

In the remainder of this section, we also assume that any two consecutive subtasks in λ assigned to

the same core are merged into a single subtask with a WCET equal to the sum of their individual

WCETs.

4.4.1 Intuition

In the literature, a self-suspending task is often described as an interleaved sequence of execution

and suspension regions, where an execution region is a portion of a sequential task that needs to

be processed, and a suspension region corresponds to a period of time during which the task vol-

untarily yields the processor to perform a remote operation. The suspension regions are assumed

to have given bounded durations. (A more insightful description is deferred to Appendix A.)

Regarding partitioned DAG tasks, we observe that the existence of precedence constraints

between subtasks assigned to different cores leads to a similar behavior. This is easier to see

on a path, since there is a direct precedence constraint between every two consecutive subtasks.

Consider the partitioned schedule shown in Fig. 4.2 for the path composed of light nodes in the

DAG of Fig. 4.1. Although only subtask v4 is assigned to core p = 1, it cannot start executing

before the joint subtask v1 + v3 completes execution on core p = 2. In turn, the execution of v4

delays the release of the last portion of workload assigned to core p = 2 (i.e., subtask v7), creating

an intermediate interval of 3 time units where core p = 2 is free to execute lower priority tasks.

Such time intervals can be seen as suspensions within the path on a certain core p.

In this sense, a path λ can be modeled as a set of sporadic self-suspending tasks, one for each

core reached by the path, i.e., ∀p ∈ proc(λ ). The trick is to treat the subtasks of λ assigned to the
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Figure 4.2: An example of a partitioned schedule for the path of Fig. 4.1 formed by the light nodes.

current core under analysis as execution regions and the response time of all its remaining subtasks

as suspension regions. The problem of computing the WCRT of λ on a multiprocessor platform

becomes then equivalent to the RTA of |proc(λ )| self-suspending tasks in a uniprocessor system.

However, unlike previous works, the duration of the suspension regions are not known beforehand

as they are in fact computations to be executed on different cores.

Subtasks assigned to a core p′ 6= p and released before the first execution region or after the

last execution region of a self-suspending task formed on core p must not be consider as part of its

suspension regions, since they do not contribute to an increase on the interfering workload1. For

instance, the suspensions on core p = 1 in Fig. 4.2 do not influence the response time of v4, just its

release time. Every other subtask assigned to a core p′ 6= p is henceforth called “remote subtask”.

4.4.2 The self-suspending task model

For ease of understanding, we start with a generic model that closely relates to the ones considered

in the literature (it follows the model adopted in Section A.3). Let τ p denote the self-suspending

task formed by a path λ on core p. Each self-suspending task τ p, ∀p ∈ proc(λ ), consists of q≥ 1

execution regions and q− 1 suspension regions such that any two consecutive execution regions

are separated by a suspension region. Formally, τ p def
= {(Cp

1 ,S
p
1 ,C

p
2 , . . . ,S

p
q−1,C

p
q ),Sp,ub}, where Cp

h

is the WCET of the hth execution region of τ p, while an upper-bound on the duration of the hth

suspension region of τ p is given by Sp
h . The parameter Sp,ub denotes an upper-bound on the overall

suspension time.

Note that Sp,ub is not necessarily equal to the maximum cumulative suspension time. That is,

Sp,ub ≤
q−1
∑

h=1
Sp

h . While it is easy to see that each Cp
h corresponds to the WCET of the hth subtask

of λ assigned to core p, the values of each Sp
h and Sp,ub cannot be directly derived from λ and

must therefore be computed. We show next how these values can be expressed as functions of the

WCRT of the remote subtasks of τ p.

Additionally, we represent by E p
h the hth execution region of τ p, ∀h ∈ [1,q]. A sequential task

is a self-suspending task with no suspension regions. In this particular case, τ p is represented as

τ p def
= {(Cp

1 ),0}.

1Such suspensions are relevant only when the self-suspending task is part of the interfering workload, which is not
the case here.



4.4 Worst-case response time (WCRT) of an execution path 69

4.4.3 Methodology

The purpose of the above model is to not tie the analysis of a partitioned DAG task to a particular

work on self-suspending tasks. Thus, any existing uniprocessor RTA for fixed-priority sporadic

self-suspending tasks can be used to derive the WCRT of a self-suspending task τ p, denoted by

R(τ p). As the WCRT of each τ p encompasses the WCRT of all the subtasks assigned to core p,

the WCRT of a path λ can be expressed by its self-suspending tasks. Consequently, Eq. 4.1 is

rewritten as follows.

Theorem 9. The WCRT of a path λ is upper-bounded by

R(λ )≤ ∑
∀p∈proc(λ )

(R(τ p)−Sp,ub) (4.5)

Proof. Each self-suspending task τ p models the worst-case request of the path λ on core p. By

definition, R(τ p) upper-bounds the cumulative response time of its execution and suspension re-

gions. Thus R(τ p) also upper-bounds the sum of the response time of the subtasks of λ assigned to

core p. By summing the WCRT of each τ p, ∀p ∈ proc(λ ), we therefore upper-bound the sum of

the response time of all the subtasks in λ . Furthermore, because by definition of τ p the suspension

time of a task τ p corresponds to the processing time of λ on cores different than p, the maximum

suspension time Sp,ub should not be considered as part of R(τ p) as it is already accounted by the

other self-suspending tasks τ p′ , where p′ 6= p.

An important aspect to consider is that the self-suspending tasks depend on each other through

the suspension regions. Bounds on the suspension regions are necessary to analyze the WCRT

of the execution regions, but the suspension regions are indeed execution regions on other cores.

In the following we explain how to break this circular dependency by capturing the worst-case

behavior of the remote subtasks of τ p.

A well-known result from the sporadic self-suspending tasks theory is that larger suspensions

cannot lead to a decrease in the interference suffered by the task under analysis. Therefore, we

are interested in finding the WCRT of all the remote subtasks of τ p as a way to characterize the

worst-case request of τ p. We first present how Sp,ub can be computed.

Whenever multiple remote subtasks of τ p are assigned to the same core p′ 6= p, assuming an

independent WCRT for each one of them is overly pessimistic. In fact, they form an inner self-

suspending task within τ p. Let τss denote that inner self-suspending task. Then, the WCRT of all

such remote subtasks on p′ together is given by R(τss)−Sub
ss .

A special case happens when there is only one remote subtask of τ p allocated to core Pj 6= p.

Let v j be that subtask. If no other remote subtask of τ p is assigned to Pj, then the worst-case

duration of the suspension region generated by v j is given by the worst-case response time R(v j)

of v j. Subtask v j can then be considered an independent sequential task for which the critical

instant in uniprocessors holds.
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Figure 4.3: Overview of the path λ highlighted in Fig. 4.1 as a set of self-suspending tasks.

Let R(τo
ss) denote the upper-bound on the WCRT of the remote subtasks of τ p assigned to a

core o. Then, the maximum overall suspension time experienced by τ p is

Sp,ub = ∑
∀o∈proc(λ ),o6=p

(R(τo
ss)−So,ub

ss ). (4.6)

Although parameter Sp,ub provides no information about the relation between the different sus-

pension regions, it can seamlessly serve as input to any self-suspending analysis that disregard the

placement and duration of each suspension region specifically.

We now present how to compute an upper-bound on Sp
h , ∀h ∈ [1,q− 1]. A simple solution

is to compute an independent WCRT for each of the remote subtasks of τ p and sum the resulting

values of those that belong to the same suspension region. Thus, if the remote subtasks v j and v j+1

separate the execution regions E p
1 and E p

2 , then Sp
1 = R(v j)+R(v j+1) (similarly to (Palencia et al.,

1997)). The pessimism can be reduced by considering the fact that if a inner self-suspending task

τo
ss resides inside a single suspension region of τ p, the cumulative WCRT of the remote subtasks

of τ p on core o that correspond to execution regions in τo
ss can be replaced by R(τo

ss)− So,ub
ss .

Assume that only remote subtask v j separates such remote subtasks and p 6= Pj 6= o. Accordingly,

Sp
h = R(τo

ss)−So,ub
ss +R(v j).

Example 13. Fig. 4.3 depicts how each core perceives the path λ of task τi highlighted in Fig. 4.1.

We describe through this example how to characterize each self-suspending task τ p for that partic-

ular path. On core p = 3, all the remote subtasks appear before and after the execution region E3
1

constituted of v5, so τ3 is a sequential task with C3
1 =C5. On core p = 2, τ2 has q = 2 execution re-

gions with C2
1 =C3 and C2

2 =C6 and a single suspension region comprised of two remote subtasks.

The maximum duration of the suspension region is given by the independent upper-bounds on v4

and v5, i.e., S2
1 = R(v4)+R(v5). Since there is only one suspension region, S2,ub = S2

1. Finally, τ1

has q = 3 execution regions with C1
1 =C1, C1

2 =C4 and C1
3 =C10, and two suspension regions for

which S1
1 = R(v3) and S1

2 = R(v5)+R(v6). Note, however, that suspending subtasks v3 and v6 form

in fact τ2. Thus, S1,ub = R(τ2)−S2,ub +R(v5).

Given the above relations, it becomes clear that to capture the worst-case request of a self-

suspending task τ p many inner self-suspending tasks must be characterized and analyzed. This

implies that an effective order of computations is necessary to drive the whole algorithm.
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4.4.4 Unfolding the path

To overcome the dependency problem, we propose an algorithm that recursively divides a path into

smaller ones, creating a tree of subpaths which represent self-suspending tasks. The tree reflects

the hierarchy of dependencies. When a leaf is reached, the corresponding task has no suspension

regions (i.e., it is a sequential task), thus its WCRT does not depend on anything else other than

the interfering workload on that core and can be computed immediately. The computed values are

then back propagated to the self-suspending tasks on the upper levels, so that their suspension time

is no longer unknown. After setting the appropriate bounds on the suspension regions, the WCRT

of the execution regions of the next self-suspending task is derived. The process continues level-

by-level until the root is revisited. At this point, the WCRT of the original path can be computed

thanks to Theorem 9.

Algorithm 4 shows the pseudo-code of the recursive algorithm for unfolding any path λ and

computing the required WCRTs. It takes as input a path λss, and both the set of higher priority

tasks hp(λ ) and the set of self-interfering subtasks sel f (λ ) regarding the path λ . Initially, λss = λ .

The algorithm starts by finding the number of subtasks in the path λss (line 2). If the path is spread

over more than one core (lines 10-30), there are self-suspending tasks with suspension regions to

be identified. Here, we consider two cases.

First (lines 11-16), if both the first and the last subtask (v1st and vlast respectively) of λss reside

on the same core (let p be that core), then λss constitutes one of the self-suspending tasks2 on

core p. However, its response time cannot be computed straight away because the bounds on

its suspension regions are not known yet. Thus, we exclude v1st and vlast from λss and invoke the

algorithm for the resulting subpath. The second case deals with paths that start and end on different

cores (lines 17-29). In this situation, we just split the path λss in two subpaths to be analyzed: i)

from the first subtask of λss on the same core as vlast to vlast (lines 18-26), and ii) λss except vlast

(lines 27-28).

The recursion on a path stops when there is only one subtask in λss. The WCRT of a single

subtask can then be computed by adding the self-interfering workload to the traditional equation

for fixed-priority sequential tasks in uniprocessors. That is, the WCRT R(λss) when λss contains

only one subtask is given by Eq. 4.7 and reflected in line 8 of Algorithm 4.

R(λss) =C1st + ∑
∀τi∈hp(λss)

dR(λss)+ Ji

Ti
e×Ci + ∑

∀v j∈sel f (λss)

C j (4.7)

As soon as all the subpaths of a self-suspending task τss on p have been analyzed, the upper-bound

on the total duration of its suspensions Sub
ss is given by the sum of the WCRT of its inner self-

suspending tasks that are not on p (as discussed in Section 4.4.3). All of these values have already

been computed and available in the matrix RT s returned by Algorithm 4. Every Css,h is assigned

with the WCET of the hth subtask in λss on p. Apart from the overall bound on the suspension time,

an individual upper-bound Sss,h on each suspension region is also required. While parsing the path

λss, if the WCRT of a remote subtask is missing in RT s, we apply Eq. 4.7 to that particular subtask.
2Note that a self-suspending task τ p may be decomposed into multiple inner self-suspending tasks, some of which

constituting remote subtasks for a self-suspending task τ p′ where p 6= p′.
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Algorithm 4: Computation of the WCRT of each self-suspending task in the path λ

1 Function PathAnalysis (λss, hp(λ ), sel f (λ )) is
Inputs : λss - (sub) path under analysis

hp(λ ) - set of higher priority tasks w.r.t. path λ

sel f (λ ) - set of self-interfering subtasks w.r.t path λ

Output: RT s - matrix ni×ni that stores the computed response time from a subtask va to another subtask
vb

2 size← |λss|;
3 v1st ← first subtask in λss;
4 vlast ← last subtask in λss;
5 hp(λss)←

⋃
∀τi∈hp(λ )

{τi | Pi = P1st};

6 sel f (λss)←
⋃

∀v j∈sel f (λ )
{v j | : Pj = P1st};

7 if size = 1 then
8 R(λss) =C1st + ∑

∀τi∈hp(λss)
dR(λss)+Ji

Ti
e×Ci + ∑

∀v j∈sel f (λss)
C j;

9 RT s(v1st ,vlast)← R(λss);
10 else
11 if P1st = Plast then
12 λ sub

ss ← λss \{v1st ,vlast};
13 PathAnalysis(λ sub

ss , hp(λ ), sel f (λ ));
14 τss← setSuspendingTask();
15 R(τss)← ssRT (τss,hp(λss),sel f (λss));
16 RT s(v f irst ,vlast)← R(τss);
17 else
18 λ sub

ss ← λss;
19 foreach v j ∈ λss do
20 if Pj 6= Plast then
21 λ sub

ss ← λ sub
ss \{v j};

22 else
23 break;
24 end
25 end
26 PathAnalysis(λ sub

ss , hp(λ ), sel f (λ ));
27 λ sub

ss ← λss \{vlast};
28 PathAnalysis(λ sub

ss , hp(λ ), sel f (λ ));
29 end
30 end
31 return RT s;
32 end

This allows us to compose the values Sss,h according to the relations of the remote subtasks with

each suspension region. All such operations are performed by the function setSuspendingTask in

line 14. With all the parameters in τss defined, the WCRT of the self-suspending task is compute

at line 15. Details about this particular RTA are provided in the subsection below. Finally, the

procedure is repeated until all the self-suspending tasks are analyzed.

Applying Algorithm 4 to a path λ guarantees that the WCRT of every self-suspending task τ p

defined from λ has been correctly computed.

Fig. 4.4 illustrates the steps performed by Algorithm 4 to resolve the dependencies and derive

the WCRT regarding the path λ highlighted in Fig. 4.1.
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Figure 4.4: Unfolding the path λ highlighted in Fig. 4.1.

4.4.5 WCRT of a self-suspending task

We now show how three different response time analyses (two from (Bletsas, 2007) and the one

presented in Appendix A) for sporadic self-suspending tasks can be extended to cope with both the

dependent suspension regions and the self-interfering workload discussed in the previous sections.

The worst-case release pattern for the higher priority tasks follows directly from the results of these

analyses. Without loss of generality, we consider the WCRT of a self-suspending task τ p. We start

by proving the worst-case release pattern for the self-interfering subtasks in sel f (τ p).

Lemma 12. The contribution of sel f (τ p) to the WCRT of a self-suspending task τ p is upper-

bounded by releasing a single instance of each self-interfering subtask in sel f (τ p) synchronously

with any one execution region E p
h of τ p.

Proof. Following Lemma 11, a self-interfering subtask v j ∈ sel f (τ p) can delay the execution of

a self-suspending task τ p at most once for C j time units. Since all subtasks in DAG τk have

the same priority, they cannot preempt each other. Thus, v j cannot execute when an execution

region of τ p is active. The maximum interference imposed by sel f (τ p) on τ p happens then when

each v j ∈ sel f (τ p) is released synchronously with an execution region E p
h . Although such self-

interference is upper-bounded by ∑
v j∈sel f (τ p)

C j as a whole, the number of higher priority interfering

jobs is influenced by the exact placement of each self-interfering subtask, as assuming that v j

interferes with the execution region E p
h is equivalent to increase Cp

h by C j time units. In general,

enlarging different execution regions leads to different response times. Hence, allowing each of

these self-interfering subtasks to be released with any one execution region of τ p captures the

worst-case contribution of sel f (τ p) to R(τ p).

Suspension-oblivious analyses (Bletsas, 2007) treat suspension regions as part of the compu-

tations to be processed, making suspensions subject to the same sources of interference than the

execution regions. In this sense, the entire self-suspending task is model as a single sequential

task. Consequently, an upper-bound on the WCRT of τ p is found when the overall suspension

time is the largest (i.e., Sp,ub) and the self-interfering subtasks are released synchronously with
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E p
1 . That is,

R(τ p) =
q

∑
h=1

Cp
h +Sp,ub + ∑

∀τi∈hp(τ p)

dR(τ p)+ Ji

Ti
e×Ci + ∑

∀v j∈sel f (τ p)

C j (4.8)

The simplest suspension-aware analysis (Bletsas, 2007) focus on upper-bounding the WCRT

of each execution region independently. That is, the problem is reduced to a set of smaller se-

quential tasks by assuming that all the interfering workload releases jobs synchronously with each

and every execution region. In this case, the self-interfering subtasks must be accounted once in

each execution region E p
h . Moreover, the suspension time has no influence on the interference

generated. By using Eq. 4.7 to compute each R(E p
h ), the WCRT of τ p is given by

R(τ p) = Sp,ub +
q

∑
h=1

R(E p
h ) (4.9)

Both of the aforementioned tests run in pseudo-polynomial time but are substantially pes-

simistic. The pessimism is further aggravated because multiple self-suspending tasks need to be

analyzed to bound the suspensions regions of τ p. Later in Section A.6 we propose a MILP formu-

lation that finds tight upper-bounds (the best known) on the WCRT of a sporadic self-suspending

task with multiple suspension regions. The formulation exploits the duration of the suspension

regions to accurately upper-bound the number of jobs released by each higher priority task in each

execution region. Therefore, a weak characterization of the relation between the different suspen-

sion regions, and also their own bounds, compromises the quality of the solution. As it is implicit

in the relation Sp,ub ≤
q−1
∑

h=1
Sp

h , some upper-bounds on the duration of the suspension regions of τ p

are over-estimated. Hence we discuss the limitations of our generic model and propose a more

robust one that adheres to such formulation.

Consider the following example: τ p has two suspension regions, each one of them comprised

of a single remote subtask assigned to the same core; let v j and v j+1 represent those remote

subtasks, while τss denotes the inner self-suspending task formed by them. If R(τss)− Sub
ss <

R(v j) +R(v j+1), then the first suspension region plus the second suspension region cannot ex-

ceed R(τss)−Sub
ss . Consequently, one must find the trade off that satisfies R(τss)−Sub

ss , while still

representing a worst-case suspension pattern for τ p.

To address this issue, let Sp
h denote instead the hth suspension region of τ p and be characterized

by the 2-tuple (Sp,lb
h ,Sp,ub

h ), ∀h ∈ [1,q−1]. The parameter Sp,lb
h is a lower-bound on the duration

of the suspension region Sp
h , whereas Sp,ub

h is an upper-bound. We now prove the values for the

individual lower-bounds.

Lemma 13. Let V p
h denote the set of remote subtasks within E p

h and E p
h+1 of τ p. A lower-bound

on the suspension region Sp
h is given by Sp,lb

h = ∑v j∈V p
h

C j.

Proof. The WCRT of τ p is found when the response time of its remote subtasks is maximized.

We must therefore prove that the WCRT of each inner self-suspending tasks τo
ss (∀o ∈ proc(λ ),

o 6= p) within τp cannot be met if a remote subtask v j ∈ V p
h executes for less than C j time units.

The proof is by contradiction. Consider a release pattern σ for any inner self-suspending task τo
ss

that maximizes R(τo
ss) but where R(Eo

ss,h)<Co
ss,h. The execution region Eo

ssh
of τo

ss corresponds to
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a remote subtask v j ∈V p
h . If Eo

ss,h executes for its WCET Co
ss,h =C j, an equivalent release pattern

σ ′ can be obtained by delaying each subsequent interfering job release by Co
ss,h−R(Eo

ss,h) time

units. This means that the entire window [R(Eo
ss,h),R(τ

o
ss)] in σ is repeated after the initial Co

ss,h

time units in σ ′. Clearly, R(τo
ss) is not the worst-case response time of τo

ss which invalidates the

hypothesis.

If an inner self-suspending task τo
ss is comprised of a single remote subtask v j ∈V p

h (i.e., τo
ss is

sequential), than the value of Sp,lb
h can be improved by replacing the contribution of that particular

remote subtask with R(v j) instead of C j. Irrespectively of the type of the inner self-suspending

tasks, the upper-bound Sp,ub
h is computed as explained in Section 4.4.3. Based on these individual

bounds on the suspension regions, the following property holds.

Property 2. Let R(τo
ss,h) denote the total WCRT of the remote subtasks within E p

h and E p
h+2 of

τ p assigned to core o, ∀o ∈ proc(λ ), o 6= p. Admitting any solution, such that (1) Sp
h + Sp

h+1 ≤
∑

∀o∈proc(λ ),o 6=p
R(τo

ss,h), (2) Sp,lb
h ≤ Sp

h ≤ Sp,ub
h , and (3) Sp,lb

h+1 ≤ Sh+1 ≤ Sp,ub
h+1 , upper-bounds the worst-

case suspension behavior of the suspension regions Sp
h and Sp

h+1 of τ p.

