30 research outputs found

    Algorithm Architecture Co-design for Dense and Sparse Matrix Computations

    Get PDF
    abstract: With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to optimize on the same architecture. This thesis addresses this challenge and introduces a reconfigurable accelerator that supports both dense and sparse matrix computations efficiently. The reconfigurable architecture has been optimized to execute the following linear algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication), SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where each core consists of a 2D array of processing elements (PE). The 2D array of PEs is of size 4x4 and is scheduled to perform 4x4 sized matrix updates efficiently. A sequence of such updates is used to solve a larger problem inside a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR) is used to perform sparse kernel updates. Scalable partitioning and mapping schemes are presented that map input matrices of any given size to the multicore architecture. Design trade-offs related to the PE array dimension, size of local memory inside a core and the bandwidth between on-chip memories and the cores have been presented. An optimal core configuration is developed from this analysis. Synthesis results using a 7nm PDK show that the proposed accelerator can achieve a performance of upto 32 GOPS using a single core.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Optimization of the Memory Subsystem of a Coarse Grained Reconfigurable Hardware Accelerator

    Get PDF
    Fast and energy efficient processing of data has always been a key requirement in processor design. The latest developments in technology emphasize these requirements even further. The widespread usage of mobile devices increases the demand of energy efficient solutions. Many new applications like advanced driver assistance systems focus more and more on machine learning algorithms and have to process large data sets in hard real time. Up to the 1990s the increase in processor performance was mainly achieved by new and better manufacturing technologies for processors. That way, processors could operate at higher clock frequencies, while the processor microarchitecture was mainly the same. At the beginning of the 21st century this development stopped. New manufacturing technologies made it possible to integrate more processor cores onto one chip, but almost no improvements were achieved anymore in terms of clock frequencies. This required new approaches in both processor microarchitecture and software design. Instead of improving the performance of a single processor, the current problem has to be divided into several subtasks that can be executed in parallel on different processing elements which speeds up the application. One common approach is to use multi-core processors or GPUs (Graphic Processing Units) in which each processing element calculates one subtask of the problem. This approach requires new programming techniques and legacy software has to be reformulated. Another approach is the usage of hardware accelerators which are coupled to a general purpose processor. For each problem a dedicated circuit is designed which can solve the problem fast and efficiently. The actual computation is then executed on the accelerator and not on the general purpose processor. The disadvantage of this approach is that a new circuit has to be designed for each problem. This results in an increased design effort and typically the circuit can not be adapted once it is deployed. This work covers reconfigurable hardware accelerators. They can be reconfigured during runtime so that the same hardware is used to accelerate different problems. During runtime, time consuming code fragments can be identified and the processor itself starts a process that creates a configuration for the hardware accelerator. This configuration can now be loaded and the code will then be executed on the accelerator faster and more efficient. A coarse grained reconfigurable architecture was chosen because creating a configuration for it is much less complex than creating a configuration for a fine grained reconfigurable architecture like an FPGA (Field Programmable Gate Array). Additionally, the smaller overhead for the reconfigurability results in higher clock frequencies. One advantage of this approach is that programmers don't need any knowledge about the underlying hardware, because the acceleration is done automatically during runtime. It is also possible to accelerate legacy code without user interaction (even when no source code is available anymore). One challenge that is relevant for all approaches, is the efficient and fast data exchange between processing elements and main memory. Therefore, this work concentrates on the optimization of the memory interface between the coarse grained reconfigurable hardware accelerator and the main memory. To achieve this, a simulator for a Java processor coupled with a coarse grained reconfigurable hardware accelerator was developed during this work. Several strategies were developed to improve the performance of the memory interface. The solutions range from different hardware designs to software solutions that try to optimize the usage of the memory interface during the creation of the configuration of the accelerator. The simulator was used to search the design space for the best implementation. With this optimization of the memory interface a performance improvement of 22.6% was achieved. Apart from that, a first prototype of this kind of accelerator was designed and implemented on an FPGA to show the correct functionality of the whole approach and the simulator

