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Figure 2.2: Fabrication process for post-processing on manufactured PCB 
substrates. (A) The minimum required processing steps for high channel count MEAs on 
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Figure 2.3:  Post-processing of PCB substrates for the development of MEAs. (Two 
layer method outlined in Sec. 4.2.2.) (A) Custom Kapton FlexBoard™ PCB substrates 
with patterned wiring traces and microelectrodes. (B) Close-up of the micro-electrode 
area of a processed substrate. (C) Micro-photograph of the area in which the 
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200 µm wide, microfabricated traces are 0.5 µm thick 30 µm wide). (D) Differential 
interference contrast microphotograph focused on the SU-8 top surface in a section of the 
electrode area. Lighter and darker areas are a result of constructive and destructive light 
interference; this highlights surface features in the sub-micron scale. The planarizing 
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µm variations down < 200 nm variations (profilometer data not shown). Impedance 
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Figure 2.4:  Electrode modeling. (A) The impedance magnitude of microelectrodes is 
represented by an interface capacitance, CI, shunted by a charge transfer resistance, RT, in 
series with the spreading resistance, RS.  (B) Demonstration of model accuracy:  The 
model in (A) was tuned to match the impedance magnitude of a 10µm diameter Au 
electrode using a multidimensional unconstrained nonlinear minimization method (i.e. 
the Nelder-Mead method).  28 
 
Figure 2.5:  Shaping the impedance spectrum of modeled microelectrodes.  By 
careful manipulation of the electrode’s physical elements—electrode material, base area, 
and surface area—one can control individual model parameters (Gray band indicates the 
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area of interest for recording neural action potentials). (A) Changes in the electrode 
material or electrolyte composition, Jo, modifies the charge transfer resistance and the 
impedance magnitude at low frequencies. (B) Likewise, changes in the electrode surface 
area, As, modify both the charge transfer resistance and interfacial capacitance to alter 
low- and mid-band impedances. (C) Finally, changes in the base area, AB, of the electrode 
directly influence the spreading resistance or impedance magnitude at high frequencies.     
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Figure 2.6: Impedance controlled electroplating strategies. (A) A sinusoidal, single-
frequency voltage source, Vm, is capacitively coupled onto a DC electroplating current, IS. 
The impedance magnitude is sampled continuously until the impedance of the electrode 
reaches the target level (It is important to note that the lumped circuit model of section 
2.1 does not capture the non-linear dependencies of impedance on electrode voltage; thus 
the applied electroplating current will place the electrode into a different measurement 
regime than under zero-current conditions). (B) A potentially more robust alternative to 
DC plating is to sample the impedance between brief bursts of pulsed electroplating 
current.  32 
 
Figure 2.7:  High level schematic and illustration of the closed loop electroplating 
system. (Left) System level schematic of electroplating circuitry.  A computer, via a 
serial connection to a PIC 16F73 microcontroller and custom circuitry, switches 
electroplating current onto individual electrodes. A 1 Khz sine wave is capacitively 
coupled  (not shown) across the reference resistor and plating bath; the waveforms across 
the reference resistor and bath are sampled with the PIC A/Ds and communicated back to 
the computer for processing. (Right) Illustration of electroplating. During electroplating, 
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Figure 2.8: System integration of the electroplating device. The switching circuitry 
and impedance measuring electronics are physically separate from the electrode array (a 
ribbon cable, not shown, connects the two sections). Electroplating solution is introduced 
into the culture well of the MEA and a Pt-wire anode is inserted into the solution.       35 
 
Figure 2.9: Automated impedance measurement tool. (A): System level schematic of 
Impedance diagnostic tool. Over 206 switching elements enable impedance measures of 
virtually any conformation, including common ground and intra-electrode schemes.  (B) 
High level schematic of the switching and impedance measurement circuit.  (C&D) 
Photograph of the impedance measuring system.           37 
 
Figure 2.10: Reduction in electrode impedance variability. (A) Impedance Magnitude 
for (1) untreated 30 μm diameter Au electrodes in an Ayanda Biosystems MEA 
(MEAv5), and (2) platinized electrodes with a target impedance of 75 KΩ at 1Khz. (B) 
Coefficient of variation (Standard Deviation divided by the mean) for a set of 10 after 
electroplating (blue traces).  Electroplated platinum black electrodes traditionally have 

 xii



substantial variation in their impedance magnitudes. For example, (Franks 2005) report 
variations of 600%.  38 
 
Fig. 2.11: Independent electrode control. (A) Optical micrograph of an electroplated 
Ayanda Biosysems MEA (MEA60Au). Each 30 µm Au electrode within a quadrant of 
the planar MEA was electroplated with platinum to match impedances. Various plating 
densities (clockwise from left: w, x, y, and z uA/cm2) produced different surface 
morphologies corresponding to different colors). The red circles indicate three electrodes 
that were electroplated without feedback (B) In a separate study on a different MEA, 
each square (dashed line) represents an individual electrode in an 8X8 MEA.  The outer 
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Figure 2.12: Electrode Robustness. Electrodes were subjected to 30 seconds of 
ultrasonic agitation to emulate mechanical wear on the MEA devices. Shown is the shift 
in mean impedance for both DC and pulsed plating methods. When normalized for mean 
relative shift, this graph indicates that electrodes that underwent DC plating shifted 3.5 
times more than pulsed-plated electrodes.  40 
 
Figure 2.13: The effect of impedance on the cellular response to stimulation. 
(A) Normalized Vmax as a function of the stimulus voltage and electrode impedance 
using the model depicted in Fig 1A. For a given stimulus input, the nominal impedance 
electrode (blue trace: RS = 10KΩ, RM = 1KΩ, CI  = 3pF, Δt = 10 ns) presents a lower 
Vmax to the culture dish than the lower impedance  electrode (CI,2 = 4xCI = 12 pF) (B) 
The cellular response (as a function of stimulus magnitude) of a low impedance 
electrodes (15 KΩ +/- 4) is compared to a high impedance electrodes (75 KΩ +/- 12). 
Cellular Response is defined as the total number of spikes, recorded across the entire 
dish, that occur within 50 ms of a stimulus. Biphasic pulses with random inter stimulus 
intervals and random order of magnitudes were applied to the electrodes. Low impedance 
electrodes were able to elicit a greater cellular response for a given stimulus magnitude.  
 43 
 
Figure 3.1 Flow diagram for the 2-D segmentation of cell bodies.  (Top) Flow diagram 
for 2-D segmentation.  Graphic representation of 2-D segmentation process: (A) The 
color component for the fluorescent dye of interest was extracted to form an achromatic 
intensity image; (B) A global threshold was applied for each 2-D frame in the z-stack, 
separating pixels into foreground (regions of interest) and background;  (C) The regional 
minima were defined by applying the Euclidean distance transform (or alternatively the 
chebyshev transform) to the ‘thesholded’ image; (D) The watershed algorithm was 
applied to the transformed image: the mottled contours of the neurites produced very 
fractured segmentation boundaries, while the rounder, smoother morphologies of the 
soma produced accurate segmentation boundaries; (E) Objects were classified as either 
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fragments were removed from consideration. (F) Picture of the cell body boundaries 
projected back onto the original image.  50 
 
Figure 3.2 Distribution of segmented objects binned according to pixel area.  The 
morphological differences between neurites and somata produce watershed segmentation 
boundaries that, when binned according to pixel area, fall into two distinct populations. 
The threshold, α (vertical, dashed line), is used to separate objects into neurites and cell-
bodies.  Objects with a pixel count or area ≥ α are labeled ‘cells’; objects with an area < α 
are labeled ‘neurite fragments’.  (Inset) Watershed boundaries for somata and neurite 
fragments.                 55 
 
Figure 3.3: Illustration of 3-D merging and error identification.  (Left) This figure 
exemplifies segmentation results for three cells—A, B, and C—which appear in frames 
Fi, Fi+1, and Fi+2.  In Frame Fi+1, we show three correctly segmented somata. In Frames Fi 
and Frames Fi+2 we illustrate over-and under-segmentation errors respectively. 2-D 
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β, where β can be any number between 0 (no overlap) and 1 (100% overlap).  The 
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frame Fi+1 was projected into Fi+2. All object(s) in Fi+2 that overlapped with B’s projection 
(dashed cell boundary) were considered as merging candidates; in this case, the object 
B+C satisfied the percentage overlap criteria.  However, the reverse projection of B’s 
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however, the reverse projection of A1’s best merging candidate significantly overlapped 
with two objects: A1 and A2, thus identifying a 2-D segmentation error.       57 
 
Figure 3.4: Illustration of software tools. The segmentation algorithms were integrated 
into a graphical user interface (GUI) to facilitate visual feedback, parameter selection, 
and software-assisted error correction. (A) Segmentation boundaries (white) are projected 
onto individual frames in the z-stack (a scroll bar, not shown, is used to switch between 
frames.) Segmentation data, including cell ID number, area, and diameter (white box), 
are displayed for a selected cell. (B) Potential segmentation errors are automatically 
flagged in red. (C) A user-applied mouse command instructs the software to perform a 
merge operation. Blue pixels outline the object in the forward adjacent frame that is 
connected to the merged cell. (Gray pixels, not shown, indicate connected objects in the 
previous frame.)             60 
 
Figure 3.5: Image testing categories. Variation in testing conditions was achieved by 
dividing cultures into four categories based on culture complexity. Levels one through 
three consisted of mainly spherical neurons with increasing amounts of neurite 
outgrowth. Specifically, (A) level one had spherical neurons with few neurites and no cell 
clustering; (B) level two had mainly spherical neurons with increased neurite outgrowth 
and little clustering; (C) level three had robust neurite outgrowth with increased cell 
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clustering (yellow circles). Finally, (D) level four had increased complexity due to more 
diverse, non-spherical neuronal morphologies (white circle), cell clustering (yellow 
circle), and significant neurite outgrowth. Images are 2-D reconstructions of confocal z-
stacks (100 µm total thickness); scale bar = 50 µm.  62 
 
Figure 3.6: The total error percentage, defined as the number of false positives counts 
plus the number of false negative counts in comparison to the actual number of cells, was 
calcu-lated for levels one through three (spherical morphology with increasing levels of 
neurite outgrowth) and level four (complex morphology with high neurite outgrowth).  
Two-way repeated measures ANOVA revealed that the total error was reduced by the 
presence of automated error correction (p < 0.001), and was further reduced by correction 
of soft-ware-identified probable error points (p < 0.05).  Tukey’s post-hoc pair-wise 
comparisons revealed significant error reduction within levels two through four; asterisks 
denote sig-nificant reduction in total error percentage versus “Before Automated Error 
Correction” within each level (* p < 0.05; ** p < 0.01; *** p < 0.001).        67 
 
Figure 3.7: Sensitivity to user-defined parameters. Cell count error as a function of α 
and T both with (A) and without (B) 3-D error correction. The dashed box indicates the 
region of parameters an operator would likely select based on histogram data from the 
software. In (A) the 5% error region occupies 44% of the shown parameter space; in 
contrast, the same error region occupies only 18% of (B).  In (A), the removal of neurite 
segments and the merging of over-segmented somata accounts for the reduced sensitivity 
to user defined parameters.               69 
 
Figure 3.8 Demonstration of system robustness: soma segmentation in ex vivo brain 
tissue.  Custom 3-D segmentation algorithms were applied to z-stacks attained from 
confocal imaging of brain slices from cerebral cortex.  The z-stacks tested varied based 
on the density of viable cells, ranging from relatively low (A) to high (B) densities.  
Following the same protocol of the in vitro testing, the algorithms achieved accuracies of 
93% (A) and 97% (B) (α = 50, β = 0.15, TA = 80%, TB = 95%).         70 
 
Figure 3.9 Tracking evoked behavior. A priori knowledge about the cellular response 
to an externally applied stimulus can be used to rapidly identify stimulated cells. (A) An 
image captured before the application of the stimulus (t1) can be subtracted from an 
image captured during the peak response (t2). This so-called difference image is 
illustrated in (B). Images captured at two points in time, t1 and t2, look very similar. 
However, subtracting the two images clearly identifies the objects that changed.  Image 
segmentation routines can be applied to the difference image to automatically identify the 
boundaries of changed/stimulated objects (black outlines).          72 
 
Figure 3.10: Process flow for tracking evoked in 2-D cultures. (A) Estimations for 
peak and base-line activity are used to identify the frames used in image subtraction in 
(B).  Simple optimizations can be used to determine the true peak response. (C) Optional: 
Non-linear intensity transforms are applied to the difference-image to enhance contrast in 
preparation for object segmentation. (D) The 2-D segmentation and classification 
algorithms of section 3.1 are used to distinguish somata from ‘illuminated’ neurites.  (E) 
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Following the identification of stimulated cells from the difference image, the full 
fluorescence waveforms are extracted and stored in a database (F) that relates the 
response to the stimulus parameters.   73 
 
Figure 3.11: Functional image processing. (A) The image from the average of 15 
frames measured before the stimulus event.  (B) The image from the average of 15 
frames at the anticipated peak of the response. (C) The difference image. (C) The image 
processing algorithms were written in Matlab (Mathworks, version 7.01) and integrated 
into a graphical user interface (GUI) that was designed to facilitate parameter selection, 
visual feedback, and user-guided edits.   Shown in the figure is a difference image of 15 
averaged frames measured at the peak of the response subtracted by 15 averaged frames 
at the base-line response (gray bars on the blue Δf/f trace) The following features were 
incorporated into the GUI: (1) databases for maintaining cell coordinates and boundary 
information, (2) histograms and segmentation statistics for assisting parameter selection, 
(3) saving and reloading options for revisiting and revising image-movies, (4) computer 
assisted manual segmentation for error correction, (5) morphological operator and 
process selection for preprocessing, (6) idealized graphic reconstructions of segmented 
cultures, and (7) automated signal extraction for individual cells.       74 
 
Figure 4.1 System level schematic of stimulus tracking system (Counter clockwise 
from top left) Matlab scripts specify stimulus sequences and synchronization pulses that 
are transferred via USB to an arbitrary waveform stimulus generator (Multichannel 
systems, STG-2004).  A software trigger engages the stimulus generator, which applies 
the current waveforms to electrodes in an MEA docked in a recording preamplifier 
(Multichannel systems, MEA-1060). In total, four independent trigger pulses can be used 
to synchronize activities among the shutter, camera, stimulator, and preamplifier. 
Automated stage positioning (Intelligent Imaging Solutions, MS-2000) enables precise, 
arbitrary stage positioning. Following optical recording of the evoked response of the 
stimulus sequence, a new stimulation sequence is transmitted to the stimulus generator 
and the process is repeated. Although the present system runs open-loop scripts to vary 
the stimulus input and record evoked responses, automated image processing routines 
present an opportunity to implement closed loop control in the future.      85 
 
Figure 4.2 Automated stage displacement.  Electrode coordinates were mapped to 
stage displacements by measuring the stage coordinates when the microscope was 
manually positioned over four corner electrodes. An affine transformation related 
electrode coordinates into stage displacements. Arbitrary control of the stage (to within 2 
um), enabled observation of the cellular response well outside of the 400 x 400 μm field 
of view (20x objective).             86 
 
Figure 4.3 Sequencing formula for stimulus application and synchronized optical 
monitoring of evoked activity.  (A) The microscope is positioned over the array using 
an electrode-based coordinate system. A typical 8x8 array, with 200 um center-to-center 
electrodes, could be observed with approximately 16 separate stage displacements 
(indicated by dashed lines). (B) The stimulation and optical monitoring instruments are 
programmed and queued for triggering, which includes selecting the electrodes and 
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specifying the arbitrary stimulus waveforms. (C) The shutter, camera, and stimulus 
system are triggered in sequence (the optional electrical MEA recording system may be 
triggered as well). The timing is managed such that camera captures both base line and 
recovery activity.  88 
 
Figure 4.4 Maximizing  the signal-to-noise ratio.  Signal processing techniques for 
evaluating evoked-response patterns.  (A) Stimulation waveforms are repeated n times 
(10 shot illustrated) with 50 - 100 ms inter-stimulus intervals (optimized based on Ca2+ 
signaling decay). (B) This n-shot stimulus sequence is repeated m times to further 
enhance the signal with triggered averaging.  Subtraction of tb averaged frames of base-
line activity from tp averaged frames at the peak of Ca accumulation (gray bars), 
produces high contrast images like the one shown in (C). Automated image segmentation 
routines are used to identify the cellular boundaries of each stimulated soma (gray 
outlines indicate soma boundaries), which facilitates spatial averaging (D) and 
quantification of stimulus-induced changes in evoked action potentials.        89 
 
Figure 4.5 Managing the system inputs and outputs. (Left) Illustration of how a 
simple script is translated into experimental execution. (Right) Illustration of the database 
structure.  Shown is a sample of the data fields for each of the three main data categories 
(1) Soma image information, (2) Stimulus trial conditions, and (3) Raw calcium data. It is 
important to note that raw Ca data is recorded in every trial for any segmented cell body, 
regardless of whether a particular stimulus trial elicited a response. Such data enables 
direct comparison between stimulus trials.            92 
 
Figure 4.6 Experimental design for the evaluation of excitatory cathodic current 
pulses. 25 cathodic current pulses swept from from –10 uA to 50 uA and 100 us to 500 
us (in 10 uA and 100 us steps respectively) were applied to 11 different electrodes (gray 
dots) with the microscope field of view (blue line) centered over the electrode.  In actual 
experimentation, the fields of view were chosen such that there was no spatial overlap 
between trials.               94 
 
Figure 4.7 Illustration of Ca2+ data extraction. Within the graphical user interface, the 
high contrast image of stimulated somata is depicted with automatically segmented 
boundaries. Shown, in blue traces, are the calcium signals (Δf/f over time) extracted from 
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SUMMARY 

Willfully controlling the focus of an extracellular stimulus remains a significant 

challenge in the development of neural prosthetics and therapeutic devices.  In part, this 

challenge is due to the vast set of complex interactions between the electric fields induced 

by the microelectrodes and the complex morphologies and dynamics of the neural tissue. 

Overcoming such issues to produce methodologies for targeted neural stimulation 

requires a system that is capable of (1) delivering precise, localized stimuli—a function 

of the stimulating electrodes and (2) recording the locations and magnitudes of the 

resulting evoked responses—a function of the cell geometry and membrane dynamics. In 

order to improve stimulus delivery, we developed microfabrication technologies that 

could specify the electrode geometry and electrical properties. Specifically, we developed 

a closed-loop electroplating strategy to monitor and control the morphology of surface 

coatings during deposition, and we implemented pulse-plating techniques as a means to 

produce robust, resilient microelectrodes that could withstand rigorous handling and 

harsh environments. In order to evaluate the responses evoked by these stimulating 

electrodes, we developed microscopy techniques and signal processing algorithms that 

could automatically identify and evaluate the electrical response of each individual 

neuron.  Finally, by applying this simultaneous stimulation and optical recording system 

to the study of dissociated cortical cultures in multielectode arrays, we could evaluate the 

efficacy of excitatory and inhibitory waveforms. Although we found that the proximity of 

the electrode is a poor predictor of individual neural excitation thresholds, we have 

shown that it is possible to use inhibitory waveforms to globally reduce excitability in the 

vicinity of the electrode. Thus, the developed system was able to provide very high 

resolution insight into the complex set of interactions between the stimulating electrodes 

and populations of individual neurons.  
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CHAPTER 1 

INTRODUCTION 

 
 
 

Electrically interfacing cells and tissue with electrodes creates extraordinary 

opportunities for scientific discovery and medical advancement.  For example, neural 

stimulators have demonstrated great promise for restoring complex sensory functions—

such as vision, hearing, and bladder control—and relieving debilitating disease 

symptoms, like those that arise from Parkinson’s, epilepsy, and depression (Kumar 1997; 

Benabid 2005). Despite the multitude of applications for neural stimulators, all of these 

devices rely on the same basic strategy: stimulate targeted cells and tissue to manipulate 

a specific neural function.  The ability to precisely target specific tissues is critical, as 

poorly focused or misdirected stimuli will either fail to produce the desired effect or, 

worse, produce an altogether unintended side-effect. 

The precise targeting of extracellular stimuli, however, remains a significant 

challenge in neural engineering. In part, this is because the stimulus response is 

determined by a vast number of complex variables, including cell geometry and 

orientation, non-linear ion channel dynamics, electrode geometry, and extracellular 

voltage fields.  Thus, any advances in stimulus control will require some mastery over 

these variables. One tool that may provide the required precision to address these 

variables is the multielectrode array (MEA).   

The MEA, as a minimally invasive toolset with both high resolution and broad 

exposure to neural tissue, provides a unique opportunity to shape the extracellular voltage 
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fields using both multi-site and multipolar stimulation. The development of 

spatiotemporal stimulus waveforms with MEAs may allow researchers to use 

extracellular techniques to approach intracellular fidelities. Such developments would 

enable the exploration of contributions of individual neurons to network-wide processing; 

an ability that is critical to the understanding of sensory input processing, memory 

formation, and behavior (Potter 2001).  Further, the development of selective 

multielectrode stimulation technology would ultimately lead to advancements in neural 

medical technology. This includes stimulation of any part of the nervous system to bridge 

neural damage, restore function, or correct aberrant activity patterns, which would create 

new applications for aural, vision, and epilepsy control. 

In this thesis, we aim to create new tools and methodologies that enable the 

design and testing of multi-site microelectrode stimulation. Such an experimental 

platform requires the integration of novel MEMs devices, electronics, and signal 

processing techniques with optics, cells, and pharmacological agents. In this chapter, we 

review these elements as well as the current state of selective stimulation.  

1.1 Multielectrode Arrays 

Multielectrode arrays (MEAs) are an invaluable tool for scientific discovery and medical 

advancement. Because they can actively manipulate and monitor cellular activity at both 

the single cell and tissue level, these tools provide extraordinary insight into complex 

neural interactions (Morin 2005). Furthermore, because they can both elicit and suppress 

neural activity, they can be used in the development of medical devices for neural 

disorders (Wagenaar 2005). Today, MEAs are used in applications as far ranging as drug 

screening, bio-sensing, cardiac pacing, and epilepsy research.  
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1.1.1 MEA Design 

The technology for MEAs consists of two components: (1) the physical MEA 

itself that interfaces to neural tissue, and (2) the electronics that monitor and manipulate 

the electrodes. The physical MEAs is made up of a grid of tightly spaced electrodes, 

where each electrode is capable of simultaneously monitoring the activity of a dozen or 

more cells. The arrangement of multiple electrodes in a grid extends the recording range 

across a relatively large area, providing concurrent access to both single cell and tissue-

level activity. Monitoring and manipulating this activity is made possible by the 

electronics, which are used to impart multiple functions to each electrode. Preamplifiers 

allow researchers to record cells, stimulation electronics to excite the cells, and 

impedance monitoring circuitry to image the cells. The electronics required to achieve 

these sensory functions are highly specialized due to the complexity of the electrode 

environment. For example, the minute extracellular signals are easily concealed by noise 

from the electrode or electronics.  

Since the introduction of MEAs 30 years ago (Gross 1977), advances in 

semiconductor manufacturing technology and materials research have allowed both 

researchers and commercial enterprises to produce a large variety of planar and 3D 

arrays. Today, the electrodes may be composed of metals (Haro 2002), ceramics 

(Weiland 2002; Meyer 2001), polymers (Abidian 2006; Cui 2002),  or active transistor 

gates (Fromherz 2005; Merz 2005).   Additionally, the electronics may be external or 

directly integrated into the substrate of the MEA (Najafi 1986).  As a result of these 

technical advances, there appears to be very few limits in the design and conformation of 

electrode arrays.  
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1.1.2 MEA Applications 

Given the recent proliferation of MEAs designs, applications have emerged that are 

critically advancing neuroscience. For example, MEAs were instrumental in the landmark 

discovery on spontaneous waves in the developing retina (Wong 1993). They have also 

been used to investigate the role of extracellular stimulation in the suppression of 

bursting activity (Wagenaar 2005) and in the study of novel plasticity mechanisms in 

cultured neural networks (Jimbo 1999). Additionally, MEAs have shown great promise 

for drug screening (Chiappalone 2003), safety pharmacology (Stett 2003; Meyer 2004), 

and biosensing (Gholmieh  2003) in a wide variety of tissue and culture preparations.  

Despite advances in both the design and application of MEAs, the MEA remains a 

largely underutilized instrument for selective stimulation. With few exceptions 

(Wagenaar 2005, Jolly 1996), investigators primarily make use of only one or two 

electrodes simultaneously. The close proximity of dozens of microelectrodes in MEAs, 

however, enable coordinated multi-site and multipolar stimulus waveforms that could 

influence the efficacy of stimulation in two critical ways: (1) the creation of highly 

focused stimuli through spatial contouring of the extracellular voltage fields (Jolly 1996), 

and (2) the modulation of excitation thresholds through temporal manipulations of the 

neural membranes (Grill 1995).  Thus, spatial and functional stimulus selectivity could 

substantially benefit by taking advantage of the full suite of microelectrodes available in 

MEAs.  

Unfortunately, the explicit manipulation of neural networks using commercial 

MEAs is a difficult task that is confounded by two issues: (1) fixed electrode 

densities/geometries and (2) mismatches in electrode impedance. The electrode’s 
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geometry, location, and electrical properties play a critical role in shaping the stimulus 

signal. Thus, efforts are required to exercise explicit control and manipulation of the 

stimulating electrode.  

1.2 Cell Imaging  

The use of MEAs, or any instrument, to develop selective stimulus waveforms requires 

some means to evaluate the efficacy of the stimulus. One technique is to use the 

stimulating electrode to electrically measure the evoked activity as well. This approach, 

however, suffers from two shortcomings: (1) the stimulation artifact induced by a post-

stimulus charge imbalance blinds the observer to the immediate cellular response (Brown 

2008; Blum 2007; Jimbo 2003), and (2) the recording electrode only resolves a few 

neurons at a time and cannot identify the location of those neurons (Gozani 1994; Thakur 

2007). An alternative is to use optical imaging, which provides tremendous spatial 

resolution for cell localization and allows for the simultaneous monitoring of every cell 

within the network (Cossart 2003; Göbel 2007). In this section, we present microscopy 

technology for static and functional imaging as well as signal processing techniques to 

extract data from the acquired images.   

1.2.1 Static Fluorescence Imaging 

Fluorescence microscopy makes use of the fact that certain materials, when irradiated 

with light of a specific frequency, will emit energy as visible light that can be filtered and 

captured. In biology, flouresecent dyes can be manufactured to bind to cells in very 

specific ways, which results in a high contrast label that illuminates only the elements of 

interest.  Dye labeling in conjunction with sophisticated microscopes can generate high-
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resolution images with higher contrast and more information than could be generated 

with traditional optical microscopy (Stosiek 2003; Yuste 2005). For example, confocal 

microscopy produces three dimensional optical recordings of fluorescently labeled 

neurons.  The 3D image, reconstructed from a cascade of 2D optical slices, is made 

possible by the confocal principle, in which emitted light outside of the 2D confocal 

plane is eliminated (Belien 2002). When applied to studies of neural cultures, such 

techniques generate images of extraordinary detail and clarity.  