The reasoning behind Property 2 is that, in the general case, no technique exists yet to deem

how the suspension time should be distributed between the suspension regions so that R(τ p) is

maximized. Hence, all the possible combinations should be considered. Property 2 must be ap-

plied to every sequence of suspensions regions in which an inner self-suspending task (not sequen-

tial) of τ p can be identified. We denote by ψ p the set of constraints that restrict the duration of mul-

tiple suspension regions of τ p together (i.e., constraints as Sp
h +Sp

h+1≤ ∑
∀o∈proc(λ ),o6=p

R(τo
ss,h)). Note

that an optimization problem is clearly adequate to address the complexity exposed by Lemma 12

and Property 2. Therefore, we describe how to integrate them in the formulation presented in

Section A.6.

In the extended MILP formulation, the duration of each suspension region in τ p is a real

variable denoted Sh, while Yj,h is a binary variable that indicates whether (Yj,h = 1) or not (Yj,h = 0)

a self-interfering subtask v j ∈ sel f (τ p) is released synchronously with the execution region E p
h .

Lemma 12 is formalized by Constraint 4.10

∀v j ∈ sel f (τ p) :
q

∑
h=1

Yj,h ≤ 1, (4.10)

which can then be integrated in the WCRT computation of each execution region as in Con-

straint 4.11 (which replaces Constraint A.10), where NIi,h is the number of interfering jobs of τi in

E p
h .

∀E p
h ∈ τ

p :

R(E p
h ) =Cp

h + ∑
τi∈hp(τ p)

NIi,h×Ci + ∑
v j∈sel f (τ p)

Yj,h×C j. (4.11)
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That is, each self-interfering subtask interferes with exactly one execution region for its WCET.

The individual bounds on the duration of each suspension region are expressed by Constraint 4.12.

∀h ∈ [1,q−1] : Sp,lb
h ≤ Sh ≤ Sp,ub

h (4.12)

Constraint 4.13 enforces that the sum of the suspension regions cannot exceed the upper-bound

on the overall suspension time. For a more accurate analysis, Constraint 4.13 should be replaced

with all the global constraints defined in ψ p.

q−1

∑
h=1

Sh ≤ Sp,ub (4.13)

4.5 Higher priority DAG tasks

In this section, we extend our analysis to cope with multiple partitioned DAG tasks interfering

with each other. As the WCRT of a DAG task τk is ultimately derived through a collection of

self-suspending tasks τ
p
k , we restrict our attention to the worst-case interference imposed by the

higher priority tasks on any τ
p
k . Let V p

i denote the set of subtasks of the higher priority DAG task

τi assigned to core p. We prove below that each τi can safely be replaced in the response time

analysis of τ
p
k by a set V p′

i of np
i sequential tasks, where np

i = |V p
i |.

Let a sequential task τi,o ∈V p′
i correspond to the subtask vo ∈V p

i . The task τi,o upper-bounds

the worst-case request of the subtask vo, ∀o ∈ [1,np
i ], and is defined as τi,o

def
= 〈Ci,o,Di,o,Ti,o,Ji,o〉.

The worst-case execution time Ci,o of τi,o is given by the WCET of vo ∈ V p
i , that is, Ci,o

def
= Co.

Both the deadline Di,o and the period Ti,o are inherited from τi. The parameter Ji,o denotes the

release jitter of τi,o and is defined as the difference between the WCRT of τi and the WCET of

vo ∈V p
i . Formally, Ji,o

def
= Ri−Co. This transformation eliminates the dependencies regarding the

interfering workload of τi towards τ
p
k by assuming that each subtask of τi assigned to core p is

released independently. A similar method was already proposed in (Palencia et al., 1997) with

improved release jitters. Note that the method in (Palencia et al., 1997) could be used here too.

The results would in fact be more precise, but at the cost of additional computational complexity.

Theorem 10. The interference exerted by a DAG task τi ∈ hp(τk) on a self-suspending task τ
p
k is

upper-bounded by the sum of the interferences imposed on τ
p
k by each sequential task τi,o ∈ V p′

i ,

where τi,o
def
= 〈Ci,o,Di,o,Ti,o,Ji,o〉 as defined above.

Proof. The interference exerted by τi on τ
p
k is equal to the sum of the interference caused by

each of the subtasks vo ∈ V p
i . We must therefore prove that the interference caused by each task

τi,o ∈V p′
i upper-bounds the interference generated by each vo ∈V p

i . The proof is by contradiction.

Let us assume that vo causes more interference than τi,o. There might be only two reasons for this

to be true: (i) a job released by vo creates more interference than a job released by τi,o , or (ii) vo

releases more jobs than τi,o in a given time window.

Since τi,o and vo are both non-self-suspending and the WCET of τi,o is equal to the WCET

of vo, (i) cannot be true. As the minimum inter-arrival time of vo is identical to that of its corre-
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sponding sequential task in V p′
i , only their jitters may cause (ii) to be true. Now, let us compute

the maximum jitter that can be experienced by the subtask vo. Let ai denote the arrival time of any

job of τi. Since Ri assumes that each subtask of τi executes for its WCET, it means that a subtask

vo of τi cannot start executing later than Ri−Co after ai (otherwise it would complete later than

ai +Ri and Ri would not be the WCRT of τi). The release jitter of vo is therefore upper-bounded

by Jo
def
= Ri−Co. This contradicts (ii) and hence proves the lemma.

4.6 Mapping techniques

While the schedulability analysis presented in the previous sections has the merit to work for

any arbitrary mapping and provides invaluable knowledge regarding the cross-core effects, it does

so through an exhaustive parsing of the paths in a DAG. As the number of paths tends to grow

significantly with the number of edges added to a DAG, the computational complexity of this

method becomes prohibitively expensive in the general case. Moreover, a concrete mapping may

reduce the interactions between subtasks, thus simplifying the problem at hand. Therefore, in this

section, we propose a specific subtask-to-core assignment and respective schedulability test that

favors efficiency over (average) performance of the parallel computations.

4.6.1 Pessimism in the previous analysis

To motivate our choice of a very simple and linear mapping, we now discuss the different sources

of pessimism inherent to the RTA derived for general partitioned DAG tasks scheduled by FP.

• Self-interference. Eq. 4.3 includes the full contribution of all the subtasks of τi that are

assigned to any core p ∈ proc(λi,`), as long as each of such subtasks is not an ancestor or

descendant of every subtask in the path λi,` assigned to the same core. Consider a fork-

join task composed of two sequential segments separated by a parallel segment with two

subtasks. One of the two paths is mapped entirely on a single core, while the remaining

subtask is designated to execute elsewhere. According to Eq. 4.3 both paths suffer self-

interference from the remaining subtask, thus by Eq. 4.1 their response time is equal to the

workload of the task if there is no inter-task interference. However, in this situation, it is

clear that the WCRT cannot be larger than the critical path length.

Furthermore, each of the self-interfering subtask in the set sel f (λi,`) is allowed to interfere

with any execution region when the path λi,` is analyzed as a self-suspending task. As some

subtasks eventually cannot interfere with certain execution regions due to the precedence

constraints, this oversight may increase the response time of the path.

• Results on self-suspending tasks. While the uniprocessor RTA for sporadic sequential

tasks is exact, the same result is hardly available for sporadic self-suspending tasks. In

Section A.5, we present an algorithm to compute the exact WCRT for a self-suspending

tasks with one suspension regions when the higher priority tasks are sequential. However,
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the algorithm suffers from exponential time complexity even for such limited model. No

exact methods exist for the general case. This means that the WCRT of each self-suspending

task is likely to be overestimated. Provided each path results in multiple self-suspending

tasks, the pessimism is then cumulative.

• Length of the suspension regions. Under a sporadic release pattern, longer suspensions

cannot lead to reduced interference; quite the opposite. The issue with this special type of

self-suspending tasks is that the suspension time distribution is dynamic: the WCRT of a

task bounds the total suspension time of another, but the two concrete worst-case scenarios

are often incomparable. We solved the problem by allowing the length of each suspension

region to vary from its WCET to its independent WCRT, as long as the total duration re-

spects the end-to-end timing constraint giving by the inner self-suspending task. For higher

accuracy, the length of an execution region would have to match the length of the corre-

sponding suspension region.

• Inter-task interference. Each higher priority partitioned DAG task is decomposed into a set

of independent sequential tasks, one for each subtask in a DAG. With this transformation

process, the order in which the subtasks must execute is lost as the release times are not

constrained according to their functional dependencies. As a result, we have that if one

subtask of a DAG job causes interference then all of its subtasks assigned to the same core

will contribute to the interfering workload. The pessimism in the computation of the inter-

task interference is further increased due to the conservative release jitter assigned to every

subtask.

The aforementioned pessimism stems from the fact that a path may be spread over several

cores, thus creating cross-core dependencies which are difficult to correlate and quantify with pre-

cision, specially in the presence of higher priority workload. By Eq. 4.1 and the schedulability

condition Ri ≤ Di, we get that a path λi,` is allowed to be delayed by at most Di− len(λi,`) time

units independently of the number of cores used. The more subtasks we map to different cores,

the more susceptible the DAG task becomes to inter-task interference. Based on these two obser-

vations, we seek to derive a mapping process such that each path uses the least number of cores

and paths of a same DAG task execute together if possible.

4.6.2 DAG partitioning

We start by addressing the problem of partitioning each DAG task τi independently with the goal

of minimizing the processor count that guarantees feasibility. DAG partitioning consists in the

agglomeration of multiple subtasks according to a specific criteria, allowing resulting partitions to

be effectively distributed among processors without violating the desired semantics. A plethora

of DAG partitioning algorithms is available in the graph-theoretical literature (Kwok and Ahmad,

1999), however they do not contemplate real-time constraints, focusing instead on the optimiza-

tion of communication costs, schedule length or load balancing. Another key differentiator is that
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a specific subtask ordering is usually enforced, so that subtasks always execute according to se-

quence defined in the partition. Although some of these algorithms are designed for scheduling

on bounded number of cores, they do not provide a mechanism to minimize such metric. To our

knowledge, this highly unexplored aspect of DAG partitioning and scheduling has been addressed

firstly by Bozdag et al. (Bozdağ et al., 2009). Nevertheless, the work in Bozdağ et al. (2009)

targets DAGs with communication weights and aims at preserving the original schedule length.

Recall that λi = {λi,1, . . . ,λi,`} corresponds to the set of all `i paths found in the DAG Gi.

Now let Pi = {P1
i , . . . ,P

h
i } be a set of hi notional processors, with hi ≤ `i, such that each path

could be associated to a dedicated notional processor in the worst-case. The notional processors

are completely unrelated to the platform Π and they will be mapped to specific cores in a second

phase (next subsection). Each notional processor Ph
i contains the set of subtasks v j ∈Vi that have

been designated to run virtually on it. We allow the same subtask to be assigned to multiple

notional processors. We further define W (Ph
i ) as the total workload assigned to Ph

i , and Ix
i,h as the

total workload of those subtasks that are in Ph
i but are not also assigned to a notional processor Px

i .

Formally, W (Ph
i ) = ∑

v j∈Ph
i

C j and Ix
i,h =W (Ph

i \Px
i ), 1≤ h,x≤ hi, h 6= x.

We aim at reducing the number of notional processors required to execute a partitioned DAG

task τi such that its deadline Di will always be met. If τi is a light task (i.e., density≤ 1), then the

entire DAG can be executed on a single processor since Wi ≤ Di. In this trivial case, all paths can

be merged into a single notional processor, thus Pi = P1
i =Vi. Instead, when τi is a heavy task (i.e.,

density > 1), finding a DAG partitioning that yields optimal number of processors is challenging.

For this reason, we propose an iterative path merging heuristic, starting with Ph
i = λi,` for each

h = `, defined according to the following steps:

1. Compute every Ix
i,h.

2. Let Pa
i (origin) and Pb

i (destination) be a pair of eligible notional processors such that the

following quantity is maximal:

W (Pa
i )− Ib

i,a (4.14)

Ties are broken according to (i) minW (Pa
i ), (ii) minW (Pb

i ) and (iii) arbitrarily.

3. If W (Pb
i )+ Ib

i,a > Di, mark the pair (Pa
i ,P

b
i ) as ineligible; go to step 2.

4. Pb
i = Pb

i ∪Pa
i , Pi = Pi \Pa

i , hi = hi−1; go to step 1.

Stop condition: Every pair of candidates is ineligible.

The heuristic above attempts to merge as many pairs of notational processors as possible by

iteratively prioritizing the pair with the largest common workload. Initially, each notional proces-

sor is formed by a distinct path in the DAG Gi, thus hi = `i. After computing Ix
i,h for every pair

(Ph
i ,P

x
i ) with h 6= x, their common workload is given by Eq. 4.14.

At the very first iteration, all pairs are considered eligible for merging. The criteria used to

select the candidate pair is based on the similarities between two (sets of) paths. We choose the
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Figure 4.5: A DAG task τi with Wi = 34 and Di = 16.

eligible pair (Pa
i ,P

b
i ) with the maximum duplicated workload because any other pair either (i) has

more incompatibilities (larger value of Ix
i,h), or (ii) their total workload is smaller. As a result,

merging Pa
i with Pb

i reduces as much as possible the cumulative workload of all the partitions at

that particular step. In case of a tie, we prioritize the less incompatible pair.

Before merging, we check the feasibility of the operation — a pair of notional processors

cannot be merged whenever their total non-duplicated workload exceeds the task deadline. Ac-

cordingly, if W (Pb
i )+ Ib

i,a > Di, then (Pa
i ,P

b
i ) is ineligible for merging and a new candidate pair

must be selected. Otherwise, we proceed by merging Pa
i with Pb

i : Pb
i receives Ib

i,a units of workload

due to the union of the two sets and Pa
i is discarded from Pi, thus the number of partitions required

to schedule τi is decreased by 1. The procedure is repeated until all pairs have been declared in-

eligible. Note that the equality hi = 1 is never met when the input DAG corresponds to a heavy

task, since Wi > Di. Moreover, we remark that the efficiency of the algorithm can be drastically

improved since the merging operation is commutative (W (Ph
i ∪Px

i ) =W (Px
i ∪Ph

i )) and only a very

small subset of values Ix
i,h need to be recomputed after a successful merge.

Example 14. Consider the DAG task τi depicted in Fig. 4.5. This DAG task is heavy (Wi/Di =

34/16 > 1) and has 6 paths. Thus, we start by creating hi = 6 notional processors and assign

a distinct path to each of which, resulting in P1
i = {v1,v2},P2

i = {v3,v2},P3
i = {v3,v4,v6},P4

i =

{v3,v5,v6},P5
i = {v7,v8,v9,v6},P6

i = {v10,v9,v6}. We illustrate the DAG partitioning procedure

in Fig. 4.6.

At the first iteration, and after computing the values of Ix
i,h, two pairs of notational proces-

sors lead to the maximization of Eq. 4.14: (P5
i ,P

6
i ) and (P3

i ,P
4
i ) with W (P5

i )− I6
i,5 = W (P3

i )−
I4
i,3 = 7− 2 = 5. The pair (P5

i ,P
6
i ) wins the tiebreaks according to criteria (ii) since W (P6

i ) =

9 < W (P4
i ) = 10, and is selected for merging. As W (P6

i ) + I6
i,5 = 9 + 2 ≤ Di = 16, the fea-

sibility constraint is satisfied and the pair (P5
i ,P

6
i ) is merged into a single notional processor

P5
i = {v7,v8,v10,v9,v6}. The DAG partitioning heuristic continues to successfully merge pairs

of notional processors for the next two iterations, reducing hi to 3 with P1
i = {v1,v3,v2},P2

i =

{v3,v4,v5,v6},P3
i = {v7,v8,v10,v9,v6}. At this point, the pair (P2

i ,P
1
i ) is selected for merging

but is declared ineligible due to W (Pb
i )+ Ib

i,a > Di. The same happens to the pairs (P3
i ,P

2
i ) and

(P3
i ,P

1
i ). Consequently, the procedure stops as no pair of notional processors can be further
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Figure 4.6: Phases of the partitioning heuristic applied to the DAG task τi of Fig. 4.5. Green
cells represent the selected eligible pair, blue cells the pairs that reached tiebreaks, and red cells
ineligible pairs.

merged without resulting in a violation of τi’s deadline. The final partitioning of τi is then given

by Pi = {P1
i ,P

2
i ,P

3
i }.

It emerges from the DAG partitioning heuristic that a heavy DAG task is feasible on hi cores by

assigning (the subtask of) each final notional processor to a dedicated a core. Since our heuristic

is designed to minimize hi, this result allows to save important computing resources when task

isolation is considered. For instance, in federated scheduling (Li et al., 2014) a subset of dγie
processors are exclusively allocated to each heavy task τi with a minimal capacity requirement

γi =
Wi−Li
Di−Li

. Semi-federated scheduling (Jiang et al., 2017) dedicates bγic processor instead, and

schedules the remaining fractional part γi−bγic together with the light tasks. However, the lower-

bound on the capacity requirement is not tight. Using the example above, we get γi =
34−13
16−13 = 7,

hence both techniques would dedicate 7 processors to guarantee τi’s schedulability. In contrast,

our heuristic ensures that only 3 cores are required.

4.6.3 Allocation and scheduling

Unfortunately, the proposed partitioning does not comply with the model defined in Section 4.2 as

some subtasks eventually appear in multiple notional processors. A one-to-one relation is neces-
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Figure 4.7: Representation of the partitioned DAG task τi after subtask duplication. Duplicated
subtasks have their borders colored red.

sary to enable the use of the response time analysis presented from Section 4.3 to Section 4.5. The

problem is that the feasibility property may not hold under PFP scheduling in the general case,

after deciding on which notional processor is more suitable for each duplicated subtask. Even

if a task is feasible under such circumstances, it still has to be deemed PFP-schedulable by our

sufficient schedulability test. To circumvent this issue and also address the limitations described

in Section 4.6.1, we propose a subtask duplication approach that greatly simplifies the partitioned

scheduling framework.

Task (or subtask) duplication (Ahmad and Kwok, 1998) is a DAG scheduling technique that as-

signs subtasks redundantly on multiple cores in order to eliminate a large portion of inter-processor

communication. Duplication-based algorithms have been shown to provide much better solutions

than non duplication-based ones when the goal is to minimize schedule length (Kwok and Ahmad,

1999). Here, we employ subtask duplication solely to avoid cross-core dependencies. The proce-

dure is based on the outcome of the DAG partitioning heuristic and works in the following manner:

(i) each subtask is replicated as many times as it appears within the set of notional processors, (ii) a

duplicated subtask becomes ready as soon as all its predecessors partitioned into the same notional

processor finish execution, and (iii) a duplicated subtask cannot precede subtasks partitioned into

different notional processors. Thus every path is self-contained. Following the DAG depicted in

Fig. 4.5 and respective partitioning as discussed in Example 14, Fig. 4.7 provides the visual repre-

sentation of τi considering subtask duplication. Note that the subtasks assigned to each notational

processor form a sub-DAG which is completely independent of the other sub-DAGs.

Since all precedence constraints are now local, the workload within a notional processor ex-

ecutes sequentially no matter how independent subtasks are prioritized. As a result, the problem

of scheduling a partitioned DAG task becomes equivalent to the problem of scheduling a set of

partitioned sequential tasks (each notional processor is treated as a sequential task). The downside

of this approach resides on an increase of the system utilization due to the duplicated subtasks.

Many solutions are available in the literature to decide on the allocation of sequential tasks to

cores and to schedule such tasks under the partitioned paradigm (López et al., 2004; Baruah and

Fisher, 2005; Davis and Burns, 2011). For this particular problem, we choose to use PEDF as

the scheduling algorithm due to the optimality of EDF for preemptive uniprocessor scheduling of
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sporadic sequential tasks (Liu and Layland, 1973). Similarly to the work in (Jiang et al., 2017), we

adopt the well-known Worst-Fit bin-packing heuristic (Johnson, 1974) to allocate notional proces-

sors to cores. Notional processors are considered in the non-increasing order of their density. The

density of a notional processor Ph
i is equal to W (Ph

i )/Di.

Specifically, we map the notional processors to the physical cores in π at design time accord-

ing to a EDF schedulability condition. For simplicity, we consider the straightforward density

bound, however a more accurate test (such as the demand bound function approximation proposed

in (Baruah and Fisher, 2007)) could be used at the cost of increased computational complexity. At

each iteration, we select the not-yet-mapped notional processor with the largest density and assign

it to a core p (p∈ [1,m]) such that p has the least total density σp and σp ≤ 1 holds after allocating

this notional processor. If a notional processor is assigned to a core p, then all subtasks that have

been partitioned to it are statically assigned to p and cannot execute elsewhere during run-time.

Whenever none of the m cores is able to accommodate a notional processor, the mapping process

is aborted and declared infeasible. Otherwise, the mapping is successful and every DAG task τi is

schedulable by PEDF.

4.7 Experimental results

In this section, we evaluate the effectiveness of our two proposed schedulability tests for parti-

tioned DAG tasks comparatively to the state-of-the-art using randomly generated task sets.