    재구성형 구조에서의 효율적인 조건실행 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2013. 8. 최기영.재구성형 구조는 연산량이 많은 프로그램을 내장형 시스템에서 가속시키는 데 적합한 방법 중 하나이다. 이는 일반적으로 많은 연산유닛들과 하나의 컨트롤러로 구성되어 고성능, 유연성, 저전력을 동시에 달성할 수 있도록 해준다. 많은 연산유닛을 바탕으로 한 병렬처리는 응용프로그램의 실행속도를 빠르게 하며, 재구성 기능은 다양한 응용프로그램에의 활용을 가능하게 해준다. 또한, 명령어와 데이터에 대한 스케쥴을 미리 정해놓음으로써 제어구조를 단순화시킬 수 있으며 이는 연산량 대비 전력소모를 최소한으 로 줄여준다. 하지만 응용프로그램이 복잡해짐에 따라 연산량이 많은 부분들에 분기문이 생기게 되었으며 이는 재구성형 구조를 사용함에 있어 큰 위협이 되고 있다. 분기문을 다룰 수 있는 컨트롤러가 하나이기 때문에 컨트롤러에 병목현상이 발생하거나 동시에 서로 다른 제어를 요구하게 되면 해당 프로그램은 가속이 불가능해진다. 조건실행이라는 기술을 사용할 경우 이를 부분적으로 해소할 수 있지만 기존에 개발되어 있는 조건실행 기술들은 재구성형 구조에 성능 및 전력소모 면에서 부정적인 영향을 끼친다. 따라서 본 논문에서는 연산량이 많지만 분기문을 가진 응용프로그램에서 조건실행이 성능과 전력 면에서 어떠한 영향을 미치는지 밝히며 이를 바탕으로 고성능과 저전력을 가진 조건실행 방법을 제안한다. 실험 결과에 따르면 제안한 방식은 기존의 세가지 방식보다 성능과 전력소모를 곱으로 표현한 수치에 있어서 11.9%, 14.7%, 23.8% 만큼의 이득을 보였다. 또한, 제안한 조건실행 방법에 적합한 컴파일 체계도 제안하였다. 제안한 조건실행은 절전모드를 사용함에 따라 전력을 아낄 수 있지만 기존의 컴파일방식으로는 여러 조건문을 병렬적으로 수행하도록 컴파일할 수 없는 문제가 생긴다. 따라서 본 논문에서는 이런 문제를 밝히고 조건문들을 서로 다른 연산유닛에 할당함으로써 문제를 해결하는 방식을 제안하고 있다. 제안한 방식을 사용할 경우 단순하고 직관적인 방법에 비하여 평균적으로 2.21배의 높은 성능을 얻을 수 있었다.Coarse-Grained Reconfigurable Architecture (CGRA) is one of viable solutions in embedded systems to accelerate data-intensive applications. It typically consists of an array of processing elements (PEs) and a centralized controller, which can provide high performance, flexibility, and low power. Parallel array processing reduces execution time of applications, reconfigurability of PEs allows changing its functionality, and simplified control structure with static scheduling for instruction fetching and data communication minimizes power consumption. However, as applications become complex so that data-intensive parts are having control flows in them, CGRAs face a challenge for its effectiveness. Since the entire PEs are controlled by a centralized unit, it is impossible to execute programs having control divergence among PEs. To overcome the problem, we can adopt the technique called predicated execution, which is the unique solution known so far, but conventional predication techniques have a negative impact on both performance and power consumption due to longer instruction words and unnecessary instruction-fetching/decoding/nullifying steps. Thus, this thesis reveals performance and power issues in predicated execution when a CGRA executes both data- and control-intensive applications, which have not been well-addressed yet. Then it proposes high-performance and low-power predication mechanisms. Experiments conducted through gate-level simulation show that the proposed mechanism improves energy-delay product by 11.9%, 14.7%, and 23.8% compared to three conventional techniques. In addition, this thesis also reveals mapping issues when mapping applications on CGRAs using the proposed predication. A power-saving mode introduced into PEs prohibits multiple conditionals from being parallelized if conventional mapping algorithms are used. Thus, this thesis proposes the framework to release this problem by mapping conditionals to different PEs. Experiments show that mapping results from the proposed approach lead to 2.21 times higher performance than those of the naïve approach.Abstract i Chapter 1 Introduction 1 Chapter 2 Background and Related Work 5 2.1 Coarse-Grained Reconfigurable Architecture . . . . . . . . . . . . 5 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Target Domain . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Comparison with Other Architectures . . . . . . . . . . . 6 2.1.4 Application Mapping . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 Target CGRA . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Predicated Execution Technique . . . . . . . . . . . . . . . . . . 11 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Different Roles in ILP and DLP processors . . . . . . . . 13 2.2.4 Predication Support on CGRAs . . . . . . . . . . . . . . . 14 Chapter 3 Conventional Predicated Execution Techniques 15 3.1 Partial Predication (Partial) . . . . . . . . . . . . . . . . . . . . 16 3.2 Condition-Based Full Predication (CondFull) . . . . . . . . . . 18 Chapter 4 State-Based Full Predication 23 4.1 Previous Approach (PseudoBranch) . . . . . . . . . . . . . . . 24 4.2 Counter-Based Approach (StateFull) . . . . . . . . . . . . . . 25 4.3 Dual-Issue-Single-Execution (DISE) . . . . . . . . . . . . . . . . 28 4.4 Hybrid Predication . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.2 StateFull+Partial . . . . . . . . . . . . . . . . . . . . 34 4.4.3 StateFull+Partial+DISE . . . . . . . . . . . . . . . . 35 Chapter 5 Evaluation 39 5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 Conventional Techniques . . . . . . . . . . . . . . . . . . . 39 5.1.2 Proposed Techniques . . . . . . . . . . . . . . . . . . . . . 40 5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.1 Effect of Predication Mechanism on Power Consumption of a PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.2 Quantitative Definitions of short-if and long-if . . . . . . 48 5.3.3 Compilation Strategy in StateFull+Partial . . . . . . 48 5.3.4 Conventional Techniques (Partial, CondFull, and PseudoBranch) vs. Proposed StateFull Technique . . . . . 49 5.3.5 Proposed Hybrid Predication Techniques . . . . . . . . . 53 5.3.6 Putting Together . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.7 Speedup of Applications . . . . . . . . . . . . . . . . . . . 57 Chapter 6 Mapping Framework 61 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.2 From IR to CDFG . . . . . . . . . . . . . . . . . . . . . . 64 6.2.3 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.4 CDFG Mapping . . . . . . . . . . . . . . . . . . . . . . . 68 6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 69 6.4.2 Verification of Mapping Framework . . . . . . . . . . . . . 70 6.4.3 Quality of Mapping Results . . . . . . . . . . . . . . . . . 70 Chapter 7 Conclusion 73 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2 Applicable Scope and Future Work . . . . . . . . . . . . . . . . . 75 Appendix 77 국문초록 93 감사의 글 95Docto

