TECHNISCHE
UNIVERSITAT
DARMSTADT

Optimization of the Memory Subsystem of a Coarse
Grained Reconfigurable Hardware Accelerator

vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universitat Darmstadt

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

Dissertation
von

Lukas Johannes Jung

Erstgutachter: Prof. Dr.-Ing Christian Hochberger
Zweitgutachterin: Prof. Dr.-Ing. Diana Gohringer

Darmstadt 2019

Lukas Johannes Jung:

Optimization of the Memory Subsystem of a Coarse Grained Reconfigura-
ble Hardware Accelerator

Darmstadt, Technische Universitdt Darmstadt

Jahr der Veroffentlichung der Dissertation auf TUprints: 2019

Tag der miindlichen Priifung: 27.03.2019

Verfiigbar unter lediglich die vom Gesetz vorgesehenen Nutzungsrechte gemafl UrhG.

Erklarung laut Promotionsordung

§ 8 Abs. 1 lit. ¢ PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version iibereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind ndhere Angaben iiber Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbststidndig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Priiffungszwecken gedient.

L. J. Jung

Kurzfassung

Schnelle und energieeffiziente Datenverarbeitung ist seit jeher eine wichtige Anforde-
rung an Prozessorentwicklung. Aktuelle Entwicklungen in Bereichen wie zum Beispiel
Bildverarbeitung verstirken diese Anforderungen. Die Nutzung von vielen mobilen
Endgeréaten steigert den Bedarf an energieeffizienten Losungen. Viele Anwendungen
wie zum Beispiel Fahrerassistenzsysteme setzen immer mehr auf Algorithmen aus
dem Bereich Maschinelles Lernen. Hierbei miissen unter harten Echtzeitbedingungen
viele Daten in kiirzester Zeit verarbeiten werden. Bis zu den 1990er Jahren wurden
Leistungssteigerungen in Prozessoren meist dadurch erreicht, dass neue und bessere
Fertigungstechnologien verwendet wurden. Dadurch wurde es moglich, Prozessoren mit
einer hoheren Taktfrequenz zu betreiben, wahrend die eigentliche Prozessorarchitektur
weitestgehend unverdandert blieb. Seit Beginn des einundzwanzigsten Jahrhunderts
jedoch stagniert diese Entwicklung. Neuere Fertigungstechnologien ermdglichen es zwar
mehr Prozessorkerne auf der gleichen Chipfliche zu fertigen, jedoch wurden kaum noch
Steigerungen in der Taktfrequenz erreicht. Dies erforderte ein Umdenken in sowohl
dem Entwurf von Prozessorarchitekturen als auch im Software-Entwurf. Anstatt die
Leistung eines einzelnen Prozessors zu verbessern, muss nun ein zu berechnendes Pro-
blem so formuliert werden, dass es in kleinere Teile aufgeteilt wird welche auf mehreren
Recheneinheiten parallel und dadurch schneller berechnet werden kénnen.

Ein oft genutzter Ansatz ist der Einsatz von Mehrkernprozessoren oder GPUs (Graphic
Processing Units), in dem jeder Prozessorkern einen Teil des Problems unabhéngig von
den restlichen Kernen berechnet. Dies erfordert jedoch neuartige Programmiertechniken
und bestehende Software muss umformuliert werden. Ein anderer Ansatz sind Hardware-
Beschleuniger, die mit einem Prozessor verbunden werden. Hier wird fiir ein bestimmtes
Problem eine spezielle Schaltung entworfen, die dieses Problem effizient und schnell
losen kann. Die Berechnung dieses Problems findet dann nicht mehr auf dem Prozessor
statt, sondern auf dem Hardware-Beschleuniger. Der Nachteil dieser Losung ist jedoch,
dass fiir jedes Problem eine eigene Schaltung in Hardware entwickelt werden muss. Dies
bedeutet einen hohen Entwicklungsaufwand und die Schaltung kann im allgemeinen
nicht im Nachhinein gedndert werden.

Diese Arbeit beschéaftigt sich mit der Nutzung von rekonfigurierbaren Hardware-
Beschleunigern. Diese werden wéahrend der Laufzeit umkonfiguriert, um mehrere Proble-
me mithilfe der gleichen Hardware beschleunigen zu kénnen. Wenn wahrend der Laufzeit
rechenintensive Software-Abschnitte erkannt werden, so startet der Prozessor selbststén-
dig einen Prozess, der eine Konfiguration fiir den Hardware-Beschleuniger berechnet.
Anschlieffend kann diese Konfiguration geladen werden und das Problem wird effizienter
und schneller auf dem Beschleuniger ausgefiihrt. Es wurde eine grobkornig rekonfigu-
rierbare Architektur gewahlt, da die Komplexitit eine Konfiguration zu berechnen sehr
viel geringer ist als in feinkérnig rekonfigurierbaren Architekturen wie zum Beispiel
FPGAs (Field Programmable Gate Array). Auerdem sind durch den vergleichsweise

geringeren Mehraufwand fiir die Rekonfigurierbarkeit hohere Taktfrequenzen moglich
als bei FPGAs. Ein Vorteil dieses Verfahrens ist, dass ein Programmierer oder eine
Programmiererin keinerlei Kenntnis tiber die Hardware besitzen muss, da die Beschleuni-
gung automatisch wihrend der Laufzeit geschieht. Auflerdem kénnen bereits vorhandene
Programme (bei denen moglicherweise kein Programmcode mehr vorliegt) ohne weiteren
Aufwand beschleunigt werden.

Ein Problem, das fiir alle Rechnerarchitekturen relevant ist, ist die effiziente und
schnelle Dateniibertragung zwischen Recheneinheit und Hauptspeicher. Diese Arbeit
konzentriert sich daher auf die Optimierung der Speicheranbindung eines grobkornig
rekonfigurierbaren Hardware-Beschleunigers. Zu diesem Zweck wurde wahrend dieser
Arbeit ein Simulator fiir einen Java-Prozessor entworfen, in dem ein grobkérnig rekon-
figurierbarer Hardware-Beschleuniger eingebunden ist. Es wurden mehrere Verfahren
entwickelt, die die Speicheranbindung des Hardware-Beschleunigers verbessern. Dies
umfasst sowohl Losungen auf Hardware-Ebene als auch Losungen auf Software-Ebene,
die bei der Generierung der Konfiguration fiir den Beschleuniger versuchen die Nutzung
der Speicherschnittelle zu optimieren. Der entwickelte Simulator wurde genutzt, um den
Entwurfsraum nach der besten Implementierung abzusuchen. Durch diese Optimierung
des Speichersystems wurde eine Leistungssteigerung von 22,6 % erreicht.

Auflerdem wurde wahrend dieser Arbeit ein erster Prototyp eines solchen Beschleu-
nigers in Hardware entworfen und auf einem FPGA implementiert, um die korrekte
Funktionalitdt des Verfahrens und des Simulators zu zeigen.

Abstract

Fast and energy efficient processing of data has always been a key requirement in
processor design. The latest developments in technology emphasize these requirements
even further. The widespread usage of mobile devices increases the demand of energy
efficient solutions. Many new applications like advanced driver assistance systems focus
more and more on machine learning algorithms and have to process large data sets in hard
real time. Up to the 1990s the increase in processor performance was mainly achieved
by new and better manufacturing technologies for processors. That way, processors
could operate at higher clock frequencies, while the processor microarchitecture was
mainly the same. At the beginning of the 21st century this development stopped. New
manufacturing technologies made it possible to integrate more processor cores onto one
chip, but almost no improvements were achieved anymore in terms of clock frequencies.
This required new approaches in both processor microarchitecture and software design.
Instead of improving the performance of a single processor, the current problem has to
be divided into several subtasks that can be executed in parallel on different processing
elements which speeds up the application.

One common approach is to use multi-core processors or GPUs (Graphic Processing
Units) in which each processing element calculates one subtask of the problem. This
approach requires new programming techniques and legacy software has to be reformu-
lated. Another approach is the usage of hardware accelerators which are coupled to a
general purpose processor. For each problem a dedicated circuit is designed which can
solve the problem fast and efficiently. The actual computation is then executed on the
accelerator and not on the general purpose processor. The disadvantage of this approach
is that a new circuit has to be designed for each problem. This results in an increased
design effort and typically the circuit can not be adapted once it is deployed.

This work covers reconfigurable hardware accelerators. They can be reconfigured during
runtime so that the same hardware is used to accelerate different problems. During
runtime, time consuming code fragments can be identified and the processor itself starts
a process that creates a configuration for the hardware accelerator. This configuration
can now be loaded and the code will then be executed on the accelerator faster
and more efficient. A coarse grained reconfigurable architecture was chosen because
creating a configuration for it is much less complex than creating a configuration
for a fine grained reconfigurable architecture like an FPGA (Field Programmable
Gate Array). Additionally, the smaller overhead for the reconfigurability results in
higher clock frequencies. One advantage of this approach is that programmers don’t
need any knowledge about the underlying hardware, because the acceleration is done
automatically during runtime. It is also possible to accelerate legacy code without user
interaction (even when no source code is available anymore).

One challenge that is relevant for all approaches, is the efficient and fast data exchange
between processing elements and main memory. Therefore, this work concentrates on the
optimization of the memory interface between the coarse grained reconfigurable hardware
accelerator and the main memory. To achieve this, a simulator for a Java processor
coupled with a coarse grained reconfigurable hardware accelerator was developed during
this work. Several strategies were developed to improve the performance of the memory
interface. The solutions range from different hardware designs to software solutions
that try to optimize the usage of the memory interface during the creation of the
configuration of the accelerator. The simulator was used to search the design space for
the best implementation. With this optimization of the memory interface a performance
improvement of 22.6 % was achieved.

Apart from that, a first prototype of this kind of accelerator was designed and imple-
mented on an FPGA to show the correct functionality of the whole approach and the
simulator.

Contents

I.

Introduction

Introduction
1.1. Motivation
1.2. Contribution of this Work

. Technical Background

2.1. Reconfigurable Hardware
2.2, Caches

Related Work

3.1. Reconfigurable Accelerators
3.2. Graphic Processing Units
3.3. Compiler-based Approaches
3.4, Summary

Description of Our Approach
4.1. Problem Formulation
4.2. Thesis Outline

II. System Description

5.

Java as Instruction Set Architecture

5.1. Java Memory System
5.2. Java Bytecode
5.3. Java Method calls

. AMIDAR Processor

6.1. Basic Principle
6.2. Functional Units
6.3. AMIDAR Executable Format
6.4. Online Profiler

CGRA Architecture

7.1. Processing Element Array
7.2. Context Memories e
7.3. Context Control Unit
7.4. Condition Box e
7.5. Important Features of the CGRA

13

15
15
17

19
19
21

25
25
34
35
36

37
38
40

41

43
43
46
48

49
49
50
52
23

10 Contents
8. AMIDAR CGRA Interface 63
8.1. Interface Configuration Memories 63
8.2. CGRA Bytecodes 65
8.3. Live-In/Out Strategies 67
9. Kernel Mapping Algorithm 73
9.1. Speculative Method Inlining 74
9.2. Instruction Graph Generation 76
9.3. Control and Dataflow Graph Generation 76
9.4. Resource and Routing Constrained Scheduling 79
9.5. Context Management 80
9.6. Bytecode Patching 81
III.Memory Subsystem Optimization 83
10.High-Level Compiler Optimizations 85
10.1. Software Pipeliningo oo 85
10.2. Aliasing Speculation 91
11.Memory Subsystem 97
11.1. Cache Architecture 97
11.2. Coherence Protocol 100
11.3. Access Classification and Distribution 102
12.Memory Prefetching 103
12.1. Lookahead Prefetching 104
12.2. Prefetch management oo 106
13.Implementation and Timing Analysis 109
13.1. L1 Cache 109
13.2. L2 Cache 110
13.3. Coherence Controller 110
13.4. Timing Analysis 111
IV.Evaluation 115
14. AMIDAR Simulator 117
14.1. Simulator Implementation 117
14.2. Parallel Sweeps 119
14.3. Performance 122
14.4. Measurement Procedure 125
15.Prerequisites 127
15.1. Benchmark Applications 127
15.2. CGRA Comparison 128

Contents 11
16.Design Space Exploration 131
16.1. Discussion of Prefetching 0. 133
16.2. Discussion of Coherence Mechanisms 135
16.3. Discussion of Aliasing Speculation 137
16.4. Discussion of L2 Cache Design 139
16.5. Discussion of CGRA Design 141
16.6. Summaryo 142
17.Results 145
17.1. Comparison With Other Approaches 146
17.2. Prototype Implementation 148
18.Conclusion 151
18.1. Open Points and Future Work 152
18.2. Summary 153
Bibliography 155
A. AMIDAR Simulator Accuracy 111
B. CGRA Description \%
C. Nested Loops in The Schedule IX
D. Design Space Exploration XI
D.1. Results XII

Contributions of this Work in Part II

XXIII

Part 1.

Introduction

1. Introduction

Writing working program code is easy. Writing good program code takes some effort.
Writing program code that perfectly exploits all features of the machine on which it
is running is hard. Especially, if the programmer doesn’t have any information about
the underlying hardware. Normally, this leads to two mutually exclusive design goals:
The software can either be highly performant or it is cheap. In the last millennium
this problem could simply be solved by waiting. The processor speeds kept increasing
due to better manufacturing technologies so that after some time the written software
would execute significantly faster on a new processor. Due to higher power consumption
this trend stopped at around 2003. The improvements in single thread performance
stagnated. To improve the performance further new concepts like multi-core processors
were introduced and are being researched to exploit parallelism. Yet, in most cases this
means that existing software has to be adapted so that it can benefit from these new
concepts.

1.1. Motivation

In this work a new concept is used, that tries to exploit parallelism without user
interaction. The idea is that the processor "knows" its own architecture so the processor
itself will parallelize the code. A Coarse Grained Reconfigurable Array (CGRA) will

Recurring code sequence A

for(int i = 0; i < 10; i++) Recurring code sequence B
if (isPositive())
* al[jloilbl[‘i]i * cli]; for(int i = 0; h < rows; i++)
cilee for(int j = 0; j < col; j++)

alil = -bli] * clil; e T
Automatic mapping Automatic mapping
CGRA Configuration A CGRA Configuration B
reconfiguration CGRA reconfiguration

Figure 1.1.: Accelerator concept used in this work

be coupled to a host processor and will be used as an accelerator for recurring code
sequences (called kernel in the remainder of this work) as shown in Figure 1.1. The
code sequences will be mapped to the CGRA automatically and totally transparent
for the user during runtime. The CGRA can be reconfigured quickly so that the same

16 1. Introduction

hardware can be used to accelerate different code sequences. Mapping the sequences to
the CGRA during runtime gives the possibility to react to changes in both software
execution or the hardware when for example a PE produces erroneous results.

This approach leads to the following benefits:

1. The programmer can write simple working code and the processor will automati-
cally accelerate it on the CGRA so that it will be executed efficiently. This will
result in performant software execution at low development cost.

2. Legacy code will be parallelized and thus accelerated automatically without user
interaction or recompilation.

3. Hardware costs are low due to reconfiguration and reuse.

4. Applications can be accelerated with CGRAs of different sizes without the need
to adapt the code.

The memory subsystem is a bottleneck of modern computers due to the memory
wall[77][33]. The performance of the compute engine doesn’t matter if the memory
subsystem is not able to provide the data that has to be processed. Thus, this
work concentrates on the design and optimization of the memory subsystem of the
reconfigurable accelerator. The memory system is tightly coupled with the accelerator,
so both parts cannot be designed independently. For that reason this work also covers
significant parts of the whole CGRA based accelerator framework and not only the
memory subsystem.

It is obvious that the performance of this approach can not compete with hand optimized
code running on commercial high performance computers (HPC) which require a high
programming effort as shown in Figure 1.2. In contrast to that, single threaded software

T
. HPC
<) [|
% high Our approach ®
g 2 Multi threaded application
& medium |- l 5| i
Qq? Single threaded application
low L T | | |
low medium high

Programming effort

Figure 1.2.: Qualitative illustration of programming effort vs performance

can be written easily but results in a low performance. Multi-threaded applications
exploit task level parallelism and range between HPC and single threaded applications
both in performance and programming effort. The aim of this work is to increase the
performance of arbitrary single threaded applications by exploiting both instruction
level parallelism and loop level parallelism. At the same time the programming effort
should be kept low as shown in Figure 1.2.

Parallel patterns are often well studied and efficient implementations for different
architectures are provided for common tasks like matrix multiplication or FFT. Thus,

1.2. Contribution of this Work 17

Table 1.1.: Goals and resulting requirements

Requirements on

Goal CGRA ‘ Memory subsystem ‘ Mapping Algorithm
Support arbi- || Flexible interface to | Flexible memory in-

trary applica- | host processor terface

tions

Reconfiguration || Quick reconfigura- Low complexity to
during runtime tion times minimize overhead
High perfor- || Support control | Parallel memory ac-

mance flow on CGRA so | cesses with low la-

that larger code | tency
regions can be
mapped to the
CGRA

Low program- Support high level
ming effort language

in this work the focus lies on applications with irregular and possibly data dependent
program flow and memory access patterns. This leads to several requirements for the
CGRA based accelerator, the memory subsystem and the mapping algorithm which are
listed in Table 1.1.

1.2. Contribution of this Work

The result of this work will not be to find the memory subsystem design which outper-
forms all other designs in all cases. The performance of the memory subsystem depends
too much on the accelerator it is coupled to, the supported programming language and
the technology that is used to implement the hardware or the application itself. Some
general statements can be made but the optimal memory subsystem does not exist.

Instead this work aims to describe a way to find the best configuration for a certain
setup exemplarily. A simulator of the accelerator framework will be implemented in
work, which makes it possible to do huge design space explorations. This simulator
should be able to run tests with more than thousand different configurations in a
matter of hours with high accuracy. In order to be able to produce profound results, a
prototype should be implemented in hardware, which is used to tune the simulator.

The high accuracy can only be guaranteed when the whole system and not just the
memory subsystem is implemented. Otherwise assumptions are made which lead to
inaccuracies. Previous publications ([20][19][15][12][13][16][18]) already described the
whole system to some extend but only on a higher level of abstraction and no hardware
implementation was available. Thus, the system will be (re-)implemented and significant
parts of this work concern the design of the whole accelerator system as mentioned
before.

18 1. Introduction

This leads to the following goals that this work aims to achieve:

1. Implement a prototype of the CGRA based accelerator coupled with a processor
based on the previous work mentioned above. The prototype should hold the
requirements given in Table 1.1.

2. Extend the existing simulator of the CGRA based accelerator system or implement
a new one. The insights of the prototype implementation should be used to achieve
high accuracy while maintaining high simulation speed so that the simulator can
be used to do design space explorations with profound results.

3. Use the simulator to find the optimal memory subsystem in the given setup. Which
parameters are optimal and which factors influence the choice of parameters? Are
there general findings?

As mentioned above, this work extends an existing framework so the the Parts I and II
describe both existing and new work while Parts III and IV contain only new work.

In Appendix E a detailed description is given which parts of the existing system were
just reused without change, which were adapted and which are completely new.

2. Technical Background

This chapter provides technical background which is helpful to understand the remainder
of this work.

2.1. Reconfigurable Hardware

This section gives a short overview of the most common reconfigurable hardware
architectures and discusses why CGRAs are used in this work. Typically, reconfigurable
hardware consists of logic blocks that are connected by reconfigurable interconnect.

2.1.1. Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGA) are the most common reconfigurable hardware.
As the name states, they are reconfigurable in the field which means that the hardware
design can be changed even after the product has been deployed. The logic blocks in
an FPGA are typically called CLB (Configurable Logic Block) and consist of look up
tables (LUT), flip flops and multiplexers which can be configured and connected via
switches at bit level. Thus, any application can be mapped to an FPGA. The downside
is that the high hardware overhead that realizes the reconfigurability leads to relatively
low clock frequencies at around 100-200MHz in the final design. Additionally, mapping
the hardware design to the FPGA is a very complex task. Typically, a design is given
in a Hardware Description Language (HDL) like Verilog or VHDL. Vendor tools map
this design to the FPGA and create a bitfile that contains the configuration of all logic
blocks and their interconnect. Creating this can take up to hours. Mapping the design
that is described in this work on to a middle-class Artix 7 FPGA takes 29 minutes on
an Intel i7 6700 with 3.4 MHz. The bitfile has a size of 9.7 MB and it takes milliseconds
to load it onto the FPGA.