4.7.1 Evaluation of the response time analysis

Firstly, we devote our attention to the RTA for fixed-priority scheduling presented from Section 4.3

to 4.5 by evaluating (i) its performance according to the different analysis for self-suspending tasks

discussed in Section 4.4.5, and (ii) the gain in terms of WCRT in comparison with an existing anal-

ysis for partitioned parallel tasks derived in the context of distributed system. Although most of the

available results for distributed systems have been implemented in the MAST tool chain (Univer-

sidad de Cantabria, SPAIN, 2014), only the holistic analysis originally developed by Tindell and

Clark (Tindell and Clark, 1994) and refined by Palencia et al. (Palencia et al., 1997) has support

for multi-path constructs in the form of fork-join tasks (not general DAGs). Thus, we restrict our

attention to task sets comprised of n−1 sequential tasks and 1 fork-join task, where the fork-join

task is the task under analysis.

All the task sets were generated using the randfixedsum algorithm (Emberson et al., 2010),

allowing us to choose a constant total task set utilization for a given number of tasks and bounded

per-task utilization. The total utilization was set to 50% of the platform capacity. For the sequential

tasks, the per-task utilization ranged from [0.05,0.70], while periods were uniformly distributed

over [100,1000]. The task execution requirements were calculated from the respective periods

and utilizations. For the fork-join task, its workload was set to half of the maximum period (i.e.,

500), whereas the WCET of each subtask was uniformly distributed over [1,100]. By default,

the fork-join task had 2 parallel segments with 4 subtasks within each segment. All the mapping
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decisions were completely random. For this reason, we study the computed WCRT and not the

schedulability of the task. Thus, the period of the fork-join task was arbitrarily large. We generated

100 task sets per combination of parameters, while ensuring that all the sequential tasks were

always schedulable.

(a) n = 12 and m = 4.

(b) 2 parallel segments with 4 subtasks each.

Figure 4.8: Average WCRT gain (a)–(b) found by our approach under various system config.

For the first set of experiments, we fixed the number of cores to m = 4 and the number of tasks

to n = 12, while varying the number of parallel segments from 1 to 4 and the number of subtasks

within a parallel segment from 2 to 8. Fig. 4.8 inset (a) show the average gain (w.r.t. the WCRT)

attained by our analysis comparatively to the holistic analysis, when using the three different tests

for self-suspending tasks. These tests are referred to as Joint, Split and MILP, respectively to

the order they were presented in Section 4.4.5. To clarify, (i) Joint is the suspension-oblivious

approach, (ii) Split assumes an independent worst-case scenario for each subtask, and (iii) MILP

finds a worst-case release pattern considering the multiple suspensions. MILP is the only test that

outperforms entirely the holistic analysis, with average gains within 20 to 50%. Interestingly, Split

exhibits a considerable gain when the number of parallel segments is minimized but ends up in

deficit. This behavior can be justified by a higher number of self-interfering subtasks, since they

are accounted once in each execution region. Joint has a drastic performance degradation when
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the varying parameters are increased because the number of self-suspending tasks observed in the

paths grows significantly.

We then study the importance of light and heavy tasks to the inter-task interference. Hence,

the second set of experiments had the number of parallel segments fixed to 2 and the number

of subtasks in a parallel segment fixed to 4, while we varied the number of tasks in the range

[5,20] and the number of cores in the range [4,10]. The results are depicted in Fig. 4.8 inset (b).

Both MILP and Split outperform the holistic analysis with average gains close to 30% and 10%,

respectively. The holistic analysis was derived for arbitrary deadline systems, thus assumes that

some subtasks may interfere with themselves. An additional source of pessimism is the individual

worst-case scenarios assumed for the subtasks. As the utilization of the interfering tasks increase,

Split becomes more competitive mainly because the upper-bounds on suspension time tend to

also increase. Inversely, Joint performs very poorly with average losses within 2 to 30% as more

workload is assumed to interfere with the suspensions. Although not reported here, Joint becomes

a reasonable alternative solution to the MILP when the ratio between the workload of the parallel

task and the periods of the interfering tasks is smaller.

4.7.2 Evaluation of the duplication-based schedulability test

We now compare the performance of our duplication-based EDF schedulability test for partitioned

DAG tasks presented in Section 4.6 (referred to as PPEDF) to other scheduling paradigms for con-

strained deadline DAGs. Namely, federated scheduling (referred to as Federated) introduced in (Li

et al., 2014), semi-federated scheduling (referred to as Jiang) proposed in (Jiang et al., 2017), and

our GFP schedulability test (referred to as IRTA-FP) presented in Chapter 3. Our response time

analysis for partitioned DAGs is left out of this comparison since it was greatly outperformed

by PPEDF across the board. Similar to PPEDF, in both federated approaches (discussed in Sec-

tion 2.4), light tasks are partitioned according to the Worst-Fit decreasing density heuristic and

scheduled by partitioned EDF based on the density bound. Thus, analytically, these three meth-

ods are only differentiated by the way heavy tasks are handled. Jiang uses the simpler algorithm

SF[x+1] to schedule the fractional part of a heavy task since it performs similarly to SF[x+2] as

shown in (Jiang et al., 2017).

Each DAG task is generated according to the method described in Section 3.8. That is, a DAG

is obtained from a nested fork-join DAG (see Def. 9 to recall the definition of a NFJ-DAG) by

adding directed edges between pairs of nodes according to a probability padd . The NFJ-DAG is

constructed by recursively expanding its nodes. Each node may spawn up to npar parallel branches

with a probability equal to ppar or join with a probability equal to pterm. The maximum number

of nested forks is given by depth. By default, these parameters are set ppar = 0.8, pterm = 0.2,

depth = 2 and padd = 0.2. The key difference is that now the period Ti of a DAG task τi is lower-

bounded by Li instead of Mi. Thus, when Utot is varied, Ti is uniformly chosen in the interval

[Li,Wi/β ], with β = 0.035×m. This lower-bound also holds when we generate a fixed number

of tasks for a constant Utot using UUnifast. For each parameter configuration, we generate and

evaluate the schedulability of 500 task sets composed of n DAG tasks.
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Figure 4.9: PPEDF varying Utot for
implicit deadline tasks.

Figure 4.10: PPEDF varying Utot for
constrained deadline tasks.

We start by investigating the relation between the period and the deadline, when varying the

total utilization Utot and setting m = 8. Fig. 4.9 reports the number of schedulable task sets in the

case of implicit deadlines and Utot ∈ [4,7]. PPEDF outperforms both IRTA-FP and Federated for

any value of Utot , with an average steady gain of around 10% comparatively to Federated and huge

schedulability improvements comparatively to IRTA-FP when Utot ≥ 5.25. In comparison to Jiang,

PPEDF performs slightly better until Utot = 5.25 but then cannot keep the pace, eventually peaking

at a 12% performance loss. This trend highlights the drawback of introducing additional workload

into a rather congested system by the duplication technique. IRTA-FP is very competitive up to

Utot = 5 but has a early breakdown utilization at the 75% mark, whereas the other schedulability

tests still admit task sets at 90% utilization. Results for the case of constrained deadlines are re-

ported in Fig. 4.10 with Utot ∈ [2,5]. While similar trends can be observed between PPEDF and

both federated approaches, these schedulability tests suffer a tremendous performance degrada-

tion: they exhibit a breakdown utilization at Utot = 5 and cannot schedule even 50% of the task

sets when Utot > 2.5. That is because they require a significantly larger number of cores to sched-

ule heavy tasks as deadlines become shorter and the schedulability condition is no longer exact.

Interestingly, IRTA-FP substantially outperforms every other method, which suggests that global

scheduling is an appealing alternative in the more general case of Di ≤ Ti, ∀τi ∈ τ .

For the next sets of experiments, we restrict our attention to implicit deadline DAG tasks, the

total utilization is kept constant at 0.7m, and both the number of tasks and cores are fixed (by de-

fault, we set n= 1.5m and m= 8). Fig. 4.11 shows results for various values of n. PPEDF performs

very poorly for low values of n: in particular, when n ≤ 4, PPEDF struggles to schedule any task

set, while both federated approaches are able to admit half of the task sets in average. This behav-

ior indicates that PPEDF fails to partition a DAG with very high utilization on (Wi−Li)/(Di−Li)

or less cores, which increases the number of duplicated tasks as the number of successful merges

decreases. However, the effectiveness of PPEDF’s partitioning algorithm rapidily increases, over-

coming both Federated and Jiang when n≥ 10 and converging to full schedulability early at n= 14

as opposed to n = 20. IRTA-FP is also suitable for larger values of n, but it is significantly out-
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Figure 4.11: PPEDF varying n. Figure 4.12: PPEDF varying m.

performed by PPEDF. For example, IRTA-FP accepts 38% of the task sets when n = 10, while

PPEDF has an acceptance ratio of 78%. Schedulability results for different values of m are de-

picted in Fig. 4.12. PPEDF reaches nearly full schedulability and greatly outperforms all the other

methods for any values of m: in average, it achieves a 13%, 26% and 23% schedulability improve-

ment over Jiang, Federated and IRTA-FP, respectively. Since PPEDF does not dedicate processors

to the heavy tasks, this allows for higher flexibility during the bin-packing phase, resulting in an

efficient partitioning of the low utilization DAG tasks. As a salient trait, both IRTA-FP and PPEDF

are robust to large multiprocessor systems, while Jiang and Federated slightly deteriorate as the

core count increases.

Fig. 4.13 presents the number of schedulable task sets when varying the maximum number

of parallel branches npar in the range [2,8]. Contrary to the other schedulability tests, PPEDF is

barely impact by the parallelism in the DAGs and has a very high acceptance ratio (around 88%)

for any value of npar. Although all the methods tend to converge for npar ≥ 8, PPEDF offers

considerable improvements for DAGs with limited parallelism (i.e., npar ≤ 4). In particular, when

most of the DAG’s workload is sequential (i.e., npar = 2), IRTA-FP exhibits a 79% loss and only

Figure 4.13: PPEDF varying npar. Figure 4.14: PPEDF varying padd .



88 Schedulability Analyses for Partitioned Scheduling

manages to schedule 4% of the task sets, which reflects the well-known larger degree of pessimism

present in the analysis of GFP scheduling over the analysis of partitioned scheduling for sequential

tasks (Sun and Di Natale, 2018). Fig. 4.14 depicts the results for different DAG structures, since

we varied the probability of adding additional edges between nodes of the original DAG from 0

(i.e., NFJ-DAG) to 1 (i.e., synchronous parallel task). PPEDF outperforms all the other methods

when padd < 0.3, but the situation is reversed when padd > 0.7. Comparatively to Jiang, PPEDF

shows in average a deficit of 24% for padd ≥ 0.4. Specifically, the end-to-end performance of

PPEDF drops close to 50%, from 484 schedulable task sets in the case of NFJ-DAGs to 266 in the

case of synchronous parallel tasks. This strong degradation is justified by a severe increase in the

number of paths as the DAG’s connectivity is boosted, some of which cannot be merged by the

DAG partitioning algorithm, leading to the generation of more notional processors and duplicated

subtasks within such tasks.

4.8 Summary

Although parallel tasks have recently received considerable attention from the real-time commu-

nity, most of the available results focus on multiprocessor global scheduling as addressed in Chap-

ter 3. Instead, in this chapter, we studied parallel tasks under a static subtask-to-core mapping as

a way to minimize the expected negative effects of such highly parallel models on the lower-level

context-dependent timing analysis. We proposed a novel response time analysis for sporadic DAG

tasks to be fixed-priority scheduled on a multiprocessor platform in a partitioned fashion. As the

analysis is based on the self-suspending tasks theory, we derived a method to model and charac-

terize the worst-case scheduling scenario of a partitioned DAG task as a set of self-suspending

tasks. Furthermore, we showed how to transform existing response time analysis for sporadic

self-suspending tasks in uniprocessors to analyze partitioned DAG tasks; both simple and more

complex techniques. Experiments among randomly generated task sets show that our approach

obtains a significant gain in terms of computed WCRT comparatively to the state-of-the-art in

distributed real-time systems.

Due to the complexity and pessimism in the previous approach, we then proposed a second

schedulability analysis for DAG tasks scheduled by EDF under the partitioned paradigm. We de-

veloped a partitioning algorithm that maps similar paths of a DAG to the same processor, aiming

to minimize the number of cores that guarantees feasibility and to eliminate cross-core depen-

dencies. Thanks to the duplication of key subtasks, all resulting partitions are independent of

each other. Thus, the problem of scheduling a set of partitioned DAGs becomes equivalent to

the problem of scheduling a set of sequential tasks on multiprocessors in a partitioned manner.

Experimental evaluation demonstrated that this new schedulability test is very effective, achiev-

ing a relatively high schedulability ratio and outperforming both global and federated scheduling

under most configurations. Moreover, its performance is competitive with semi-federated, while

avoiding additional run-time mechanisms and overheads. This suggests that subtask-duplication

is a promising solution to the problem of scheduling partitioned DAG tasks.



Chapter 5

A Conditional Model for DAG Tasks

Both the schedulabity problems addressed in Chapters 3 and 4 consider a DAG task model where

all nodes are triggered and thus executed for every task activation. However, non-trivial real-world

applications feature conditional operations that depend on run-time data, leading to workloads with

variable sizes and compositions. In this chapter, we identify the need of explicitly modeling such

control-flow information for parallel tasks scheduled atop multiprocessor systems. Notably, the

contributions of this work have opened a new research direction for the real-time community.

Accordingly, we propose a multi-DAG model where each task τi ∈ T is characterized by a

collection of execution flows Fi = {Fi,1, . . . ,Fi,ni}, each of which represented as a separate DAG.

Due to conditional statements, only one of such execution flows is taken at run-time by each

instance of τi. We derive a two-step solution that constructs a single synchronous DAG of servers

for a multi-DAG task τi and show that these servers are able to supply every τi’s execution flow

with the required cpu-budget so that τi can execute entirely, irrespective of the execution flow taken

at run-time, while satisfying its precedence constraints. As a result, each multi-DAG task can be

modeled by its single DAG of servers, which facilitates in leveraging the existing single-DAG

schedulability analysis techniques for analyzing the schedulability of conditional DAG tasks.

5.1 Motivation

As we described in Chapter 2, several real-time task models have recently been proposed to cope

with different forms of parallelism exposed by modern embedded applications. Typically, these

applications also manifest conditional clauses due to control structures (e.g., “if-then-else” state-

ments) within the tasks code; meaning that different activations of a same task may execute dif-

ferent parts of its code. Unfortunately, none of such models (kindly note that the conditional DAG

model presented in Section 2.5 was introduced subsequently) explicitly capture these different

flows of execution that a parallel task most likely will take during its recurrent activity. Instead,

all those models represent a task as a single graph for which all the subtasks must execute each

time the task is released. In other words, those models are unable to express any control-flow

89
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Figure 5.1: Example of a conditional parallel program using OpenMP.

information, such as conditional statements, because they assume a single non-variable internal

task structure that has to be fully scheduled and executed at every task release.

Let us consider a simple program (see Fig. 5.1) starting with a call to a function A followed by

an if-then-else statement. If the condition of the statement is satisfied, then the program executes in

parallel four instances of a function B, otherwise it executes in parallel two instances of a function

C. It is trivial to see that an actual run of this code can only take one of the two execution paths

(referred to as “execution flows” hereafter). That is, it can either take the if execution flow or the

else execution flow, but never both. If each instance of these functions is modeled as a subtask,

then the mutual exclusion between subtasks of B and C (resulting from the conditional clause)

cannot be expressed by the parallel models proposed so far in the real-time literature, inadvertently

leading to one of the two cases:

Case 1: model function A as a node connected to four nodes B and two nodes C, which are

in turn connected to node D (see Fig. 5.2a). The resulting graph is then composed of 8 nodes

(i.e., every possible node) that are all assumed to be executed each time the task is run. The total

workload is thus 29, while in fact the task requires at most 19 units of processing time (by taking

the “if” branch). This corresponds to an obvious over-approximation of the task’s worst-case

workload, which makes the high-level analyses (like the schedulability analysis) more pessimistic.

Case 2: consider only the “worst-case execution flow” of the program and model that single

flow as a graph of subtasks that must all execute. However, determining the worst-case execu-

tion flow of a parallel task is extremely challenging since both its response time and interfering

contribution may vary significantly and in a conflicting manner from job to job. Assuming a suffi-

ciently large m and no higher priority tasks, the WCRT of a task is reached by executing the flow

with maximum “critical path length”. In our example, indeed such a WCRT (= 1+5+2 = 8) is

reached by taking the “else” flow depicted in Fig. 5.2c. Yet, this flow is not necessarily the one

exerting the maximum interference on the lower priority tasks because there may exist a shorter

flow demanding more processing resources or spanning a higher number of cores. The “if” flow

depicted in Fig. 5.2b illustrates such hypothesis, as it spawns 4 parallel subtasks instead of 2 and

has workload of 19 as opposed to 13. In the next section, we delve deeper into this scheduling

issue.

This dissertation identifies the need to support modeling of such applications for which each

run may execute a different set of subtasks and all these subtasks may have different dependencies
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(a) Complete graph. (b) “If” execution flow. (c) “Else” execution flow.

Figure 5.2: Possible representations of the program in Fig. 5.1.

from one run to another. The main difference comparatively to the existing parallel task models

is that we represent a task as a set of DAGs where each DAG models a single execution flow

of the application. We believe that such a model is more accurate and reliable than the state-of-

the-art as it does not create a single DAG by cross-cutting the structures of multiple execution

flows with different parameters (for instance, we model the “if” and “else” flows of Fig. 5.2b and

Fig. 5.2c as two separated DAGs instead of modeling the task by using the graph of Fig. 5.2a).

We also believe that one of the first computation phases of the currently-available WCET analysis

tools (Wilhelm et al., 2008), during which the control flow graph is reconstructed by parsing the

code of the application, can be adapted to our task model such that the tool will identify every

feasible execution flow. However, instead of modeling an execution flow as a simple sequence

of instructions or basic blocks (as the tools currently do), a flow will be modeled as a DAG of

subtasks with precedence constraints between them.

5.2 Scheduling issue

On a single-core platform, the fact that a parallel task can take different execution flows during

different runs is not a major issue for performing schedulability analysis. To analyze the schedu-

lability of a task set on a single-core it is known that for each task only the flow with the largest

workload must be considered in the analysis provided parameters such as period and deadline

are fixed, because such flow (i) executes sequentially for the longest time and thus (ii) causes

the worst-case interference on the other tasks. Consequently, the number of scheduling scenarios

to be considered stays within reasonable bounds. Note that this result transposes from the case

of classical sequential tasks, where the WCET of a task corresponds to the length of the longest

path among every feasible conditional paths and suffices to characterize the worst-case process-

ing and interfering times. Nevertheless, uniprocessor feasibility analysis have been proposed for

sequential tasks whose conditional execution is explicitly modeled (Baruah, 1998; Anand et al.,

2008).

In contrast, conditional parallel tasks running on a multicore architecture introduce a signifi-

cant problem for the schedulability analysis. First, the interference between two or more graphs of

subtasks is much more difficult to capture and analyze, because the interference not only depends
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Figure 5.3: GFP schedule of the 3 different execution flows Fi, j of the conditional task τi (see
Fig. 5.5) and a sequential task τseq with Cseq = 5 on 3 cores.

Figure 5.4: GFP schedule of the 3 different execution flows Fi, j of the conditional task τi (see
Fig. 5.5) and a sequential task τseq with Cseq = 5 on 2 cores.

on the execution time of all the subtasks in each graph, but also on the inherent structure of the

graphs themselves. The existence of multiple conditional branches with arbitrary length and par-

allelism, result in high variance in both the response time and the interfering workload attained by

different jobs of the conditional parallel task. As the maximization of these two quantities may be

a conflicting goal, identifying the worst-case scheduling scenario is challenging. We substantiate

the issue through the example below.

Example 15. Consider1 a higher priority conditional parallel task τi modeled by a multi-DAG as

in Fig. 5.5, and a lower priority sequential task τseq with a WCET of 5 time units. Depending on

the conditional statements, each job of τi can take any of three execution flows. A GFP schedule

on m = 3 cores for every execution flow is depicted in Fig. 5.3. In this case, the largest response

time of τi is equal to 11 and given by the second execution flow, whereas τseq suffers the most

interference from the first execution flow resulting in a response time of 9 time units. This example

suggests that the worst-case self- and inter-task interference may reside in different execution

flows. Importantly, the conclusions derived above do not hold if the tasks are GFP scheduled on

m = 2 cores instead. As illustrated in Fig. 5.4, a reduction in the number of cores led the response

times of τi and τseq (12 and 11 time units, respectively) to be maximized by the third execution

flow. Note that adding more interfering tasks may even reverse the worst-case scenario found for

a certain configuration.

Therefore, for a given scheduling algorithm, platform and set of parallel tasks, where each task

may take different execution flows at run-time, an exact schedulability test would have to consider

every feasible interference scenario between all combinations of execution flows from each task.

Clearly, this would lead to a combinatorial explosion in the number of scenarios to be considered,

which is prohibitively expensive in terms of computational time.

