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ABSTRACT OF DISSERTATION

DYNAMIC VOLTAGE SCALING FOR PRIORITY-DRIVEN SCHEDULED
DISTRIBUTED REAL-TIME SYSTEMS

Energy consumption is increasingly affecting battery life and cooling for real-
time systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to
substantially reduce the energy consumption of uniprocessor real-time systems. It is
worthwhile to extend the efficient DVS scheduling algorithms to distributed system
with dependent tasks.

The dissertation describes how to extend several effective uniprocessor DVS schedul-
ing algorithms to distributed system with dependent task set. Task assignment and
deadline assignment heuristics are proposed and compared with existing heuristics
concerning energy-conserving performance. An admission test and a deadline com-
putation algorithm are presented in the dissertation for dynamic task set to accept
the arriving task in a DVS scheduled real-time system.

Simulations show that an effective distributed DVS scheduling is capable of saving
as much as 89% of energy that would be consumed without using DVS scheduling.
It is also shown that task assignment and deadline assignment affect the energy-
conserving performance of DVS scheduling algorithms. For some aggressive DVS
scheduling algorithms, however, the effect of task assignment is negligible. The ad-
mission test accept over 80% of tasks that can be accepted by a non-DVS scheduler
to a DVS scheduled real-time system.
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Task and Deadline Assignment, Admission Test
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Chapter 1: INTRODUCTION

The correctness of a hard real-time (RT) systems depends on its timeliness. In other

words, deadlines of tasks in a hard real-time system have to be guaranteed. Periodic

tasks are the primary task type running on the real-time systems. A periodic task

releases at a constant rate and has a deadline indicating the maximum allowed time

to complete. To ensure the timeliness of the system, tasks have to be executed in an

order such that no deadline misses. The execution order of tasks is called a schedule.

Static and priority-driven scheduling are the major categories of real-time scheduling

approaches.

Static scheduling schedules the tasks offline and stores the static schedule for use

at run time. Static scheduling has the minimized scheduling overhead during run-

time [22]. However, static scheduling does not handle dynamically changing task sets

well. For example, static schedules do not allow job release times to vary, as is the

case if an outside event triggers a job release. Adding new tasks is difficult because

the entire schedule must be recomputed, which often requires an expensive offline

algorithm.

Priority-driven scheduling executes the task with highest current priority at run

time. Among priority-driven scheduling algorithms, the Earlist-Deadline-First (EDF)

is one of the most widely researched priority-driven scheduling. EDF algorithm gives

the job with the soonest deadline the highest priority, allows the system to run at full

utilization when tasks’ deadlines equal their periods [21].

Many embedded systems have dynamic load, either due to events vary in envi-

ronment, variations in workload, or adding and removing tasks from the system. For

example, in a target tracking application, a new task may be introduced to maintain

the track as the tracked object moves. Interfacing with the real world implies tim-

ing constraints for sampling sensors and/or controlling actuators. Thus, the system

needs a real-time scheduling algorithm capable of guaranteeing that all tasks meet

their deadlines. The priority-driven scheduling algorithms are better suited to appli-

cations with these dynamic properties. An arriving periodic task may be scheduled

by priority-driven scheduling algorithms immediately if it passes a simple admission

test because there is no need to recompute a static schedule.

Most of real-time tasks are used in energy-constrained systems whose lifetime

is determined by how long battery power lasts. The speed at which the processor

runs in these systems is a major factor in how much power the system consumes.

Processor speed depends on how much computational work is required. Systems that
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can reduce processor speed can save energy when less computation is needed. A

real-time scheduler reserves time for each job assuming it will execute for its entire

worst case execution time. In many cases, however, jobs finish in much less than the

worst case time. Dynamic Voltage and frequency Scaling (DVS) takes advantage of

the technique of voltage scalable CPU and the variation in computational workload

in real-time task to reduce overall energy consumption.

A real-time scheduler using DVS changes the processor speed at run time to more

closely match the amount computation required, while still guaranteeing that all jobs

complete by their deadlines, even if every job requires its worst case execution time.

A number of DVS algorithms have shown significant energy savings when schedul-

ing real-time jobs [14, 32, 31, 24, 36, 20, 18]. For hard real-time systems based on

Earliest Deadline First (EDF), the Lookahead EDF (LAEDF) [31] and Feedback EDF

algorithms [14, 47, 48, 49] are two of the top performers, while Static EDF and Cycle

Conserving EDF (CCEDF) still save power , but have less runtime overhead. Several

comparisons of real-time DVS algorithms have shown LAEDF and Feedback EDF

produce close to optimal power savings, with Feedback EDF typically reduces more

power consumption than LAEDF [14, 49].

Real-time applications, such as wireless sensor networks, air traffic control, and

battle field surveillance, require distributed real-time systems. The scheduler for

distributed system can be global or partitioned. The global scheduler maintains a

global task queue to make scheduling decision for tasks waiting to be executed. The

tasks migration is required in global scheduling. For some applications, real-time

tasks can not be move around within the system either because of the expensive cost

of context transmission or the physical limitation. The partitioned scheduling is used

instead in the systems that task migration is prohibited. In partitioned distributed

system, tasks are assigned to processor in system initialization step. There is a local

scheduler on each of the processors within the system making scheduling decisions on

the tasks assigned to it.

As with uniprocessor real-time systems, distributed real-time systems are usually

energy constrained. However, DVS techniques are not well developed for such sys-

tems because of their complexity. Most existing DVS algorithms are based on static

scheduling methods. There is ample space for research in DVS algorithms for priority-

driven scheduled distributed real-time systems. The DVS algorithms for uniprocessor

scheduling methods can be developed for partitioned distributed system, in which

tasks are dependent on each other.

In practice, some tasks running on distributed real-time systems are related. These

2



tasks fulfill a system function when executed in order. That is, they have precedence

constraints. Task graphs are commonly used to model related tasks in the system.

There is a special case when each task in the task graph has at most one predecessor

and one successor, which forms a task chain. In the real world, a wide range of

real-time applications can be covered by the model of task chain, or end-to-end task.

This dissertation focuses on a suite of distributed DVS-EDF scheduling algorithms

that save considerable energy consumption and are able to react to changes in task

set, online task assignment and deadline assignment algorithms facilitating DVS-EDF

scheduling algorithms in reducing the system energy consumption for the partitioned

distributed real-time system with end-to-end task sets.

Most of the existing energy-aware scheduling approaches for distributed real-time

systems are based on static scheduling. To explore the energy conservation ability of

priority-driven scheduling, this dissertation proposes DVS scheduling algorithms for

EDF scheduled distributed system based on uniprocessor DVS techniques.

The existing task assignment approaches for end-to-end task on distributed real-

time systems focus on system’s schedulability and total communication cost [22].

Most of these algorithms, such as genetic algorithm [16, 39, 29], and integer linear

programing [22, 19], are only useful for off-line task assignment because of their

complex nature. In fact, the system energy consumption is affected by how a set of

tasks are assigned to the processors in the system. Moreover, dynamic task sets with

tasks arriving and leaving the system, require an online task assignment algorithm to

admit and schedule each new task. The online energy-aware task assignment approach

discussed in this dissertation offers a way to assign task on the fly, while taking energy

consumption into consideration.

To schedule subtasks in end-to-end task with a common deadline using EDF

scheduling, each subtask has to be assigned its own deadline. The dissertation dis-

cusses and simulates the existing deadline assignment approaches to reveal the rela-

tionship between deadline assignment and system energy consumption. An energy-

aware deadline assignment algorithm is proposed in the dissertation in order to facil-

itate the energy conservation of DVS scheduling.

EDF scheduling handles dynamic task set well because of its ability to admit new

task online with very low computation overhead. However, the simple EDF admission

test can not be used for real-time system with DVS-EDF applied. This dissertation

proposed an approach to handle dynamic task set on a real-time system scheduled by

LAEDF scheduler.

An overview of background and related work is given in Chapter 2. Some DVS

3



scheduling algorithms for uniprocessor real-time system are discussed and compared.

Priority-driven scheduling for distributed with end-to-end task set is introduced in

this chapter, which serves as basics of the further discussion of distributed DVS

algorithms. Chapter 3 describes the system model used to design and simulate the

algorithms. Distributed DVS-EDF scheduling algorithms are discussed in Chapter 4.

The task assignment algorithms and deadline assignment heuristics are described in

Chapter 5. Two admission test algorithms for dynamic task sets scheduled with

DVS-EDF in uniprocessor real-time system are proposed and discussed in Chapter 6.

In Chapter 7, four groups of simulation results are described for task assignment,

deadline assignment, distributed DVS-EDF, and amission tests for dynamic task set.

Conclusions are drawn in Chapter 8 based on the discussion and simulation results

of all the algorithms in the dissertation followed by a brief description of future work

direction.

Copyright c© Chenxing Wang 2007
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Chapter 2: BACKGROUND AND RELATED WORK

In real-time systems, a periodic task is the most common task type. A periodic task

releases at a constant rate, its period ; has a maximum allowed time to complete, its

relative deadline and a maximum processor time to finish the task, known as worst-

case execution time (WCET). One instance released from a task is called a job of the

task. The absolute deadline of a job is the time by which the job has to be finished,

which is the sum of release time of the job and the tasks relative deadline. Besides

periodic tasks, there are aperiodic tasks and sporadic tasks in real-time systems. They

are released in a random manor. The difference between them is, an aperiodic task

has no deadline, but a sporadic task has an absolute deadline.

The correctness of hard real-time systems depends on timeliness ; each job must

finish before its deadline. To ensure the timeliness of the system, tasks have to be

executed in an order such that no deadline is missed. The execution order of tasks is

called schedule. The schedule is feasible, if no job misses a deadline when tasks are

executed according to this schedule.

Static scheduling and priority-driven scheduling are two scheduling methods for

RT systems. Static scheduling schedules tasks off-line and stores the static sched-

ule for use at run time. Static scheduling has minimal scheduling overhead during

run time [22] because all scheduling decisions are fixed. Priority-driven scheduling

schedules the task with highest priority at each scheduling decision point at run time.

Priority-driven scheduling algorithms may use fixed-priority or dynamic-priority. In

fixed-priority systems, each task has its fixed priority level assigned before the task is

added to the system, for example, the Rate Monotonic (RM) algorithm assigns each

task a priority proportional to its period. Dynamic-priority schedulers decide which

task should run first based on dynamic characteristics, such as absolute deadlines.

Tasks with higher priorities always run first when they are ready to run. The Earliest

Deadline First (EDF) scheduling algorithm is widely known scheduling approach in

which the task with the earliest deadline is given highest priority.

A task is a sequence of related jobs. For real-time systems, we denote the ith

periodic task Ti. pi is its period, and Di is its deadline. Ci is the worst-case execution

time of the task, while ci is the actual execution time (AET) of one job in task Ti.

Ji,k will be used to denote the kth job (instance) of the ith task. Utilization of the

task, the percent of the tasks period it spends on executing, is denoted as ui. The

slow-down factor α describes the effect of frequency scaling on the execution speed.

Slack time, time remaining in excess of allotted time when a job is finished, always

5



exists in practical real-time systems. Slack time can be static if the deadline is longer

than job’s WCET, or dynamic if the WCET is longer than the actual execution time

of a job. In practical real-time systems, the actual execution time changes from job

to job within the same task. Variation in execution time can be caused by cache

misses, different path in program flow, and different number of iterations in loops etc.

To ensure the feasibility of the system, the maximum or worst case execution time is

used when scheduling the task. Dynamic slack time is generated when job runs less

than the maximum execution time.

2.1 DVS for Uniprocessor Real-Time System

DVS scheduling for real-time systems takes advantage of voltage scalable processors.

By lowering the supply voltage of a voltage scalable processor, the power consumption

of the real-time system is lowered. The relationship between processor’s power con-

sumption and its voltage supply, and some uniprocessor DVS scheduling algorithms

are described in the rest of this section.

2.1.1 Power Model of Voltage Scalable Processor

The DVS technique for voltage scalable processors has seen its wide applications in

industry to lower the system’s energy consumption. Lowering a processor’s supply

voltage reduces the power consumed by the processor as well as the processor’s speed.

For CMOS devices, the relationship between the power consumption and the device’s

voltage supply is modeled by a nonlinear equation [4].

P = CdV
2
ddf + CsVddIleakage (2.1)

And the device’s speed (frequency) is related to the supply voltage.

f ∝
(Vdd − Vth)

2

Vdd

(2.2)

Where Vdd is the supply voltage, f is the device’s frequency, Cd and Cs are dynamic

constant and static constant respectively. Ileakage is the leakage current, and Vth is the

threshold voltage of the device, which is small when compared with supply voltage.

The first term in Equation 2.1 stands for the dynamic power consumption that is

caused by switching of CMOS circuits. While the second term is modeled for static

power consumed when the leakage current flowing through the transistors. Until

recently, static power was substantially smaller than switching power. However, by

6



lowering voltage thresholds to increase speed in CMOS designs, static power has

become comparable to dynamic power in high speed CMOS devices.

DVS technique reduces the dynamic power consumption by slowing down the

execution of real-time tasks while guarantee their timeliness. The lower processor

operation speed requires lower supply voltage. A decrease in the supply voltage

results in approximately a cubic reduction in dynamic power consumption according

to the first term of Equation 2.1. Although DVS techniques are used to reduce the

dynamic power consumption, static power consumption caused by leakage current

can only be reduced by putting the system to sleep.

2.1.2 DVS-EDF for Uniprocessor Real-Time System

DVS scheduling algorithms for real-time systems can be categorized as static or dy-

namic DVS according to the type of scheduler that they work for. The static DVS

algorithm scales the execution speed of tasks by a constant factor. When making the

decision on the task’s execution speed, static DVS algorithms assume the task requires

its worst case execution time. The dynamic slack time exists in many applications of

real-time tasks. Most of the dynamic DVS algorithms can take advantage of dynamic

slack time when trying to reduce the task’s execution speed. DVS (DVS-EDF) for

uniprocessor system is developed based on the widely used EDF scheduling approach.

Static Speed EDF

The Static speed EDF (SEDF) algorithm chooses the lowest possible processor fre-

quency, fα, that can be used to run tasks without a missing deadline [43]. For EDF

with system task’s deadline equal to its period, the feasibility of a task set is deter-

mined by the total utilization of the real-time system. If the utilization is less than or

equal to 1, the system can be feasibly scheduled by EDF scheduling. If the utilization

is less than one, there exists static slack time that can be used to slow down the CPU

by the rate of

α =
∑

T

Ci

pi

(2.3)

And thus,

fα = αfref (2.4)

Where T is task set scheduled feasibly in the system. fref is the highest processor

frequency.
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The frequency of the system is set to fα during initialization and kept constant

thereafter. There is no online overhead in Static speed EDF, since the speed is

decided offline. However SEDF algorithm is not efficient because it does not take the

advantage of the system’s dynamic slack time. This algorithm is usually combined

with other DVS algorithms to obtain better energy conservation.

Stretching to Next-Task-Arrival

Stretching to Next-Task-Arrival (NTA) [2] tries to scale the processor’s frequency

dynamically based on the next task arrival time. Assume the current job, J , is released

at time t. J stretches its execution time so that it finishes just before the next job

arrives or just before its deadline, whichever comes first. If the next job arrives before

the current job can finish its WCET execution, the job has to be executed at the full

speed. Equation 2.5 can be used to select processor speed when the job is released.

α =











Ci/(di − t), NTA > di

Ci/(NTA − t), Ci + t < NTA ≤ di

1, NTA ≤ Ci + t

(2.5)

Where Ci and di are WCET and absolute deadline of current task, and NTA is

the arrival time of the next task. This algorithm is simple and easy to implement, but

the slack time estimation is too simple to get a good approximation of the dynamic

slack time. The frequency can change with every task switch and quite often the

system must run at full speed. Also, Equation 2.5 must be evaluated at every context

switch.

Cycle-Conserving EDF

Like the Static Speed EDF algorithm, cycle-conserving EDF (CCEDF) [31] also uses

utilization updating to scale the CPU speed. The difference is that dynamic slack

time as well as static slack time is exploited to update current utilization of the

real-time system.

The dynamic slack time is caused by the difference between the worst-case execu-

tion time, Ci, and the actual execution time ci. CcEDF updates the total utilization

on the fly by using the actual execution time for completed tasks and the worst-case

execution time for those just released. That is,
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α = U =
∑

Tk∈completed tasks

ck

pk

+
∑

Tl∈released tasks

Cl

pl

(2.6)

f = αfref (2.7)

Where α is slow-down factor calculated for current executing task Ti. Equation

2.6 has to be evaluated each time a task completes its current job or another job

is released from a task. Since the system utilization can be updated based on the

previous calculation, CCEDF has low online overhead with computational complexity

of O(1).

Lookahead EDF

The Lookahead EDF (LAEDF) algorithm is more aggressive in exploiting the dynamic

slack when trying to scale down the processor speed [31]. LAEDF reduces the amount

of work the processor must do by deferring as much work as possible until after the

current job’s deadline, then slowing down the processor until it is just fast enough to

run the undeferrable work, and finishing just before the deadline.

Greater energy conservation is expected when using LAEDF due to its more so-

phisticated dynamic slack estimation. Better estimation, however, causes higher on-

line overhead. LAEDF has a linear computational complexity of O(n), where n is the

total number of tasks that is running on the system.

Feedback EDF

Feedback EDF takes advantage of dynamic slack due to the jobs that require less

than their worst-case execution time [47, 14, 49, 48, 50]. A job, Ji,k in task Tk has its

WCET, Ck, divided into two parts such that,

Ck = CA + CB (2.8)

Where CA is an estimation of current job’s execution time (e.g. average execution

time of prior jobs), which is assumed to be the actual execution of currently released

job, Ji,k. The processor speed can thus be scaled down by

αk =
CA

CA + Sk

, (2.9)

where Sk is the accumulated slack time passed from prior completed jobs. Sk
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contains two major parts, slack time generated by prior jobs and that accumulated

from the idle task. The idle task is a periodic task with zero execution time and its

period equals to the shortest period among tasks’ periods on the system. If Ji,k’s

actual execution time is greater than the estimation, CA, the full processor speed of

fref has to be applied to run the second part of the job in order to catch the deadline.