An important measure of stimulus-evoked activity, however, is not only the 

location of the cells but also the active response of the cells. Although static imaging can 

identify the location of the cell with respect to the stimulating electrode, it cannot provide 

a measure of the cells activity. For dynamically monitoring the cellular response, 

functional imaging is required.  

1.2.2 Functional Fluorescence Imaging 

There are many techniques for optically monitoring cellular activity. Among them, 

fluorometric Ca2+
 imaging is a sensitive method for monitoring neural activity that makes 

use of the fact that, in living cells, most depolarizing electrical signals are associated with 

Ca2+
 influx (Stosiek 2003).  There are several properties of Ca2+ signaling that make it 

particularly useful for studying the evoked responses of stimulated neurons: (1) Ca2+ 

signals are often amplified by the intracellular release of Ca2+ stores (Tsien 1990, 

Berridge 2000), (2) the slow time constants of Ca2+ signaling enable further signal 

boosting through Ca2+ accumulation, (3) the slow time constants accommodate the 

relatively slow acquisition speeds of imaging systems, and (4) individual action potentials 

(up to 100 hz) can be discerned from the calcium waveforms (Yuste 2005).   
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There are several calcium indicators whose fluorescence changes significantly 

(several percent of the resting fluorescence level, or ∆F/F) as intracellular calcium 

concentration changes due to neural activity. The acetoxymethyl (AM) esters of these are 

cell permeant, allowing them to become concentrated in living neurons where they are 

trapped by the action of esterases. Optimized protocols for bulk loading of AM Ca-

indicators into neural tissue (Stosiek 2003; Yuste 2005) allow the simultaneous imaging 

of calcium transients in hundreds of neurons (Cossart 2003; Göbel 2007). At present, 

there are very few studies that combine functional imaging with MEA recording (Wong 

1998; Jimbo 1993; Robinson 1993). One challenge that may limit the coupling of these 

two technologies is that sophisticated signal processing techniques must be put into place 

to acquire and manage the massive and highly-complex data that results.   

1.2.3 Image Processing  

In order to rapidly extract meaningful data from images acquired through microscopy, 

some signal processing algorithms must be put into place. In particular, automated 

segmentation algorithms provide a means for high throughput mapping of complex 

morphological and functional interactions. Although many segmentation routines can 

accurately quantify nuclear (i.e., spherical) labeling in 2-D or 3-D, nuclear stains alone 

are inherently limiting as they omit information pertaining to such important measures as 

cell morphology, neurite outgrowth, and cell-cell interactions (e.g. receptor-mediated or 

synaptic).  Therefore, there is a need for segmentation algorithms that can identify 

cellular features from images acquired using whole-cell staining techniques.  

When labeling whole-cell stained neuronal somata, commercial software is error-

prone in the quantification of 2-D neural images as large caliber processes are routinely 
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counted as cells.  Furthermore, commercial systems fall into one of two different camps: 

(1) user-driven systems (e.g. Neurolucida), which have excellent reconstruction 

capabilities, but are extremely time-consuming, or (2) completely automated systems, 

(e.g. ImageJ routines, Image Pro Plus), which may be fast, but offer little user control and 

are inaccurate given irregular (e.g., non-spherical), process-bearing neural cell 

morphologies.  Likewise, neural-specific image processing techniques presented in the 

literature tend to be along one of two different applications: (1) cell population 

characterization, in which the algorithms segment nuclei of medium to high density 

neural constructs (Chawla 2004; Sarti 2000; Solorzano 1999), or (2) single cell (or low 

density) reconstruction, with highly detailed traces of individual cell processes (Al-

Kofahi 2003; Koh 2002; Meijering 2004; Zhang 2007, Wearne 2005).   

In light of the shortcomings for current image processing techniques, it would be 

of significant benefit to develop algorithms that bridge this gap to offer researchers 

tunable, automated image analysis techniques with user-controlled corrections that are 

optimized to deal with issues specific to functional and spatial analysis of 2-D and 3-D 

neural systems. This is especially true in the context of quantifying stimulus-evoked 

activity in functional images, as experimental inquiries will easily generate hundreds of 

thousands of complex neural images. The ability to quantify and track the evoked activity 

of individual cells to extracellular stimuli is critical for the development of selective 

stimulus waveforms and therapeutic medical devices.  

1.3 Selective Stimulation 

The use of electricity for therapeutic benefit has been explored extensively over the past 

century. From electroconvulsive therapy (i.e shock therapy) to cochlear implants, the 
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medical field has applied extracellular stimulus strategies to restore human function (e.g. 

vision and bladder control) or relieve neurological disease and injury symptoms (e.g. 

spinal cord injury or epilepsy).  Despite the tremendous advances that have been made 

with stimulus therapies, the exact mechanisms for therapeutic benefits are poorly 

understood. Further, present day deep brain stimulators (DBS) use large ‘paddle’ 

electrodes to blindly flood brain tissue with open-loop, high-frequency stimulation. 

Today, much research is underway to develop more intelligent therapeutic stimulation 

devices as well as to understand the mechanisms of extracellular stimulation and the 

functional benefits and consequences of its use. The goal of our research is to enable the 

exploration of these mechanisms, providing an avenue for the development of spatially 

targeted stimulation.  

1.3.1 Limitations in Spatiotemporal Stimulation 

Selective stimulation requires spatial and temporal coordination of voltage fields in 

conductive cellular media. Some control over the spatial contour of the fields is afforded 

by the shape of the current-induced voltage fields, where the spatial decay of the field is 

given by the resistivity of the solution, rho, and the electrode shape and material 

(McIntyre 2001). Unfortunately, temporal control over the propagation of signals in 

cellular media is virtually impossible to achieve.  While the mobility of ions in 

conductive neural media is 6 to 7 orders of magnitude slower than charge carriers in 

silicon (Kovacs 1994), velocity is related to the square root of mobility. Accordingly, the 

speed of propagation in conductive media is in the gigahertz range; thus, with respect to 

cellular time scales, the distribution of an applied stimulus is instantaneous everywhere in 

the dish. However, the response times of neural membranes and ion channels introduces a 
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time-sensitive component in a scale that is easily achieved by electronics.  Therefore, 

while it is not feasible to temporally sum signals at the neuron, the temporal component 

of voltage fields in the dish are still very relevant.  

1.3.2 Temporal Manipulations  

The sodium channel plays a critical role in determining the neural response to 

extracellular voltage fields (Grill 1995). By taking advantage of the time course of the 

inactivation gate in the sodium channel, Grill and Mortimer demonstrated that one could 

shape the stimulus with a hyperpolarizing pre pulse (HPP) or depolarizing pre pulse 

(DPP) to excite or inhibit stimulation respectively. McIntryre and Grill used this 

phenomena in modeling studies to develop waveforms that selectively activated cell 

bodies over fibers (and vice versa) (McIntyre 2000).  This modeling study also 

demonstrated the robustness of selectivity over a broad range of neural modeling 

parameters; selectivity showed the greatest dependency on the distribution of sodium ion 

channels.   

1.3.3 Spatial Manipulations 

Recent work relates the influence of the physical properties of the electrode (shape, 

material, surface roughness, etc.) to the formulation of electric fields in neural tissue. 

McIntyre and Grill have shown that more uniform current densities are attained with 

larger and relatively blunt 3D electrode tips; additionally they demonstrated that 3D 

electrode tips behave identically to theoretical point source electrodes within 50 µm of 

the electrode (McIntyre 2001).  This finding, coupled with studies that demonstrate that 

the electrical characteristics of the medium are unaffected by the presence of neurons 
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(Rattay 1999), holds promise for using simple point source models to elucidate strategies 

for extracellular stimulation. As a result, it may be possible to use computationally 

inexpensive algorithms, and even closed form expressions, to determine the affects of 

applied fields on neural responses (Plonsey 1989).  

Field steering, the art of spatially manipulating voltage fields, has been 

investigated by research groups in the functional electrical stimulation (FES), retina 

prosthesis, and cochlear implant communities.  In the retina community, Hornig and 

Eckmiller used finite element models (FEMs) to demonstrate that control of the 

maximum voltage field increases with the orthogonal distance to the electrode (z-

direction) (Hornig 2001). Hornig modeled layers of retina neurons and used a training 

algorithm to selectively stimulate individual model cells distal to a flat simulating grid. 

With this approach, Hornig was able to discriminate between two adjacent model cells: 

one cell was set into a sub-threshold refractory period while the other was stimulated. In 

the FES community, Veraart et. al, have shown that subtle variations in the transverse 

and longitudinal currents of a tri-polar nerve-cuff electrode can be used to tune the output 

force of a selectively activated muscle (Veraart 1993). Thus, field steering allows FES 

investigators to take advantage of the fascicular organization of the nerve to somewhat 

selectively activate and tune the force output of a targeted muscle.  

In the cochlear implant community, Spelman and others have provided a solid 

foundation for field steering in one dimension.  Jolly has shown with modeling and with 

experiments performed in saline and guinea pig cochleas that a quadrupolar electrode 

configuration provides much greater focus than bipolar and monopolar configurations 

(Jolly 1996). Rodenhiser et al. have presented a simple method for determining the drive 
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currents necessary to produce focused stimuli (Rodenhiser 1995), by first creating a 

matrix of complex transfer impedances that relate output voltages to input currents and 

then using a least squares technique to solve for the currents necessary to generate the 

desired voltage pattern.  

1.4 An Experimental Platform for Selective Stimulation 

Among the many challenges in designing spatially and functionally selective stimulus 

waveforms, is the inability to experimentally validate stimulation strategies.  In fact, the 

most recent advances in stimulation technology have been made with computational 

models, which—despite providing a great deal of insight into the mechanisms, 

techniques, and strategies for selective stimulus waveforms (Grill 1995; McIntyre 2000; 

Rattay 1999; Greenberg 1999;Hornig 2001)—are seldom experimentally validated. Thus, 

it would be beneficial to develop an experimental system that approaches the throughput 

(and insight) of these models. 

The design and testing of stimulus protocols using both multi-polar field shaping 

and temporal ion-channel manipulation requires an experimental platform that can (1) 

deliver arbitrary current waveforms to multiple electrodes and (2) monitor the cellular 

activity of every neuron within a specified area. Combining an optical imaging system 

with multielectrode arrays (MEAs) creates an ideal platform for tracking neural responses 

to extracellular stimuli. Specifically, optical imaging systems can record individual action 

potentials by measuring the changes in internal concentrations of calcium in somata using 

Ca2+-sensitive dyes (Smetters 1999). Additionally, the tightly spaced grid of electrodes in 

MEAs can be simultaneously activated to sculpt the contours of voltage fields that 

surround neural tissue.  
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In this thesis we build an automated, high-throughput stimulus tracking system. 

The goal of this work is to create a flexible system that can address many of the issues 

critical to the study of structured neural stimulation, such as the MEA electrodes, 

stimulating waveforms, and stimulus-evoked responses. In chapter 2, we present 

microfabrication technologies for arbitrarily specifying the geometry, packing density, 

and electrical properties of MEA microelectrodes. In chapter 3, we present automated 

signal processing techniques for statically and dynamically tracking optical neural data. 

In chapter 4, we combine the engineering tools of chapters 2 and 3 with novel signal 

processing techniques to enable the high-throughput evaluation of selective stimulation 

waveforms. Finally, in chapter 5, we discuss the advantages and shortcomings of the 

developed technology and outline the future directions necessary for exercising electrical 

mastery over neural tissue.   
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CHAPTER 2 

MICROELECTRODE TECHNOLOGIES:  
 INTERFACING NEURAL CELLS 
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The multipolar stimulation of cells and tissue requires specialized interfacing devices to 

garner control over the neural environment. Multielectrode arrays (MEAs) have emerged 

as a leading technology for extracellular, electrophysiological investigations of neuronal 

networks. Unfortunately, the explicit manipulation of neural networks using commercial 

MEAs is a difficult task that is confounded by two issues: (1) fixed electrode 

densities/geometries and (2) mismatches in electrode impedance. The electrode’s 

geometry, location, and electrical properties play a critical role in shaping the stimulus 

signal.  In this chapter, we present two novel electrode fabrication technologies to 

produce electrode arrays with customized geometries and high channel counts/densities. 

Additionally, we present a closed loop electroplating approach to precisely regulate the 

electrical properties of the microelectrodes. Taken together, these advances in fabrication 

enable the development of highly controlled neural interfaces with the potential for 

spatially controlled stimulation.  
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2.1 Microfabrication of MEAs 

There are several ways in which the MEA design influences the efficacy of stimulation, 

including electrode size, location, and density. Apart from charge density constraints, a 

smaller electrode enables a more localized region of influence (e.g. consider the spatial 

selectivity of a ‘dish-sized’ electrode versus a ‘cell-sized’ electrode.)  Likewise, the 

location of the electrode with respect the region of interest greatly influences how likely 

an applied stimulus reaches its target. Finally, the electrode count and density not only 

determines how much coverage is provided, but also how much control can be exerted 

over the dish-wide voltage fields. For example, electrodes which are simultaneously 

stimulated but are far apart will appear as a grid of monopoles; in contrast, electrodes 

which are close together, will generate complex voltage field patterns.  

Modern microfabrication technologies make it relatively straightforward to 

produce electrodes of virtually any size, density, and conformation.  However, apart from 

material and cytocompatibility issues, one of the most significant challenges in MEA 

fabrication arises from the difficulties incurred in connecting micron-sized electrodes to 

millimeter-sized sockets and pads (i.e., the ‘packaging problem’). This problem is 

exacerbated when the electrode count and density are increased to improve spatial 

selectivity. Unfortunately, brute-force packaging techniques (e.g. conductive epoxies or 

manual pin/wire placement) are time and cost prohibitive, making it difficult to generate 

the number of samples needed for stimulation experiments. In this section, we present 

two scalable fabrication technologies that address a critical problem in customizing 

electrode size/placement and increasing electrode density: (1) Glass MEAs with 

integrated electronics, and (2) Kapton MEAs on manufactured substrates 
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2.1.1 Glass MEAs with Integrated Electronics 

The difficulty in achieving high-density, high-count electrodes is in routing the electrodes 

to the stimulating and recording electronics. The problem is in the relative differences in 

scale; interfacing sockets and pads are in the millimeter range, while the electrodes are in 

the micron-range. One approach to solving this problem is to avoid temporary socketing 

altogether, by permanently affixing the electronics directly onto the MEA substrate.  

There are several technologies for this approach, including wire bonding, which enables 

sub-millimeter interconnects, and bump-bonding, which enables deep sub-millimeter 

connections. In this study, we elected to explore the feasibility of direct electronics 

integration using the more widely accessible wire-bonding technology.   

The fabrication of the glass MEAs employed two masks and used conventional 

surface micromachining technology. To prepare the substrate, a 49 × 49 mm sheet of 

Pyrex glass (Esco Products, Oak Ridge, NJ) was cleaned by sequentially rinsing the glass 

in trichloroethylene, acetone, methanol and de-ionized water. Next, 6–8 µm of negative 

photoresist (NR9-8000) was applied by spin coating; the resist was exposed through a 

positive image mask of the wiring traces with a UV mask aligner (Karl Suss MA-6). 

During this process, care was taken to ensure that the sample was slightly overexposed 

such that, after postbake and development, the slope of the resist profile would facilitate 

metal liftoff. After development, 300° A of Ti was deposited followed by 2500 °A of Au 

(Figure 2.1A). E-beam evaporation was the preferred method of metal deposition, as the 

perpendicular orientation of the metal with respect to the planar MEA facilitated metal 

lift-off in the next step. Following deposition, the device was submerged in acetone to 

lift-off portions of the metal layer that corresponded to the negative image of the mask 
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(Figure 2.1B). Next, 3.2 μm of SU8-5 was spun on to form the insulation layer for the 

wiring traces and the electroplating mold (profilometer data not shown). To define the 

electrode vias and contact pad openings, the SU-8 was UV exposed through a positive 

image mask and developed (Figure 2.1C). The sample was then flood exposed to UV 

light to ensure maximal photopolymer crosslinkage and to facilitate removal of toxic 

solvents during the curing process.  

Following development, the MEA was post-processed to prepare the instrument 

for cellular studies. The electrode vias were electroplated with platinum black to form the 

electrodes (Figure 2.1D). Following electrode formation, the custom ICs were wire 

bonded onto the glass substrate (Figure 2.1E) and encapsulated in Sylgard 184 (Dow 

Corning, Midland, MI). (Figure 2.1F) The MEA was then cured in an oven at 90°C for 24 

h. Subsequently, the device was submerged in de-ionized water for at least 48 h in order 

to rid the cell-contacting surfaces of any toxic residue from the manufacturing process. 

Lastly, custom-cut polycarbonate rings were attached to the MEA surface using Sylgard 

184 and served as cell culture containment (Fig 2.1I). The thick SU-8 insulator (3.4 

dielectric constant), coupled with the low impedance of the platinum electrodes (20 KΩ 

at 1 khz), improved the signal to noise ratio of the device (as compared with MEAs with 

0.5 um of high dielectric SiN insulator and 100 KΩ impedances). Specifically, the 

coupling capacitance between the wiring traces and cell media as well as the thermal 

noise of the electrodes was reduced. Prior to cell seeding, the MEAs were rinsed with de-

ionized water for an additional 24 h, briefly rinsed with 70% ethanol and allowed to dry 

in a sterile environment. The MEAs were then briefly flamed or plasma treated and 

allowed to return to room temperature.  Figure 2.1G shows the completed system. 
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Figure 2.1: Fabrication and testing of glass MEAs. (A-F) Custom microfabrication 
steps for producing MEAs with electronics designed by (Harrison 2003) directly 
integrated onto the substrate. This integration strategy enables high channel count MEAs 
by shrinking the spring-pin pad sizes (2x3 mm) to wire-bond pad sizes (100 x 100 um).  
Note the differences in scale between the wire-bonding pads (surrounding the chip) and 
the spring-pin pads (surrounding the MEA).  Integrated circuits with on-board analog or 
digial multiplexers would significantly reduce the amount of output pins required to 
interface the device. (G) Photograph of the completed MEA. (H) Recordings performed 
on the MEA (note: shown signals were not routed through the wire-bonded chip; sample 
signals from the chip may be found in (Blum 2003).  
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The MEAs were designed so that signals could be routed simultaneously to both 

the integrated ICs as well as to a pad layout that was compatible with Multichannel 

Systems pre-amplifier. To test the system, primary cortical cells were cultured onto the 

MEAs (density = 1.25–2.0 × 105 cells/cm2) using Neurobasal medium (Prado 2005). This 

culture method resulted in 90–95% neurons (confirmed by immunostaining for tau-5, a 

neuronal-specific cytoskeletal marker), with the remaining cells exhibiting morphological 

characteristics of glial cells (verified by glial fibrillary acidic protein immunostaining.) 

Figure. 2.1H shows biological activity recorded with this system at 10 days in-vitro 

(DIV).          

2.1.2 Kapton MEAs on Manufactured Substrates 

In the previous section, we demonstrated an approach to increasing the channel count by 

directly integrating electronics onto the MEA substrate. While this technique is effective, 

it presents a number of disadvantages: (1) unless bottom-side integration is employed, 

which requires vias through the substrate, the MEA substrate area is large, and (2) unless 

the chips are made in very large volumes, the chips required to service semi-disposable 

MEAs are very expensive.  An alternative approach is to process the MEAs directly onto 

bulk-manufacturable substrates. In this section, we explore the feasibility of fabricating 

the MEAs directly onto the package itself—printed circuit boards.  

Printed circuit boards (PCB), flex circuits, and flex-rigid kapton (a hybrid of flex 

circuits and PCBs) are commercially manufactured multi-layer epoxy/metal substrates. 

Multi-layer PCBs have been used in the electronics industry for decades and can typically 

produce wiring traces with a resolution of approximately 200 µm. Flex circuits, which 

use polyimide or kapton as the layering structure, are a more recent addition to the 
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industry and have an improved feature resolution, approx 50-80 µm. Besides their role in 

the consumer electronics market, flex circuits are becoming increasingly common in the 

medical industry with products such thermofoil heaters and inductive coils. Flex-rigid 

substrates combine the advantages of rigid PCBs with flex circuits by adding a rigid 

supporting frame to the flexible and high-resolution kapton layer. The advantages of 

these processes are: (1) cost-effectiveness, (2) vias for backside electrical connection, and 

(3), in the case of flex circuits, biocompatibility (Giovangrandi  2006), and (4) substrate 

transparency (for thin kapton). The major problem in performing post-processing on 

these substrates is surface non-uniformities but approaches reported in literature like 

(Ghodsian 2005) can be used to overcome this problem. 

Unfortunately, cytocompatibility can be a difficult challenge for fabrication 

processes that commonly involve very cytotoxic chemicals. Commercial PCB fabrication 

incorporates epoxies, copper, tin, lead (or silver) into the final product, as well as a 

variety of other chemicals that are not amenable to cellular life. This necessitates that any 

possible toxic materials be encapsulated from the cellular cultures. Additionally, 

microfabrication on PCB substrates imposes its own set of requirements: (1) a reduction 

in the surface roughness of the PCB and its surface metal layers (i.e., surface 

planarization), (2) interfacing to the relatively thick low-resolution top metal layer, and 

(3) MEMS processes that are low temperature compatible (lower than 220˚C).  

We addressed the challenges of post-processing on PCB substrates with the 

following fabrication process: A custom-designed flex-rigid kapton board, containing the 

necessary wire traces, was fabricated through a commercial vendor (Cirrex). An open 

area of the board was reserved for MEA post-processing.  The MEA traces and recording 
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sites were defined using NR9-8000 (which also accounted for the planarization of the 

metal on the flex circuit) and UV lithography. A biocompatible metal stack (titanium for 

adhesion and gold for the electrode) was deposited using e-beam evaporation and the 

metal was lifted off to define the finer metal lines. In order to passivate the MEA and 

define the recording sites we used a thin layer of photo-patterned SU-8. This process is 

depicted schematically in Figure 2.2.  

 

 

 
 
Figure 2.2: Fabrication process for post-processing on manufactured PCB 
substrates. (Left) The minimum required processing steps for high channel count 
MEAs on interconnecting substrates. Note that PCB vias enable simple back side 
connections to the MEAs. (Right) An alternative strategy that enables multi-layer wiring 
for higher-density electrode configurations and also provides additional encapsulation 
from cytotoxic materials.  NR9-8000 is represented by the pink photoresist.  

 

 21



The kapton arrays were developed using the single, SU-8 layer process (in 

collaboration with Mr. Swami Rajaraman.) We tested the functional viability of this 

process by measuring the impedance of the electrodes and the surface irregularities of the 

insulation layer. Figure 2.3 illustrates electrically viable MEA units. The combination of 

inexpensive manufactured printed kapton circuit boards and post-processed 

microelectrodes present the opportunity to scale MEA technology from 1 well per sample 

to a multiwell format containing dozens of such MEAs. 
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Figure 2.3:  Post-processing of PCB substrates for the development of test MEAs. 
(Two layer method outlined in Sec. 4.2.2.) (A) Custom Kapton FlexBoard™ PCB 
substrates with patterned wiring traces and microelectrodes. (B) Close-up of the 
micro-electrode area of a processed substrate. (C) Micro-photograph of the area in 
which the microfabricated traces contact the PCB traces (gold traces in the PCB are 25 
µm thick 200 µm wide, microfabricated traces are 0.5 µm thick 30 µm wide). (D) 
Differential interference contrast microphotograph focused on the SU-8 top surface in 
a section of the electrode area. Lighter and darker areas are a result of constructive and 
destructive light interference; this highlights surface features in the sub-micron scale. 
The planarizing effect of thin (3.4 µm) SU-8 smoothes the surface roughness of the 
PCB from its original 5 µm variations down < 200 nm variations (profilometer data 
not shown). Impedance measurements show that the gold electrodes are viable with a 
mean impedance magnitude of 191 KΩ at 1 KHz. 
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2.1.3 Design Tradeoffs: Choosing a Process 

In section (2.1), we demonstrated two novel microfabrication schemes to explicitly 

specify the location and size of the electrodes as well as the density and channel count. 

Each strategy presents its own set of advantages, and the choice of strategy depends 

entirely upon the design constraints and the intended application. For applications that 

involve thousands of stimulation channels in a disposable platform, the kapton approach 

(2.1.2) may be preferred. For applications that require longer-term interfacing or close 

proximity of the electronics to the electrodes, the glass MEA approach (2.1.1) may be 

favored. Ultimately, both approaches provide reliable methods to addressing several 

critical variables for stimulating interfaces: electrode size, location, and, perhaps most 

importantly, density and count. 

2.2 Electrode Conditioning 

In addition to geometry and location, the electrodes’ electrical properties play a critical 

role in influencing cellular excitation. For example, in common ground stimulation 

schemes, the impedances of the grounded electrodes explicitly shape the voltage fields 

that are applied to the neural tissue. Additionally, for voltage stimulation applications, it 

is not possible to model current densities and voltage fields without explicit knowledge of 

the electrode impedance (Jolly 1996). Likewise, for current stimulation applications, it is 

difficult to predict the electrode safety limits without measuring the electrode impedance 

(Wagenaar 2004). Furthermore, studies have shown that removal of stimulation artifacts 

is highly sensitive to the electrode properties (Brown 2008; Bakkum 2007). Therefore, it 

is beneficial to not only measure the electrical properties of the electrode but also to 

specify these properties.  
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The need for low impedances must be balanced against other design tradeoffs. 

One method to reduce the electrode impedance is by increasing its cross-sectional or base 

area. Unfortunately, as a larger electrode makes contact with a larger section of the 

media, this choice reduces the electrode specificity. That is, once the electrode exceeds 

the dimensions of the cells under study, further increases in size will attenuate individual 

cell signals by averaging a larger portion of tissue activity up to a point that it becomes 

impossible to observe individual cell signals. This link between electrode impedance and 

size has produced the common misconception that a low impedance electrode cannot be 

as specific as high impedance electrode. If increasing electrode base-area was the only 

means to reduce impedance this would be true; however, modification to the electrode 

surface roughness or material can reduce electrode impedance by increasing the surface 

area without modifying the physical dimensions.  

Given the very small sizes of electrodes required for electrophysiological 

experiments, even when electrode shape, dimension, and materials are constrained, 

fabrication tolerances and imperfections will generate electrodes with large variability. In 

particular, platinum black is notorious for producing electrodes with highly variable 

impedances (Franks 2005). For arrays of electrodes such variability is very undesirable, 

as it introduces a source of randomness into the experiment that is a product of the 

instrumentation itself, and not of the tissue under study. For recording applications, 

equalizing the noise across electrodes will make the effective range of the electrodes 

similar to one another. For stimulation applications, electrodes that are well matched and 

specified will enable consistent voltage-controlled stimulation as well as known safety 

limits for current-controlled stimulation. Finally, removal of stimulation artifacts is 

 24



strongly dependent on electrode characteristics (Brown 2007; Bakkum 2007), which 

requires specialized or adaptive protocols for each individual electrode. Thus, it is 

desirable to provide a means to specify electrode impedances and to precisely match 

these with high precision. 