To the best of our knowledge, the real-time research community so far has only managed to

address this scheduling problem to a limited extent. That is, although current works do not ex-
1For ease of understanding, assume that tasks have harmonic periods and synchronous releases.
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plicitly deal with conditional execution of subtasks, some works have derived results that may still

hold under such circumstances due to the fact that the internal structure of the graphs is completely

ignored. For example, the authors of (Li et al., 2013) have derived a capacity augmentation bound

based on the workload and the critical path length of a task modeled as a single DAG of subtasks.

In the case of a task with multiple execution flows, where each flow is modeled as a separate DAG,

identical results can be derived considering the maximum workload and critical path length among

all the task’s execution flows; the pessimism in the analysis itself reduces the number of scenarios

to be considered. Nevertheless, the control-flow information needs to be integrated in the task

model in order to compute the metrics of interest.

5.3 Model extensions

In order to cope with the conditional execution of DAG tasks, we extend the base model presented

in Section 1.3 to a multi-DAG model, which integrates control-flow information in the form of

distinct execution flows. We still consider a set of n sporadic tasks with constrained deadlines

to be scheduled on m identical cores. While no restrictions on the priority assignment policy are

imposed, we target only work-conserving scheduling algorithms.

The main difference is that we replace the DAG parameter Gi by a multi-DAG parameter Fi,

thus τi = (Fi,Ti,Di). The multi-DAG Fi = {Fi,1,Fi,2, . . . ,Fi,ni} denotes the set of all ni
2 feasible

execution flows of a a conditional DAG task τi. Recall that an execution flow corresponds to a

distinct path taken by a job throughout τi’s code during its execution, which may vary from job to

job due to the conditional statements within τi.

Each execution flow Fi,k ∈ Fi corresponds to a separate DAG of subtasks, which models the

non-conditional parallel structure of τi when Fi,k is taken at run-time. That is, each job of τi

behaves as a single DAG Fi,k that has to be fully executed, although multiple jobs may follow

different execution flows (as opposed to a non-conditional parallel task τh where every job executes

according to Gh). Formally, Fi,k = 〈Vi,k,Ei,k〉 , where Vi,k is a set of ni,k subtasks and Ei,k is a set

of directed edges. For ease of understanding, we assume that every subtask v j ∈ Vi,k executes for

exactly C j time units (we will further discuss this assumption in Section 5.6.3).

We further define two functions to quantify the critical path length and workload of each

execution flow. Let λ denote a path in a DAG Fi,k.

Definition 13 (Critical path length of an execution flow). The critical path length CP(Fi,k) of an

execution flow Fi,k of a task τi is defined as the maximum cumulative execution requirement of all

the subtasks belonging to any longest path of Fi,k. That is,

CP(Fi,k)
def
= max

λ∈Fi,k
∑

v j∈λ

C j

2Note that ni is redefined as the number of feasible execution flows of task τi. Previously, it was used to denote the
number of subtasks of Gi.
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Figure 5.5: Example of a task τi with Fi = {Fi,1,Fi,2,Fi,3},Ti = 30,Di = 20. Note that subtask v j

denotes the j’th node in each execution flow, thus subtask v1 of these three flows may or may not
refer to the same subtask of τi.

Definition 14 (Workload of an execution flow). The workload W(Fi,k) of an execution flow Fi,k of

a task τi is defined as the maximum cumulative execution requirement of all the subtasks in Vi,k.

That is,

W(Fi,k)
def
= ∑

v j∈Vi,k

C j

Given the above definitions, the critical path length and workload of τi correspond to the worst-

case values of these two parameters among all τi’s execution flows. That is, Li =maxFi,k∈Fi CP(Fi,k)

and Wi = maxFi,k∈Fi W(Fi,k). Note that Li and Wi may be derived from different executions flows,

which highlights one of the challenges facing the schedulability problem.

Example 16. Fig. 5.5 illustrates our multi-DAG model for a conditional parallel task τi comprised

of three execution flows; meaning that each of τi’s jobs executes in accordance with one and

only one of the three DAGs Fi,k, k ∈ {1,2,3}. The maximum critical path length is found on the

second execution flow with Li = CP(Fi,2) = 11, whereas the maximum workload is obtained by

the third execution flow with Wi = W(Fi,3) = 18. The first execution flow yields both the maximum

parallelism and number of subtasks.

Instead of deriving schedulability analysis for a set of conditional DAG tasks modeled as

multi-DAGs, the objective of the work conducted in this chapter is to develop a transformation

technique that bridges the gap between existing analysis and such general task model. In this sense,

next section shows how to transform each Fi,k in a synchronous DAG of servers and introduce a

mapping rule to arbitrate the assignment of subtasks to servers at run-time. Recall that servers are

the entities to be scheduled on the cores (Baruah et al., 2002). Each server has a pre-defined cpu-

budget to be “consumed” through the execution of ready subtasks, every time a server is granted a

core. A ready subtask cannot execute within a server if its budget is exhausted. Moreover, a DAG

of servers only executes subtasks of the task from which it was derived, and each server is released

only if its precedence constraints have been satisfied.

We also define some properties to assert the correctness of that transformation, setting this way

the basis for Section 5.5 in which we will present a method that merges all the DAGs of servers

defined for every execution flow Fi,k into a single synchronous DAG of servers for each task τi.

Together with the mapping rule, the servers will be able to provide enough cpu-budget to the
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subtasks released by each job of τi irrespective of the execution flow taken, while respecting every

precedence constraint. As a result, efficient schedulability analysis can then be safely performed

over the resulting DAG of servers (i.e., one for each task).

5.4 Per-flow server graph

For each execution flow Fi,k of every task τi, we derive a synchronous DAG of servers referred

to as synchronous server graph (SSG) and is denoted by FSSG
i,k . Formally, we define an SSG as

follows:

Definition 15 (SSG). A Synchronous Server Graph is a synchronous DAG of nodes (here the

nodes are the servers) organized as a set {σ1,σ2, . . . ,σr} of r segments. Each segment σ` with

` ∈ [1,r] is characterized by a pair 〈b`,q`〉, where q` is the number of servers in σ` and b` is the

cpu-budget associated to each of these q` servers. Directed edges exist only between nodes of

adjacent segments. Specifically, every node within a segment is connected to every node of the

next segment (if any).

Informally, the purpose of the method developed in this section is to be able to represent each

execution flow of a given task τi as a synchronous DAG of servers such that, when τi takes one of

its execution flows Fi,k at run-time, the corresponding SSG FSSG
i,k provides the required budget to

finish the execution of all the subtasks of Fi,k without violating any precedence constraint. This is

an intermediate step in our approach; in the next section we develop a second step (based on this

first one) that assigns a single synchronous DAG to each task, rather than one SSG for each flow.

The mechanism to handle these per-flow SSG at run-time works as follows: each segment of

an SSG is a collection of servers whose budget is used to execute exclusively the ready subtasks of

the execution flow from which the SSG has been derived. The servers are the entities to compete

for, and to be scheduled on, the m cores by the scheduling algorithm of the operating system.

Each time a server is granted a core, its budget is used to execute a ready subtask. Each time

a job of a task is released (and thus executes one of its execution flows), the first segment of

the corresponding SSG “releases” all its servers, in the sense that they become ready to provide

budget to the subtasks of that particular flow. Then, each of the subsequent segments releases

all its servers only after all the servers from the previous segment have exhausted their budgets.

That is, servers belonging to a segment σ` are allowed to provide cpu-budget to the subtasks of

the dedicated execution flow only when all the servers from segment σ`−1 have exhausted their

budget. Since at some point in time we may have several subtasks from the same execution flow

that are ready-to-execute and several servers in the corresponding SSG that are ready to provide

budget, there must be a mapping rule to define which subtask is granted budget from which server.

Firstly, we state the generic conditions that assert the validity of an SSG toward a given ex-

ecution flow through Property 3. Then, we define a simple, yet efficient, mapping rule which is

used throughout the work to arbitrate the assignment of ready subtasks to servers. From that point

onward, every time we refer to a valid SSG it implies that the mapping rule given by Definition 16
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is enforced. Finally, we present an algorithm to construct an SSG for each execution flow and

prove its correctness.

Property 3 (Validity). For a platform π , a scheduling algorithm A, a mapping rule R, and an

execution flow Fi,k of a task τi, an SSG FSSG
i,k is said to be valid for Fi,k according to R if and

only if for any schedule of the servers of FSSG
i,k produced by A on π , at run-time all the nodes of

Fi,k are guaranteed to be mapped by R to the server nodes of FSSG
i,k in such a way that (1) all the

dependencies between the nodes of Fi,k are satisfied, and (2) Fi,k receives the required budget to

execute all its nodes.

Definition 16 (Mapping rule). Let Fi,k be an execution flow of a task τi and let FSSG
i,k be the

corresponding SSG constructed using Algorithm 5. A server s`,x ∈ σ` ⊆ FSSG
i,k , with x ∈ [1,q`],

can execute a ready subtask v j ∈ Vi,k if and only if v j has not been executed by a server s`,y 6= s`,x
such that s`,y ∈ σ` as well.

Algorithm 5: generateSSG(Fi,k)
Input : Fi,k - An execution flow of task τi

Output: FSSG
i,k - An SSG for Fi,k

1 FSSG
i,k ← /0 ;

2 while Vi,k 6= /0 do
3 Scurr←

{
v j ∈ Vi,k|pred(v j) = /0

}
;

4 Cmin←min
{

C j|v j ∈ Scurr} ;
5 FSSG

i,k ← FSSG
i,k ⊗

{〈
Cmin, |Scurr|

〉}
;

6 foreach v j ∈ Scurr do
7 C j←C j−Cmin;
8 if C j = 0 then
9 Vi,k← Vi,k \

{
v j
}

;
10 Ei,k← Ei,k \

{
(v j,∗)

}
;

11 end
12 end
13 end
14 return FSSG

i,k ;

The pseudo-code of the SSG creation algorithm is shown in Algorithm 5, whereas Fig. 5.6

depicts the resulting SSG3 for the execution flow Fi,1 illustrated in Fig. 5.5. This algorithm takes

an execution flow Fi,k of task τi as input and outputs an SSG FSSG
i,k for that flow, working as

follows. The algorithm traverses the DAG Fi,k by starting at its unique source node (first iteration

at line 3). At each iteration in the while loop, the algorithm adds a new segment at the end of

FSSG
i,k (line 5). The addition is represented by the operator ⊗〈b,q〉 which appends a segment of q

servers, each with a budget of b. This new segment has as many servers as there are subtasks with

no predecessor(s) in Vi,k (i.e., ready subtasks) and each of these servers is assigned a budget equal

to the minimum execution requirement among these sub-tasks (computed at line 4). The algorithm

then proceeds by updating the DAG Fi,k and "simulating" the execution of its subtasks within the

3As a coincidence, in this example, all segments of the SSG have unitary budgets although it may not be the case in
general.
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Figure 5.6: SSG FSSG
i,1 obtained by running Algorithm 5 with input Fi,1.

created servers. That is, for each subtask with no predecessor, its execution time is decreased by

Cmin time units (line 7), thus reflecting its execution within that dedicated server. The number of

servers per segment is basically tied to the number of subtasks that are guaranteed to be ready at

that point in time, at run-time. Subtasks reaching zero execution requirement are removed from the

input DAG Fi,k, as well as their respective outgoing edges (lines 8–10). Algorithm 5 is guaranteed

to terminate as Vi,k eventually becomes empty.

We now prove that the SSG output by Algorithm 5 is always valid (see Property 3) for its input

execution flow.

Lemma 14. W(FSSG
i,k ) = W(Fi,k).

Proof. At each iteration in the while loop in Algorithm 5, |Scurr| ×Cmin units of workload are

added to FSSG
i,k (at lines 5), and the same amount is then iteratively subtracted from Fi,k (lines 6

and 7). From this and the while loop termination condition, the claim trivially holds.

Theorem 11. The SSG FSSG
i,k , obtained by running Algorithm 5 with input Fi,k, is valid for the

execution flow Fi,k.

Proof. According to the validity property, we need to show that (a) all the dependencies in Fi,k are

preserved and (b) Fi,k is provided the required budget to finish the execution of all its subtasks.

Proof of (a): It can be easily seen that all the precedence constraints in Fi,k are preserved by

construction since the servers are created for only those subtasks which are ready to execute (lines

3–5 in Algorithm 5), and the mapping rule ensures that no subtask is assigned to more than one

server within the same segment.

Proof of (b): Let us recall the run-time management mechanism of an SSG: all the servers

within a segment of an SSG become “ready” to provide budgets only when all the servers from

the previous segment have exhausted their budgets. Given this run-time mechanism, we prove by

induction on the number of segments that no budget provided by the servers is wasted, i.e., all the

servers of each segment use their entire budget to execute subtasks of Fi,k that are ready-to-execute.

Therefore, since at the end no budget is wasted and the total amount of budget provided by the

SSG is equal to the workload of Fi,k (from Lemma 14) the claim holds true. The detailed proof

follows.



98 A Conditional Model for DAG Tasks

Base case. In the first iteration of the while loop, there is only one subtask with no predecessor

(remember that there is only one source to any execution flow as it follows the base DAG semantics

formalized in Section 1.3) and thus only one server is created and added to FSSG
i,k at line 5. This

server has a budget Cmin equal to the WCET C j of that subtask (line 4), and at runtime this single

server will provide budget to that single subtask as soon as it is released, i.e., when Fi,k is taken for

execution. Hence, this first subtask will execute entirely within the budget of that first server and

no budget is wasted in this first segment. In addition, the algorithm "simulates" the completion of

this first subtask as it is removed from Fi,k at line 9 and 10, implying that at the next iteration Vi,k

will contain only the subtasks that have not completed yet.

Inductive step. Assume that at run-time, the `’th segment just released all its servers and no

budget has been wasted by the servers of all the previous segments. Also (as mentioned above),

at the `’th iteration of the while loop, Vi,k contains only the subtasks that have not completed yet

and Scurr therefore contains the set of all the uncompleted subtasks that are ready-to-execute at the

release of the servers of the `’th segment. As seen in line 5, Algorithm 5 creates in segment σ` as

many servers as there are ready subtasks, i.e., |Scurr| servers are created in σ`. Each of these |Scurr|
servers is assigned a budget of Cmin, which corresponds to the minimum remaining WCET of all

the ready subtasks. At run-time, the mapping rule guarantees that each one of the |Scurr| ready

subtasks will be allocated to one (and only one) of the |Scurr| servers, and they will all execute for

Cmin time units, which is "simulated" at lines 6 and 7 of Algorithm 5. Here again, no budget is

wasted in the `’th segment and since the tasks that complete at the end of this segment are removed

from Fi,k at lines 8–10, at the next iteration of the while loop, Vi,k will once more contain only the

uncompleted subtasks.

The algorithm terminates when Vi,k is empty, which means that there are no more uncompleted

subtasks. In every segment, no budget has been wasted and since we have W(FSSG
i,k ) = W(Fi,k) by

Lemma 14, it holds that all the subtasks of Fi,k have been executed entirely.

Note that upon applying Algorithm 5 to each execution flow of a task τi, we obtain a set of

SSGs for that task, where each SSG is defined and proven valid for one of τi’s execution flow.

With that, we now describe how to construct a single synchronous DAG of servers for each task

which accommodates all of its execution flows through its SSGs.

5.5 Per-task server graph

The algorithm presented in the previous section has paved the way for the second and final step

of our approach. In this section, we present how to merge all the SSGs FSSG
i,k , created for a task

τi , into a single synchronous DAG of servers, called “global synchronous server graph” (GSSG)

and denoted by FGSSG
i . Such a GSSG must ensure that every execution flow Fi,k of task τi can

be entirely executed within its servers, i.e., FGSSG
i must be valid for every execution flow Fi,k

of τi. With that, state-of-the-art schedulability techniques and analysis that have been developed

for DAG tasks can be straightforwardly applied over a new task set comprised of GSSGs (one
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Figure 5.7: GSSG FGSSG
i obtained by running Algorithm 6 with input FSSG

i,k ∈ L where k ∈ [1,2,3].
The notation σ` ∈ FSSG

i,k shows which segments of the SSGs are mapped to the different segments
of FGSSG

i .

derived for each task), as our approach transforms the multi-DAG model into a common parallel

synchronous task model. That is, for each task τi , its set Fi of DAGs is executed within a single

synchronous DAG FGSSG
i (period and deadline are inherited). Note that a GSSG is still an SSG (as

defined in Definition 15) and therefore all the definitions and properties presented in Section 5.4

remain in effect.

Algorithm 6: generateGSSG(L)

Input : L - A list with a valid SSG FSSG
i,k for each execution flow Fi,k of task τi

Output: FGSSG
i - A GSSG for task τi

1 FGSSG
i ← /0 ;

2 while L 6= /0 do
3 Bmin← ∞ ;
4 Qmax← 0 ;
5 foreach FSSG

i,k ∈ L do

6 σ curr
i,k ←

{
σ` ∈ FSSG

i,k |pred(σ`) = /0
}

;

7 if Bmin > bcurr
i,k then Bmin← bcurr

i,k ;
8 if Qmax < qcurr

i,k then Qmax← qcurr
i,k ;

9 end
10 FGSSG

i ← FGSSG
i ⊗

{〈
Bmin,Qmax〉} ;

11 foreach FSSG
i,k ∈ L do

12 if bcurr
i,k −Bmin = 0 then FSSG

i,k ← FSSG
i,k \σ curr

i,k ;
13 else σ curr

i,k ← (bcurr
i,k −Bmin,qcurr

i,k ) ;

14 if FSSG
i,k = /0 then L← L\

{
FSSG

i,k

}
;

15 end
16 end
17 return FGSSG

i ;

Algorithm 6 shows the pseudo-code of the GSSG creation algorithm, whereas Fig. 5.7 depicts

the resulting GSSG for task τi once provided its execution flows have been converted into SSGs

by Algorithm 5, as exemplified in Fig. 5.6. For a given task τi, this algorithm takes as input the

SSGs FSSG
i,k derived by Algorithm 5 for each of its execution flows Fi,k, and outputs a unique GSSG

FGSSG
i that can accommodate all the referred flows, working as follows. The algorithm keeps on

iterating in the while loop at line 2 until the list L of SSGs given as input is empty. At each of these

iterations, a new segment of servers is added to the output GSSG (line 10). This new segment is



100 A Conditional Model for DAG Tasks

composed of Qmax servers, each with a budget of Bmin. These two parameters Bmin and Qmax are

computed in lines 3–9. Specifically, line 6 records in σ curr
i,k the segment from every input FSSG

i,k that

has no predecessors, therefore implicitly providing the pair (bcurr
i,k ,qcurr

i,k ). Here bcurr
i,k is the remaining

budget of any of the qcurr
i,k servers. Note that by the definition of an SSG (see Definition 15) all

the servers within a segment will always have the same initial budget and only the servers of one

segment are ready at any time instant. On line 7, Bmin is set to the minimum remaining budget

of all these servers in the “not-yet-processed” segment (σ curr
i,k ) of all SSGs and Qmax records the

maximum number of servers in all these segments.

The algorithm then updates all the SSGs (lines 11–13). For every SSG FSSG
i,k , if the remaining

budget of all the servers in the “not-yet-processed” segment σ curr
i,k is equal to Bmin then all the

servers of that segment are now considered as “processed”, as Qmax ≥ qcurr
i,k servers of budget Bmin

have been added to the output GSSG at line 10. All these servers are thus removed from their SSG

FSSG
i,k , and here we can see that the next iteration of the foreach loop (lines 5–9) will again give

at line 6 a σ curr
i,k for each FSSG

i,k equal to its next segment. Otherwise, if the remaining budget of

all the servers in the “not-yet-processed” segment σ curr
i,k is higher than Bmin (it cannot be lower by

definition of Bmin at line 7), then these remaining budgets are simply decremented by Bmin units

of workload. At line 14, if all the servers have been removed from FSSG
i,k then this SSG is removed

from the list L.

We now prove that Algorithm 6 produces a valid GSSG for task τi. To do so, we define two

operations called splitting and expanding that transform an input SSG derived from Algorithm 5

into another SSG, and we show that both operations preserve the validity of the input SSG. Then,

we prove in Theorem 12 that the output GSSG FGSSG
i from Algorithm 6 can always be obtained

from any of its input SSGs FSSG
i,k by applying a sequence of splitting and expanding operations and

therefore FGSSG
i is also valid for all the execution flows Fi,k of task τi.

Definition 17 (Splitting operation). A splitting operation replaces any segment σ` = (b`,q`) of an

SSG FSSG
i,k with a list of consecutive segments (σ1

` ,σ
2
` , . . . ,σ

r
` ) such that ∀ j ∈ [1,r] it holds that

σ
j
` =

〈
b j
`,q

j
`

〉
, where

q j
` = q` (5.1)

r

∑
j=1

b j
` = b` (5.2)

Lemma 15. Let FSSG
i,k be a valid SSG derived by Algorithm 5 for a given execution flow Fi,k of

task τi and let FSSG′
i,k be the SSG obtained from FSSG

i,k after applying an arbitrary series of splitting

operations on the segments of FSSG
i,k . It holds that FSSG′

i,k is also valid for Fi,k. That is, the splitting

operation preserves the validity of the original SSG FSSG
i,k .