A PID execution time predictor, borrows the concept of PID control to estimate

the future actual execution time from the past execution times. It can be used to

make a better estimation for some specified real-time applications. However, there is

no guarantee that running the second part of job can be avoided.

Feedback EDF performs better than CCEDF and LAEDF when actual execution

time is less than or equal to estimated execution time. It exploits not only inter-

task dynamic slack time but also tries to utilize the dynamic slack time generated

by the released job itself in advance. However, if there exists a nonzero CB, full

speed may have to be applied to the processor, which in practice may lower the

battery efficiency and reduce the battery life due to higher current draw. The online

overhead is expensive in this algorithm, especially when PID predictor is used.

2.1.3 Comparison of Uniprocessor DVS-EDF Algorithms

To quantitatively compare DVS-EDF algorithms, each DVS algorithms is applied to

a real-time system with 20 independent preemptable periodic tasks. In order to make

a fair comparison, two different patterns of actual execution time are used for task

generation: uniform distributed and Gaussian distributed. The actual execution time

of each task is randomly distributed among 0 to task’s WCET.

The simulation results are given in Figure 2.1 and Figure 2.2, respectively. In each

of these figures, y-axis is the system energy consumption using DVS-EDF algorithms

normalized to the energy consumption using an EDF scheduling. The X-axis is the

utilization of the real-time system.

CCEDF and LAEDF have a very good performance in terms of energy conserva-

tion. Static Speed EDF performs well when the load of system is light. When the

system load is increasing, the energy consumption for Static Speed EDF increases

quickly.

The Feedback EDF performs best among the DVS-EDF algorithms with both uni-

formly distributed and Gaussian distributed AET. The performance of this algorithm

is affected by the pattern of task’s actual execution time. Feedback EDF is capable

of saving more energy with Gaussian distributed AET than that with uniformly dis-
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Figure 2.1: Normalized energy consumption with uniformly distributed AET
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Figure 2.2: Normalized energy consumption with Gaussian distributed AET
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tributed AET. This is because the system slack estimation of Feedback EDF predicts

execution time based on the average of previous actual execution times. Even with

the same average, the uniform distribution has a wider variance than the Gaussian

distribution. The estimation is made on all the previous actual execution times.

2.2 End-to-End Scheduling for Distributed RT System

As introduced in Chapter 1, the scheduling of distributed real-time system can be clas-

sified into two major approaches, global scheduling and partitioning-based scheduling.

The global scheduling requires task migration among processors, while partitioning-

based scheduling statically assigned tasks onto each processor. To maintain the time-

liness of the real-time system, the global scheduling requires low latency in commu-

nication between processors, which is not assume for most distributed systems. By

assigning the tasks onto fixed processors, the partitioned distributed system greatly

reduces the amount of data communicated between processors.

Tasks running on distributed real-time systems are usually related. These tasks

fulfill a system function when executed in order. The dependency relation between

these subtasks can be represented by a task graph. There is a special case when each

task in the task graph has at most one predecessor and one successor, which forms a

task chain. In the real world, a wide range of real-time applications can be modeled

as a task chain. The task chain has a release time, end-to-end release time, and an

end-to-end deadline, shared by each task in the chain. This task chain is called an

end-to-end task. Each task within the chain is a subtask of that end-to-end task.

Subtasks may run on different processors within a distributed system. The basic

steps of scheduling end-to-end tasks in distributed real-time systems are task assign-

ment, deadline assignment, task synchronization and task scheduling.

2.2.1 Task Assignment and Deadline Assignment

Task assignment is the first step when scheduling end-to-end task set. Off-line task

assignment approaches can be formulated as a constrained optimization problem as

solved with techniques like integer linear programming problem. The selection of

costs is based on the purpose of real-time system design. The communication cost

between processors is frequently considered when assigning the tasks to processors.

For homogeneous systems, the communication cost between two tasks on different

processors depends on the volume of data exchanged and the bandwidth of the com-

munication link [22]. To simplify the problem, it is assumed that the cost incurred
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by communication link is the same across the system, which is always true when the

system is connected by a broadcast network. Thus, the communication cost between

two subtasks can be valued according to the volume of communication data. Along

with the utilization constraints for each of processors, a cost function is formulated

for the task assignment problem.

Though integer linear programming can find an optimal solution, it and other

optimization algorithms are too time consuming to use online. Fortunately, simple

and fast bin-packing heuristics, such as Worst-Fit, Best-Fit, and First-Fit, work well

for task assignment. These algorithms have low computation overhead and are used

in systems with dynamic task sets, where tasks arrive and leave the system while it

is running.

Subtasks within an end-to-end task share an end-to-end deadline. In order to

feasibly schedule the subtasks that have been assigned to a processor using a priority-

based scheduling algorithm, a local deadline has to be assigned to each of the subtask

based on the end-to-end deadline. The method used to decide the local deadline for

subtasks is deadline assignment. Two existing deadline assignment algorithms are

proportional deadline (PD) and normalized proportional deadline (NPD) [22]. PD

assigns the deadline proportional to the subtask’s worst-case execution time. While

NPD assigns the subtask’s deadline according to its worst-case execution time as well

as the workload on each processor. A detailed discussion of PD and NPD is given in

Chapter 5, along with their effect on power consumption.

2.2.2 Interprocessor Synchronization

The task model in distributed real-time systems differs from one in uniprocessor sys-

tems in two ways, subtasks have dependencies and share an end-to-end deadline.

Deadline assignment breaks the end-to-end deadline into deadlines of subtasks. Task

synchronization is used to maintain the dependence between subtasks, and can be

characterized as greedy or non-greedy. Greedy synchronization allows a task to be re-

leased as soon as all of its predecessors are completed. Though it allows for higher av-

erage throughput, tasks can be released more often than normal periodic tasks would

be released, jeopardizing schedulability. Non-greedy synchronization, on the other

hand, delays task release when necessary to preserve periodic behavior. Non-greedy

synchronization can perserve schedulability when the right scheduling algorithm is

used.

Among the various non-greedy synchronization protocols, the release-guard (RG)
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protocol performs best [22]. The RG protocol makes sure that the release intervals of

any subtask are never less than the period of the subtask, and keeps completion-time

jitter small. Unlike other non-greedy protocols that synchronize the processors based

on the subtasks upper bound of response time, the RG protocol uses the information

of the subtasks last release time and its period when deciding the next release time

for that subtask. These characteristics make the RG protocol ideal for interprocessor

synchronization in priority-driven scheduled distributed real-time systems.

After task assignment and task model transformation, tasks can be scheduled

on each processor using uniprocessor scheduling methods, either dynamic-priority or

fixed-priority scheduling, with task synchronization between processors.

2.3 DVS for Distributed Real-Time Systems

Most of DVS for distributed real-time system are based on static scheduling [33,

46, 26, 25, 13]. Some of these DVS algorithms take advantage of task graph to

get an energy-aware voltage schedule [33, 46]. Others try to statically schedule the

tasks with minimized energy consumption by formulating and solving an optimization

problem [37, 1, 5].

Only a few DVS algorithms have been proposed for priority-driven scheduled dis-

tributed real-time system [1, 5, 28]. One proposed algorithm is based on system

synthesis [1, 5]. Another has applied a simple DVS algorithm for priority-driven

scheduled distributed real-time systems [28].

Static Power Management for Distributed Real-Time System

The Static Power Management (SPM) algorithm [33] exploits system static slack time

to lower system energy consumption. Three different variations on SPM distribute

the static slack time among the tasks in different ways: greedy SPM (G-SPM), simple

SPM (S-SPM), and SPM with parallelism (P-SPM).

G-SPM shifts the schedule toward the tasks deadline and allocates the entire static

slack time to the first task on each processor. By slowing down the first task on each

processor, the system energy is lowered. S-SPM differs from G-SPM in that S-SPM

proportionally distributes the static slack to each task according to the worst-case

execution time.

P-SPM is proposed based on the observation that more energy savings can be

obtained by giving more slack to sections with higher parallelism. P-PSM takes the
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degree of parallelism into consideration when allocating static slack time to different

sections of a distributed schedule. P-SPM formulates the total energy consumption

in terms of time intervals of different parallelism degree. By minimizing the total

energy, lengths of time interval of all parallelism degree can be solved and used to

slow down CPU speed.

Critical Path Analysis Algorithm

Critical path analysis algorithm (CPA) [46] statically extends the worst-case execution

time of tasks scheduled by static scheduling in the distributed system to reduce the

speed of processors through critical path analysis. The critical path in the task graph

is defined as the path that has the minimum ratio as follows.

scalej =
tdeadline − trelease

∑

Ti∈Pathj
Ci

(2.10)

Where Pathj is a task chain formed by a set of dependent tasks. tdeadline is the

absolute deadline of the last task in Pathj . While trelease is the release time of first

task in the path.

CPA scales WCET for all the tasks in the critical path by the scale ratio calculated

by Equation 2.10. The tasks in the critical path are removed from the task graph and

new deadlines are added to the graph to ensure the starting time of deleted tasks.

Another critical path analysis can be done for the new task graph. The algorithm

does the critical analysis iteratively until there is no task let in the task graph. The

slow-down factor for processor can be determined by the ratio of task’s WCET to its

extended execution time.

Energy-Efficient Synthesis of Distributed RT System

Energy-efficient synthesis of distributed EDF [1, 5] algorithm works with independent

task sets in the distributed real-time systems.

For a distributed system that has a set of independent periodic tasks, there might

be more than one feasible schedule. Usually a linear programming problem has to

be formulated to look for the optimal one results in minimized energy consumption.

This algorithm formulates the constraints according to the time constraints of real-

time tasks and EDF scheduling scheme. All the constraints are in terms of lengths of

time interval and their corresponding processor speeds. Solving the processor speed

for each time interval by minimizing the value of the cost function with constraints
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is called generalized distributed feasibility (GMF) problem. The solution to GMF

problem is an optimal feasible schedule for this distributed real-time system with a

given task set.

The power consumed by m processors with computing capacity (processor fre-

quency) of s would be proportional to

P (m, s) ∝ ms3, (2.11)

s in the above equation dose not stand for the actual computing capacity of every

processor. The actual value of s is subject to the equation below.

Ssum ≤ ms − (m − 1)Smax, (2.12)

where Ssum is the total computing capacity of the system, and Smax is the com-

puting capacity of the fastest processor in the system.

Minimizing Equation 2.11 subject to the GMF constraints including Equation 2.12,

the problem becomes a nonlinear optimization problem. The solution of this optimiza-

tion problem can obtain minimized energy consumption for this distributed system

assuming all of the tasks execute with their worst-case execution time.

Power Variation DVS of Distributed Real-Time System

Power variation DVS algorithm [37] assumes that different processors in distributed

system have different power profiles. This difference is taken into consideration when

distributing the slack time among tasks. Power variation DVS algorithm is applied

to a distributed real-time system with all the tasks been assigned to processors. This

algorithm formulates an optimization problem to minimize the total energy EΣ,

EΣ =
∑

T∈TaskSet

Pmax(T )WCET (T )

V 2
max(T )V 2

dd(T )
. (2.13)

A set of Vdd(T ) for each of the task can be decided with real-time constraints and

supply voltage range limits. Pmax is the power consumed by the task when highest

voltage, Vmax, is supplied.

An energy gradient ∆E is introduced in this algorithm to solve above optimization

problem using a hybrid global/local search strategy.

∆ET = ET (t) − ET (t + ∆t) (2.14)
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Where ∆t is a time quantum.

The above four algorithms are applied to static-scheduled distributed real-time

system. They make decisions on processor speed based on task’s WCET. No dynamic

slack time can be exploited by them either because of the nature of these algorithms

and their expensive computational complexity.

Low-Power Distributed EDF

Low-Power Distributed EDF (LPDEDF) algorithm [28] is applied to a distributed

real-time system scheduled by EDF. It assumes that the tasks have been properly

assigned to the processors. The basic idea of LPDEDF is similar to stretching-to-

NTA for uniprocessor real-time systems. LPDEDF assumes that the processors in the

system can work in three different modes, idle mode, slow-down mode and full-speed

mode.

When there is no active task on a particular processor in the system, the processor

is set to idle mode till next task is activated. When there are more than one tasks

ready to execute or the only activated task has a successor task, the processor runs

at full speed till the current task completes. Otherwise the processor is slowed down

so that the current task completes just at the time of next task arrival time or its

deadline, whichever comes first.

As the stretching-to-NTA for uniprocessor real-time systems, LPDEDF algorithm

is easy to implement with low online overhead, but not efficient enough in exploiting

system dynamic slack time.

Copyright c© Chenxing Wang 2007
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Chapter 3: SYSTEM MODEL

The dissertation assumes a distributed real-time system composed of a set of homoge-

neous microprocessors. Each processor has its own memory system and peripherals.

The system is connected by a network, through which the processors exchange data

and messages.

The set of processors, P={P1, P2, . . . , Pm}, in the system are homogeneous in that

they share a common architecture. To apply DVS technology, processors within the

system have to be voltage scalable. The dissertation assumes that all the processors

in the system support a same set of speeds, F={f1, f2, . . . , fn}. We refer to a speed

adjustment, α, relative to the highest possible speed, fref . When α = 0.25, for

example, all jobs take four times longer to execute than at fref .

A speed/power table gives the average power consumed by the processor at each

speed. We assume that execution time for each job is proportional to the processor

speed regardless of the job, and that transition time to reach the desired operating

speed is negligible compared to a task’s execution time. The delay caused by the

context switch on multitask systems is ignored or can be considered as part of worst-

case execution time of real-time tasks.

Messages and data are transmitted through the network between processors in our

system. Communication is used to synchronize processors and exchange data. We

assume that the energy consumption caused by communication between processors is

proportional to the number of bits that are transmitted.

The dissertation compares the energy consumption when the system is scheduled

by different DVS-EDF algorithms. We take energy consumption of processors and

the network into consideration. Energy consumption of memory systems is assumed

to be included in processor power consumption. The system’s energy consumption,

Esys, is composed of energy consumption of processors, Eproc, and that of the system

communication, Enetwork.

Esys = Eproc + Enetwork (3.1)

A wide range of task sets running on real-time systems can be modeled as task

chains. The task chain has an end-to-end release time and an end-to-end deadline

shared by each task within the chain, as shown in Figure 3.1. This task chain is

referred to as an end-to-end task. Each task within the chain is a subtask of that

end-to-end task.
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Figure 3.1: End-to-end task and its subtasks

We assume that there are n end-to-end tasks, T={T1, T2, . . . Tn}, running on our

distributed real-time system with m homogeneous processors, P={P1, P2, . . . , Pm}.

An end-to-end task, Ti, is composed of ni preemptable subtasks, Ti,1, . . . Ti,ni
.

The end-to-end task, Ti, is the parent task of its subtasks. The subtask, Ti,j,

is called the sibling task of another subtask, Ti,k (j 6= k). Ti,j is the predecessor

(successor) of Ti,k, if j < k (j > k). Except for the first subtask, Ti,1, each subtask,

Ti,j (2 < j ≤ m), must wait for its immediate predecessor, Ti,j−1, to complete before

it can be released.

The first subtask in Ti is released periodically with the period of pi and executes

for time Ci,1 in the worst case. Each of the subtasks, Ti,j , is released with its WCET

of Ci,j and executes the actual execution time of ci,j, ci,j ≤ Ci,j. The release time

of the first subtask in Ti,1 is considered as the release time of Ti. The last subtask

in Ti must complete within Di time units from Ti being released. This deadline, Di,

referred to as the end-to-end deadline, must be met by the entire end-to-end task

Ti. We assume that the deadline of the end-to-end task equals to its period. The

relationship of end-to-end task and its subtasks are depicted in Figure 3.1.

A job is an instance of a subtask, which is released periodically from the subtask.

Jk
i,j is the kth job released from the subtask Ti,j. Job Jk

i,j is released at rk
i,j and must

complete before its absolute deadline, dk
i,j, which is Di,j time units from the job is

released, i.e. dk
i,j = rk

i,j +Di,j. To simplify the notation, when a job’s release time and

its absolute deadline are used to refer to a job independently, only a single subscript

is used, e.g. Ji belongs to an unspecified task and has release time ri and deadline

di. Since we assume that the end-to-end task’s deadline equals its period, one job in

a subtask can be released no earlier than the completion of the previous job in the

same subtask.

Scheduling end-to-end tasks requires first assigning tasks to processors, dividing

the end-to-end deadline among the subtasks, synchronizing tasks, and scheduling the

tasks. Subtasks of an end-to-end task may be assigned to different processors, but
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once assigned to a processor subtasks do not migrate between the processors.

At run time tasks are synchronized with the Release Guard protocol [22]. With

release guard, a subtask is released when its predecessor completes or one period after

the previous job in the subtask was released, whichever comes later. The requirement

to wait at least one period after the release of the previous job in the same subtask

means that the subtasks on one processor behave like periodic tasks, allowing them

to be scheduled using uniprocessor priority-driven scheduling algorithms. A side

effect of deadline assignment is that subtasks behave like periodic tasks with deadline

shorter than period. In addition, release guard causes jobs within a subtask have

inter-release times that are sometimes longer than the task’s period. Both of these

conditions violate the assumptions of the most effective DVS scheduling algorithms,

but do not usually change feasibility analysis for uniprocessor scheduling algorithms.

Copyright c© Chenxing Wang 2007
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Chapter 4: DISTRIBUTED DVS-EDF SCHEDULING

This chapter formulates the problems that have to be solved when implementing

uniprocessor DVS-EDF algorithms in distributed real-time systems. The solutions

for each of the uniprocessor DVS-EDF scheduling algorithms are discussed. For sev-

eral DVS-EDF algorithms, such as CCEDF, LAEDF and Feedback EDF, the detailed

algorithms for distributed real-time systems are described and discussed in the fol-

lowing sections.

4.1 Problems in Implementing Distributed DVS-EDF

Recall that in Chapter 2 we discussed the transformation of end-to-end task model

which allows the subtasks running on each of the processors in a distributed real-time

system to be scheduled using uniprocessor scheduling algorithms. There are two main

challenges when applying uniprocessor DVS algorithms to the end-to-end task model.