    A Reconfigurable Processor for Heterogeneous Multi-Core Architectures

    Get PDF
    A reconfigurable processor is a general-purpose processor coupled with an FPGA-like reconfigurable fabric. By deploying application-specific accelerators, performance for a wide range of applications can be improved with such a system. In this work concepts are designed for the use of reconfigurable processors in multi-tasking scenarios and as part of multi-core systems

    Libra: Achieving Efficient Instruction- and Data- Parallel Execution for Mobile Applications.

    Full text link
    Mobile computing as exemplified by the smart phone has become an integral part of our daily lives. The next generation of these devices will be driven by providing richer user experiences and compelling capabilities: higher definition multimedia, 3D graphics, augmented reality, and voice interfaces. To meet these goals, the core computing capabilities of the smart phone must be scaled. But, the energy budgets are increasing at a much lower rate, thus fundamental improvements in computing efficiency must be garnered. To meet this challenge, computer architects employ hardware accelerators in the form of SIMD and VLIW. Single-instruction multiple-data (SIMD) accelerators provide high degrees of scalability for applications rich in data-level parallelism (DLP). Very long instruction word (VLIW) accelerators provide moderate scalability for applications with high degrees of instruction-level parallelism (ILP). Unfortunately, applications are not so nicely partitioned into two groups: many applications have some DLP, but also contain significant fractions of code with low trip count loops, complex control/data dependences, or non-uniform execution behavior for which no DLP exists. Therefore, a more adaptive accelerator is required to be able to deploy resources as needed: exploit DLP on SIMD when it’s available, but fall back to ILP on the same hardware when necessary. In this thesis, we first focus on various compiler solutions that solve inefficiency problem in both VLIW and SIMD accelerators. For SIMD accelerators, a new vectorization pass, called SIMD Defragmenter, is introduced to uncover hidden DLP using subgraph identification in SIMD accelerators. CGRA express effectively accelerates sequential code regions using a bypass network in VLIW accelerators, and Resource Recycling leverages stream-graph modulo scheduling technique for scheduling of multiple code regions in multi-core accelerators. Second, we propose the new scalable multicore accelerator referred to as Libra for mobile systems, which can support execution of code regions having both DLP and ILP, as well as hybrid combinations of the two. We believe that as industry requires higher performance, the proposed flexible accelerator and compiler support will put more resources to work in order to meet the performance and power efficiency requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99840/1/yjunpark_1.pd