Proof. In Theorem 11, the validity of the SSG FSSG
i,k obtained by Algorithm 5 for the execution

flow Fi,k is proven by showing that (i) W(FSSG
i,k ) = W(Fi,k) and (ii) no budget of FSSG

i,k is wasted

at run-time. Regarding the workload of the SSG FSSG′
i,k , for any segment σ` ∈ FSSG

i,k that has been
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broken into a series (σ1
` ,σ

2
` , . . . ,σ

r
` ) ∈ FSSG′

i,k , it holds from Eq. 5.2 that ∑
r
j=1 b j

` = b` and since

from Eq. 5.1 q j
` = q` for all j ∈ [1,r], it is easy to see that W(FSSG′

i,k ) = W(FSSG
i,k ) = W(Fi,k).

Second, it is shown in Theorem 11 that every segment of FSSG
i,k has as many servers as the

number of subtasks that will be ready-to-execute at run-time when the segment will be allowed

to provide budget. Therefore, since no budget of FSSG
i,k is wasted, for any segment σ` ∈ FSSG

i,k that

has been broken into a series (σ1
` ,σ

2
` , . . . ,σ

r
` ) ∈ FSSG′

i,k , there will be exactly q` ready subtasks of

remaining WCET ≥ b` competing for these q` servers of budget b`. From Eq. 5.1 and 5.2, and

by the mapping rule, there will also be q` ready subtasks competing for the q` servers of every

segment σ
j
` , with j ∈ [1,r], and such that at every segment σ

j
` the remaining WCET of these q`

ready subtasks will be ≥ b j
`. As a result, no budget will ever be wasted in these new segments σ

j
` ,

j ∈ [1,r].

Definition 18 (Expanding operation). An expanding operation consists in supplying any segment

σ` = (b`,q`) of an SSG FSSG
i,k with an arbitrary number of extra servers of budget b`.

Lemma 16. Let FSSG
i,k be a valid SSG for a given execution flow Fi,k of task τi obtained by Al-

gorithm 5 (and possibly after an arbitrary series of splitting operations). Let FSSG′
i,k be the SSG

obtained from FSSG
i,k after applying an arbitrary series of expanding operations on the segments of

FSSG
i,k . It holds that FSSG′

i,k is also valid for Fi,k.

Proof. Adding new servers to a segment σ` ∈ FSSG
i,k leads to W(FSSG′

i,k ) > W(FSSG
i,k ) and at run-

time q` becomes greater than the number of ready subtasks at segment σ`. However, the mapping

rule of Definition 16 enforces that no subtask is assigned to two different servers within a same

segment. As a consequence the extra servers will simply be ignored at run-time, and the prece-

dence constraints between the subtasks of Fi,k will still be satisfied as the order of execution of the

subtasks remains unchanged. In short, the budget of all the servers added to FSSG′
i,k will be entirely

wasted and thus the validity is preserved.

Theorem 12. The GSSG FGSSG
i obtained by running Algorithm 6 is valid for task τi as it is valid

for every of its execution flows Fi,k.

Proof. The proof is a direct consequence of Lemmas 15 and 16, and the fact that the output FGSSG
i

of Algorithm 6 can be obtained from every input FSSG
i,k ∈ L by applying a series of splitting and

expanding operations. Let FSSG
i,k be any of the input SSGs and let σ curr

i,k be its current segment with

no predecessor (line 6). By definition of Bmin at line 7, we have bcurr
i,k ≥ Bmin and by definition of

Qmax at line 8, we have qcurr
i,k ≤ Qmax. Therefore, the addition of a new segment of Qmax servers of

budget Bmin at line 10 (alongside the corresponding reduction of Bmin units at line 13) can be seen

as a splitting operation performed on segment σ curr
i,k . Also, if qcurr

i,k <Qmax then the addition of Qmax

servers can be seen as an expanding operation. Finally, note that if FSSG
i,k is not the last SSG to

be removed from L at line 14, then the addition of extra segments to the output FGSSG
i in the next

iterations can also be seen as applying an expanding operation on arbitrary empty segments.
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As a last result, the following corollary holds true from the validity of the GSSGs created

by Algorithm 6. The corollary states that the schedulability of the original task set composed

of parallel tasks with multiple execution flows (multi-DAGs) can now be assessed by applying

any existing schedulability test (the only restriction on the scheduling algorithm is to be work-

conserving) over the set of derived GSSGs as long as the test conforms with the final parallel

model (i.e., synchronous or general DAGs). The results from (Chwa et al., 2013; Maia et al.,

2014) are examples of such tests tailored specifically for synchronous DAGs. Note that the GFP

schedulability analysis presented in Chapter 3 also fulfill the requirement and thus can be applied,

while both analysis of partitioned scheduling presented in Chapter 4 do not.

Corollary 3. If a valid GSSG FGSSG
i is deemed schedulable by a schedulability test of a work-

conserving scheduling algorithm A, so does the conditional DAG task τi from which it was derived.

5.6 Pros and cons

Since this dissertation takes the very first steps in addressing the schedulability of a set of DAG

tasks with conditional execution, we now provide a discussion on the advantages and disadvan-

tages of the proposed transformation technique.

5.6.1 Schedulability

From a schedulability point of view, current scheduling techniques for parallel tasks can be broadly

categorized into two categories: decomposition method and direct analysis. In decomposition

method, each subtask of a DAG is assigned an intermediate offset and a deadline based on the

structure of the DAG. With this, each subtask can be treated as an individual sequential task.

The parallel task scheduling problem then reduces to the traditional sequential task schedulability

problem on a multiprocessor system, for which there is a plethora of scheduling algorithms and

schedulability tests in the literature.

In direct analysis, schedulability conditions are derived directly from the properties of the

DAG. Some analysis techniques consider the precedence constraints on the DAG to study the

execution requirements at different time instants, whereas others simply rely on the workload

and critical path length values to create a synthetic worst-case scenario that upper-bounds the

interference. For the latter case, our contribution brings no benefit since we often end up increasing

the worst-case workload of the tasks. However, it has been shown in (Qamhieh et al., 2013)

that considering the internal structure of a DAG (as we do in this dissertation) may improve the

schedulability tests. Hence, for all the other cases which rely on the internal structure of the

DAG (including the decomposition methods) our contribution directly enables the application of

such schedulability analysis methods to generic real-time parallel applications with conditional

execution without having to assume that all the subtasks of every flow must execute. This allows

to tighten the schedulability of conditional DAG tasks while reducing the number of interference

scenarios that must be checked by orders of magnitude.
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5.6.2 Optimization

From an optimization viewpoint, it is worth noting that Algorithm 6 is a very simple algorithm that

merges a collection of valid SSGs into a single valid GSSG. We chose to present this algorithm

in its simplest form for ease of understanding and proving the validity of its output. However, it

can be seen that the algorithm can be further improved, particularly with respect to tightening of

the GSSG’s workload. For example, at each iteration of the while loop, if there is an SSG in L,

say FSSG
i,k , for which the remaining workload is lesser or equal to the remaining critical path length

of the SSG with the longest critical path, say FSSG
i,h , then the workload of FSSG

i,k can be entirely

executed (even in a sequential manner) within the servers that will be created in the next iterations

to accommodate the remaining subtasks of FSSG
i,h . Therefore, FSSG

i,k can safely be removed from

L, which may reduce the resulting workload of the output GSSG if FSSG
i,k contributed to Qmax in a

next iteration.

Following the above reasoning, there exists a trade-off between the critical path length and the

workload of the GSSG output by Algorithm 6, in the sense that it is sometimes possible to reduce

its workload by increasing its critical path length, while preserving its validity. Unfortunately, it is

hard to predict which modification affects schedulability the most.

Another concern stems from the requirement of explicitly enumerating all the feasible exe-

cutions flows of each conditional DAG task. As there may exist exponentially many execution

flows, the transformation algorithms have prohibitive computational complexity. It is our belief

that this problem can be solved by replacing the original multi-DAG model by the conditional

DAG model (which integrates special pairs of nodes denoting the conditional opportunities) pro-

posed later in (Melani et al., 2015) and (Baruah et al., 2015), as the the construction of SSGs (this

intermediate step is just for clarity of presentation) can be skipped. In this sense, Algorithm 6

would be adapted to traverse and parse a DAG with conditional semantics, iteratively computing

the necessary servers according to the logic presented in the previous section.

5.6.3 Practicality

Apart from the complexity associated to the run-time mechanisms to manage the servers, our ap-

proach benefits from the strong points of server-based techniques: servers have become a standard

implementation to guarantee a symmetric temporal isolation between tasks (Abeni and Buttazzo,

2004; Lin et al., 2006) and are also used as fault containers to limit the propagation of errors in

case of faulty components.

We shall now briefly discuss the assumption made in Section 5.3, according to which every

subtask v j executes for exactly C j time units. It is certain that at run-time the subtasks will most of

the time execute for less than their WCET and unfortunately our methodology is not sustainable

in these circumstances. Nevertheless, the results obtained in this chapter can be made sustainable

w.r.t. WCET through the addition of run-time mechanisms. For example, consider the following

mechanism: when a subtask v j completes earlier than indicated by its WCET C j, the mechanism

checks the GSSG of the corresponding task and determines in how many segments, say r, that
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subtask v j was supposed to complete its execution. Then, the mechanism immediately locks all

the successor subtasks of v j (thus preventing them to become ready) for the next r segments. This

way, the system behaves as if all the subtasks execute for their WCET.

5.7 Summary

In this chapter, we acknowledge the schedulability problem posed by parallel tasks conditional

constructs. Taking a first step in tackling this open challenge, we proposed a multi-DAG model (a

generalization of the sporadic DAG model) in which each real-time parallel task is characterized by

a collection of execution flows, each of which modeled as a separate DAG. Due to the conditional

statement in the task code, at every job release only one of these DAGs is executed but we do not

know a priori which one. To avoid the pitfall of analyzing the maximum interference between

all possible combinations of execution flows for all the tasks, we derive a two-step solution to

construct a DAG of servers (GSSG) for each task that can accommodate all its execution flows,

in the sense that at run-time this GSSG will always provide enough CPU budget to the task from

which it is derived so that the task can always execute and complete by its deadline, irrespective

of which execution flow it takes during run-time.

We also define a mapping rule to decide which subtask must be assigned to which server at

run-time. Each time a job is released, the budgets of all the servers of its corresponding GSSG are

replenished and the servers’ budgets and the mapping rule are defined such that, for any execution

flow taken by the task at runtime, every subtask gets enough budget to finish its execution and

all the precedence constraints between the subtasks are respected. Therefore, the multi-DAG

parameter Fi assumed in the task model can be replaced for its corresponding GSSG FGSSG
i , while

the period and the deadline remain unchanged.

With this, there is no need to consider every feasible interference scenario between all com-

binations of execution flows of all the tasks in order to derive a schedulability test based on the

internal structure of the tasks, as the single DAG FGSSG
i naturally allows to upper-bound the on-

core interference that a task τi causes on the other tasks. Moreover, a GSSG is a special case of the

synchronous parallel task model, which in turn is a special case of the DAG model. As a result,

existing multicore work-conserving scheduling techniques suited for any of these classes of par-

allel tasks can be leveraged to ascertain the schedulability of a task set comprised of conditional

DAG tasks as the ones modeled by a multi-DAG.



Chapter 6

Concluding Remarks

Few years ago, the frontier separating the real-time embedded domain from the high-performance

computing domain was neat and clearly defined. Nowadays, many contemporary applications no

longer find their place in either category as they manifest both strict timing constraints and work-

intensive computational demands. The only way forward to cope with such orthogonal require-

ments is to embrace the parallel execution programming paradigm on the emergent scalable and

energy-efficient multi/many-core architectures. However, parallelization adds another dimension

to the already challenging problem of multiprocessor real-time scheduling.

In order to tackle this parallelization challenge, the real-time community has recently started

to develop new task models, analysis and methodologies, enriching classical schedulability the-

ory with solutions that guarantee the timeliness of parallel task systems. In this dissertation, we

considered the sporadic DAG model, where a parallel task consists in a set of concurrent subtasks

whose execution has to obey to a set of precedence constraints. Such task model reflects general

features of parallelism characteristic of widely used parallel programming models (e.g., OpenMP).

Priorities are assigned only at the task-level to further increase the synergy with current run-time

environments for parallel workloads. Accordingly, we addressed a set of schedulability analysis

problems for multiprocessor systems under classical preemptive scheduling algorithms by explor-

ing the internal structure of the DAGs. Namely, both global and partitioned paradigms, as well as

applications with conditional execution.

The first solution, presented in Chapter 3, concerns the problem of scheduling a set of DAG

tasks according to GFP. Building on top of the work proposed in (Melani et al., 2017), we in-

troduced a new worst-case scenario to analyze the interference generated by higher priority tasks

which captures the execution pattern of their carry-in and carry-out jobs. By taking into account

the precedence constraints, we presented innovative techniques to more accurately characterize

and upper-bound the worst-case carry-in and carry-out workloads. This allowed us to derive im-

proved response time analysis for constrained deadline DAG tasks, which we then extended to the

general case of arbitrary deadlines, where each job may also be subjected to interference from pre-

ceding jobs of the same task. Experimental results not only attest the theoretical dominance of the

proposed analysis over its state-of-the-art counterpart (in the constrained deadline case), but also
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showed that it is robust to multiprocessor systems with increasing number of cores (a weakness of

the work in (Melani et al., 2017)) and it substantially tightens the schedulability of DAG tasks on

multiprocessor systems for both constrained and arbitrary deadline task sets.

The next two solutions, presented in Chapter 4, relate to the problem of deriving schedulability

analysis for a set of partitioned DAG tasks. In this context, partitioning means statically assigning

each subtask to a specific core, yet allowing multiple subtasks of the same DAG task to run on

different cores. To the best of our knowledge, this is an highly unexplored scheduling paradigm for

real-time parallel tasks. First, we introduced a novel response time analysis under PFP scheduling,

based on the interference suffered by each path of a DAG, that works for any given mapping. We

showed that the inter-task interference exerted on a partitioned DAG task can be estimated by

modeling the DAG as a set of self-suspending tasks, and then presented an algorithm to define and

order the resulting self-suspending tasks such that the WCRT of the partitioned DAGs can be safely

constructed recursively. Since this technique relies on the enhancement of existing uniprocessor

RTA for self-suspending tasks, it led us to discover a critical flaw in the related literature (the

repercussions of the incorrectness of (Lakshmanan and Rajkumar, 2010) is discussed extensively

in (Chen et al., 2016)). To bridge the identified gap, we proposed a RTA for a set of sporadic

self-suspending tasks with multiple suspension regions running on a uniprocessor system, based

on a MILP formulation, as included in Appendix A. With this particular result, our RTA for PFP

scheduling is able to reduce the WCRT of a partitioned parallel task (fork-join tasks in the tested

scenarios) 20 to 50 percent in average, in comparison to the state-of-the-art in distributed real-time

systems.

Due to the complexity and pessimism in the previous approach, we then proposed a second

schedulability analysis for DAG tasks scheduled by EDF under the partitioned paradigm. We de-

veloped a partitioning algorithm that maps similar paths of a DAG to the same processor, aiming

to minimize the number of cores that guarantees feasibility and to eliminate cross-core depen-

dencies. Thanks to the duplication of key subtasks, all resulting partitions are independent of

each other. Thus, the problem of scheduling a set of partitioned DAGs becomes equivalent to the

problem of scheduling a set of sequential tasks on multiprocessors in a partitioned manner. Ex-

perimental evaluation demonstrated that this new schedulability test is very effective, achieving a

relatively high schedulability ratio and outperforming federated scheduling under most configura-

tions. Moreover, its performance is competitive with semi-federated scheduling recently proposed

in (Jiang et al., 2017), which requires rather complicated run-time mechanisms and incurs in both

migrations and additional preemptions. Performance losses are observed for highly connected

DAG tasks and systems with very high utilization due to the downside of duplicating subtasks to

guarantee independence per core. Our GFP schedulability test was shown to be superior in the

case of constrained deadline task sets. However, we suspect such result would not hold had we

considered a more accurate EDF schedulability test (e.g., the demand bound function approxima-

tion of (Baruah and Fisher, 2007)) instead of the straightforward density bound. This suggests

that subtask-duplication is a promising technique to address the schedulability of partitioned DAG

tasks.
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The last solution, presented in Chapter 5, deals with the problem of modeling and scheduling

a set of DAG tasks with conditional execution. It is expected that industrial applications feature

conditional operations that depend on run-time data, leading to workloads whose sizes and com-

positions vary with the different instances. However, in the DAG model, every job spawns and

executes all nodes pertaining to its task. While conditional statements were not a major concern in

the case of sequential tasks, we show that they are detrimental for the timing analysis of parallel

tasks and thus should be explicitly modeled. Importantly, this finding has opened a new research

avenue in real-time systems. As a generalization, we proposed a multi-DAG model where each

conditional parallel task is characterized by a set of execution flows, each of which represented

as a separate DAG. Due to conditional statements, only one of such execution flows is taken at

run-time by a job. We derived a two-step algorithm that constructs a single synchronous DAG of

servers for a multi-DAG task and proved that these servers are able to safely and fully execute

any of its execution flows. As a result, each multi-DAG task can be modeled by its single DAG

of servers, which facilitates in leveraging the existing single-DAG (or more restrictive models)

schedulability analysis techniques for analyzing the schedulability of conditional DAG tasks. This

method offers a trade-off in terms of analysis accuracy: on one hand, the synchronous DAG of

servers provides a less general internal structure that is easier to analyze and can be exploited

to reduce pessimism; on the other hand, there is a over-provisioning of resources to abstract the

actual interference imposed by the different execution flows.

Considering the above contributions, listed in detail in Section 1.5, we firmly believe that the

central proposition of this thesis stated in Section 1.4 is successfully fulfilled. Indeed, we managed

to derive a set of schedulability tests for DAG tasks under a range of multiprocessor scheduling

problems, while exploring the internal structure of the DAGs, which not only guarantees that every

task will meet its deadline but also allows for a more effective use of the platform capacities. We

conclude that the outcome of this research work will contribute to advance the state-of-the-art

on the design and analysis of real-time systems composed of parallel workloads. Nevertheless,

we acknowledge that there is plenty of room for improvements and extensions, as well as open

problems. In the following, we discuss future research directions and perspectives.

For GFP scheduling, we plan to better characterize the self-interfering workload as well as the

interference generated by body jobs. We believe that most of the pessimism remaining in the anal-

ysis is located in those two terms. The self-interference could be improved by assigning distinct

fixed priorities to the subtasks of each DAG, which would result in a two-level scheduler. However,

this comes at the cost of additional preemptions and run-time modifications. If the improvements

are not significant, such approach may not be worthwhile. The other issue is transverse to the

concept of “problem window”, since all the workload within the window is accounted as interfer-

ence instead of checking for potential workload executing in parallel with the critical path of the

analyzed task. As a first step, we are currently investigating new techniques to more accurately

estimate the inter-task interference imposed by sequential tasks on a DAG task. Furthermore, we

are considering extending our results to GEDF scheduling. We expect that the poor performance

of GEDF reported by the authors of (Melani et al., 2017) may be attenuated when the carry-in and
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carry-out interfering workloads are modeled by a workload distribution.

Relatively to partitioned scheduling, we intend to mix our two approaches with the goal of

further minimizing the number of cores required for the feasibility of every heavy DAG task. The

idea is to restrict the number of duplicated subtasks and model some partitions as self-suspending

tasks. Partitions would then be the scheduling entities, and we are primarily interested in assign-

ing fixed-priorities to the partitions so that we can control the interference they are subjected to.

Finally, we believe that both the schedulability analysis for GFP and duplication-based PEDF can

be extended to the general case of conditional DAGs. For this purpose, we remark that the condi-

tional DAG model proposed in (Baruah et al., 2015; Melani et al., 2015) is more efficient than our

multi-DAG model.



Appendix A

Uniprocessor Response Time Analysis
for Sporadic Self-Suspending Tasks

Many real-time systems include tasks that need to suspend their execution in order to externalize

some of their operations or to wait for data, events or shared resources. As presented in Chapter 4,

such self-suspending tasks can also be used effectively to model partitioned DAG tasks. Although

commonly encountered in real-world systems, study of their worst-case scheduling behavior is still

limited due to the complexity of the problem. This chapter considers the fixed-priority scheduling

of a set τ = {τ1, . . . ,τn} of n sporadic self-suspending tasks running on a uniprocessor system,

where each task τi is represented as a interleaved sequence of execution regions and suspension

regions: (Ci,1,Si,1,Ci,2,Si,2, . . . ,Si,mi−1,Ci,mi ,).

We start by discussing a couple of misconceptions about the critical instant for a sporadic

self-suspending task when higher priority tasks are sequential, which invalidate a well-accepted

claim from an earlier work. Based on a new worst-case scenario, we then present an algorithm to

compute the exact WCRT for a self-suspending tasks with one suspension region. As the algorithm

becomes rapidly intractable in function of the number of higher priority tasks, we formulate a RTA

for a self-suspending task with multiple suspension regions as an optimization problem, which we

also extend to the case of multiple self-suspending tasks interfering with each other.

A.1 Motivation

Real-time tasks often involve processing operations which may take considerable time to finish if

executed solely on a generic purpose uniprocessor platform. System designers have been achiev-

ing significant improvement in the efficiency of these operations by offloading them to specialized

hardware accelerators (e.g., Graphical or Network Processing Units), leaving the main processor

available for other tasks. The offloading phases represent suspension delays for the task that initi-

ates them. Suspension delays can also be observed when tasks are synchronizing, exchanging data

through communication interfaces, or accessing external shared resources such as I/O devices. All

such tasks that may at some point in their execution suspend their computation to wait for exter-
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nal data, events or resources are called self-suspending tasks. As the systems grow increasingly

complex, self-suspending tasks become a promising solution to capture the interactions between

different dependent components. An encouraging example is the RTA proposed in Section 4.4 for

parallel tasks under partitioned scheduling.