Some of the uniprocessor DVS-EDF algorithms make an assumption that the

deadline and the period are equal, which is true for may uniprocessor real-time sys-

tems. For systems with deadlines equal to their periods, EDF scheduling algorithm

can always generate a feasible schedule if and only if the system’s utilization is less

than or equal to one.

Usys =
∑

T

Ci

pi

≤ 1 ⇔ EDF schedulable (4.1)

In the distributed real-time system, the subtask deadline assigned using deadline

assignment algorithms, such as PD and NPD, is shorter than or equal to the subtask’s

period. Instead of system’s utilization, system’s density has to be used for system

schedulability test. That is the system can be scheduled feasibly using EDF if the

system’s density is less than or equal to one.

∆sys =
∑

T

Ci

min(pi, Di)
≤ 1 ⇒ EDF schedulable (4.2)

Changes have to be made in order to handle the subtasks with a shorter deadline

than period in the distributed real-time system.

Another challenge lies in that most of existing uniprocessor DVS-EDF algorithms

assume independent real-time task set in the system. In the end-to-end task model,

however, subtasks within an end-to-end task are precedence contrained. Each subtask

except for the first one in an end-to-end task must wait for its predecessor to complete
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before it can be released. With the release guard protocol, a subtask is released either

one period after its last release time or after its predecessor completes, whichever

comes later. The behavior of the release guard introduces release jitter to each of

the subtasks running on a processor. Some uniprocessor DVS schedulers, such as

LAEDF and Feedback EDF, can not handle the release jitter caused by the subtask

dependency.

The Stretching-to-NTA is not affected by the above two problems for distributed

real-time system. The LPDEDF for distributed system discussed in Chapter 2 shares

the same basic idea with Stretching-to-NTA. Instead of three basic working modes

for processors, full speed, low speed, and idle, assumed by LPDEDF, more specified

processor working modes can be used by Stretching-to-NTA.

The detail of extension of other DVS-EDF algorithms list in Chapter 3 is discussed

in following sections.

4.2 Distributed Static EDF

The extension of Static EDF (SEDF) to Distributed Static EDF (DSEDF) is straight-

forward [40]. When Di ≤ pi, the utilization test for schedulability is replaced with

the density test in Equation 4.2. Regardless of whether task relative deadlines are

less than, equal to, or greater than their periods DSEDF will feasibly schedule them.

By setting α to the smallest available value above α in Equation 4.3, the effective

density remains as close to 1 as possible without exceeding it.

α =
∑

T

Ci

min(pi, Di)
(4.3)

4.3 Distributed CCEDF

The extension of CCEDF to Distributed CCEDF (DCCEDF) is similar to that of

SEDF to DSEDF. DCCEDF will produce feasible schedules for tasks with deadlines

shorter than their periods if density is substituted for utilization in CCEDF. That

is, processor speed is set to the smallest α greater than ∆sys in Equation 4.4. This

algorithm is correct because a system is schedulable as long as its instantaneous

density does not exceed 1 [22].

α =
∑

Tk∈completed tasks

ck

min(pk, Dk)
+

∑

Tl∈released tasks

Cl

min(pl, Dl)
(4.4)
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4.4 Distributed LAEDF

LAEDF is an effective energy saving DVS-EDF scheduling algorithm, as is distributed

LAEDF. A detailed description of uniprocessor LAEDF will aid in understanding the

DVS extensions to it.

4.4.1 Uniprocessor LAEDF

As we have discussed briefly in Chapter 2, LAEDF is a power-aware priority driven

real-time scheduling algorithm, based on the EDF scheduling. Just like EDF, LAEDF

gives the job with the soonest absolute deadline the highest priority. In addition, it

scales the system speed as the job runs to dynamically reduce energy consumption.

LAEDF reduces the amount of work the processor must do by deferring as much

work as possible until after the current job’s deadline, then slowing down the processor

until it is just fast enough to run the undeferable work, and finishing just before the

deadline. To determine how much work can be deferred, LAEDF tracks how much

work is left in each job, Ji, using C lefti. C lefti is set to Ci when Ji is released,

decreases as the job runs, and is set to 0 when the job completes. The function defer

is used to calculate the slow-down factor by deferring work of currently released jobs.

The detailed algorithm of defer [31] is listed in Algorithm 1, with a summary of

relevant variables in Table 4.1.

Algorithm 1 Original defer function for LAEDF algorithm

Require: n′ ≤ n
Ensure: 0 < α ≤ 1

U ⇐
∑n′

i=1
Ci

pi

w ⇐ 0
for i = 1 to n′ : Ji ∈ {J1, J2, . . . Jn′|d1 > d2 > ... > dn′} do

U ⇐ U − Ci

pi

udw ⇐ max(0, C lefti − (1 − U)(di − dn′))
if (di 6= dn′) then

U ⇐ U + C lefti−udw

di−dn′

end if

w ⇐ w + udw
end for

return α ⇐ w
dn′−tnow

Iterating from the job with the latest deadline J1 (i.e., the lowest priority job)

to Jn′, the job with the earliest deadline, defer computes how much work can be

deferred after dn′ for each job Ji. Some or all of Ji’s work can be deferred until after
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Table 4.1: Summary of key variables in the LAEDF algorithm
Variable Explanation

n′ Number of tasks with a released job
U Processor utilization required after dn for higher priority tasks

and deferred work
C lefti Remaining execution time of job Ji

udw Amount of undeferable work for the current task
w Total work that cannot be deferred after dn by all tasks
α Slowdown factor for current job Ji

tnow The current time

dn′ if work demanded by other jobs in the interval between dn′ and di does not totally

consume the processor on the interval (dn′, di]. The amount of work that cannot be

deferred, udw = max(0, C lefti − (1 − U)(di − dn′)), where U is the amount of work

demanded by higher priority jobs and deferred parts of lower priority jobs in (dn′, di].

Initially, U is the system utilization,
∑n′

i=1
Ci

pi
. With each iteration, Ji’s utilization

is subtracted from U . If all the remaining work, C lefti can be deferred, the amount of

time it will demand before its deadline, C lefti
(di−dn′ )

, is added back to U . Otherwise, some

part of Ji cannot be deferred, so the processor will be busy with Ji and higher priority

jobs before di, and U is set to 1. The variable, w, accumulates the total undeferable

work for all jobs. The slowest system speed required to finish the undeferable work

before dn′ is α = w
(dn′−t)

. A slowest frequency available faster than α is selected.

At every job release or completion, defer is called to update the frequency based

on the latest values of C lefti.

4.4.2 Extension of LAEDF to Distributed LAEDF

As discussed in Section 4.1, when Di < pi, the utilization test for schedulability can

be replaced with a density test to guarantee schedulability. However, when Di < pi,

defer may be called, at time tnow, after a Ji,k has passed its deadline, but before

Ji,k+1 is released (i.e., di,k < tnow < ri,k+1). In this case, which cannot occur when

Di = pi, the undeferable work of Ji,k+1 is 0 when the next job will be released after

the next deadline in the system (i.e., ri,k+1 ≥ dn′, as in Figure 4.1(a).)

However, If ri,k+1 < dn′, as in Figure 4.1(b), Ji,k+1 may have some undeferable

work. In this case, di,k+1 must be used to compute the amount of undeferable work,

even though Ji,k+1 has not been released. Otherwise, too much work may be deferred

until after dn′ because no undeferable work from Ji,k+1 would be included when de-

termining the minimum system speed. The value of C lefti for this unreleased job
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ri,k dndi,k

tnow

ri,k+1 di,k+1

(a) Ji,k+1 has no deferable work before dn′

ri,k dndi,k

tnow

ri,k+1 di,k+1

(b) Ji,k+1 might have deferable work before dn′

Figure 4.1: Cases not covered in original LAEDF

must be Ci because Ji,k+1 has not run. Algorithm 2 gives pseudocode for the modified

defer function for DLAEDF algorithm.

Algorithm 2 Function defer for DLAEDF algorithm

Require: None
Ensure: 0 < α ≤ 1

∆ =
∑n′

i=1
Ci

min(pi,Di)

w ⇐ 0
for i = 1 to n′ : Ji ∈ {J1, J2, . . . Jn′|d1 > d2 > ... > dn′} do

∆ ⇐ ∆ − Ci

min(Di,pi)

if (ri > dn′) then

udw ⇐ 0
else

if (ri > tnow) then

C lefti ⇐ Ci

end if

udw ⇐ max(0, C lefti − (1 − ∆)(di − dn′))
end if

if (di 6= dn′) then

∆ ⇐ ∆ + C lefti−udw

di−dn′

end if

w ⇐ w + udw
end for

return α ⇐ w
dn′−tnow

LAEDF can also be extended for systems with deadlines longer than periods.

When Di > pi, more than one job per task may be outstanding. To handle multiple

jobs per task, defer should iterate through the set of jobs released before dn′ re-

gardless of to which task they belong, including any jobs to be released before dn′ (as

described for the Di < pi case above.) No other changes are required to the algorithm

if C lefti is stored on a per job basis. The proper amount of time is reserved for all

released jobs because C lefti is set to Ci when each job is released.
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4.4.3 Proof of Feasibility

Any set of tasks that meets the EDF schedulable utilization test is schedulable by

LAEDF. More formally

Theorem 4.4.1. A set of tasks is schedulable under DLAEDF if

∆ =

n
∑

k=1

Ci

min(pi, Di)
≤ 1

.

The proof strategy is to transform an EDF schedule into an DLAEDF schedule

without rendering a feasible schedule infeasible.

Proof. A system scheduled with EDF is schedulable as long as the density, ∆ ≤ 1

over every interval [22]. With LAEDF, jobs are scheduled in EDF order, but voltage

and speed change at the scheduling points (job releases and completions.) As long as

the speed changes do not cause density to exceed 1 on any interval, the system will

remain schedulable.

At every scheduling point, defer considers each job in order of decreasing deadline

(d1 > d2 > . . . > dn′). No work is deferred after d1, the absolute deadline furthest in

the future. The density on the interval (d1,∞) will simply be ∆, so the system will

remain schedulable after d1 as long as ∆ ≤ 1.

Work from J1 can be deferred after dn′ without affecting feasibility as long as J1

completes before d1 and all other jobs complete before their deadlines. The density

of jobs with higher priority than J1 during the interval (dn′, d1] is

∆1 =

n′

∑

k=2

ek

min(pk, Dk)
. (4.5)

Up to (1 − ∆1)(d1 − dn′) units of work can be deferred past dn′ without affecting

feasibility. If C lefti ≤ (1 − ∆1)(d1 − dn′) then all of the remaining work in Ji can

be deferred. Otherwise the amount of work that cannot be deferred is

C lefti − (1 − ∆1)(d1 − dn′)

.

Deferring work does not affect schedulability on (t, dn′] because work that would

have been completed before dn′ is moved after dn′, reducing the work demanded of
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the processor before dn′. The interval (dn′, d1] remains schedulable because density of

all tasks scheduled on the interval is maintained at a value less than or equal to 1.

On the next iteration of the loop in defer, the density of jobs with higher priority

than J2 is

∆2 = ∆1 + min(
C left1
d1 − dn′

, (1 − ∆1)) −
C2

p2
. (4.6)

Assume the ith job Ji and all preceding jobs remain schedulable after being trans-

formed by LAEDF. The density of higher priority jobs for Ji+1 is

∆i+1 = ∆i + min(
C lefti

(di − dn′)
, (1 − ∆i)) −

Ci+1

pi+1
, (4.7)

and the amount of work deferred after dn′ is

min(C lefti+1, (1 − ∆i+1)(di − dn′)). (4.8)

As with J1 the density of the work moved after dn′ when added to ∆i+1 is less

than or equal to 1, leaving the interval (dn′, di+1] schedulable. Deferring work on the

interval (t, dn′] only reduces the density on the interval, thus deferring work from Ji+1

after dn′ does not affect schedulability of the system. By induction, deferring work

from all jobs does not make the schedule infeasible.

After iterating over all jobs currently released, and those jobs that will be released

before dn′, the processor speed it set to the slowest speed fast enough to complete the

total undeferable work from other jobs and C leftn before dn′.

4.5 Distributed Feedback EDF

To extend the FEDF to distributed FEDF, the two challenges mentioned in the

beginning of this chapter have to be solved. A description of the extension of FEDF

is given in detail after the introduction of uniprocessor FEDF in the following section.

4.5.1 Uniprocessor Feedback EDF

Feedback EDF (FEDF) was originally proposed by Dudani, Mueller and Zhu [14], and

has subsequently been refined by Zhu and Mueller [48, 49, 50]. Studies have shown

that FEDF [14, 47, 48, 49] is able to reduce energy consumption more than LAEDF,

though FEDF incurs more run-time overhead. As shown in Equation 2.8 and 2.9,

FEDF gets its performance advantage from job splitting and slack estimation. Each
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job is split into two parts based on the assumption that actual execution time is

typically shorter than worst case execution time. The split is chosen so that the first

part of each job is likely to be run, and the second part is not. The scheduler reserves

enough time to run the unlikely part at full speed, creating more dynamic slack for

the likely part of the job. Most of the time, the job completes before the unlikely

part runs.

FEDF reserves time for jobs using a combination of slack passing from tasks that

finish before their worst-case execution time and static slack in a precomputed max-

imal schedule. The static slack is distributed throughout the schedule by including

an idle task, with period

pidle ≤ min1≤i≤n(pi). (4.9)

This pidle guarantees there will be at least one idle slot during the every period of

each task in the maximal schedule. The WCET of the idle task is set such that the

system utilization is one. The actual execution time of idle task is always zero.

At run time, FEDF keeps a track of slack time available for the current job to

help reduce processor speed. The slack is gained from either idle slots in the maximal

schedule and dynamic slack from jobs that finish early. The detailed algorithm for

slack time tracking in FEDF is given in Algorithm 3 and Algorithm 4, with relevant

variables in Table 4.2.

Algorithm 3 Calculation of slow-down factor in FEDF

Require: None
Ensure: 0 < α ≤ 1

if (Jpk is preempted) then

if (C leftpk > slots(Jpk, tnow, dpk)) then

reservepk ⇐ C leftpk − slots(Jpk, tnow, dpk)
Reserve reservepk in idle(tnow, dpk)

end if

slack ⇐ slack − Max(idle(dij , dpk), reservepk)
else

if (tnow > dpk) then

slack ⇐ slack − idle(dpk, tnow)
end if

slack ⇐ slack + idle(dpk, dij)
end if

return α ⇐
CA

ij

CA
ij+slack

The slack time is updated at each scheduling point of task release. When a job,
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Algorithm 4 Task completion in FEDF

Require: None
Ensure: reserveij == 0

Mark unused slots allocated for Jij in maximal schedule as idle slots
Update estimation of CA

ij+1

C leftij ⇐ Ci

if (reserveij > 0) then

Release reserved slots for Jij

end if

Table 4.2: Key variables in FEDF algorithm
Variable Explanation

slack Current estimated system slack time
Jij Current job
Jpk Previous job relative to Jij

tnow Current time
C leftpk Remaining execution time of Jpk

dij Absolute deadline of Jij

reservepk Time slots have to be reserved for preempted job Jpk

CA
ij Estimated actual execution time of Jij

α Slowdown factor for current job Jij

idle(t1, t2) Idle slots from both idle task and completed jobs between [t1, t2]
slots(Jij , t1, t2) Amount of time allocated or reserved for Jij between [t1, t2]

Max(v1, v2) Returns maximum value between v1 and v2
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Jij in the ready queue is scheduled to run, a processor speed has to be selected based

on the system’s available slack time. The maximal schedule gives the information of

slack time available within the time duration of [tnow, dij]. All the idle slots in the

maximal schedule within [tnow, dij] are contributed to the slack time for Jij . However,

if the deadline of previous job, Jpk is within [tnow, dij], the old value of slack time has

included idle slots from tnow to the deadline of Jpk, dpk. In that case, only the idle

slots within [dpk, dij] need to be added to the slack.

When dij is earlier than dpk, the preemption may happen. If Jpk is preempted by

Jij, time slots have to be reserved for the preempted job to guarantee no deadline

miss. Jpk may have been executed at a lower processor speed caused by DVS. It will

takes longer to finish the rest worst case work than the time that have been allocated

to Jpk in the maximal schedule. Some extra idle slots during [tnow, dpk] have to be

reserved to Jpk until the total number of reserved time reaches the remaining worst

case execution time of the preempted job, C leftpk. The reservation can be done in

two ways, forward sweep or backward sweep. Forward sweep reserves idle slots for Jpk

from tnow toward dpk up to C leftpk. While the backward sweep does the reservation

from dpk backwards. Backwards sweep leaves more idle slots usable for current job

by aggressively push the reservation of Jpk as late as possible to the job’s deadline.

The amount of reserved time is subtract from slack after the slots reservation.

After a job, Jij is completed, there might be unused time that have been allocated

for Jij. Those slots are marked as idle slots which can be contributed to the slack for

the next scheduled job. If Jij was preempted, all the idle slots reserved for Jij are

released and marked as idle for the future use.

The actual execution time of the completed job Jij is used to update the estima-

tion of actual execution time for the next job instance in the same task. Different

algorithms can be used in the execution time estimation. The simplest one is to use

the average of actual executions of all previously completed jobs in the same task.

Others such as weighted average and proportional-integral-derivative (PID) controller

can also be used. The effectiveness of various estimation algorithms is highly depen-

dent on the nature of the task’s workload.

4.5.2 Extension of FEDF to Distributed FEDF

FEDF requires a few modifications to work when task relative deadlines are shorter

than task periods [40]. When some tasks have relative deadlines shorter than their

periods, setting idle task utilization to make system utilization 1 may cause missed
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deadlines. For such systems, the idle task’s utilization has to be set such that the

system’s density is one instead of its utilization. In addition, rather than setting the

idle task period to the minimum of the task periods, it is set to the minimum of the

task relative deadlines.

pidle ≤ min1≤i≤n(min(pi, Di)) (4.10)

Otherwise, the idle slot that occurs during job Ji,k in task Ti may only occur

between the deadline of Ji,k and the release time of Ji,k+1. Using the minimum

deadline guarantees at least one idle slot before each job’s deadline.