    Gestión de jerarquías de memoria híbridas a nivel de sistema

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadoras y Automática y de Ku Leuven, Arenberg Doctoral School, Faculty of Engineering Science, leída el 11/05/2017.In electronics and computer science, the term ‘memory’ generally refers to devices that are used to store information that we use in various appliances ranging from our PCs to all hand-held devices, smart appliances etc. Primary/main memory is used for storage systems that function at a high speed (i.e. RAM). The primary memory is often associated with addressable semiconductor memory, i.e. integrated circuits consisting of silicon-based transistors, used for example as primary memory but also other purposes in computers and other digital electronic devices. The secondary/auxiliary memory, in comparison provides program and data storage that is slower to access but offers larger capacity. Examples include external hard drives, portable flash drives, CDs, and DVDs. These devices and media must be either plugged in or inserted into a computer in order to be accessed by the system. Since secondary storage technology is not always connected to the computer, it is commonly used for backing up data. The term storage is often used to describe secondary memory. Secondary memory stores a large amount of data at lesser cost per byte than primary memory; this makes secondary storage about two orders of magnitude less expensive than primary storage. There are two main types of semiconductor memory: volatile and nonvolatile. Examples of non-volatile memory are ‘Flash’ memory (sometimes used as secondary, sometimes primary computer memory) and ROM/PROM/EPROM/EEPROM memory (used for firmware such as boot programs). Examples of volatile memory are primary memory (typically dynamic RAM, DRAM), and fast CPU cache memory (typically static RAM, SRAM, which is fast but energy-consuming and offer lower memory capacity per are a unit than DRAM). Non-volatile memory technologies in Si-based electronics date back to the 1990s. Flash memory is widely used in consumer electronic products such as cellphones and music players and NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. The rapid increase of leakage currents in Silicon CMOS transistors with scaling poses a big challenge for the integration of SRAM memories. There is also the case of susceptibility to read/write failure with low power schemes. As a result of this, over the past decade, there has been an extensive pooling of time, resources and effort towards developing emerging memory technologies like Resistive RAM (ReRAM/RRAM), STT-MRAM, Domain Wall Memory and Phase Change Memory(PRAM). Emerging non-volatile memory technologies promise new memories to store more data at less cost than the expensive-to build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. These new memory technologies combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the non-volatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. The research and information on these Non-Volatile Memory (NVM) technologies has matured over the last decade. These NVMs are now being explored thoroughly nowadays as viable replacements for conventional SRAM based memories even for the higher levels of the memory hierarchy. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional(3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years...En el campo de la informática, el término ‘memoria’ se refiere generalmente a dispositivos que son usados para almacenar información que posteriormente será usada en diversos dispositivos, desde computadoras personales (PC), móviles, dispositivos inteligentes, etc. La memoria principal del sistema se utiliza para almacenar los datos e instrucciones de los procesos que se encuentre en ejecución, por lo que se requiere que funcionen a alta velocidad (por ejemplo, DRAM). La memoria principal está implementada habitualmente mediante memorias semiconductoras direccionables, siendo DRAM y SRAM los principales exponentes. Por otro lado, la memoria auxiliar o secundaria proporciona almacenaje(para ficheros, por ejemplo); es más lenta pero ofrece una mayor capacidad. Ejemplos típicos de memoria secundaria son discos duros, memorias flash portables, CDs y DVDs. Debido a que estos dispositivos no necesitan estar conectados a la computadora de forma permanente, son muy utilizados para almacenar copias de seguridad. La memoria secundaria almacena una gran cantidad de datos aun coste menor por bit que la memoria principal, siendo habitualmente dos órdenes de magnitud más barata que la memoria primaria. Existen dos tipos de memorias de tipo semiconductor: volátiles y no volátiles. Ejemplos de memorias no volátiles son las memorias Flash (algunas veces usadas como memoria secundaria y otras veces como memoria principal) y memorias ROM/PROM/EPROM/EEPROM (usadas para firmware como programas de arranque). Ejemplos de memoria volátil son las memorias DRAM (RAM dinámica), actualmente la opción predominante a la hora de implementar la memoria principal, y las memorias SRAM (RAM estática) más rápida y costosa, utilizada para los diferentes niveles de cache. Las tecnologías de memorias no volátiles basadas en electrónica de silicio se remontan a la década de1990. Una variante de memoria de almacenaje por carga denominada como memoria Flash es mundialmente usada en productos electrónicos de consumo como telefonía móvil y reproductores de música mientras NAND Flash solid state disks(SSDs) están progresivamente desplazando a los dispositivos de disco duro como principal unidad de almacenamiento en computadoras portátiles, de escritorio e incluso en centros de datos. En la actualidad, hay varios factores que amenazan la actual predominancia de memorias semiconductoras basadas en cargas (capacitivas). Por un lado, se está alcanzando el límite de integración de las memorias Flash, lo que compromete su escalado en el medio plazo. Por otra parte, el fuerte incremento de las corrientes de fuga de los transistores de silicio CMOS actuales, supone un enorme desafío para la integración de memorias SRAM. Asimismo, estas memorias son cada vez más susceptibles a fallos de lectura/escritura en diseños de bajo consumo. Como resultado de estos problemas, que se agravan con cada nueva generación tecnológica, en los últimos años se han intensificado los esfuerzos para desarrollar nuevas tecnologías que reemplacen o al menos complementen a las actuales. Los transistores de efecto campo eléctrico ferroso (FeFET en sus siglas en inglés) se consideran una de las alternativas más prometedores para sustituir tanto a Flash (por su mayor densidad) como a DRAM (por su mayor velocidad), pero aún está en una fase muy inicial de su desarrollo. Hay otras tecnologías algo más maduras, en el ámbito de las memorias RAM resistivas, entre las que cabe destacar ReRAM (o RRAM), STT-RAM, Domain Wall Memory y Phase Change Memory (PRAM)...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Automatic Design of Efficient Application-centric Architectures.