A self-suspending task is composed of a set of execution regions interleaved with suspension

regions. Traditional real-time systems theory (Liu, 2000) has accounted the duration of suspen-

sion regions as part of the task worst-case execution time while doing timing analysis. However,

if the suspension regions are lengthy, such suspension-oblivious analysis typically become very

pessimistic, leading to severe utilization loss and possibly jeopardizing the schedulability of the

system. Hence, recent works (Lakshmanan and Rajkumar, 2010; Kim et al., 2013b; Liu and An-

derson, 2009, 2012, 2013) have focused on suspension-aware analysis techniques which explicitly

model the suspension placement and durations in order to reduce the pessimism on the calculated

worst-case interference exerted by higher priority tasks, thereby offering opportunities for a poten-

tial schedulability improvement. Nevertheless, suspension-aware analysis are rather complex and

sometimes assume the existence of additional operating system facilities (e.g., phase enforcement

mechanisms or execution control policies) to ease the analysis and minimize the pessimism while

considering the suspension regions.

In this dissertation, we start by studying the timing analysis of self-suspending tasks, under

fixed-priority scheduling, assuming that all the interfering tasks are non-self-suspending sporadic

tasks. Contrary to what has been claimed in a previous work (Lakshmanan and Rajkumar, 2010),

we show that it is not simple to characterize a critical instant even for this limited model. Based on

this key observation, we identify the exponential number of scenarios that need to be considered,

and then present appropriate methods to compute accurately the WCRT of a self-suspending task

under different task systems.

A.2 Related work

Negative results on the feasibility problem of scheduling periodic self-suspending tasks on a

uniprocessor have been presented in (Ridouard et al., 2004, 2006). The problem was shown to

be NP-Hard in the strong sense even for the special case in which each implicit deadline task

may have at most one suspension region. Works presented in Tindell and Clark (1994); Kim

et al. (1995); Palencia and Gonzalez Harbour (1998) have proposed schedulability analysis for

dependent tasks and thus are applicable for task that self-suspend. However, the pessimism in

those analysis leads to significant utilization loss. Recently, new schedulability tests for syn-

chronous self-suspending tasks with harmonic periods have shown to exhibit low utilization loss

under RM (Liu et al., 2014).

The sporadic self-suspending task model has received considerable more attention from the

real-time community (Audsley and Bletsas, 2004; Bletsas and Audsley, 2005; Lakshmanan and

Rajkumar, 2010; Kim et al., 2013b). In (Lakshmanan and Rajkumar, 2010), authors attempted to

characterize the critical instant for self-suspending tasks with respect to the interference exerted by
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higher priority non-self-suspending tasks. It builds on the fact that sporadic tasks may delay their

job releases, to prove that an exact characterization of the worst-case scheduling scenario leading

to the WCRT of the self-suspending task is simpler to achieve in comparison to the periodic case.

It therefore became a common belief that the WCRT of self-suspending task co-running with

sporadic non-self-suspending tasks can be obtained in pseudo-polynomial time. However, as we

show in Section A.4, the worst-case release pattern (also referred to as critical instant) is more

complex to identify than what was claimed in (Lakshmanan and Rajkumar, 2010), deeming the

results in that paper incorrect.

Still on sporadic tasks, early research (Audsley and Bletsas, 2004; Bletsas and Audsley, 2005)

considered fixed-priority scheduling of limited parallel systems, where parts of a process are ex-

ecuted in parallel in software and hardware, and therefore can be modeled as a set of sporadic

self-suspending tasks. The authors introduced the notion of synthetic worst-case execution distri-

bution for higher priority tasks and derived upper-bounds on WCRTs. Response time analysis for

a segment-fixed priority scheduling scheme, which assigns different priorities to each computing

segment and enforces phase offsets to predict the different segment’s releases, were developed

in (Kim et al., 2013b). In the same paper, the effectiveness of RM scheduling for periodic self-

suspending tasks with specific properties was demonstrated.

Lately, there has also been relevant work on global scheduling self-suspending tasks atop mul-

tiprocessors, in particular for soft real-time task systems (Liu and Anderson, 2009, 2012, 2013).

In (Liu and Anderson, 2013), the first suspension-aware schedulability analysis for sporadic self-

suspending tasks in a multicore hard-real setting was presented.

A.3 System model

Consider a task set τ = {τ1,τ2, . . . ,τn} of n constrained deadline self-suspending sporadic tasks

scheduled on a single processor. Each task τi releases a (potentially infinite) sequence of jobs,

with the first job released at any time during the system execution and subsequent jobs released at

least Ti time units apart. Each job released by τi has to complete its execution within Di ≤ Ti time

units from its release. A self-suspending task τi consists of mi ≥ 1 execution regions and mi− 1

suspension regions such that any two consecutive execution regions are separated by a suspension

region as shown in Fig. A.1.

Formally, each task τi is characterized as τi
def
= 〈(Ci,1,Si,1,Ci,2,Si,2, . . . ,Si,mi−1,Ci,mi ,) ,Di,Ti〉

where (i) Ci, j denotes the worst-case execution time of the jth execution region; (ii) Si, j denotes the

worst-case duration of the jth suspension region; (iii) mi denotes the number of execution regions

separated by mi− 1 suspension regions; (iv) Di ≤ Ti denotes the deadline before which all the

execution regions need to finish their execution and (v) Ti denotes the minimum inter-arrival time

between two successive jobs of τi. We call non-self-suspending task, a task with no suspension

region. A non-self-suspending task τk is represented as: τk
def
= 〈(Ck,1) ,Dk,Tk〉.

We assume that a fixed-priority scheduling policy is used to schedule the tasks on the pro-

cessor. For convenience, we denote by τi, j the jth execution region of task τi, and the overall
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Figure A.1: Constrained deadline self-suspending sporadic task.

worst-case execution time of τi is defined as Ci
def
= ∑

mi
j=1Ci, j. The execution region τi,1 of a job of

task τi becomes ready for execution (also referred to as the arrival time of τi,1 denoted by ai,1)

as soon as a job of task τi is released. The response time Ri,1 of the execution region τi,1 is the

difference between its completion time (denoted by fi,1) and the arrival time of the job; formally,

Ri,1 = fi,1−ai,1. For 2≤ j≤mi, the execution region τi, j of a job of task τi becomes ready for exe-

cution at time ai, j
def
= fi, j−1+si, j−1 (where si, j−1 ≤ Si, j−1 is the self-suspending time of the ( j−1)th

suspension region of the job of τi) and its response time Ri, j is given by the difference between

its completion time and its arrival time; formally, Ri, j = fi, j−ai, j. The response time Ri of a job

of task τi is the sum of the response times of all its execution regions and the total duration of all

its suspension regions, that is, Ri
def
= ∑

mi
j=1 Ri, j +∑

mi−1
j=1 si, j. Finally, the worst-case response time

WCRTi of a task τi is defined as the largest response time that any job of τi may ever experience.

In Sections A.4 to A.6, we consider the case in which the task set τ has only one self-

suspending task and all the other tasks are non-self-suspending. The self-suspending task is de-

noted τss and has the lowest priority, i.e., all the non-self-suspending tasks in τ have a higher

priority than τss. We denote the set of higher priority non-self-suspending tasks as hp(τss). The

restriction of having only one self-suspending task in the taskset is relaxed in Section A.7.

A.4 Misconceptions in the schedulability analysis of self-suspending
tasks

From this section onwards, it is assumed that there is only one self-suspending task τss in the

taskset τ . This task has the lowest priority and suffers interference from a set hp(τss) of higher

priority non-self-suspending tasks. The worst-case response time analysis of such a system was

studied in a previous work (Lakshmanan and Rajkumar, 2010) and was deemed solved. However,

in this section, we prove that such work was based on a couple of wrong observations (which have

established themselves as facts over the years), namely (i) that the worst-case interference suffered

by τss is generated when all the higher priority tasks are released synchronously with τss, and (ii)

that releasing the jobs of higher priority tasks as often as possible (respecting the minimum inter-

arrival times) in each execution region maximizes the overall interference on the self-suspending

task. Unfortunately, however intuitive these observations may seem, they are incorrect and have

led to flawed analysis in that work (Lakshmanan and Rajkumar, 2010).
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(a) Scenario 1. Response-time analysis when the job
release pattern is Φss.
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(b) Scenario 2. Response-time analysis when the job
release pattern is not Φss.

Figure A.2: Counter-example to Φss being the critical instant of τss.

A.4.1 On the synchronous release with the first execution region

The worst-case response time analysis is based on the notion of critical instant. The critical instant

for a task τi is defined as an instant at which a request for that task will have the largest response

time. Since the response time of a task is dependent on the higher priority tasks, a critical instant

for a task τi is generally concerned with the release pattern of higher priority tasks.

In (Lakshmanan and Rajkumar, 2010), Lakshmanan et. al. argue that the release pattern Φss

is a critical instant for a self-suspending task τss, where Φss is defined as follows:

• every higher priority non-self-suspending task τh
def
= 〈(Ch) ,Dh,Th〉 is released simultane-

ously with τss;

• jobs of τh eligible to be released during any jth (1 ≤ j < mi) suspension region of τss are

delayed to be aligned with the release of the subsequent ( j + 1)th execution region of τss;

and

• all remaining jobs of τh are released every Th.

We prove with a counter-example that Φss is not a critical instant for a self-suspending task

τss.

Example 17. Consider a task set τ = {τ1,τ2,τss} of three constrained deadline sporadic tasks

scheduled on a single processor — τ1 and τ2 are non-self-suspending tasks and τss is a self-

suspending task. Let the characteristics of these tasks be as follows: τ1
def
= 〈(1) ,4,4〉; τ2

def
=

〈(1) ,100,100〉 and τss
def
= 〈(1,2,3) ,1000,1000〉. Let the priorities of the tasks be assigned us-

ing the Rate Monotonic policy (i.e., smaller the period, higher the priority); this implies that task

τ1 has the highest priority and τss the lowest. Let us compute the response time of task τss consid-

ering two different job release patterns: (i) a job release pattern Φss compliant with its definition

made in (Lakshmanan and Rajkumar, 2010) and (ii) a job release pattern different than Φss. We

show that there exists a job release pattern which is not Φss and for which the response-time of

task τss is higher than its response time when the job release pattern is Φss.

Scenario 1. Let us consider the job release pattern Φss as shown in Fig. A.2a.

Using the standard response time expression, we obtain the response time Rss,1 = 3 for the

execution region τss,1 and Rss,2 = 4 for the execution region τss,2. Hence, for this scenario, we

obtain the response time of task τss to be: Rss = Rss,1 + Sss,1 +Rss,2 = 3+ 2+ 4 = 9. Since the

release pattern in Φss, this is the worst-case response time of τss as per work in (Lakshmanan and

Rajkumar, 2010).
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Scenario 2. Let us consider a job release pattern as shown in Fig. A.2b. Observe that this

release pattern is not Φss since the task τ2 is not released synchronously with task τ1. For this

scenario, we obtain: Rss,1 = 2 for the execution region τss,1 and Rss,2 = 6 for the second execution

region. Hence, the response time of task τss is given by: Rss = 2+2+6 = 10.

Clearly, the response time of task τss obtained in Scenario 2 is higher than the response time of

τss obtained in Scenario 1. Hence, the claim of Lakshmanan et. al. (Lakshmanan and Rajkumar,

2010) that Φss is the critical instant for a self-suspending task τss is incorrect.

This counter-example proves the following Lemma.

Lemma 17. The worst-case response time of a lower priority self-suspending task τss suffering

interference from a set of higher priority non-self-suspending tasks is not given by Φss.

We now prove that the critical instant of a self-suspending task happens when each higher

priority task releases a job synchronously with the beginning of the execution of at least one of the

execution regions of the self-suspending task under consideration, although not all higher priority

tasks must necessarily release a job synchronously with the same execution region.

Lemma 18. Let τss be the self-suspending task under analysis and let hp(τss) be the set of non-

self-suspending tasks of higher priority than τss. From any feasible release pattern RP of the tasks

in hp(τss), we can construct a feasible release pattern RP′ from RP such that:

(1) In RP′, at least one job of every task in hp(τss) is released synchronously with the release of

an execution region of τss;

(2) RP′ entails a higher (or equivalent) response time of task τss than RP.

Proof. The proof consists in generating RP′ from RP such that (1) holds by construction and (2)

holds true from the modifications made to RP.

Let us assume that τss is scheduled to execute concurrently with a set hp(τss) of higher priority

tasks and suppose that those tasks are released according to the release pattern RP. We denote by

ass, j and Rss, j the release and response time of the jth execution region of τss and fss, j
def
= ass, j+Rss, j

denotes the completion time of its execution. We denote by Wbk and Wek the beginning and end of

the kth time window during which only tasks in hp(τss) are executed. That is, τss does not execute

at all in the time intervals defined by [Wbk,Wek], ∀k > 0. Those intervals will be referred to as the

higher priority tasks busy windows.

Fig. A.3 (top part) shows these notations with a simple example that will be used throughout

the proof to illustrate the process of creating RP′ from RP. This example assumes that hp(τss)

consists of three sporadic tasks. The interference by those tasks on the self-suspending task τss

is represented by light rectangles on the first line of Fig. A.3. Dark rectangles correspond to the

execution of the execution regions of τss. The busy windows generated by tasks in hp(τss) are

shown by arrow filled rectangles on the second line of Fig. A.3. Note that only the jobs potentially

contributing to the response time of τss are depicted in Fig. A.3.
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Figure A.3: Illustration of the notation and process described in Lemma 18.

First of all, we remove from RP all the releases from the tasks in hp(τss) that occur in a

busy window [Wbk,Wek] that does not overlap with any execution region of τss (see Step 1 in

Figure A.3). Note that removing these releases along with the execution of the corresponding jobs

does not alter the schedule of τss (i.e. it does not impact the response time of any of its execution

regions) or that of the jobs of any higher priority task released in any other busy window in RP.

As a result, the response time of τss is not impacted by this modification of RP. We define the

resulting release pattern as RP1.

In order to get (1), each task in hp(τss) must release at least one job in RP′. Since there may

be some tasks in hp(τss) that do not release a job in RP1, one job release of each of those tasks is

added to RP1 such that it coincides with the arrival of the last execution region of τss (see Step 2

on Fig. A.3). This transformation of RP1 trivially increases the response time of the last execution

region as compared to RP and consequently also increases the overall response time of τss.

The next step to construct RP′ from RP consists in considering all the execution regions of τss

one-by-one, starting from the first one until the last one, and for each region τss, j do the following:

if there is a busy window k such that Wbk ≤ ass, j ≤Wek (i.e. τss, j is released within [Wbk,Wek]),

we then compute the offset δ j between the arrival of τss, j and Wbk, i.e. δ j
def
= ass, j−Wbk. Note

that by definition, δ` > 0. If such an overlap exists, we postpone all the higher priority job releases

that occur at or after Wbk by δ j time units. This shift in the job releases makes δ j additional units

of workload from the tasks in hp(τss) interfere with the execution of τss, j. As a consequence, the

response time of τss, j increases by δ j (i.e. Rss, j ← Rss, j + δ j), and so does the time fss, j at which

it finishes its execution ( fss, j ← fss, j + δ j) and, in a cascade effect, the times at which the next

regions are released (i.e., ∀` ≥ j, ass,`← ass,`+δ j). Step 3(1) in Fig. A.3) illustrates this process

for the first region of τss. At that step all the task releases are delayed by δ1 time units. Then,
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Step 3(2) illustrates the second and last iteration of that process when the second region of τss is

considered and all releases occurring at or after Wb2 get postponed by δ2 time units. For clarity,

we have redrawn the interference pattern on τss resulting from that step.

Note that at each iteration of the transformation described above, the response time of the

currently considered region τss, j of τss increases by δ j time units. However, given that along with

this increase, we also delay by δ j time units the release of all the subsequent regions of τss and the

releases of all the jobs of the tasks in hp(τss) that interfere with those regions, there is no variation

in the interference suffered by those execution regions and their response time is not impacted by

the transformation. After each iteration, the overall response time of τss therefore increases by δ j

time units. The release pattern from this transformation is now referred to as RP2. One can notice

that, all the jobs released in RP2 are released in one of the execution regions of τss.

As already explained the response time of every region of τss may have only increased (or

remained the same) during the process of constructing RP2 as described above. Finally, in order

to obtain RP′, RP2 is further modified as follows. For each task τh ∈ hp(τss), let Rh denote the set

of all its release time-instants in the pattern RP2. We know that for each of these instants relh,x
there exists a region τss, j of τss such that ass, j ≤ relh,x < fss, j, i.e. that release of τ j happens while

there is a region τss, j of τss which is running or waiting for the CPU. Now, for each of release in

Rh, we compute the offset Oh,x of relh,x relative to the release of the region of τss which is active at

that time. That is, for each relh,x ∈ Rh we compute Oh,x
def
= relh,x−ass, j where j is such that ass, j ≤

relh,x < fss, j. We then compute the minimum offset Omin
h for τh such that Omin

h
def
= min∀x {Oh,x} and

shift to the left all the releases of τh by that minimum offset, i.e. for all relh,x ∈ Rh, we impose

relh,x← relh,x−Omin
h . As a result, none of the releases of τh exit its "encompassing" τss’s execution

region and, as a consequence, the interference on τss is not modified when passing from RP2 to

RP′. Moreover, because the releases of all the jobs of τh are shifted by the same amount of time,

the minimum inter-arrival time between all those jobs is still respected. Finally, at least one job

of each task τk ∈ hp(τss) is now synchronous with the release of an execution region of τss (the

one[s] for which the relative offset was minimum, i.e. Oh,x = Omin
h ). This last step of the proof is

depicted on the last line of Fig. A.3 for the second task in hp(τss). From the entire discussion, it

can be seen that (1) and (2) hold true. Hence the lemma.

A.4.2 On maximizing the number of releases in each execution region

In the previous subsection, we proved that the critical instant for a self-suspending task τss suffer-

ing interference from non-self-suspending tasks happens when every higher priority task release a

job synchronously with at least one execution region of τss. Let us now define a set of synchronous

release constraints Synchss as follows.

Definition 19 (Set of synchronous release constraints). A set of synchronous release constraints

Synchss is a set of constraints that impose with which of the execution regions of the self-suspending

task τss each higher priority non-self-suspending task in hp(τss) releases one of its jobs syn-

chronously.
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With the above definition, we now prove the counter-intuitive property that, even considering

the set of synchronous constraints that lead to the WCRT of τss, the WCRT of τss is not always

obtained when the higher priority tasks release as many jobs as possible as early as possible in

each execution region of τss.

Lemma 19. Let τss be a self-suspending task and let hp(τss) be the set of non-self-suspending

tasks of higher priority than τss. Let Synchss be a set of constraints on the synchronous releases

of the tasks in hp(τss). Releasing the jobs of the tasks in hp(τss) as often and as early as possible

in each execution region of τss while respecting the set of constraints Synchss, will not necessarily

lead to the WCRT of τss under Synchss.

Proof. The lemma is proved by showing that the contrapositive version of the claim — that is,

that releasing as many jobs as possible as early as possible in each execution region of τss while

respecting the set of constraints Synchss does always lead to the WCRT of τss under Synchss

— is false. This can be proved with the following counter-example; Consider a task set τ =

{τ1,τ2,τ3,τss} of 4 tasks in which τ1, τ2 and τ3 are non-self-suspending tasks and τss is a self-

suspending task with the lowest priority. The tasks are characterized as follows: τ1 = 〈(4) ,8,8〉,
τ2 = 〈(1) ,10,10〉, τ3 = 〈(1) ,17,17〉 and τss = 〈(265,2,6) ,1000,1000〉. The set Synchss imposes

τ1 to release a job synchronously with the second execution region τss,2 of τss while τ2 and τ3 must

release a job synchronously with τss,1.

Consider two scenarios with respect to the job release pattern, always respecting the given

synchronous release constraints. In Scenario 1, the jobs of the higher priority non-self-suspending

tasks are released as often and as early as possible in each execution region of τss. In Scenario 2

however, one less job of task τ1 is released in and therefore interfere with τss,1. Showing that the

WCRT of the self-suspending task in Scenario 2 is higher than that of Scenario 1 proves the claim.

Scenario 1 is depicted in Fig. A.4a and Fig. A.4b shows Scenario 2. For clarity of presentation,

the first 765 time units are omitted in both figures. Furthermore, in both scenarios the release and

schedule of the jobs is identical in this time window. A first job of τ1, τ2 and τ3 is released

synchronously with the arrival of the first execution region of τss at time 0. The subsequent jobs of

these three tasks are released as often as possible respecting the minimum inter-arrival times of the

respective tasks. That is, they are released periodically with periods T 1, T2 and T3, respectively.

With this release pattern, it is easy to compute that the 97th job of τ1 is released at time 768, the

78th job of τ2 at time 770 and the 46th job of τ3 at time 765. As a consequence, at time 765,

τss has finished executing 259 time units of its first execution region out of 265 (indeed, we have

765−96×4−77×1−45×1 = 259) in both scenarios. From time 765 onwards, we separately

consider Scenario 1 and 2.