Although the FEDF algorithm can work with systems having short deadlines,

changes have to be made to handle the release time jitter at run time. FEDF calculates

a maximal schedule offline using known information such as tasks’ worst execution

times and periods to help the algorithm exploit slack time at run time. The maximal

schedule assumes the interrelease times of jobs are constant. Release jitter makes it

impossible to use a static maximal schedule. To extend FEDF to handle release time

jitter, a new maximal schedule has to be calculated each time a new job is released.

The new algorithm for distributed FEDF (DFEDF) is given in Algorithm 5.

Algorithm 5 Task release of DFEDF

Require: tnow < dij

Ensure: 0 < α ≤ 1
if (dij > dpk) then

slack ⇐ 0
Recompute maximal schedule from tnow till dij

slack ⇐ slack + idle(tnow, dij)
else

if (Jpk is preempted) then

if (C leftpk > slots(Jpk, tnow, dpk)) then

reservepk ⇐ C leftpk − slots(Jpk, tnow, dpk)
Reserve reservepk in idle(tnow, dpk)

end if

slack ⇐ slack − Max(idle(dij , dpk), reservepk)
else

slack ⇐ slack − idle(dij , dpk)
end if

end if

return α ⇐
CA

ij

CA
ij+slack

When a job, Jij , is scheduled to run by DFEDF, its absolute deadline, dij , has

to be compared with the deadline of previously executed job, dpk. If dij > dpk, there
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is no slot reservation information in the maximal schedule for the time duration of

[dpk, dij], which means a new maximal schedule has to be recomputed before DFEDF

can estimate slack time available for Jij. To eliminate the error in maximal schedule

that may caused by release jitter of current job, a new maximal scheduler during

[tnow, dij] is computed. The available slack time is reset to the idle slots within

[tnow, dij]. If dij ≤ dpk, maximal schedule does not need to be updated. If a job is

preempted, slots have to be reserved for the preempted job to ensure the timeliness.

Otherwise the idle slots within [dij, dpk] is subtracted from the available slack for

current job, Jij .

The detail of maximal scheduler recomputation is given in Algorithm 6. The

maximal schedule computation schedules the task set on the processor with EDF

scheduling assuming the worst-case execution time for each job in the task. A linked

list contains information of scheduling results. In each of the node, there are records

of task name, starting time and endding time of the task’s execution. The nodes (time

slots) are linked according to the increasing order of starting time in the node. Besides

the regular real-time tasks, an idle task is created and scheduled in the maximal

schedule. The created idle task has its period equal to the minimum period among

the task set and the worst-case execution time of

(1 − ∆) × pidle.

Where ∆ is the processor’s total density. The time slots scheduled for idle task along

with the time span between each busy interval in the maximal schedule are marked as

idle slots, which contributes to the slack time for the job under scheduling in DFEDF.

4.5.3 Proof of Feasibility

Our proof extends a proof of correctness for Feedback EDF that assumes task relative

deadlines equal to periods [50].

Theorem 4.5.1. Any set of tasks with deadlines less than or equal to their periods

that can be feasibly scheduled by EDF can also be feasibly schedulable with DFEDF.

Proof. Feedback EDF produces feasible schedules for tasks with relative deadlines

equal to their periods when system utilization does not exceed 1 (see [50] for a proof).

Our strategy is to transform system T with relative deadlines less than or equal to

periods into a system T′ with deadlines equal to periods such that if T′ is schedulable

by Feedback EDF then T is schedulable by DFEDF.
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Algorithm 6 Maximal schedule recomputation of DFEDF algorithm

Require: tstart < tend

Ensure: None
for (All subtasks on Pi) do

Get jobs for subtasks
enqueue(job, waitingQ)

end for

Add idle jobs into waitingQ
t ⇐ tstart

while (t ≤ tend) do

for (All jobs in waitingQ) do

if (ri ≤ t) then

dequeue(Ji, waitingQ)
enqueue(Ji, readyQ)

end if

end for

Schedule jobs in readyQ using their WCETs at max processor speed
Allocate time slots for scheduled jobs
Advance t

end while

Let T be a set of n tasks with each task Ti having period pi, worst-case execution

time Ci, and relative deadline Di with Di ≤ pi. Construct a new set, T′, of n tasks

such that for each Ti ∈ T there exists a T ′
i ∈ T′ such that p′i = min(pi, Di), C ′

i = Ci,

and D′
i = min(pi, Di).

T ′ is schedulable by Feedback EDF when U ′ =
∑n

k=1 C ′
i/p

′
i ≤ 1 by Zhu and

Mueller’s proof because each task’s period equals its relative deadline [50]. A system

scheduled by EDF remains schedulable if task interrelease times are actually longer

than their periods [22], and Feedback EDF is capable of scheduling any set of tasks

schedulable by EDF. Thus, T′ remains schedulable by Feedback EDF even if the

actual job interrelease times for task T ′
i are pi instead of p′i = min(pi, Di), as long as

U ′ ≤ 1.

Since U ′ =
∑n

k=1 C ′
i/p

′
i =

∑n

k=1 Ci/min(pi, Di) = ∆, T′ is schedulable by Feed-

back EDF when ∆ ≤ 1. In the case where the actual interrelease times of each task

in T ′
i in T′ are equal to the periods of each task Ti in T, saying that T ′ is schedulable

by Feedback EDF when U ′ ≤ 1 is the same as saying T is schedulable by DFEDF

when ∆ ≤ 1, because DFEDF simply substitutes ∆ for U , and handles the idle task

in a slightly different way that does not affect schedulability. In either algorithm,

idle time is computed based on a maximal schedule, and only time not used by any

other task is allocated to idle slots. Therefore, T is schedulable by DFEDF when the
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system’s density does not exceed 1.

4.6 Arbitrary Deadline CCEDF

The DCCEDF discussed earlier in this chapter uses the system density, instead of

utilization, to determine the minimum execution speed for the current job running

on a real-time system with tasks whose deadlines is different than their periods. The

density test for such system, however, is not optimal. That is, the system’s static

slack time estimated using system’s density is less than the actual value. To exploit

more static slack time by using a tighter schedulability bound, the arbitrary dealdine

CCEDF (ADCCEDF) is proposed. The detail of this algorithm is discussed in the

rest of this section.

4.6.1 Schedulability Test with Tighter Bound

A real-time periodic task may has its relative deadline be equal to, greater than or less

than its period. A system with such task is called a real-time system with arbitrary

relative deadlines. Unlike the utilization test for system with task’s deadline equal to

its period, the optimal schedulability test for a real-time system with arbitrary relative

deadlines scheduled by EDF has been studied and proved to be an NP-complete

problem [17, 2]. The density test serves as an quick, however not quite accurate,

schedulability test for the system with arbitrary deadlines. A new schedulability test

has been shown to give a tighter bound than the density test for n tasks, and require

O(n) work when task information is available in order of non-decreasing relative

deadline [12].

This new schedulability test is given by the equation below [12].

Ûk =

k
∑

i=1

Ci

pi

+
1

Dk

k
∑

i=1

(

pi − min(pi, Di)

pi

)

Ci ≤ 1. (4.11)

Where 1 ≤ k < n. The system of n tasks with arbitrary deadlines is schedulable,

if 4.11 is true for all tasks in the system.

4.6.2 Extension of CCEDF Using a Tighter Bound

To exploit dynamic slack in the system, rather than computing density based on

worst-case execution time, Ci, ADCCEDF computes Equation 4.11 for each task using

ci in place of Ci, where ci is set to the actual execution time at every completion and
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the worst case execution time at every release, just as in CCEDF.

Unlike the computation of U in CCEDF, ADCCEDF must compute n values of

Ûk, one for each task Tk. If the processor is scaled by some factor α, the scaled version

of Equation 4.11 becomes

1

α

k
∑

i=1

ci

pi

+
1

α · Dk

k
∑

i=1

(

pi − min(pi, Di)

pi

)

ci ≤ 1. (4.12)

Solving for α we get:

k
∑

i=1

ci

pi

+
1

Dk

k
∑

i=1

(

pi − min(pi, Di)

pi

)

ci ≤ α. (4.13)

Equation 4.13 must be true for all n tasks, thus

α ≥ max
1≤k≤n

(Ûk). (4.14)

In other words the speed of the system can be set to lowest speed no less than

the largest Ûk. Note that the test in Equation 4.11 is valid regardless of whether

deadlines are shorter, longer, or equal to relative deadlines. As a result, ADCCEDF

works with arbitrary deadlines.

CCEDF has very low computational complexity. At every job release and com-

pletion, the old contribution of the current task is subtracted from U , and the new

contribution is added to it. Overall only O(1) operations are required per task switch.

In contrast, ADCCEDF must update all n of Ûk values used in Equation 4.14. If the

values of Ûk are computed in order of non-decreasing relative deadlines, however, only

O(n) operations are required per task switch.

4.7 Summary

This chapter discussed the extensions of the applicability of uniprocessor DVS-EDF

algorithms to tasks with end-to-end precedence constraints and deadlines different

than their periods in partitioned distributed real-time system. The changes to SEDF

and CCEDF are as simple as substituting density for utilization. ADCCEDF modifies

CCEDF to use a tighter schedulability bound, allowing slower processor speeds for

the same workload. DLAEDF requires more extensive changes. Its deferable work

computation must account for jobs whose deadline has passed, but whose next job

in the task has not been released. FEDF requires the largest change. To overcome

the release jitter in the partitioned real-time systems, DFEDF has to compute the
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available slack using a dynamically computed maximal schedule.

The simulations have been done to compare the energy-saving performance of the

distributed DVS-EDF algorithms discussed in this chapter. The detailed simulation

results are presented in Chapter 7.

Copyright c© Chenxing Wang 2007
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Chapter 5: TASK ASSIGNMENT AND DEADLINE ASSIGNMENT

Task assignment and deadline assignment have to be done before scheduling the

task set in distributed real-time systems using priority-driven scheduling algorithms.

How dependent subtasks are assigned to the processors in the distributed system

and how the deadline of each subtask within an end-to-end task is assigned will

affect the schedulability of the system and the energy-conserving performance of DVS

scheduling algorithms. This chapter discusses and compares several energy-aware

online task assignment heuristics and deadline assignment approaches for distributed

real-time system in terms of schedulability and energy conservation.

5.1 Task Assignment

To apply the priority-driven scheduling algorithms to distributed real-time system,

partitioning-based scheduling is used.

Task assignment in partitioning-based scheduling can be done offline or online,

as discussed in Chapter 2. To take the advantage of the priority-driven scheduling’s

ability to schedule dynamic real-time task sets, online task assignment heuristics with

low online overhead are proposed [3, 45, 9].

Work by Adyin and Yang shows that how tasks are assigned to the processor effects

the energy-conserving performance of various DVS algorithms [3]. However, looking

for a feasible task assignment with minimized energy-consumption for a distributed

real-time system has been proved an NP-Hard problem in the strong sense [3]. energy-

aware task assignment heuristics with low online overhead are proposed to schedule

dynamic task sets in distributed real-time systems.

We focus the discussion on the energy-aware task assignment heuristics for an EDF

scheduled distributed real-time system. The problem of energy-aware task assignment

for such a system is formally described as follows. Given the densities of set of subtasks

in n end-to-end tasks, a partition of the task set onto m processors is desired such that

the subtasks assigned on each processor are schedulable according to EDF scheduling

algorithm. In order to simplify the discussion, the term task, instead of subtask,

is used in the descriptions of task assignment algorithms as the assignment object.

The performance of the assignment is evaluated by the energy consumption of the

system using DVS-EDF scheduling algorithms. Several task assignment heuristics are

discussed in the following subsection.
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5.1.1 Simple Task Assignment Heuristics

There are a number of task assignment heuristics that can generate task assignments,

such as First-Fit, Best-Fit and Next-Fit [15, 23, 8]. Unlike the offline task assignment

algorithms discussed in Chapter 2, these heuristics assign tasks to the processors one

by one. Among these algorithms, First-Fit and Worst-Fit are discussed in detail in

the rest of this subsection.

To solve the task assignment problem we have formed previously, the Best-Fit

assigns a subtask to the processor with minimum available computation capacity

which can just fit the subtask as described in Algorithm 7 with the relevant variables

in Table 5.1.

Algorithm 7 Best-Fit task assignment

Require: Uj = 0, 0 < j ≤ m
Ensure: Uj ≤ 1, 0 < j ≤ m

for (Each task Ti ∈ T) do

δi ⇐ Ci/min(pi, Di)
Ubest ⇐ max0<j≤m(Uj)
while (δi < 1 − Ubest) do

if (Ubest > min0<j≤m(Uj)) then

Ubest ⇐ greatest Uk < Ubest

else

No feasible assignment, Exit
end if

end while

Assign Ti onto Pbest

Ubest ⇐ Ubest + δi

end for

The Best-Fit makes assignment decisions based on the task’s density. The pro-

cessor with the minimum remaining computation capacity, evaluated by 1 − Ubest,

that can just accommodate the task, Ubest + δi ≤ 1, is selected by the Best-Fit as the

target for the current task, Ti. The Best-Fit algorithm tries to assign as many task

to the same processor as possible, which leading to a fewer number of processors used

by the system.

The Worst-Fit algorithm, on the contrary, assigns tasks onto the processor with

maximum computation capacity available. Algorithm 8 gives the pseudo code for the

Worst-Fit assignment.

A Worst-Fit assignment tends to produce a balanced workload. That is, the

system’s static slack time is distributed evenly among processors. The balanced
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Table 5.1: Key variables used in task assignment algorithms
Variable Description

Pi The ith processor in the system
P The set of all processors in the system
Ci Execution time of task Ti

Di Relative deadline of task Ti

pi Period of task Ti

Uj Total utilization of processor Pj

∆j Total density of jth processor
ui Density of task Ti

T The set of tasks to be assigned to processors
δi Utilization of task Ti

Pmin Processor with minimum increase in average power
∆Pwrmin Estimated increase in average power for Pmin

Pwridle Idle power consumption of processor
power(x) Power consumption according to CPU speed x
pred(Ti) Task Ti’s predecessor
proc(Tj) Processor to which task Tj is assigned

msg energy(Ti) Energy consumed by communication between
Ti and its predecessor

Algorithm 8 Worst-Fit task assignment

Require: Uj = 0, 0 < j ≤ m
Ensure: Uj ≤ 1, 0 < j ≤ m

for (Each task Ti ∈ T) do

δi ⇐ Ci/min(pi, Di)
Uworst ⇐ min0<j≤m(Uj)
if (δile(1 − Uworst)) then

Assign Ti onto Pworst

Uworst ⇐ Uworst + δi

else

No feasible assignment, Exit
end if

end for
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workload distribution enables all of the processors in the system to run as slow as

possible. On the other hand, the Best-Fit task assignment results in an unbalanced

workload distribution among processors. When static power is small, distributing the

load evenly minimizes overall energy consumption because each processor is running

at its minimum speed. When static power is a significant contribution to overall

power, it may be more advantageous to turn off some processors completely and run

the remaining processors at a higher speed.

5.1.2 Communication-Aware Worst-Fit

Subtasks within an end-to-end task communicate to maintain the dependencies. The

cost of communication increases when two adjacent subtasks are assigned onto differ-

ent processors. Neither the Best-Fit nor the Worst-Fit heuristic discussed previously

accounts for communication between subtasks. The Worst-Fit heuristic is good at bal-

ancing the system’s static slack among processors which can be used by DVS-EDF

scheduling algorithms. The balancing, however, may increase the communication

among processors. In order to take the cost of communication among subtasks, a

communication-aware Worst-Fit (CAWF) is proposed.

Best Fit and Worst Fit both ignore communication costs between tasks. Synchro-

nization signals and data have to be transmitted through the network when two de-

pendent tasks are assigned to different processors. To account for the communication

cost caused by signals and data transmission, we introduce Communication-Aware

Worst Fit (CAWF) task assignment to reduce system communication cost while dis-

tributing the workload evenly among the processors. Algorithm 9 shows the pseudo

code for CAWF task assignment algorithm.

When assigning a task to a processor, the CAWF algorithm checks which proces-

sor the task’s predecessor is assigned to and tries to assign the task onto the same

processor. When the density on the predecessor’s processor becomes too high to ac-

commodate the new task, the Worst Fit processor is selected for the next task. The

Worst Fit algorithm is applied when the task has no predecessor.

Assigning tasks to the same processor reduces communication cost because the

tasks do not need to send synchronization or data messages over the network. Select-

ing the Worst Fit processor in CAWF not only balances the load, as in Worst Fit,

but also it leaves the maximum available density for subsequent tasks that depend

on the task currently being assigned.
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Algorithm 9 CAWF task assignment

Ensure: ∆j ≤ 1, 0 < j ≤ m
for (Each task Ti ∈ T) do

δi ⇐ Ci/min(pi, Di)
Pk ⇐ proc(pred(Ti))
if (Pk 6= nil ∧ δi ≤ 1 − ∆k) then

Assign Ti on processor Pk

∆k ⇐ ∆k + δi

else

∆min ⇐ min0<j≤m(∆j)
if (δi ≤ 1 − ∆min) then

Assign Ti on processor Pmin

∆min ⇐ ∆min + δi

else

No feasible assignment
end if

end if

end for

5.1.3 Min∆P Task Assignment

Though they have been used for power-aware scheduling, Best-Fit and Worst-Fit

do not assign tasks based on their power consumption. Algorithm 10 introduces a

new greedy task assignment algorithm, called Min∆P. Recall that we have discussed

that the voltage scalable processor can operate under a set of different voltage levels.

The processor’s speed and power consumption vary as the supply voltage changes.

The set of voltage levels the processor can work with, however, is discrete. When

there is a workload adding to the processor, in order to catch the tasks’ deadlines,

processor may have to run at a faster speed with a higher voltage level, thus a higher

power consumption. If the new workload is not heavy enough requiring a processor

speedup, the processor can accept this task without consuming more power. The

Min∆P is proposed based on the above discussion. This algorithm assigns a task to

the processor which will result in the smallest estimated increase in average power

consumption on that processor.