Commercial FPGAs usually also contain hard macros that are frequently used in
typical FPGA designs. These hard macros range from RAM blocks (BRAM) over clock
managers to DSP blocks with integrated integer adders and multipliers.

FPGASs can be reconfigured partially which can be used implement different hardware
accelerators like in [28].

20 2. Technical Background

Figure 2.1.: Static kernel mapped onto a CGRA

2.1.2. Coarse Grained Reconfigurable Arrays

In contrast to FPGAs Coarse Grained Reconfigurable Arrays (CGRA) are not reconfig-
ured at bit level but on word level. The logic blocks which are also called Processing
Element (PE!) in this context, contain complete ALUs with one ore more registers or
even a register file. PEs are connected with parallel busses that transfer one word in
one cycle. The more coarse granularity limits the ability to map arbitrary code to the
reconfigurable hardware (especially for operations on the bit level) but at the same
time the complexity of the mapping process is reduced. Mapping a design to the CGRA
can be done in less than one second and the configuration contains only around 1kBit
depending on the number of PEs and their interconnect. One configuration of a CGRA
is also called context. FPGAs can only store one configuration in the fabric. Due to
the small context size, it is possible to include a context memory on the CGRA that
stores up to thousands of contexts. Once the contexts are loaded into that memory
they can be switched in one clock cycle. Also, the coarse granularity results in higher
frequencies. Preliminary tests have shown that frequencies of up to 1GHz are possible
on 45nm TSMC technology.

CGRASs can be used in different fashions. In the static case a hardware description
is mapped to the CGRA (e.g.[37] or [22]). Only a single context is used to create a
specialized data path. Data is typically fed in to the CGRA on one side of the array
and the results will be returned on the other side as shown in Figure 2.1. This way,
efficient hardware pipelines can be created for regular and compute intense applications
like image processing. Yet, only basic control flow can be included with the help of
multiplexers. Also, the size of the datapaths that can be realized is limited to the
number of PEs. This approach is often used in CGRAs that are included in the datapath
of a CPU so that a set of instructions can be executed efficiently on that specialized
datapath (e.g. [22] or [76]).

In the dynamic case an application is mapped to the CGRA. A dynamic datapath is
created from several contexts. The next context that will be executed can be dependent
on previous results. It is possible to realize complex control flow and larger datapaths.
Hardware pipelines like in the static case can not be created. Thus, techniques like

Tn some literature the term Functional Unit (FU) is used. In the CGRA that is used in this work,
the term PE will be used, as parts of our AMIDAR processor are also called FUs as described in
Chapter 6

2.2. Caches 21

software pipelining have to be applied when an application is mapped to the CGRA to
increase parallelism.

In this work a CGRA will be used with dynamic kernels for the following reasons:
1. CGRASs can operate at higher frequencies than FPGAs

2. CGRA configurations can be computed much faster which is important for runtime
reconfiguration

3. CGRAs can store multiple contexts
4. Dynamic Kernels allow the acceleration of kernels with complex control flow

Often CGRAs are created as an overlay design for FPGAs so that an existing design
can be adapted quickly. In this work the proposed CGRA design will also be mapped
on to an FPGA but only to test the prototype. Creating an ASIC is the goal so that
higher frequencies can be used.

A detailed description of the used CGRA is given in Chapter 7.

2.2. Caches

The performance of modern memories does not match the performance of modern
processors. Either the memories are fast enough to provide the required data in time or
they are large enough to hold all data of an application at one time. Both at the same
time is not possible with current memory technologies.

Fortunately, memory accesses typically follow two principles: First, data that is used in
the processor is likely to be used again in the near future (temporal locality). Second,
data that lies in the same memory region is likely to be used as well (spatial locality).
Thus, it is possible to connect the processor to a small but fast memory (called cache)
that holds only the subset of the data that is currently needed. Caches are organized in
lines that contain data words from a contiguous memory region. When the required
data is in the cache (hit) it can be sent to the processor directly. Only when the required
data is not in the cache, the larger and slower main memory has to be accessed. In this
case not only the desired data is loaded, but a whole set of data from the same region
(exploiting spatial locality) is loaded into one cache line (shown for example in light
blue in Figure 2.2). The main memory is traditionally realized in DRAM which has a
high overhead when a memory cell is accessed but data from the same memory row can
then be read with low cost. When the cache memory is full, data that has been used
least recently will to be replaced (exploiting temporal locality).

In order to know which data resides in one cache line, not only the data but also meta
information has to be stored. This information is called tag and contains (parts of) the
original address of the data (shown in dark blue in Figure 2.2).

In fully associative caches any cache line can contain any data. This means that the
tag of every cache line has to be checked in order to find out whether the desired data
is currently in the cache. This is very costly and not used in practice. Instead n-way

22 2. Technical Background

Way 0 Way n
[Bs__[Dow [Tag_ TData
|ndex — L] e
Physical —
ysica
LIS L
' ¥ — + ﬁ ﬁ
128 »| Tag Compare Way selection

A
[__IData] [1 Cache line

,, l

Hit

Block offset

Figure 2.2.: Illustation of working principle of caches

associative caches are used. A certain data word can only be cached in one of definite
n cache lines (called set - shown in Figure 2.2) which are identified by an index ¢ which
is calculated from the physical address of the data word. Thus, only the tag of n cache
lines has to be checked. The correct data word can then be read from the cache line
with the block offset b which is also calculated from the physical address as shown in
Figure 2.2.

The average access time of a cache can then be calculated with ¢ = t.4che + Prmiss - tDRAM
where p,.;ss is the probability that the desired data is not in the cache. In a good cache
this probability converges against zero. Thus, from the processor point of view the
memory is approximately as fast as the cache and has the size of the DRAM.

When data is written to the cache from the processor, the data can either be written to
the main memory directly (write-through) or only when the cache line is replaced by
another cache line (write-back). The latter will be used in this work as it reduces the
number of accesses to the main memory.

The parameters of such a cache are replacement strategy, write back strategy, number
of ways, data words per cache line, number of ways and the cache size. The number of
sets can then be calculated from the parameters.

Typically, more than one cache level is used. The cache size increases with each cache
level while the speed decreases. Each cache accesses the next cache level only in case of
a cache miss. The cache that is connected directly to the processor is called L1 cache
and other levels are named with increasing number. Thus, the cache that is directly
connected to the main memory has the highest number.

2.2. Caches 23

2.2.1. Cache Coherency

Note: Parts of this section have already been published in [61]. The marking of self-
citation is omitted in order to improve the reading flow.

When the write-back strategy is used, modified cache lines are only written to the next
cache level when that line is replaced. For example a L2 cache can contain outdated
cache lines when the data has not yet been written back by a L1 cache. Those cache
lines are called dirty. In single core systems this is not a problem, but in multi-core
processors each core has a separate L1 cache which all access the main memory via a
L2 cache. If two processors access the same cache line, it has to be ensured, that both
caches use the same (coherent) data. Thus, the caches need to communicate which
data they access.

In a snoop based cache system all caches on the same level listen to all transfers on
the bus that connects them to the lower cache level in order to ensure coherency. In a
directory based cache system a directory is maintained that contains which caches
share which cache lines. With this information it is possible to send coherence messages
only to relevant caches. This directory introduces overhead in timing and hardware
costs but can reduce the communication between caches if cache lines are shared among
a small amount of caches [29]. The system only benefits from this approach, if there are
multiple communication channels between the caches on one level?. If there is only one
bus, all other caches can not communicate while the coherence messages are exchanged
and there is no benefit compared to a snoop based system [67].

Coherence Protocols To ensure coherence, the MSI (Modified Shared Invalid)
protocol was developed. Here a cache is allowed to hold dirty lines only as long as no
other cache needs this cache line. When another cache accesses the cache line, the
new value has to be written back to the next lower cache level. The drawback of this
protocol is, that a cache does not know whether the cache line resides in another cache
as well. Thus, for every write access to a cache line every other cache has to be notified
that it has to invalidate the cache line in case it also holds that cache line.

In order to overcome this issue, the Ezclusive state was added in the MESI protocol. If
a cache line is in the Exclusive state, no notification has to be sent to the other caches
when the cache line is modified. Still if another cache wants to read a modified cache
line it has to be written back to the next cache level. That way, shared cache lines are
never dirty. The MOESI protocol introduces the Owned state which allows to share
dirty cache lines. The dirty value is only written back when the cache line is replaced.
This leads to even less write backs. All the protocols described above have in common
that upon a write access a notification is sent and all other caches holding that cache
line will invalidate this line. If the data is needed later on, it has to be reloaded.

’Intels Xeon Phi X100 for example uses a distributed directory. All caches are connected via a
bidirectional ring so that two transmissions between two caches in each case are possible.

24 2. Technical Background

The Dragon protocol [3] tries to avoid these reloads by not invalidating the cache line
in all other caches upon a write access. Instead, the new value is directly provided. A
more detailed description of MOESI and Dragon can be found in Chapter 11.

3. Related Work

Recently many coarse and fine grained reconfigurable architectures have been researched.
In most of them the memory interface is not covered in depth. Many approaches focus
on accelerating applications with known regular memory access patterns. The data
can easily be streamed into the accelerator so that the required data is available in the
accelerator just in time (for example [8],[38],[60], [4], [65], [39]). Thus, many approaches
can not handle irregular memory accesses efficiently. In other cases, the research is in
early stage so that the problem of efficient memory accesses is simply not yet covered.

In the following, selected reconfigurable accelerators are described that either address
general applications or represent milestones in their field of research. Afterwards, the
memory subsystem of a Nvidia GPU is briefly described. In the third part of this
chapter software approaches are described to increase the performance of the memory
interface.

3.1. Reconfigurable Accelerators

Reconfigurable Accelerators can be divided into three categories. The first category are
tightly coupled accelerators which are included into the execution stage of a processor.
The second category are tightly coupled co-processors that share some hardware like
caches with the processor but can execute at least simple loops autonomously. The third
category are loosely coupled co-processors that only communicate with the processor
via shared memory. In the following, relevant examples are given for all categories
roughly sorted according to the date of publication.

3.1.1. ADRES

In ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) a VLIW
processor is coupled with a CGRA consisting of Reconfigurable Cells (RC) and FUs
[48]. The Reconfigurable Matriz shares the FUs and the global register file with the
VLIW processor as shown in Figure 3.1. ADRES supports simple control flow using
predication and it realizes dynamic kernels as described above. The contexts are stored
in a configuration RAM and can be switched within one cycle. Its configurations are
generated by DRESC (Dynamically Reconfigurable Embedded System Compiler) [47]
before runtime. DRESC supports modulo scheduling to exploit loop level parallelism
[46] but the runtimes are high. The authors state that "it takes minutes to schedule
a loop of medium size" (about 50 to 70 operands). The CGRA relies on the VLIW
processor to access the memory. Several FUs are provided with access to a multiport L1
cache which is very costly [72]. In [45] a AVC decoder was implemented with ADRES.

26

3. Related Work

Reconfigurable Matrix View

Figure 3.1.: ADRES architecture [48]

In this work the authors replaced the data cache with a software controlled data memory
consisting of 4 SRAM banks that can be accessed in parallel. Using such a memory
structure needs some improvements in the compiler and the ADRES architecture[44].

ADRES accelerates the VLIW processor by a factor 4.6[48]

Table 3.1.: ADRES summary

’ Requirement

H Realization ‘

Flexible memory interface

Access through a multiport L1 cache

Parallel accesses possible

Yes

Programmer transparency

CGRA mapping is done automatically by the com-
piler framework

Ease of use

Programmed in C

Accelerates control flow

Limited to simple constructs

Time of mapping process

Before Runtime with slow compiler

3.1.2. Warp Processor

Warp processors use a profiler to identify time consuming kernels during runtime. Those
kernels are then mapped to an FPGA [42]. Mapping kernels to an FPGA is a complex
task due to the fine granularity. Thus, Lysecky et al. implemented a custom FPGA for
Warp (W-FPGA) which can efficiently be routed with Riverside On Chip CAD tools
(ROCCAD) [43]. Still, a dedicated MicroBlaze processor is used to do the mapping on
chip during runtime as shown in Figure 3.2. The W-FPGA can access the data cache
(Data BRAM in Figure 3.2) with the help of an address generator in the W-FPGA
interface. This generator only supports regular address patterns, like linear array
accesses. Kernels with irregular accesses cannot be mapped. A loop controller is able
to support loops with a specific number of iterations and also break conditions[41].

3.1. Reconfigurable Accelerators 27

Data W-FPGA
. d_Imb ™ Interface
MicroBlaze (BRAM) »

i_lmb s Instr.
ERaM

orof _intf | | Imb_cntrl
’ -
d_Imb

Imb_cntr] |[+—> Instr/

Data

(ROCCAD) i_lmb
(BRAM)

Dynamic Partitioning

W-FPGA

opb

MicroBlaze

Figure 3.2.: Warp architecture [42]

Table 3.2.: Warp processor summary

’ Requirement H Realization
Flexible memory interface Only regular patterns are supported
Parallel accesses possible Only single port access to the cache
Programmer transparency Yes
Ease of use Programmed in c
Accelerates control flow Limited
Time of mapping process During runtime

3.1.3. DySER

In DySER (Dynamically Specialized Datapaths) a CGRA is used to create static data-
paths that speed up recurring code sequences. Figure 3.3 shows the overview of the
processor with the integrated DySER CGRA in the execution stage. The DySER
compiler creates specialized datapaths and maps them to the DySer CGRA before
runtime. Special DySER instructions to invoke computations on DySER are included
in the program code. Before the execution can start, the FUs and the switches of

| | | |
| Memory | Writeback

Fetch | Decodel Execute

Execution

..............................

ICache [Decode |— pipeline ! i
' Ll
AN 2
— @
Register — o
Fil o
- H H H p S DCache

-
7 NN ;/.-" S

— o
 Z

- L_

EN

ol R

'

'

. T
, |
kR ” !
1 ' ; >
, h

Switches ! :ﬁ@ L, '
1 ' l

Functional Unit

Figure 3.3.: DySer architecture [23]

DySER have to be configured by a dyser_init instruction[25]. The configuration
bits are distributed between the FUs using the data flow network of the CGRA. The

28 3. Related Work

instructions dyser_send and dyser_load are used to load values from the register
file or the memory respectively and send it to the DySER Input Interface. When all
required data is available, the execution on DySER begins. When the execution is
finished, the instructions dyser_recv and dyser_store are used to write values from
the DySER Output Interface back to the register file (in the writeback phase) or the
memory respectively. The execution on DySER can be pipelined as shown in Figure
3.4

CPU: configure Dyser

Invocation 2

Figure 3.4.: Pipelining on DySER [22]

Simple control flow like an if/else construct can be realized on DySER with the help
of predication signals that are distributed among the FUs.

The DySER compiler can identify critical code regions automatically which leads to a
speedup of about 3 compared to the OpenSPARC processor. The programmer has the
possibility to support the compiler with pragmas which increases the performance by a
factor of 2[27].

The authors of [27] implemented a prototype of DySER on an FPGA coupled with an
OpenSPARC processor. They found that speculative loads / stores and address aliasing
from the "early-stage design [...] proved overly complex" so that they were omitted in
the prototype. This leads to very limited speedup in the SPECINT benchmarks (and
even slowdown in one case). The following reasons can be identified:

e Only limited control flow is supported. DySER does not support data dependent
control flow [22] and the prototype doesn’t even support conditional memory
accesses[27]. Loop carried dependencies can not be mapped efficiently.

e DySER relies on the processor to provide data from the memory as shown in
Figure 3.4. No parallel accesses are possible an thus the DySER array has to wait
on the data from the memory and the ability to pipeline iterations can not be
exploited [27].

e Irregular memory accesses can not be mapped to the DySER array [22] efficiently.

3.1. Reconfigurable Accelerators 29

Table 3.3.: DySER summary

] Requirement H Realization ‘

Flexible memory interface Irregular memory accesses cannot be mapped effi-
ciently

Parallel accesses possible CGRA relies on the host processor to load/store
data

Programmer transparency Pragmas can be used

Ease of use Programmed in ¢

Accelerates control flow Limited to simple constructs

Time of mapping process Before runtime

3.1.4. Layers CGRA

In the Layers CGRA[58] a memory layer is responsible to access the main memory as
shown in Figure 3.5. P memory banks can be accessed in parallel. They execute load
and store patterns which are activated by a state machine (see ¢ _state reg in Figure
3.5). Deriving efficient patterns for a kernel is a complex task as shown in [59]. The N?
PEs can access the memory banks via register clusters in the communication network.
Each register is connected to one of the P hubs in the memory layer[57]. Each hub
can access each memory bank via P X P crossbar. The state automaton also controls
the communication and the computation layers but apparently no feedback from the
computation layer to the state automaton exists. Thus, it is not possible to realize data
dependent control flow on the CGRA.

Table 3.4.: Layers CGRA summary

’ Requirement H Realization

Flexible memory interface Only patterns are supported

Parallel accesses possible Memory banks allow parallel accesses (via an ex-
pensive P x P crossbar)

Programmer transparency Application has to be designed specifically for the
Layers CGRA

Ease of use Efficient memory access patterns have to be derived

Accelerates control flow Limited to simple constructs

Time of mapping process Before runtime

3.1.5. Accelerating Megablocks

Paulino et al accelerate so called megablocks with a CGRA[53] called RPU (Reconfig-
urable Processing Unit) which is loosely coupled to a MircoBlaze processor. Megablocks
are code sequences that are executed regularly. Typically, they contain several basic
blocks from different branches. That means that it is possible to accelerate code with
control flow if the control flow is regular and predictable, because the most common

30 3. Related Work

St SoC bus|
p o
@
Bus arbitration/interfacing glue logi
SoC master kernel call (set_address & activate)

3k SoC intetface
M ["Memory | [Memory] ["Memory | Memory

@
_ 2
ol bank ban bank PP bank 8
2 1 3 __P ;
Program o address _set_Addr ‘ ‘ &6 crossbar S
80 jwrlte mem ‘m_get_Data e i ol | T = E
- Config. o /{read_mem m_get+set hub 1 hubZ hnh 3 hub P E
Memory 5 4 AL 2 /e \Rn N/ an\Wan\ a
E=1 / £ . W linesin o
L / e - modulo g
o [‘ e distribution 5
— 3 /iactivate parent B i VI ; Z I
M /{ operations L Nt ™} - e B LA AEL2interface —
g/ ecachlayer T e T
2 /| according | e

/] o
| execution ratio

| [ocstrow/el
| [save toreg[x] > _r/w ‘downstr
1 T r/w row/colbus.
| [t/ registers
read_state .
eoe Wz\z@-{
i [2N]
X 1 row1 us-
interconnected

£
register
colt 1‘2 |3 o2 1‘ eoe 10 RE‘Z‘E"E clusters

(intra_kernel)

mx/ o

Tow2

set_address

get_instruction

Layer 1 : communication

g
£

F
-4
o0
(3
g w PR i
5 o ece oA £ f—
& ul DQ—DTDQ——DQ—L FELtinterface
£ 5 " ™ i ‘
3 £ qsetsfora se op
o 3 specifid kernel %%
H @, srcsrelfo
o B o | N \
5 2 ° Eastyf mul y | I mesh- s
-] £ Wes) div £ ok n connected S
o ® v TR processing £
g o ﬂ\ o | elements 8
te PC with Branch addre: ol L LS e “re t
sndaepeffhnch s ([H 5 I i ‘r,\‘r/r,_ —=g 2
) % | s :\‘,.,\‘_ | /7 XNSEWU NSEWUX §
o = f ‘/ s — owa P |l et o
= £ w 4 =77 o3t /S z
£l 8 W i iy “> / R o
o o ﬂ\lﬂ 2 el " 7 5
2 t * eus
: 3 | P —Lal 2
2 4 [N =
]) -—r— 2 |
k7 < —— 2% .7
o o . L2 S
pre- Q T
fetch +—. fetch = Layers

decode

Figure 3.5.: Architecture of Layers CGRA [57]

branches are mapped to the RPU. If actually another branch is taken, the execution
on the RPU has to be stopped. Before runtime an Instruction Set Simulator is used
to extract megablocks from the execution traces. With this knowledge an application
specific RPU and the corresponding configurations for all megablocks are generated
[54]. The RPU accesses the main memory via a dual ported cache as shown in Figure
3.6. The cache is direct mapped and supports two parallel accesses. The accesses have

MPMC (memory controller) J

e I xcro H xcu1 H xcL2
-
ae e

BRAMs

DXCL

Injector |<> @
CPU

Figure 3.6.: Architecture of Paulino et al’s approach [53]

a delay of four clock cycles but can be pipelined [53].