We developed an automated, closed-loop, electroplating approach that monitors 

and controls the morphology of surface coatings, such as platinum black, during 

deposition. This process ensures that all electrodes have specified and matched electrical 

properties, and it is applicable to a broad range of materials, including metals and 

conductive biopolymers. Electrode uniformity is achieved by measuring electrode 

impedance simultaneously during the electroplating process. In addition to automated 

impedance control, we implemented pulse-plating as a means to produce very robust, 

resilient low-impedance electrodes that can withstand rigorous handling and harsh 

environments.  

2.2.1 Linear Electrode Models 

The material and physical properties of the electrode shape the electrical signals 

presented to the cellular media and have a profound influence on the stimulation and 

recording of neural tissue. Thus, explicit shaping of the microelectrode impedance 

spectrum requires an understanding of how the physical parameters of the system 

(electrode material, cross-sectional area, etc.) relate to the electrical properties of the 

electrode.  In this section, we use basic electrode theory to illustrate both the opportunity 

and limitations for precise manipulation of the microelectrode impedance spectrum.  

Over the past century, the electrode-electrolyte interface has been extensively 

studied; present day models can account for many of the non-linear dependencies on the 
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electrode’s electrical and geometrical properties (Borkholder 1998, Kovacs 1994). 

Remarkably, most of the complex behavior of electrodes can be described with a simple 

lumped circuit (Figure 2.4A): an interface capacitance, CI, shunted by a charge transfer 

resistance, RT, in series with a spreading resistance, RS. Each of these circuit elements 

have been uniquely ascribed to physical electrochemical processes and electrode 

geometry, which are described briefly below. (Note: Please see Appendix A for a 

discussion on non-linear electrode theory and its application to stimulation artifact 

modeling). 

A metal electrode in an ionically conducting solution generates chemical reactions 

that induce a field at the electrode-electrolyte interface (Kovacs 1994). This electric field, 

generated by electron-transfer reactions, produces the hydration sheath, in which water 

dipoles orient themselves at the metal surface.   Solvated ions accumulate just beyond the 

hydration sheath, forming what is known as the outer Helmholtz plane (OHP).  In turn, 

the charges at the metal layer and ions at the OHP form the Helmholtz capacitance, 

which is given by: 

S
OHP

r
H A

d
εεC o= ,     (2.1) 

where dOHP is the distance from the OHP to the metal electrode, εr is the relative 

permittivity of the electrolyte, εo is the permittivity of free space, and AS is the surface 

area.  In addition to the bound ions at the OHP, it has been shown experimentally that 

capacity at the interface also depends on voltage (Borkholder 1998). The Gouy-Chapman 

capacitance model, which accounts for this dependency by considering the electrical and 

thermal effects on the time-averaged ionic distribution (Borkholder 1998), can be added 
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in series with the Helmholtz capacitance to form the full interfacial capacitance, CI. For 

our application, the representative equation for the Helmholtz capacitance will 

sufficiently characterize the interfacial capacitance as it adequately captures the 

dominating electrode behavior.  

In addition to the interfacial capacitance, a parallel resistive element is modeled to 

account for the current that flows across the electrode with the application of a DC 

voltage. This resistance is primarily given by the charge transfer resistance: 

o

t
T J z

V
R =      (2.2) 

where Jo is the exchange current density, z is the valence of the ion involved in the charge 

transfer reaction, and Vt is the thermal voltage (~ 26 mV).  The exchange current density, 

Jo, is a function the surface area, As, of the electrode as well as the electrode material, 

electrolyte composition, and electrochemical potential.  

Finally, to account for the spreading of current from the localized electrode to a 

distant ground electrode in the solution, the spreading resistance is added in series to the 

above circuit elements (Kovacs 1994):  

BA4
πρRS =

,     (2.3) 

where AB is the base area (or drawn area) for a circular electrodeB , and ρ is media 

resistivity. It is important to note the distinction between the base area, ABB, which is 

given by the cross sectional area of the electrode (or the drawn area of a 3-D electrode), 

and surface area, As, which, though related to the base area, may be independently 

adjusted by modifications to the texture and surface features of the electrode.  
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Equivalent circuit models, tuned to match experimental microelectrode data, 

provide an excellent fit.  Specifically, Franks et. al have demonstrated that simple models 

(which employ a constant phase element for the interfacial capacitance), can capture the 

full impedance spectrum, including the phase behavior, with remarkable precision 

(Franks 2005). Here, in Fig. 2.4B, the Nelder-Mead regression was used to fit the model 

of Figure. 2.4A to the measured impedance magnitude of a 10 µm Au electrode in 

physiologic saline, showing that the simple lumped circuit model very accurately 

captures the impedance magnitude.  
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Figure 2.4:  Electrode Modeling. (A) The impedance magnitude of microelectrodes is 
represented by an interface capacitance, CI, shunted by a charge transfer resistance, RT, in 
series with the spreading resistance, RS.  (B) Demonstration of model accuracy:  The 
model in (A) was tuned to match the impedance magnitude of a 10µm diameter Au 
electrode using a multidimensional unconstrained nonlinear minimization method (i.e. 
the Nelder-Mead method).  

2.2.2  Impedance Manipulations 

From the electrode model it becomes apparent that, with systematic design choices and 

novel processing techniques, it is possible to shape the impedance spectrum of an 

electrode. For example, the capacitance, CI, is determined by the surface area of the 

electrode, which may be tuned by varying the plating density in electroplating processes 

(de Haro et al., 2002) or the gas concentrations in sputtering systems (Janders et al., 
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1997). The charge transfer resistance, RT, is affected by both the electrode material and 

surface area, and the spreading resistance, RS, is a function of the base area (or drawn 

area) of the electrode. As shown in Table 2.1, by specifically targeting physical 

parameters (identified as control mechanisms), one can explicitly manipulate the 

impedance properties of microelectrodes. Figure 2.5 illustrates an example of such 

impedance sculpting for various elements of the electrode model. 

Table 2.1: Reference table for electrode shaping 
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Figure 2.5:  Shaping the impedance spectrum of modeled microelectrodes.  By 
careful manipulation of the electrode’s physical elements—electrode material, base area, 
and surface area—one can control individual model parameters (Gray band indicates the 
area of interest for recording neural action potentials). (A) Changes in the electrode 
material or electrolyte composition, Jo, modifies the charge transfer resistance and the 
impedance magnitude at low frequencies. (B) Likewise, changes in the electrode surface 
area, As, modify both the charge transfer resistance and interfacial capacitance to alter 
low- and mid-band impedances. (C) Finally, changes in the base area, AB, of the electrode 
directly influence the spreading resistance or impedance magnitude at high frequencies.   

B

C A B 
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2.2.3  Closed-Loop Electrode Deposition 

The frequency range of interest for recording neural activity centers around the spectral 

components of action potentials (for non field-potential applications). In this mid-band 

range (approx. 1Khz, the de facto standard for extracellular electrophysiology), the 

electrode impedance is most sensitive to the structure and volume of deposited materials. 

However, despite excellent control afforded by modern deposition technologies (e.g., 

sputtering systems and chemical vapor deposition), electrodes inevitably have 

tremendous variability in their impedance spectrum (platinum black electrodes have been 

reported to vary over 600%; Franks 2005).  One method to reduce such variability would 

involve the use feedback mechanisms to regulate and control the physical parameters of 

the electrode during microfabrication. Because of the ready availability of electrical data 

during deposition, electroplating potentially provides the most direct mechanisms for 

real-time measurement and control during the deposition process.  

2.2.3.1 Electroplating Feedback Strategies 

Although electroplating provides an avenue for explicit electrode shaping, it is not 

without its complications, and the potential for adhesion problems with materials such as 

platinum black has been widely reported (Borkholder 1998).  To address problems 

associated with electrode degradation, well characterized electroplating recipes have been 

documented that include adhesion promoting ingredients and optimized current densities 

(Gesteland 1959). Additionally, ultrasonic agitation applied during the plating process 

has been shown to insure long-lasting adhesion (Gesteland 1959).  Although pulsed 

plating, which applies electroplating currents in discontinuous intervals, has been used in 

electrochemistry and microfabrication communities to reduce stress and improve 
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uniformity (Xin 2005; Gladstein 2005; Gladstein 2001), we have found that pulse plating 

can also promote adhesion in neural interfacing microelectrodes (Byers 1986).  

It has been hypothesized that plating under ultrasonic conditions promotes 

adhesion by introducing a ‘survival of the fittest’ evolutionary strategy to electrode 

formation (Marrese 1986). That is, the electroplated material that is loosely bound will 

detach due to the mechanical agitation, allowing only the persistence of robust 

formations. Pulse plating, by locally subjecting ions to alternating electrical forces on the 

surface of the electrodes, could have a similar role. Because pulse-plating may be easier 

to control than DC plating techniques, one of the objectives of this study is to compare 

the robustness of pulsed-plated electrodes with traditional DC-plated electrodes.  

Unfortunately, the number of viable strategies in achieving mid-band electrode 

impedance control by closed-loop algorithms during electroplating is inherently limited. 

Specifically, in the case of platinum plating, there are two electrochemical phenomena 

that constrain the choices for control algorithms: (1) modulating the current density 

changes the electrode surface area, and (2) reversing the current fails to remove platinum 

deposits (inert platinum anodes do not replenish the platinum ions in solution). Therefore, 

we elected to monitor the impedance while applying electroplating currents until the 

electrode reached a desired impedance.  In order to evaluate pulse-plating, we 

implemented this approach in two different ways: (1) In the control study, we 

simultaneously monitored the impedance during DC plating (i.e., the continuous method), 

and (2) As a test study, we monitored the impedance intermittently between briefs 

periods of pulsed electroplating current (i.e., the discontinuous method). Figure 2.6 

illustrates these two approaches.  
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Figure 2.6: Impedance controlled electroplating strategies. (A) A sinusoidal, single-
frequency voltage source, Vm, is capacitively coupled onto a DC electroplating current, IS. 
The impedance magnitude is sampled continuously until the impedance of the electrode 
reaches the target level (It is important to note that the lumped circuit model of section 
2.1 does not capture the non-linear dependencies of impedance on electrode voltage; thus 
the applied electroplating current will place the electrode into a different measurement 
regime than under zero-current conditions). (B) A potentially more robust alternative to 
DC plating is to sample the impedance between brief bursts of pulsed electroplating 
current.  

2.2.3.2  Electroplating Device 

In order to facilitate precise tuning of low-impedance microelectrodes, we designed an 

automated, closed-loop electroplating device to monitor the electrode properties during 

deposition.  The basic operation of this device is described as follows: When plating 

current is supplied at the electrode, electrons supplied by the current source reduce the 

platinum ions to platinum metal at the surface of the electrode. As the platinum deposits 

accumulate, the impedance of the electrode decreases due to an increase in the surface 

area, AS, which induces an increase in the capacitance, CI, and a decrease in the charge 

transfer resistance, RT, of the electrode.  The system monitors this change in impedance 

by applying a 1 Khz relatively low-amplitude (10 mV or less i.e., approximately 2 orders 

of magnitude below the electroplating voltage), voltage signal across both the electrode 

and a reference resistor.  The waveforms across the electrode and reference resistor are 
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continuously sampled with analog-to-digital converters and analyzed by real-time 

software to calculate the impedance magnitude:  

R

elec
REFelec V

V
RZ =     (2.4) 

where RREF equals the reference resistor, |Velec| is the magnitude of the voltage across the 

electrode, and |VR| is the magnitude of the voltage across the reference resistor. The error 

for this measurement is given by the following: 
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+
+

+
=  (2.5) 

where z is the impedance of the electrode and ε is the measurement error . The impedance 

measurement error is minimized when the electrode impedance is equal to the reference 

resistor, which indicates that the reference resistor should be chosen to match the target 

electrode impedance.  

The automated electroplating device was constructed by integrating a custom 

designed circuit board with a current source (Keithly 2400), function generator (HP 

33102A), microcontroller (PIC 16F73) and laptop computer (Fig. 2.7).  Electroplating 

current was switched onto one electrode at a time using two daisy-chained, 8-channel 

analog switches (MAX335). Although the device allows for up to 16 channels to be 

plated simultaneously, only one channel was plated at time to maximize individual 

electrode precision (Closing the loop around multiple electrodes at one time would insure 

that the collective impedance reached the target value rather than individual electrodes). 

The low amplitude voltage waveforms across the electrode and reference resistor were 

amplified for sampling using two instrumentation amplifiers (INA129P, Gain = 500x). 
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For DC electroplating, a constant electroplating current (IDC) was applied while the 

impedance was continuously sampled (2 Hz , 8-bit ADC, PIC 16F73). For pulsed-plating 

applications, the impedance was sampled between discrete packets of pulsed-

electroplating current with an IPLS magnitude, TPLS period, 50% duty cycle, and CPLS 

pulse count.  Real-time Matlab software (Mathworks) controlled deposition timing and 

coordinated activities among the electronic instrumentation (It can be beneficial to 

electroplate the electrode more than once, beginning first with a ‘primer’ or high-pulse 

count and subsequently electroplating with a lower pulse count). The measured 

impedance magnitude is a reflection of the full-electrode-electrolyte interface, thus it is 

important to remember that the electrolyte itself will influence the measurements. 

Calibration curves, which relate impedance in platinum plating solution to the impedance 

in the target environment (i.e., physiologic saline, in-vivo tissue, etc.), will facilitate 

accurate electrode tuning (though the electrodes will always be well matched). Fig. 2.8 

shows a photograph of the completed device. 

In addition to the electronic circuitry, an important consideration for the system is 

the physical interface to the MEA and electroplating solution. The mechanical package 

for the device (developed in collaboration with Mr. Shawn O’Connor) is composed of 

two main polycarbonate sections, a base, and lever, which interact via a hinge 

mechanism. This hinge is preloaded with two torsional springs such that the device 

behaves in a clip-board fashion. The base contains recesses that hold the MEA on one 

end and the main printed circuit board (PCB) on the other. An array of spring pin 
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contacts is mounted on an interface board on the lever and provides the key electrical 

interface to the MEA pads. The interface board is then connected to the main PCB with a 

ribbon cable. The lateral positioning of the spring pins relative to the MEA surface is 

adjusted by rotating the hinge pin, which uses a screw to move the lever back and forth. 

Figure 2.8 shows a photograph of the device. 
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Figure 2.7:  High level schematic and illustration of the closed loop electroplating 
system. (A) System level schematic of electroplating circuitry.  A computer, via a serial 
connection to a PIC 16F73 microcontroller and custom circuitry, switches electroplating 
current onto individual electrodes. A 1 Khz sine wave is capacitively coupled  (not 
shown) across the reference resistor and plating bath; the waveforms across the 
reference resistor and bath are sampled with the PIC A/Ds and communicated back to 
the computer for processing. (B) Illustration of electroplating. During electroplating, the 
MEA electrode surface becomes negatively charged and attracts positive platinum ions.  
 

 

Electroplating 
Circuitry 

MEA  
Culture well 

Spring loaded  
Hinge 5 cm 

 
Figure 2.8: System integration of the electroplating device. The switching circuitry 
and impedance measuring electronics are physically separate from the electrode array (a 
ribbon cable, not shown, connects the two sections). Electroplating solution is introduced 
into the culture well of the MEA and a Pt-wire anode is inserted into the solution.  
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2.2.4 Results 

We evaluated the performance of the electroplating device as well as the suitability of 

various plating techniques for proper adhesion and impedance tuning.  Specifically, these 

techniques included monitoring the impedance during DC current plating and between 

timed bursts of pulsed plating currents. Additionally, we investigated the role of electrode 

impedance in evoking action potentials during the stimulation of dissociated cortical 

cultures.  

The primary metric for evaluating device performance was the full spectrum 

measurement of the electrode impedance magnitude. In order to facilitate such 

measurements, a custom device was developed (in collaboration with Mr. Scott Buscemi) 

(Figure 2.9). This device enabled virtually any conformation of electrode selection, 

including multipolar configurations, through 206 digitally controlled switching and 

multiplexing elements (MAX335, MAX306).  A desktop computer, via a custom 

MATLAB interface, coordinated all communication between a dynamic signal analyzer 

(Stanford Research SR725, through GPIB) and the custom switching board (PIC 18F442, 

through RS-232). For full-spectrum impedance measurements, the signal analyzer was 

configured to source a small (<= 100 mV), sweeping sinusoidal voltage. For evaluating 

the performance of the electroplating device, the automated switching and measuring 

system was configured to apply the voltage source across an individual electrode, 

reference resistor, and a distant platinum wire ground. Specifically, the spectrum analyzer 

measured the voltage across the electrode and a 100 KΩ reference resistor using two 

instrumentation amplifiers (INA129P), and Matlab software calculated the impedance 

magnitude according to (4).  As a result of this implementation, we could measure the 
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full-spectrum impedance magnitude of 60 individual microelectrodes within a few 

minutes.  
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Figure 2.9: Automated Impedance Measurement tool. (A): System level schematic of 
Impedance diagnostic tool. Over 206 switching elements enable impedance measures of 
virtually any conformation, including common ground and intra-electrode schemes.  (B) 
High level schematic of the switching and impedance measurement circuit.  (C&D) 
Photograph of the impedance measuring system.  

2.2.4.1  Device Performance 

The primary goal for closed-loop electroplating was twofold: (1) lower the electrode 

impedance from its initial value to a relatively low target level and (2) minimize inter-

electrode variability. In order to test the electroplating device against these two goals, we 

electroplated platinum black onto 30 μm diameter Au electrodes in an Ayanda 

Biosystems MEA (MEAv5Au) to a target impedance of 75 KΩ (IPLS= 2uA, CPLS= 35, 

TPLS = 10 ms) (See Appendix B for more details) . Figure 2.10 demonstrates the 
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successful reduction of impedance by nearly 15-fold as well as reduction in inter-

electrode variability, with a coefficient of variation (Standard Deviation/ Mean) of 3% at 

1Khz.  Additionally, the results in Fig 2.10B indicate that the electroplated electrodes 

were better matched across a full range of frequencies, demonstrating that 1Khz 

impedance matching is useful for reducing variability across the entire frequency 

spectrum.   
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Figure 2.10: Reduction in electrode impedance variability. (A) Impedance Magnitude 
for (1) untreated 30 μm diameter Au electrodes in an Ayanda Biosystems MEA 
(MEAv5), and (2) platinized electrodes with a target impedance of 75 KΩ at 1Khz. (B) 
Coefficient of variation (Standard Deviation divided by the mean) for a set of 10 
electrodes after electroplating (blue traces).  Electroplated platinum black electrodes 
traditionally have substantial variation in their impedance magnitudes. For example, 
(Franks 2005) report variations of 600%.  
 

Given the automated features of the device, it is also possible to customize 

individual electrodes within a multielectrode array. Fig 2.11A illustrates the targeted 

variation achieved by modifying the plating density between quadrants of the MEA. 

Additionally, Fig 2.11B demonstrates the accuracy achieved when targeting various 

impedance magnitudes at 1Khz. The independent control enables the investigation of the 

role of microelectrode impedance in a variety of neural interfacing applications (e.g., 

biosensing, electrophysiology, neural prostheses).  In particular, one benefit to varying 
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target levels within a single MEA is that it allows for more controlled biological inquiry 

by removing variability that inevitably exits between experimental preps. Thus the same 

culture or target tissue can be investigated with a variety of matched electrodes.   
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Fig. 2.11: Independent electrode control. (A) Optical micrograph of an electroplated Ayanda 
Biosysems MEA (MEA60Au). Each 30 µm Au electrode within a quadrant of the planar MEA 
was electroplated with platinum to match impedances. Various plating densities (clockwise from 
left: w, x, y, and z uA/cm2) produced different surface morphologies corresponding to different 
colors). The red circles indicate three electrodes that were electroplated without feedback (B) In a 
separate study on a different MEA, each square (dashed line) represents an individual electrode in 
an 8X8 MEA.  The outer perimeter of each square indicates the targeted impedance magnitude at 
1Khz (KΩ), and the inner square represents the actual impedance value achieved by the device 
(clockwise from left, target impedance values of 50 KΩ, 100 KΩ, 15 KΩ, and 75 KΩ 
respectively).   

2.2.4.2 Pulsed Plating Performance 

Impedance matching is only useful if the microelectrodes can maintain a tight distribution 

near the target level during practical use. Unfortunately, normal MEA handling and use 

can introduce mechanical and electrochemical perturbations to the physical electrode that 

cause the electrode impedance to drift or shift from its original level. In order to test the 

robustness of electroplated electrodes as well as the suitability for pulse-plating to 

improve adhesion, we evaluated the resistance to mechanical wear of 30 μm diameter Au 

electrodes electroplated under two different conditions: (1) DC plating (IDC=1 μA or 0.35 
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nA/μm2) and (2) Pulsed-plating (IPLS = 2 μA or 0.70 nA/μm2, TPLS = 10ms, CPLS =35.) To 

account for the fact that the current density directly influences the electrodes’ porosity 

and mechanical brittleness, we set the average current density of the pulse-plating trial 

equal to the current density of the DC trial (larger current densities produce more porous 

electrodes). Mechanical wear was applied to the MEA by immersing the unit in an 

ultrasonic bath for 30 seconds. Fig. 2.12 reports the mean relative shift in electrode 

impedance following ultrasonic agitation for both DC and pulsed-current methods. This 

figure demonstrates that pulsed-plated electrodes were much more mechanically robust 

than DC-plated electrodes. Further, despite a 40% shift in mean electrode impedance, the 

distribution remains relatively narrow (Coefficient of variance 15%).  
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Figure 2.12: Electrode Robustness. Electrodes were subjected to 30 seconds of 
ultrasonic agitation to emulate mechanical wear on the MEA devices. Shown is the shift 
in mean impedance for both DC and pulsed plating methods. When normalized for the 
mean relative shift, the data indicates that DC plated electrodes shifted 3.5 times more 
than pulsed-plated electrodes.  

2.3  Applications to Neural Stimulation 

In sections 2.1 – 2.2, we presented technologies that explicitly control the size, location, 

density, and electrical properties of microelectrodes.  Control over these electrode 
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variables presents many opportunities for improved stimulation, including (1) modeling 

voltage stimulation induced electric fields, (2) modeling common-ground induced voltage 

fields (current stimulation), (3) garnering spatial control over the stimulus input (4) 

sculpting dish-wide voltage field contours, (5) simplifying stimulus artifact elimination, 

and (6) imposing voltage safety constraints. In this section, among the many possibilities 

for exploring electrode-induced stimulation behavior, we present applications for voltage 

stimulation and for improved control over the voltage fields.  

Voltage stimulation, though highly effective in eliciting cellular responses, is 

directly scaled by the electrode impedance. Thus, without explicit knowledge of the 

electrode impedance, it is not possible to model the electric fields in the dish or to derive 

charge-balanced stimuli (for artifact suppression).  As a result, the same stimulus 

protocol, when applied to mismatched electrodes, will produce entirely different electric 

fields. Despite these disadvantages, positive-then-negative biphasic voltage stimulation 

has been shown to be one of the most effective methods for eliciting a broad response 

from cultured neural networks (Waganaar 2004). Further, it has been shown that cellular 

responses are nearly perfectly time locked to the downward voltage transition between 

phases (Bakkum 2007), allowing for the possibility of precisely timing cellular 

excitation. In this section, we illustrate how this effective stimulus strategy can be made 

even more potent by reducing and matching the electrode impedance, in essence making 

the use of voltage stimuli much more reliable and predictable.  

In order to experimentally investigate the relationship between the electrode 

impedance properties and the biphasic voltage stimulus applied, the electrode model in 

Fig. 2.1A was used to derive a closed form expression that relates the electrode circuit 
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parameters to the induced voltage fields in a culture dish. As a first order approximation, 

which ignores the non-linear variation of the electrode elements as a function of voltage, 

the maximum voltage produced in the media from a biphasic pulse can be shown to be: 

( )⎟
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⎝

⎛
+

−
+

−
≈−
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R

Vmax   (2.6) 

where ΔV equals the maximum change in stimulus voltage, and Δt represents the 

transition time between stimulus phases. For this analysis, we divided the spreading 

resistance into two components, RS1 (the proximal resistance from the electrode to a 

theoretical iso-potential shell that stimulates a cell) and RS2 (the resistance of such shell to 

the rest of the media and the distant reference electrode) such that RS = RS1 + RS2.   

In (2.6), decreasing the impedance has the effect of increasing capacitance, CI, 

which allows for a reduction in ΔV without compromising the magnitude of Vmax. Thus, 

a greater number of cells can be stimulated with a lower amplitude stimulus (Figure 

2.13A). This theoretical analysis is experimentally demonstrated in Fig. 2.13B, in which 

dissociated cortical neurons in an MEA were consistently stimulated at lower magnitudes 

using electrodes with lower impedance values (culture methods are presented in (Potter 

2001)). An alternative (and equally valid) method to interpreting the results is to consider 

that for a given voltage, a lower impedance electrode will deliver more current to the 

dish. Thus, low impedance electrodes provide a great deal more ‘head-room’ to apply 

larger, more effective stimuli without exceeding the electrochemical safety limits. 

Additionally Figure 2.13B, also shows the importance of minimizing electrode variability 

for voltage stimulation, as impedance clearly plays a role in determining the scope of an 

evoked response.   
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Figure 2.13: The effect of impedance on the cellular response to stimulation. 
(A) Theoretical normalized Vmax as a function of the stimulus voltage and electrode 
impedance using the model depicted in Fig 1A. For a given stimulus input, the nominal 
impedance electrode (blue trace: RS = 10KΩ, RM = 1KΩ, CI  = 3pF, Δt = 10 ns) presents a 
lower Vmax to the culture dish than the lower impedance  electrode (CI,2 = 4xCI = 12 pF) 
(Inset) Shows the parameters of the applied voltage waveform. (B) The actual cellular 
response (as a function of stimulus magnitude) of a low impedance electrodes (15 KΩ +/- 
4) is compared to a high impedance electrodes (75 KΩ +/- 12). Cellular Response is 
defined as the total number of spikes, recorded across the entire dish, that occur within 50 
ms of a stimulus. Biphasic pulses with random inter stimulus intervals and random order 
of magnitudes were applied to the electrodes. Low impedance electrodes were able to 
elicit a greater cellular response for a given stimulus magnitude.   
 

2.4  Discussion 

In this chapter we presented microfabrication technologies for precisely controlling key 

electrode parameters including size, location, density, and impedance.  Additionally, we 

used models and experimental results to illustrate the importance of these parameters to 

influencing the efficacy of stimulation.  To facilitate increases in electrode density and 

count, two microfabrication techniques were developed that will ultimately enable greater 

control over dish-wide voltage fields. Further, we demonstrated that PCB surface 

irregularities could be overcome to permit the use of a very inexpensive platform for 

fabricating high-density arrays. Finally, we developed a closed-loop electroplating 

approach and pulsed plating protocol that performed according to theory and was able to 
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match all electrodes with uniformly low impedance magnitudes. The applications for 

low, matched impedances were demonstrated in experiments with dissociated cortical 

cultures.  

In the present device, we elected to do all of the impedance computation using 

MATLAB, delegating only switching and sampling functions to the PIC microcontroller. 

While this was simpler to implement, this strategy suffered from have having long 

communication delays between the laptop computer and microcontroller, which 

significantly limited the rate at which we could sample the electrode impedance (2 Hz). 