The average power consumption of processor is used frequently in the Min∆P

algorithm. The algorithm estimates the average power consumption of the processor

in two parts, the processor execution power and the idle power. The execution power

is estimated using the power function, which takes a processor frequency as an input

and returns the power consumed while running at that frequency. The frequency of

the processor is determined by the total density of the processor, but the processor
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Algorithm 10 Min∆P task assignment

Require: ∆j = 0, 0 < j ≤ m
Ensure: ∆j ≤ 1, 0 < j ≤ m

for (Each task Ti ∈ T) do

δi ⇐ Ci/min(pi, Di)
ui ⇐ Ci/pi

for (Each processor Pj ∈ P) do

if (δi + ∆j ≤ 1) then

if (Uj > 0) then

∆Pwr ⇐ power(δi + ∆j) · (ui + Uj) − power(∆j) · Uj − Pwridle · ui

else

∆Pwr ⇐ power(δi)ui + Pwridle · (1 − ui)
end if

if (pred(Ti) 6= nil and proc(pred(Ti)) 6= Pj) then

∆Pwr ⇐ ∆Pwr + msg energy(Ti)/pi

end if

if (∆Pwr < ∆Pwrmin) then

∆Pwrmin = ∆Pwr
Pmin ⇐ Pj

end if

end if

end for

Assign task Ti to processor Pmin

∆min ⇐ ∆min + δi

end for
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is not always busy even if ∆ = 1. The processor’s utilization better indicates how

busy the processor will be. The power consumed when the processor is not busy is

considered idle power. The average power consumption of the processor running at

frequency of f can thus be estimated using the sum of execution power of

power(f) · U

and the idle power of

Pwridle · (1 − U)

Pwr = power(f) · U + Pwridle · (1 − U) (5.1)

Where U is the processor utilization. Pwridle is the power when the processor is

idle.

For each task to be assigned, Min∆P computes the task’s density, δi, and utiliza-

tion, ui. The density of the task is used to compute the required processor speed. The

utilization is used as the workload adding to the processor. It’s obvious that the task

can only be assigned to those processors with enough computation capacity. That is,

∆j + δi ≤ 1. To make the decision on the assignment, the estimated increase in aver-

age power of each processor with enough computation capacity, ∆Pwr, is computed

according to Equation 5.1.

∆Pwr = power(δi + ∆j) · (ui + Uj) − power(∆j) · Uj − Pwridle · (1 − Uj − (1 − Uj − ui))

(5.2)

= power(δi + ∆j) · (ui + Uj) − power(∆j) · Uj − Pwridle · ui

If the processor has no tasks assigned to it, we assume the processor is off and

consumes no power. Thus the ∆Pwr in this case is

∆Pwr = power(δi) · ui + Pwridle · (1 − ui) (5.3)

The ∆Pwr computation assumes that the processor’s frequency is proportional

to the task density on the processor. For SEDF, this is precisely correct. For other

algorithms, the actual average power is lower, but this approximation works well in

practice.

This algorithm takes care of communication power consumption. Besides the
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increase of processor power consumption when assigning a task onto a processor,

there might be additional communication power consumption if the task is assigned

to the different processor from its predecessor. The processor on which the task’s

predecessor was assigned is located by functions pred(T) and proc(T). Function

pred(T) looks for the predecessor of task T , while proc(T) locates the processor the

task was assigned to. If these two tasks are assigned on different processors, power

consumption of msg energy(Ti)/pi is added to ∆Pwr.

The processor with minimum power increase after adding the task is selected

as the target for that task. In Min∆P, each task is treated separately to increase

speed and simplicity. An extension to the algorithm that tries several combinations

of tasks may produce task assignments with lower average power than Min ∆P, but

the overhead would be too high to be used as an online task assignment algorithm.

5.1.4 Summary

How tasks are assigned to processors in partitioned multiprocessor systems affects

the energy-conserving performance of DVS-EDF scheduling algorithms. Besides the

two existing heuristics, Worst-Fit and Best-Fit, two new task assignment algorithms,

Communication-Aware Worst-Fit and Min∆P, are proposed. The Communication-

Aware Worst-Fit tries to assigns tasks that communicating on the same processor to

reduce overall communication cost. Tasks do not communicate or cannot be placed

with their sibling tasks are assigned using Worst-Fit to balance the system workload.

Min∆P uses estimated change in power to decide to which processor a task should

be assigned.

Among the four task assignment algorithms, the Best-Fit and Worst-Fit need the

least information about the task set when making task assignment decisions – just the

current processor and task densities. Communication-Aware Worst-Fit additionally

needs to know each task’s predecessor as well as the predecessor’s processor. Min∆P

requires not only the task information, but also power cost for processors and commu-

nication. The simulations are conducted in Chapter 7 to reveal the energy-conserving

performance of each task assignment discussed above.

5.2 Deadline Assignment

As we have briefly discussed in Chapter 2, deadline assignment is used to assign

local deadline to each of the subtasks in the end-to-end task. For a priority-driven

scheduling algorithm, the information of task’s priority has to be known in order
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to generate a feasible schedule. Assigning local deadlines to subtasks is equal to

assigning the priorities of tasks that the scheduler works on. The problem of how

to assign priorities to subtasks such that a priority-driven scheduler can generate a

feasible schedule for all the subtasks on the processor has been proved to be NP-

hard [22]. In order to deal with the dynamic task set that has tasks arriving or

leaving the system when the system is running, a simple heuristic has to be used. We

focus on the discussion of deadline assignment heuristics with low online overhead.

Deadline assignment may affect the performance of DVS scheduling algorithm

just as task assignment does. The static slack is assigned to each of the subtask

according to the deadline assignment. There are several existing deadline assignment

heuristics, which will be discussed in the following subsection. Another deadline

heuristic is proposed following the discussion of existing ones. The new heuristic is

trying to facilitate the energy saving for DVS-EDF scheduling algorithms.

5.2.1 Existing Deadline Assignment Heuristics

There are four existing deadline assignment heuristics, ultimate deadline (UD), effec-

tive deadline (ED), proportional deadline (PD), and normalized proportional deadline

(NPD) [22, 38]. They are defined as follows. For the kth subtask, Ti,k, in an end-to-end

task, Ti,

UDi,k = Di (5.4)

EDi,k = Di −

n(i)
∑

l=k+1

Ci,l (5.5)

PDi,k = Di

Ci,k

Ci

(5.6)

NPDi,k = Di

Ci,kU(Vi,k)
∑n(i)

l=1 Ci,lU(Vi,l)
(5.7)

Where Di and Ci is the end-to-end deadline and worst-case execution time of the

end-to-end task Ti, respectively. And Ci,k is the worst-case execution time of the kth

subtask of Ti. The number of subtasks in task Ti is represented by n(i). U(Vi,k) is the

total utilization of processor with subtask Ti,k running on it. And Vi,k is the name of

the processor on which the subtask Ti,k executes.

The four deadline assignment heuristics are illustrated by an example given in
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Table 5.2: An example of deadline assignment
Ti,k Vi,k Di = pi Ci,k C̄i,k UDi,k EDi,k PDi,k NPDi,k ANPDi,k

T1,1 P1 50 2 1 50 45 22.22 11.91 21.98
T1,2 P2 50 1 0.7 50 44 11.11 2.34 6.04
T1,3 P1 50 6 1 50 50 66.67 35.75 21.98
T2,1 P1 10 3 2 10 9 2.5 8.84 9.11
T2,2 P2 10 1 0.5 10 10 7.5 1.16 0.89
T3,1 P2 30 3 1 30 27 15 8.46 4.07
T3,2 P1 30 3 2.5 30 30 15 21.54 25.93

Table 5.2. There are three end-to-end tasks and two processors in the system, T1, T2,

and T3, with 3, 2 and 2 subtasks within them, respectively. The end-to-end deadline

of each task is equal to its period given in column 3 in Table 5.2. The example assumes

that subtasks have been assigned using a task assignment. Subtasks T1,1, T1,3, T2,1,

and T3,2 are assigned on processor P1. While T1,2, T2,2, and T3,1 are assigned on P2.

The worst-case execution time, Ci,k, and average execution time of each subtask, C̄i,k,

is given by column 4 and 5, respectively. The total utilization of P1 and P2 are 0.56

and 0.22, respectively.

UD sets deadlines of all the subtasks to their end-to-end deadline as illustrated in

Table 5.2. This approach needs no other information about the task except its end-

to-end deadline. However, UD ignores the fact that the subtasks shares the deadline

with a total amount no greater than the end-to-end deadline, which may cause missed

deadlines. The ED assignment assigns the local deadline to a subtask with a value of

the end-to-end deadline minus the total worst-case execution time of its successors.

This approach takes the execution of successor subtasks into account. Thus ED is

expected to result in a better system schedulability.

The proportional deadline assignment allocates deadlines proportional to the sub-

task’s worst-case execution time. Static slack of the end-to-end task is also assigned

to each of the subtasks proportional to the subtask’s worst-case execution time. The

longer the worst-case execution time, the longer relative deadline and thus more slack

time is assigned. In comparison with UD and ED, PD is the best in terms of schedu-

lability. For DVS-EDF scheduling algorithms, PD facilitates their performance by

assigning the static slack in a balanced way.

When the workload on each of the processors in the system is same, PD has the

same performance with NPD. However, for the unbalance workload in the example

above, the NPD is expected to be better in distributing the available slack by evenly

assigning the deadline to the subtasks according to the processor’s workloads. For a
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heavily loaded processor, the subtasks assigned on that processor are assigned with

longer deadlines, thus more slack time by NPD. The end-to-end task T3 in the example

has two subtasks with identical worst-case execution time of 3, which results in a

identical PD for each of the subtasks. The NPDs, however, are different. This is

because that these two subtasks are assigned to two different processors with different

utilizations. T3,1 is assigned to P2, which has a lighter workload with utilization of

0.22 than that on P1. A longer NPD is assigned to T3,2 on P1 to allocate more slack on

P1. PD is trying to evenly distributes the slack in the end-to-end task to each of the

subtasks within that end-to-end task. While NPD means to balancing the system’s

static slack among the subtasks in all the end-to-end tasks.

When assigning deadline with PD and NPD, the system is more likely to be

schedulable. However, more information is needed for PD and NPD. NPD needs the

information of workload on each of the processors as well as the information of worst-

case execution time of each subtasks. When applying the deadline assignment online,

the trade-off between system schedulability and online overhead has to be considered.

5.2.2 NPD Using Average Execution Time

In the real world, the actual execution time of a real-time task is usually less than

its worst-case execution time. Instead of the worst-case execution time, the NPD

can use the subtask’s estimated actual execution time when making deadline assign-

ment. The actual execution time is randomly distributed between the minimum and

the worst-case execution time. The average of a series of random numbers is usu-

ally used as the estimation of next random number. A new deadline assignment,

Average-execution-time NPD (ANPD), is proposed to distribute the system’s slack

more efficiently by using subtask’s average execution time. This assignment heuristic

is defined in Equation 5.8.

For the kth subtask, Ti,k, in an end-to-end task, Ti,

ANPDi,k = Di

C̄i,kU(Vi,k)
∑n(i)

l=1 C̄i,lU(Vi,l)
(5.8)

Where C̄i,k is the average execution time of subtask Ti,k. The ANPD for each

subtask in previous example is given in column 10 of Table 5.2. Subtasks T1,1 and

T1,3 are assigned on the same processor P1. Although they have different WCET of

2 and 6, respectively, their average execution times are same. The identical average

execution times result in the same ANPDs for subtasks T1,1 and T1,3. For subtasks

in T2, an even smaller ANPD is assigned to T2,2 than NPD. A very small deadline
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assignment happens because that the ratio of the difference between the average

execution times of two subtasks in T2 to their total average execution time is greater

than that between the worst-case execution time to their total worst-case execution

time.

In the previous example, we noticed that the deadline assigned to subtask T2,2 is

0.89, the value of which is less than T2,2’s WCET of 1. Although 0.89 is still greater

than T2,2’s average execution time, it is possible that T2,2 misses its local deadline

when its actual execution time is greater than 0.89, the value of local deadline. The

same situation may happens to NPD, too. It is because that NPD and ANPD balance

the workload among processors by assigning shorter local deadlines to subtasks on

the lightly loaded processors and longer deadlines to those on the heavily loaded

ones. It is possible for a subtask on a lightly loaded processor be assigned with

a local deadline very close to or even shorter than its WCET. The local deadline

shorter than the subtask’s WCET may cause deadline misses when scheduling with

EDF-based scheduling algorithms.

5.2.3 Summary

Among all the deadline assignment heuristics discussed above, PD and NPD are

expected to result in a higher schedulability than all other deadline assignment ap-

proaches [38, 22]. ANPD is proposed to take advantage of shorter actual execution

time than task’s WCET to saving more energy consumption. When applied to the

distributed real-time system with tasks frequently arriving or leaving the system, the

overhead of each deadline assignment has to be considered. NPD and ANPD need

global information of utilization on each processor, which require higher online over-

head than PD. In addition, it is observed in an example that ANPD assigns a local

deadline to the subtask with a value less than the task’s WCET. This means that

the subtask may miss its deadline when its actual execution time is greater than the

deadline that have been assigned to it. The further study on NPD shows that the

same situation may happen to NPD also. Although it is feasible as long as the end-

to-end deadline is guaranteed [38], the very short local deadlines might degrade the

energy-saving performance of DVS-EDF scheduling algorithms.

Simulations are done to compare the effect of each deadline assignment on the

energy-saving performance of DVS-EDF algorithms. The detailed discussion of sim-

ulation results is given later in Chapter 7.

Copyright c© Chenxing Wang 2007
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Chapter 6: DYNAMIC TASK SET ADMISSION TEST

Many embedded systems must operate under relatively harsh conditions with meager

resources. They have dynamic load, either due to events in the environment, varia-

tions in workload, or adding and removing tasks from the system. For example, in a

target tracking application, a new task may be introduced to maintain the track as

the tracked object moves. Interfacing with the real world implies timing constraints

for sampling sensors and/or controlling actuators. Thus, the system needs a real-

time scheduling algorithm capable of guaranteeing all tasks meet their deadlines and

managing power consumption to extend battery life as much as possible.

As discussed in Chapter 2, static real-time schedulers repeatedly execute a stati-

cally computed schedule that is pre-computed offline. Computing the schedule offline

has the benefit that complex algorithms can be used to find optimal solutions [34].

However, static schedules do not handle dynamically changing task sets well. Adding

new tasks is difficult because the entire schedule must be recomputed, which often

requires an expensive offline algorithm. Priority-driven scheduling algorithms are bet-

ter suited to applications with these dynamic properties. An arriving periodic task

may be scheduled immediately if it passes a simple admission test by priority-driven

scheduled systems.

In a DVS scheduled real-time system, a DVS scheduler stretches process execution

times to take advantage of slack in the system. When a new periodic task joins the

system, this stretching may have deferred enough work to cause a job in the arriving

task or a job in a currently admitted task to miss its deadline, even if the arriving

task could have been feasibly scheduled under EDF. That is, a schedulability test

that is sufficient to test for EDF schedulability is not sufficient for admitting new

tasks when using DVS algorithms based on EDF.

This chapter introduces two algorithms for admitting tasks to systems scheduled

by CCEDF, LAEDF, Feedback EDF, or other EDF-based DVS scheduling algorithms.

The Generalized Admission Test determines if a new task can be admitted immedi-

ately without causing a deadline to be missed. The Feasible Deadline Computation

algorithm is useful if the relative deadline of the first job in the newly arriving peri-

odic task can be longer than for subsequent jobs in the task. It computes a deadline

for the first job in the arriving periodic task that will guarantee that all tasks will

remain schedulable.
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6.1 Background

Real-time DVS algorithms that compute a schedule offline cannot handle adding new

tasks well. Though their schedules approach the minimum possible expected energy

consumption, computing the schedule is too expensive to do online. Often mixed

integer linear programming, or algorithms with similar complexity are used [34].

Adding tasks in a priority-driven scheduler allows tasks to be added with much

less computational complexity. The scheduler always runs the task with the highest

priority that is available to run. When a new task arrives it is scheduled with all of

the existing tasks after running a simple admission test decides if the new task can

be scheduled. Typically a utilization test is used to determine if a new periodic task

can be admitted. To our knowledge no existing admission tests are designed to work

for DVS scheduling algorithms. The standard utilization tests will not work because

they do not account for work that has been deferred to slow down the processor.

Sporadic job scheduling uses an admission test on individual sporadic jobs as they

arrive, admitting those jobs that pass the test [22]. DVS algorithms and admission

tests have been devised for these sporadic jobs. Sporadic job scheduling is not appro-

priate for hard real-time systems when the incoming task is a periodic task because

the admission test will have to be run on each job in the task. Each job in the pe-

riodic task will have to be admitted to the system individually, with the possibility

that some jobs may be rejected. Our tests allow the entire task to be admitted or

rejected. That is, once the periodic task is admitted, all of its jobs are guaranteed to

be able to run and complete by their deadlines. With sporadic job scheduling each

job has to be tested for admission and may fail to be admitted.

A system is composed of n independent, preemptable periodic tasks. Each periodic

task, Ti is a sequence of jobs, Ji,1, Ji,2, ...Ji,n with worst case execution time Ci, period

pi, and relative deadline Di. The jobs within task Ti are first eligible to execute at

their release times, ri,1, ri,2, ..., ri,n, and must complete by their absolute deadlines,

di,1, di,2, ..., di,n. The inter-release time between jobs in Ti is at least pi, but may be

longer.

When a new task Tnew arrives in a system without DVS, an admission test deter-

mines if scheduling Tnew with the existing tasks will result in a feasible schedule. The

new task can be admitted if the density δnew + ∆ ≤ 1 and tasks are scheduled with

EDF.

Though we are concerned with periodic tasks, it is often helpful to analyze the

current, partially completed job in a task as a sporadic job. Like a jobs in a periodic

50



task, a sporadic job Js,i has a release time rs,i, a worst case execution time Cs,i, and

an deadline ds,i. Unlike a job in a periodic task, a sporadic job is not released at

regular intervals.

Instantaneous utilization can be used to decide whether a set of sporadic jobs are

schedulable. The instantaneous utilization of a set of sporadic jobs is defined as

Û =
∑

Ti∈Tactive

Ci

di − ri

,

where Tactive is the set of all jobs that have been released, but have not yet reached

their deadlines. A set of sporadic jobs is schedulable by EDF if Û ≤ 1 at all times [11].