The RPU is loosely coupled with the CPU. This means that no coherence protocol
can be implemented. Before the execution on the RPU starts, both the cache in the
CPU and and the RPU cache are invalidated. In the RPU cache this can be done in
one clock cycle whereas the CPU cache needs 192 clock cycles. When the execution

3.1. Reconfigurable Accelerators 31

on the RPU is long enough, this time introduces no delay, as it can be done in the
background. For kernels with small execution times, this means a significant overhead.
A write through strategy is used in the RPU cache to ensure that the correct data will
be loaded into the CPU cache afterwards.

Table 3.5.: Accelerating megablocks summary

’ Requirement H Realization

Flexible memory interface Yes, but with high delay and no coherency support.
Thus, invalidation is needed

Parallel accesses possible Two parallel accesses are possible

Programmer transparency No programmer interaction needed

Ease of use RPU and configurations have to generated before
runtime with the help of traces

Accelerates control flow Limited to the most common control flow path

Time of mapping process Before runtime

3.1.6. Plasticine

Plasticine [56] is a relatively new approach which targets parallel patterns. A mesh
constructed from Pattern Compute Units (PCU) and Pattern Memory Units (PMU) is
connected via switches as shown in Figure 3.7. Each PCU consists of a small CGRA
that computes inner loops and supports parallel data transfers in order to perform
SIMD instructions. Within this CGRA different rows are used in parallel to exploit
loop level parallelism and the columns represent pipeline stages.

s
AT TN
— =
@B‘{s ;f/ \r‘s \‘rs \"s] 5] \r
TN TN AT TN AT
e e e W

Figure 3.7.: Architecture of Plasticine [56]

PMUs contain scratchpad memories that have to be managed by the programmer to
buffer data on chip. Ideally, those scratchpads are not used and the produced data is
directly forwarded to the next PCU. The off chip DRAM memory can be accessed via
four channels. Address generators are used to generate the read and write addresses
according to the input and output memory access pattern of the accelerated parallel
pattern. In case of sparse memory access patterns, a coalescing unit combines several

32 3. Related Work

requests in order to minimize the DRAM accesses. Otherwise, burst requests are
issued.

As this approach focuses on parallel patterns, no sophistic control flow mechanisms are
needed. Tokens are used to ensure correct execution when loop carried dependencies
exist and a simple enable signal is used in streaming applications.

Plasticine is programmed using the parallel pattern based language DHDL (Delite
Hardware Description Language). Supported patterns are for example map or fold. The
pattern map takes a vector a; of length n as inputs and calculates an output vector
b; = f(a;) where the function f is independent in each case. The pattern fold first
calculates a map and then reduces the output vector b; to a scalar value using the
function z = g(x, y) multiple times.

The authors compared the performance and energy consumption of Plasticine to a
Stratix V FGPA. They report a 95x improvement in performance and a 77x improvement
in performance per Watt[56]. The mapping process is only a matter of minutes on
Plasticine while it can take up to hours to map a design on an FPGA.

While this approach is very promising to accelerate parallel patterns, it cannot unfold
its potential to accelerate applications with irregular memory access patterns or data
dependent control flow as it uses counters to control the loop iterations.

Table 3.6.: Plasticine summary

’ Requirement H Realization
Flexible memory interface Coalescing Units combine sparse memory accesses
Parallel accesses possible DRAM can be accessed via four channels
Programmer transparency Programmer has to use parallel patterns
Ease of use Programmed in DHDL
Accelerates control flow Regular nested loops are supported
Time of mapping process Before runtime

3.1.7. Accelerating x86 Instruction Streams

Brandalero and Beck proposed a CGRA that is tightly coupled to a superscalar processor
with out of order execution as shown in Figure 3.8 (a). When the code is executed for
the first time on the processor, it will be executed regularly on the superscalar processor.
A Code Transformation (CT) module observes the execution and generates CGRA
configurations that describe static data graphs for recurring kernels. The configurations
are stored in a configuration cache. When the kernel is executed the next time, it is
checked in the fetch stage whether there is a CGRA configuration in the configuration
cache. If yes, the configuration and input values from the register file are loaded and
the kernel is executed on the CGRA. When the execution is finished, the results are
committed in the register file.

The structure of the CGRA is shown in Figure 3.8 (b). The CGRA is organized in rows
and columns. The rows contain different PEs like adders or load units. The PEs of two

3.1. Reconfigurable Accelerators 33

Input Level 1 Level 2

Context Context | 18 =
c2

Baseline Processor - Regular execution

; aNRACIaREN

o I 000-Scheduling,
I Execution, Writeback
Register File
................................
CGRA 3.2) CGRA

==

Group

Load Load
ommif Group‘ 111 I ||| S | S |

o N
=
el

Load
111 I || S ||| IS || S|

MuL -
Group Multipl.

Reconfigurable Unit-
Optimized execution

Configuration Cache

Results buffer

(a) System Overview (b) CGRA in detail

Figure 3.8.: Architecture of Brandalero and Becks approach|[7]

columns are connected by crossbar networks (marked with x). Data always flows from
left to right. The delay of an adder is 1/3 of a clock cycle. So one level that consists of
three columns corresponds of one clock cycle. If an operation like multiplication has a
latency longer than the addition, it spans over several columns or even levels.

The CGRA only consists of combinatorial logic and has no registers. That means, that
if a kernel is mapped onto n levels of the CGRA, the results can be read from the
results buffer only after n cycles. The more levels the CGRA has, the bigger are the
kernels that can be mapped. At the same time, the energy consumption increases. The
authors found that a CGRA with 30 levels give the best trade-off. Two load units (4
cycles latency) and one store unit (1 cycle latency) access the 3-level cache hierarchy of
the base processor which has a latency of 4 clock cycles. The load store units maintain
a request queue to avoid pipeline stalls.

Control flow is realized with speculation. Several control flow paths are mapped onto
the CGRA but only the results of valid paths are committed. Similar approaches are
described in [68] and [5]

Table 3.7.: Acceleration of x86 instruction streams summary

‘ Requirement H Realization
Flexible memory interface Yes
Parallel accesses possible Yes via two loads and one store unit
Programmer transparency Transparent for the programmer
Ease of use Programmed in C
Accelerates control flow Simple control flow is supported
Time of mapping process During runtime

34 3. Related Work

3.2. Graphic Processing Units

As the name suggests, graphic processing units (GPU) are originally used to speed
up image processing for example for computer games. Yet, GPUs are more and more
used to accelerate code from other applications domains like machine learning. Those
application domains have in common that huge amounts of data have to be processed
quickly. Normally, the algorithms include a huge amount of parallelism on thread and
loop level. GPUs are designed to exploit this parallelism. GPUs target other goals
than this work but a huge challenge of the GPU design is to load the data into the
processing elements quickly. Thus, it is helpful to have a quick look at the memory
subsystem of a GPU.

CUDA Core

Dispatch Port
Operand Collector

Result Queue

Figure 3.9.: Architecture of a Nvidia Fermi Streaming Multiprocessor [52]

Figure 3.9 shows the architectural overview of the Nvidia Fermi Streaming Multipro-
cessor (SM). Each SM consists of 32 Cuda cores (including integer and float ALUs),
16 Load/Store units and 4 Special Functional Units (SFU) to calculate for example
trigonometric functions or roots. The Nvidia GPU consists of 16 SMs which share a
L2 cache, which results in 512 Cuda Cores in one Fermi GPU. Newer Versions like the
Volta GPU eva have up to 5120 Cuda Cores.

The SM contains a L1 cache which can also be used as a software managed shared
memory [52]. Using shared memory is highly efficient but requires programming effort.
Using the L1 cache instead trades performance against less programming effort and
allows efficient accesses to addresses that are not known beforehand. The programmer

3.3. Compiler-based Approaches 35

can chose an approach depending on the software design goal. Nvidia states that
"While shared memory remains the best choice for maximum performance, the new
Volta L1 design enables programmers to get excellent performance quickly, with less
programming effort'[51]. This suggests that using L1 caches in this work is a good
choice to accelerate irregular applications with low programming effort.

It has to be noted that GPUs have a dedicated DRAM. Thus, every data that has to
be processed has to be copied from the processor main memory to the GPU memory
and results have to be copied from the GPU memory back to the main memory.

3.3. Compiler-based Approaches

Some research focuses on the smart mapping of memory instructions to PEs in order to
improve the memory access times. Little research projects focus on this topic, as most
CGRASs are used to accelerate streaming applications and assume the data is available
just in time. In the following two examples are explained in more detail.

3.3.1. Alleviating the Memory Bandwidth Bottleneck

The authors of [10] assume a two dimensional CGRA in which all PEs are connected to
a L1 cache via one data bus. Each PE has a local RAM to store intermediate values
and operands. In this work the local RAMs will be used as L0 cache. If desired data
lies in one of these RAMs, the mapping algorithm can either load it from the L1 cache
or from a local RAM. If it is loaded from the RAM, routing delay might be introduced
when the PE holding this data is not directly connected to the PE that requires that
data. If it is loaded from the L1 cache, the data bus is blocked for other accesses. The
mapping tool comes to a decision based on a cost function that evaluates routing and
cache access delays.

This procedure decreases the load on the data bus but it only works if data is reused in
the control and data flow graph that is mapped to the CGRA. The authors show that
this procedure works well when loops are unrolled, because this results in more data
reuse in the control and data flow graph. This mechanism to decrease the load on the
L1 cache is also called load forwarding. This will also be used in this work as shown in
Chapter 10.

3.3.2. Memory-Aware Application Mapping

The authors of [35] use the same technique to minimize the number of memory accesses.
In contrast to the previous approach they assume a different CGRA structure. Here
selected PEs are connected to different memory banks which are filled with double
buffering as shown in Figure 3.10.

The compiler tries to classify the kernel that is mapped to the CGRA. If a kernel is
compute intense, it is mapped in a way that routing paths on the CGRA are short even

36 3. Related Work

PE Array Local Memory N D
=~ [unit

‘Hnnn
FE

==) DMA
Bank4 | Bankd Controller
Y

Double
Buffering

Configuration Memory

Figure 3.10.: Architecture of the CGRA used to do memory-aware application mapping
[35]

if this results in a suboptimal memory bank usage. If the kernel has many memory
operations, longer routing paths are allowed in order to optimize the memory bank
usage as described above. This is done by a compiler that tries to minimize duplicates of
arrays in the banks so save memory by applying smart mapping of memory instructions
to the corresponding PEs.

3.4. Summary

It can be seen that none of the described approaches satisfies all requirements mentioned
above. Some approaches focus solely on regular memory accesses while others rely on
the single cache of the host processor. Only Brandalero and Becks approach fulfills all
requirements but only limited control flow is supported.

Four key findings can be drawn from the study of related work:
1. Using caches is mandatory if irregular memory accesses are to be supported.

2. Using a single cache is not sufficient as only one word can be read in one clock
cycle. Multi-port caches are too expensive (see ADRES)[72]. Instead multiple
caches have to be used.

3. Coherence not only between the caches of the accelerator but also in the host
processor has to be ensured (see the acceleration of Megablocks [53]).

4. The mapping algorithm can support the performance of the memory subsystem
as shown in [35] and [10].

4. Description of Our Approach

In this work a CGRA based accelerator will be tightly coupled to a Java processor.
During runtime a profiler will identify hotspots in the code that consume substantial
runtime. These kernels will then be mapped automatically to the CGRA during runtime
in order to accelerate the execution. The mapping algorithm will run as a separate

Hardware Software
Main Memory Tools
(executed
jDMA before runtime)
y Ty
AMIDAR Live-In CGRA generates Veril
oo T

(Host Processor) “Live-Out (Accelerator)

executes
) uses
reconfigures

Software thread

(running on AMIDAR concurrently with the actual applications) User-defined
CGRA model
CDFG schedule contexts EGEG)

9.9 P
) 4 4’ 2 4’ o9

during runtime before runtime

Figure 4.1.: Overview over the whole system

task on the Java processor totally transparent for the programmer as shown in Figure
4.1. Changing program flow is detected by the profiler and new kernels can always be
mapped to the CGRA.

Coupling the CGRA based accelerator to a Java processor has two benefits: First, the
programmer does not have to learn any specialized language like Cuda to make use of the
accelerator. Second, analyzing Java byte code during runtime in the mapping process
is less complex than analyzing for example native ARM machine code. Properties such
as the independence of two memory operations can be proved much easier as shown in
Section 10.2.

The used CGRA was specifically designed to be able to execute kernels with complex
data dependent control flow autonomously.

As mentioned before, it is a goal to accelerate arbitrary code independent of the
application or even application domain. Thus, at design time of the accelerator the
code structure and the memory access patterns of the application are not known. This
leads to several challenges that will be discussed in the following sections.

38 4. Description of Our Approach

4.1. Problem Formulation

Designing the memory subsystem independently of the rest of the system is not possible
as we will see in the following. This section describes the problems and challenges that
have to be solved in order to be able to evaluate the whole system.

4.1.1. Full Stack Main Memory Interface Optimization

Accessing the main memory is the bottleneck in both performance and energy consump-
tion for many applications [70].

Many accelerator techniques such as Plasticine [56] heavily rely on a priori knowledge of
the access patterns. This knowledge is used to implement streaming engines that load
the desired data and transfer it to the accelerator in time. Other approaches like Layers
CGRA [59] even rely on the programmer to load the data and distribute it in different
memory banks in the accelerator to enable efficient parallel memory accesses.

As mentioned above, in this work the memory access patterns are not known a priori
and can be irregular. Thus, the CGRA will be equipped with direct access to the
memory so that the CGRA can load the desired data on demand. Multiple caches will
be used to allow parallel accesses to the memory with small average memory access
times. Prefetching will be used to fill the caches efficiently.

Memory subsystems of multi-core systems have been studied thoroughly but they have
different characteristics. Several software threads are designed so that they use as
little common variables as possible to exchange for example status messages. They
will mostly run independently and can be optimized independently. Those threads
will be mapped by a thread scheduler to the different cores as shown in Figure 4.2
(a). As those threads are normally communicating only sparsely, the communication
between the cores and the number of shared cache lines is low. Hence, the load on
the interconnect between the L1 caches is low. The design of the memory subsystem,
the thread scheduler and the threads itself are almost decoupled and each part can be
optimized independently.

When a kernel is mapped to the CGRA, the nodes of a complex graph are mapped to
the different PEs as shown in Figure 4.2 (b). Those nodes have strong dependencies
and they may access similar memory regions which results in many shared caches lines.
This increases the load on the interconnect between the L1 caches tremendously. The
decisions that are made during the mapping process strongly influence the performance
of the memory subsystem. For example, when the mapping algorithm is not able
to prove that two memory accesses are independent, the capability of the memory
subsystem to allow parallel memory accesses cannot be exploited. Also, it is possible to
map two memory accesses to adverse PEs so that many cache misses occur as described
later in Section 11.2. Thus, unlike in multi-core systems, the several parts can not be
optimized independently. Instead the whole system consisting of kernel detection, graph
generation, mapping process and memory subsystem has to be optimized jointly. This
increases the design space tremendously. Implementing and debugging all options in

4.1. Problem Formulation 39

Thread A Thread B Thread C Thread D Kernel o’ an” vm j'
exchange W b
‘_i’i’fﬁﬁ, B R ~ \ -
thread scheduler scheduler
’ Core 1 ‘ ’ Core 2 ‘ ’ Core 2 ‘ Core 2 ‘ ‘ PE 1 ‘ ‘ PE 2 ‘ ‘ PE 3 ‘ ‘ PE 4 ‘
: # $) 4 ¢ $ i) ik]
’ L1 Cachej L1 Cache L1 Cache L1 Cache ‘ L1 Cach ‘ ‘ L1 Cache ‘ ‘ L1 Cache ‘ ‘ L1 Cache
exchange
[[] I I I I I I
’ Interconnect ‘ ‘ Interconnect ‘
$ $
L2 Cache L2 Cache
(a) Multi-core system (b) CGRA

Figure 4.2.: Comparision of memory subsystem usage

hardware is a tedious task and mapping such a design to an FPGA takes tremendous
amount of time. Thus, a fast and accurate simulation framework is needed for an
efficient design space exploration.

4.1.2. Local Variables Interface

Code Example 1 shows the code to find the number of the first 42 array elements that
are greater than 314. It can be seen that before the execution of the loop the potential
accelerator has to know the values of the variables array and cnt. Those variables are
called Live-In variables. Additionally, the values of the constants 1, 42 and 314 have
to be made known to the accelerator.

Code Example 1: Code Example showing Live-In Variables (green), Live-Out
variables (blue) and Constants (yellow)

for (i =0; i< 42;41 =4 + 1;) do
Lif (array [i] < 314) then

Lcnt=cnt+1;

When the execution is finished, the value of the variable cnt has to be transferred from
the accelerator back to the host computer. Such variables are called Live-Out variables.
Transferring Live-In and Live-Out variables and constants between accelerator and host
computer results in an overhead that is negligible for loops with long runtimes but has
a large impact on the performance of the accelerator for smaller loops. The Live-In and
Live-Out variables are different for each kernel. Thus, it is important to implement an
efficient and flexible interface between the Local Variable Memory of the host computer
and the accelerator. A thorough discussion can be found in Chapter 8.

40 4. Description of Our Approach

4.1.3. Context Memory Interface

The CGRA configuration for a kernel is stored in several contexts. Once, those contexts
are loaded in the context memory of the CGRA, they can be switched in a single cycle.
Still, loading the contexts in the memory generates some overhead. Thus, preloading
the contexts parallel to the normal code execution is desirable to mask this overhead.
This problem is independent of the design of the memory subsystem and it is not the
focus of this thesis. Therefore, it is only covered briefly in this work.

4.2. Thesis Outline

This chapter concludes Part I of this thesis which contains the introduction.

In the next Part, the existing system is described with several enhancements that
were implemented during this work. Chapter 5 explains the basic concepts behind the
programming language Java. Chapters 6 and 7 describe the host processor AMIDAR
and the CGRA which is used as accelerator. Afterwards, Chapter 8 describes the
interface between both. This part is concluded with the description of the kernel
mapping algorithm in Chapter 9.

Part IIT covers the optimization of the memory subsystem. Chapter 10 describes the
high level compiler optimizations that are included in the kernel mapping algorithm in
order to exploit the capabilities of the memory subsystem fully. Afterwards, Chapter 11
describes the actual memory subsystem including the cache architecture and coherence
protocols. Chapter 12 describes Lookahead Prefetching which improves the performance
of the memory subsystem further. This part is concluded in Chapter 13 with a
description of the implemented memory subsystem.

Finally, the whole system is evaluated in Part IV with the AMIDAR simulator which
is described in Chapter 14. Chapter 15 describes the benchmarks and the evaluated
CGRA instances while Chapter 16 contains the actual design space exploration. The
results are shown in Chapter 17. This work is then concluded in Chapter 18 with a
summary and an outlook on future works.

Part 1I.