Using a nominal electroplating density (0.12 nA/µm2), the platinum black electroplating 

process usually takes on the order of 10 seconds to coat the electrode; thus, this sample 

rate is too slow for very tightly controlled systems. Lowering the current density to 

decrease the plating rate is unfavorable, as it would also decrease the surface area of the 

electrode. Intermittent polling (between bursts of electroplating current) solved this 

problem and presented adhesion advantages, but, in the future, real-time computation at 

the microcontroller would speed up the application significantly.  

To simplify computations, our device only uses the magnitude of the AC response 

at the electrode. Although this choice performed adequately for our experiments, a more 

robust method that can reduce sampling noise and provide additional information could 

be preferable and provide better results. By finding the projections of the AC response 

onto the space of the test signal, that is, finding the in-phase and quadrature (I&Q) 

components of the response, it is possible to extract precise magnitude and phase 

information and to monitor the impedance at different frequencies simultaneously. This 
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extra information can be used to automate other aspects of the process, such as variations 

in plating density, to obtain better-matched electrodes.  

In addition to implementing I&Q methods for rapid automated plating, future 

improvements will include further characterization of pulse-plating as well as 

implementation of alternative control strategies. Specifically, coupling a theoretical 

analysis of pulse-plating with experimental exploration of the pulse-plating parameter 

space (period, duty cycle, etc.) could generate optimum electroplating protocols for 

generating robust electrodes.  Additionally, in the current device, the electroplating 

parameters were fixed and only the duration of the electroplating process was allowed to 

vary; future versions will explore more sophisticated control strategies, such as a 

proportional controller that varies the number of pulses applied based on the proximity of 

the electrode impedance to the target value.    

For this work, we monitored the mid-band of the impedance magnitude because 

this frequency range was the most important to electrophysiologists interested in action 

potential studies. However, an alternative approach for MEMs applications may be to 

monitor the impedance at higher frequencies. Our own preliminary results, as well as the 

electrode models presented in section 2, indicate that this measurement is almost 

exclusively dominated by the spreading resistance, which is related to two variables: 

(1) the resistivty ρ of the solution (which is unlikely to change during electroplating) and 

(2) the base area, AB. This suggests that for micromolding applications, monitoring the 

high-band impedance during electroplating may allow for precise device construction, as 

the impedance in the high-band does not change until the electroplated material 

completely fills the mold. 

B
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CHAPTER 3 

IMAGE PROCESSING TECHNOLOGIES:  
OBSERVING NEURAL CELLS  
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Although the customized electrodes of chapter 2 are critical for stimulating neural tissue, 

these extracellular electrodes may not be well suited for high-resolution, single-cell 

observation (i.e. recording) of the stimulus response. Optical imaging and image analysis 

techniques, however, provide a powerful means to rapidly and accurately assess the 

geometry, location, and evoked activity of individual cells.  In this chapter, we present 

novel image processing methods that permit functional and spatial analysis of 

populations of neuronal somata possessing rich morphological detail and dense neurite 

arborization throughout 2-D and 3-D constructs in vitro.  This image analysis system 

incorporates several automated features for the discrimination of neurites and somata by 

initially classifying features in 2-D and subsequently merging these 2-D classifications 

into 3-D objects, thus utilizing 3-D reconstructions to automatically identify and correct 

segmentation errors.  Additionally, we present algorithms for the automated functional 

tracking of individual neurons within 2-D cortical cultures.  

As image acquisition techniques and cell culture technology advance to permit 

utilization of complex 2-D and 3-D environments, there is an increasing need for analysis 

tools to facilitate the investigation of cell morphology and function within this 
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framework.  Specifically, automated image analysis routines for rapid and accurate 

segmentation of fluorescently labeled neural cells and/or their processes would facilitate 

such studies.  Of particular interest to this work is the ability to automatically identify the 

locations of individual cell bodies with respect to the electrode and to rapidly track 

stimulus evoked activity. Unfortunately, problems typically associated with automated 

image analysis are exacerbated in neural systems, where issues such as diverse cellular 

morphologies, process outgrowth, and high cell densities confound typical analyses.   

Automated segmentation algorithms provide a means for high throughput 

mapping of complex morphological and functional interactions. Although many routines 

can accurately quantify nuclear (i.e., spherical) labeling in 2-D or 3-D, nuclear stains 

alone are inherently limiting as they omit information pertaining to such important 

measures as cell morphology, neurite outgrowth, and cell-cell interactions (e.g. receptor-

mediated or synaptic).  The goal of this work was to bridge the analysis gap presented in 

(1.2.3) and offer researchers tunable, automated image analysis techniques with user-

controlled corrections that were optimized to deal with issues specific to functional and 

spatial analysis of 2-D and 3-D neural systems.  

Previous studies have addressed 2-D and 3-D nuclear segmentation techniques 

(Irinopoulou 1997; Lin 2005).  One particular algorithm repeatedly employed is the 

highly efficient watershed algorithm (Lin 2003; Adiga 2001).  Despite the widespread 

use of this algorithm for delineating cellular objects, this technique is notorious for over-

segmentation, an error that occurs when distinct nuclei are broken down into multiple 

components.  Other investigators have reduced this problem by using a priori knowledge 

to skillfully sculpt image contours that guide object segmentation.  For example, one 
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technique used a hybrid of gradient cues and geometric distance transforms, to shape the 

image based on both geometric and intensity features (Lin 2003).  Another technique 

avoided region based segmentation algorithms altogether and drew lines between coupled 

indentations or ‘necklines’ to split overlapping nuclei (Belien 2002).  While these 

processing methods improved segmentation results, they could not entirely prevent over-

segmentation.  For the remaining errors, post-processing has proven to be very effective.  

In particular, Lin and Adiga have demonstrated excellent results by using geometric 

measures (e.g, area, convexity, and texture) to define merging criteria for neighboring 

segmented objects (Adiga 2001; Lin 2003; Lin 2005).  

Among the challenges in neural image processing are to develop algorithms that 

rapidly distinguish somata from neurites and that provide automated compensation for 

over- and under-segmentation errors.  For this application, in which the intention is to 

extract the boundaries of somata from images with dense neurites, the watershed ‘over 

segmentation’ of neurites becomes an asset.  The spiny and dimpled projections (or 

recessions) of the neurites ‘misdirect’ the watershed routine and produce heavily 

splintered and fractured elements.  Cell bodies, on the other hand, tend to have rounder, 

smoother morphologies.  In this regard, the segmentation of cells and neurites take on 

entirely different shapes and sizes, and, it is on the basis of these differences, that an 

algorithm could classify and thus remove unwanted features from the image.  However, 

while fractured segmentation is intended for neurites, it is undesirable when it occurs in 

somata.  In the case of 3-D images, software routines could remedy cell body over-

segmentation by using 3-D context clues to identify problem areas.  Specifically, one 
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could first segment cells in each 2-D frame, and use information from overlapping cells 

in adjacent frames to identify errors.  

In this chapter, we present methods that rapidly distinguish cell bodies from 

neurites in three different applications: (1) 2-D somata segmentation, (2) 3-D somata 

segmentation, and (3) 2-D functional segmentation.  First, we develop novel techniques 

for rapidly distinguishing somata from neurites, artifacts, and other features. Second, we 

build on this platform to segment somata from 3-D images and to automatically identify 

and correct both over- and under-segmentation errors. Next, we again build on the 2-D 

segmentation platform to enable the automated functional tracking of network activity, 

which greatly assists our ultimate goal of tracking stimulated activity. This analysis 

platform provides valuable tools for unbiased measurements of neural cells within a 2-D 

or 3-D context. 

3.1 Automated 2-D Somata Segmentation 

Among the many variables that influence the neural response to extracellular 

stimuli, is the location of the neuron with respect the stimulating electrode(s). Thus, the 

ability to identify the precise locations of neurons within images possessing complex 

morphologies is of critical importance. In this section, as a first step towards functional 

tracking of 2-D network activity, we present algorithms that rapidly and automatically 

identify the boundaries of neural cell bodies. This work lays the foundation for automated 

3-D segmentation and 2-D functional tracking presented in (3.2) and (3.3) respectively.  
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Figure 3.1 Flow diagram for the 2-D segmentation of cell bodies.  (Top) Flow diagram 
for 2-D segmentation.  Graphic representation of 2-D segmentation process: (A) The 
color component for the fluorescent dye of interest was extracted to form an achromatic 
intensity image; (B) A global threshold was applied for each 2-D frame in the z-stack, 
separating pixels into foreground (regions of interest) and background;  (C) The regional 
minima were defined by applying the Euclidean distance transform (or alternatively the 
chebyshev transform) to the ‘thesholded’ image; (D) The watershed algorithm was 
applied to the transformed image: the mottled contours of the neurites produced very 
fractured segmentation boundaries, while the rounder, smoother morphologies of the 
soma produced accurate segmentation boundaries; (E) Objects were classified as either 
soma or neurite fragments according the area enclosed by the watershed lines, and neurite 
fragments were removed from consideration. (F) Picture of the cell body boundaries 
projected back onto the original image.  
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3.1.1 Color Filtering and Global Thresholding  

As a first step toward identifying somata, we used color and intensity cues to separate the 

image into foreground and background regions.  Through a Matlab routine, the user could 

examine color-specific intensity histograms for each 2-D frame in the z-stack.  For a 

specified dye, the color component was extracted, and each frame was transformed into a 

grayscale image (Figure 3.1A), whereupon a global intensity-based threshold, T, was 

applied to separate the image pixels into foreground and background (Figure 3.1B).  

Pixels with an intensity value above the threshold were identified as potentially belonging 

to somata, and were assigned a value of 1.  Pixels below the threshold were assigned a 0 

or background value:   

⎭
⎬
⎫

⎩
⎨
⎧ ≥

=
Else   0

T  I   1
  y)I(x,         (3.1)  

where x and y represent the pixel indices within a 2-D image frame.  Following the 

application of the threshold, the remaining objects in the binary image consisted of 

somata, neurites, and image artifacts.   

3.1.2 Optional Morphological Filtering  

After separating images into foreground and background regions, morphological 

operators can be applied to remove holes inside remaining objects (and to separate 

overlapping objects that are connected with very narrow regions).  In our test images, 

there was very little intensity variation among the pixels that represented somata; 

therefore, the application of a global threshold did not produce holes in the foreground 

objects.  (In order to capture images with rich morphological detail, we used a high 
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intensity light source during image acquisition, and, as a result, many of the soma and 

neurite pixels were at or near saturation.)  Thus, for most images, we did not require 

morphological filtering to reshape the binary images; however, in some images, where 

cell clustering was rampant and neurite outgrowth pervasive, we used a ‘small’ diamond 

shaping-element to mildly erode the post-threshold, binary images:   

 k   wherey),I(x, k   y)I(x, == o    (3.2) 
1

1 11

1

0

0 0

01

1

0

0 0

0

1 11

In general, there may be advantages to avoiding morphological filtering, as the 

resulting smoothing can remove spatial cues that naturally indicate overlapping objects 

(Crespo & Maoio 1999; Kumar & Shunmugam 2006).  Given the lack of intensity 

variation within the soma of our images, it was important that ‘necklines’ and other 

inflection points were preserved to help properly define the regional minima that guide 

object segmentation.  So, while the successive use of dilation and erosion operators may 

help remove some neurite features, such measures may also remove critical boundary 

indicators.  

3.1.3  Distance Transforms  

The successful application of the watershed algorithm requires that each object is marked 

by a regional minimum and that the image contours more or less follow the object 

boundaries.  Unfortunately, natural intensity gradients are not sufficient to define the 

regional minima for each object (Lin et al 2003).  This was particularly true of our test 

images, where nearly saturated pixels presented very little texture in the soma region.  To 

derive the regional minima and object contours, the Euclidean distance transform was 

applied to the stack of binary images (Fig. 3.1C):  
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( ) ( )2
b

2
b yyxx  y)I(x, −+−=   (3.3) 

where xb and yb represent the coordinates of the nearest background pixel.  The local 

minima were assigned to pixels with the maximum distance value to the nearest 

background pixel.  For most test images, the Euclidean transform produced satisfactory 

results.  However, some images with a high degree of clustering and dense neurite 

outgrowth, the chebyshev or ‘chessboard’ transform was used to minimize over-

segmentation errors:   

( )bb yy ,xxmax  y)I(x, −−=   (3.4) 

The Euclidean distance transform accounts for the projection along both the x and y axes 

between a given pixel and its geodesic distance to background.  Because the chebyshev 

transform defines values based on the maximum projection along the x- or y-axis, the 

determination of the local minima may be more immune to erratic variations along one 

axis.  Thus images with extremely rich and complex morphologies appear to be less 

susceptible to segmentation errors.  

3.2.4  2-D Watershed Segmentation and Object Classification  

After the regional minima were defined by the transformed images, we applied a 2-D 

watershed algorithm to segment the objects (Fig. 2D). The watershed algorithm involves 

interpreting the image as a surface in which points of the same intensity value are at the 

same height, and classifying points according to the direction of the gradient at their 

respective locations: (1) regional minimum, points that reside at a local minimum of the 

surface, (2) ‘catchment basins’, points whose gradients point in the direction of the same 

minimum, and (3) ‘watershed lines’, points that reside at a local maximum, and thus 
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could belong to any adjacent minima.  A common analogy for describing the watershed 

algorithm involves punching a hole in each regional minima and then flooding the entire 

image from the bottom.  Watershed lines or segmentation boundaries are then constructed 

to prevent distinct flooding regions from overlapping.  Many details on 2-D and 3-D 

watershed implementations have been previously described (Adiga & Chaudhuri 2001; 

Gonzalez & Woods 2002).  

The watershed algorithm produced segmentation boundaries that were related to 

the image contours.  Whereas the mottled contours of the neurites resulted in highly 

fractured objects, the relatively smooth morphologies of cells produced larger and 

rounder objects.  It was on the basis of these differences that we easily distinguished 

between object types.  Figure. 3.2 demonstrates a typical bi-modal distribution for 

segmented objects binned by pixel area.  Objects less than the area threshold, α, were 

labeled neurite fragments, and objects greater than α were labeled cellular objects.  

Subsequently, all segmentation boundaries corresponding to objects with areas lower 

than α were dismissed from consideration (Fig. 3.1E).  The populations were not 

perfectly distinct, so there was a small probability that some neurite fragments remained; 

likewise, a few small cell bodies could have been removed.   
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Figure 3.2 Distribution of segmented objects binned according to pixel area.  The 
morphological differences between neurites and somata produce watershed segmentation 
boundaries that, when binned according to pixel area, fall into two distinct populations. 
The threshold, α (vertical, dashed line), is used to separate objects into neurites and cell-
bodies.  Objects with a pixel count or area ≥ α are labeled ‘cells’; objects with an area < α 
are labeled ‘neurite fragments’.  (Inset) Watershed boundaries for somata and neurite 
fragments. 
 

3.2 Automated segmentation of 3-D somata 

In the previous section, we demonstrated an approach to automatically identify 

soma boundaries in 2-D cultures. While these algorithms make strides towards our goal 

of automatically tracking stimulus evoked activity, they lack the ability to analyze cells in 

a more natural, 3-D environment. In this section, we build on the 2-D algorithms from the 

previous section to develop routines that segment somata in three dimensions.  

3.2.1 Algorithm Overview  

In order to segment 3-D cellular objects in a confocal stack of 2-D images (z-

stack), we considered two different strategies:  (1) segmenting cells in 2-D slices and 
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merging overlapping cellular objects (Belien 2002; Irinopoulou 1997; Tekola 1996), and 

(2) segmenting cells in 3-D volumes (Adiga 2001; Chawla 2004; Sarti 2000).  We choose 

the former because an analysis of this type easily lends itself to visual feedback and rapid 

error correction, and the merging of 2-D ‘blobs’ into 3-D cellular objects provides an 

opportunity for error identification and correction.  Furthermore, 2-D segmentation with 

3-D ‘stitching’ can be computationally much less expensive than 3-D segmentation and 

may enable more rapid processing.  Undoubtedly, some of these advantages are not 

exclusive to this strategy, but they do more naturally fall out from this approach (and 

clearly build on our work from section 3.1).   

3.2.2  3-D Merging and Error Identification 

Following the watershed segmentation and object classification of (section 3.1.4, Fig 

3.1D), each 2-D frame contained segmented objects that fell into one of three categories: 

(1) correctly segmented somata, (2) false positives (neurites, artifacts, and over-

segmented cells), and (3) false negatives (under-segmented somata and unidentified cell 

bodies).  To identify the cellular boundaries in three dimensions, we merged 2-D objects 

into 3-D cell bodies, and we used conflicts that arose during merging to identify and, in 

most cases, automatically correct segmentation errors (Fig. 3.3).  The algorithm for 

merging 2-D ‘blobs’ into 3-D cells involved assessing the merger from two vantage 

points: (1) the forward projection of a 2-D cellular object onto overlapping objects in the 

adjacent frame and (2) the reverse projection of overlapping objects back into the 

original frame. These two vantage points insured that only cells with maximum mutual 

overlap were merged.  (A scenario, which we refer to as ‘unrequited overlap’, can arise 

where an object, C1, in Frame Fi maximally overlaps with another object, C2, in Frame 
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Fi+1 which shares the greatest maximum, mutual overlap with yet another object, C3, in 

Frame Fi.)  

Fi+1Fi+2

 

Figure 3.3 Illustration of 3-D merging and error identification.  (Left) This figure 
exemplifies segmentation results for three cells—A, B, and C—which appear in frames 
Fi, Fi+1, and Fi+2.  In Frame Fi+1, we show three correctly segmented somata. In Frames Fi 
and Frames Fi+2 we illustrate over-and under-segmentation errors respectively. 2-D 
objects are merged into 3-D cell bodies if the percentage overlap between the objects is ≥ 
β, where β can be any number between 0 (no overlap) and 1 (100% overlap).  The 
merging algorithm considers two frames at a time, and segmentation errors are identified 
when multiple objects in a single frame exceed β.  (Top Right) For example, cell B from 
frame Fi+1 was projected into Fi+2. All object(s) in Fi+2 that overlapped with B’s projection 
(dashed cell boundary) were considered as merging candidates; in this case, the object 
B+C satisfied the percentage overlap criteria.  However, the reverse projection of B’s 
best merging candidate, B+C, back onto the previous frame identified two objects that 
satisfied the merging criteria: B and C.  Because three objects—B, C, and B+C—were 
eligible for merging, the under-segmentation error was identified (gray box).  (Bottom 
Right) In a similar fashion, the forward projection of A1 into Fi+1 overlapped best with A; 
however, the reverse projection of A1’s best merging candidate significantly overlapped 
with two objects: A1 and A2, thus identifying a 2-D segmentation error. 
 

In addition to the mutuality criteria for merging 2-D objects into 3-D cell bodies, 

we required that the percentage of object overlap between 2-D objects exceed an 

empirically defined threshold, β - defined as the proportion of the intersecting pixels, 

Area(ci ∩ ci+1), to an object’s pixel count, Area (ci).  If multiple objects from either 

vantage point exceeded β, then a segmentation error likely occurred.  Any number of 

Fi 

Fi+1 

Fi+2 

Fi Fi+1 Fi+1 Fi 

  Fi+2 Fi+1 
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actions could then be taken to resolve the conflict, such as merging over-segmented 

objects, splitting under-segmented objects, or flagging the offending object pixels for 

manual user validation (at the conclusion of all automated routines).  For our application, 

we choose a simple mode of action: for all errors identified in the forward projection, we 

merged objects and set flags for user validation; for errors identified in the reverse 

projection, we only flagged the offending objects for user validation.  (Empirically, it was 

determined that most identified errors required merging but that under-segmentation, 

which requires splitting, was more likely to be identified in the reverse projection.)  The 

threshold, β, took on any value between 0 (no overlap) and 1 (complete overlap), where 

the smaller the parameter implemented, the more sensitive the algorithm was to potential 

errors.  In any frame, if a 2-D cellular object was not connected to pixels in the adjacent 

frame(s) it was assumed to be an artifact or neurite and was removed.  The algorithm is 

summarized in pseudo-code form below:  

 

 
Procedure 3Dmerge_ErrorCheck 
 
Fi = Frame in z-stack 

FiC  = {Set of 2-D objects in Frame, Fi} 

j
FiC = 2-D object in  FiC

Initialize: = {Ø}; Set of objects marked for error FiE

Initialize: = Fi; Set of objects eligible for 3-D merging FiCe FiC ∀
 
For each Frame in the z-stack, Fi  

  For each eligible cell, , in the current Frame, Fi j
FiCe

   Fk = Fi  
      Repeat 

1. Project j
FkCe  onto Fk+1  

   ;  is the set of overlapping objects in  1Fk
j
Fk CCeCo +∩← Co 1Fk+C

               If objects in  exceeding β, Cb, are greater in number than 1 Co
    A. Merge Cb in 2-D  

B. Flag objects for error check;  j
Fk11Fk CeCbEE ∪∪← ++ Fk

    2.  Project Cb onto Fk 
        ; Where Co is set of overlapping objects in  FkCCbCo ∩← FkC
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        If objects in Co exceeding β, Cr, are greater in number than 1 

    A. Flag objects for error check; CrEE Fk ∪← Fk  

        3.  If AND Cb share the greatest mutual overlap j
FkCe

A. Merge and Cb in 3-D  j
FkCe

B. Remove Cb from the eligibility set,  1FkCe +
C. Increment Fk  

      Until j
FkCe  is NOT attached to a new object in 3-D (Step 3A) 

 

3.2.3  Software Assisted Manual Validation  

During the 3-D merging routine, a database was constructed to catalog information about 

each cell, including its geometric properties (such as eccentricity and concavity) and 

pixel coordinates.  The benefits of the database were twofold: (1) it provided valuable 

statistics and information about the segmented cells, and (2) it was useful for rapid visual 

feedback and user-guided corrections.  The indices that corresponded to the boundaries of 

segmented objects were projected onto the original 2-D images in the z-stack.  The user 

validated the images by scrolling through each 2-D frame to observe the segmentation 

boundaries.  To expedite manual edits, conflicts identified during 3-D merging were 

flagged (with red pixels) to draw attention to the most probable areas that required user 

input (Figure 3.4).  The mouse was used to display statistics about a suspicious or flagged 

cell (such as cell ID number, area, equivalent diameter) to help assess the accuracy of a 

particular cell boundary.  Following a decision about the accuracy of the automated 

boundary, the following mouse commands were used to manually edit the image:  

Left click: add/delete cell in current 2-D frame  

Middle click: merge over-segmented 2-D cells  

Right click (and hold): manually draw cell boundary  
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Figure 3.4: Illustration of software tools. The segmentation algorithms were integrated 
into a graphical user interface (GUI) to facilitate visual feedback, parameter selection, 
and software-assisted error correction. (A) Segmentation boundaries (white) are projected 
onto individual frames in the z-stack (a scroll bar, not shown, is used to switch between 
frames.) Segmentation data, including cell ID number, area, and diameter (white box), 
are displayed for a selected cell. (B) Potential segmentation errors are automatically 
flagged in red. (C) A user-applied mouse command instructs the software to perform a 
merge operation. Blue pixels outline the object in the forward adjacent frame that is 
connected to the merged cell. (Gray pixels, not shown, indicate connected objects in the 
previous frame.) 

 

Each correction, addition, or deletion of a cell in a 2-D frame evoked a cascade of 

procedures that managed the creation, deletion, merging, and splitting of 3-D cells.  Cells 

were automatically merged in 3-D if they satisfied the maximum overlap criteria (as 

defined in section 3.2.2).  Segmentation lines for 2-D cells in adjacent frames that were 

merged to a user-selected cell were color-coded and displayed in the current frame.  

These methods allowed the user to confidently produce near 100% accuracy in very little 

time.  This is especially useful in applications where highly accurate on-line cell 

segmentation and identification is required for optical tracking of network activity.  

10 um 40 um 
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3.2.4  Algorithm Performance 

The segmentation routines were rigorously tested against a variety of image and 

culture conditions. These results indicate that in practical implementation, segmentation 

accuracy could approach 100%.  (Dr. Kacy Cullen developed the cultures, acquired the 

images and assisted in testing the 3-D segmentation algorithms) 

3.2.4.1 Test Cultures    

The cultures for image testing were prepared with the following protocol:  Neurons were 

derived from embryonic day 17-18 rat fetuses by isolating the cerebral cortices, which 

were dissociated using trypsin (0.25%) + 1mM EDTA (10 minutes at 37 °C) followed by 

DNase (0.15 mg/mL).  Neurons were entrapped in 3-D culture matrices of Matrigel (7.5 

mg/mL; BD Biosciences) or SeaPrep agarose (1.5%; Cambrex) with or without collagen 

IV covalently crosslinked (0.3-0.6 mg/mL), as previously described (Cullen & LaPlaca 

2006b).  The cultures were 500 - 1000 μm thick at a final cell density of 3750 – 5000 

cells/mm3, were fed neuronal medium (Neurobasal medium + 2 % B-27 + 500 μM L-

glutamine) and maintained in a tissue culture incubator (37 °C, 5% CO2, 95% humidified 

air).  
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Figure 3.5: Image testing categories. Variation in testing conditions was achieved by 
dividing cultures into four categories based on culture complexity. Levels one through 
three consisted of mainly spherical neurons with increasing amounts of neurite 
outgrowth. Specifically, (A) level one had spherical neurons with few neurites and no 
cell clustering; (B) level two had mainly spherical neurons with increased neurite 
outgrowth and little clustering; (C) level three had robust neurite outgrowth with 
increased cell clustering (yellow circles). Finally, (D) level four had increased 
complexity due to more diverse, non-spherical neuronal morphologies (white circle), 
cell clustering (yellow circle), and significant neurite outgrowth. Images are 2-D 
reconstructions of confocal z-stacks (100 µm total thickness); scale bar = 50 µm. 

Cells were labeled using fluorescent probes for distinguishing live and dead cells 

(LIVE/DEAD Viability/Cytotoxicity Kit; Molecular Probes, Eugene, OR).  Cell cultures 

were rinsed in buffer and incubated with 2 μM calcein AM and 4 μM ethidium 

homodimer-1 at 37 °C for 30 min and rinsed in PBS.  After viability/cytotoxicity 
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staining, cells were viewed using a Laser Scanning Confocal Microscope (Zeiss 510, 

Oberkochen, Germany, 1 photon mode).  Multiple z-stacks (5 - 20 μm plane-to-plane 

separation) were acquired from the different culture conditions, and were exported as 

AVI files with 512x512 pixels (per frame) and 24-bit color depth.   