Moreover, a combination of periodic jobs with density ∆ and sporadic jobs with

instantaneous utilization Û is schedulable if

∆ + Û ≤ 1 (6.1)

at all times [11].

DVS algorithms slow down the processor to reduce power consumption when slack

is available. For example, LAEDF defers as much work as possible after the next

deadline in the system [31]. Very often jobs take less than the worst case execution

time. As a result much of the time allocated for defered work is never used. This

dynamic slack can be used to execute other jobs at slower speed.

The admission test given in Equation 6.1 assumes that new tasks can use static

slack that DVS scheduling algorithms use to slow down the processor. If Tnew is

admitted, existing jobs may have consumed all the available slack by running at lower

speeds. Even if Equation 6.1 is satisfied, the admission test must verify that enough

slack is available before releasing the new task. If not enough slack is available to

start a task that passes the test in Equation 6.1 immediately, it is possible to schedule

the task if the application can allow the first job’s deadline to be extended.

6.2 Adding Tasks with DVS

DVS algorithms can exploit slack available in the schedule to aggressively defer work.

In addition to using time that would have been available in the worst case schedule,

deferring work takes advantage of slack available from jobs that take less than their

worst case execution time. However, deferring work reduces the probability that an

arriving task will be schedulable, because less slack is available in the schedule — the

more effective the DVS algorithm at using slack, the less likely the new task can be
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scheduled immediately.

6.2.1 Generalized Admission Test

Priority-driven DVS algorithms based on EDF are designed to schedule any task set

schedulable by EDF [31, 50]. Proofs of schedulability show that as long as a set tasks

can be scheduled by EDF, they can be scheduled by the DVS algorithm. For such

algorithms, it is sufficient to show that an arriving task Tnew can be scheduled by

EDF with the existing tasks, including any work deferred by the DVS algorithm.

As long as ∆ + Û ≤ 1 holds, any set of preemptable sporadic jobs and periodic

tasks are schedulable by EDF [22]. Let t be the time at which a new periodic task

arrives and the admission test is run. At time t, the current job Ji,k in every task Ti

can be treated as a sporadic job with an execution time of Cleft,i until its deadline

di,k, where Cleft,i is the remaining amount of execution time for the current job in Ti.

After di,k, task Ti is treated as a periodic task. Tasks with no active jobs are always

treated as periodic tasks.

The deadlines of the sporadic jobs divide time into intervals. Before each deadline,

the instantaneous utilization is calculated using the sporadic job parameters, but after

the deadline, instantaneous utilization is calculated using the associated periodic task.

In the worst case, the deadlines of all sporadic jobs must be tested.

In a system of n tasks, let T1, T2, ..., Tm be tasks, including Tnew, whose current

deadline has not passed that are ordered such that their deadlines are d1 ≤ d2 ≤

... ≤ dm. Let Tm+1, Tm+2, ..., Tn+1 be tasks whose current deadline has passed, but for

which the next job has not been released1

Theorem 6.2.1. A DVS scheduling algorithm that can feasibly schedule any set of n

tasks schedulable by EDF can also feasibly schedule Tnew with the n existing tasks at

time t if

∆j =

m
∑

i=j

Cleft,i

di − t
+

j−1
∑

i=1

Ci

min(pi, Di)
+

n+1
∑

i=m+1

Ci

min(pi, Di)
≤ 1, ∀j : 1 ≤ j ≤ m+1, (6.2)

Proof. A job that has been released from a periodic task can be analyzed as a sporadic

job with execution time of its remaining worst case execution time, Cleft,i, deadline

of its absolute deadline, di, and release time of current time t. The periodic tasks

1There may be a delay between the completion of one job in a task and the release of the next
job either because the task has a relative deadlines shorter than its period or the next job release is
waiting for an event.
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without released jobs are treated as normal periodic tasks.

The new task, Tnew can be divided into a sporadic job of its first released job

Jnew,1 and a periodic task with the rest of periodically released jobs. If the ap-

plication allows the deadline of the first job in Tnew to be longer than subsequent

deadlines, then for intervals before dnew,1 we compute the instantaneous density

of Jnew,1 as δnew,1 = Cnew/(dnew,1 − rnew,1). Otherwise the new task’s density is

δnew = Cnew/ min(pnew, Dnew).

Time can be separated into intervals by the deadlines of each sporadic job. Since

a sporadic job is active only in its feasible interval [ri, di], the active sporadic jobs in

interval Ik are Ji, i = k, k + 1, ..., m.

It has been shown that a system of independent, preemptable sporadic jobs is

schedulable by EDF if the total density of all active jobs in the system is no greater

than 1 at all times [22]. Based on this theorem, the system is schedulable by EDF if

∆s,k + ∆ ≤ 1 (6.3)

for all time, where ∆s,k is the total density of active sporadic jobs in interval [dk−1, dk],

∆ is the total density of periodic tasks.

For the kth interval Ik, density due to jobs with uncompleted work in the current

job is

∆s,k =
m

∑

i=k

Cleft,i

di − t
, (6.4)

including the first job in Tnew if its deadline is allowed to be longer than the relative

deadline of other jobs in Tnew. The density due to periodic tasks with no active jobs,

but that may release a new job at any time is

∆ =

k−1
∑

i=1

Ci

min(pi, Di)
+

n+1
∑

i=m+1

Ci

min(pi, Di)
, (6.5)

including Tnew in the first sum if dnew,1 6= Dnew or in the second sum otherwise.

By substituting ∆s,k and ∆ in (6.3) with (6.4) and (6.5), we get

∆k =
m

∑

i=k

Cleft,i

di − t
+

k−1
∑

i=1

Ci

min(pi, Di)
+

n
∑

i=m+1

Ci

min(pi, Di)
≤ 1. (6.6)

Since the DVS scheduler can schedule any set of tasks schedulable by EDF, Tnew

can be admitted to the system without affecting feasibility as long as (6.6) is true for
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all k = 1, 2, ..., m + 1.

A naive implementation of the instantaneous density test algorithm would com-

pute each of the sums in O(n) steps for all O(n) active jobs for an overall complexity

of O(n2). However, if O(n) storage space is available, the sums can be computed and

accumulated in the array in O(n) time.

The instantaneous utilization test provides a sufficient test for schedulability for

any DVS algorithm that can schedule a set of jobs schedulable by EDF. Though the

added utilization of the new task will necessarily increase energy consumption, the

DVS algorithm can continue to create feasibly schedules as long as it recomputes how

to stretch jobs after the new task is added.

Algorithms like CCEDF and and LAEDF require only that the utilization be

updated to reflect the new task being added to the system. Feedback EDF requires

more extensive changes because it relies on a precomputed table of available slack for

future jobs. When a new task is added, the future slack table must be recomputed

and slack reservation must be redistributed to existing jobs.

6.2.2 Feasible Deadline Computation

In some cases Tnew cannot be scheduled feasibly as soon as it arrives, but it can be

scheduled after enough of the work deferred by the DVS algorithm is completed. If

the application can tolerate the first job completing later than specified by the task’s

relative deadline, we would like to compute the minimum deadline for which the first

job and all subsequent jobs in Tnew can be feasibly scheduled.

Algorithm 3, the Feasible Deadline Computation algorithm determines the mini-

mum Dnew,1 that will allow Tnew to be admitted. The scheduler can produce a feasible

schedule as long as the instantaneous utilization is less than or equal to one for all

intervals, as discussed above. Thus, we need to find the last interval such that instan-

taneous utilization with the newly added task is no greater than one for all subsequent

intervals. After this interval Ip the new task can be scheduled as a periodic task and

no deadline will be missed.

Jnew,1 can be treated as a sporadic job. Slack time in each interval prior to the

Jnew,1’s deadline is used for it’s execution. The earliest interval Iq+1 containing dnew,1

is thus decided such that Jnew,1 can just finish its execution within intervals prior to

Iq. The deadline of first job in the new task dnew,1 is set to the earlier of the end of

Ip and Iq, whichever is later.

Algorithm 11 computes the deadline of Jnew,1 by first sweeping forward through
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intervals, starting with the first interval, to compute the sum of slack time available

within each interval. The sweep stops in interval Ifwd when the total slack time is no

less than the worst case execution time of Jnew,1. It then sweeps backward from the

interval after the last deadline of any active task, Im+1, to the latest interval that has

been visited by the forward sweep. The interval Ibwd chosen by the backward sweep

is the first interval whose density exceeds one when added to the new task’s density.

The end of the later of Ifwd and Ibwd is chosen as dnew,1, so that Tnew can be feasibly

scheduled with the existing tasks.

Algorithm 11 Feasible deadline computation

Require: pnew, Cnew, Dnew; Cleft,i, ∆i∀i : 1 ≤ i ≤ m + 1; di, Ci, ∀i : 1 ≤ i ≤ n
Ensure: dnew,1

d0 = t
slack ⇐ 0
i ⇐ 1
while i ≤ m and slack < Cnew,1 do

slack ⇐ slack + (1 − ∆i)(di − di−1)
i ⇐ i + 1

end while

if i = m + 1 and slack < Cnew,1 then

dforward ⇐
Cnew,1−slack

1−∆m+1
+ dm

else

dforward ⇐ di−1

end if

j ⇐ m + 1
while j ≥ i and (∆j + ∆new) ≤ 1 do

j ⇐ j − 1
end while

dbackward ⇐ dj

dnew,1 ⇐ max(dforward, dbackward)

The computation of deadline use the algorithm above requires O(n) time. It is

assumed the density for each interval is known. As we discussed in section 6.2.1, the

computation of interval density can be finished in O(n) time, if O(n) storage space is

available. Thus, the overall computation time for the algorithm is O(n).

6.3 Summary

Ordinary admission tests are not sufficient when used with DVS because the scheduler

may defer too much work to allow a new task to be scheduled. This work is not

accounted for in the standard task admission tests. As with admission tests for
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schedulers without DVS, our test has O(n) time complexity, where n is the number

of tasks in the system.

We have presented an online admission tests and deadline computation algorithm

for adding periodic tasks to systems using real-time DVS scheduling. The first pro-

vides sufficient conditions for admission with any DVS algorithm capable of scheduling

any task set that is schedulable by EDF, for example LAEDF [31]. The second algo-

rithm computes a feasible deadline for the first job in the new task by which the new

task can be admitted by the system.

The admission test determines whether the first instance of a job can run before

a given deadline, and the subsequent jobs in the task will be schedulable with any

DVS algorithm that can schedule any set of tasks schedulable by EDF. Simulations

have been done to the admission and the feasible deadline computation. The detail

of simulation results is given in Chapter 7.

Copyright c© Chenxing Wang 2007
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Chapter 7: SIMULATION RESULTS

In previous chapters, we discussed distributed DVS-EDF scheduling algorithms, such

as DSEDF, DCCEDF, ADCCEDF, DLAEDF and DFEDF, task assignment heuristics

including Worst-Fit, Best-Fit, Communication-Aware Worst-Fit and Min∆P, and

deadline assignment heuristics for distributed real-time system. In addition, a study

of online admission tests for uniprocessor real-time system is discussed to deal with

the dynamic task set having tasks arriving and leaving the system when system is

running. These algorithms are evaluated using simulations. Simulation is a fast,

flexible and generic way to evaluate and compare the performance of algorithms.

Before we describe the simulation results for each set of algorithms, the design

of an Event-Driven Real-Time Simulator, EDRTSim, is given in the first section in

this chapter. All the simulation results discussed later are based on the simulations

done on this simulator. There are four groups of simulations done to evaluate the

performance of algorithms, namely, task assignment simulation, deadline assignment

simulation, distributed DVS-EDF simulation, and admission test for dynamic task set

simulation. The detailed discussion of the simulation results is given in the sections

following the description of simulator design.

7.1 Simulator Design

A survey has been done of the existing real-time simulators. The architecture-level

simulators [10, 44, 7, 27, 6, 35] are assumed to be more accurate in algorithm per-

formance estimation. Simulators, such as SimpleScalar [10], SimplePower [44] and

Wattch [7], are only applicable to uniprocessor systems. Architecture-level multi-

processor system simulators, such as SimOS [35], Proteus [6] and LIMES [27], do

not estimate system energy consumption. None of above simulators includes voltage

scalable processor model. A high-level event-driven simulator is developed instead to

simulate the algorithms for distributed real-time systems.

The event-driven simulator, EDRTSim, developed based on all the assumptions

discussed in Chapter 3. This simulator takes the end-to-end task set as its input,

assigns subtasks onto processors, schedules tasks according to specified real-time

scheduling algorithm and produces the energy consumption of the processors and

communications as the output. The block diagram of EDRTSim is shown in Fig-

ure 7.1.

Each of the processor module in the figure is composed of a local task set, a
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Figure 7.1: Block diagram for EDRTSim simulator
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CPU mode set, a scheduler, and an energy estimator. The CPU mode set contains

the information provided by a table, which is used by scheduler to make decisions on

processor’s speed when scheduling jobs in tasks. The energy estimator within the pro-

cessor module estimate the energy consumed by job execution. The processor energy

consumption is estimated using the sum of products of processor power consumption

and job’s execution time. Both of the power consumption and job’s execution time

are function of processor speed used to run the job.

Eproc =
∑

∆ti∈[0,tend]

P (fi) × ∆ti(fi) (7.1)

Where tend is the specified simulation end time. P (fi) is the power consumption

when the CPU is operating at speed of fi. The time interval used to execute a job at

the speed of fi is denoted as ∆ti.

The network energy estimator module computes the energy consumption based

on the amount of Kbytes in message/data that have been transmitted through the

network according to the assumptions we have made in Chapter 3.

Enetwork =
∑

i

EKbyte × nKbytei (7.2)

Where EKbyte is the energy cost for transmitting unit Kbyte of message through

the network. The variable nKbytei is the number of Kbytes transmitted within a

message or datum. The total number of messages or data transmitted through the

network depends on how the subtasks are assigned among the processors. There is

no energy cost on the network for the synchronization of two adjacent subtasks if and

only if they are assigned to the same processor.

The detailed design of scheduler module and task set modules in EDRTSim is

discussed in the following subsections.

7.1.1 Task Set And Task Class Hierarchy

There are two types of task set in EDRTSim, global task set and local task set. Global

task set is composed of end-to-end tasks. These tasks provide information for task

assignment and deadline assignment. Task assignment assigns subtasks from all tasks

in the global task set onto processors. The set of subtasks assigned to a processor

is the local task set for that processor. The task in the local task set behaves like a

periodic task with a period, deadline and WCET. Local tasks on one processor may

communicate with those on another processor based on the information provided by
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TaskAperiodic TaskPeriodic TaskSporadic

TaskRandPeriod TaskRandExec TaskEndtoEnd

TaskSub

Figure 7.2: Real-Time task class hierarchy

the global task set.

As the input of the simulator, the global task set is generated randomly given a

total system density. Each task set contains twenty end-to-end tasks taken from one

of three categories with equal probability. Short tasks have a period of 1ms to 10ms,

medium tasks a period of 10ms to 100ms, and long tasks have periods from 100ms

to 1000ms as described by Pillai and Shin [31]. The number of subtasks in each of

the end-to-end task varies from one to five. The worst-case execution time of each

subtask is generated randomly based on its period and the required system density.

In order to handle different types of real-time tasks, EDRTSim creates a class for

each type of real-time task using object-oriented programming language. The class

hierarchy of the real-time task class is shown in Figure 7.2.

Class Task is an abstract class containing properties that all the real-time tasks

share. TaskPeriodic, TaskAperiodic and TaskSporadic are three basic types of

real-time task derived from Task. The dissertation focuses on the periodic tasks that

have been discussed in Chapter 2. In practice, either the period or the execution time

of a periodic task might vary within a range. TaskRandPeriod and TaskRandExec

are two classes derived from TaskPeriodic to handle the above two types of real-time

tasks. Real-time DVS algorithms take advantage of the periodic tasks with varying

execution time by exploiting their dynamic slack time.

The end-to-end task has period and an end-to-end deadline. It can be considered
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Table 7.1: Assumed processor operating points for PROC1
Voltage (V) Relative Frequency Power Consumption (Watt)

5 1.00 25.00
4 0.75 12.00
3 0.50 4.50
0 0.00 0.00

as a periodic task with a list of subtasks. Class TaskEndtoend is created as a child

class from class TaskPeriodic. After a subtask from the end-to-end task is assigned

with a deadline and allocated to a processor, it can be treated as a periodic task

with varying execution time. Class TaskSub contains all the properties inherited

from class TaskRandExec and information needed for data and message transmission

between processors. Class TaskSub is included in class TaskEndtoend because that

the end-to-end task is composed of a chain of subtasks.

7.1.2 Processor and Network Model

The processor in the simulator EDRTSim is modeled in a look up table containing the

processor’s operating voltages, frequencies and power consumptions with a specified

voltage. The scheduler is capable of selecting the appropriate processor operation

voltage and frequency that satisfies the timeliness of the real-time schedule. The

energy of task execution is computed by the simulator according to the power con-

sumption of the processor in its look up table given the operating frequency using

Equation 7.1.

There are two different processor models used in the simulations to reveal the

effect of different processors on the performance of specified algorithms. The first

processor model (PROC1) assumes that each processor has three relative operating

frequencies [31]. The corresponding voltage and power consumption are given in

Table 7.1, based on Equation 2.1 and Equation 2.2.

Another processor model is based on measurements of an IBM PowerPC 405LP

processor [30]. The measurements evaluate the power consumption of an SOC design

using PowerPC 405LP, a dynamic voltage scalable embedded processor. Table 7.2

gives the operating points of PowerPC 405LP processor.

EDRTSim takes account the energy consumed by communication between depen-

dent subtasks using Equation 7.2. The unit communication energy cost, EKbyte, is the

amount of energy consumed to transmit every 1Kbyte of data. The size of messages

transmitted between any two dependent tasks are uniformly distributed between 5KB
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Table 7.2: Operating points for PowerPC 405LP
Voltage (V) Frequency (MHz) Power Consumption (mW)

0.18 100 27.68
0.75 180 112.55
1.05 266 232.47
1.42 333 313.65
1.90 398 500.00

Scheduler

StaticScheduler DynamicScheduler

FixPrioritySchedulerDynamicPriorityScheduler

EDF

DSEDF STNTA DCCEDF DLAEDF DFEDF

Figure 7.3: Real-Time scheduler class hierarchy

to 20KB.