Scenario 1. Continuing the release of jobs of the non-self-suspending tasks as often as possible

without violating their minimum inter-arrival times, the first execution region τss,1 of τss finishes

its execution at time 782 as shown in Fig. A.4a. After completion of its first execution region,

τss self-suspends for two time units until time 784. As τ3 would have released a job just after the

completion of τss,1, we delay the release of that job from time 782 to 784 in order to maximize the
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(b) Scenario 2. Jobs are not released as often as possible.

Figure A.4: Example showing that releasing higher priority jobs as often and as early as possible
while respecting a set of constraints Synchss on the synchronous releases of the tasks in hp(τss)
may not cause the maximum interference to a self-suspending task τss.

interference caused by τ3 to the second execution region of τss as shown in Fig. A.4a. Note that,

in order to respect its minimum inter-arrival time, τ2 has an offset of 6 time units with the arrival

of the second execution region of τss. Upon following of the rest of the execution, it can easily be

seen that the job of τss finishes its execution at time 800.

Scenario 2. As shown on Fig. A.4b, the release of a job of task τ1 is skipped at time 776 in

comparison to Scenario 1. As a result, the execution of τss,1 is completed at time 777, thereby

causing one job of τ2 that was released at time 780 in Scenario 1, to not be released during the

execution of the first execution region of τss in Scenario 2. The response time of τss,1 is thus

reduced by C1 +C2 = 5 time units in comparison to Scenario 1 (see Fig. A.4). Note that this

deviation from Scenario 1 still allows us to respect the synchronous release constraints imposed

by Synchss as we can release the next job of τ1 synchronously with the second execution region

of τss without violating the minimum inter-arrival time of τ1 as can be seen in Figure A.4b. The

next job of τ3 however, is not released in the self-suspending region anymore but 3 time units

after the arrival of τss,2. Moreover, the offset of τ2 with the second execution region is reduced by

C1+C2 = 5 time units. This causes an extra job of τ2 to be released in the second execution region

of τss. This initiates a cascade effect, causing an extra job of τ1 to be released in τss,2, which in turn

causes the release of an extra job of τ3 itself causing the arrival of one more job of τ2 in the second

execution region of τss. Consequently, the response time of τss,2 increases by C2+C1+C3+C2 = 7

time units. Overall, the response time of τss increases by 7− 5 = 2 time units in comparison to

Scenario 1. This is reflected in Figure A.4b as the job of τss finishes its execution at time 802.

Thanks to this counter-example, we have proved that the response time of a self-suspending

task can be larger when the tasks in hp(τss) do not release jobs as often and as early as possible,



A.5 Exact WCRT for a self-suspending task with one suspension region 119

thereby proving the lemma.

Theorem 13. Let τss be a self-suspending task and let hp(τss) be the set of non-self-suspending

tasks of higher priority than τss. The WCRT of τss is not always obtained when the tasks in hp(τss)

release their jobs as often and as early as possible in the execution regions of τss under any set of

constraints Synchss on their synchronous releases.

Proof. Using the system of task τ of the counter-example provided in Lemma 19, one can check

that the response time obtained for τss when releasing jobs as often and as early as possible while

respecting any combination of constraints on the synchronous releases of the tasks in hp(τss),

never exceeds 800 (note that 4 of the 8 possible combinations are already covered by Scenario 1

of the Fig. A.4 since τ1 and τ3 have a synchronous release with both execution regions of τss).

However, it was shown in the proof of Lemma 19 that a response time of 802 can be experienced

by τss when the release of one job of τ1 is delayed. This proves the theorem.

A.5 Exact WCRT for a self-suspending task with one suspension re-
gion

In this section, we restrict our analysis to the special case of a self-suspending task τss composed

of only two execution regions and one suspension region. We propose an algorithm to compute

the exact worst-case response time of such a task. Self-suspending tasks with multiple suspension

regions will be considered in the next section.

As proven in Lemma 18, the critical instant for τss happens when at least one job of every

higher priority task is released synchronously with the release of the first and/or second execution

region of τss. However, since it cannot be known a priori which combination of synchronous

releases corresponds to the critical instant, there is no other solution for an exact WCRT analysis

than consider all the possible combinations of synchronous releases. The exact WCRT for τss is

then given by the maximum response time obtained with any of these combinations. Consequently,

the WCRT analysis problem boils down to the non-trivial subproblem of computing the WCRT of

τss when the higher priority tasks in hp(τss) are constrained to have a synchronous release with a

specific execution region of τss. We will later refer to that subproblem as the “constrained releases

subproblem”.

A.5.1 On the non-triviality of the constrained releases problem

Let us consider a self-suspending task τss, a set of higher priority tasks hp(τss) and a subset Synchss
2

of hp(τss) containing tasks constrained to have a synchronous release with the second execution

region of τss. The WCRT of the first execution region τss,1 of τss under those circumstances can be

computed as follows

Rss,1 =Css,1 + ∑
∀k∈hp(τss)

NIk×Ck (A.1)
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where NIk is the maximum number of jobs of τk interfering with τss. According to the usual

response time analysis for sporadic tasks with fixed-priorities, NIk is subject to the following

constraint

NIk ≤
⌈

Rss,1

Tk

⌉
(A.2)

Furthermore, for the higher priority tasks that are constrained to have a synchronous release with

τss,2, one must ensure that

∀τk ∈ Synchss
2 , NIk×Tk ≤ Rss,1 +Sss,1 (A.3)

in order to respect the minimum inter-arrival time Tk of τk. That is, for every higher priority task τk

that has a synchronous release with τss,2, the release of its last job interfering with τss,1, happening

at time (NIk−1)×Tk, and the beginning of τss,2, starting at time Rss,1 +Sss,1, has to be separated

by at least Tk time units.

As a consequence of those constraints, the following equation can be used for NIk and substi-

tuted in Eq. (A.1)

NIk =

min
(⌈

Rss,1
Tk

⌉
,
⌊

Rss,1+Sss,1
Tk

⌋)
if τk ∈ Synchss

2⌈
Rss,1
Tk

⌉
otherwise

(A.4)

When combined with Eq. (A.4), Eq. (A.1) becomes recursive. This kind of equation is usually

solved using a fixed-point iteration on Rss,1. However, as shown in the example below, contrary

to the traditional WCRT analysis of non-self-suspending sporadic tasks, the first solution found

to this equation by increasing the value of Rss,1 until it converges may yield to an optimistic (and

unsafe) value for the WCRT of τss,1.

Example 18. Consider a self-suspending task τss such that Css,1 = 3 and Sss,1 = 1, and two higher

priority tasks τ1
def
= 〈(1),5,5〉 and τ2

def
= 〈(2),6,6〉. Let us assume that both τ1 and τ2 are con-

strained to have a synchronous release with τss,2. It can easily be seen that the WCRT of τss,1

under those constraints is given when both τ1 and τ2 releases one job in τss,1, that is, Rss,1 = 6.

However, using a fixed-point iteration with Eq. (A.1) and (A.4), initiating Rss,1 to Css,1 = 3, the

process immediately converges to Rss,1 = 3, thereby assuming no job released by the higher prior-

ity tasks.

This example is already sufficient to prove the non-triviality of the constrained releases sub-

problem. Yet, solving Eq. (A.1) with NIk =
⌈

Rss,1
Tk

⌉
for all tasks in hp(τss) — that is, when there is

no constraint on the task releases — is known to be an upper-bound on the WCRT of τss,1 (Tindell

and Clark, 1994). Let UBss,1 be the value of that upper-bound. Based on the observation that

increasing Rss,1 until its convergence might be optimistic, one might propose to start the fixed-

point iteration over Rss,1 by initiating Rss,1 to UBss,1. The value of Rss,1 should decrease over the
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iterations thanks to the constraint NIk ≤
⌊

Rss,1+Sss,1
Tk

⌋
. However, as proven in the example provided

below, the new solution output by this second method can over-estimate the WCRT of τss,1.

Example 19. Consider the same set of tasks as in Example 18, but let us assume that τ1 must

have a synchronous release with τss,2 and τ2 with τss,1. It can be computed that the WCRT of τss,1

under those constraints is given when both τ1 and τ2 release one job in τss,1, that is, Rss,1 = 6.

Moreover, the WCRT of τss,1 is known to be upper-bounded by UBss,1 = 9 (this can be obtained by

solving Eq. (A.1) assuming no constraints on the synchronous releases). However, if we initiate

the fixed-point iteration on Rss,1 in Eq. (A.1) with UBss,1, we obtain Rss,1 = 8. This is impossible

since it would mean that τ2 releases two jobs in τss,1. Its second job would be released at time 6

when τss,1 just completed its execution.

These examples show that, in the general case, no trivial solution exists to the constrained

releases subproblem.

A.5.2 Solution for the constrained releases subproblem

In this subsection, we propose a method to compute the exact WCRTs Rss,1 and Rss,2 under a set

of constraints Synchss
2 .

The proposed method to compute Rss,1 is based on a combination of the two straightforward

but inexact solutions investigated in Section A.5.1. That is, we simultaneously increase and de-

crease the value of Rss,1 in two different but interdependent iterative processes until they converge

to the same value. To do so, Eq. (A.4) is rewritten as follows

NIk =

min
(⌈

Rss,1
Tk

⌉
,NImax

k

)
if τk ∈ Synchss

2⌈
Rss,1
Tk

⌉
otherwise

(A.5)

where NImax
k is an upper-bound on the number of jobs of τk interfering with the first execution

region of τss. This new formulation of Eq. A.4 removes the recursiveness in the new term that

was added to the equation of NIk in order to enforce compliance with the constraints imposed

by Synchss
2 . The WCRT can therefore be computed with the usual fixed-point iteration on Rss,1

where Rss,1 is initialized to Css,1 for the first iteration. During that process, NImax
k is assigned a

known upper-bound on NIk. Because NImax
k is an upper-bound, the result obtained for Rss,1 after

convergence of Eq. (A.5) is also an upper-bound on the actual WCRT of τss,1. However, with

this value, the constraint expressed by Eq. (A.3) may not be respected. Therefore, the constraint

imposed by Eq. (A.3) is checked and if violated the value of NImax
k is decreased and Eq. (A.1) is

solved again. Otherwise, an exact WCRT for τss,1 has been found.

Lines 2 to 14 of Algorithm 7 present a pseudo-code of that method. Starting with the upper

bound UBss,1 on Rss,1 (line 4), it iteratively removes jobs of higher priority tasks interfering with

τss,1 (lines 7–11) when the condition expressed in Eq. (A.3) is violated, i.e., NIk >
Rss,1+Sss,1

Tk
. With

this updated value, the response time Rss,1 is recomputed at line 12 of Algorithm 7. This pro-
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cess iterates until the value computed for Rss,1 converges to the exact WCRT of τss,1 under the

constraints imposed by Synchss
2 .

Once the response time of τss,1 has been computed, the offset Ok,2 between the earliest instant

at which each task τk can release a job in τss,2 while respecting its minimum inter-arrival time Tk

can be obtained with Eq. (A.6).

Ok,2 =

0 if τk ∈ Synchss
2

max(0, NIk×Tk−Ri,1−Si,1) otherwise
(A.6)

As expressed by Eq. (A.6), any release of a job of τk that should happen within the suspension

region of τss is delayed until the beginning of τss,2, thereby imposing Ok,2 = 0. This allows us to

maximize the interference caused by τk to τss,2.

Rss,2 is given by Eq. (A.7) and is computed as the traditional response time for non-self-

suspending tasks. That is, we seek a minimum response time that satisfies the fixed-point iteration

by starting with Rss,2 =Css,2.

Rss,2 =Css,2 + ∑
∀k∈hp(τi)

⌈
Rss,2−Oi,2

Tk

⌉
×Ck (A.7)

In Algorithm 7, this is reflected in lines 15 to 18. Line 19 computes the overall response time

of τss. However, as proven in Section A.4.2, it might happen that releasing one less job in τss,1

allows to increase the response time of τss,2 and in turn increase the overall response time of τss.

Therefore, lines 20 to 29 have been added to consider that case. Those lines call recursively the

function RespTime, imposing the upper-bound on the number of interfering jobs with the first

execution region to be one less than in the computed solution. Of course, this recursion must not

be activated if the overall response time Rss found for τss is already equal to a known upper-bound

obtained with simple approximation techniques likes those proposed in (Bletsas, 2007). Similarly,

there is no interest in trying to increase the response time of τss,2 by reducing the response time of

τss,1 if Rss,2 is already equal to an upper-bound.

It can easily be seen by looking at Algorithm 7, that computing the exact WCRT of τss becomes

rapidly intractable. This fact has been confirmed by the experiments reported in Section A.8.

Therefore, in the next section, we propose a second method, using a MILP formulation, to compute

an approximation over the WCRT of τss.
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Algorithm 7: Recursive function computing the WCRT of τss assuming a set of constraints
on higher priority tasks releases
1 Function RespTime ( hp(τss), Synchss

2 , NIup ) is
Inputs : hp(τss) - set of higher priority tasks w.r.t. τss

Synchss
2 - the set of tasks in hp(τss) with a synchronous release with τss,2

NIup - vector of upper bounds on the number of jobs of each task τk, that can interfere
with τss,1
Output: Rss - The exact WCRT for τss when respecting the constraints given by Synchss

2 and
NIup

2 Rbwd
ss,1 ← 0 ;

3 NI← NIup;
4 Rss,1←Css,1 + ∑

∀k∈hp(τss)
NIup

k ×Ck ;

5 while Rbwd
ss,1 6= Rss,1 do

6 Rbwd
ss,1 ← Rss,1 ;

/* Update the number of interfering jobs for the tasks
synchronous with τss,2 */

7 forall the τk ∈ Synchss
2 do

8 if NIk >
Rss,1+Sss,1

Tk
then

9 NIk← NIk−1 ;
10 end
11 end

// Compute the response time of τss,1

12 Rss,1←Css,1 + ∑
∀k∈hp(τss)

min(NIk;
⌈

Rss,1
Tk

⌉
)×Ck;

13 forall the τk ∈ hp(τss) do NIk←
⌈

Rss,1
Tk

⌉
;

14 end
// Compute the offsets with τss,2

15 forall the τk ∈ hp(τss) do
16 Ok,2←max(0;NIk×Tk−Rss,1−Sss,1);
17 end

// Compute the response time of τss,2

18 Rss,2←Css,2 + ∑
∀k∈hp(τss)

⌈
Rss,2−Ok,2

Tk

⌉
×Ck;

19 Rss← Rss,1 +Sss,1 +Rss,2; ;

/* Check if there is not a release pattern with one less job in τss,1
that increases the overall WCRT */

20 if Rss < UBss, and Rss,2 < UBss,2 then
21 forall the τk ∈ hp(τss) do
22 if NIk > 0 then
23 NI′← NI ;
24 NI′k← NIk−1 ;
25 R← RespTime(hp(τss), Synchss

2 , NI′);
26 If R > Rss then Rss← R;
27 end
28 end
29 end
30 return Rss;
31 end
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A.6 Upper-bound on the WCRT of a self-suspending task with mul-
tiple suspension regions

As shown in the previous section and contrary to what was commonly believed, the timing analysis

of a set of sporadic non-self-suspending tasks interfering with a sporadic self-suspending task

is challenging, as it the case in the analysis of a set of periodic tasks interfering with a self-

suspending task. The exact test, even when only one suspension region is considered, rapidly

becomes intractable. In this section, we therefore propose an MILP formulation for computing an

upper-bound on the WCRT of a self-suspending task with multiple suspension regions when all

the interfering tasks are non-self-suspending. This formulation will be extended in the next section

to consider the case where multiple self-suspending tasks interfere with each other.

The optimization problem, defined by Expressions (A.8) to (A.16), has the objective to maxi-

mize the sum of the response times of every execution region of τss. Its constraints (A.9)–(A.16)

can all be easily linearized. In the proposed problem formulation, the number of jobs NIk, j of each

task τk ∈ hp(τss) interfering with each execution region of τss are integer variables while the re-

sponse time Rss, j of each execution region τss, j of τss and the offsets Ok, j of each task τk with each

execution region τss, j are real variables. This MILP formulation is quite simple in comparison

to the exact test described in Algorithm 7. As demonstrated in Section A.8, this permits a state-

of-the-art MILP solver to output results in an acceptable amount of time for reasonable system

sizes.

Maximize:
mss

∑
j=1

Rss, j (A.8)

Subject to:
mss

∑
j=1

(Rss, j +Sss, j)≤ UBss, (A.9)

∀τss, j ∈ τss : Rss, j =Css, j + ∑
τp∈hp(τss)

NIp, j×Cp (A.10)

Rss, j ≤ UBss, j (A.11)

∀τk ∈ hp(τss) : Ok,1 ≥ 0 (A.12)

∀τk ∈ hp(τss),∀τss, j ∈ τss :

Ok, j+1 ≥max
(
0, Ok, j +NIk, j×Tk−Rss, j−Sss, j

)
(A.13)

NIk, j ≥ 0 (A.14)

NIk, j ≤
⌈

Rss, j−Ok, j

Tk

⌉
(A.15)

Rss, j > Ok, j +(NIk, j−1)×Tk +

∑
τp∈hp(τss)

⌊
NIp, j +

Op, j−Ok, j− (NIk, j−1)Tk

Tp

⌋
Cp (A.16)

The constraints (A.9)–(A.15) of the optimization problem are a direct translation of the con-
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straints already discussed in Section A.5. That is, Constraint (A.10) is equivalent to Eq. (A.1);

Constraints (A.12) and (A.13) are a generalization of Eq. (A.6) computing the offsets of the higher

priority tasks with each execution region; and Constraints (A.14) and (A.15) impose the traditional

lower- and upper-bound on the number of interfering jobs of each task τk with each execution re-

gion τss, j as already discussed for Eq. (A.7). Constraints (A.9) and (A.11) reduce the research

space of the problem by stating that the overall response time of τss and the response time of each

of its execution region, respectively, cannot be larger than known upper-bounds computed with

simple methods such as the Joint and Split methods presented in (Bletsas, 2007). Therefore, Con-

straint (A.16) is the only new expression requiring some explanations. Constraint (A.16) can be

understood as follows; by replacing Ok, j +(NIk, j−1)×Tk and Op, j +NIp, j×Tp by relk, j and dp, j,

respectively, we get

Rss, j > relk, j + ∑
τp∈hp(τss)

⌊
dp, j− relk, j

Tp

⌋
Cp

The value of relk, j gives the release instant of the last job of τk released in the execution region

τss, j, while dp, j gives the deadline of the last job of τp released in τss, j. Therefore, the floor value in

Constraint (A.16) provides the number of jobs released by τp after relk, j and the sum thus gives the

total workload released by higher priority tasks after relk, j. Since τss cannot execute when higher

priority workload is available and because relk, j is an instant in the response time of the execution

region, the response time of τss, j cannot be smaller than relk, j plus the higher priority workload

remaining to execute after relk, j. This is what Constraint (A.16) enforces.

Note that because the optimization problem tests all the possible values for the offsets Ok, j of

each task τk with every execution region of τss, it also tests all the possible synchronous release

combinations. Therefore, there is no need to impose additional constraints on the synchronous

release patterns, as it was the case in Algorithm 7.

A.7 Multiple self-suspending tasks

In this section, we propose a solution to analyze multiple self-suspending tasks interfering to-

gether. We show below that each higher priority task τk can safely be replaced by a set of non-

self-suspending tasks in the response time analysis. In particular, each execution region τk, j of τk

is modelled by a different non-self-suspending task τ ′k, j with jitter Jk, j. Such solution was already

proposed in (Palencia and Gonzalez Harbour, 1998). In (Palencia and Gonzalez Harbour, 1998),

the jitter Jk, j is given by the difference between the WCRT and BCRT of the partial self-suspending

task composed of the j−1 first execution and suspension regions of τk. Formally,

Lemma 20. Let τk, j be the jth execution region of τk, and let τ
j

k be a self-suspending task com-

posed of the j− 1 first execution and suspension regions of τk, that is, τ
j

k
def
= 〈(Ck,1,Sk,1, . . . ,

Ck, j−1,Sk, j−1),Dk,Tk〉. The release jitter of τk, j is upper bounded by Jk, j
def
= WCRT j

k−BCRT j
k,

where WCRT j
k and BCRT j

k are the worst-case and best-case response time of τ
j

k , respectively.
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Proof. The minimum inter-arrival time of the execution region τk, j of task τk is inherited from

the minimum inter-arrival time of τk. However, the execution region τk, j can start to execute only

when the ( j−1)th suspension region of τk completes, that is, when the partial self-suspending task

τ
j

k completes its execution. Since the response time of τ
j

k may vary between different jobs released

by τk, the release of τk, j experiences a jitter. This jitter is upper-bounded by the difference between

the longest and the shortest response time of τ
j

k , i.e., it is upper-bounded by the difference between

WCRT j
k and BCRT j

k.

Let hp(τss) be a set of self-suspending tasks with higher priorities than τss. And let hp(τss)
′

be a set of non-self-supending tasks where for each task τk ∈ hp(τss), the set hp(τss)
′ contains mk

non-self-suspending tasks τ ′k, j
def
= 〈(Ck, j),Dk,Tk,Jk, j〉 with 1 ≤ j ≤ mk, where Jk, j is defined as in

Lemma 20 and each task τ ′k, j (1 ≤ j ≤ mk) has the same priority than τk. We prove below that

replacing hp(τss) with hp(τss)
′ in the WCRT analysis of τss provides a response time upper-bound

which is at least as large as the WCRT when using hp(τss). Therefore, replacing hp(τss) with

hp(τss)
′ is safe.