System Description

5. Java as Instruction Set Architecture

This chapter aims to explain the basic processes behind the programming language Java
rather than explaining the programming language itself, as it is already well known.
Further details can be found in [21].

First, the Java memory system will be explained because this has some impact on the
design oft the memory subsystem of the whole system including the AMIDAR processor
and the CGRA based accelerator. Afterwards, information about the Java bytecode
and method calls is given. This is necessary to understand the process that maps Java
bytecode to the accelerator.

5.1. Java Memory System

The Java memory system is divided in the parts Local Variable Memory, Stack Memory
and the Heap Memory. As the name suggests, the Local Variable Memory stores local
variables. In contrast to that, the Heap Memory contains all objects and arrays!.
Operands of an operation can be loaded both from Local Variable Memory or Heap
Memory. Values will be pushed to the Stack Memory prior to the execution of the
operation. When the operation is executed, the operands are popped from the stack
and the result is pushed. Afterwards, the value result is again popped from the Stack
Memory and stored in the Local Variable Memory or Heap Memory, respectively. Both
Local Variable Memory and Stack Memory are located inside of the processor and can
be accessed directly. The heap is typically too big to be part of the processor. Thus, it
is for example realized as DRAM.

The code example shown in Listing 5.1 is used to explain the memory accesses.

5.1.1. Heap Memory

In this work memory objects are identified by a unique handle. The Heap Memory
is then addressed indirectly with the handle of the memory object and the offset. A
dedicated memory called Handle Table stores the physical addresses of each memory
object? as shown in the lower left corner of Figure 5.1. With addr = physical address +
offset the desired object field or array element can be loaded. This addressing scheme
will be called virtual addressing in the remainder of this work. The advantage of this
virtual addressing scheme is that the Garbage Collection is eased as described in Section
5.1.4. Figure 5.1 shows on the right side how the object ¢ (green) and the array value
(blue) are stored in the heap after the constructor call in line 11 of Listing 5.1.

'In the remainder of this work the term memory objects is used to refer to both arrays and objects.
ZNote that the Handle Table also contains additional information like object/array size or class type.

© o (2B - W [-

I T N N e S S S S S S
w [V = o © N O o [w [N - o

V)
i

44 5. Java as Instruction Set Architecture

Listing 5.1: Memory access example

5.1.2. Local Variable Memory

Local variables are variables that are only defined within one method. The main
method in Listing 5.1 for example has the local variables args and c. The Local
Variable Memory is simply addressed by an index. In object methods the handle of the
this object is stored at index zero followed by the method parameters and all local
variables that are declared in the method. Figure 5.1 shows all local variables of the
method getValue in the upper left corner.

When a new method is called, the Local Variable Memory has to be saved so that the
new Local Variable Memory can be initialized. When this method returns the old Local
Variable Memory has to be restored. The same holds for the Stack Memory.

5.1.3. Heap Access Example

In order to obtain the value of the expression values[position] in line 19 in Listing
5.1 the following steps (also shown in Figure 5.1) have to be executed when getValue
is called on object ¢ in line 13:

1. Load handle of ¢ from Local Variable Memory index = 0

5.1. Java Memory System 45

Local Variable Memory Heap Memory
[Index T Content [Address| Content]
O > [edeori-0 o —
1 addOffset true e i c.size 42
2 position 2 pli+1 handle of c.values q —
3 offset 18
k c.values[0] 0
v o k+1 c.values[1] 0
+——> k+ 2 c.values[2] 0
A
e Handle Table 1 k+ 41 |c.values[41] 0
[Handle] Physical Address] * e
—p{ p i (c) —» +
—p[g k (c.values)

Figure 5.1.: Heap Memory access example without cache

2. Load physical address of ¢ from Handle Table (= i)

3. Calculate i + 1 to get the address where the handle of c.values is stored
4. Load the handle of c.values from the Heap Memory

5. Load physical address of c.values from Handle Table (= k)

6. Calculate k + position to get the address of the values[position]

7. Load values[position] from the Heap Memory

From this example it is clear that heap accesses are expensive and it is beneficial the
to use a cache for the Heap Memory that is virtually addressed with a combination of
handle and offset.

5.1.4. Garbage Collection

In Java the programmer is relieved of the task to free memory manually. The Garbage
Collector task is executed repeatedly and finds dead objects that can not be accessed
by the running program because there are no references from the running program to
the object any more. Those dead objects are deleted and the memory space can be
reused. Over time this leads to a fragmented memory. Thus, the Garbage Collector
moves living objects in the memory to defragment it. When objects are moved in the
memory, all references to the original memory address have to be updated. Here the
advantage of the virtual addressing scheme becomes obvious. In that case the only
reference to the physical memory address is in the corresponding entry of the Handle
Table. If the objects were addressed directly with physical addresses, every reference to
that object has to be updated.

46 5. Java as Instruction Set Architecture

5.2. Java Bytecode

Unlike other programming languages, Java is not compiled to machine code but to
Java bytecode which is typically run on a virtual stack machine. For each Java class a
* class file containing the Java bytecode is created. For many bytecodes the naming
follows a simple scheme: {data type, operation Name}. Data type can for example
be I (for Integer) or F (for Float). Operation names are are for example ADD or LOAD.
This results for example in the bytecodes IADD, ILOAD, FADD or FLOAD. Bytecodes are
8-bit wide and can have a variable number of 8-bit parameters, which are determined
during compile time and stored in the instruction code directly behind the bytecode.
The bytecodes can coarsely be categorized into four groups:

e Method calls and jumps
Examples:

— INVOKEVIRTUAL - Pops the method parameters from the Stack Memory, saves
Local Variable Memory and Stack Memory and enters a new object method.

— IRETURN - Ends the current method, restores Local Variable Memory and
Stack Memory and returns an integer value by pushing it onto the restored
Stack Memory.

— GOTO<param> - Calculates the new address in the instruction memory from
param and jumps to that address.

e Stack Memory operations (mostly arithmetic operations)
Examples:

— IADD - Pops two integer values from the stack, calculates the sum and pushes
the result onto the Stack Memory.

— FDIV - Pops two float values from the stack, calculates the quotient and
pushes the result onto the Stack Memory.

e Local Variable Memory operations
Examples:

— ILOAD<param> - Loads an integer value from the Local Variable Memory at
index = param and pushes it on the Stack Memory. Note that there are
special bytecodes like ILOAD O without parameter for local variables with
lower indices as they are used more often (see Table 5.1).

— FSTORE<param> - Pops a float value from the Stack Memory and stores it in
the Local Variable Memory at index = param.

e Heap Memory operations
Examples:

— TALODAD - Pops a handle and an offset from the Stack Memory, loads the
desired value from Heap Memory and pushes it on the Stack Memory.

5.2. Java Bytecode A7

Table 5.1.: Bytecode of Code Example 2
‘ Address ‘ Bytecode ‘

Code Example 2: Mini-

mal code example 0 ILOAD_1

1la= p + G 1 ILOAD_2
2 IADD

3 ISTORE 0

— FASTORE - Pops a float value, a handle and an offset from the Stack Memory
and stores the value at the desired position in the Heap Memory.

— GETFIELD<param> - Pops a handle from the Stack Memory, calculates the
offset from param, loads the desired value from Heap Memory and pushes it
on the Stack Memory.

— GETSTATIC<param> - Calculates both handle and offset from param, loads
the desired value from Heap Memory and pushes it on the Stack Memory.

Table 5.1 shows the bytecode of Code Example 2. The bytecodes 0 and 1 load the
local variables b and ¢ from the Local Variable Memory with the indices 1 and 2. Both
values are pushed on the Stack Memory. Bytecode 2 pops both values from the stack,
adds them and pushes the result on the stack. The last Bytecode again pops this value
from the stack and stores it in the local variable a (index 0).

5.2.1. Heap Memory Operations

Heap Memory operations can also be divided into three groups as shown in Table 5.2.

Table 5.2.: Heap Memory operation types

’ Type H Handle \ Offset ‘
Array TALOAD, Popped from Stack Mem- | Popped from Stack Mem-
Accesses: IASTORE, ... ory during runtime ory during runtime
Object field GETFIELD, Popped from Stack Mem- | Read from the bytecode
Accesses: PUTFIELD ory during runtime parameter
Static field GETSTATIC, Read from the bytecode | Read from the Bytecode
Accesses: PUTSTATIC parameter parameter

Green cells show that the corresponding information can be obtained during compile
time while yellow cells show that this information is only available during runtime. Thus,
these three Heap Memory operations have to be handled differently when dependencies
between Heap Memory accesses are calculated. More details are given in Section 10.2.

Also, it has to be noted that arrays, object fields and static fields are always stored in
distinct memory regions.

© o (2B - W [-

L I T N R T S S S S S
] = o © N O o [w [N - o

[
w

48 5. Java as Instruction Set Architecture

Listing 5.2: Virtual method example

5.3. Java Method calls

In Java methods can be virtual or non-virtual. Virtual methods are interface methods
or public and protected object methods, which can be overwritten by subclasses. Listing
5.2 shows that the class of the object p in line 14 can be either Parent or Child. Thus,
it is not known during compile time which version of the method valueA() is actually
executed. Only during runtime when the class of p is known, the correct method can
be determined.

Constructors, static methods and private methods are non-virtual methods. The exact
method is known during compile time because those method calls are always linked to
one specific class.

Before a method is called, all parameters of this method are pushed onto the stack.
Then they are transferred to the Local Variable Memory of the called method. A new
empty Stack Memory will be initialized. Both the Local Variable Memory and the
Stack Memory of the calling method have to be saved. When the called method returns
to the calling method both memories will be restored. The return value of the called
method will now be on top of the restored stack.

6. AMIDAR Processor

AMIDAR stands for Adaptive Microinstruction Driven Architecture and describes a
reconfigurable class of processors [20]. AMIDAR processors consist of a set of FUs
Functional Unit that operate independently and potentially in parallel. FUs can for
example be an ALU, Thread Scheduler or the Object Heap as shown in Figure 6.1. The
Microinstructions for the FUs are called tokens. The core of an AMIDAR, processor
is the Token Machine, which is also an FU. The Token Machine loads the machine
instructions from the instruction memory and translates each instruction into the tokens
for all FUs. Tokens are sent via the Token Distribution Network (TDN) and data is
exchanged via the data bus. Both data and tokens are annotated with tags to make
sure the correct data is used for each instruction. Optimized token sets for kernels can
be generated during runtime to increase the performance [26].

In this work the AMIDAR-Java Processor described in [40] will be used as a host
processor for the CGRA based accelerator. In this AMIDAR version the Stack Memory
and the Local Variable Memory are combined into a single FU called Framestack. The
Heap Memory is realized by the FU Object Heap (further details are given in Section
6.2).

The following sections give a short overview of this processor.

6.1. Basic Principle

Java bytecodes will be translated into tokens for each FU by the Token Machine with
the help of a lookup table!.

Tokens can contain a destination FU and a destination port when the operation produces
an output. Ports are needed to maintain the operand order. Additionally, each token
and each data that is transferred on the bus is associated with a tag.

IBytecodes and tokens have similar names in many cases. In order to be able to distinguish between
both, Bytecodes will be written in typewriter (ILOAD) and tokens will be written in italics (LOAD)

AMIDAR
Token Distribution Network
EToken Machine Frame Stack ALU S;:r:;de::ar Object Heap S SuMbesr;s‘IJ:reym
vl vl vl vl vl

Data Bus

Figure 6.1.: Structure of an AMIDAR Processor

50 6. AMIDAR Processor

Table 6.1.: Translation from bytecodes to tokens

TALU Destination | Framestack Destination
Bytecode | Token FU / Port | Token FU / Port | Stack Memory
ILOAD_1 - LOAD32<1> b
ILOAD_2 - LOAD32<2> b,c
TADD POP32 SIALU /1| b

POP32 — IALU / 0 | empty

ADD — Framestack / 0 | PUSH32 b+c

ISTORE_O || - STORE32<0> empty

Each FU maintains a token queue and executes the tokens in the incoming order. When
an FU starts executing a token, it has to wait for the operands to be sent over the
data bus. It will only accept data packets with a matching tag. When all operands are
available the actual execution is started and the result is sent to the destination port in
the destination FU via the data bus.

The Token Machine will only stop decoding bytecodes and sending tokens to wait for a
branch decision or when any token queue of an FU is full. The FUs synchronize only
via the transferred data. Thus, FUs can easily be exchanged without having to adapt
any other part of the processor. This makes the AMIDAR processor a good choice to
be coupled with a CGRA-based accelerator.

Table 6.1 shows the tokens that are generated for the bytecode sequence shown in Table
5.1. The token LOADS32<param> loads a 32 bit local variable from the Local Variable
Memory and pushes it on the stack. POP32 pops a 32 bit value from the stack and sends
it to the desired port in the destination FU. ADD awaits two inputs and adds them.
The result is also sent to the desired port in the destination FU. STORE32<param>
pops a value from the stack and stores it to the Local Variable Memory.

6.2. Functional Units

This section will briefly discuss the FUs that are relevant for this work. The Token
Machine contains the instruction memory cache and the token generation logic. This
functionality was split into two FUs called Instruction Memory and Token Generator
in early publications of the AMIDAR concept. The Token Machine also sends tokens
to itself to execute jumps, branches and method invocations.

The Object Heap handles all operations concerning the Heap Memory. Those opera-
tions include for example memory object accesses, memory allocation when a constructor
is called or to find out the class of a memory object. Accesses to the Heap Memory are
realized via a virtually addressed cache as mentioned in Section 5.1.3. Figure 6.2 shows
the steps that have to be executed (assuming that all necessary data resides already in
the cache):

1. Load handle of ¢ from Local Variable Memory index = 0

6.2. Functional Units 51

Local Variable Memory 1 Heap Cache
[Index T Content] * [Virtual Address | Content]

(1 B handle of this (=c) p —» combine
1 addOffset true e
2 position 2
3 offset 18
e c.values[1]

combine—} c.values[2]

T q, 41 c.values[41]

Figure 6.2.: Heap Memory access example with a virtually accessed cache

N

CRSHYZE
handle of c.values

[CII=
~|o

c.values[0]

SIS
NI O
olofo|: |a|s|:

2 |ef:

2. Load the handle of c.values from the cache with the virtual address {handle =
p, offset = 1}

3. Load values[position] from the cache with the virtual address {handle = ¢
and offset = position = 2}

When such a cache is used, the Handle Table and the Heap Memory only have to be
accessed in case of a cache miss. Further details can be found in Chapter 11. Also, if
the Garbage Collector moves objects in the heap, not all references to the object have
to be updated but only the entry in the Handle Table.

Peripheral devices are connected to the Object Heap via a Wishbone Bus. Reg-
isters in the peripherals are mapped into the heap address space and can be ac-
cessed via software with the methods AmidarSystem.readAddress(int address) or
AmidarSystem.writeAddress(int address, int value). Alternatively, those regis-
ters can be accessed via object fields of the corresponding Peripheral object. Those
objects are generated by the AMIDAR bootloader during startup and map the object
field addresses to the peripheral addresses. It is clear that those registers can not be
cached. Some FUs are also connected to the Object Heap as peripheral in order to be
able to configure that FU or to read status registers.

The Framestack combines both the Local Variable Memory and the Stack Memory in
one memory. This brings benefits if many methods with many parameters are called.
Instead of copying all parameters from the caller stack to the callee Local Variable
Memory, only pointers have to be adjusted

The AMIDAR processor can contain arbitrary ALUs like for example Integer ALU,
Floating Point ALU or just a Integer Division FU.

The Thread Scheudler manages the fair execution of multiple threads that are
executed on AMIDAR in time multiplex. It ensures that interrupts are executed if
needed. Multi-threading is an important feature of the AMIDAR, processor because the
algorithm to map kernels to the CGRA is executed as a separate thread on AMIDAR.

The CGRA based accelerator will be included in AMIDAR as an FU with direct access
to the memory subsystem as shown in Figure 6.1. Details will be described in the next
Chapter.

In this work the AMIDAR prototype described in [40] will be used and extended. It
consists of the FUs Token Machine, Framestack, Thread Scheduler, Object Heap, FPU

52 6. AMIDAR Processor

Class Table RMTI =1 Method Table
[CTI T Class [Method Table Offset | l [AMTI RMTI] Method Address]|
o —Ppli Parent p —+ p 0 [inheritedMethod () 42
. p+1 1 overwrittenMethod () 314
e —Pplk Child extends Parent | g —> +
q 0 inheritedMethod () 42
q+1 1 overwrittenMethod () 777
q+2 2 additionalMethodA () 888
q+3 3 additionalMethodB() 999
q+ 4 4 additionalMethodC () 1111

Figure 6.3.: Class Table and Method Table in AXT format (simplified)

(floating point unit), long ALU, integer ALU, integer division, integer multiplication,
floating point division and a debugger module. It uses a single L.1 cache and a crossbar
interconnect between the FUs instead of a bus.

6.3. AMIDAR Executable Format

The AMIDAR processor does not execute Java *.class files directly. Instead they are
converted to the AMIDAR Executable Format (AXT). In this format all class files that
are needed for an application are combined in one file. Next to the bytecode the AXT
file also contains several tables like Method Table, a Class Table or a common Constant
Pool. The whole AXT file will be loaded into the Heap Memory before the execution is
started on AMIDAR.

All dependencies are resolved during compile time if possible. One example are the
parameters of non-virtual invoke bytecodes (e.g. INVOKESTATIC) in a class file. Each
parameter contains a reference to the Constant Pool. This Constant Pool entry itself
references the desired method. In AXT these references are resolved and the absolute
index to the Method Table (called Absolute Method table Index = AMTTI) is used as the
parameter of that bytecode.

As mentioned before, virtual methods can not be identified exactly during compile time.
Instead a relative Method Table Index (RMTI) is used as a parameter for virtual object
methods. In order to find the correct method during runtime, the class of the object
on which the method is called, has to be read from the Handle Table by the Object
Heap. The class of an object is defined by an index to the Class Table (called Class
Table Index = CTT). The corresponding entry of the Class Table contains a Method
Table Offset from which the AMTI can be calculated: AMTI = Method Table Offset +
RMTI. Figure 6.3 shows that when the method overwrittenMethod() is called with
INVOKEVIRTUAL<RMTI=1> on an object of class Parent the method with the AMTI =
p + 1. will be executed (Case 1). This method starts at address 314 in the memory.
If the same method is called on an object of class Child, the Method Table Offset is
different and the method with the AMTI = q + 1 is called (Case 2). This method
starts at the memory address 777.

This procedure requires that the AXT Converter orders the methods in the Method Table
that overwritten and inherited methods in child classes always have the same RMTT as

[=2] ot S w [=

6.4. Online Profiler 53

Listing 6.1: Loop structure with two backward jumps
while (a==b){

doSomeThing () ;
if (a==c){
doSomeThingDifferent () ;
}
}

shown in Figure 6.3. Note that in both classes the method inheritedMethod () points
to the same start address.

For interface methods similar mechanisms exist to find the correct method during
runtime. Details can be found in [40]. The calculation of AMTTI is done in the Token
Machine.

6.4. Online Profiler

A profiler based on [18] is implemented in the Token Machine to identify all loops in
the executed code. The most time consuming loops (kernels) will be mapped to the
CGRA. Depending on the compiler the loops are structured differently. In the first
variant the loop condition is checked in the beginning of the loop body (used by javac).
If the condition is not met, the loop is left with a relative forward jump over the loop
body. If it is met, the loop body is executed and in the end an unconditional backward
jump restarts the execution. In the second variant the loop condition is checked in the
end of the loop body (used by Eclipse Compiler for Java). If it is not met, the loop is
left and no jump is performed an simply the next bytecode is executed. If it is met,
a relative backward jump is performed to the beginning of the loop body. Unless a
do-while loop is executed, this means the loop has to be entered by an unconditional
forward jump over the loop body directly to the loop condition. In both cases loops
can be identified by the backward jumps at the end of the loop body. In those simple
cases the profiler can easily identify the borders of the loop body which are the target
of the backward jump and the backward jump itself.