7.1.3 Event-Driven Scheduler Design

The scheduler in EDRTSim is capable of implementing various scheduling algorithms.

Figure 7.3 shows the class hierarchy for the scheduler classes that are used by the

simulator. The class Scheduler is an abstract class. Although this class cannot be

instantiated to schedule any task, it provides a foundation for all the other concrete

scheduler classes. The hierarchy of scheduler is built according to the classification

of real-time schedulers discussed in Chapter 2. We focus on the design of EDF based

schedulers. The DVS-EDF scheduler classes, such as DSEDF, STNTA, DCCEDF, DLAEDF

and DFEDF, are classes created for each of DVS-EDF scheduling algorithms discussed

in Chapter 4.

The design of real-time schedulers in our distributed system is based on six events
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Figure 7.4: Finite-state diagram for a job in a RT task

that happens to a job running on the processor. The six events are job arrival,

processor synchronization, job release, scheduled execution, job completion and job

preemption. Each of the events results in a job’s state transition. Jobs of each

task running on the processor assume five states, waiting for release, ready to run,

execution, inactive and waiting for synchronization. The state transition of a task is

shown in Figure 7.4.

To implement the state transitions of a task, two priority queues are set up for

the scheduler simulator, waiting queue and ready queue. Waiting queue contains all

the tasks waiting for release ordered according to their earlist release time. While the

ready queue lines up all the jobs released from the waiting queue in an order such

that the job with the earlier absolute deadline positioned closer to the head of the

ready queue.

Besides the priority queues, there is a linked list, synchronization queue, used to

keep the information about jobs that are waiting for synchronization. As we have

discussed in Chapter 3, the release guard synchronization protocol is implemented in

EDRTSim. To maintain the dependency between subtasks within an end-to-end task

when the adjacent subtasks are assigned to two different processors. The successor

subtask has to wait for the message and/or data transmitted from its predecessor

on the other processor before it can execute. A job is added to the end of the syn-

chronization queue when the job in that task is arrived before the its synchronization

happens. Tasks are moved from the list to the waiting queue when their synchroniza-

tion message is received.
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Initially, all the jobs from each subtask on the processor are added to either waiting

queue or synchronization queue based on whether the subtask is the first in its parent

end-to-end task. The first job from the first subtask is put directly in the waiting

queue since there is no synchronization needed. The other jobs are linked to the list

waiting for synchronization. When the release time of the task in the waiting queue

is reached, the scheduler release the task from waiting queue to the ready queue.

The task in the head of ready queue is scheduled to run for a period of time with a

specified processor speed.

A decision has to be made by the scheduler on how fast the job in the head of ready

queue can run. The decision is done by DVS-EDF scheduling algorithm instantiated

on the processor. The EDF scheduling without DVS schedules all the jobs running

at processor’s full speed. How the decision is made for the DVS-EDF scheduling

algorithms listed in the Figure 7.3 has been discussed in Chapter 4.

The length of time for job execution depends on the time upon job’s execution

completed and the nearest release time of jobs in the waiting queue, whichever comes

sooner. The job’s execution is simulated without actually running the job. EDRTSim

”executes” the job by advancing the processor time according to the scheduled exe-

cution time and the processor’s speed. If the job cannot be completed before another

job is released from the waiting queue, a priority comparison has to made between

these two jobs. The job with the earliest absolute deadline has highest priority to run.

If the new released job wins the competition, a preemption happens. The running job

is stopped and put back to the ready queue. Preemption and resumption can happen

multiple times until a job is finally completed.

Upon completion of the job in a subtask, a synchronization message is sent to

the successor of the subtask. The completed task becomes inactive until the next

job in the task is released. The new job is added to waiting queue if its predecessor

completes, or to synchronization list if no synchronization message for this subtask is

received. The simulator stops when a predetermined end time is reached.

7.1.4 Summary

The event-driven real-time simulator EDRTSim is a high-level simulator that can

achieve the simulation requirements of DVS-EDF scheduling algorithms discussed in

this dissertation. EDRTSim can simulate partitioned distributed real-time systems

with one or more processors. It supports different processors with information of

their working frequencies and power consumptions corresponding to each frequency.
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This event-driven simulator is fast than the architecture-level ones because it need

not simulate execution at instruction level. Statistics or trace results of tasks can

be used to generate task execution times used in EDRTSim. The accuracy of energy

consumption can be calibrated by modify the processor model, task model or network

model.

EDRTSim is extendable for more complicated real-time system simulation. The

object-oriented design makes it easy to add additional modules such as memory sys-

tem, I/O system and hard disks to the simulator. The idea of processor can be ex-

tended to any CMOS devices. That is EDRTSim can be modified for heterogeneous

real-time system simulation. This simulator can support more scheduling algorithms

simply by creating and adding a new scheduling class to the scheduler class hierarchy.

The drawback of this event-driven simulator is its low estimation accuracy com-

pared with cycle-accurate architecture-level simulators. The accuracy of the energy

estimation of EDRTSim, however, is accurate enough to evaluate the performance of

all the DVS-EDF scheduling algorithms discussed in this dissertation.

7.2 Task Assignment Simulation

Simulations have been done to compare the power-conservation performance of the

Best-Fit, Worst-Fit, Communication-Aware Worst-Fit, and Min∆P task assignment

heuristics. In the simulation, the processor model PROC1 is used. The actual exe-

cution time of each job in the simulation is a randomly generated value between zero

and its task’s worst case execution time. Actual execution times have a modified

Gaussian distribution with a mean of one half of the task’s WCET. Values greater

than WCET are clipped to the WCET and values less than 1% of WCET are limited

to 1% of WCET.

7.2.1 Task Assignment Comparison

The first set of simulations compares the energy-conserving performance and feasibil-

ity performance of task assignment algorithms discussed in Section 5.

Figure 7.5 shows the comparisons between Worst-Fit, Best-Fit, CAWF, and Min∆P

for a system with 10 processors scheduled with DSEDF. The X-axis indicates the sys-

tem’s total density, while the Y-axis measures the total energy consumption. The four

curves in each graph depict the energy consumption for tasks assigned with each task

assignment algorithm. The comparison in Figure 7.5(a) is with a unit communication

energy, EKbyte, of 0.01mJ/B, and Figure 7.5(b) has EKbyte equal to 0.10mJ/B.
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Figure 7.5: Task assignment with DSEDF
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Figure 7.6: Task assignment performance comparison (EKbyte = 0.01mJ/B)
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For DSEDF the Best-Fit assignment results in the highest energy consumption.

By assigning as many as tasks as possible to the most heavily loaded processor,

Best-Fit requires higher operating frequency in order to maintain schedulability on

processors with assigned tasks. Though some processors may be idle, static power is

low enough that running more processors at a lower speed is more efficient than fewer

processors at higher speeds. Systems with higher static power may benefit more from

Best-Fit depending on the relative weights static and dynamic power.

A jump in the energy consumption with the Worst-Fit happens when the evenly

distributed workload on each of the processors requires a higher CPU operating speed.

This jump occurs first near a system density of 5 and again near 7.5, corresponding

to the relative frequencies of 0.50 and 0.75 in Table 7.1.

The Communication-Aware Worst-Fit algorithm often has better energy-conserving

performance than the Worst-Fit. The tendency to keep related subtasks together

forces some processors to switch to a higher frequency sooner than with worst fit, for

example for densities from about 4.5 to 5 and 6.3 to 7.2 in Figure 7.5(a). For other

system densities, however, processor loads remained well balanced, and communica-

tion energy was reduced because subtasks of the same end-to-end task tend are as-

signed to the same processor when possible. In these regions, Communication-Aware

Worst-Fit used less energy than Worst-Fit. The difference between Worst-Fit and

Communication-Aware Worst-Fit is even more evident in Figure 7.5(b). The higher

communication cost ratio makes the communication cost savings more evident.

The Min∆P algorithm has the best energy-conserving performance of any of the

algorithms shown in Figure 7.5. Min∆P saves more energy than both the Worst-Fit

and the Communication-Aware Worst-Fit because Min∆P makes task assignments

based on how both processor and communication power consumption will change

when a new task is assigned. At worst, Min∆P is just below the Worst-Fit energy

consumption. After total system utilization reaches approximately 5, Min∆P makes

more power-efficient task assignments than Worst-Fit, keeping tasks together when

it will save on communication cost or prevent a processor from increasing its speed.

DLAEDF and DFEDF are able to produce much better energy savings than

DSEDF because they use static slack and dynamic slack to slow down the task ex-

ecution. Figure 7.6 shows how they perform with each of the four task assignment

algorithms. The difference in total energy consumption between the four task assign-

ment algorithms is very small with Min∆P having a small edge over the other three

algorithms.

The small difference of energy consumption between task assignment algorithms
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is due to the amount of dynamic slack available. Dynamic slack exists in the system

when tasks have an actual execution time shorter than their worst case execution

times. For the Gaussian distributed task actual execution time, the actual processor

load is one half of the worst case processor load. Moreover, a subtask with siblings in

an end-to-end tasks always has a deadline shorter than its period to allow all its sibling

tasks to complete before the end-to-end deadline. As a result, processor density can

be two to five times higher than the processor utilization. The versions of DLAEDF

and DFEDF modified to work with deadlines shorter than their periods [41] are able

to use the slack between a job’s deadline and next release time to decrease processor

frequency.

The task assignment heuristic affects the feasibility of distributed system as well.

A real-time task set is said to be feasibly assigned to the distributed system if the

tasks on each of the processor are schedulable using a given real-time scheduler.

The feasibility performance of four task assignment heuristics is shown in Figure 7.7.

The number in the X-axis stands for the system’s density. Figure 7.7(a) shows the

feasibility performance of each task assignment with the system’s density varying

from 0.1 to 10. The difference of the feasibility performance is better shown in

Figure 7.7(b) with system’s density varying from 9.50 to 10.00. The Y-axis indicates

the feasibility performance of each task assignment heuristic. Feasibility performance

is expressed as a percentage of task sets that can be feasibly scheduled by EDF when

using a certain task assignment algorithm. EDRTSim simulator assigns 1000 real-

time task sets randomly generated with different random seeds using each of the four

task assignment heuristics, generating the percentage of feasibly scheduled task set.

There are 50 tasks in each task set.

Best-Fit has the best feasibility performance shown in Figure 7.7. This heuristic

assigns 100% of the task sets successfully even when the system’s density is as high

as 9.88. Worst-Fit starts to fail when the density is 9.75, but CAWF has better

performance than Worst-Fit when the system density is lower than 9.95. Min∆P

performances better than CAWF, which results in 100% feasibly task assignment

with a system density up to 9.85.

Min∆P has better energy-conserving and feasibility performance than Worst-Fit

or CAWF according to the simulation results presented above. Although the feasi-

bility performance of Best-Fit is better than Min∆P, when scheduled using DSEDF,

Min∆P saves more energy than Best-Fit. For aggressive DVS-EDF scheduling, such

as DLAEDF and DFEDF, the difference in energy-conserving performance of Min∆P

and Best-Fit is small. With a higher feasibility performance, Best-Fit would be a bet-
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Figure 7.7: System feasibility with task assignment heuristics
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ter task assignment for system scheduled with DLAEDF or DFEDF.

7.2.2 Effect of Communication Cost on Task Assignment

As seen in Figure 7.5, communication cost does have some affect on how much energy

each task assignment algorithm requires. Figure 7.9 shows how communication cost

affects each of the task assignment algorithms when DSEDF scheduling is used. For

each of task assignment algorithm, four communication cost ratios are used in the

system, 0.000mJ/B, 0.001mJ/B, 0.010mJ/B, and 0.100mJ/B. The X-axis is the

system’s density. And the Y-axis is the energy consumption with each communication

cost normalized to that with EDF scheduling with the same task assignment and

communication cost ratio.

For the Best-Fit task assignment shown in Figure 7.8(a), the communication cost

does not make any difference to its performance. Best-Fit squeezes as many tasks

as possible, either dependent or independent, onto the same processor. Subtasks

of the same end-to-end task are scheduled in sequence causing them to be likely to

be placed on the same processor, which reduces the communications between tasks.

When the system’s density is very low (under 0.5 in Figure 7.8(a)), DSEDF with the

Best-Fit is capable of saving as much as 63% of EDF’s energy consumption. As the

system’s density increases, the performance of DSEDF with the Best-Fit degrades

rapidly compared with EDF because each processor with assigned tasks must run

near full speed.

The performance of the Worst-Fit, shown in Figure 7.8(b), is affected by the

communication among tasks. The greater the communication cost, the worse the

performance when system’s density is below five. Based on the end-to-end model, the

density of dependent subtasks in an end-to-end task is equal when using proportional

deadline assignment. In order to distribute the workload evenly among processors,

the Worst-Fit is very likely to assign subtasks in the same end-to-end task on different

processors, maximizing communication cost. The communication cost is significant

comparing to the computation power consumption when the system’s density is low,

but becomes less significant as density increases.

Communication-Aware Worst-Fit greatly reduces the communication cost of worst

fit by trying to keep subtasks in the same end-to-end task on the same processor while

evenly distributing the workload. The changes in the system’s communication cost do

not make a visible difference Communication-Aware Worst-Fit’s performance, shown

in Figure 7.9(a).
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Figure 7.8: Worst-Fit and Best-Fit with DSEDF
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Figure 7.9: CAWF and Min∆P with DSEDF
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Figure 7.9(b) shows that Min∆P has a noticeable communication cost for system

density below 5, very much like Worst-Fit. This communication cost is surprising

since Min∆P directly accounts for communication energy. It is possible that commu-

nication cost is underestimated in relation to computation cost when system density

is low. When system density is above four, tasks assigned by Min∆P clearly consume

less energy than those assigned by other algorithms.

Similar results for the effect of communication cost effect on task assignment

heuristics for DLAEDF and DFEDF are shown in Figures 7.10 through 7.13. Best-

Fit with DLAEDF and DFEDF is not affected by the communication cost because

this heuristic assigns as many as subtasks as possible onto one processor. The effect

of communication cost is reduced to minimum and the communication energy cost is

negligible in comparison with execution energy cost. The CAWF is not affected by

system communication cost much as well. Instead of assigning all the task onto one

processor as Best-Fit, CAWF trying to assign only the subtasks within the same end-

to-end task onto the same processor while keeping the balance of workload among

processors. Worst-Fit and Min∆P with DLAEDF and DFEDF is affected by the

system communication cost.

7.3 Deadline Assignment Simulation

Another set of simulations are done to compare the effect of each deadline assignment

heuristic on the DVS-EDF energy saving performance. Ten homogeneous processors

using the PowerPC processor model is used in the simulation. Each of the subtasks

is assigned to the processor using Min∆P task assignment. The unit communication

energy cost, EKbyte is set to 0.01mJ/B. The task’s actual execution time is generated

randomly according to modified Gaussian distribution with the standard deviation of

1ms. Random values below 1% of WCET are limited to 1% of WCET, and random

values greater than WCET are limited to the WCET. Mean of each subtask’s AET is

randomly generated between the task’s minimum execution time and its WCET. As

shown in Section 5.2, when the ratios of AET mean of subtasks within an end-to-end

task are same, NPD and ANPD result in the same deadlines for each of the subtasks.

The random mean of AET is used to show the performance difference of NPD and

ANPD.

The deadline assignment simulation results are given in Figure 7.14 through 7.16.

Each set of figures contains a two graphs showing absolute energy consumption and

normalized energy consumption with three deadline assignments, PD, NPD, and
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Figure 7.10: Worst-Fit and Best-Fit with DLAEDF
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Figure 7.11: CAWF and Min∆P with DLAEDF
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Figure 7.12: Worst-Fit and Best-Fit with DFEDF

77



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

E
ne

rg
y 

C
on

su
m

pt
io

n 
(N

or
m

al
iz

ed
)

System Density

CC ratio=0.000
CC ratio=0.001
CC ratio=0.010
CC ratio=0.100

(a) Comm-Aware Worst-Fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

E
ne

rg
y 

C
on

su
m

pt
io

n 
(N

or
m

al
iz

ed
)

System Density

CC ratio=0.000
CC ratio=0.001
CC ratio=0.010
CC ratio=0.100

(b) MinDP

Figure 7.13: CAWF and Min∆P with DFEDF
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Figure 7.14: Deadline assignment comparison with DSEDF
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Figure 7.15: Deadline assignment comparison with DLAEDF
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Figure 7.16: Deadline assignment comparison with DFEDF
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ANPD. The normalized energy consumption is the energy consumed by DVS-EDF

scheduled system normalized to that consumed by EDF scheduled system. The X-axis

in each of the figures is the total system density of the distributed system varying

from 0.5 to 9.0. Figure 7.14, 7.15, and 7.16 contains the simulation results using

DSEDF, DLAEDF, and DFEDF scheduling algorithm, respectively.

We observed missed local deadlines when using NPD and ANPD in the simulation.

This happens because NPD and ANPD balance the workload among processors by

assigning shorter local deadlines to subtasks on the lightly loaded processors and

longer deadlines to those on the heavily loaded ones. It is possible for some subtasks

on a lightly loaded processor be assigned with a local deadline very close to or even

shorter than its WCET. The local deadline shorter than the subtask’s WCET may

cause deadline misses when scheduling with EDF-based scheduling algorithms.

DSEDF scales the processor’s speed based on the density of that processor. The

balanced workload is favored by DSEDF. When the system’s density is low, the

possibility of appearance of very short local deadline is low. Thus the performance of

NPD and ANPD is better than PD. When the amount of very short local deadlines

increases with the increase of the system’s density, the performance of NPD and

ANPD degraded by the increasing number of very short local deadlines. The very

short local deadlines cause the processor’s density very close to or even greater than

1. Full speed has to applied to such processors when scheduled by DSEDF. In the

Figure 7.14(b), when the system’s density is lower than 4.0, ANPD has saves a larger

percentage of energy than PD. NPD performs better than PD when the system’s

density is lower than 6.

The PD performance best among three deadline assignment heuristics with DLAEDF

and DFEDF shown in Figure 7.15 and 7.16. The greatest performance difference be-

tween PD, NPD and ANPD is observed when the system’s total density reaches 9.0.

