4,350 research outputs found

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Organotopic organization of the porcine mid-cervical vagus nerve

    Get PDF
    Introduction: Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. / Methods and results: We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. / Discussion: Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more

    Microstimulation and multicellular analysis: A neural interfacing system for spatiotemporal stimulation

    Get PDF
    Willfully controlling the focus of an extracellular stimulus remains a significant challenge in the development of neural prosthetics and therapeutic devices. In part, this challenge is due to the vast set of complex interactions between the electric fields induced by the microelectrodes and the complex morphologies and dynamics of the neural tissue. Overcoming such issues to produce methodologies for targeted neural stimulation requires a system that is capable of (1) delivering precise, localized stimuli a function of the stimulating electrodes and (2) recording the locations and magnitudes of the resulting evoked responses a function of the cell geometry and membrane dynamics. In order to improve stimulus delivery, we developed microfabrication technologies that could specify the electrode geometry and electrical properties. Specifically, we developed a closed-loop electroplating strategy to monitor and control the morphology of surface coatings during deposition, and we implemented pulse-plating techniques as a means to produce robust, resilient microelectrodes that could withstand rigorous handling and harsh environments. In order to evaluate the responses evoked by these stimulating electrodes, we developed microscopy techniques and signal processing algorithms that could automatically identify and evaluate the electrical response of each individual neuron. Finally, by applying this simultaneous stimulation and optical recording system to the study of dissociated cortical cultures in multielectode arrays, we could evaluate the efficacy of excitatory and inhibitory waveforms. Although we found that the proximity of the electrode is a poor predictor of individual neural excitation thresholds, we have shown that it is possible to use inhibitory waveforms to globally reduce excitability in the vicinity of the electrode. Thus, the developed system was able to provide very high resolution insight into the complex set of interactions between the stimulating electrodes and populations of individual neurons.Ph.D.Committee Chair: Stephen P. DeWeerth; Committee Member: Bruce Wheeler; Committee Member: Michelle LaPlaca; Committee Member: Robert Lee; Committee Member: Steve Potte

    Two-photon imaging and analysis of neural network dynamics

    Full text link
    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behaviour. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so called 'microcircuits') remains comparably poor. In large parts, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near- millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.Comment: 36 pages, 4 figures, accepted for publication in Reports on Progress in Physic

    Functional connectivity and dendritic integration of feedback in visual cortex

    Get PDF
    A fundamental question in neuroscience is how different brain regions communicate with each other. Sensory processing engages distributed circuits across many brain areas and involves information flow in the feedforward and feedback direction. While feedforward processing is conceptually well understood, feedback processing has remained mysterious. Cortico-cortical feedback axons are enriched in layer 1, where they form synapses with the apical dendrites of pyramidal neurons. The organization and dendritic integration of information conveyed by these axons, however, are unknown. This thesis describes my efforts to link the circuit-level and dendritic-level organization of cortico-cortical feedback in the mouse visual system. First, using cellular resolution all-optical interrogation across cortical areas, I characterized the functional connectivity between the lateromedial higher visual area (LM) and primary visual cortex (V1). Feedback influence had both facilitating and suppressive effects on visually-evoked activity in V1 neurons, and was spatially organized: retinotopically aligned feedback was relatively more suppressive, while retinotopically offset feedback was relatively more facilitating. Second, to examine how feedback inputs are integrated in apical dendrites, I optogenetically stimulated presynaptic neurons in LM while using 2-photon calcium imaging to map feedback-recipient spines in the apical tufts of layer 5 neurons in V1. Activation of a single feedback-providing input was sufficient to boost calcium signals and recruit branch-specific local events in the recipient dendrite, suggesting that feedback can engage dendritic nonlinearities directly. Finally, I measured the recruitment of apical dendrites during visual stimulus processing. Surround visual stimuli, which should recruit relatively more facilitating feedback, drove local calcium events in apical tuft branches. Moreover, global dendritic event size was not purely determined by somatic activity but modulated by visual stimuli and behavioural state, in a manner consistent with the spatial organization of feedback. In summary, these results point toward a possible involvement of active dendritic processing in the integration of feedback signals. Active dendrites could thus provide a biophysical substrate for the integration of essential top-down information streams, including contextual or predictive processing

    Information processing in visual systems

    No full text
    One of the goals of neuroscience is to understand how animals perceive sensory information. This thesis focuses on visual systems, to unravel how neuronal structures process aspects of the visual environment. To characterise the receptive field of a neuron, we developed spike-triggered independent component analysis. Alongside characterising the receptive field of a neuron, this method provides an insight into its underlying network structure. When applied to recordings from the H1 neuron of blowflies, it accurately recovered the sub-structure of the neuron. This sub-structure was studied further by recording H1's response to plaid stimuli. Based on the response, H1 can be classified as a component cell. We then fitted an anatomically inspired model to the response, and found the critical component to explain H1's response to be a sigmoid non-linearity at output of elementary movement detectors. The simpler blowfly visual system can help us understand elementary sensory information processing mechanisms. How does the more complex mammalian cortex implement these principles in its network? To study this, we used multi-electrode arrays to characterise the receptive field properties of neurons in the visual cortex of anaesthetised mice. Based on these recordings, we estimated the cortical limits on the performance of a visual task; the behavioural performance observed by Prusky and Douglas (2004) is within these limits. Our recordings were carried out in anaesthetised animals. During anaesthesia, cortical UP states are considered "fragments of wakefulness" and from simultaneous whole-cell and extracellular recordings, we found these states to be revealed in the phase of local field potentials. This finding was used to develop a method of detecting cortical state based on extracellular recordings, which allows us to explore information processing during different cortical states. Across this thesis, we have developed, tested and applied methods that help improve our understanding of information processing in visual systems

    Endogenous and exogenous hemodynamic signals in primary visual cortex of alert non-human primates

    Get PDF
    The advent of neuroimaging techniques in particular the ones suitable for studies in alert humans has disseminated fast. Research in fields involving neuro-correlates of cognitive processes has flourished. Still the neural underpinnings of the neuroimaging signals remain to be fully characterized; this field is an active topic of research. In the context of behavior/cognition, the interpretation of neuroimaging signals is even more intricate
    • …
    corecore