3.2.4.2  Defining the ‘Gold Standard’ 

The automated segmentation routines were tested on sixteen confocal z-stacks 

that were divided into four categories of culture complexity, based on the assumption that 

increasing complexity in neuronal morphology and neurite outgrowth (network 

formation) would correspond with increased difficulty in accurate image processing and 

hence require more complex algorithms to minimize error.  All levels utilized 3-D 

cultures of primary cortical neurons homogeneously distributed throughout thick (>500 

μm) matrices.  The variables distinguishing the culture parameters were matrix type 

(ranging from bioactive collagen-laminin to relatively bio-inert agarose; influencing 

neuronal morphology), cell density/clustering (causing overlapping somata), and amount 

of neurite outgrowth (a function of matrix permissiveness; influencing amount of signal 

not related to cell soma counts) (Figure 3.5).  The first three categories (of four) utilized 

agarose as the matrix material, and resulted in the maintenance of a spherical or near-

spherical neuronal morphology.  The difference in levels 1, 2, and 3 are due to the 

amount of neurite outgrowth and resulting cell clustering.  Specifically, level 1 

represented a baseline with spherical neuronal morphology throughout culture, relatively 

low cell density (i.e., little clustering), and demonstrate a paucity of neurite outgrowth.  

Level 2 cultures had a moderate increase in neurite outgrowth, with similar cell density 

and spherical morphology as level 1.  Level 3 cultures demonstrated extensive neurite 
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outgrowth with an associated increase in cell density.  Alternatively, level 4 cultures were 

developed within a bioactive collagen-laminin matrix, which neurons were able to 

actively remodel and thus may assume a variety of complex in vivo-like (e.g., non-

spherical) morphologies.  Level 4 cultures also demonstrated significant neurite 

outgrowth, and although these cultures had a moderate cell density, there was cell 

clustering in some cases.  These descriptions are summarized in Table 3.1.   

 

Table 3.1: Description of 3-D neuronal culture parameters by category number 

Soma Morphology Neurite Outgrowth Cell Clustering

Level 1 Spherical Low Low
Level 2 Spherical Medium Low
Level 3 Spherical High Medium
Level 4 Complex High Medium  

 

The same set of software tools that enabled automated segmentation with click-

and-correct edits were used for an altogether different method of cell segmentation:  

software-assisted manual segmentation.  For this application, the 2-D automated 

segmentation routines were executed (without 3-D merging routines) to record the 

indices of potential cells.  In order to prevent biasing the user, visual feedback was 

suppressed, and the user clicked on individual cells in each 2-D frame to indicate which 

objects were cells.  The index of the user’s click was compared against a 2-D database of 

potential cells; if a match was found, the automated segmentation boundaries of the 

potential cell were displayed.  Click commands selected or de-selected the cell, provided 

an alternative (non-watershed based) segmentation boundary, or allowed the user to 

manually segment the cell.  As the user moved between frames, 3-D merge and split 
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operations were automatically performed, and visual feedback was provided to indicate 

the relationships of cells between frames.  This method of software-assisted segmentation 

allowed us to manually build a collection of test images with which to evaluate our 

automated routines.  For each image evaluated, skilled technicians carefully identified 

each cellular object in both 2-D and 3-D.   

3.2.4.3  Validation Methodology and Statistical Analysis 

For validation of software performance, the total cell count, number of false 

positive cells, and the number of false negative cells were recorded at various stages in 

the routine.  The accuracy and error percentage were calculated in comparison to manual 

counts attained by experienced technicians.  We chose a conservative validation approach 

to analyze the total error present at various stages of the algorithm.  Specifically, the error 

analysis was based on the total error percentage, defined as the percentage error based on 

the sum of the number of false positives plus the number of false negatives (calculating 

accuracy based purely on count output may artificially raise performance since false 

positives and false negatives can potentially cancel out).  Two-way repeated measures 

general linear model ANOVA was performed with culture complexity (i.e., level 1-4) as 

an independent variable, sub-routine point as the repeated variable, and count accuracy, 

false positive (%), false negative (%), and total error (%) as dependent variables.  When 

significant differences existed between groups, Tukey’s pair-wise comparisons were 

performed.  For all statistical tests, p<0.05 was required for significance.  Data are 

presented as mean ± standard deviation.  
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3.2.4.4 Validation Results 

In order to assess the fidelity of the algorithms, automated software segmentation 

boundaries were compared to the software-assisted manual segmentation.  Specifically, 

the results of the automated routines were evaluated without 3-D error correction, with 3-

D error correction, and following manual correction of software-defined probable errors 

(manual correction was only allowed if the software flagged a potential error; in other 

words, errors that were not flagged by the software, but were otherwise obvious to the 

tester, were ignored).   At each of these stages, the following parameters were attained: 

(1) cell count, (2) over-counted cells (i.e., number of false positive cells), and (3) missed 

cells (i.e., number of false negative cells).  Software defined probable error points were 

then manually assessed by experienced technicians and the appropriate action was taken 

(i.e., correction or no correction - although the vast majority of flagged errors required 

correction).  The software quantification parameters (e.g., area threshold (α) and percent 

3-D overlap (β)) were empirically optimized for only one image-stack in each level, thus 

the same settings were maintained within each level to demonstrate robustness of the 

system.  This multi-level analysis permitted assessment of the value of 3-D error 

identification and user-driven correction in reducing error and enhancing the accuracy of 

the routine output.    
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Table 3.2: Results 

Level Sample 
Number count false+ false- count false+ false- count false+ false-

1 01 26 27 2 1 25 0 1 25 0
02 29 29 0 0 29 0 0 29 0 0
03 28 26 0 2 26 0 2 26 0 2
04 37 39 3 1 37 1 1 36 0 1

mean error (%) = 4.0 3.4 mean error (%) = 0.7 3.4 mean error (%) = 0.0 3.4
stand. dev. (%) = 4.6 3.0 stand. dev. (%) = 1.4 3.0 stand. dev. (%) = 0.0 3.0

2 01 42 42 0 0 42 0 0 42 0
02 66 68 2 0 68 2 0 66 0 0
03 65 71 6 0 68 3 0 65 0 0
04 52 54 4 1 51 1 1 51 0 1
05 135 144 9 0 140 5 0 137 2 0

mean error (%) = 5.3 0.4 mean error (%) = 2.7 0.4 mean error (%) = 0.3 0.4
stand. dev. (%) = 3.8 0.9 stand. dev. (%) = 1.8 0.9 stand. dev. (%) = 0.7 0.9

3 01 36 39 3 0 37 1 0 37 1
02 54 50 0 4 50 0 4 51 0 3
03 86 96 10 0 96 10 0 88 2 0
04 87 86 2 3 85 1 3 86 1 2

mean error (%) = 5.6 2.7 mean error (%) = 3.9 2.7 mean error (%) = 1.6 2.0
stand. dev. (%) = 5.4 3.5 stand. dev. (%) = 5.3 3.5 stand. dev. (%) = 1.2 2.6

4 01 36 39 5 2 35 1 2 34 0
02 27 28 3 2 27 2 2 25 0 2
03 48 49 3 2 46 0 2 47 0 1

mean error (%) = 10.4 5.7 mean error (%) = 3.4 5.7 mean error (%) = 0.0 5.0
stand. dev. (%) = 3.9 1.6 stand. dev. (%) = 3.7 1.6 stand. dev. (%) = 0.0 2.7
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Figure 3.6: The total error percentage, defined as the number of false positives counts 
plus the number of false negative counts in comparison to the actual number of cells, was 
calcu-lated for levels one through three (spherical morphology with increasing levels of 
neurite outgrowth) and level four (complex morphology with high neurite outgrowth).  
Two-way repeated measures ANOVA revealed that the total error was reduced by the 
presence of automated error correction (p < 0.001), and was further reduced by correction 
of soft-ware-identified probable error points (p < 0.05).  Tukey’s post-hoc pair-wise 
comparisons revealed significant error reduction within levels two through four; asterisks 
denote sig-nificant reduction in total error percentage versus “Before Automated Error 
Correction” within each level (* p < 0.05; ** p < 0.01; *** p < 0.001).  
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Fully automated and user-corrected quantification were compared to manually-

attained cell counts in order to assess the overall accuracy and error sources of the 

software.  The results are tabulated in Table 3.2, depicting the raw counts for the different 

points of the sub-routine in addition to the false positive and false negative counts 

(including error percentages).  Analysis of the total error percentage (based on false 

positive cells plus false negative cells) was found to be a sensitive measure of software 

performance.  The total error percentage was found to depend significantly on level/ 

category assigned to the cell culture (p<0.05), sub-routine point (p<0.001), with no 

interaction between these factors.  Overall, the application of 3-D error correction 

significantly reduced the total error percentage (p<0.001 for each) (Figure 3.6).  

Additionally, there was a significant reduction in the total error percentage when 

software-assisted error correction was applied following automated 3-D error correction 

(p<0.05).  Pair-wise comparisons within the four cell culture levels clearly demonstrated 

the importance of 3-D segmentation and error correction as culture complexity increases.  

However, such analysis techniques did not significantly improve performance in 

relatively simple samples (level 1) where somata assume spherical morphologies and 

bear few or no processes, thus underscoring the niche application of these software 

algorithms in complex 3-D neurobiological applications.  

3.3.4.5 Sensitivity to User-Defined Parameters 

To investigate the influence of parameter selection on the accuracy of the 

segmentation routines, we examined cell count errors as a function of the area 

classification criteria, α, and intensity threshold, T, for a level 2 test image.  The area 

threshold was normalized to one standard deviation less than the mean of the cell bodies 
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(i.e. 100% = Mean(cell bodies) – StdDev(cell bodies)), and the parameter was swept from 

15% to 100%.  The intensity threshold was swept from 35% to 100% of the maximum 

pixel intensity.  Error was defined as the percent deviation of the automated cell count 

from the ‘gold standard’ cell count, and was tabulated for the segmentation algorithms 

run both with and without automated 3-D error correction.   
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Figure 3.7: Sensitivity to user-defined parameters. Cell count error as a function of α 
and T both with (A) and without (B) 3-D error correction. The dashed box indicates the 
region of parameters an operator would likely select based on histogram data from the 
software. In (A) the 5% error region occupies 44% of the shown parameter space; in 
contrast, the same error region occupies only 18% of (B).  In (A), the removal of neurite 
segments and the merging of over-segmented somata accounts for the reduced sensitivity 
to user defined parameters.   
 

Figure 3.7 depicts error as a function of the user-defined parameters, α and T (the dashed-

box indicates parameters that were most likely to be manually selected based on 

histogram feedback provided by the software, for example, refer to Figure 3.2).  In 

general, the automated cell count decreased as the thresholds were increased.  Therefore, 

without 3-D error correction, the cell count was artificially raised by the inclusion of 

over-segmented somata and neurite fragments.  Figure 3.7 demonstrates that using 3-D 

context clues to identify and correct segmentation errors generates a much more robust 
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parameter space with which to achieve accurate cell-count results; thus, future versions of 

the software may be able to automate parameter selection.  

 

Figure 3.8 Demonstration of system robustness: soma segmentation in ex vivo brain 
tissue.  Custom 3-D segmentation algorithms were applied to z-stacks attained from 
confocal imaging of brain slices from cerebral cortex.  The z-stacks tested varied based 
on the density of viable cells, ranging from relatively low (A) to high (B) densities.  
Following the same protocol of the in vitro testing, the algorithms achieved accuracies of 
93% (A) and 97% (B) (α = 50, β = 0.15, TA = 80%, TB = 95%).  

3.3.4.6 Performance Validation in Brain Slices 

In addition to 3-D in vitro cultures, the image processing algorithms can also be applied 

to 3-D ex vivo brain slices.  As a demonstration of system robustness, the algorithms were 

tested on confocal z-stacks acquired from cerebral cortical brain slice cultures.  We 

choose samples with varied densities of viable cells, ranging from relatively low to high 

densities (Figure 3.8).  The z-stacks tested also varied based on range of morphologies 

and the contrast in cell features (e.g., cell pixels ranged from relatively faint, low 

intensity, to saturated, high intensity).  Apart from the global intensity threshold, T, the 

user-defined parameters were identical for these two image stacks (α = 50, β = 0.15, TA = 
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60%, TB = 95%).  Following the same protocols defined for the in vitro cultures, the 

software achieved 93% and 97% accuracies for the low and high cell density z-stacks, 

respectively. 

3.3 Automated Tracking of Functional Activity 

Although 3-D tissues and cultures would comprise the ideal platform for investigating 

stimulation waveforms, the tracking of functional activity in four dimensions (3 spatial 

dimensions and time) would require developments in image acquisition speed that are 

beyond the scope of this work. Therefore, in this section, we compromise by building on 

the 2-D segmentation algorithms of section 3.1 to enable semi-automated, high fidelity 

and high-speed tracking of 2-D cellular activity.   

In the previous sections, we presented algorithms that were successful in 

identifying the location of individual cells using static fluorescence signals. Here, we 

examine optical movies in which changes in fluorescence intensity are correlated to 

specific cellular processes (e.g. ion uptake, channel dynamics, etc.). In order to evaluate 

these ‘movies’, we developed signal-processing tools that made it possible to examine 

both the location and behavior of the cells under observation.  Although there are many 

signal processing algorithms for tracking global changes in fluorescence activity, few if 

any routines can identify and evaluate every cell within a complex, high-density culture.  

Tracking the activity of thousands of individual neurons, however, is a 

computationally demanding problem. Fortunately, this problem becomes manageable for 

studies in which the signals of interest are tied to an externally induced event. In this 

case, a priori knowledge of when a change is expected can be applied to significantly 

reduce the computation required for the analysis. For example, if the peak response time 
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to external stimulus is known, it becomes possible to rapidly (1) identify the location of 

stimulated cells and (2) measure the dynamics of the individual responses. Figure 3.9 

illustrates the application of difference imaging to the automated identification stimulated 

cells.  
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Figure 3.9 Tracking evoked behavior. A priori knowledge about the cellular response 
to an externally applied stimulus can be used to rapidly identify stimulated cells. (A) An 
image captured before the application of the stimulus (t1) can be subtracted from an 
image captured during the peak response (t2). This so-called difference image is 
illustrated in (B). Images captured at two points in time, t1 and t2, look very similar. 
However, subtracting the two images clearly identifies the objects that changed.  Image 
segmentation routines can be applied to the difference image to automatically identify the 
boundaries of changed/stimulated objects (black outlines).  
 

With the concept of difference imaging in mind, we can use the same algorithms 

of section 3.2 to identify stimulated neurons with only two additional preprocessing 

steps: (1) formulating the difference image, and (2) applying non-linear intensity 

transforms to enhance contrast. Following the identification of excited cells, it becomes 
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relatively straightforward to track the full fluorescence waveform corresponding to the 

stimulus event. Figure 3.10 summarizes the process used to identify and track externally 

stimulated tissue.  
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Figure 3.10: Process flow for tracking evoked in 2-D cultures. (A) Estimations for 
peak and base-line activity are used to identify the frames used in image subtraction in 
(B).  Simple optimizations can be used to determine the true peak response. (C) Optional: 
Non-linear intensity transforms are applied to the difference-image to enhance contrast in 
preparation for object segmentation. (D) The 2-D segmentation and classification 
algorithms of section 3.1 are used to distinguish somata from ‘illuminated’ neurites.  (E) 
Following the identification of stimulated cells from the difference image, the full 
fluorescence waveforms are extracted and stored in a database (F) that relates the 
response to the stimulus parameters.  
 

The processing steps schematically represented in Figure 3.11 were integrated 

into a MATLAB graphical user interface (GUI). Additionally, a myriad of software 

features including the click-and-correct algorithms of section 3.2.3 were implemented to 

facilitate the rapid and accurate assessment of stimulated cells and tissue. Figure 3.10A-C 

demonstrates the application of difference imaging and watershed segmentation to 

extracellularly stimulated 2-D cortical cultures loaded with Fluo-5F calcium dyes. The 

cultures were stimulated successively to elevate signal intensity through calcium 

accumulation (see section 4.1.2.4 for more details). Figure 3.11A illustrates difference 

imaging in practice, and Fig. 3.11B shows a screen shot of the final program. The blue 

trace shows the relative changes in fluorescent intensity for a selected cell outlined in red. 
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The full set of algorithms is capable of extracting functional waveforms from hundreds of 

cells in hundreds of movies in a few minutes. This greatly facilitates high-resolution 

investigations into evoked responses to extracellular stimuli.  

 

A B C 

 

D 

Figure 3.11: Functional image processing. (A) The image from the average of 15 
frames measured before the stimulus event.  (B) The image from the average of 15 
frames at the anticipated peak of the response. (C) The difference image. (C) The image 
processing algorithms were written in Matlab (Mathworks, version 7.01) and integrated 
into a graphical user interface (GUI) that was designed to facilitate parameter selection, 
visual feedback, and user-guided edits.   Shown in the figure is a difference image of 15 
averaged frames measured at the peak of the response subtracted by 15 averaged frames 
at the base-line response (gray bars on the blue Δf/f trace) The following features were 
incorporated into the GUI: (1) databases for maintaining cell coordinates and boundary 
information, (2) histograms and segmentation statistics for assisting parameter selection, 
(3) saving and reloading options for revisiting and revising image-movies, (4) computer 
assisted manual segmentation for error correction, (5) morphological operator and 
process selection for preprocessing, (6) idealized graphic reconstructions of segmented 
cultures, and (7) automated signal extraction for individual cells.  
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3.4  Discussion 

We have demonstrated novel methodologies for the systematic and unbiased 

identification of neural cells distributed throughout 2-D and 3-D tissue or in vitro 

constructs.  We utilized novel features, including neurite/soma classification, 3-D 

merging & segmentation error identification, and software assisted manual corrections, to 

attain highly accurate cell boundary identification over a wide range of morphological 

culture complexities.  Further, we utilized the boundary identification algorithms to 

automatically identify and track dynamic cellular signaling. This toolset addresses a gap 

between automated segmentation routines for multi-cell nuclear images (with no neural 

processes present) and single-cell (or low density) images with rich morphological detail.  

Additionally, this toolset allows users to make rapid, computer-assisted manual 

corrections to the automated segmentation database, which is particularly attractive when 

highly accurate assessments of cell body locations must be made during a live experiment 

(e.g., optical tracking of network activity using Ca2+-sensitive dyes).  Moreover, we 

demonstrated that our algorithms leverage the increased complexity inherent in 3-D 

systems as an extremely effective means of minimizing quantification errors by applying 

the rich set of spatial data to automatically correct segmentation errors.  This novel image 

analysis platform offers experimental neurobiologists and neuroengineers a valuable set 

of tools for the analysis of neural tissue or tissue surrogates, appropriate for the study of 

cell-cell and cell-extracellular matrix interactions.       

We have validated these tools in the specific application of automated 

segmentation of neuronal somata with dense neurite arborization within 2-D and 3-D 

constructs.  Despite a conservative validation scheme, the algorithms performed very 
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well for a variety of 3-D test images (which inherently involves 2-D processing), with an 

accuracy ≥ 95% over a wide range of morphological culture complexities.  During the 

validation process, users were not allowed to correct unmarked errors that were otherwise 

obvious to the investigator.  Thus, the accuracy of the presented algorithms is expected to 

approach 100% in practical applications.  

We have addressed the challenge of parameter selection by taking measures to 

insure that the process parameters were relatively easy to tune.  The empirically derived 

operator variables that influenced the performance of the segmentation routines included 

(1) the pixel intensity threshold, T, (2) the soma/neurite area threshold, α, and (3) the 3-D 

merging overlap percentage, β.  The area and intensity parameters, α and T respectively, 

were assigned based on histograms generated by the software.  The overlap percentage, β, 

was used primarily to specify the sensitivity of the software to segmentation errors.  

Although careful tuning of the parameters certainly improved performance, the accuracy 

of the software was relatively robust to changes in these parameters (as indicated in 

Figure 3.8), which indicates that automated parameter tuning may be feasible in future 

work.   

One of the challenges in image segmentation is to define a metric for object 

classification.  In order to optimize performance (speed and accuracy), we chose to 

distinguish between neurite fragments and somata using very simple criteria - object pixel 

area.  Although area thresholds have been reported in the past to separate nuclei from 

artifacts (Adiga 2000), we have shown that watershed segmentation produces boundary 

areas with remarkably distinct populations for neurites and somata.  Despite the efficacy 

of this method, inevitably some cell body objects were excluded while some neurite 
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fragments were included.  The 3-D merging algorithms all but eliminated this problem.  

For example, objects which only appeared in a single frame were assumed to be artifacts 

or neurite fragments and were removed.  Furthermore, the exclusion of cell bodies (false 

negatives) usually occurred near the soma edge in the z-axis where the soma cross-

section possessed a very small 2-D diameter; in this case, the cell was usually represented 

in neighboring frames, where confocal slices captured a larger 2-D perspective of the cell 

(a typical cell occupied 3 to 6 frames in our application, although this will be a function 

of confocal microscopy parameters). In the absence of 3-D context cues, 2-D studies still 

benefit from highly accurate boundary identification (typically > 90%) and from semi-

automated click-and-correct software tools.  

We have developed novel techniques for merging 2-D objects into 3-D somata 

and identifying 2-D segmentation errors.  These techniques improve on methods by 

(Belien 2002; Irinopoulou 1997) to  merge 2-D objects into 3-D nuclei.  Specifically, we 

introduced (1) criteria to evaluate cell mergers from multiple vantage points and (2) 

methods to identify potential segmentation errors.  Previous techniques only considered 

the forward projection of 2-D nuclei into neighboring frames and could not recognize 2-

D segmentation errors, thus opening up the possibility for more errors with no means to 

identify them.  One novel feature of our 2-D to 3-D merging strategy is that it identifies 

both false positives (over-segmented objects) and false negatives (under segmented 

objects).  

In the future, we plan to implement improvements to the merging algorithm.  

While our algorithm identifies both false positives and false negatives, we have no 

method in place to distinguish between these error types, nor do we have routines to 
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‘split’ under-segmented cells.  Additionally, we only used two adjacent frames to 

determine if and how adjacent 2-D objects should be merged.  In the future, it would be 

beneficial to use information from all overlapping 2-D objects (that typically traverse 3 or 

more frames) to arbitrate decisions about the error type (false positive, false negative) and 

the appropriate action (merge, split).  One approach could use geometric statistics from 

local (only overlapping objects) and global (all 2-D objects) segmentation boundaries, 

along with an empirically derived cost function, to facilitate merging and splitting 

decisions.  The method of applying a cost function to arbitrate merging decisions was 

demonstrated with great success (Lin 2003).  By integrating this approach into our 

merging routines, we could automatically correct over- and under-segmented somata, 

thereby requiring less software assisted manual input.   

Future applications of this software will include systems with increased densities 

of labeled cells (e.g., dense cortical regions in brain tissue or dense in vitro neural 

constructs) and the assessment of 3-D co-localization of multiple fluorescent labels.  

Although the presented methods were used exclusively to catalog information regarding 

somata, it is interesting to note that an investigator could use the knowledge of cell body 

boundaries to facilitate additional morphological analyses, such as quantifying the spatial 

extent and volume of neurite outgrowth.  These algorithms are building towards 

automated four-dimensional analyses including temporal components over three spatial 

dimensions, such as 3-D cell migration.  Ultimately, these tools may lead to 4-D real-time 

analysis of ensemble electrophysiological network behavior in neural tissue or constructs 

analyzed by tracing relative fluorescent intensity and/or signal propagation using voltage 

or ion-sensitive dyes.   
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CHAPTER 4 

AUTOMATED CELLULAR TRACKING: 
ELECTRICAL STIMULATION AND OPTICAL MONITORING 
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In this chapter, the engineering tools of chapters 2 and 3 are combined with novel signal 

processing techniques to enable the high-throughput evaluation of selective stimulation 

waveforms. Willfully controlling the focus of an extracellular stimulus (i.e. selective 

stimulation) remains a significant challenge in neural engineering. In part, this is due to 

the fact that experimental validation of the evoked response to stimuli is an arduous and 

time-consuming task. The development of a high-throughput data acquisition and 

analysis tool greatly facilitates the design and testing of spatially selective stimulation 

protocols. Here, we present an automated imaging system that optically tracks and 

identifies the action potentials of individual neurons evoked by coordinated stimulus 

waveforms applied at multiple electrodes. This system can simultaneously provide 

arbitrary current waveforms to MEA electrodes and it is capable of automatically 

monitoring the cellular responses of every neuron in a cultured network within a 3x3 mm 

area. The purpose of this platform is to facilitate development of stimulus protocols that 

exploit the benefits of multi-polar field shaping and temporal ion-channel/membrane 

manipulation to explicitly control cellular excitation. Analyses of monopolar excitatory 
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and inhibitory waveforms are presented as well as performance data for the automated 

stimulus tracking system.   

4.1 High Throughput Stimulus Tracking  

Among the many challenges in designing spatially and functionally selective stimulus 

waveforms, is the inability to experimentally validate stimulation strategies. Although 

many advances in stimulation technology have been made with computational models, 

which despite providing a great deal of insight into the mechanisms, techniques, and 

strategies for selective stimulus waveforms, are seldom experimentally validated. Thus, it 

would be beneficial to develop an experimental system that approaches the throughput 

(and insight) of models. 

Combining a functional imaging system with multielectrode arrays (MEAs), 

stimulating electronics, and live cultures creates an ideal platform for the high-resolution 

tracking of neural responses to extracellular stimuli (Tsien 2006). For example, optical 

imaging systems can record the action potentials of individual cells by monitoring the 

changes in internal cellular concentrations of fluorescent dyes (Smetters 1999). 

Additionally, the tightly spaced grid of electrodes in MEAs can be simultaneously 

activated to sculpt the contours of voltage fields that surround neural tissue. Developing 

this platform, however, requires the integration of two very different components: (1) a 

biological component, which includes the cell culture, florescent dyes and 

pharmacological blockers, and (2) a hardware component, which includes the MEMs, 

optics, and electronics. In this section, we present the development and integration of 

these components for high-throughput optical monitoring of stimulus-evoked activity.  
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4.1.1 Biological Design 

The primary, long-term objective of this study is to develop selective stimulation 

protocols for diagnosing and treating human nervous system disorders. Although in-vitro 

cultures are vastly less complex than the in-vivo human environment, in-vitro constructs 

capture virtually all of the behavior relevant to neural excitation and provide tremendous 

access/control over the neural environment (e.g. pharmacological manipulation, 

electrophysiological recording and stimulation, and high-resolution microscopic analysis, 

etc. (Potter 2001)). Therefore, as a first step towards stimulating human neural tissue in-

vivo, we elected to use dissociated primary neuron cultures. In this section, we outline the 

biological methods used to evaluate in-vitro, extracellular stimulation, including neural 

culturing, dye labeling, and pharmacological conditioning (Dr. Potter and his research 

group significantly contributed to the biological design, specifically the neural culture 

techniques and synaptic blockers. Please see appendix C for more details on the 

protocols).  

4.1.1.1 Neural Cultures  

One of the most effective means to perform long-term extracellular electrophysiological 

investigations is to culture the neurons directly onto the microelectrodes.  In this system, 

the culture conditions were specifically tuned to facilitate optical recordings of neural 

action potentials. For example, MEAs (Multi-Channel Systems, 30 μm diameter, TiN 

electrodes with 200 µm center-to-center spacing) were plated with high densities (approx. 

3000 cells/mm2 diameter) to better emulate neural tissue and to increase the number of 

evoked responses in the dish. Although cortical cultures provide an excellent model for 
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neural stimulation studies, it is important to note that such cultures do not produce 

mylenated axons, which influence axonal excitation.  