A more complicated case is shown in Listing 6.1 when compiler variant 1 is used. In
this case two backward jumps exists. First, in line 3 a conditional backward jump
is executed if the condition evaluates to false. Otherwise the basic block in line 4 is
executed and in the end an unconditional backward jump to the beginning of the loop
body is executed. In compiler variant 2 similar cases occur if there are combined loop
condition like while(a || b). If a evaluates to true, b doesn’t have to be evaluated
and a backward jump can be performed directly.

The profiler from [18] was implemented and extended to be able to handle those cases
in both compiler variants during this work [73]. In [18] a content addressable memory
(CAM) was proposed for each method to store the loop profiles. On each method call
the old CAM would have to be saved and restored after the called method returned. In

H4 6. AMIDAR Processor

this work [73] loop profiles are stored in a global hash map which uses the start address
of the loop as key. The keys are mapped to 512 buckets with 4 slots each. If more than
four keys map to the same bucket, no correct profiles will be generated but correct
program execution is guaranteed. During this work that case never occurred.

7. CGRA Architecture

As mentioned above, the CGRA based accelerator will be included into the AMIDAR
processor as an FU. The structure of this FU is shown in Figure 7.1. The FU contains
a CGRA core which executes the actual computation. The CGRA Frame realizes the
communication with the host processor and has to be adapted if the CGRA is connected
to another processor. The CGRA core is independent of the host processor.

This chapter only describes the core of the CGRA. In Chapter 8 the communication
between the CGRA and the rest of the AMIDAR processor is explained.

Figure 7.2 shows an Overview over the CGRA core. The four main components are the
Array of Processing Elements, Context Control Unit, Condition Box and the context
memories (gray). The CGRA is parametrized and the number of PEs, the interconnect,
the operations of each PE, etc can be defined by the user before runtime. The following
sections describe all components in detail.

7.1. Processing Element Array

The Processing Element (PE) Array executes the actual computation on the CGRA.
Figure 7.3 shows the basic structure of a single PE. The ALU can take inputs from
the local register file directly or from neighboring register files via the inputs in. ALU
results are always written back to the local register file in order to keep the critical
path short. In the next clock cycle the value can be transferred to a neighboring PE
via the signal out.

7.1.1. Local Variable Interface

In order to exchange Live-In and Live-Out Variables between the CGRA and the host
processor, the basic structure of the PE has to be extended as shown in Figure 7.4.
Thus, Live-In Variables can be written directly to the local register file. In contrast to

that Live-Out Variables can be read both from the local and the neighboring register
files.

Local variables will be transferred via the data bus shown in Figure 6.1. All Live-In
connections can be connected directly to the bus and need no further management.The
current context controls whether a PE stores the incoming value. Live-Out connections
have to be handled differently as only one PE may drive the bus at one time. Thus, at
least one multiplexer is necessary.

56 7. CGRA Architecture

Token Distribution Network Wishbone Peripheral Bus
\ 4
CGRA Frame
Token
Adapter

Interface Configuration

> Memories
Control L)) *
CGRA Core
DMA
< g
‘ Live In I
Live Out
Input Output
Adapter || Adapter

A

—

Data Bus

Figure 7.1.: Structure of the CGRA FU

7.1.2. Memory Interface

In order to grant a PE access to the main memory the structure of a PE has to be
extended further as shown in Figure 7.5. It has to be noted that in this work two
addresses have to be transferred as the memory is addressed indirectly with handle and
offset as described before. Similarly to the Live-In/Out connections, the data read from
the memory is written to the register file while the data to write can be loaded both
from the local and the neighboring register files. The handle can only be loaded from
the local register file whereas the offset can also be loaded from neighboring register
files. This setup makes it possible to calculate the new offset and possibly new data in
parallel on another PE while the current memory access is still executed. Afterwards,
the next memory access can be started directly without the need to transfer data into
the local register file.

In case of a cache miss the data is not available directly and the execution of the whole
CGRA has to be stalled. A status input from the cache denotes whether the cache
input data is valid.

7.1. Processing Element Array

\ 4

Context

Context Control Unit Memory

Context Counter

A 4

Context Memory

PE Array

Status Signals | .- - | Predication Signals
L 2R J

Context

Condition-Box Memory [¢

Branch Selection

Figure 7.2.: Structure of the CGRA core

AALU |
Register I |
File I I

Qout

out

Figure 7.3.: Basic structure of a PE

ing in,
AALU |
Aout Register | — |
ain File | ——_ _ 1[
1
1
ALU !
1
1
1
1
| .
livej, out liveout

Figure 7.4.: Structure of a PE with Live-In and Live-Out connections

58 7. CGRA Architecture

Register < 7 X
20w File | . | | E—
Qin \/
ALU
Iivemg out
DMAdata in DMAbase DMAdata out DMAoffset

Figure 7.5.: Structure of a PE with Live-In, Live-Out and memory connections

[ALU Opcode | addressyy | address, | address,, | MUXgselect | MUXselect | RF write enable |

Figure 7.6.: Context of a PE shown in Figure 7.3

7.2. Context Memories

From the previous section it is clear that each PE needs to be provided with control
signals like for example the register file addresses, the ALU opcode or the multiplexer
selection at the ALU inputs. The set of all those control signals is called context and
defines the operation of the PE in one time step. Figure 7.6 shows the context of
the PE in Figure 7.3. The actual bitwidth is dependent on the composition of the
CGRA. One Kernel normally consists of several contexts which are stored in the context
memories. Both Context Control Unit (CCU) and Condition-Box (C-Box) also have
context memories. All context memories are always addressed with the same address

called the context counter which is equivalent to the program counter in traditional
CPUs.

The last context in the context memory is called the Idle-Context. In this context no
PE performs an operation and the context counter is not altered as long no kernel is
started on the CGRA. The Idle-Contezt is also used to handle the transfers of Live-In
and Live-Out Variables between CGRA and host processor. To store Live-In values the
Idle-Context is modified so that the live;, value in Figure 7.4 will be used as register
file input. The input a;, will be set to the desired address and the write enable of
the register file will be set to true. To read Live-Out values, the Idle-Context will be
modified in a similar way.

7.3. Context Control Unit

The CCU calculates the next context counter in every step. In normal mode the context
counter is incremented by one each time step. Jumps can be relative or absolute and
conditional or unconditional. In the beginning of a loop structure the loop condition
is evaluated. If the condition is not met, an unconditional relative jump over the

7.4. Condition Box 59

-1 Kernel A Context 0
Kernel A Context 1
Kernel A Context 2

Kernel A Context 3 D
Kernel B Context 0
Kernel B Context 1
Kernel B Context 2
Kernel B Context 3
Kernel B Context 4
Kernel C Context 0
Kernel C Context 1
Kernel C Context 2

IDLE

Figure 7.7.: Context memory example

contexts of the loop body is performed to exit the loop. Otherwise the context counter
is incremented one by one to execute the loop body. This is shown in Figure 7.7 points
1 and 2. At the end of the loop a relative unconditional jump is performed to the
beginning of the loop (point 3). When leaving the outermost loop, an absolute jump to
the Idle-Context is performed (point 4).

The decision how to calculate the next context counter is stored in the context memory
of the CCU.

As mentioned above, the execution has to be stalled when a cache miss occurs. When
at least one of the caches denotes that the input data is not valid, the CCU will stop
updating the context counter until the data is valid.

7.4. Condition Box

The C-Box evaluates and stores status signals produced by the PEs. Figure 7.8 shows
the structure of the C-Box. It consists of an arbitrary number of Fvaluation Blocks and
one common Condition Memory. With the Fvaluation Blocks it is possible to combine
status signals arbitrarily to complex boolean expressions. The result can be sent to
the CCU in order to decide whether a jump has to be performed or it is stored in the
Condition Memory. Values from the Condition Memory can be sent back to PEs as
predication signals (see Section 9.3 for further details).

Code Example 3 shows a case where the if-path (line 4) is only executed when the logic
expression a(b + ¢) holds true. The else-path (line 6) is executed when a(b + ¢) = abe
holds true. From this example it becomes obvious that both the condition for the if
and the else path have to be stored in the Condition Memory. Both conditions can be
false at the same time if a is false. Thus, the condition of the if-path is not always the
negation of the else path. In the following it will be explained how the C-Box evaluates
these expressions.

60 7. CGRA Architecture

status from PEs

g L |

LR

[\
.

+1ﬂ434
‘#m AHﬁE
ﬁ“”ﬂJ

-

Evaluation Block 0 Condition Memory Evaluation Block m-1
OF s OF g OF s Of e
pred,, " predy, pred,., " pred, .,
v T
branch selection YV
to CCU predication to PEs

Figure 7.8.: Structure of the Condition Box

When the code is executed, the expression a in line 1 is evaluated by a PE and the
result is sent as status to the C-Box. The logic value of a is stored directly in the
Condition Memory as shown in Figure 7.9(a). The logic gates are all bypassed (yellow
line). In the second step the expression b is evaluated as shown in Figure 7.9(b). The
lines 2 to 6 in Code Example 3 are only executed if a was true. So a is loaded from
the Condition Memory (yellow line) and the AND gates are not bypassed (green lines)
so that the logic values ab and ab are stored in the Condition Memory. In the third
step c is evaluated and the values ab (green drawn through line) and ab (green dashed
line) are loaded from the Condition Memory. The AND gates are not bypassed and
the values abc and abe are used further. In the if-branch the OR gate is not bypassed
(blue drawn through line) and the value ab + abc = a(b + be) = a(b + ¢) is stored in the
Condition Memory. The OR gate in the else-branch is bypassed and the value abé is
stored into the Condition Memory directly (blue dashed line). Now the desired values

1
2
3
4

7.5. Important Features of the CGRA 61

status from PEs status from PEs status from PEs
— —
So Se1 So Si1
a C
1

N~
L — 1_
a a ab a(b+c) abc
|_ Condition Memory Condition Memory Condition Memory
Olpos neg o, | @ e o] ab
_____ I S R
I
pred,, 7 pred,, pred,, 7 pred,, pred,, 7 pred,,
branch selection branch selection branch selection
to CCU to CCU to CCU
(a) Evaluate a (b) Evaluate b (c) Evaluate ¢

Figure 7.9.: C-Box evaluation steps for Code Example 3

reside in the Condition Memory and can be provided to the PEs as predication.

Code Example 3: C-Box example code
if a then

// do something

if p || ¢ then

L // If path: Executed when a(b + c)

else
| // Else path: Executed when a(b+ ¢) = abe

7.5. Important Features of the CGRA

The actual Verilog description of a CGRA instance can be generated fully automatically
from a textual description in JSON format (shown in Appendix B). The information
that needs to be provided is:

e The number of PEs
e The operations each PE can perform
e The connections between the PEs

e The number of Evaluation Blocks in the C-Box

62 7. CGRA Architecture

e The number of predication signals from the C-Box to the PEs
e The sizes of the register files, Condition Memory and the context memories

Both the CGRA generator and the scheduler that maps a kernel to the CGRA support
inhomogeneous operation distribution on the PEs and irregular interconnects between
the PEs. Thus, is it is possible to create and evaluate different CGRA structures quickly
and adapt them to the current application domain if desired. This is not scope of this
work.

The C-Box enables the CGRA to evaluate control flow on the CGRA. Thus, it is
possible to execute complex data dependent nested loop structures directly on the
CGRA autonomously. No interaction with the host processor is necessary.

8. AMIDAR CGRA Interface

Note: Parts of this section have already been published in [30]. The marking of self-
citation is omitted in order to improve the reading flow.

Before the execution on the CGRA can start, the Live-In values and an ID of the current
kernel have to be sent to the CGRA. When the execution is finished, the Live-Out
values have to be transferred back. Many approaches use dedicated registers to send
data into the CGRA or back to the host processor (e.g. [71]). In this work a more
flexible interface between the AMIDAR processor and the CGRA is implemented, in
order to be able to support arbitrary applications.

In this chapter the interface is described. Figure 7.1 shows the CGRA Frame that
handles the communication between AMIDAR and the CGRA. The Token Adapter
stores incoming tokens in a token queue and the FSM handles their execution. Input
and Qutput Adapter handle the data transfers on the data bus and check for matching
tags. The CGRA Frame is not involved in the DMA communication.

For each kernel different constants and different Live-In/Out Variables have to be
transferred and stored in different locations. All necessary information is stored in the
Interface Configuration Memories which are described in the next section. Afterwards,
the bytecodes that handle the communication between AMIDAR, and the CGRA are
described. In the end of this chapter different Live-In/Out strategies are discussed.

8.1. Interface Configuration Memories

In order to ensure that a kernel is executed correctly on the CGRA the following
information is needed:

e Which kernel will be executed?
e Which constants have to be stored in the PEs?
e Which local variables have to be transferred to the CGRA (Live-In)?

e In which PE and at which register file address will the constants and the Live-In
variables be stored (Location Information)?

e Which local variables have to be sent back to the AMIDAR processor (Live-Out)?
e Where are the Live-Out variables stored (Location Information)?

e Where are the contexts of the kernel?

64 8. AMIDAR CGRA Interface

to AMIDAR

Figure 8.1.: Live-Out Location Information

This information will be provided by a a Constant Memory and a Location Information
Memory in the CGRA and a Live-In/Out Information Memory in the Token Machine.
Apart from that both CGRA and Token Machine contain a Kernel Table that stores
the pointers to all those memories for each kernel. All those memories can be accessed
via software over the Wishbone peripheral bus. In the remainder of this section those
Interface Configuration Memories will be described.

Location Information Memory This memory is located in the CGRA and stores
both where received values (constants or Live-In) will be stored and from where the
Live-Out values will be read. The Location Information for the received values is stored
in the format { PE selection, RF address}. Each bit of PE selection corresponds to one
PE. If a bit is set, it means that the PE has to store the incoming value in the local
register file at address RF' address. Note, that the RF address is the same for all PEs.
This has to be taken into account in the register file allocation during in the kernel
mapping algorithm (Chapter 9).

As described in Section 7.1.1 the Live-Out values can be read both from the local register
file and also the register file of the neighboring PEs (see also Figure7.4). Thus, not
every PE has to be provided with a Live-Out Connection and the Location Information
for values to be sent is { Live-Out selection, neighbor selection, RF address}. Figure 8.1
shows an example in which a value has to be read from the last PE in the third row
(red). Here the Live-Out selection is 1 (blue) and the neighbor selection is 2.

The bit width of this memory is strongly dependent on the CGRA composition, as the
number of neighbors, Live-Out connections, register file depth, etc. vary.

Constant Memory As shown in Figure 7.3, all operands in a PE have to be provided
by the register file. Thus, the register file also has to contain all constant values that are
needed during the execution of a kernel. Before the executions starts, those constants
will be read from the Constant Memory and written to the register file using the
Location Information. The Constant Memory is also located in the CGRA.

8.2. CGRA Bytecodes 65

In order to keep the overhead low, small constants will not be read from the Constant
Memory but they will be coded into the current context and will be directly available.
An additional bit is inserted into the context (see Figure 7.6) to the MSB at each
register file address denoting that the current register file address is actually no address
but a constant stored in two’s complement. In that case the register file will not load a
value. Instead it will do sign extension and provide that constant value directly. This
can only be done for values that have an absolute value smaller than half the register
file size so that the two’s complement has the same bit width as the register file address.
In practice this is sufficient, as the most common constants are small values like £1 for
increments or decrements.

Kernel Table in the CGRA The Kernel Table in the CGRA stores the relevant
information for all kernels. It contains the pointer to the context memory, the pointer
to the Location Information Memory, the pointer to the Constant Memory and the
number of constants that have to be read from the Constant Memory.

Live-In/Out Information Memory The Live-In/Out Information Memory con-
tains the IDs of all Local Variables that have to be transferred to the CGRA and will
be sent back from the CGRA. This ID is used to address the Framestack.

Kernel Table in the Token Machine The Kernel Table in the Token Machine
stores the pointer to the Live-In/Out Information memory and a valid flag for each
kernel. If the kernel is valid, the contexts of the corresponding kernel are currently
stored in the context memories of the CGRA and it can be executed directly.

8.2. CGRA Bytecodes

The following three special bytecodes were introduced to start CGRA execution:

e CHECK_KERNEL <kernel ID> - Checks whether the contexts of this kernel cur-
rently reside in the context memories of the CGRA using the valid flag in the
Kernel Table in the Token Machine. If not, an interrupt is issued and the interrupt
service routine loads the corresponding contexts.

e CGRA_START <kernel ID, nr0fLiveInVariables> - This bytecode initializes
both the CGRA and the Token Machine and starts the execution as shown in
Figure 8.2. In Step 1, both FUs get the kernel ID as input and load the needed
pointers from the Kernel Tables. Then, the CGRA starts immediately to load the
specified number k of constants from the Constant Memory (Step 2) and forwards
them with the Location Information to the PEs.

Afterwards, n tokens are sent to the Token Machine and the Framestack to load
the Live-In variables (Step 3). At the same time, n tokens are sent to the CGRA
to load the Location Information for the incoming n Live-In variables (Step 4).

66 8. AMIDAR CGRA Interface

Token Machine
Bytecode: | | ["sTART.CGRA | [kernel D | [n = Nr of Live-ln] —————
| Live-In/Out Information Memory
Kernel Table
Lveln 01D) Framestack
Live-In 11D e h times
! valid flag live-in/out information pointer Live-In n ID
Live-Out 0 ID
Live-Out 1 ID
L‘i‘ve—Out m ID
Kernel Table
L—P{ constant pointer | Location Information pointer | k = Nr of constants Context pointer e
Constant Memory Location Information Memory
PE Array v
L—p»| Constant 0 L—pp{ Constant 0 Location Information ‘79 k times D |:| |:| D
Constant 1 Constant 1 Location Information (/\] t
Constant k Eonstant k Location Information f x_/ D |:| |:| D
Live-In 0 Location Information .
Live-In 1 Location Information l ,.\o luiies —t 0000
Live-In n Location Information I ~ D |:| |:| D
Live-Out 0 Location Information
Live-Out 1 Location Information
Live-Out m Location Information

Figure 8.2.: Execution of bytecode START_CGRA

When this part is finished, the CGRA is started with the correct context pointer
(Step 5).

e CGRA_STOP <nrOfLiveOutVariables, jumpDistance> - This bytecode is trans-
lated into tokens to transfer Live-Out Variables back to the Framestack. This
is done analogously to the Live-In values. Afterwards, a jump is performed in
AMIDAR in order to skip the bytecode of the kernel that has just been executed
on the CGRA.

Note that the bytecodes CHECK_KERNEL and CGRA_START can not be merged into one
bytecode because AMIDAR needs to be able to invoke the interrupt service routine to
load missing contexts. The Thread Scheduler is only able to do this, when all issued
tokens are executed. All tokens of one bytecode are sent at once. Thus, the bytecode for
checking the valid flag and the initialization have to be separated, so that the interrupt
service routine can be called in between. Additionally, this separation makes it possible
to execute the check of the valid flag some time before the actual execution in oder to
mask transfer times of the needed contexts in case they are not yet in the CGRA. This
option was not used during this work.

8.3. Live-In/Out Strategies

67

Table 8.1.: CGRA tokens

Token

|

|

Function

‘ Input

\ Output

INIT

Initializes the CGRA and
loads constants into the
CGRA

Kernel ID

RECEIVELOCALVAR

Stores a Live-In value in
the CGRA Core

Live-In
Value

RUN

Starts the kernel execu-
tion on the CGRA

SENDLOCALVAR

Sends a Live-Out value
over the data Bus

Live-Out
Value

Table 8.2.: Token Machine tokens (excerpt)

Token

|

|

Function

‘ Input

‘ Output

CHECK _KERNEL

Checks whether the con-
texts of the desired kernel
are in the contexts mem-
ories. If not an interrupt
is issued

Kernel ID

INIT LIVE IN_OUT

Loads the Live-In/Out
Pointer from the
Kernel Table

Kernel 1D

Kernel ID

LOAD LIVE IN OUT

Load the Index of the
Live-In/Out Variable and
increments the Live-In /
Out pointer

Live-
In/Out

Index

8.2.1. Translation Into Tokens

The CGRA FU can handle the tokens shown in Table 8.1 and Table 8.2 shows an
excerpt of tokens of the Token Machine that are needed for the communication with
the CGRA.