DLAEDF with PD is capable of saving 62% energy, which is 18% and 39% more

than that of DLAEDF with NPD and ANPD, respectively. The very short dead-

lines close to or even shorter than the subtask’s WCET, assigned by NPD or ANPD

causes the processor to execute at the full speed. Running at full speed causes high

power consumption. For ANPD, it is even worse if the task’s actual execution time

is greater than its average execution time. There might be missed local deadlines

even the processor runs at full speed, which causes the speedup execution of the suc-

ceeding tasks. The performance of the three deadline assignment is close when the

system is scheduled using DFEDF. DFEDF’s sophisticated exploitation of system’s

slack overcomes the negative effect of very short local deadlines assigned by NPD and
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ANPD.

7.4 Distributed DVS-EDF Scheduling Simulation

Simulations of system sof 10 processors demonstrate the performance differences be-

tween distributed DVS-EDF algorithms. The subtasks in the end-to-end task set are

assigned to the processor according to Min∆P task assignment heuristic [42]. Pro-

portional deadline assignment [22] is used to assign deadlines to subtasks. The unit

communication energy cost, EKbyte is set to 0.01mJ/B.

To compare the ability of each distributed DVS-EDF scheduling algorithm to

exploit slack, two models of actual execution time (AET) are used in the simulation.

The first set of simulations uses a task set with actual execution times equal to their

WCET. The second simulates tasks with actual execution time of each job randomly

generated between zero and the task’s WCET with a modified Gaussian distribution.

For the Gaussian-distributed actual execution times, the mean is one half the WCET

and the standard deviation is 1ms. Random values below 1% of WCET are limited

to 1% of WCET, and random values greater than WCET are limited to the WCET.

Figure 7.17 compares the PROC1 and PowerPC power models with Gaussian

distributed AET. The X-axis is the total system density of the distributed real-time

system from 0.1 to 9.5. The Y-axis is the absolute system energy consumption with

each distributed DVS-EDF scheduling algorithm.

The energy consumption using any of the scheduling algorithms increases as the

system’s total density increases. The increase is linear with density for EDF, because

the amount of processor idle time is decreasing linearly. For processor model PROC1

in Figure 7.17(a), When system density is below 4.5, all of the DVS scheduling algo-

rithms can run at the slowest speed and thus use much less energy than EDF. Even

at this low level of utilization, DFEDF is able to find enough more slack to noticeably

reduce power consumption. Figure 7.17(b) shows the absolute energy consumption

of each distributed DVS-EDF algorithms with PowerPC processor model. The more

evenly distributed processor’s operating points facilitates some effective DVS-EDF

algorithms to saving more energy even when the system’s density is low.

The relative performance difference of each algorithm is easier to see by comparing

them relative to EDF. Figures 7.18 and 7.19 show energy normalized to the energy

used by EDF on the Y-axis with PROC1 and PowerPC processor model, respectively.

Figure 7.18 shows that, except for DFEDF, energy consumption with all of the

DVS algorithms maintains a constant ratio with EDF until density reaches 4.5.
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Figure 7.17: Absolute energy consumption with Gaussian distributed AET
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Figure 7.18: Energy consumption with PROC1
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Figure 7.19: Energy consumption with PowerPC 405LP
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DFEDF is able to take advantage of more slack than the other algorithms throughout

the range of densities when actual execution time is less than worst case execution

time.

DCCEDF shares the same performance with DSEDF in Figure 7.18(a), when the

task’s actual execution time takes the full WCET. However, Figure 7.18(b) shows

that DCCEDF performs much better than SEDF when tasks have actual execution

time less than their WCET. This performance difference is because DCCEDF is

capable of exploiting dynamic slack as well as static slack in the system. The energy-

consumption with DCCEDF increases faster than that with ADCCEDF when system

density is greater than 5, because ADCCEDF is able to exploit more system slack than

CCEDF. The tighter schedulability bound allows it to continue reducing processor

speed at higher system densities. The DLAEDF and DFEDF perform better than

the above scheduling algorithms using as little as 50% and 45% of energy used by

EDF, respectively.

All distributed DVS-EDF scheduling algorithms except DSEDF have better per-

formance when actual execution time is less than WCET. Since DSEDF sets the

clock frequency once and never updates it, it cannot take advantage of slack made

available from jobs that complete before their WCET. DCCEDF performs as much as

35% better with Gaussian distributed AET. The ADCCEDF, DLAEDF and DFEDF

in Figure 7.18(b) increase the performance by as much as 20%, 8%, and 14% respec-

tively when compared with Figure 7.18(a) .

The processor power model plays an even larger role in energy consumption than

average execution time. Figure 7.19 shows the simulation results using the PowerPC

405LP power model. DSEDF has a large increase in the energy consumption when

the system’s density is about 0.4. This increase in energy consumption is caused

by a large increase in supply voltage. According to Table 7.2, in order to speed

up the processor by 80 %, from 100MHz to 180MHz it must increase its voltage by

4.17×, from 0.18 V to 0.75 V . Subsequent increases are more gradual starting around

a density of 1.5. DLAEDF and DFEDF are both capable of more energy reduction

when using PowerPC than that when using PROC1. As long as the system’s density

is below 6, they are able to take advantage of the PowerPC’s 100MHz operating point

that consumes only 5.5% maximum power. DLAEDF and DFEDF use as little as

21% and 11% of the energy used by EDF, respectively with the Gaussian-distributed

average execution time.

SEDF computes the processor speed offline and schedules the tasks at the lowest

constant speed that guarantees schedulability. Thus, DSEDF has no online overhead.
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Though CCEDF and ADCCEDF update the instantaneous density at each schedul-

ing point, CCEDF has a lower computation complexity of O(1) than ADCCEDF.

The computation of tighter bound of schedulability in ADCCEDF has a complex-

ity of O(n). The DLAEDF have a better performance than ADCCEDF with same

computation complexity of O(n) required by defer function. The DFEDF is the

most complicated one among the DVS-EDF algorithms discussed in this paper. The

computation complexity of online maximal schedule recomputation is determined by

the number of tasks assigned on the processor and the ratio of the maximum period

to the minimum period among all task’s periods. When the period ratio is constant,

the computation complex of DFEDF is O(n2).

7.5 Dynamic Task Set Admission Simulation

To measure the performance of our admission test and minimum deadline computa-

tion algorithm, we simulated adding tasks to a running uniprocessor DVS scheduler.

For all simulations, the input task sets starts with independent regular periodic task

set and one task is added at a time until utilization reaches 100%. Each task is taken

from one of three categories with equal probability. Short tasks have a period of 1ms

to 10ms, medium tasks a period of 10ms to 100ms, and long tasks have periods from

100ms to 1000ms as described by Pillai and Shin [31]. The worst case execution time

of each task is generated randomly based on its period and the system utilization.

During the simulation, the actual execution time of each job is a randomly gener-

ated value between zero and its task’s worst case execution time, with a uniform

distribution. For all tests, deadlines are set to be equal to periods.

Simulations for our General Admission Test were done to measure the percentage

of tasks that could not be admitted due to lack of slack that has been used by DVS

in the schedule as a function of system utilization. The utilization of the task being

added is fixed at 10%, and Dnew,1 is set to Dnew. The interval between adding two

tasks is long enough to allow the system to reach a stable state. EDF and LAEDF

DVS algorithms were tested to measure the performance. Each data point was run

100 times and the average is reported.

The result of the simulation shows that our proposed admission test admits new

tasks with zero rejection rate in cases when the system’s utilization is under 90%.

The maximum rejection rate of 1% for EDF and 11% for LAEDF happens when the

system’s utilization reaches 100% after adding the new task. When scheduling new

tasks with EDF, the new task should be schedulable as long as the total density is
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Figure 7.20: Computed deadline as a function of system utilization

no greater than one, though the total density may be higher for DVS algorithms.

Although our admission test is not optimal, the maximum rejection rate of 1% for

EDF is small. LAEDF is aggressive in exploring system’s slack for slowing down job’s

execution. When the system’s utilization is high, there is less system static slack time

available for new job’s execution. Thus, the chance of new task rejection increases.

Figure 7.20 shows the performance of the minimum deadline computation algo-

rithm. The minimum deadline computed using our algorithm is normalized to the

new task’s regular deadline. The utilization of the task being added to the system

is 10%. Each pair of the average and maximum normalized deadline is generated

by 100 simulation runs each with a different random seed. To obtain a better view

of performance of our algorithm, the distribution of normalized deadlines for system

utilizations 0.7, 0.8 and 0.9, is shown in Figure 7.21.

The simulation results show that the the maximum value of computed deadline

by our algorithm for LAEDF is no greater than the regular deadline when system’s

original utilization is less than 70%, which means the new task’s first job can be

scheduled with the task’s regular deadline. Larger deadline delay happens when the

system’s utilization increases. The maximum deadline delay ratio of 6.25 is observed

when the system’s utilization reaches 90% before adding the task with ui = 10%.

When utilization is 0.8, as in Figure 7.21 (b), 1% of deadlines are delayed. The
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(a) system utilization = 0.7 (b) system utilization = 0.8

(c) system utilization = 0.9

Figure 7.21: Distribution of computed deadline
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worst case delay is no greater than twice the length of new task’s regular deadline.

For real-time system that can tolerate small deadline delay of first job in the new

task, this 1% new task is acceptable. When system’s utilization is 90%, as shown

in Figure 7.21 (c), there are 22% of deadlines take greater value than the regular

deadline. The cause of the large deadline delay is the extreme lack of system slack.

Among the 22% deadlines longer than the tasks’ regular deadlines, there are 6% more

than 2 times of regular deadline. If the system can tolerate a deadline delay of up to

2 times of task’s regular deadline, our algorithm will only cause 6% of new task being

rejected by the system.

Copyright c© Chenxing Wang 2007
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Chapter 8: CONCLUSIONS AND FUTURE WORK

The dynamic voltage scaling for uniprocessor real-time system has been proved to

successfully reducing the energy consumption. To save the energy consumption for

distributed real-time system, the dissertation extended the uniprocessor DVS-EDF

scheduling algorithms for partitioned distributed systems. Online task assignment

and deadline assignment heuristics are studied to facilitate the energy-conserving

performance of the extended DVS-EDF scheduling algorithms. The priority-driven

scheduling can deal with dynamic task sets with tasks arriving and leaving the sys-

tem. However, the simple addmission test for system scheduled without DVS does not

stand for DVS scheduled real-time system. Two addmission algorithms are proposed

in the dissertation enabling the DVS scheduled real-time system to accept arriving

tasks when system is running. Simulations done to compare the performance of each

algorithm discussed in the dissertation show that the distributed DVS-EDF schedul-

ing algorithms can save up to 89% of system energy consumption with Min∆P task

assignment and PD deadline assignment. Among all task assignment and deadline

assignment heuristics discussed in the dissertation, Min∆P task assignment and PD

deadline assignment are capable of helping distributed DVS-EDF scheduling algo-

rithm to save more energy. With the admission test proposed, the DVS-EDF sched-

uled system is able to accept over 80% of arriving tasks when system is running.

The distributed DVS-EDF scheduling algorithms for partitioned distributed real-

time system, such as DSEDF, DCCEDF, ADCCEDF, DLAEDF, and DFEDF, have

all been seen to reduce energy consumption. The dissertation discussed extends the

applicability of DVS-EDF algorithms to tasks with end-to-end precedence constraints

or deadlines different than their periods. The changes to SEDF and CCEDF are as

simple as substituting density for utilization. ADCCEDF modifies CCEDF to use a

tighter schedulability bound, allowing slower processor speeds for the same workload.

DLAEDF requires more extensive changes. Its deferable work computation must

account for jobs whose deadline has passed, but whose next job in the task has not

been released. FEDF requires the largest change. To overcome the release jitter in

the partitioned real-time systems, it computes the available slack using a dynamically

computed maximal schedule.

Simulations show the relative performance of the distributed DVS-EDF scheduling

algorithms vary depending on power and task models. Regardless of processor model,

all DVS algorithms except SEDF saved more energy when actual execution time was

less than worst case execution time. The dynamic slack made available helps improve
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the performance of those algorithms that can take advantage of it. In particular,

DCCEDF, DLAEDF, and DFEDF improved in all cases when actual execution time

is less than WCET.

A hypothetical processor power model based on a simple CMOS power model

shows significant power savings with DVS. For DVS algorithms be able to take advan-

tage of slack, the PowerPC model shows even higher savings, because of its extremely

low power minimum speed mode. DFEDF has the best energy-conserving perfor-

mance – using as little as 11% of the energy used by EDF for the PowerPC. DLAEDF

is next best, using as little as 21% of the energy of EDF with a lower complexity

than DFEDF. With dynamic workloads and an extremely low-power minimum-speed

mode a well-designed DVS algorithm can reduce energy consumption by almost an

order of magnitude.

How tasks are assigned to processors in partitioned distributed real-time systems

affects the energy-conserving performance of DVS-EDF scheduling algorithms. Sev-

eral task assignment heuristics have been studied in this dissertation. Two new task

assignment algorithms, Communication-Aware Worst-Fit and Min∆P, are proposed.

The Communication-Aware Worst-Fit tries to schedule tasks that communicate on

the same processor to reduce overall communication cost. Tasks do not communicate

or cannot be placed with their sibling tasks are assigned using Worst-Fit to balance

the system workload. Min∆P uses estimated change in power to decide to which

processor a task should be assigned.

When compared to existing well-known bin packing heuristics, Worst-Fit and

Best-Fit, Communication-Aware Worst-Fit and Min∆P perform favorably. When

SEDF scheduling is used, Communication-Aware Worst-Fit reduces power consump-

tion due to communication and overall power in most cases, and Min∆P always

performs better than Worst-Fit. When LAEDF or FEDF are used to schedule tasks,

energy consumption was insensitive to task assignment. The ability of LAEDF and

FEDF to use dynamic slack to stretch execution time allows them to keep processors

running at low speeds most of the time, even when system density is high.

Among the four task assignment algorithms, the Best-Fit and Worst-Fit need the

least information about the task set when making task assignment decisions – just

the current processor and task densities. Communication-Aware Worst-Fit addition-

ally needs to know each task’s predecessor as well as the predecessor’s processor.

Min∆P requires not only the task information, but also power cost for processors and

communication.

Further simulation results show that, except at low utilization, communication

93



cost adds little to overall energy consumption. Best-Fit and Communication-Aware

Worst-Fit heuristics both avoid communication costs; Best-Fit by scheduling tasks

on the most heavily loaded processor until no more tasks can be assigned to the

processor, and Communication-Aware Worst-Fit by scheduling subtasks of the same

end-to-end task on the same processor. However, unless the communication cost is

relatively high, power due to communication is small compared to overall system

power.

Overall, Min∆P provides the best power savings with SEDF. When using LAEDF

or FEDF to schedule tasks, power consumption is nearly indistinguishable between

algorithms. In this case other criteria, such as feasibility performance, are more im-

portant in selecting a task assignment algorithms. In particular, using Best-Fit only

marginally increases power consumption, but has been shown to increase schedula-

bility of tasks significantly.

Several different deadline assignment heuristics have been discussed in the dis-

sertation, UD, ED, PD, NPD and ANPD. PD and NPD are expected to result in

higher schedulability than other heuristics. NPD and the proposed ANPD are ex-

pected to have better energy-conserving performance than other deadline assignment

approaches. When applied to the distributed real-time system with tasks frequently

arriving or leaving the system, the overhead of each deadline assignment has to be

considered. NPD and ANPD need global information of utilization on each processor,

which requires higher online overhead than PD.

Simulation results show that the PD has the best energy-conserving performance

than NPD and ANPD for the DLAEDF and DFEDF scheduled distributed real-time

systems. DLAEDF is capable of saving 62% of energy when using PD, which is

18% and 39 % more than that using NPD and ANPD, respectively. In addition,

local deadline misses are observed when assigning deadlines with NPD and ANPD.

Although it is feasible as long as the end-to-end deadline is guaranteed [38], the local

deadline missing degrade the performance of DVS-EDF scheduling algorithm.

The ordinary EDF admission tests are not sufficient when the system is scheduled

by DVS-EDF scheduling algorithms, because the scheduler may defer too much work

to allow a new task to be scheduled. An online admission tests and a deadline

computation algorithm for adding periodic tasks to systems using real-time DVS

scheduling is proposed and discussed in this dissertation. The first provides sufficient

conditions for admission with any DVS algorithm capable of scheduling any task

set that is schedulable by EDF, for example LAEDF [31]. The second algorithm

computes a feasible deadline for the first job in the new task by which the new task
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can be admitted by the system.

The admission test determines whether the first instance of a job can run before a

given deadline, and the subsequent jobs in the task will be schedulable with any DVS

algorithm that can schedule any set of tasks schedulable by EDF. Simulations show

that when the maximum delay of the first job in the new task is equal to the task’s

relative deadline and LAEDF is used for scheduling, only 11% of tasks that can be

admitted by EDF are rejected by our admission test. For our deadline computation

algorithm, there are only 6% of computed deadlines task more than 2 times of regular

deadline in the worst case.

The dissertation based the discussion mostly on the EDF scheduling, research

on the energy-aware scheduling algorithms for fixed-priority scheduled partitioned

distributed real-time system is one of the future work directions. Rate monotonic

scheduling is a popular fixed-priority based scheduling algorithm used in industry.

DVS has been applied to RM scheduled uniprocessor real-time systems, but little

work has been done for distributed systems. Extension of uniprocessor DVS-RM to

distributed real-time system would be profitable for large scaled real-time systems.

For the admission test and deadline computation algorithms presented in the dis-

sertation for dynamic task set in the uniprocessor system, further work is needed

to extend the algorithms to the distributed real-time systems with end-to-end tasks.

Accepting the end-to-end task online involves the assignment of subtasks in the ar-

riving end-to-end task. Although the online task assignment heuristics discussed in

the dissertation could be used, the use of system’s density or utilization in making

assignment decision does not stand any more because of the DVS scheduling. By

stretching the execution of tasks, DVS increases the instantaneous system density.

An algorithm is needed to make the appropriate assignment decisions with low com-

putational complexity.

Copyright c© Chenxing Wang 2007
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