4.1.1.2 Fluorescent Ca2+ Dyes  

Fluorometric Ca2+
 imaging is a sensitive method for monitoring neural activity that 

makes use of the fact that, in living cells, most depolarizing electrical signals are 

associated with Ca2+
 influx (Stosiek 2003).  There are several properties of Ca2+ signaling 

that make it particularly useful for studying the evoked responses of stimulated neurons: 

(1) Ca2+ signals are often amplified by the intracellular release of Ca2+ stores (Tsien 

1990; Berridge 2000), (2) the slow time constants of Ca2+ signaling enable further signal 

boosting through Ca2+ accumulation, (3) the slow time constants accommodate the 

relatively slow acquisition speeds of imaging systems, and (4) individual action potentials 

(up to 100 hz) can be discerned from the calcium waveforms (Smetters 1999).   

There are several calcium indicators whose fluorescence changes significantly 

(several percent of the resting fluorescence level, or ∆F/F) as intracellular calcium 

concentration changes due to neural activity. The acetoxymethyl (AM) esters of these, in 

particular, are cell permeant, allowing them to become concentrated in living neurons 

where they are trapped by the action of esterases. Optimized protocols for bulk loading of 

AM Ca-indicators into neural tissue (Stosiek 2003; Yuste 2005) have enabled the 

simultaneous imaging of calcium transients in hundreds of neurons (Cossart 2003; Göbel 

2007). Care must be taking when selecting a Ca2+ dye and stimulus protocol to insure that 

the binding affinity of the dye to the Ca ions does not influence intrinsic Ca2+ dynamics. 

In this study, optical recordings were accomplished using Fluo-5F, an acetoxymethyl-

ester flourescent calcium dye (Minta 2006), which has a binding affinity of Kd  ~2.3 µM. 
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Cultures on MEAs were prepared for imaging by bath application with Fluo-5F AM for 

35 minutes.   

4.1.1.3 Pharmacological Synaptic Blockers 

The calcium fluorescent dyes of the previous section enable the optical evaluation of all 

network activity. Rather than evaluating network activity, of particular interest to this 

study is the ability to evaluate evoked activity. Given the complexity and volume of 

spontaneous neural activity that occurs in dense dissociated cortical cultures (Waganaar 

2006), distinguishing evoked and spontaneous activity could be challenging for an 

automated system.   

In order to inhibit network activity and to ensure that any measured activity was 

the direct consequence of an extracellular stimulus, synaptic blockers were added. 

Specifically, experiments were conducted in the presence of fast synaptic receptor 

antagonists at concentrations of 50 μM BMI, 100 μM APV, and 10 μM CNQX (Sigma).  

At these concentrations, virtually all spontaneous neural activity was eliminated (Bakkum 

2007). However, while these pharmacological agents prevent synaptic transmission 

between neurons, they have no effect on glial calcium signaling. Fortunately, glial and 

neuronal calcium waveforms are significantly different, so as to be easily distinguished 

by signal-processing methods.   

The application of synaptic blockers to insure that all recorded neural activity was 

evoked, rather than spontaneous, greatly simplified our automated analysis routines. 

Additionally, the prevention of synaptic plasticity mechanisms insured that changes in 

cellular excitation were more generally related to the stimulus waveforms and not to 

inadvertent synaptic manipulations such as long-term potentiation (LTP).  
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4.1.2 Hardware and Software Design 

The design of stimulus protocols for region specific neural excitation using both multi-

polar field shaping and temporal ion-channel/membrane manipulation requires hardware 

that can (1) deliver arbitrary current waveforms to multiple electrodes and (2) monitor the 

cellular activity of every neuron within a specified area.  For the first requirement, we use 

an MEA, which can apply stimuli to multiple electrodes (with 30 to 200 µm spacing), 

such that field contributions from multiple sources could be summed in a manner that 

meaningfully alters the field contours. For the second requirement, we use a high-speed 

fluorescence imaging system (125 Hz to 2 KHz frame rate), which can record changes in 

intracellular calcium levels. The integration of these components as well as details on the 

automation of stimulus application, recording acquisition, and image analysis are 

presented in detail in this section.  

4.1.2.1 System Overview  

The system hardware, at its core, is comprised of four main elements: (1) a 

personal computer to control the instrumentation and analyze images, (2) a stimulator to 

produce arbitrary current waveforms and synchronize instrumentation activity, (3) an 

MEA system to interface the neurons, and (4) an optical acquisition system to monitor 

and record cellular activity (Figure 4.1). In order to support these core elements, 

additional instrumentation and software was required to control the light source, 

microscope stage, and high-speed camera (Table 4.1 gives an overview of the system 

specifications). The system was designed to enable a wide range of configurations for 

simultaneous optical and electrical observation of cells; as a result, many of the system 

components can be arbitrarily controlled with custom scripts that are executed on the 
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main computer (Mr. Nakul Reddy contributed substantial effort to the software 

development integration of the hardware.)   
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Figure 4.1 System level schematic of stimulus tracking system (Counter clockwise 
from top left) Matlab scripts specify stimulus sequences and synchronization pulses that 
are transferred via USB to an arbitrary waveform stimulus generator (Multichannel 
systems, STG-2004).  A software trigger engages the stimulus generator, which applies 
the current waveforms to electrodes in an MEA docked in a recording preamplifier 
(Multichannel systems, MEA-1060). In total, four independent trigger pulses can be used 
to synchronize activities among the shutter, camera, stimulator, and preamplifier. 
Automated stage positioning (Intelligent Imaging Innovations, MS-2000) enables precise, 
arbitrary stage positioning. Following optical recording of the evoked response of the 
stimulus sequence, a new stimulation sequence is transmitted to the stimulus generator 
and the process is repeated. Although the present system runs open-loop scripts to vary 
the stimulus input and record evoked responses, automated image processing routines 
present an opportunity to implement closed loop control in the future. 

 

Table 4.1: System Specifications 

Component Cntrl* Manufacturer Specifications
Objective Zeiss  20x /NA: 0.92 
Light Source SNT Tungsten, 100W
Shutter X Uniblitz VMM-D1
Camera X Red Shirt 80x80 pixel, 125Hz - 2Khz fps
Stage X IIS, MS-2000 0.1um x,y resolution
Stimulator X MCS STG-2004 4 ch (20μV, 1μA, 10 μs res.), 4 trig 
PreAmp X MCS 1060-BC 60 ch, 1200x gain, Stim Select (2 ch)
Heater MCS 10R0X 2 ch, 0.1º Celcius 
MEA MCS 30/200 30 μm TiN Electrode, 200 μm Centers
Computer X DELL Inspiron 2 Ghz, Pentium IV 
Image analysis X MATLAB 7.01 GUI: 250 fps, auto error, Ica extraction
System Control X MATLAB 7.01 GUI: Script Interpreter, Auto sync

* Indicates arbitrary control using the custom scripting language  
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4.1.2.2 Stage Control  

A stimulation pulse produces voltage fields that influence cells beyond the 400x 

400 μm area of a 20x microscope objective. Therefore, in order to evaluate the full scope 

of the evoked response, it may be important to record activity beyond the field of view. 

Unfortunately, the need for a low-resolution, high-speed camera (80x80 pixels) prevents 

the use of a lower power objective (5x, 10x, etc), so a compromise must be made 

between the resolution required for image analysis and the area needed for observation. 

An alternative solution, however, is to use high-resolution stage control to arbitrarily 

adjust the field-of-view.  

 

Affine
transformation

Affine
transformation  

Figure 4.2 Automated stage displacement.  Electrode coordinates were mapped to 
stage displacements by measuring the stage coordinates when the microscope was 
manually positioned over four corner electrodes. An affine transformation related 
electrode coordinates into stage displacements. Arbitrary control of the stage (to within 2 
um), enabled observation of the cellular response well outside of the 400 x 400 μm field 
of view (20x objective).  

 

Automated stage positioning was accomplished by using a coordinate system that 

was directly related to the electrode coordinates. Stage displacement measurements were 

recorded in software while the microscope was manually positioned over the center of 
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four corner electrodes in the MEA.  These measurements were used to create an affine 

transformation that related electrode-centric coordinates into stage displacements, thus 

compensating for any rotation or scaling due to skewed electrode arrangements or stage 

positioning. With this method and electrode coordinate system, we were able achieve 

automated field-of-view positioning to within 2 μm (Figure 4.2).  

4.1.2.3 Experimental Sequencing 

In order to insure that the optical tracking system was both flexible (i.e. arbitrary control 

over the system variables) and robust (i.e faithful acquisition of strong fluorescent 

signals), a sequencing formula was derived to execute the program in three stages: (1) 

manipulation of the field of view, (2) programming and trigger queuing, and (3) 

synchronized triggering. Each of these distinct phases can be activated recursively, for 

example, to apply triggered averaging or to rapidly change the field of view. Figure 4.3 

illustrates the sequencing formula.  

An example experimental protocol following this sequence could be as follows:  

The field of view is centered is at electrode 1.5, 1.5 (r,c). For each stimulation sequence, 

250 frames are acquired at a frame rate of 125 frames/second (2 seconds total), of which 

the first 30 frames (240 ms) are used to record pre-stimulus, baseline fluorescence.  The 

system pauses for 4 seconds between stimulus applications to allow accumulated calcium 

to decay back to baseline and either repeats the triggered sequence or re-programs the 

instruments for a new sequence. A typical experiment, under these conditions, could last 

approximately 90 to 120 minutes before dye photo-bleaching significantly diminished the 

signal-to-noise ratio. As a result, the evoked responses of over 1000 stimulation 

sequences can be recorded in a single session.  
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Figure 4.3 Sequencing formula for stimulus application and synchronized optical 
monitoring of evoked activity.  (A) The microscope is positioned over the array using 
an electrode-based coordinate system. A typical 8x8 array, with 200 um center-to-center 
electrodes, could be observed with approximately 16 separate stage displacements 
(indicated by dashed lines). (B) The stimulation and optical monitoring instruments are 
programmed and queued for triggering, which includes selecting the electrodes and 
specifying the arbitrary stimulus waveforms. (C) The shutter, camera, and stimulus 
system are triggered in sequence (the optional electrical MEA recording system may be 
triggered as well). The timing is managed such that camera captures both base line and 
recovery activity.  

4.1.2.4 Signal Conditioning and Data Extraction  

Because the acquisition and analysis of our experimental data is automated, it is 

essential that evoked responses be consistently recorded with high signal-to-noise ratios 

(as strong signals are more reliably detected by software).  Therefore, the following steps 

were taken to enhance the signal: (1) calcium accumulation was induced by repeating 

stimulation patterns n times with 50 to 100 ms inter-stimulus intervals, (2) n-shot 

stimulation sequences were repeated m times to allow for triggered averaging, (3) 

stimulated soma were identified/segmented in an averaged difference image, and (4) 

fluorescent intensity traces for pixels that corresponded to an individual soma were 
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spatially averaged.  Fig. 4.4 illustrates the steps taken to maximize the fluorescent 

signals.  
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Figure 4.4 Maximizing Signal-to-Noise.  Signal processing techniques for evaluating 
evoked-response patterns.  (A) Stimulation waveforms are repeated n times (10 shot 
illustrated) with 50 - 100 ms inter-stimulus intervals (optimized based on Ca2+ signaling 
decay). (B) This n-shot stimulus sequence is repeated m times to further enhance the 
signal with triggered averaging.  Subtraction of tb averaged frames of base-line activity 
from tp averaged frames at the peak of Ca accumulation (gray bars), produces high 
contrast images like the one shown in (C). Automated image segmentation routines are 
used to identify the cellular boundaries of each stimulated soma (gray outlines indicate 
soma boundaries), which facilitates spatial averaging (D) and quantification of stimulus-
induced changes in evoked action potentials. 
 

The identification of individually stimulated somata (Fig. 4.4C) is critical for 

detailed investigations into stimulus activity. In this system, each stimulated soma is 

automatically segmented in a difference image formulated by subtracting tb averaged 

frames, taken just before stimulation, from tp averaged frames, taken at the peak of 
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calcium accumulation (averaged frames are indicated with gray shading in Figure 4.4A). 

This background subtraction method produces a high contrast image of stimulated 

somata, which can be automatically segmented.  Briefly from section (3.1), automated 

segmentation of stimulated somata was achieved by: (1) applying a global threshold to 

convert the gray-scale image into a binary image, (2) applying the Euclidean distance 

transform to shape the image contours and define the regional minima, (3) applying the 

watershed algorithm to delineate boundaries between overlapping cell bodies, and, 

finally, (4) applying an empirically determined threshold to removed segmented artifacts 

and neurites (note: given the high contrast images and neurite filtering, morphological 

pre-processing steps are seldom required).  

Once the cells are segmented, it becomes possible to extract the full spatially-

averaged calcium waveform for each soma (including extracting data from frames in 

which difference imaging would not provide sufficient contrast to ‘illuminate’ the cell 

bodies).  While this data extraction must be performed for every stimulus condition, it is 

not necessary to segment somata in every stimulation trial.  The pixel indices that 

correspond to stimulated somata during a control pulse (or a stimulus pattern designed to 

stimulate all neurons within the field of view, such as a high-amplitude, long duration 

biphasic voltage pulse), can be projected onto other test conditions to evaluate changes in 

evoked responses. In this system, software routines were written to quickly scroll 

between difference images (for a given field-of-view) from varying stimuli to insure that 

all somata had been accounted for.  

In addition to signal conditioning, it is important to account for noise-inducing 

phenomena such as photo-bleaching, a process in which the fluorescent molecules are 
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destroyed by the light exposure necessary to stimulate them into fluorescing. As a result, 

the signal-to-noise ratio decays during the experiment; therefore, it may become 

necessary to track the signal decay in order to (1) insure the viability of the automated 

measurements, and (2) compare the calcium signals between stimulus trials. Therefore, 

for each field-of-view investigated, a large control pulse was applied just before and after 

a stimulus sweep to record potential changes in the evoked response. Further, base line 

trends, which include decay, were measured for every cell and every stimulus trial. The 

decay over short duration is generally linear, and all recorded calcium signals could be 

scaled accordingly.  

These signal boosting and data extraction methods facilitate the translation of 

hundreds of raw Ca movies into thousands of soma-specific calcium waveforms. Both the 

generation and manipulation of this data required specialized protocols, which are 

presented in the following section.   

4.1.2.5 Inputs and Outputs: Script generation and data management 

The formulaic experimental sequencing of section 4.1.2.3 was developed to enable the 

use of an all-purpose stimulus script.  Therefore, a command interpreter was created to 

translate user instructions into precisely timed and automated experimental executions. 

Specifically, the interpreter accepts as inputs an array of user commands that specify the 

following experimental conditions: (1) stimulus channels/electrodes, (2) stimulus 

waveform shapes (for each channel), (3) field-of-view coordinates, and (4) triggered 

averaging count. For each user-specified stimulus trial, the interpreter programs the 

instrumentation and manages the appropriate sequence of events. Fig 4.5A illustrates how 
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simple user-commands are translated into automated instrumentation interfacing and 

sequencing.  

The execution of automated stimulus scripts and image segmentation routines 

generate tens of thousands of calcium waveforms. In order to manage and analyze this 

information, a database is constructed to catalog data for every field-of-view, stimulated 

cell, and stimulation sequence. The database includes information about the morphology 

of each cell, including its geometric properties (such as equivalent diameter and 

centroid), and pixel-indices as well as the raw and processed calcium waveforms. 

Additionally, electrode positions and stimulation waveforms are recorded to enable 

voltage field models and soma-electrode distance calculations. The database structure as 

well as some example fields are illustrated in Figure 4.5B.  
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Figure 4.5 Managing the system inputs and outputs. (Left) Illustration of how a 
simple script is translated into experimental execution. (Right) Illustration of the database 
structure.  Shown is a sample of the data fields for each of the three main data categories 
(1) Soma image information, (2) Stimulus trial conditions, and (3) Raw calcium data. It is 
important to note that raw Ca data is recorded in every trial for any segmented cell body, 
regardless of whether a particular stimulus trial elicited a response. Such data enables 
direct comparison between stimulus trials.  
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4.2 Results:  Analysis of Evoked Activity 

In the previous section, we described an automated stimulus tracking system for the study 

of region specific neural excitation capable of using both multi-polar field shaping and 

temporal ion-channel/membrane manipulation.  In an effort to build a robust and versatile 

system, we implemented a platform that could accommodate stimulus waveforms with a 

broad range of spatiotemporal profiles (multiple electrodes, high resolution arbitrary 

current waveforms, etc.). Although a vast parameter space creates novel avenues to 

explore evoked activity, our primary goal was to evaluate evoked responses from the 

ground up, beginning with very specific inquires into the excitation patterns elicited by 

two contrasting waveforms—excitatory and inhibitory. Specifically, in this section, we 

investigate the threshold responses of hundreds of individual cells to excitatory stimuli; 

further we investigate the potential to modulate such thresholds with inhibitory 

waveforms.   

4.2.1 System Validation: Tracking Neural Thresholds 

Of critical importance to evaluating evoked activity is the ability to not only measure 

whether or not an excitatory event occurred but also where in space the event occurred 

and with what probability it could occur again. One of the best measures of such 

excitation probabilities is the stimulus threshold. Unfortunately, traditional techniques to 

map the stimulus threshold require dozens of serial high-resolution stimulus applications 

for each individual cell. In this section, we evaluate the potential for our system to extract 

reliable and meaningful data from hundreds of individual neurons in parallel. 

Specifically, we demonstrate the following features of this system (1) high throughput 
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optical tracking of evoked activity, (2) high resolution signal acquisition, and (3) 

threshold extraction with confidence measures.  

In order to validate the system, we applied a broad range of excitatory pulses and 

optically measured the evoked activity. Specifically, we applied cathodic current pulses, 

sweeping both pulse duration and pulse amplitude stimulus parameters (Figure 4.6). This 

two-dimensional sweep of 25 stimulus pulses was applied separately to 11 different 

electrodes while the microscope was centered over the stimulating electrodes.  For each 

stimulus waveform (e.g. a -20 µA, 200 µs duration), the stimulus was applied 10 times 

consecutively (i.e. a 10-shot) with 50 ms pauses between the stimuli (section 4.1.2.3). 

The electrodes were chosen such that there was no-overlap between the optical fields of 

view.   
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Figure 4.6 Experimental design for the evaluation of excitatory cathodic current 
pulses. 25 cathodic current pulses swept from from –10 µA to 50 µA and 100 µs to 500 
µs (in 10 µA and 100 µs steps respectively) were applied to 11 different electrodes (gray 
dots) with the microscope field of view (blue line) centered over the electrode.  In actual 
experimentation, the fields of view were chosen such that there was no spatial overlap 
between trials.  
 

The first indication of the system performance is whether or not it can extract 

calcium waveforms from individual cells. Figure 4.7 illustrates that the signal processing 

techniques of chapter 3 and section 4.1.2.4 can be used successfully segment stimulated 
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somata. Further, Figure 4.7 demonstrates that the techniques of section 4.1.2.4 can be 

used to accurately extract calcium signals from individual cells. As a specific example, 

the calcium waveforms from three of the stimulated cells are displayed for all 25 current 

pulses (sorted by stimulus charge).  
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Figure 4.7 Illustration of Ca2+ data extraction. Within the graphical user interface, the 
high contrast image of stimulated somata is depicted with automatically segmented 
boundaries. Shown, in blue traces, are the calcium signals (Δf/f over time) extracted from 
three of the stimulated cells for all 25 stimulus conditions (sorted by charge). Arrow 
indicates the direction of increasing stimulus charge (Range: 1 to 25 nC).  
 

Although this experiment applied a two-dimensional sweep of the stimulus parameters 

(pulse width and amplitude), Figure 4.7 demonstrates that this parameter sweep can be 

effectively mapped to one dimension—stimulus charge (or pulse-width x current 

amplitude) (Bostok, 1998). This conclusion may also be logically reached from strength 

duration curves reported in the literature. It has been shown experimentally, that 

excitation thresholds follow the chronaxie relationship, which is typically represented by 

T00T C/tIII +=     (4.1) 

where IT is the threshold current, I0 is the rheobase (the minimum current required to 

evoke a response with DC stimulus applications), and C is the chronaxie, which is 
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classically defined as the duration of the threshold current pulse having an intensity twice 

that of the rheobase (Nowak 1998). This expression can be re-written to express the 

threshold in terms of charge:  

CItItI 0T0TT +=     (4.2) 

which clearly indicates that stimulation is a charge phenomenon that is related to a 

constant and the duration of the stimulus pulse. For short duration stimulation pulses 

and/or a small rheobase (which is typical for microelectrodes), the I0tT expression can be 

neglected, and either the stimulus strength or duration may be specified or determined 

from a constant expression:  

 CItIQ 0TTT ==     (4.3) 

In Figure 4.8 the relative change in fluorescent intensity (ΔF/F) is plotted as a function of 

charge for all 25 stimulus applications for cell (c) in Figure 4.7. For each stimulus 

waveform, 10 successive applications of the pulse were applied, which accounts for the 

ten sequential fluorescence steps depicted in many of the intensity traces.  Generally, at 

threshold, a 10-shot stimulus will only evoke 5 action potentials. The inset within figure 

4.8 illustrates such a scenario, in which the neuron fired 4 action potentials for a 10-shot 

stimulus sequence (gray trace). In Figure 4.8, the change in fluorescent intensity between 

the averaged (15 frames) base-line response and the averaged, nominal peak response is 

plotted as a function of the applied stimulus charge, CT.  The data is fit by a sigmoid 

curve, demonstrating that the half-maximal of the curve may be a robust measure of the 

stimulus threshold. These data indicate several important features for cellular behavior 

and optical tracking: (1) Although stimulus thresholds are often related to current 
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amplitudes, stimulus charge may be the most important measure of this phenomena 

(Bostock 1997), (2) Relative changes in intensity (Δf/f) can be used as a robust measure 

of excitability, and (3) Based on equation (4.3), charged-based threshold measures may 

provide a means by which one could calculate the required stimulus amplitude for a given 

cell and pulse duration.  
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Figure 4.8 Charge-based threshold tracking. The average relative fluorescent intensity 
at baseline is subtracted from the averaged peak response and plotted as a function of the 
applied stimulus charge. The red trace depicts a sigmoid curve fit, in which the fit error 
(sum of squares) was minimized by a Nelder-Mead non-linear regression using the 
optimization toolbox in Matlab. (Inset) Shown are 25 individual fluorescent intensity 
traces for cell (c) (Figure 4.7). The gray trace indicates that the neuron only fired four 
action potentials during the ten shot stimulus. The gray data point on the sigmoid curve 
fit represents the peak response of this trace. In general, sampling the evoked response in 
two dimensions (pulse, amplitude) and then mapping to one (charge) may provide a very 
robust measure for determining the threshold. 
 
In order to assess the reliability of the threshold metric, we used the Nelder-Mead non-

linear regression to automatically curve fit normalized threshold curves for each of the 

274 cells identified in the experiment. Figure 4.9 illustrates another measure of the 

stimulus threshold—the slope of the sigmoid, which indicates the degree of confidence 

that a stimulus above threshold will elicit an action potential. The extracted slopes 
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spanned approximately two orders of magnitude with an average slope of approximately 

3.5 1/nC. For the average cell, the threshold was accurate to ± 0.8 nC. At the low and 

high extremes, the threshold was accurate to ± 8nC or ± 0.1 nC respectively. Such a wide 

range in threshold behavior may be related the geometric configuration of the cell.  
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Figure 4.9 Characterization of neural threshold behavior. (A) The slope of the 
sigmoid describes the probability that a given stimulus will evoke a response (or, 
alternatively, how well cellular excitation is modeled as a switch). The distribution for 
the full set of slopes spans approximately two orders of magnitude and is depicted in log 
scale. The mean slope is approximately 3.5 (1/nC), which indicates that the threshold is 
an accurate predictor of the cell firing to within ± 0.8 nC. At the extremes of the 
distribution, a slope of 0.3 and 30 would be accurate to within ± 8 nC and ± 0.1 nC 
respectively. (Inset) Histogram of sigmoid slope on a linear scale. (B-D) traces depict 
sigmoid curves with slopes of 0.3, 1, and 8. The higher the slope, the more likely the cell 
is to behave in an off-on, switch-like fashion. The wide range in threshold behavior could 
potentially be related to the geometry of the cell with respect to the stimulating electrode. 
 

Ultimately, the system is able to measure whether or not a cell fired (0th order), 

the threshold for which the cell fires (1st order) and the probability that a given stimulus 

charge will induce cellular excitation (2nd order). These measures were acquired by 

extracting and processing 6850 calcium waveforms from 274 individual cells identified 

in 550 calcium movies. It is interesting to note that, from this dataset, the threshold and 

confidence measures of 274 individual cells across 11 fields of view were acquired from 

 98



275 (25 x 11) stimulus shapes, indicating that, on average, approximately one stimulus 

waveform per cell was required to extract the full probability curve.  

4.2.2 Spatial Excitation Patterns  

In the previous section, we demonstrated that the system could extract the threshold for 

extracellular stimulation by charting the relative change in fluorescent intensity as a 

function of the applied stimulus charge. Further, we fully characterized the degree to 

which particular cells behave like an on-off switch. We found that, with respect to a 

single stimulation electrode, individual cells possess tremendous variability in their 

excitation thresholds and related probabilities. In this section, using the same data set 

from 4.2.1, we explore the spatial relationship of these cellular parameters. Figure 4.10 

depicts the cellular excitation patterns as a function of space. The pixel coordinates from 

which the data of 4.2.1 was extracted are color-coded according the value of the metric of 

interest (i.e. threshold, slope, etc.) and projected onto a 2-D picture. Although the 

projection provides a very accurate measure of how to stimulate individual neurons, it is 

apparent that, within a 400x400 um field of view, for single-electrode cathodic 

stimulation, there are virtually no spatial patterns for any of the excitation measures 

(threshold, slope, etc).  Thus more advanced stimulus protocols are required to spatially 

localize cellular excitation under similar culture and electrode conditions.  
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Figure 4.10 Excitation parameters as a function of space. The 30 um diameter 
electrode is in the center of the field of view, the results from 11 different electrodes with 
non-overlapping fields of view are superimposed for one culture. (A) Firing threshold 
(nC) for each cell. (B) Firing threshold (nC) in which only cells with a 95% probability of 
firing within +/- 1nC of the threshold are depicted. (C) Threshold tolerance (log of slope) 
or the degree two which a cells behaves like a switch in response to a stimulus charge. 
(1/nC) (D) Cells are binned according to the electrode that stimulated them, 
demonstrating that there was very little clustering between trials. The field of view is 400 
x 400 µm. Scale bare = 100 µm.  

4.2.3 Inhibitory Stimulus waveforms 

As demonstrated in the previous section, the region specific excitation of neural 

tissue and cells is virtually impossible to achieve without invoking an alternative strategy. 

One such strategy may be excitation’s counterpart—inhibition. In fact, one only has to 

imagine a car without brakes to understand why both excitation and inhibition may be 
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important for discretionary control over the cellular environment.  While extracellular 

mechanisms for these two modes of observation have been reported, excitation 

overwhelmingly receives the most attention in literature. Therefore, in this section, we 

briefly, summarize the current work in extracellular inhibition before exploring the use of 

such inhibitory waveforms for exercising control over the evoked response in cortical 

cultures.  