Table 8.3 shows how the bytecodes described in the previous section are translated into
Tokens.

8.3. Live-In/Out Strategies

Different strategies to provide Live-In/Out values to the CGRA can be applied. These

range from flexible (Live-In/Out to each PE) to resource saving (just a single PE with
Live-In and Live-Out connections). The following sections will describe the different

strategies in detail.

8. AMIDAR CGRA Interface

68

Table 8.3.: Translation from CGRA bytecodes to tokens

Token Machine Destination | Framestack Destination | CGRA Destination
Bytecode Token FU / Port | Token FU / Port | Token FU / Port
CHECK_KERNEL<ID> || - CHECK KERNFEL<ID> - -
CGRA_START<ID,N> || - INIT LIVE IN OUT<ID> —CGRA /0 | - INIT<ID>
N | LOAD LIVE IN OUT —Framestack \ 0 | LOAD32<I> —CGRA /0 | RECIEVELOCALVAR<V>
- RUN
CGRA_STOP<M> M | LOAD LIVE IN OUT —Framestack / 0 | STORE32<I> SENDLOCALVAR —Framestack / 0

8.3. Live-In/Out Strategies 69

Full Live-In/Out Connections In order to minimize the timing overhead of the
transfer of values between processor and CGRA, all PEs will be provided with Live-
In/Out connections. Thus, it is possible to receive and send values to each PE directly
in one step.

In order to be able to drive the bus by the correct PE, a N to 1 multiplexer is needed
for a CGRA with N PEs. With the information given in Section 7.1.1 it is obvious that
the same performance can also be achieved with less hardware effort.

Full Logic Live-In/Out Connections The aim of this strategy is to access each
PE in one step but to use less hardware than in the previous strategy. As transferring
values from one PE to the register file of another PE would always take one clock cycle
(see Section 7.1.1), each PE needs a separate Live-In connection. In contrast to that, in
CGRAs with regular mesh structure, approximately every fourth PE needs a Live-Out
connection, as values of register files from neighboring PEs can be sent directly. Thus,
only a %:1 multiplexer is needed to drive the bus because the multiplexer in front of
the ALU input is reused.

Figure 8.3 shows the the full logic Live-Out connections for a 4x4 and an 8x8 CGRA.
It can be seen that only a fourth of the PEs need a Live-Out connection in both
cases. Note that for some CGRA structures more than % Live-Out connections are
needed to provide full logic Live-Out connections. For example a 5x5 CGRA needs 7
Live-Out connections (~ +%) and a 6x6 CGRA needs 10 (= 5%). CGRAs with toroidal
interconnect are not considered as this leads to very low clock frequencies due to long

routing paths.

il Satets

Figure 8.3.: 4x4 and 8x8 CGRA with full logic Live-Out connections. Colored PEs have
a Live-Out connection[30]

:

a0

R0

I
(HEH]
-

70 8. AMIDAR CGRA Interface

It is obvious that full logic Live-In/Out connections are always better than naive full
Live-In/Out connections. Thus, full Live-In/Out connections are not considered in the
rest of this work.

Reduced Live-In/Out Connections As full logic Live-In/Out connections come
at the cost of increased hardware and thus possibly longer critical paths, reducing the
number of Live-In/Out connections has to be considered.

Figure 8.4 and 8.5 show a 4x4 CGRA with two Live-In and two Live-Out connections
respectively. It can be seen that in this case only two PEs can receive values directly.
For 7 of the PEs one routing step is needed (1 hop), for 6 PEs two hops are needed.
One PE is even reachable only after three hops.

When sending back local variables to the general purpose processor, 9 PEs can provide
their values directly while 6 PEs need one hop. Only one PE needs two hops to provide
a value to the Live-Out connection.

While reducing the number of Live-In/Out connections reduces the hardware resources,
it also increases the timing overhead when transferring data to the CGRA. Additionally,
it increases the memory overhead, because routing information on the CGRA has to be
stored. This routing information can either be included as a prologue in the CGRA
schedule or it can be encoded in the instructions used to transfer the values.

The usage of dedicated input registers, which is done in many other approaches (see
Section 3) is a special case of this strategy.

.l:l Direct access
B[Hop

. 2 Hops

. 3 Hops

from AMIDAR

Figure 8.4.: CGRA with two Live-In connections [30]

Using Shared Memory instead of Live-In/Out Even CGRAs that don’t have
Live-In/Out connections and communicate with the processor via shared memory are
thinkable [34]. As CGRAs need to have DMA anyways, this would reduce the hardware
overhead even further. At the same time the timing overhead and the effort to schedule
the data transfer would increase as memory accesses on both sides and routing the

values through the CGRA have to be handled.

8.3. Live-In/Out Strategies 71

.I:l Direct access
.D 1 Hop
. 2 Hops

to AMIDAR

Figure 8.5.: CGRA with two Live-Out connections [30]

Comparison All strategies have in common that all values have to be transferred
consecutively. As a consequence timing overhead introduced by copying values from
one PE to another can be masked by pipelining. In this case, values are received via
Live-In connection while at the same time another value is copied to a neighboring PE.
This increases the complexity of the interface because the following challenges have
to be faced. First, the sending order of the values has to be determined (send values
that need more hops first, to mask the routing delay, while avoiding routing conflicts).
Second, the designer has to find the optimal location to store the routing information.
Encoding of the routing information in the CGRA is very costly while storing this
information in the host processor introduces additional overhead by transmitting this
information to the CGRA. Apparently, there is a trade-off between complexity of the
interface and the timing overhead for routing values on the CGRA.

Note that Live-In and Live-Out connections are independent. Thus, it is possible to
use different strategies for Live-In and Live-Out.

Table 8.4 compares the different strategies. (Full Live-In/Out connections are omitted,
as full logic Live-In/Out connections are always better.) It can be seen that full logic
Live-In/Out connections only have the disadvantages of increased hardware and thus
probably lower clock frequencies.

In [30] it was shown that the hardware effort for full logic Live-In/Out connections
is negligible and that the maximum clock frequency is mainly unaffected by the Live-
In/Out strategy for an implementation on an FPGA. Thus, full-logic Live-In/Out
connections will be used in the rest of this work.

72

8. AMIDAR CGRA Interface

Table 8.4.: Comparison of the Live-In/Out connection strategies [30]

mation)

Full Logic | Reduced Live- | No Live-In/Out
Live-In/Out | In/Out Connec- | Connections
Connec- tions
tions
Effort to sched- | low medium (values have | high (memory ac-
ule the transfer of to be routed through | cess + values have to
Live-In/Out val- the CGRA) be routed through the
ues CGRA)
Time needed for | low increased effort due to | increased effort due to
data transfer routing values through | routing values through
the CGRA (can be | the CGRA (can be
masked by complex | masked by complex
pipelining) pipelining) and mem-
ory accesses
Memory overhead | low memory needed to | memory needed to
store routing informa- | store routing informa-
tion tion
Amount of addi- | medium low none
tional hardware
Maximal clock | medium high high
frequency (esti-

9. Kernel Mapping Algorithm

In this section the kernel mapping algorithm is described. It was partly already discussed
in [15], [11], [13] and [12]. The mapping algorithm will be executed on the AMIDAR
processor itself as a system thread. Figure 9.1 shows the processing steps that are
necessary to map a kernel to the CGRA. First, the profiler in the AMIDAR processor

AMIDAR Software thread
(running on AMIDAR)

detects
Profiler P Speculative method inlining

kernels
v

Optional Partial Loop Unrolling

v

Instruction graph generation

v

Control and Data Flow Graph generation

Optional Optimizations

v

Resource and Rounting Constrained
Scheduling and Binding

transfer
CGRA |« Context generation
contexts
Instruction | PatCh
Memory [="" pytecode

Figure 9.1.: Processing steps of the kernel mapping algorithm

detects kernels in hardware during runtime. The mapping thread reads the profiler
memory periodically via Wishbone peripheral bus. The best loop candidate is then
selected. If its runtime exceeds a threshold of 30 % of the total runtime in the last period,
it will be mapped to the CGRA. First, speculative method inlining and optionally
partial loop unrolling will be performed. Then, an instruction graph is created which is
used to generate a Control and Data Flow Graph (CDFG). A modified list scheduler
will map and bind all operations to the CGRA with respect to the resource and routing
constraints. Afterwards, the contexts are generated from the schedule and transferred
to the CGRA via Wishbone peripheral bus. In the last step, the kernel tables are filled
and the bytecode is patched in the instruction memory.

The next sections will explain all steps in detail. Only the optional steps (marked in
gray) will be explained in Chapter 10.

74 9. Kernel Mapping Algorithm

9.1. Speculative Method Inlining

Method inlining is done on bytecode level. In the first step the code of the called
method has to be retrieved and inserted in the bytecode of the calling method. In the
second step the bytecode parameters have to be adapted in order to ensure correct
jumps and variable handling.

Retrieve method code In order to read the code of the called method from the
instruction memory, the AMTI is needed. With the AMTI the physical address of the
kernel code can be read from the Method Table.

As mentioned in Section 5.3, virtual methods can not be resolved during compile time.
When the kernel mapping algorithm is started during runtime, the method has probably
been called before on a certain object. It is assumed that when the method is called
the next time, the class of the object on which the method is called, will be the same
as in the previous method call. Therefore, a ring buffer of size 256 was implemented
in the Token Machine. It stores for all method invocations the address of the INVOKE
bytecode, the CTI of the object on which it was called and the AMTTI of the method
that was invoked last time. Old entries of the ring buffer are overwritten. When a
virtual method has to be inlined, the ring buffer will be read out backwards in order
to find the last invocation on the current bytecode address to find the AMTI. As only
kernels that are executed often are mapped to the CGRA, the method that has to be
inlined is likely to have an entry in that ring buffer as it was called very often. If the
method is not found in the ring buffer, the kernel can not be mapped to the CGRA.

In order to verify that the speculation about the object class was correct, the CTT is
stored in the CGRA as a constant. During runtime the actual CTT of the current object
is loaded via DMA from the heap. If both CTIs differ, the assumption was wrong and
an interrupt is activated and a rollback mechanism has to be invoked. The instructions
to handle this verification are inserted later during CDFG generation. It has to be
ensured that these instructions are scheduled before all instructions that potentially
change the memory based on a false assumption. When the rollback mechanism is
started, the local variables have to be transferred from the CGRA back to the AMIDAR
processor. Then the last step in Figure 9.1 has to be reversed and the original bytecode
of the kernel has to be restored. Finally the program counter of the AMIDAR processor
has to be set to the correct bytecode address depending on the current context counter
in the CGRA. Afterwards the AMIDAR processor can resume to the kernel execution
at the correct address. Currently, no rollback mechanism is implemented. Instead the
execution is simply aborted. This case did not occur in any of the benchmarks used for
this work.

In contrast to that, for non-virtual methods no assumption has to be made. Static
methods can always be identified during compile time as they are called on classes
not on objects. Thus, the AMTI can directly be calculated from the parameter of
the INVOKESTATIC bytecode. The same holds for private object methods, as they can
only be called in the declaring class. Thus, always the method of the declaring class

9.1. Speculative Method Inlining 75

0 |[BIPUSH 10
T 2 ISTORE_1
Code Example 4: Method inlin- 3 |[TooaD 1
ing Example ’7 4 |[TIFEQ +11
- - : - 7 |[Troap_1
1 static void main (String/] args) 8 |[TNVORESTATIC
2 int i = 10; Lll ISTORE_1]
. o 12 |[GoTo -9
3 Whl'le (i !=0)do _ 15 |[RETURN
4 | i = decrement (i);
L »[0__|[ILOAD_0
5 static int decrement (value) L Jflrconsn 1
2 |[IsuB
6 return value — 1; 3 IRETURN

Figure 9.2.: Bytecode of Code Example 4

is executed even if the object is an instance of a child class which overwrites that
method.

Bytecode Parameter Adaptation The method bytecode parameter adaptation
will be explained on the basis of Code Example 4 whose simplified bytecode is shown
in Figure 9.2. The bytecode of the main method is shown in white. The bytecodes
at address 0 and 2 initialize the variable i with the value 10!. The bytecodes 3 to 12
realize the while-loop. In the beginning the variable i is loaded (3) and then compared
to zero (4). If i is equal to zero the loop is exited by jumping 11 bytecodes to address
15. Otherwise i is loaded (7) and the static method decrement is called with i as
parameter (8). The result of this method stored in i(11) and then a jump 9 bytecodes
back to the beginning of the loop is performed.

The bytecode of decrement is shown in blue. It loads the variable 0 (value) and the
constant 1 and then calculates the difference of both values and returns the result.

When the bytecode of the called method is inserted in the code, the bytecode addresses
of all following bytecodes is changed. Therefore, all relative jumps that jump over the
INVOKE bytecode, point to the wrong bytecode as shown in Figure 9.3. Additionally,
the bytecode 11 should load the variable value which had the index 0 in the method
decrement. When the code is inlined into the main method, the context changes and
the local variable with index 0 is args. Thus, all indices of local variable accesses in the
inlined code need to be incremented by an offset that is greater than all local variable
indices used before. These new local variables are called virtual local variables. In the
CDFG generation step instructions are inserted for the bytecode INVOKESTATIC that
copy the value of the parameter i in the virtual local variable value. Figure 9.4 shows
the corrected relative jumps and local variable accesses. After this step is finished, the
bytecode of the loop (3 to 16) is used for graph generation.

IThe parameter of the bytecode BIPUSH is stored at address 1

76 9. Kernel Mapping Algorithm

0 BIPUSH 10 0 BIPUSH 10

2 ISTORE_1 2 ISTORE_1

3 ILOAD_1 3 ILOAD_1 —
—14 IFEQ ALl —14 IFEQ +15

7 ILOAD_1 7 ILOAD_1

8 INVOKESTATIC 8 INVOKESTATIC

11 ILOAD_O 11 ILOAD_2

12 ICONST 1 12 ICONST 1

13 ISUB 13 ISUB

14 IRETURN 14 IRETURN
—{15 ISTORE_1 15 ISTORE_1

16 GOTO =9 16 GOTO -13—

19 RETURN —{19 RETURN

Figure 9.3.: Bytecode of Code Example Figure 9.4.: Bytecode of Code Example
4 after code insertion 4 after complete inlining

9.2. Instruction Graph Generation

The control and dataflow graph (CDFG) generation was already described in [14]. In
the following, instructions in the CDFG will be named after the scheme <bytecode
address>:<bytecode>:<parameter>. For example the node corresponding to the
bytecode at address 11 in Figure 9.4 will be named 11:IL0OAD:2. The instruction
memory is part of the Heap Memory, so it can be read with the native method
AmidarSystem.readAddress(int address). In order to find control dependencies, an
instruction graph as shown in Figure 9.5 is created. Starting from a START and a
STOP node, all nodes are successively added to the instruction graph and connected
to their predecessor. Branch nodes like 4:IFEQ:+15 are called controller because they
decide whether the instructions in the if- and else-branch (marked in green and red) are
actually executed. All the nodes in the branches store 4:IFEQ:+15 as their controller
and whether they are part of the if or else branch. Phi nodes are used to join different
branches.

9.3. Control and Dataflow Graph (Generation

In the next step all nodes are added to the CDFG and data and control dependencies
are added as described in the following.

Data Dependencies In order to find data dependencies, the bytecode of the loop
that will be mapped to the CGRA is executed on a virtual stack. In this stack not
the results of bytecodes are pushed to or popped from the stack but the corresponding
node from the CDFG. When for example the bytecode 13:ISUB is executed, the nodes
11:ILOAD:2 and 12:CONST:1 are on top of the stack. 13:ISUB pops both those nodes
from the stack. Thus, a data dependency from both 11:IL0OAD:2 and 12:CONST:1 to
13:ISUB are added to the CDFG as shown in Figure 9.6.

9.3. Control and Dataflow Graph Generation 7

| START |
v
[3:ILOAD:1 le——
¥
[4:1FEQ:15 |
\ 3:ILOAD:1 4:CONST: 0
[7:1roaD:1 | J T~ —
4:IFEQ:15
[8: INVOKESTATIC | T \
¥ 8:ISTORE:2
[11:1p02D:2 |) ‘
| 12:IcéNST:1 | 11:ILOAD:2 " 12:CONST:1
3 ~ ‘//ﬁi/
| Lo {SUB | 13:ISUB ‘
[14:IRETURN | \ '
‘ . .
[15:ISTORE:1 | 15:ISTORE:1
3
[16:G0TO:-13 |- Figure 9.6.: Control and Data Flow
\ Graph of Code Example 4 after com-
| PTI | plete inlining
| STOP |

Figure 9.5.: Instruction graph of Code

Example 4
3:ILOAD:1 4:CONST:0
l 4:IFEQ:15
A‘x—‘/ ‘ \
8:ISTORE: 2 . 12:CONST:1
13:ISUB

«
15:ISTORE:1

Figure 9.7.: Control and Data Flow
Graph of Code Example 4 after com-
plete inlining and optimization

For each local variable and each memory object an access history is maintained in order
to find read/write dependencies.

Method Invocations and Returns As mentioned before INVOKE bytecodes need
special handling. They don’t just pop all method parameters from the stack but also
create new nodes that store the values of the parameters in the correct virtual local
variable of the inlined method. When references of memory objects are passed to the
method, the history of the virtual local variable that will hold this reference will store
the origin of this reference (this may be another local variable or an access to another
memory object) in order to find the correct dependencies between all accesses to the
actual memory object. In the current example, the node 8: INVOKESTATIC creates a node

78 9. Kernel Mapping Algorithm

8:ISTORE:2 which gets its data from 7:ILOAD:1. As both 3:ILOAD:1 and 7:IL0OAD:1
access the same local variable and this local variable is not written in between, only
one of those nodes is necessary and 8:ISTORE:2 will get its data from 3:ILOAD:1.

If there are multiple return statements in one inlined method, all of them are transformed
to store the return value to an additional virtual local variable. Only the last return in
the inlined code also creates a node that loads that new virtual local variable to push it
on the virtual stack so that the following node can consume the correct return value. If
there is just one return statement, nothing has to be done and the following node can
pop the return value from the stack directly.

Control Dependencies In Figure 9.5 it is obvious that the basic block from 7 to
16 is only executed when 4:IFEQ:15 is evaluated to false. Thus, 4:IFEQ: 15 is the
controller of all instructions in the basic block. Logic and arithmetic instructions of this
basic block will be executed speculatively. Write accesses to the memory (Local Variable
Memory and Heap Memory) will only be executed if the corresponding predication
signal provided by the C-Box is true so that no errors are introduced. Read accesses
to the Heap Memory are also predicated, so that no unnecessary stalls are introduced
when cache misses occur while accessing data that is actually not needed. In this
example 8:ISTORE:2 and 15:ISTORE: 1 are controlled by 4:IFEQ:15. Thus, a control
dependency is added between those nodes as shown with red dotted lines in Figure
9.6.

Further Optimizations Some nodes take just one operand but have be transformed
to more generic operations that map to the operations implemented on the CGRA. The
node 4:IFEQ: 15 for example compares the operand to zero. It will be transformed to a
operation that compares if two operands are equal. The additional operand will be the
constant 0.

During scheduling each local variable in the graph will be strictly associated with one
specific Location in one specific register file address on one specific PE (abbreviated by
PE<PE number>.<address>). A store instruction always has to ensure that the value
is written to that exact Location. The next access to that local variable will retrieve the
current value from that Location. The corresponding load instruction can be deleted
from the CDFG and the following instruction will get its data from the store instruction.
In Figure 9.7 the instruction 11:IL0AD:2 is deleted and 13:ISUB gets its data directly
from 8:ISTORE:2. Intermediate values like the result of the subtraction can be stored
at any Location.