We first define what is a legal release pattern for a task set.

Definition 20 (Legal release pattern for a task set τ). A release pattern R defines all the instants

at which each execution region of the tasks in τ releases jobs. A release pattern R is legal if all

the constraints defined by the tasks in τ (i.e., minimum inter-arrival time, precedence constraints

and release jitter) are respected in R.

Now, we prove that the release pattern of the task set hp(τss) that generates the WCRT of τss

can be transformed in a legal release pattern for the tasks in hp(τss)
′.

Lemma 21. Let R be any legal release pattern of the execution regions of the tasks in hp(τss) such

that the tasks in hp(τss) generate the worst-case interference on τss. Let R
′
be a release pattern for

the tasks in hp(τss)
′ such that whenever an execution region τk, j ∈ hp(τss) releases a job in R, the

corresponding task τ ′k, j releases a job at the same instant in R
′
. The release pattern R

′
is a legal

release pattern for the tasks in hp(τss)
′.

Proof. We have to prove that the minimum inter-arrival times, release jitters and precedence con-

straints defined for the tasks in hp(τss)
′ are all respected in R

′
.

1. The minimum inter-arrival time of τk, j is Tk and its release jitter is smaller than or equal to

Jk, j (from Lemma 20). Let τ`
k, j be the `th instance (job) released by τk, j. Since R is legal, the

time between any two jobs τ`
k, j and τ

`+p
k, j released by τk, j is at least (p×Tk)−Jk, j. Therefore,

the time between any two jobs τ`′
k, j and τ

`+p′
k, j released by τ ′k, j is at least (p×Tk)− Jk, j in the

release pattern R
′
. Since by definition, the minimum inter-arrival time and the release jitter

of τ ′k, j are Tk and Jk, j respectively, the release pattern R
′

respects the minimum inter-arrival

time and the release jitter constraints on τ ′k, j.

2. Since the tasks in hp(τss)
′ do not have any precedence constraints, the release pattern R

′

trivially respects those constraints.
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By 1. and 2., the release pattern R
′
is legal for hp(τss)

′.

We finally prove that replacing hp(τss) by hp(τss)
′ in the WCRT analysis of τss is safe.

Theorem 14. The worst-case interference generated by the tasks in hp(τss)
′ is lower-bounded by

the worst-case interference generated by the tasks in hp(τss).

Proof. The proof is based on the following facts:

F1. If a job of τk, j or τ ′k, j interferes with the execution region τss,p of τss than they do not interfere

with any other execution region of τss. This statement is true because (i) both τk, j and τ ′k, j
have a higher priority than τss, and (ii) they do not self-suspend. Therefore, when they

start to interfere with one execution region of τss, that execution region cannot resume its

execution before τk, j or τ ′k, j complete their own execution.

F2. When they execute for their WCET, one job of τk, j generates as much interference as one

job of τ ′k, j. It is simply due to the fact that τk, j and τ ′k, j have the same WCET.

Let R be any legal release pattern of the execution regions of the tasks in hp(τss) such that

the tasks in hp(τss) generate the worst-case interference on τss. And let R
′

be the corresponding

release pattern for the tasks in hp(τss)
′ such that whenever an execution region τk, j of a task τk

in hp(τss) releases a job in R, the corresponding task τ ′k, j releases a job at the same instant in

R
′
. By Lemma 21, R

′
is a legal release pattern for the tasks in hp(τss)

′. Since by Fact F2.,

each job released by each task τ ′k, j generates as much interference than each job released by the

corresponding execution region τk, j, and because by Fact F1., this interference is generated in

the same execution region of τss, the total interference generated by the set of tasks in hp(τss)
′

under the release pattern R
′
is equal to the worst-case interference generated by the corresponding

self-suspending tasks in hp(τss) under R.

Therefore, because we proved that there exists at least one legal release pattern of the tasks

in hp(τss)
′ generating as much interference as the worst-case interference generated by hp(τss),

the worst-case interference generated by the tasks in hp(τss)
′ is lower-bounded by the worst-case

interference generated by the tasks in hp(τss).

Theorem 15. The WCRT of τss running concurrently with hp(τss)
′ is no smaller than its WCRT

when it runs concurrently with hp(τss).

Proof. Theorem 14 proves that hp(τss)
′ generates at least as much interference on τss than hp(τss).

Therefore, the WCRT of τss when its runs concurrently with hp(τss)
′ is no smaller than its WCRT

when it runs concurrently with hp(τss).

A.7.1 Upper-bounding Jk, j

The solution presented above requires an upper-bound on the jitter Jk, j experienced by each exe-

cution region τk, j. In this subsection, we provide three different upper-bounds (stated in Lemmas

22, 23 and 24) on the jitter Jk, j.
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Lemma 22. The release jitter Jk, j of τk, j is upper bounded by WCRTk−∑
mk
p= j Ck,p−∑

mk−1
p= j Sk,p.

Proof. Let ak and fk be the release time and the completion time of any job of τk, and let ak, j

be the release time of the execution region τk, j in that job. Instant ak, j also corresponds to the

completion time of the partial self-suspending task τ
j

k . We prove that ak, j is no later than ak +

WCRTk−∑
mk
p= j Ck,p−∑

mk−1
p= j Sk,p.

The proof is by contradiction. Let us assume that the completion of τ
j

k , and hence the release

of τk, j, happens after ak +WCRTk−∑
mk
p= j Ck,p−∑

mk−1
p= j Sk,p, that is,

ak, j > ak +WCRTk−
mk

∑
p= j

Ck,p−
mk−1

∑
p= j

Sk,p (A.17)

If every execution region executes for its worst-case execution time and every suspension region

suspends for its worst-case suspension time, then τk must still execute for ∑
mk
p= j Ck,p time units

and suspend for ∑
mk−1
p= j Sk,p time units after ak, j. Therefore, even without interference from higher

priority tasks, task τk completes its execution at time

fk ≥ ak, j +
mk

∑
p= j

Ck,p +
mk−1

∑
p= j

Sk,p

Replacing ak, j with Eq. (A.17), we get

fk > ak +WCRTk−
mk

∑
p= j

Ck,p−
mk−1

∑
p= j

Sk,p +
mk

∑
p= j

Ck,p +
mk−1

∑
p= j

Sk,p

Simplifying and passing ak from the right-hand side to the left-hand side, we obtain

fk−ak > WCRTk

which is a clear contradiction with the fact that WCRTk is an upper-bound on the response time

of τk. It results that for any job of τk, the partial self-suspending task τ
j

k completes at time ak, j ≤
ak +WCRTk−∑

mk
p= j Ck,p−∑

mk−1
p= j Sk,p. The worst-case response time WCRT j

k of τ
j

k is therefore

upper-bounded by WCRTk−∑
mk
p= j Ck,p−∑

mk−1
p= j Sk,p.

Since the best-case response time BCRT j
k of τ

j
k is trivially lower-bounded by 0, the jitter Jk, j,

which by definition is equal to WCRT j
k−BCRT j

k, is upper-bounded by WCRTk−∑
mk
p= j Ck,p −

∑
mk−1
p= j Sk,p.

Lemma 23. The release jitter Jk, j of τk, j is upper bounded by ∑
j−1
p=1

(
UBk,p+Sk,p

)
where UBk,p is

an upper bound on the WCRT of each execution region τk,p given by the smallest positive t such

that

t =Ck,p + ∑
τ`∈hp(τk)

⌈
t + J`

T`

⌉
C`



A.7 Multiple self-suspending tasks 129

Proof. It was proven in (Bletsas, 2007) that the WCRT of a self-suspending task τ
j

k is upper-

bounded by ∑
j−1
p=1

(
UBk,p+Sk,p

)
. Since Jk, j

def
= WCRT j

k−BCRT j
k, and because BCRT j

k is lower-

bounded by 0, we get that Jk, j ≤ ∑
j−1
p=1

(
UBk,p+Sk,p

)
.

Lemma 24. The release jitter Jk, j of τk, j is upper bounded by UB j
k+Sk, j−1 where UB j

k is given by

the smallest positive t such that

t =
j−1

∑
p=1

Ck,p +
j−2

∑
p=1

Sk,p + ∑
τ`∈hp(τk)

⌈
t + J`

T`

⌉
C`

Proof. It was proven in (Bletsas, 2007) that the WCRT of a self-suspending task 〈(Ck,1,Sk,1, . . . ,

Ck, j−1),Dk,Tk〉 is upper-bounded by UB j
k. Because the last suspension region Sk, j−1 of τ

j
k cannot

be preempted, the WCRT of τ
j

k is given by UB j
k+Sk, j−1. Since Jk, j

def
= WCRT j

k−BCRT j
k, and

because BCRT j
k is lower-bounded by 0, we get that Jk, j is upper-bounded by UB j

k+Sk, j−1.

A.7.2 Extending the optimization problem

Using Theorem 15, each higher priority self-suspending task can be transformed in a set of non-

self-suspending tasks with jitter. Without loss of generality, let τk ∈ hp(τss) correspond to any

non-self-suspending τ ′i,h ∈ hp(τss)
′, where Ck = Ci,h and Jk = Ji,h. This new model can easily be

integrated in the MILP formulation presented in Section A.6, which computes an upper bound on

the WCRT a self-suspending task τss running concurrently with a set of non-self-suspending tasks.

Let Jk, j represent the jitter experienced by the jobs of τk released in the jth execution region of

τss. In the traditional response time analysis, the jitter can be accounted by subtracting it from the

offset of the interfering task (Liu, 2000). That is, Constraint (A.15) for instance would become

NIk, j ≤
⌈

Rss, j− (Ok, j− Jk, j)

Tk

⌉
. However, instead of introducing a new set of variables in the optimization problem and hence

increase its complexity, one can simply replace Ok, j by O′k, j in Constraints (A.15) and (A.16),

where O′k, j is defined as O′k, j
def
= Ok, j − Jk, j. Because Jk, j is upper-bounded by Jk, this variable

replacement has for consequence that the bound imposed on the offsets of the tasks in hp(τss)

must be modified. Therefore, Constraints (A.12) and (A.13) must be replaced by:

∀τk ∈ hp(τss) : O′k,1 ≥−Jk

∀τk ∈ hp(τss),∀τss, j ∈ τss :

O′k, j+1 ≥ O′k, j +NIk, j×Tk−Rss, j−Sss, j− Jk
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A.8 Experiments

In this section, we describe experiments conducted through randomly generated task sets to eval-

uate (i) the applicability of our exact WCRT computation algorithm, (ii) the performance of the

MILP method, and (iii) the respective gain in comparison with the state-of-the-art analysis for spo-

radic self-suspending tasks. We used Gurobi (Gurobi Optimization Inc., 2015), a state-of-the-art

MILP solver, to solve our optimization problem.

All the task sets were generated using the randfixedsum algorithm (Emberson et al., 2010),

allowing us to choose a constant total task set utilization for a given number of tasks and bounded

per-task utilization. Accordingly, the total utilization (Utot) was varied from 0.1 to 1 by 0.1 incre-

ments. The per-task utilization ranged from [0.05, Utot
2 ], while periods were uniformly distributed

over [10,100]. The task execution requirements were calculated from the respective periods and

utilizations. Individual values for each of the multiple suspension regions and computing stages

were assigned as fraction of the overall suspension length Sss, using again the randfixedsum

algorithm for a constant total of 1 and a minimum fraction of 0.1. We generated 100 task sets per

combination of parameters, while ensuring that task τn−1 was always schedulable.

We evaluated our techniques for computing the WCRT of sporadic self-suspending tasks un-

der fixed-priority scheduling by comparing them to the analysis presented in (Kim et al., 2013b)

(denoted “SFP”) and the ‘Split” and “Joint” analysis presented in (Bletsas, 2007). For SFP, we

provided the task priorities using RM as an input to their optimization problem but let it find the

optimal phase assignment. We also removed the constraint Ri ≤Di in the solver described in (Kim

et al., 2013b) since the goal of our experiments is not to check the schedulabity of the system per

se but comparing the actual worst-case response time computed with each analysis. It is worth

mentioning that SFP deemed a few task sets infeasible, in which case, in order to maintain a fair

comparison, they were discarded in the evaluation. For the task model evaluated in this chapter,

Split boils down to force all higher priority tasks to have synchronous releases with each of the

execution regions of the self-suspending task. Joint is the traditional suspension-oblivious analysis

for fixed-priority scheduling, that is, assuming that the suspension regions are part of the worst-

case execution time of the task. Both Split and Joint are simple response time tests that yield

well-known upper bounds and that can be computed straightforwardly. The analysis from (Liu

and Anderson, 2013) was not considered as the authors acknowledged the existence of a flaw. All

the plots of Fig. A.5 represent the inaccuracy of the previous timing analysis techniques when

compared to our optimal method (for Fig. A.5a) or our optimization problem (for Fig. A.5b–f).

Herein we restrict our attentions to problem instances that are representative in size of many

real-time systems, in order to study the applicability and trade-offs of the different analysis towards

specific parameter intervals. For the first set of experiments presented on Fig. A.5a–c, we fixed

the number of execution regions of τss to 2 and we varied the number of tasks from 4 to 12. The

suspension length of τss was set at a ratio Si
Ti

with values 0.1, 0.3, and 0.5. Fig. A.5a–c show the

average gain achieved by our analysis with respect to the WCRT when varying the utilization, the

length of the suspension and the number of interfering tasks, respectively. As expected, our MILP
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formulation (denoted “Opt”) and our exact analysis always outperform the other approaches with

average gains varying from 1 to 30% relatively to Joint and Split, and considerably more for SFP.

The difference with SFP can be explained by the fact that the optimization problem of (Kim et al.,

2013b) was formulated to find schedulable solutions and not necessarily reduce the response time

of the self-suspending tasks. Maximum gains (which is not represented on the plots) observed

during our experiments showed that our method can reduce the pessimism on the WCRT over

120% in some cases but is around 70% for utilizations around 0.7, i.e., close to the schedulability

bound of RM for non-self-suspending tasks. However, the gains are highly dependent on the

utilization of the system and the length of the suspension region as can be seen on Fig. A.5a and

A.5c.

Joint performs relatively poorly when the suspensions become longer and the utilization in-

creases, but is competitive in the presence of short suspensions and low utilizations. Split exhibits

the opposite behavior as it is unlikely that the higher priority tasks happen to be released syn-

chronously with both execution regions when the suspension is short and the system is not highly

loaded. Although our exact algorithm becomes intractable for n > 8 (it is only part of Fig. A.5a),

Opt is able to also provide the exact WCRT for the majority of the task sets as illustrated in

Fig. A.5f. In order to verify if a given WCRT is the exact solution, one must check if the response

time of each execution region converges to the number of interfering job assumed to be released

inside their window.

We then study the importance of different suspension ratios and how it relates with multiple

suspension regions. Accordingly, the second set of experiments had the number of tasks fixed to

6 and the number of execution regions varying from 2 to 5. The suspension length was instead set

as a ratio Si
Ci

with values 1 and 2. The results are depicted in Fig. A.5d and A.5e. SFP could not

find significant feasible solutions and thus was excluded in the evaluation. It can be observed that

an increase in the number of suspension regions, when not accompanied by a substantial increase

in the ratio Si
Ci

, leads to a severe degradation for the Split’s performance, just attenuated for high

utilizations which typically result in smaller offsets due to the increase in response time. Joint

remains very competitive even when the suspension is twice the length of the execution time of

the task. Throughout the experiments, it becomes clear that Joint and Split are not comparable, but

also that for such low run-time complexity both approaches may yield tight upper-bounds when

applied over this model of tasks. As a last remark, we note that our optimization problem takes in

average a few seconds to find its best solution and that the computational time remain reasonable

(below 10s) for reasonable dimension of the problem (12 tasks for 2 execution regions, or 6 tasks

for 5 execution regions), although under highly loaded circumstances the solver may struggle to

improve over the initial solutions of some specific problem instances, in which case a timer may

limit the research time.
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(a) Varying total utilization when n = 6 and Sss
Tss

=
0.3.

(b) Varying number of tasks when Utot = 0.6 and
Sss
Tss

= 0.3.

(c) Varying ratio Sss
Tss

when Utot = 0.6 and n = 6. (d) Varying number of execution regions when
Utot = 0.7, n = 6 and Sss

Css
= 2.

(e) Varying utlization when n = 6, mss = 5 and Sss
Css

is equal to 1 and 2.
(f) Percentage of exact solutions found by the op-
timization problem.

Figure A.5: Experimental results.
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A.9 Summary

In this chapter, we considered the fixed-priority scheduling of a set of self-suspending tasks onto

uniprocessors. We have demonstrated that it is not simple to characterize a critical instant for spo-

radic tasks with self-suspensions, thereby invalidating a claim made in an earlier work. We high-

lighted the complexity of the problem and presented an algorithm to compute the exact WCRT of

a lower priority self-suspending task when scheduled together with sporadic non-self-suspending

tasks. As the algorithm rapidly becomes intractable for a large number of higher priority tasks

due to the exponential number of scenarios that need to be considered, we formulated a response

time test for multiple suspension regions as an optimization problem that can be solved by a MILP

tool in reasonable time. The optimization problem was then extended to accommodate multiple

sporadic self-suspending tasks interfering with each other. Experiment results showed that the pro-

posed response time tests dominate state-of-the-art techniques, although the WCRT gains highly

depend on the peculiarities of the task sets. Experiments also pointed out that the optimization

problem finds the exact WCRT solution in the majority of the cases.





Appendix B

Counter Examples

In this appendix, we present two counter-examples to the fixed-priority response time analysis for

fork-join tasks scheduled in a partitioned fashion on a multiprocessor system presented in Axer

et al. (2013), thereby proving its incorrectness.

B.1 Counter-examples to the schedulability analysis for partitioned
fork-join tasks presented in Axer et al. (2013)

In Axer et al. (2013), a sporadic fork-join τ is represented by a set of subtasks, where each subtask

τs,σ belongs to the σ th segment of the sth stage. Subtasks on stage s+ 1 cannot start before all

subtask on stage s finish their executions. A sequential task is then τ1,σ . The WCET of a subtask

is given by Cs,σ , while σ also denotes the core to which the subtask is mapped.

Following Theorem 3 and Equation 11 as defined in Axer et al. (2013), the worst-case response

time of a sequential task τi assigned to core σ = 1, when suffering interference from a higher

priority fork-join task τ j, is given by

Ri =C1,1
i +N j× ∑

∀τs,σ
j

Cs,1
j (B.1)

where N j is the number of jobs released by τ j in the scheduling window [0,Ri). That is, all stages

are assumed to be activated with the activation of a job of τ j, and the first job of τ j is released

synchronously with the sequential task τi.

Now, we provide a counter-example to Equation B.1.

Example 20. Consider a task set with three tasks and a platform with two cores. Task τ1 is

sequential with C1,2
1 = 5, period T1 = 100, and has high priority. Task τ2 is fork-join with C1,1

2 = 0,

C2,1
2 = 1, C2,2

2 = 1, C3,1
2 = 2, period T2 = 8, and has medium priority. Task τ3 is sequential with

C1,1
3 = 1, and has low priority. Using Equation B.1, the worst-case response time of the sequential

task τ3 is R3 = 4, as illustrated in Fig. B.1. Fig. B.2 shows a different schedule for the same task
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Figure B.1: Worst-case schedule according to Equation B.1 for Example 20.

set but with a different arrival pattern, while also considering the interference happening on core

2. Clearly, R3 is actually 6.

Figure B.2: Counter-example to Equation B.1 for Example 20.

Following Theorems 3 and 4 in Axer et al. (2013), the worst-case arrival pattern for a se-

quential task τ j interfering with a fork-join task τi is achieved when τ j (1) releases the first job

synchronously with the first stage of τi which contains a segment σ = p and τ j is assigned to p;

(2) subsequent releases are separated by Tj time units unless no subtask τ
s,p
i is active at that time,

in which case τ j is delayed to be released synchronously with the activation of the next subtask

τ
s,p
i .

Now, we provide a counter-example to Theorems 3 and 4 in Axer et al. (2013).

Example 21. Consider a task set with three tasks and a platform with two cores. Task τ1 is

sequential with C1,1
1 = 1, period T1 = 100, and has high priority. Task τ2 is sequential with C1,1

2 =

1, period T2 = 4, and has medium priority. Task τ3 is fork-join with C1,1
3 = 1, C2,1

3 = 1, C2,2
3 = 2,

C3,1
3 = 3, and has low priority. By applying Theorems 3 and 4 as defined in Axer et al. (2013),

we obtain that the worst-case response time of the fork-join task τ3 is R3 = 9, as illustrated in

Fig. B.3. Fig. B.4 shows a different schedule for the same task set but with a different arrival

pattern. Clearly, R3 is actually 10.

The examples provided above prove that the analysis presented in Axer et al. (2013) is incor-

rect, both when a fork-join task interferes with other tasks and when it is the task under analysis.



Figure B.3: Worst-case schedule according to Theorems 3 and 4 in Axer et al. (2013) for Exam-
ple 21.

Figure B.4: Counter-example to Theorems 3 and 4 in Axer et al. (2013) for Example 21.
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