4.2.3.1 Mechanisms for Cellular inhibition 

Extracellular neural inhibition is primarily used in motor neuron fiber studies for one of 

two applications: (1) preventing an action potential from propagating through a nerve (i.e. 

anodic blocking), and (2) preventing a nerve of certain characteristics (diameter, locale, 

etc.) from being extracellularly stimulated (i.e. fiber discrimination).  The former usually 

takes advantage of the transmembrane currents induced by strong, DC-like stimuli (10 ms 

to hours). Such strong currents can drive the transmembrane potential to a biologically 

static regime (e.g. –250 mV hyperpolarization or 100mV overpolarization), where the Na 

ion channels are effectively locked into a state that prevents firing.  In contrast, fiber 

discrimination applications usually involve relatively fast prepulses (e.g. 0.2 to 1 ms) that 

manipulate Na ion channels in a manner that does not excite the cell.  These softer 

hyperpolarizing pre-pulses (HPPs) or depolarizing prepulses (DPPs) temporarily adjust 

the state of the Na inactiviation channel. Specifically, HPPs and DPPs take advantage of 

the difference in time constants between activating and inactivating gates. HPPs 

completely open the inactivation gate with no minimal influence on the activation gate, 

thus making the cell more ‘excitable’. DPPs, on the other hand, induce a sub-threshold 

refractory state by closing in the inactivating gate, thus making the cell less ‘excitable’.  
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Anodic blocking and fiber discrimination techniques, however, demonstrate some 

drawbacks in actual implementation. Anodic blocking, although very successful in actual 

experiments, usually involves very long and forceful stimuli. Thus, many stimuli, which 

make use of this phenomenon, induce a ‘make’ or ‘break’ excitation at the onset or 

conclusion of the inhibitory pulse. In other words, to prevent AP propagation, the cell is 

typically driven to an unnatural state that excites the cell.  Fiber discrimination, on the 

other hand, is much gentler and more natural, but requires a degree of precision that may 

be difficult to achieve with extracellular stimulation. For example, depolarizing prepulses 

in patch models have been shown to be effective in preventing control pulses from 

causing excitation; however, conditioning prepulse may need to be 90% of the activation-

threshold or higher. Thus, it is of interest to evaluate under what conditions inhibitory 

pulses can effectively applied to neural tissues and cultures.   

4.3.3.2 Characterization of Inhibitory waveforms. 

In order to understand the extent to which pre-pulse inhibition can be applied towards 

selective stimulation, there are two issues of interest: (1) how long does the relative 

refractory state last, and (2) under what conditions is the pre-pulse effective (i.e. what 

waveforms reduce membrane excitability, and how difficult is it to apply in practical 

applications). The former may provide some insight into the mechanisms of inhibition (as 

the time constant for excitability recovery could be related to a physical cellular 

mechanism as well as to other published results in the modeling community), and the 

latter will provide a measure of the efficacy of such pulses. In either case, we examine 

these relationships by comparing the evoked response of an excitatory control pulse to 
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evoked responses where the excitatory pulse is preceded by a threshold modulating pre-

pulse Figure 4.11.  
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Figure 4.11 Experimental design for the evaluation of monopolar temporal 
inhibition. Although it is not practical/feasible to temporally sum voltage fields at 
targeted cells and tissue, the neural membrane and ion-channel time constants introduce a 
temporal component that can be used to sculpt regions of excitation. (A) Stimulus pulses 
were swept over one electrode to investigate the duration of the inhibitory effect. 
Accordingly, the interval between the inhibitory prepulse and excitatory control pulse, Δt, 
was varied and the Ca response observed. (B) Pre-pulse parameters (i.e. amplitude, 
duration) were swept over five electrodes to evaluate the pre-pulse efficacy for 
modulating single cell excitability in dissociated cortical cultures (-2 to – 10μA in –2 μA 
intervals and 2ms to 10 ms in 2 ms intervals; Stimulus control pulse was –60μA, 400 μs). 
For studies (A) and (B), the field of view (400x 400 μm blue boxes) was centered over 
the electrode of interest.  (In actual implementation, there was no spatial overlap between 
recordings.) 

 

In order to characterize the duration of the inhibitory effect, we first performed a 

manual sweep to determine under what stimulus conditions such an experiment would be 

effective.  As demonstrated in figure 4.12A and 4.12B, inhibitory prepulses were 

effective in preventing an evoked response that would have otherwise occurred. 

Following manual characterization, a sweep was performed, in which the duration 

between the prepulse and the stimulus pulse was varied. Figure 4.12 C and D depict the 

time course of excitability recovery for a single cortical neuron.  

 103



100µm
100µm

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Prepulse-Stimulus Interval (ms)

ΔF
/F

 (
%)

Control t = 0 ms t = 2.5 ms t = 3 ms

A B D

C

100µm
100µm

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Prepulse-Stimulus Interval (ms)

ΔF
/F

 (
%)

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Prepulse-Stimulus Interval (ms)

ΔF
/F

 (
%)

Control t = 0 ms t = 2.5 ms t = 3 ms

A B D

C

 

Figure 4.12  Depolarizing pre-pulses transiently inhibit neuronal excitability. (A) 
Background subtraction image illuminates cell bodies that were stimulated with a 2ms, -5 
µA pre-pulse followed by 0.4ms, -20 µA stimulus (the crossbars indicate the stimulation 
site).  (B) Extending the pre-pulse duration three-fold to 6ms suppressed stimulation in 
most of the neurons. The segmentation boundaries indicate somata with suppressed 
activity. (C) In a separate study, the time interval between the pre-pulse (-5μA, 4 ms) and 
stimulus (-30μA, 0.4ms) was adjusted to determine the length of time for which activity 
was suppressed. Shown are changes in fluorescent intensity (ΔF/F) for one of the 
suppressed neurons. (D) For the same neuron, Peak ΔF/F plotted as a function of the time 
interval between the pre-pulse and stimulus.  The cell becomes excitable again around 
3ms after the pre-pulse. Normal activity is resumed around 7ms. The gradual recovery of 
the cell to full excitability results from the probabilities involved that a cell will fire.  
 

Although the results of Figure 4.12 illustrate the feasibility and time course for 

neural inhibition, it is desirable to understand the conditions under which such an effect 

can be repeated. In order to more fully characterize inhibitory waveforms, we tracked the 

excitation responses of neurons to a wide range of inhibitory prepulses. Of particular 

interest was how effective such prepulses could be in reducing excitability in the 

immediate vicinity of the electrode (i.e. can inhibitory strategies be used to globally 

regulate excitation in the neurons surrounding the electrode). As indicated in section 

4.3.1, relative changes in fluorescent intensity between stimulus trials can be used as a 
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robust measure of excitability. By tracking the relative change in peak fluorescent 

intensity across the full suite of pre-pulses, Figure 4.14 depicts the degree to which the 

prepulse had an excitatory, inhibitory or negligible effect. Cells represented by bars in the 

blue shaded region were relatively inhibited, while cells in the red shaded region were 

relatively excited (x-axis scale is -1 to 1, where -1 indicates 100% decrease in excitation 

and 1 indicates a 100% increase in excitation).  Cells to the far left of the blue shaded 

region were completely inhibited (cross bars indicate the mean and standard deviation).   
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Figure 4.13 Relative changes in neural excitability. Depicted in each graph is a 
histogram of cell counts (y axis scale: 0 to 40 cells) as function of relative excitability as 
it relates to the stimulus amplitude and duration (x axis scale: -1 to 1, which indicates a 
100% decrease and increase respectively in relative excitability.) Shaded blue region 
indicates relative inhibition; Red region indicates relative excitation. Cross bars depict the 
mean and standard deviation.  Higher amplitude, longer duration sub-threshold inhibitory 
pulses induce a near global reduction in relative excitability. The left most bar of each 
histogram indicates the number of cell for which there was ≤ 5% chance that an action 
potential would be evoked under the relevant stimulus conditions.   
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Histograms for which the same stimulus charge was applied (but the amplitude 

and duration were different) demonstrate very similar patterns, indicating that, like 

excitation, inhibition is strongly correlated to charge (Data not shown). Shown in Figure 

4.14, is the relationship between the percentage of cells that were either relatively 

inhibited or excited for a given stimulus charge.  
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Figure 4.14 Percentage of cells that were either relatively inhibited or excited as a 
function of stimulus charge. Stimulus pre-pulses on the order of 100nC achieve near 
global reduction in neuronal excitability within the microscope field of view. Red trace 
indicates the percentage of cells which experienced a relative increase in excitability. The 
blue trace, in contrast represents cells that were relatively inhibited.  (Inset) Percentage of 
cells that were either 100% inhibited (blue trace) or at least marginally excitable (red 
trace.)  
 

As with excitatory pulses, it is important to understand the spatial relationship of 

inhibition with respect to the stimulating electrode. Figure 4.15 provides an alternative 

spatial representation of the final pane (bottom right) in Figure 4.13. The relative change 
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in excitability is depicted in Figure 4.15A.  In 4.15B, cells that were completely inhibited 

are contrasted with cells that were only partially inhibited. In general, there is a global 

and pronounced trend of inhibition. In the future, the global reduction in excitability 

could be combined with excitatory waveforms in multipolar configurations to potentially 

restrict the region of excitation.   
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Figure 4.15: Spatial relationship of relative excitability to soma-electrode distances. 
The 30 um TiN diameter electrode is in the center of the field of view (white circle), the 
results from 5 different electrodes with non-overlapping fields of view are superimposed 
for one culture (A) Relative change in excitability for a 100 nC stimulus pulse (0 
indicates 100% inhibition, 1 indicates no change in excitability, and 2 indicates 100% 
increase in excitability). (B) Cells were color coded blue if they were relatively inhibited 
and red if they were relatively excited. Picture demonstrates near global inhibition in the 
vicinity of the electrode. Field of view is 400x400 µm.    

4.3 Discussion 

We have developed a toolset for high throughput image acquisition and analysis of 

evoked responses to arbitrary extracellular current waveforms. In addition to developing 

threshold tracking methodologies, we collected data from thousands of stimulation trials 

to map out excitation patterns as well as alterations in neuronal excitability (as a function 

of depolarizing pre-pulse parameters and soma-electrode distances.) These data 
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demonstrated the performance of the stimulus tracking system and provide a foundation 

for exploring complex, multipolar stimulus protocols.  

One of the challenges in high-throughput optical tracking of functional activity is 

lack of reliability in signal acquisition. There are many variables that influence the signal 

quality, including dye loading, photo bleaching, media conditions, and light intensity. In 

order to accommodate these varying conditions, we devised automated techniques to (1) 

boost the signal-to-noise ratio and (2) to normalize the fluorescent intensity traces. In 

particular, a simple ten-shot stimulus proved to be very effective in taking advantage of 

the slow calcium decay rates to elevate the signal and to provide a robust measure of 

excitation thresholds.  This reduced the required number of triggered averages and 

consequently increased the throughput with which we could apply and evaluate stimulus 

pulses (file processing time between movies introduces a fixed delay). Further, the use of 

synaptic blockers insured that only responses from directly stimulated cells could be 

observed. Unhindered, the propagation of such stimuli through synaptic networks would 

have dramatically increased the complexity of the signal processing, particularly in the 

case of threshold tracking.  

Given the brief time window (90-120 minutes) with which we could evaluate 

functional activity, we used very broad 2-D stimulus sweeps (typically stepping in 10 uA 

amplitudes and 100us intervals.) We found, however, that by mapping these broad ranged 

pulse parameters into charge, we could acquire the stimulus threshold with very high 

fidelity. For some cells, the threshold could be resolved to within +/-0.1 nC. Under 

certain conditions, in which short pulse durations are used (< 500 us), the charge 

threshold could be used to specify one stimulus parameter (e.g. amplitude) and to 
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approximate the other (e.g. pulse duration).  The tracking of such charge-induced 

thresholds also provided a very explicit measure of the probability that a stimulus above 

or below the threshold would elicit a response.  

The relationship of excitation thresholds to soma electrode distances 

demonstrated a clear lack of correlation, indicating that it is very unlikely to garner 

spatial control (in the immediate vicinity of the electrode) using a single electrode. 

However, data from inhibitory waveforms demonstrated that it was possible to approach 

a global reduction in excitability in the immediate vicinity of the electrode.  In the future, 

as we build towards more complex multi-polar stimulation, it may be possible to take 

advantage of the transitional inhibitory state induced by the pre-pulses of 4.2.3 to better 

constrain the response evoked by an excitatory pulse applied at a separate electrode. 

Specifically, one could draw on biology’s own mechanism for heightening sensitivity to 

certain stimuli—lateral inhibition.  Many of the body’s sensory input systems (e.g. retina, 

skin, etc.) enhance signal contrast by inhibiting the activity of neighboring neurons. In a 

related fashion, one could apply two sets of pre-pulses to create an inhibitory ‘moat’ 

around an area of interest. Figure 4.16 illustrates such a strategy. The electrodes on the 

periphery could be used to apply inhibitory prepulses, while the center electrode could 

provide an excitatory pre-pulse. Following temporal conditioning, the center electrode 

could then be used to apply a low-amplitude excitatory and spatially constrained pulse.  

 109



Multielectrode Array Field ModelMultielectrode Array Field Model

 

Figure 4.16 Future studies: Multipolar lateral inhibition:  (A) A ‘moat’ of inhibition 
could potentially be created by applying inhibitory prepulses to electrodes surrounding 
the cells of interest while an excitatory pre-pulse is applied to the center electrode. The 
application of prepulses could be used to enhance sensitivity to extracellular stimuli in 
the center while reducing sensitivity in the periphery. This allows for the application a 
low-amplitude excitatory pulse to the target area, which could further improve spatial 
control of the stimulus. (B) Model of voltage fields during the prepulse conditioning 
stage as captured 20 μm above the dish. 
 

 In this study, the pulse-width duration for effective pre-pulse modulation of 

excitability (as well as the recovery rate) resided in a regime that is not often reported. 

Typically, threshold modulating pulses are either < 1ms (McIntyre 2000; Grill 1995) or > 

10 ms (Bhadra 2004). In contrast, the most effective pulse-width duration for the 

stimulation of dissociated cortical cultures resided between 1 and 10 ms. Such a time 

course and recovery rate may indicate that the mechanism for inhibition may be more 

related to the passive membrane constant (Bostock 1997) than to the non-linear gating 

mechanisms of sodium channels (McIntrye 2000; Bhadra 2004).  Additional 

experimentation and a modeling are required to more fully understand the mechanism for 

inhibition. In the future, well-defined mechanisms would greatly facilitate further 

exploration and refinement of selective stimulation waveforms.  
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In these experiments, we did not use the system to track axons, which are among 

the most sensitive neural elements to extracellular stimulation (Rattay 1999; McIntrye 

2000; Nowak 1998). However, the system can account for axonal contributions in a 

number of ways, either explicitly or implicitly. Explicitly, there are several attractive 

options: (1) the use of patterned cultured networks to specify the orientation of the axon 

(2) the use of slices or tissue in which the orientation of axons is known and (3) the use of 

a higher objective (40x) with a high-density multielectrode array (e.g. MCS ITO array 

with 10um electrodes and 40 um centers). All three options would potentially allow for 

very high-resolution investigations into the role of the axon in extracellular stimulation 

(Additional options include intracellular dye injection and viral GFP transfection). The 

implicit method to account for axons is to assume that in cortical cultures the orientation 

of axons is random, but that the length is finite. The degree to which this assumption can 

be quantified, will greatly facilitate estimates of the spatial efficacy of stimulus pulses. (It 

is interesting to note that the explicit techniques could elucidate methods for 

algorithmically determining axon orientation in implicit studies).  Generally, tissues and 

cultures that possess more uniform axonal projections may be tremendously easier to 

selectively stimulate.   

The most likely reason that a single electrode cannot elicit a spatially controlled 

stimulus pattern in dissociated cortical cultures is that the axon projections are seemingly 

random. Given the finite extent of axons and the statistical improbabilities that axons 

from all over the dish are traversing every electrode as well as the fact that voltage fields 

decay inversely with distance, it is likely that there is a spatial pattern for monopolar 

excitatory stimulation, but that it emerges outside the 400x400 µm field of view used in 
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these studies. (A viable option with this system is to build automated collages by 

systematically shifting the field of view).  Nevertheless, the most excitable neural 

elements (i.e axons, large diameter nerves, etc.) tend to be the most easily inhibited as 

well. Thus it may be possible to use complex multipolar waveforms to selectively excite 

somas (or axon hillocks) over so-called axons of passage. In fact, there are published and 

patent pending monopolar waveforms derived from models that are capable of exerting 

such control (McIntyre 2000). To the best of our knowledge, however, these waveforms 

have never been experimentally validated. In the future, such waveforms could be 

evaluated with the high-throughput stimulus tracking system.  
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CHAPTER 5 

DISCUSSION 

 
 
In this dissertation we presented a high throughput cellular analysis system for the 

evaluation of region specific neural excitation and inhibition.  The goal of this work was 

to develop a complete system for (1) precisely controlling critical variables that influence 

extracellular stimulation and (2) performing high-resolution automated optical tracking of 

evoked activity. Here we review the design and performance of our system, including 

each of the novel elements, and discuss the contributions to neural interfacing and 

medical science. Additionally we evaluate the stimulus strategies presented and discuss 

future work that could advance selective stimulations technology towards the ultimate 

goal of seamlessly restoring human nervous-system deficiencies that arise from disease 

or injury.  

5.1 Novel Contributions of this work 

In this thesis there were four novel contributions to the field of neural interfacing:  

1) Electrode sculpting: Microfabrication of high-density, high channel-count 
microelectrodes with automated impedance conditioning 

 
2) Soma segmentation: The use of 2-D object binning and 3-D context cues for the 

automated identification of somata in complex, high-density cultures 
 

3) Multicellular analysis: The development of a high-resolution, high-throughput 
system for the automated quantification of evoked activity of individual cells in 
dense populations of neurons.  

 
4) Stimulus waveform characterization: The spatial and temporal evaluation of 

single-cell evoked responses to excitatory and inhibitory waveforms. 
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Our first contribution was the development of automated microfabrication 

techniques for increasing the electrode count and density as well as specifying the 

electrical properties of individual electrodes.  The electrode is the physical element that is 

responsible for stimulating, recording, and imaging neural or electroactive tissues. 

Although many planar MEAs have been developed, few have addressed packaging to 

insure that the process is scalable to large channel counts and high electrode densities.  

Furthermore, to the best of our knowledge, this work represents the first attempt to use 

closed-loop electroplating techniques explicitly specify the impedance magnitude of the 

electrode. Although the focus of this work was to improve spatial selectivity in neural 

stimulus applications (i.e. enabling common ground modeling, improving voltage 

stimulation reliability, and providing more head-room for current stimulation) the 

matching and specifying of electrode impedance may present a great number of 

advantages for recording as well: (1) removal of stimulus artifact dependencies on 

electrode properties (Brown, 2008), (2) reduction of thermal noise introduced by the 

electrode (Franks 2005), and (3) improved source localization for spike sorting.  Finally, 

pulse plating presented a robust and simple mechanism for improving electrode 

resilience.  Although pulse-plating has found use for bulk electroplating and some large-

scale micromolding, it has not been applied to microsensor or microelectrode 

development. The use of pulse-plating and closed-loop, impedance controlled feedback 

may present new opportunities for the MEMs and semiconductor industry for automated 

micromolding and ‘back-side’ wire-trace plating respectively.  

Our second major contribution was in the development of novel algorithms for 

automated 2-D and 3-D soma segmentation in complex, high-density cultures. Unlike 
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many approaches, which focus either on the identification of dense nuclei or on single-

cell complex segmentation, we developed a robust method for high-throughput cell-body 

identification in dense 3-D cultures possessing rich neurite arborization. Additionally, we 

created novel algorithms to automatically identify, label, and correct segmentation errors. 

By incorporating these techniques into a ‘click-and-correct’ graphical interface, we 

created a platform that could attain near-perfect soma identification in very little time. In 

the context of stimulus tracking, these algorithms were specially honed to extract 

spatially-averaged Ca2+ waveforms from individual neurons. Although we currently have 

not implemented high-speed 3-D imaging, these algorithms could be immediately applied 

towards segmentation in 4-D (three spatial dimensions and time), which would facilitate 

studies in more complex environments.  

Our third major contribution was the development of an experimental system that 

integrated MEMs, electronics, and optics, with cells, dyes, and drugs. The ensemble of 

these elements into a flexible and robust system enabled very high-resolution acquisition 

and analysis of evoked activity. We are among only a few labs that have integrated 

functional imaging with MEAs, and to the best of our knowledge, the first to develop a 

high-throughput single-cell stimulus analysis system. Although, the system was 

exclusively applied to the quantification of evoked activity, the integration of stimulus 

artifact elimination opens up other possibilities for analysis, namely electrical recording 

(Please see Appendix A). The pairing of electrical and optical information provides a 

mechanism to correlate electrophysiological array recordings with a high-resolution 

‘standard’ for spatial and functional data.   

 115



Our final contribution was the use of the stimulus system to evaluate the 

spatiotemporal response of neurons to single-electrode excitatory and inhibitory 

waveforms. While many stimulus mechanisms and waveforms have been simulated, few 

of these waveforms have been tested in neural cultures, and fewer still have provided 

detailed, high-resolution measures of the evoked response. Through the evaluation of 

these waveforms, we determined that although there is very little spatial relationship 

between cellular threshold and soma-electrode distances, within the confines of a 

400x400um field-of-view, it is possible to nearly decrease excitability with inhibitory 

waveforms. In the future, the ensemble of such excitatory and inhibitory waveforms may 

enable the region specific excitation of neural tissue. 

5.2 System Applications and Future Work  

The full scope of this thesis addressed many different elements of selective stimulation.  

In the course of our work, we encountered many areas in which the system components 

could be both applied and improved.  Additionally, we identified several important future 

studies that the present system is well equipped to manage. These studies include the 

investigation of field steering as well as simultaneous optical and electrical recording.  

5.2.1 Research Applications 

We demonstrated the ability of the system to track the action potentials of individual 

somas across wide areas and we proposed methods for directly accounting for the 

contribution of other neural elements, such as axons and dendrites.  Such high-resolution 

insight into the evoked response due to patterned extracellular stimuli may present a 
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number of opportunities to advance selective stimulation in both basic science and 

medicine.   

In basic science applications, current interfacing technologies limit the ability to 

explore contributions of individual neurons to network-wide processing. Intracellular 

interfaces, such as patch clamps and sharp electrodes, provide accurate single-unit 

stimulation and recording resolution but at the expense of cellular viability and network-

wide visibility. Extracellular interfaces, such as multi-electrode arrays (MEAs), are 

minimally invasive with broad exposure to the network but usually lack the resolution to 

adequately discern and manipulate individual cells. Selective stimulation through this 

system has the potential to allow researchers to use extracellular techniques and MEAs to 

approach intracellular fidelities. Such development will enable the exploration of 

contributions of individual neurons to network-wide processing; an ability that is critical 

to the understanding of sensory input processing, memory formation, and behavior 

(Potter 2001). One such study could involve directly coupling simultaneous stimulation 

and optical recording with simultaneous electrical recording (Appendix A), to observe 

stimulus induced plasticity changes and neural network propagation.  

In addition to the basic science applications, the Ca2+ imaging system could 

benefit clinical research applications such as retinal implants, neocortex stimulation, and 

deep brain stimulation.  For retina implants, as indicated by (Sekirnjak 2006), one 

significant challenge is to extracellularly activate neurons at the retinal surface with 

electrodes that approach cellular dimensions, as little is known about the parameters that 

would permit reliable retinal stimulation with small electrodes.  (Mehenti 2006) were 

likely the first to use Ca2+ to explicitly study the evoked response of patterned, cultured 
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rentignal ganglion cells to single-electrode stimuli. Our system could potentially 

significantly increase the throughput of similar investigations while enabling much more 

complex studies, such as the use of coordinated multi-site stimuli or observations across 

large millimeter scale dimensions. For DBS and epilepsy applications, there has been 

some notable success in stimulation of the CNS (Kumar 1997). However, efficacy rates 

for epilepsy control continue to be significantly lower than directly excising out brain 

tissue. Our system could potentially use epileptic slice models to better understand the 

scope of the primary evoked responses, towards arresting aberrant activity (Durand 

2001).  For stimulation of the neocortex, as indicated by (Butovas 2003),  multielectrode 

techniques will be required to reach the spatiotemporal resolution needed to evoke 

functional activity patterns. Our system could be readily employed to study such muti-

site stimulus evoked patterns in either slice or culture preps. 

5.2.2 System Improvements  

The development of selective stimulation protocols requires unprecedented access 

to electrical and optical information from the tissue environment.  Although this work 

provides access and control over variables that influence stimulation, improvements in 

the electrode conditioning, signal conditioning, and image segmentation could 

significantly improve system precision and throughput (i.e. number of stimulus 

applications).  

Incorporating real-time image contrast enhancement could provide the most 

significant improvement to system throughput. The present system uses a number of pre-

determined steps to insure a high SNR for image processing. For example, ten rapid-fire 

stimuli are currently applied to induce Ca2+ accumulation and boost SNR. The use of a 
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more sensitive dye coupled with real-time contrast evaluation could reduce the number of 

stimuli significantly. The savings of up to several seconds per stimulus trial could result 

in hundreds and eventually thousands of additional stimulus trials.   

Other improvements that would increase the precision of the system include the 

use of embedded processors during electrode conditioning (chapter 2) and the 

incorporation of additional context cues for image processing (chapter 3). These 

improvements are explained in detail in sections 2.4 and 3.4 respectively.   

5.2.3 Field Sculpting  

The use the fabrication technologies of section (2.1) to develop tightly-packed, 

micron-sized electrodes, could create an opportunity for advanced stimulus field shaping. 

In previous research, Spelman demonstrated that closely spaced microelectrodes in 1-D 

can be used to produce less diffuse, more sharply focused, waveforms that have the 

potential to improve stimulation efficacy in cochlear implant applications (Spelman 

1996).  Such approaches could be applied to high density 2-D planar MEAs.  

Although a high-density multielectrode array presents tremendous potential for 

field steering, this potential is coupled with a corresponding increase in complexity. The 

development of simple models could facilitate the design of intricately contoured 

extracellular voltage fields and field gradients. Previous research has elucidated how the 

membrane potential of neural compartments varies as a single stimulation electrode is 

moved in the extracellular space (McIntyre and Grill, 1999; Rattay 1999).  An alternative 

approach could be to discard the electrode orientation models in favor of field orientation 

simulations, thus enabling a more adaptable and flexible approach to deriving stimulus 

waveforms. One could then solve the ‘inverse problem’ necessary to calculate the pattern 
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of complex currents required to generate the desired field lines (Rodenhiser 1995).  This 

so called field sculpting could be used to create significantly more accurate stimulus 

protocols.  

5.2.4 Simultaneous Optical and Electrical Recording 

Although functional optical recording provides the most accurate measure of the 

location of stimulated neurons, electrical recording is far better suited for longer term and 

less invasive studies. Coupling optical and electrical measurements creates and 

opportunity to develop improved neural localization methods (e.g. spike sorting).  