Predication and Speculation Code Example 5 shows an if-else construct in which
the variable a gets different values in dependence of the value of i. In this work
the control flow is handled with a combination of speculation and predication. The
arithmetic and logic instructions are executed speculatively. The results are stored in
arbitrary free Locations. Write accesses to memories (both Local Variable Memory and
Heap Memory) are executed only predicatively. Thus, in Figure 9.8 the instructions

9.4. Resource and Routing Constrained Scheduling 79

Code Example 5: Predication 4:ILOAD:3 5:ILOAD:4 0:ILOAD:1 1:CONST:0
and speculation example Vo Voo
. . 9:ISUB 6 : TADD 1:IFNE:7
1 if (i /= 0) then |
— o A
2 ‘ a=b+g \7:ISTORE:2
3 else ! %
4 t =0 — @ 10: ISTORE: 2
==

Figure 9.8.: CDFG of Code Example 5

6:IADD and 9:ISUB are executed speculatively and there is no dependency to the
comparison 1:IFEQ. In contrast to that both 7:STORE:2 and 10:STORE: 2 are dependent
on 1:IFEQ:7 whose results are stored in the C-Box as described in Section 7.4. The
corresponding values are loaded from the Condition Memory and only the instruction
whose condition is true, writes its value to the Location of the corresponding local
variable.

It can be seen, that this scheme increases parallelism as it allows to start the actual
calculation (instruction 6:IADD and 9:ISUB) before the comparison was executed.
Unfortunately, at the same time it may result in long sequences of predicated stores
like 7:ISTORE:2 and 10:ISTORE:2. In practice those sequences do rarely introduce a
delay because other instructions have to be executed at the same time as well.

In the following, simplified CDFGs like in Figure 10.1 will be used. The nodes will
represent expressions on a higher level like if (i<10) and they will be arranged so that
the schedule length of an ASAP (as soon as possible) schedule can be seen directly.

9.4. Resource and Routing Constrained Scheduling

The resource and routing constrained scheduler described in [63] is used to map the
CDFG to the CGRA. This scheduler is based on a list scheduler and gives near optimal
solutions [62]. Figure 9.9 shows the schedule of the CDFG shown in Figure 9.7. In
timestep 0 PE 0 executes 4:IFEQ:15. The first operand is the local variable with index
1 (3:LOAD:1) which is stored at its Location in PEO at register file address 0. The
second operand is a constant which is read from register file address 256 in PE1. As
described in Section 8.1 the MSB of the address denotes whether the following bits code
an address or a constant. In this case the MSB is set (25619 = 1000000005) and the
following bits (000000005 = 010) will be provided to PEQ as the constant 0. The result
of 4:1FEQ:15 will be stored in the C-Box at the address 0. At t=1 PE1 stores the
value of local variable 1 in the local variable 2 (Location PE1.1) in dependence of the
predication value that the C-Box loads from address 0 in the Condition Memory. In the
last step PEO performs the subtraction and the result is stored conditionally back to the
Location of local variable 1. Note that here the nodes 13:ISUB and 15:ISTORE:1 are
mapped to the same FU and can therefore be fused into one conditional subtraction.

80 9. Kernel Mapping Algorithm

PEO PE1 PE 2 BES) C-Box

[] [Out: 256 4CONST:0 | |] [

/

t=0 In0 : PE0.0 3:LOAD:1
Inl: PE1.256 4:CONST:0
4IFEQ
Inl: PEO 4IFE » 0
[Out:03LO0AD:I | |] [] [|

\ 0: 4IFEQ(0)

t=1 In0: PE0.0 3:LOAD:1

8:STORE:2- 1

1

[| [COu:18STORE2 | |] []

/ 0: 4IFEQ)

t=2 In0 : PEL.1 8STORE:2
Inl: PE0.257 12:CONST:1

13:ISUB- 0

L 0

Figure 9.9.: Schedule of CDFG shown in Figure 9.7 on a CGRA with four PEs

The blue bar on the left side of the schedule shows that the loop goes from t=0 to t=2.
This is helpful if there are nested loops which are marked in the same way. Here, it
means that at t=2 the Context Control Unit performs an unconditional relative jump
two contexts back to the beginning. At t=0 a conditional absolute jump is performed
to the idle context depending on the result of 4:IFEQ:15. Nested loops are left with a
relative jump to the first context behind the nested loop as shown in Appendix C. By
using absolute jumps only to exit the outermost loop, it is possible to store the contexts
of this schedule contiguous at any address in the context memory without having to
adapt any jump address. That way, kernels can be easily be swapped in and out of the
context memory in case many different kernels have to be executed on the CGRA and
the context memory is to small to hold all of them.

When an operand is not directly accessible to a PE due to routing constraints, copy
nodes will be added to the CDFG in order to route the desired value to the PE via
connected PEs. Copy nodes are marked gray in Appendix C. Note that only one
operand can be provided from the local register file. This means that some times one
of the operands has to be copied to a neighbor so that it can be used.

9.5. Context Management

When the scheduler is finished, the contexts of this kernel and the contents of all
Interface Configuration Memories are generated. The contents of kernel tables in both
CGRA and Token Machine have to be written directly via Wishbone peripheral bus.
All other Interface Configuration Memories entries and the contexts can be written
optionally. If they are not written and they are needed later on, an interrupt is issued

9.6. Bytecode Patching 81

and the interrupt service routine will load the data with the help of the information in
the kernel tables.

When not all data of all kernels fits in the memories at once, the data of other kernels
have to be replaced so that the current kernel can be loaded and executed. The decision
which kernels to replace is related to the replacement strategies in data caches, but the
strategies cannot simply be reused, because different kernels have different sizes. So
sometimes is is necessary to replace two or more older kernels in order to load one large
kernel. Two strategies are possible:

In the first strategy, the n kernels that were least recently used are replaced. The
number n has to be as small as possible while still enough space is freed to fit the large
kernel to be loaded. Unfortunately, it is not guaranteed that these n kernels lie in a
contiguous region of the context memories. Thus, the kernel to be loaded has to be
fragmented and new relative jump addresses have to be added to the context of the
Context Control Unit and existing relative jump addresses have to be adapted.

In the second strategy only continuous memory regions are freed so that the kernel to
be loaded will not be fragmented and the contexts don’t have to be adapted. This leads
to the question which set of kernels will be replaced: Is it better to replace a kernel
that was almost never used and one that is frequently used or is it better to replace
two kernels that are used sometimes? One possible approach is to use PLRU (pseudo
least recently used) on different levels. On each level the context memory is divided in
different parts of equal size. The higher the PLRU level, the bigger is the size of the
memory parts. On every access all levels of PLRU are updated. When a new kernel
has to be loaded, the lowest PLRU level whose memory part size fits the kernel, is used
to decide where to store the kernel. All kernels that are stored in this part have to be
replaced.

This question is not covered in this work. Instead a simple FIFO solution was imple-
mented which replaces the kernel(s) that reside in the context memory for the longest
time[66]. This is a suboptimal solution but it ensures the correct functionality of the

CGRA.

9.6. Bytecode Patching

When the kernel tables are filled in both the CGRA and the Token Machine, the
bytecode that corresponds to the kernel can be patched so that the kernel will be
executed on the CGRA from now on. First, the original bytecode has to be stored, so
that the patch can be revoked if needed. Afterwards, the bytecodes shown in Section 8.2
are written in the instruction memory at the beginning of the kernel code. This is done
using the native method AmidarSystem.writeAddress(int address, int value).
In the end the instruction cache has to be invalidated, by writing to a special peripheral
register in the Token Machine, so that the patched bytecode is actually loaded and
executed.

82 9. Kernel Mapping Algorithm

When the bytecode is patched, it has to be ensured, that the program counter is not
in the patch region. Otherwise, wrong bytecodes will be executed. For that purpose
the start and the end of the patch region are written to peripheral registers in the
Token Machine beforehand. Additionally, a status bit denotes whether a method call
is contained in the patch region. If not, it is safe to patch the bytecode when the PC
is lower than the start of the patch region or when the PC is higher than the end of
the patch region. If there is a method call in the patch region, it is possible that this
method is executed right now and when the method is finished it will return to the
patch region. Thus, if there is a method call in the patch region, it is only safe to patch
the code, if the PC was recently equal to the end of the patch region and it was not
equal to the start of the patch region since. The functionality to check whether the
bytecode can be patched right now is implemented in hardware and is included in the
Token Machine. The result can be read via Wishbone peripheral bus. If the code can
not be patched, the mapping thread will sleep for 10 seconds and try again afterwards.
To avoid polling, an interrupt that is issued when the code can be patched, could be
used (not implemented in this work). During the patching process the thread may not
be switched. Otherwise, the Token Machine might start decoding code from the patch
region. Thus, the Thread Scheduler is disabled via software during that process.

Part I11I.

Memory Subsystem Optimization

10. High-Level Compiler Optimizations

When the synthesis algorithm is executed as described above without further optimiza-
tions, successive loop iterations are always executed sequentially. Thus, the utilization
of the PEs is not satisfactory and the memory ports are not used to their full potential.
Thus, several optimizations have to be applied in order to be able to fully evaluate the
memory subsystem. In this chapter software pipelining and Aliasing Speculation will
be discussed. These optimizations will on one hand result in higher parallelism so that
more memory accesses can be executed in parallel. On the other hand this also reduces
the total number of memory accesses as described in Section 10.1.3.

10.1. Software Pipelining

Note: Parts of this section have already been published in [31]. The marking of self-
citation is omitted in order to improve the reading flow.

The standard approach for software pipelining is to implement a modulo scheduling so
that the execution of different loop iterations overlap and the parallelism is increased.
As mentioned above, the synthesis algorithm should have a low complexity and should
scale well. Therefore, another approach was chosen.

In [1] Aiken and Nicolau describe an algorithm to compute time-optimal loop schedules.
In their approach the loop is unrolled u-times and then scheduled. Afterwards, the
nodes with a mobility higher than one are moved into different time slots so that
recurring patterns emerge in the schedule. These patterns are then again combined to a
new loop. The result is then a software pipelined loop with a prologue and an epilogue.
In this work we will also unroll the loop u-times but in order to keep the complexity low,
the pattern search is omitted and the whole unrolled code will be executed. Doing this
naively will not result in the desired short schedules because for example new common
subexpressions and constants are created. Thus, common subexpression elimination
and constant folding have to be implemented as well. The following sections describe
all the optimizations that are implemented to achieve loop pipelining efficiently.

10.1.1. Partial Loop Unrolling

In order to increase the utilization of the PEs and the memory ports, partial loop
unrolling of the innermost loops was implemented. The unrolling is done on bytecode
level by copying the loop body u-times into the loop.Code Example 7 shows the resulting
code when Code Example 6 is unrolled three times. The Figures 10.1 and 10.2 show the
resulting dependency graphs, respectively. It can be seen that when simply copying the
loop body, all three loop iterations (marked in yellow, green and blue) are still executed

86 10. High-Level Compiler Optimizations

t=0 if (i<m)
v
Code Example 6: Minimal code el L°"D¢a[“
example =2 £(alil)
1 for (¢=0; i<m; <++) do - ,L
2 | f(alil);
Figure 10.1.: Dependency graph of Code
Example 6
£=0 if (i<m)
v
=1 LOAD ali]
+
Code Example 7: Code example = f(afll)
visualizing loop unrolling =3 fane
v
1 for (i=0; i<m; 4++) do t=4 1f (i<m)
. v
2 f(alil); t=5 LOAD ali]
3 i++; v
t=6 f(alil)
4 if ¢ < m then v
5 £(alil); 7
6 1++; t=8 if (i<m)
7 if ¢ < m then £=9 LOAD al[il
. v
8 t f(alil); £=10 £(alil)
L v
t=11 i+

Figure 10.2.: Dependency graph of Code
Example 7

sequentially because each iteration depends on the increment of the loop index ¢ in the
previous iteration!.

To overcome this circumstance the instruction i++ is split into two instructions i’=i+1
(calculation) and i=i’ (store) during graph generation. So different versions of the
variable i are created which leads to an improved dependency graph shown in Figure
10.3. This is done for each local variable to decrease dependencies between adjacent
loop iterations.

Both store instructions i=i’’ and i=i’’’ only receive a write-enable signal if the
corresponding if-instruction returns true.

Assuming that the method calls f (x) are independent, the executions of all iterations
can overlap. In practice this is not always the case. Code Example 8 shows the code
for the calculation of Fibonacci numbers. It is obvious that each iteration depends

IThe loop condition i<m has to be evaluated each time because the value of m is not known during
compile time. Additionally, it is possible that m is modified in the method call f(a[i]).

10.1. Software Pipelining 87

t=0 1f(1<m) i 1+1
t=1 LOAD a[1] if (1‘<m) ivv=ir+1
v~
t=2 f(a[l]) LOAD a[l'] if (i''<m) L LLLE S LU
v
£=3 i=ir f(a[l']) LOAD ali']
£=4 i=in £(ali"])
\ ‘
£=5 i=jwr

Figure 10.3.: Improved Dependency graph of Code Example 7

t=0 if (i<f) =i+l
A N T
t=1 k=i-1 m=1i-2 if (i'<f) iv=i'+1
y v A N TT—
t=2 o=fib[k] p=£ib [m] k'=i'-1 m' :|.' -2 if (:L <f) jro=gr43
v A
t=3 g=o+p p'=fib [m] k" -1 m'=i" -2
v
t=4 fib[il= q ‘
4 —
t=5 i=i flb [k] p'"'=fib [m"]
t=6 _o +pt
£=7 fib [1 1=q'
\ !
t=8 o' —f:Lb [k’]
£=9 —o T4ptt
t=10 flb[l 'I=q'
t=11 Y

Figure 10.4.: Dependency graph of Code Example 8 when unrolled three times

directly on the previous two iterations. Thus, there are long dependency chains in
the dependency graph when the loop is unrolled as shown in Figure 10.4. Note that
the auxiliary variables k, m, o, p and q were introduced in the graph to represent
intermediate results.

Code Example 8: Calculation of Fibonacci Numbers
1 for (i=2; i<f; 4++) do
| fib[i] = fib[i-1] + fib[i-2];

It can be seen that the length of the ASAP schedule for one iteration (yellow nodes)
would be 6 time steps. When the loop is unrolled three times the ASAP schedule would
have a length of 12 time steps which is 4 time steps per iteration on average.

88 10. High-Level Compiler Optimizations

t=0 if (i<f) ir=i+1 ir=i+2 im=i+3
A W N\
t=1 k=i-1 m=i-2 if (i'<f) if (ir'<f)
v v v M v N
t=2 o=fib[k] p=£ib [m] k'=i m'=i-1 k'"=i+l m''=1i
v M v
£=3 - V=£1b [
g=o+p p'=£ib [m']
=4 fib[il=q
/\ R
£=5 i=ir o'=£ib [k'] p"'=£ib [m']
v
t=6 Q' =0t +p!
v
=7 £ib[i']=q'
; /\ J
£=8 i=in oM =£ib [k"]
v
£=9
Q' =or +pht
B v
t=10 fib[i"]=q"
t=11 .
l=llll

Figure 10.5.: Dependency graph of Code Example 8 with constant folding

10.1.2. Constant Folding

To decrease the ASAP Schedule length further, constant folding was introduced. For
example the calculation of the variable k’ can be simplified to k’=i’-1=i+1-1=1i. The
same can be done for the variables m’, k", m", i" and i". The resulting dependency
graph can be seen in Figure 10.5. It is obvious that there are less calculations to perform
and there are less dependencies but the length of the ASAP schedule is unaffected.

10.1.3. Common Subexpression Elimination and Instruction Folding

After the constant folding has been performed common subexpression elimination and
instruction folding can be applied efficiently. For example the array access o’=fib[k’]
can be omitted because k’=i and thus o’=fib[i]l=q. Similarly, the array access
p’=fib[m’] can be simplified to p’=fib[k]=o0. Thus, the calculation of the variable q’
simplifies to q’=q+o. A similar calculation holds for q".

That way, load forwarding is implemented and the number of array accesses in the
whole graph is reduced from 9 to 5.

Figure 10.6 shows the resulting dependency graph. It is obvious that now the ASAP
schedule for three iterations has a length of 8 time steps which is 2.6 time steps per
iteration on average.

10.1. Software Pipelining 89

t=0 if (i<f) ir=itl in=i+2 im=i+3
A W N\

t=1 k=i-1 m=i-2 if (i'<f) if (i'<f)
v v

t=2 o=£fib [k] p=£ib [m]

v

t=3 g=o+p

* k |
t=4 fib[il=q \q':#
VY

t=5 i=i' fib[i']=q" q'"'=q'+q
t=6 i=in £ib[i"]=q"
£=7 i=jm

Figure 10.6.: Dependency graph of Code Example 8 with constant folding and CSE

/

Iteration i Iteration i+1 Iteration i+2

t=0
Prologue
t=1

t=2 } Initiation Interval

t=3
Epilogue
t=4

Figure 10.7.: Overlapping Execution of Consecutive Loop Iterations

10.1.4. Relation to Modulo Scheduling

As mentioned above, partial loop unrolling is related to modulo scheduling as it overlaps
the execution of consecutive loop iterations. Figure 10.7 shows exemplarily how loop
iterations overlap when the loop body is unrolled three times. During the first two time
steps the software pipeline is filled while in the last two time steps the software pipeline
is flushed. Those intervals are called prologue and epilogue, respectively. Between
prologue and epilogue the pipeline is completely filled and all parallelism is exploited.
The initiation interval (II) is the time between the start between two loop iterations.
The II corresponds to the length of the patterns that are transformed into the new
loops in [1].

In modulo scheduling only the II has to be repeated when more than three loop
iterations have to be executed in the given example. Thus, the execution time for
modulo scheduling with more than three iterations is

tmodulo = N-IT+1

while [is the length of prologue plus the length of epilogue and N is the number of
iterations.

In contrast to that when loop unrolling is used, also prologue and epilogue will be

90 10. High-Level Compiler Optimizations

120 F]
100 + :
é 801 | —— No software pipelining
+ —— unroll factor = 2
g 60 |] unroll factor = 3
= unroll factor = 4
~ 40t —— unroll factor = 5
- —— modulo scheduling
20 ¢ . 7
0 | | | | | | 1

|
2 4 6 8 10 12 14 16
N

Figure 10.8.: Execution times for different software pipeline mechanisms

executed again. Thus, when an unroll factor u is used the execution time is

N
tunroll - (U 1T + l) : ’7-‘

u

Figure 10.8 shows the execution times with /I = 1 and [= 6 for naive execution without
software pipelining, software pipelining with different unroll factors and when modulo
scheduling is used. It can be seen that for more than one loop iteration unrolling
performs always better than naive execution but is never better than modulo scheduling.
When v = N modulo scheduling and unrolling result in the same execution times.
In the worst case the number of loop iterations N is no multiple of u. Then u — 1
unrolled iterations of the original loop body are executed unnecessarily. The number of
unnecessarily executed loop iterations is e = u - [%W — N < u. From this follows that if
N > u this effect is negligible. If N is known in advance u should be chosen to be a
divider of N so that e = 0.2

A relative runtime can be defined to compare the performance of partial loop unrolling
with modulo scheduling;:

tunroll o (u I+ l)] ’V%—‘
tmodulo B N-11 +l

trelative -

The quotient p = Il7 is a good metric to describe the parallelism of a loop, as smaller
11 result in a higher throughput and a higher value of p. If [is also small, p is smaller
but the potential to speed up the execution is also small as naive execution is already
fast. With [= p- I follows:

(w-II+p-I11)-[¥] (u+p)-[¥]

Lrelative =
fat N-II+p-II N +p

Figure 10.9 shows the relative runtimes for different values of p in dependency of N

2Taken from [31]

10.2. Aliasing Speculation 91

(c)p=4

Figure 10.9.: Relative runtimes for different values of p (higher values of p correspond
to more parallelism in the loop)

and u. For loops with little parallelism (small p) and high v and small N the number
of unnecessarily executed loop iterations e has a high negative impact on the relative
runtimes. For example for p = 2, v = 16 and N = 1 partial loop unrolling performs
six times worse than modulo scheduling. For loops with high parallelism (high p) the
repeated execution of prologue and epilogue has a negative impact on the relative
runtimes when small values of u are used. In order to keep the complexity of the
mapping algorithm low, a fixed unroll factor is used for all loops. Empirical studies
have shown that u = 4 results in good runtimes for common values of p and N.