    Full text link
    As the market for embedded devices continues to grow, the demand for high performance, low cost, and low power computation grows as well. Many embedded applications perform computationally intensive tasks such as processing streaming video or audio, wireless communication, or speech recognition and must be implemented within tight power budgets. Typically, general purpose processors are not able to meet these performance and power requirements. Custom hardware in the form of loop accelerators are often used to execute the compute-intensive portions of these applications because they can achieve significantly higher levels of performance and power efficiency. Automated hardware synthesis from high level specifications is a key technology used in designing these accelerators, because the resulting hardware is correct by construction, easing verification and greatly decreasing time-to-market in the quickly evolving embedded domain. In this dissertation, a compiler-directed approach is used to design a loop accelerator from a C specification and a throughput requirement. The compiler analyzes the loop and generates a virtual architecture containing sufficient resources to sustain the required throughput. Next, a software pipelining scheduler maps the operations in the loop to the virtual architecture. Finally, the accelerator datapath is derived from the resulting schedule. In this dissertation, synthesis of different types of loop accelerators is investigated. First, the system for synthesizing single loop accelerators is detailed. In particular, a scheduler is presented that is aware of the effects of its decisions on the resulting hardware, and attempts to minimize hardware cost. Second, synthesis of multifunction loop accelerators, or accelerators capable of executing multiple loops, is presented. Such accelerators exploit coarse-grained hardware sharing across loops in order to reduce overall cost. Finally, synthesis of post-programmable accelerators is presented, allowing changes to be made to the software after an accelerator has been created. The tradeoffs between the flexibility, cost, and energy efficiency of these different types of accelerators are investigated. Automatically synthesized loop accelerators are capable of achieving order-of-magnitude gains in performance, area efficiency, and power efficiency over processors, and programmable accelerators allow software changes while maintaining highly efficient levels of computation.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61644/1/fank_1.pd

    Design and Implementation of Software Defined Radios on a Homogeneous Multi-Processor Architecture