Specifically, the optical measurements provide a ‘gold-standard’ or frame of reference 

with which to develop and evaluate algorithms that can translate electrical neural signals 

into spatial information. In particular, when stimulation is used with artifact elimination 

(Appendix A), the opportunity for source localization improves substantially.  In fact, it is 

our hope that, in the future, this system can be supplanted by electrical evaluation 

techniques that approach the same fidelity. In this manner, the technologies and 

waveforms derived from this system could find their way into the neural prostheses and 

therapeutic stimulators of tomorrow.  

5.3 Conclusions: Taking a Lesson from the Cells  

It is interesting to note that the pre-pulse inhibition phenomenon occurs well 

beyond the cellular level (e.g. psychological startle reflexes). In fact, the full inhibitory 

cycle for a neuron is not unlike what a grad-student experiences on vacation. For 

example, you arrive in a strange and very foreign destination and, as you are in an 

unnatural environment, you immediately go into a quasi-excitable state: Where is the 
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hotel? Is this cab driver trying to rip me off!? Why is that cop tapping his baton and 

licking his lips!!? After a few days, however, you settle into your environment and you 

forgot about your job and daily frustrations. When you return from vacation and go back 

to work, the daily stimuli no longer get your fired up, but, in time, you return to your 

normal stressed out and ‘excitable’ self.  Thus, for cells, psychological reactions, and life 

itself, it is really just a matter of adaptation and time constants.  So, the author of this 

work is taking a lesson from the cells; after defending this thesis…I’m going on a 

vacation. And, if you made it this far, maybe you should too! God bless.  
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APPENDIX A 
 
 

THE MODELING AND MANAGEMENT  
OF STIMULATION ARTIFACTS 

 
 

A fundamental, technical hurdle for electrophysiologists has been to extracellularly 

record from individual neurons while simultaneously applying micro-stimulation. 

Unfortunately, stimulation pulses exacerbate neural recording challenges by obscuring 

action potentials that occur during the time course of the artifact (Gnadt 2003). In recent 

literature, there are several techniques proposed to remove stimulation artifacts; these, 

among others, include spectral cancellation (Gnadt 2003), rapid polynomial fitting 

(Wagenaar 2002), and sample-hold and discharge schemes (Jimbo 2003).  Despite the 

growing number of proposed artifact removal schemes, discussions on the actual cause of 

stimulation artifacts are notably absent.  Ultimately, the best prevention of stimulation 

artifacts will come from an understanding of their source.  In this appendix, a 

comprehensive model of the stimulus artifact is presented. We then present a closed-loop 

electrode discharge scheme, which minimizes the stimulation artifact by directly 

addressing the underlying causes elucidated by the models.  

A.1  Non-Linear Electrode Theory 

The electro-chemical interactions at the electrode are complicated and elusive; 

nevertheless, the last 120 years of microelectrode research have produced theories with 

some meaningful predictive power.  David Borkholder summarizes this large body of 

work in his 1998 thesis submitted to Stanford University (Borkholder 1998). The model 

in this appendix follows directly from Borkholder’s model with a couple of notable 
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exceptions. To simply the analysis, Borkholder linearizes the models and assumes that 

the electrodes never deviate more than 50 mV from equilibrium.  The 50 mV range over 

which his model is valid is actually quite robust, given that neurons seldom produce 

extracellular potentials at the electrode in excess of 1 mV. In fact, Borkholder is 

tremendously successful in predicting the frequency dependent impedances for a variety 

of microelectrode materials and geometries.  Stimulation, however, generally occurs in 

the 0.1 to 5 V range; therefore non-linearities should be incorporated into the model (and 

then evaluated against linear models).  Additionally, non-ideal switching circuitry for 

stimulation must be modeled to adequately simulate conditions for simultaneous 

stimulation and recording. In this section, we first provide an overview of the work of 

Borkholder and Kovacs and then apply their model towards the study of stimulation 

artifacts.  

Immediately after placing a metal in an ionically conducting solution, chemical 

reactions occur that induce a field at the electrode-electrolyte interface. The electric field, 

generated by electron transfer reactions, produces the hydration sheath, whereby water 

dipoles orient themselves at the metal surface.   Solvated ions aggregate just beyond the 

hydration sheath, forming what is known as the outer Helmholtz plane (OHP).  The 

charges at the metal layer and ions at the OHP form the Helmholtz capacitance, which is 

given by: 

OHP

ro
H d

εε
C =              (A.1)  

where CH is the capacitance per unit area, and dOHP is the distance from the OHP to the 

metal electrode.  In addition to the bound ions at the OHP, it has been shown, 
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experimentally, that capacity at the interface also depends on voltage. Therefore, the 

Gouy-Chapman capacitance model, which accounts for this dependency by considering 

the electrical and thermal effects on the time-averaged ionic distribution, can be added in 

series with the Helmholtz capacitance.  The Gouy-Chapman capacitance is given by the 

following equations: 
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LD is the Debeye length, which characterizes the spatial decay of the potential in the 

electrolyte, is the characteristic thickness of the Gouy-Chapman capacitance. Vo is the 

voltage potential at the electrode, z is the valance of the ions, and Vt is kT/q.  Both CGC 

and CH are serially added to produce the interfacial capacitance, CI.  

If a DC potential is applied across the interface, a current flows. Therefore, it is 

necessary to model a resistive path in parallel with the capacitor.  To produce a net 

current flow, the potential across the electrode must exceed the equilibrium potential. 

This potential is termed the overpotential and is characterized by the following four 

terms:  

crdt ηηηη η +++=      (A.3)  

where ηt is due to charge transfer, ηd is due to the diffusion of reactants to and from the 

electrode, ηr is due to chemical reactions, and ηc is due to metal-atom/solution-ion 

exchange. Borkholder considers the later two insignificant.  Charge transfer tends to 

dominate the overpotential, particularly near the equilibrium point. The current density 

(A/cm2) generated by the overpotential, ηt, is given by: 
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where Jo is the exchange current density (in this case for a Pt Electrode with a hydrogen 

reaction), and β is the symmetry factor that reflects the energy barrier differences 

between oxidation and reduction reactions.   

Finally, the spreading resistance models the spreading of current from the 

localized electrode to a distant ground electrode in the solution. The spreading resistance 

is given by (Kovacs 1994) for a rectangular electrode of length, l, and width, w.  
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where ρ is the resistivity of the electrolyte.  

In order to capture the behavior of the electrode under stimulation conditions, the 

stimulus circuitry must be modeled, which we accomplished by employing a 0.1 Ω 

resistor when a stimulus pulse was applied and 0.1 GΩ resistor when the stimulus was off 

(i.e. a non-ideal switch).  The ensemble of all the modeling elements, including the 

stimulation circuitry is depicted in Fig. A.1 
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Figure A.1: Circuit diagram for the non-linear electrode model and stimulation 
circuitry.  
 

A.2. Modeling Stimulation Artifacts 

 
Using Figure A.1, Equations for the voltage at the recording site, Vr, and voltage at the 

electrode, Vx, were derived using nodal analysis and manipulated to remove any 

derivatives and algebraic loops. The final expressions for Vr and Vx are as follows: 
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The solution to the above equations were solved using Simulink’s ODE45 (Dormand-

Prince) solver with auto-scaled time intervals and error tolerances (Figure A.2).  
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Figure A.2 Non-linear Simulink model of the electrode and stimulation artifact.  

 

In order to explore the underlying mechanisms for the stimulation artifact, a 

0.1ms cathodic voltage pulse (with 0.5 Volt amplitude) was initially supplied to the 

electrode model, without the switching circuitry, to produce the result in Figure A.3A. 

Although this voltage trace demonstrates interesting behavior at the interface, the 

stimulation artifact is non-existent. It is only when incorporating the switching circuitry 

into the model that a characteristic artifact is observed (Figure A.3B).  
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Figure A.3 Voltage Trace measured at Vr both without (A) and with (B) switching 
circuitry present response. (Inset: zoomed in view stimulus artifact) 
 

The voltage response in Figure A.3 appears very similar in nature to actual stimulation 

artifacts reported by (Brown 2008, Blum 2007, Jimbo 2003), which clearly implies that 

the switching circuitry is significant in producing the artifact. Further, in figure A.4, a 

“biphasic” pulse is applied, producing yet another typical artifact.   
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Figure A.4 Voltage Trace measured at Vr demonstrating that charge is trapped on 
the electrode.  
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The length of time for which the trapped charge remains in Figures A.3 and A.4 

(discharge rate) can be reduced by decreasing the closed switch resistance value, which 

indicates that the time constant given by the switching circuitry resistance and the 

electrode capacitance determine the discharge rate. This relatively simple behavior is 

faithfully represented with linear models (Blum 2005). Thus, despite non-linear voltage 

dependencies of the electrode circuit elements, namely interfacial capacitance and charge 

transfer resistance, simple linear models sufficiently capture the majority of the 

stimulation artifact behavior.  This characteristic likely results from the fact that the 

electrode immediately returns to its linear regime following an applied stimulus (< 

50mV).  

A.3 Managing Stimulation Artifacts 

Our initial work on simultaneous stimulation and recording began with an inquiry 

into the source of the stimulation artifact. Our intention was to develop a more 

comprehensive solution to the stimulation problem through a better understanding of the 

underlying causes. A comparison of complicated, non-linear stimulus-electrode models 

with simple, linear models indicated that the major source of artifacts is trapped charge 

that accumulates on the electrode (Blum 2004). Using a linear electrode model, we 

observed that complete artifact elimination would require at least eleven time constants, 

of the model components, to remove the artifact. For a 40 µm × 40 µm platinum black 

extracellular electrode in an open circuit this could take at least 50 ms and would depend 

on the applied stimulus waveform. Our model also demonstrated that multiple or 

unbalanced stimuli could extend the artifact duration well into the tens of seconds. 
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Despite our efforts, none of the electrode models (linear or non-linear) could 

capture all of the long-lasting artifact dependencies, stochastic, and non-linear processes 

that resulted from redox reactions at the electrode-electrolyte interface (Brown 2008). 

Furthermore, while the primary cause of stimulation artifacts was the charge stored in the 

electrode, both the models and our empirical observations confirmed that effects from the 

intervening circuitry could easily aggravate the artifact. Thus a solution was required that 

could account for linear and non-linear electrode effects as well as circuit effects. 

To address the compounding and highly sensitive artifact problems, we designed 

an integrated circuit (IC) to integrate each electrode into a feedback loop (US Patent No. 

07/0178579). This strategy actively discharges the electrode in a manner that can control 

both linear charge accumulation as well as transient and non-linear electrode effects. 

Additionally, simultaneous stimulation and recording could be achieved by preventing 

circuit-artifacts at multiple sources, which involved the following strategies or phases: (1) 

amplifier blanking, (2) filter response management, and (3) soft switching. Specifically, 

amplifier blanking was used to reduce cross-talk induced by high-amplitude and high-

speed stimulus pulses, filter management was used to improve the recovery speed of the 

recording amplifiers, and soft switching was used to avoid abrupt voltage transitions at 

the amplifier inputs. Figure A.5 depicts our current IC. 
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Figure A.5: Artifact elimination technology (A) micrograph of custom IC for 
simultaneous stimulation and recording. White box highlights the electrode control 
circuitry for a single electrode, for which a high level schematic is depicted. (B) The 
stimulating, recording, and artifact elimination circuitry integrate the electrode into a 
feedback loop, which is capable of removing accumulated charge at the electrode-
electrolyte interface The dashed-box depicts the circuit elements that represent the 
electrode model.  
 

To accommodate the hardware and software support required by our custom IC, 

we built a system that enabled both high-level experimental design, such as stimulus 

waveform shaping and electrode selection, and low-level control and characterization of 

the stimulating electrode. This development allowed us to fully characterize the 

performance of our system, and it granted us greater access to the electrode-electrolyte 

interface. Overall, our current 16-channel system, under optimal conditions, has reduced 

the artifact to 3 ms or less on the stimulating electrode and 500 µs or less on neighboring 

electrodes, and evoked cellular responses have been consistently observed on the 

stimulating electrode.  

In the figures below (Figures A.6- A.13), we illustrate the performance of various 

artifact management techniques. In actual practice, each of the individual strategies 

works in concert to minimize the stimulation artifact (Figure A.6 illustrates the method to 
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calculate the artifact duration). Specifically, we incorporated the following artifact 

management strategies into a single simultaneous stimulation and recording platform: (1) 

Electrode Discharge (Figure A.7), (2) Pole Shifting (Figure A.8), and (3) Soft Switching 

Figure (A.9). Electrode Discharge removes charge that remains at the end of a stimulus 

(as indicated by the modeling results in A.2). However, because the frequency 

characteristics of the amplifier itself contribute to the artifact, modifying the frequency 

response of the main amplifier, or pole shifting, for a short period following electrode 

discharge also enables further reduction the artifact. Finally, because abrupt transients 

affect the filter and the electrode itself, smooth transitions between artifact management 

phases creates additional opportunities for artifact reduction. Figure A.10 illustrates the 

software that was used to specify the stimulus and artifact elimination parameters. 

Figures A.11 and A.12 illustrate the performance of the system when stimulating 

dissociated cortical cultures. More details can be found in (Brown 2008). (Mr. Nakul 

Reddy contributed to the acquisition of the artifact elimination data.) 
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Figure A.6 Definition of Artifact Duration.  Example of the output of the recording 
system after a ±500mV, 200 µs per phase stimulation and a 2 ms discharge (not enough 
to eliminate the artifact). This 25 trace recording is a transient behavior at the initiation of 
8 Hz periodic stimulation (darker traces happened later in time). The artifact variability 
can be seen to converge towards a narrow range of values. The initial spike (as the main 
amplifier is turned on), and the relatively flat region that follows, is due to the activity of 
the discharge loop. In this case the recording system saturates at approximately 2.25mV. 
The inset shows the artifact duration depending on the chosen threshold (the shading 
corresponds to the thresholds indicated by dashed lines in the main figure). 
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Figure A.7 Artifact duration after an initial discharge period of 500 µs at 10 µA: (a) 
Set of time traces of artifact data with a discharge current of 10 µA parameterized by 
discharge time, the arrow indicates the direction of increasing discharge time. (b) Artifact 
duration with respect to discharge time parameterized by discharge current 
(logarithmically spaced, 20 current traces from 10 µA to 0.1 µA). The dashed line 
corresponds to a higher artifact threshold of 2mV (the sloped region is the total discharge 
time as the artifact does not exceed the threshold). (c) 3-D representation of the data set 
from (b). Note that the artifact duration slightly worsens for larger discharge currents and 
times. 
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Figure A.8 Artifact duration with respect to pole shift time and frequency after a 
discharge period of 1 ms at 5 µA, followed by 1.5 ms at 1 µA. The pole shift effect is 
additive to the recording high–pass frequency of 200 Hz (the frequencies shown are 
actual high–pass values): (a) Set of time traces of artifact data with a pole shift frequency 
of 800 Hz parameterized by pole shift time, the arrow indicates the direction of 
increasing pole shift time. (b) Artifact duration with respect to pole shift time, 
parameterized by pole shift frequency. (c) 3-D representation of the data set from (b). 
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Figure A.9 Soft transients improve recording performance. Example of two artifacts 
with (black) and without (gray) a soft transition between the high and low discharge 
currents. The bottom plot shows Rdisch for each curve; both start and stop at the same 
values and have a total discharge time of 3.5 ms. The initial peak saturates the amplifiers 
though the higher currents make it too fast to be captured at this sampling rate. The gray 
regions denote the areas in which the corresponding amplifiers are turned off. Note that 
the larger overall current (smaller overall Rdisch value) performs worse than having a 
smooth transition. 
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Graphic Panel 

Terminal 

Figure A.10 Graphical user interface for designing stimulus waveforms and 
managing the artifact elimination parameters. The interface, which translates user 
specified parameters into PIC microcontroller commands, is divided into five sections, 
which clockwise from the bottom left are (1) Electrode Selector: Allows the user to turn 
individual recording channels on or off as well as designate which channel(s) are used for 
stimulation. (2) Stimulation: A panel for specifying the stimulation and discharge 
parameters, which are graphically represented in (3) Graphic Panel: The red phase 
designates the stimulus profile, the dark and light blue phase represent the duration of the 
1st and 2nt discharge phase respectively. The vertical dashed and solid line indicate the 
1st and 2nd Poleshift phase respectively. (4) Terminal:  The terminal displays 
microcontroller commands that are echoed back from the microcontroller. Finally, (5) 
Biasing Panel: a multilevel text entry panel for setting the chips biases. Inputs, such as 
high pass cut off frequency, are mapped through calibration curves into ADC voltage 
codes.  
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Figure A.11 Recording evoked neural responses. Recordings through our system with 
a discharge time of 2 ms @ 50 µA, two pole–shift phases of 0.5 ms @ 2200 Hz and 0.5 
ms @ 700 Hz. High-pass filter setting: 200 Hz. Stimuli were positive-first biphasic pulses 
(pulse width 200 µs for each phase) with an amplitude of 0.1V (bottom trace) or 0.5V 
(top trace). Note the recorded responses starting 4 ms after stimulation. Data collected by 
Johnny Nam at the university of Illinois Urbana Champaign 
 
 

 
 
 
Figure A.12 Performance of Artifact elimination technology. Recordings through our 
system with a discharge time of 2 ms @ 50 µA, two pole-shift phases of 2 ms @ 2000 Hz 
and 0.5 ms @ 500 Hz. High-pass filter setting: 10 Hz. Acquired data were filtered by a 
digital 2nd order Butterworth high-pass filter with a cutoff frequency of 200 Hz. The 
stimuli were positive-first biphasic pulses with 200 µs per phase, at ±0.5V. The circles 
denote additional crosstalk artifacts in the IC, the arrows show time-locked action 
potentials. Data collected by Johnny Nam at the University of Illinois Urbana-
Champaign. 
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APPENDIX B 
 
 

ELECTROPLATING HARDWARE, SOFTWARE, AND RECEPIES 
 
This Appendix describes the hardware, software, and chemical solutions used for the 
closed-loop electroplating techniques described in chapter 2. 

B.1 Electrical Schematic for Electroplating Circuitry  

 
 
Figure B.1: Electrical Schematic for closed loop electroplating circuitry. The 
electroplating current is switched onto individual electrodes through two daisy chained, 
SPI-controlled, Maxim analog switches. A low amplitude (<10 mV) AC 1 khz signal is 
capacitively coupled onto the electrode and a reference resistor. Waveforms across these 
elements are amplified (INA129P) and sampled using the PIC 16F73, 8-bit analog to 
digital converters and transmitted serially (through RS-232) to Matlab for processing.   
 

B.2 Software for Closed-loop Pulse Plating 

The current source used provide the plating current was a Keithly 2400. The following 

code used internal timing configurations and triggering to control the current pulses:  

 
 
function ism2400 = ism2400pulseinit(port,upPhase,downPhase) 
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%-------------------------------------------------------% 
%The front-end interface to the Keithly 2400 is not     % 
%configured to apply pulsed currents. The following     % 
%code uses the internal timing configurations to apply  % 
%controlled electroplating pulses.       % 
%                                                       % 
% port: RS-232 comport used for interfacing             % 
% Uphase: Amplitude value for pulse                     % 
% DownPhase: 2nd phase amplitude value for pulse        % 
%-------------------------------------------------------% 
  
global ISM2400_SWEEP_SIZE SWEEP_BIT ISM2400_VCOMPLIANCE 
  
ISM2400_SWEEP_SIZE = 2; 
SWEEP_BIT=uint16(2^3); 
ISM2400_VCOMPLIANCE = 5; 
  
ism2400 = serial(port); 
ism2400.BaudRate = 57600; 
fopen(ism2400); 
fprintf(ism2400,':*RST'); 
fprintf(ism2400,':*SRE 1'); 
fprintf(ism2400,':SYST:AZER:STAT OFF');  
fprintf(ism2400,':SOUR:FUNC CURR'); 
fprintf(ism2400,':SENS:FUNC:CONC OFF');  
fprintf(ism2400,':SENS:FUNC "VOLT"'); 
fprintf(ism2400,':SENS:VOLT:NPLC 0.08');  page 1870  %
fprintf(ism2400,':SENS:VOLT:RANG 20');     
str_command = [':SENS:VOLT:PROT:LEV ' num2str(ISM2400_VCOMPLIANCE)]; 
fprintf(ism2400,str_command); 
fprintf(ism2400,':FORM:ELEM VOLT'); 
fprintf(ism2400,':SOUR:CURR:MODE LIST'); 
fprintf(ism2400,[':SOUR:LIST:CURR' num2str(upPhase), ','… 
                  num2str(downPhase)]; 
fprintf(ism2400,':OUTP ON'); 
 
 
function TrigPulse(ism2400); 
%-------------------------------------------------------% 
%Function to initate pulsed-currents and to poll for    % 
%completion                                             % 
%                                                       % 
% ism2400: serial port object                           % 
%-------------------------------------------------------% 
global SWEEP_BIT 
  
TIME_OUT = 5; 
fprintf(ism2400,':INIT'); 
fprintf(ism2400,':stat:oper:cond?'); 
  
tic 
while (ism2400.BytesAvailable == 0) & (toc < TIME_OUT) 
    pause(0.05); 
end;   
if toc > TIME_OUT 
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    disp('Warning: BytesAvailable poll exceeded the maximum allowable 
time limit'); 
end; 
  
bits = uint16(fscanf(ism2400,'%d',ism2400.BytesAvailable)); 
  
%Wait until the triggered sweep is done executing  
while bitand(bits,SWEEP_BIT) 
    fprintf(ism2400,':stat:oper:cond?');tic 
    while (ism2400.BytesAvailable == 0) & (toc < TIME_OUT ) 
        pause(0.05); 
    end;   
    bits = fscanf(ism2400,'%d',ism2400.BytesAvailable); 
end;  
 
function medianVpp = GetData(s,Channel,num) 
%-------------------------------------------------------% 
%Function for initiating voltage sampling               % 
%                                                       % 
%s: the serial object for communicating with the PIC    % 
%Channel: The A/D channel to sample                     % 
%num: The number of times to take the sample            % 
%-------------------------------------------------------% 
  
for loop = 1:num 
    a= []; 
    ymid = []; 
    f = 0; 
    while f == 0 
        str_command = ['/a ' num2str(Channel)]; 
        a=picwrite(s,str_command,'timeout',.40);  
        f = size(a) > 160; 
    end; 
    aa=sscanf(a(5:end),'%2x'); 
    bb = aa*5/256; 
    y=(resample(bb,20,1));  
    ymid = y(200:800); 
    yMax(loop) = max(ymid); 
    yMin(loop) = min(ymid); 
end; 
yMax - yMin 
medianVpp = median(yMax) - median(yMin); 

B.3 Platinum Black Electroplated Recipe 

In a solution of DI water, mix up the following:  

1)  1% chloroplatinic acid (diluted from 8% hydrogen hexachloroplatinate) 
2)  0.0025% HCl  
3)  0.01% lead acetate  

 141



APPENDIX C 
 
 

BIOLOGICAL PROTOCOLS 

C.1 Protocol for Preparing Dissociated Cortical Cultures.  

This cell culture protocol is primarily derived from (Potter 2001) and incorporates some 
dissociation techniques developed by Dr. Michelle LaPlaca’s research group. Surface 
coatings such as PEI/Laminin may be used to improved cell adhesion.  
 

1. In a 15 ml centrifuge tube, digest embryonic-day-18 rat whole cortex pieces in 2 
ml papain solution for 8 min at 37 °C.  

2. To halt digestion, immediately remove the papain and  add 1 ml of plating 
medium (with serum) 

3. To facilitate dissociation and digest sticky DNA residue, add 200 µl of DNAse 
(1.5 mg/ml).  

4. To dissociate the cells, vortex the solution in 5 second intervals until solution 
becomes cloudy (do not exceed more than 35 seconds of cumulative vortexing) 

5. To remove debris and large volumes of tissue, gently pipet out the suspended cell 
solution into a 40 µm cell strainer placed within a 35mm petri-dish.  

6. Transfer the filtered suspension to a 15 ml centrifuge tube. Increase plating 
medium volume to 3- 4 ml. Add 0.5 ml of 5% BSA solution in phosphate-
buffered saline to the bottom of the solution.  

7. Centrifuge the cell suspension at 200 x g for 6 minutes at room temperature 
8. Remove and save the supernatant. Add 0.5 ml of the plating medium to the pellet. 
9. Tritruate the pellet very gently to re-suspend the cells. Count the cells with a 

hemocytometer.  
10. Plate the cells into MEAs (approximately 4x105 cells/ cm2)  
11. Store in an incubator at 35 °C with 5% CO2 and 9% O2 

 

C.2 Preparing Aliquots of Fluo-5F Ca2+ Dye  

When preparing the dye, care should be taken to minimize light exposure (e.g. wrap foil 
around the 15 ml centrifuge tube used for preparing the mixture). This recipe is primarily 
derived from (Ikegaya 2005).  
 

1. Begin with one 50 μg vial of Fluo-5F powder (Invitrogen) 
2. Add 45 μL of anhydrous DMSO into the Fluo-5F vial 

Note: Mix gently but thoroughly with the micro-pipetter in order to dissolve all of 
the powder 

3. Add the DMSO-Dye solution to 1 ml of artificial cerebral spinal fluid (ACSF) 
(use the foil-wrapped 15 mL centrifuge tube). 

4.  Add 1 μl of pluronic F-127 and vortex the whole solution.  
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      5.   Partition into 10 aliquots of 100 μl units. Store in –80 ºF freezer. 
 

C.3  Protocol for Bulk Loading Ca2+ dye into Dense Cortical Cultures 

When loading the dye, care should be taken to minimize light exposure (e.g. wrap foil 
around the top and bottom (independently) of a petri-dish and use to transport vials and 
dishes).  
 

1. Remove all of the media from the culture dish 
2. Add back in 400 μl of ACSF to the culture dish 
3. Add 100 μl of Fluo-5F dye to the center of the dish (from C.2) 
4. Store dish in 34 ºF incubator for 35 minutes.  
5. Remove the dye-rich media from the culture dish and apply 1 ml of your 

preferred media.  
 

C.4  Protocol for Inhibiting Synaptic Transmission (following dye loading) 

The concentration of blockers sufficient to block virtually all spontaneous activity was 
derived by Dr. Douglas Bakkum.  
 

1. Following 35 minutes of bulk load of Ca2+ dyes (C.3), mix up 50 µM BMI, 100 
µM APV, and 10 µM CNQX) in1 ml of  ACSF in a 15 ml centrifuge tube 

2. Vortex the ACSF and synaptic blockers 
3. Withdraw all of the dye-rich media from the culture dish 
4. Add in the ACSF with synaptic blockers.  
5. After concluding experiments performed with loaded dyes and added blockers, 

sequentially rinse the dish 3 times with 1 ml of ASCF.  
6. Finally, add back in 1 ml of your preferred culturing media.  
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	Figure A.1: Circuit diagram for the non-linear electrode model and stimulation circuitry. 
	1. Begin with one 50 μg vial of Fluo-5F powder (Invitrogen)