    Get PDF
    In the wireless communications domain, multi-mode and multi-standard platforms are becoming increasingly the central focus of system architects. In fact, mobile terminal users require more and more mobility and throughput, pushing towards a fully integrated radio system able to support different communication protocols running concurrently on the platform. A new concept of radio system was introduced to meet the users' expectations. Flexible radio platforms have became an indispensable requirement to meet the expectations of the users today and in the future. This thesis deals with issues related to the design of flexible radio platforms. In particular, the flexibility of the radio system is achieved through the concept of software defined radios (SDRs). The research work focuses on the utilization of homogeneous multi-processor (MP) architectures as a feasible way to efficiently implement SDR platforms. In fact, platforms based on MP architectures are able to deliver high performance together with a high degree of flexibility. Moreover, homogeneous MP platforms are able to reduce design and verification costs as well as provide a high scalability in terms of software and hardware. However, homogeneous MP architectures provide less computational efficiency when compared to heterogeneous solutions. This thesis can be divided into two parts: the first part is related to the implementation of a reference platform while the second part of the thesis introduces the design and implementation of flexible, high performance, power and energy efficient algorithms for wireless communications. The proposed reference platform, Ninesilica, is a homogeneous MP architecture composed of a 3x3 mesh of processing nodes (PNs), interconnected by a hierarchical Network-on-Chip (NoC). Each PN hosts as Processing Element (PE) a processor core. To improve the computational efficiency of the platform, different power and energy saving techniques have been investigated. In the design, implementation and mapping of the algorithms, the following constraints were considered: energy and power efficiency, high scalability of the platform, portability of the solutions across similar platforms, and parallelization efficiency. Ninesilica architecture together with the proposed algorithm implementations showed that homogeneous MP architectures are highly scalable platforms, both in terms of hardware and software. Furthermore, Ninesilica architecture demonstrated that homogeneous MPs are able to achieve high parallelization efficiency as well as high energy and power savings, meeting the requirements of SDRs as well as enabling cognitive radios. Ninesilica can be utilized as a stand-alone block or as an elementary building block to realize clustered many-core architectures. Moreover, the obtained results, in terms of parallelization efficiency as well as power and energy efficiency are independent of the type of PE utilized, ensuring the portability of the results to similar architectures based on a different type of processing element

    Design and Implementation of Software Defined Radios on a Homogeneous Multi-Processor Architecture

    Get PDF
    In the wireless communications domain, multi-mode and multi-standard platforms are becoming increasingly the central focus of system architects. In fact, mobile terminal users require more and more mobility and throughput, pushing towards a fully integrated radio system able to support different communication protocols running concurrently on the platform. A new concept of radio system was introduced to meet the users' expectations. Flexible radio platforms have became an indispensable requirement to meet the expectations of the users today and in the future. This thesis deals with issues related to the design of flexible radio platforms. In particular, the flexibility of the radio system is achieved through the concept of software defined radios (SDRs). The research work focuses on the utilization of homogeneous multi-processor (MP) architectures as a feasible way to efficiently implement SDR platforms. In fact, platforms based on MP architectures are able to deliver high performance together with a high degree of flexibility. Moreover, homogeneous MP platforms are able to reduce design and verification costs as well as provide a high scalability in terms of software and hardware. However, homogeneous MP architectures provide less computational efficiency when compared to heterogeneous solutions. This thesis can be divided into two parts: the first part is related to the implementation of a reference platform while the second part of the thesis introduces the design and implementation of flexible, high performance, power and energy efficient algorithms for wireless communications. The proposed reference platform, Ninesilica, is a homogeneous MP architecture composed of a 3x3 mesh of processing nodes (PNs), interconnected by a hierarchical Network-on-Chip (NoC). Each PN hosts as Processing Element (PE) a processor core. To improve the computational efficiency of the platform, different power and energy saving techniques have been investigated. In the design, implementation and mapping of the algorithms, the following constraints were considered: energy and power efficiency, high scalability of the platform, portability of the solutions across similar platforms, and parallelization efficiency. Ninesilica architecture together with the proposed algorithm implementations showed that homogeneous MP architectures are highly scalable platforms, both in terms of hardware and software. Furthermore, Ninesilica architecture demonstrated that homogeneous MPs are able to achieve high parallelization efficiency as well as high energy and power savings, meeting the requirements of SDRs as well as enabling cognitive radios. Ninesilica can be utilized as a stand-alone block or as an elementary building block to realize clustered many-core architectures. Moreover, the obtained results, in terms of parallelization efficiency as well as power and energy efficiency are independent of the type of PE utilized, ensuring the portability of the results to similar architectures based on a different type of processing element
    corecore