10.2. Aliasing Speculation

The Heap Memory operations described in Section 5.2 perform accesses to the heap.
When accesses to the heap are independent they can be scheduled out of order or
parallel which can result in a better performance. Thus, it is beneficial to find out for
all accesses whether they are independent during compile time. In section 5.2 it is also
shown that not always all the information about the heap accesses is available during
compile time. For that reason Aliasing Speculation was implemented to increase the
the performance.

10.2.1. Dependencies Between Heap accesses

Two read accesses are always independent. If at least one of the accesses is a write
access, they are dependent when both access the same memory object with the same
offset. As this information is not always available during compile time, the following
rules help to find dependencies.

Two Heap accesses are independent if:
e Both accesses are executed in different branches.
e Both accesses are read accesses.

e Both accesses are of different types (array access, static field access or object field
access) because different types are stored in different memory regions (see Section
5.2).

92 10. High-Level Compiler Optimizations

e Both accesses are array accesses to different array types (e.g. integer and float).
Note that in contrast to C it is not possible in Java to cast an integer array to a
float array.

e Both accesses are of same type but use different offsets.

For accesses to static fields or object fields it is always possible to determine the offsets
during compile time because it is encoded in the bytecode. The index for array accesses
is computed during runtime can be data dependent. Thus, it is not always possible to
determine whether the offsets are different. The offsets A and B are different if :

e A and B are both constants with different values.
o A = B + ¢ where ¢ is a constant different from 0.
If none of these criteria is true, two cases can be distinguished:

1. Both access definitely the same memory object but it is not clear whether both
access the same offset: arrayA[0] and arrayA[index].

During compile time it is not known whether index holds a value different from 0.
Thus, it is assumed that both accesses are dependent. Note that in some cases it is
possible to prove that index never holds the value 0 by analyzing the bytecode of
the whole application. In this work this is not done in order to keep the algorithm
simple as it will be executed during runtime. The assumption that both accesses
are dependent is very likely because index variables normally change their value
regularly during runtime. Thus, it is likely that index holds the value 0 at least
once during the runtime. This assumption is pessimistic but ensures that errors
are introduced due to wrong memory access order .

2. It is not clear whether both references describe different memory objects:
arrayA[index] and arrayB[index]. Both accesses are assumed to be indepen-
dent, because it is assumed that the local variables arrayA and arrayB actually
point to two different arrays. This assumption is optimistic and can introduce
errors when the two operations are falsely scheduled out of order. Programming
conventions ensure that aliasing occurs very seldom, but still it has to be ensured
that no errors occur. Note that the references can be loaded from a local variable,
an object field or from an array.

Figure 10.10 shows the decision diagram how to handle potential aliases. Blue arrows
denote unsure statements where some property cannot be proved. In those cases
speculation follows. The green box shows a pessimistic speculation which does not
introduce errors while the red box shows an optimistic speculation which improves
the performance but may result in false memory access order. In that case a safety
mechanism has to be implemented to ensure that this does not result in errors. This
mechanism is described in the following.

10.2. Aliasing Speculation

93

both accesses
are reads?

different
access types?

yes

ino

accesses
to arrays?

i no

yes

yes different

different
offsets?

ino

equality
of reference can be
roved?

no

array types?

no

equality

of reference can be
roved?

yes distinctness

there are no aliases

safety mechanism has
to be implemented
to prevent errors

A 4

independent —

optimistic speculation:

of offset can be
roved?

i no

pessimistic speculation:
offsets are equal

v

Figure 10.10.: Aliasing Speculation decision diagram

94 10. High-Level Compiler Optimizations

10.2.2. Aliasing detection

In order to ensure correct program execution it has to be checked during runtime
whether two references that were assumed to point to different memory objects actually
contain different handles. If they are the same, the assumption was false and the
execution on the CGRA has to be aborted. An interrupt is issued and a rollback
mechanism has to be started that ensures that the code will be executed correctly
on the AMIDAR processor. In this work no rollback mechanism was implemented?.
Instead the execution is aborted with an error message. This case occurred only twice
(in Twofish and in Blowfish) in the benchmark set used in work. Here the reference to
an array was stored in an object field and it was handed as a parameter to a method
that uses the object field.

The speculation takes place during CDFG generation which is described in Section
9.3. All pairs of memory accesses that are assumed to be independent and might
therefore introduce errors are stored in a list. Then the CDFG is scheduled and for
all those memory access pairs it is checked whether they are actually scheduled out of
order. If yes, special instructions are added to the schedule a posteriori to check the
inequality of the handles during runtime*. An interrupt is issued when the handles
are the same. Those instructions can not be added to the schedule at arbitrary time.
The check whether the handles are equal has to take place early enough so that the
wrong assumption did not cause any irreversible damage like overwriting memory or
local variables.

Assume that the first memory access® is a read access and the second is a write access

as shown in Figure 10.11. The comparison of both handles has to take place before
the execution of DMA 2 and can be executed right after both handles are loaded at
the earliest. Thus, the time of the comparison has to hold the following conditions:
temp < M A temp > k Atepp > [0 The conditions can not be fulfilled if { > m or
k > m. The latter can never occur because there is a data dependency between DMA
2 and Handle 2. Thus, k is always smaller than m. To ensure that [> m never
occurs a control dependency between Handle 1 and DMA 2 (gray dashed line) has to be
introduced during CDFG generation. The scheduler will map the comparison to the PE
that can access both values the fastest. If the condition t.,,, < m cannot be achieved,
empty time steps have to be inserted into the schedule, which leads to a significant
performance loss.

If DMA 2 is a read access, the t.,, < m can be relaxed to t.,, < m’ where m’ is the
execution time of the first writing operation (either to the memory or to a local variable)
that depends on DMA 2.

3In Section 9.1 a short description of such a mechanism is given.

4 Another approach would be to add those special instructions to the CDFG before scheduling. Then
the scheduler has to be extended so it can optionally chose not to add those instructions to the
schedule because the corresponding memory access pair was not scheduled out of order. This option
was rejected as this increases the complexity of the scheduler even further.

SFirst (or second) access is always referring to the program code in this section. The first access
always has a lower bytecode address than the second access. When both are scheduled out of order
on the CGRA they will still be called first (or second) access to avoid confusion even though the
execution order changed.

10.2. Aliasing Speculation 95

t=k Handle 2

t=1 Handle 1

t=m pMA 2 (WR)

t=n DMA 1

Figure 10.11.: Simplified schedule with out of order execution of two DMA accesses.
The nodes Handle 1 and Handle 2 denote load operations either from the heap or
a local variable, that load the handles for both DMA operations.

Start Start
[J

—Main loop —Main loop

{y}—DMa 2 DMA 2
] \—» compare handles N\— buffer handle

in this sub-branch

branch point

out of order

out of order /
DMA 1 f DMA 1
N— compare handles
if branch is selected

®
End End
(a) (b)
Figure 10.12.: Out of order DMA acesses in different sub-branches

If there are two other instructions DMA 3 and DMA 4 that use both the handles Handle
1 and Handle 2 and are also executed out of order, no second comparison has to be
performed.

Accesses in Different Sub Branches If one of the DMA instructions is part of
a subbranch, the comparison of the handles needs only to result in an interrupt if
that subbranch was actually executed as shown in the Figures 10.12. This has two
implications that have to be considered: First, the comparison can only be executed
when the branch decision was already executed. This tightens the constraints for ¢,
especially in the case shown in Figure 10.12 (b). This might lead to an increased number
of empty time slots in the schedule. Second, if DMA 3 and DMA 4 are executed in
different sub-branches a second comparison or additional C-Box instructions to calculate
the combined condition have to be inserted.

Because of the second implication, a relaxed but pessimistic scheme was implemented.

96 10. High-Level Compiler Optimizations

The comparison will be executed in the sub-branches of the instructions that load
the handles and not in the sub-branch of the DMA instructions. Theoretically, the
comparison might now start an interrupt unnecessarily if one of the DMA instructions
was not executed. In practice the sub-branches of DMA instruction and the sub-
branch of handle load instruction are the same and in our benchmark this case never
occurred.

11. Memory Subsystem

The memory subsystem of a hardware accelerator has different requirements than
the memory subsystem of a multi-core processor. Both aim to provide the processor
cores or the PEs respectively with a high memory bandwidth with low latency. The
difference is that in a multi-core processor normally different threads are executed on
each core. Good software design tries to ensure that all threads work on disjoint parts
of the memory so that the threads can operate more independently. Time consuming
synchronization between the threads is minimized. This means that the L1 caches
of the multi-core processors mostly hold disjoint data and coherence is a relatively
small problem. In a hardware accelerator all PEs work as a network on the same
problem. This means they all access the same or at least a similar memory region at
the same time. The caches of each PE with DMA will hold mainly the same data. This
leads to different requirements because coherence now becomes major challenge and its
implementation has a great impact on the memory bandwidth.

Additionally, when a cache miss occurs in one core of a multi-core system, only the
thread running on that core has to be stalled. All other threads can continue their
work independently. In our CGRA all PEs have to stop working if a cache miss occurs
in one cache because all PEs work synchronously with the same context counter (see
Section 7.3).

The next sections will provide information about different approaches to implement a
cache system with different coherence protocols. This chapter closes with a description
how coherence can be supported by smart binding of memory instructions to certain
PEs during scheduling.!

11.1. Cache Architecture

Figure 11.1 shows the cache hierarchy in the AMIDAR processor coupled with the
CGRA. All L1 caches are connected to the L2 cache via the Coherence Controller. This
means that it is not necessary to flush any caches when the execution of a kernel is
started on the CGRA. The L2 cache accesses the DRAM Main memory via AXI bus.
A snoop based system is implemented, as there are few caches in the system and they
share many cache lines as described in Chapter 4.1.

!Parts of this chapter have already been published in [75] and [61]

98 11. Memory Subsystem

AMIDAR CGRA

L1 Heap L1 PE, e L1 PE,

vt vt vt

Coherence Controller

v1

L2

%)

Main Memory

Figure 11.1.: Cache Hierarchy of the AMIDAR processor coupled with a CGRA[75]

Index

,—bl...01104—|
——

—A
Handle O,.,ll,..o O...lllOllO Offset
— Tag —_— [t
l »0...10...1 «— lBlockofrset
110

Figure 11.2.: Scheme of index and tag generation in a virtually addressed cache

L1 Caches As already mentioned in Section 6.2, the L1 caches in AMIDAR and in
the CGRA are virtually addressed with handle and offset so that the physical address
of a memory object has not to be loaded from the Handle Table. Index and tag are
generated according to the scheme shown in Figure 11.2. In this example a cache with
eight words per line is used. Thus, the lowest 3 bits of the offset are used as block offset.
The next 3 bits are used as the lowest bits of the index. The rest of the index is filled
with the lowest bits of the handle. The remaining bits of both handle and offset are
combined to the tag.?

A consequence from this scheme is that one cache line can only contain data of one
object at a time. This has two disadvantages compared to physically addressed cache.
First, valuable cache space is wasted when small objects are loaded because unused
slots in one cache line cannot be used to load other objects as shown in the top of
Figure 11.3. This will also result in an increased number of write backs. And second,
this leads to an increased miss rate: Assume that several small objects lie in the main
memory in a contiguous area. When the first object (red in Figure 11.3) is loaded
into a physically addressed cache, other objects will automatically be loaded into the
same cache line. Accessing the second object (green) later will lead to cache hits. In
the virtually addressed cache this can not happen as one cache line only contains one
object.

At the same time the virtually addressed cache has the advantage that no address

2There are also dynamic schemes that adapt the number of bits from the offset, that are used in the
index. The bigger the offset, the more bits are considered for the index. Then the tag has to be
extended so that it is clear which scheme was used to generate this tag. This will not be covered in
this work. See [40] for more details.

11.1. Cache Architecture 99

L1 Cache (virtually addressed)

0 1 2 3 4 5 6 7
(O O T Y I S 2 I | | | |

L2 Cache (physically addressed)

0 1 2 3 4 5 6 7 Tag
i=0 [af a2l][b[o]][bA]][bR]][B[][b[4] |[cfo]] [0x80]
i=1 [T el f I I I I I | [[0x80]
i=31] I I I I I I Jafo]] [ox7F]

Main Memory

OXTFFE Ox7FFF 0x8000 0x8001 0x8002 0x8003 0x8004 0x8005 0x8006 0x8007 0x8008 0x8009 0x800A
[Jafor =[] Jal [5o []][RI [bBE[[bl][ol e < J[..]

Figure 11.3.: Cacheline Alignment in AMIDAR caches

resolution has to be performed in case of a cache hit and the Garbage Collection is
eased as addresses of the moved objects only have to be updated in the Handle Table.

As a conclusion one can say that using a virtually addressed cache trades a better access
time in case of a cache hit against a slightly worse hit rate.

L2 Cache The question whether the L2 cache should be addressed virtually or
physically is not easy to answer.

When the L2 cache is addressed physically, the space in the L2 cache is used more
efficiently especially if larger line sizes are used and the miss rate is expected to be lower.
The access to the Handle Table can be done speculatively and partly in parallel to the
access to the L1 caches (see Figure 13.5). Thus, the penalty for the address resolution
is low. A disadvantage of a physically addressed L2 cache is that the L2 cache has
to be modified when the Garbage Collector moves objects in the main memory (not
implemented during this work). Figure 11.3 also shows that cache lines in L1 and L2
are not aligned due to the different addressing schemes. This means that when array a
(red) is loaded into the L1 cache, two cache lines from the L2 have to be accessed.

When a virtually addressed L2 cache is used, the L2 cache can be accessed earlier which
results in better access times in case of a miss on L1 and a hit in L2. Additionally,
Garbage Collection can be implemented easier.

In order to find the better solution both virtually and physically addressed L2 caches
were implemented in a simulator and evaluated with different amounts of words per
line. The results will be presented in Part IV of this work.

100 11. Memory Subsystem

11.2. Coherence Protocol

Note: Parts of this section have already been published in [61]. The marking of self-
citation is omitted in order to improve the reading flow.

When different caches use the same data, it has always to be ensured that all caches
use the correct data. Thus, when one cache writes to a cache line that is also loaded
in at least one other cache, all the other caches have to be notified that the value has
changed. Well studied coherence protocols provide this functionality. In the following
two important protocols that will be used in this work are described.

11.2.1. MOESI Protocol

In the MOESI Protocol each cache line can either be invalid or valid. If it is valid it
can be either shared or exclusive and it can either be modified or unmodified. This
can be described by the states that are shown in Table 11.1. Figure 11.4 (a) shows
the state transitions when the connected processor reads from or writes to a cache line
(pRd and pWr) or another cache sends a read or write request over the bus (bRd and
bWr). Note that pRdX means that the data was read from the next memory level
and the data is exclusive in this cache. pRdS means that another cache at the same
level provided the data and it is now shared. In MOESI pWrS does not exist, because
writing to a cache line always invalidates it and makes it exclusive.

11.2.2. Dragon Protocol

The Dragon Protocol allows the same states as the MOESI protocol. The difference
between both is that a bWWr does not invalidate the corresponding cache line but the
newly written value is directly provided and the cache line is updated and goes to the
Shared state. The update can be done in the background and no delay is needed if
no other requests are posted on the bus during that time. Figure 11.4 (b) shows the
corresponding state transitions.

Table 11.1.: MOESI states
’ \ exclusive \ modified \ invalid ‘

Modified)

Owned

Exclusive °

Shared

Invalid °

11.2. Coherence Protocol 101

bRd bRd

Figure 11.4.: Cache line state transitions

11.2.3. Comparison

Table 11.2 shows different events that delay an access to the cache. Case 1a) is inevitable
while case 1b) only can happen when MOESI is used. The occurrence of case 2) is
already minimized in MOESI and Dragon compared to simpler protocols like MSI or
MESI (here write backs occur every time another cache wants to read a modified cache
line). Case 3a) causes delays in both caches. In MOESI each write access will invalidate
the cache line in the other cache and in the next step it has to be reloaded which results
in long delays. When Dragon is used, the updates congest the bus and they cannot be
done in the background any more. The same holds for Dragon in case 3b) while this
case cannot occur when MOESI is used because after the first write access the cache
line is invalidated in all other caches and the cache line is not shared any more.

In conclusion one can say that using the Dragon protocol will reduce the miss rate
because case 1b) will not occur. At the same time the cache access times might increase
if case 3b) occurs depending on the access pattern of application.

The occurrence cases 3a) and 3b) can be minimized by software Access Classification

Table 11.2.: MOESI vs Dragon delay events [61]

’ \ Event Reason H MOESI \ Dragon
la) | L1 Miss Line was never read o o
1b) Line was invalidated because of bWr
2) | Write back Replaced cache line was in state Quned o o
or Modified

3a) | Bus congestion Two caches write to a shared cache line oo .
alternately in quick succession

3b) One cache writes to a shared cache line o
in quick succession

102 11. Memory Subsystem

and Distribution as described in Section 11.3.

11.3. Access Classification and Distribution

When a kernel is mapped onto the CGRA the combined placer and scheduler [63]
determines to which PE a memory access will be mapped. Depending on this decision
the number of cache conflicts varies. If write accesses to the same cache line are mapped
to different PEs, much information about write accesses has to be exchanged between
the corresponding caches.

In order to minimize those cache conflicts, the scheduler tries to classify memory accesses.
The accesses are then distributed to the PEs in a manner that memory accesses with
the same base address are mapped to the same PE. This processes will be called ACD
(Access Classification and Distribution) in the following.

ACD is done with the help of a list for each base address in the kernel. The list contains
all PEs on which an access with the corresponding base address was scheduled. The
following heuristic is used when binding the memory access instruction to a PE:

1. Find all memory accesses with the same base address

2. If there are more than twice as many read accesses than write accesses®, there are
no restrictions in order to exploit parallelism.

3. If not, each access in this class has to be mapped to a PE which is already in the
list of the corresponding base address (if possible).

4. Update the list as follows when an access is mapped:
e Add PE to the list if the current access is a read access

e Add PE to the list and remove all other PEs if the current access is a write
access

Note that this heuristic will improve the cache access times but at the same time this
might lead to longer schedules.

3The factor two gives good results and was found empirically.

12. Memory Prefetching

Note: Parts of this section have already been published in [32]. The marking of self-
citation is omitted in order to improve the reading flow.

Experiments have shown that a great percentage of the execution time of the CGRA
is spent waiting on at least one of the caches (called cache wait time). In the worst
memory subsystem configuration in the design space (see Chapter 16) the cache wait
time was 42.8 %. This shows the need to implement a prefetching algorithm. This
chapter describes the prefetching mechanism in two parts. First, the generation of
prefetch requests is described and then how the Coherence Controller handles these
requests.

The first idea for prefetching is to request the subsequent cache line (if it is not already
in the cache) when a cache hit occurs [9]. This mechanism is called Linear Prefetching
during this work (in some publications it is also called sequential prefetching). It is
particularly suited for streaming applications. While Linear Prefetching reduces the
cache wait time by 12.5 % on average over all configurations in the design space, many
unnecessary prefetch requests are issued.

Many current memory prefetchers use historical data to predict the memory accesses in
the future. This will lead to good results for streaming applications or other applications
with regular execution. For applications with irregular execution it is harder to predict
the future memory accesses.

To overcome this issue the authors of [24] proposed a Continuous Runahead Engine
which is part of the memory controller in a multi-core system. This engine calculates
memory addresses continuously ahead of time to be able to prefetch data from the
memory.

In [17] the authors propose a loop aware prefetcher for conventional processor systems.
Here, the program flow is taken into account to predict the memory accesses for the
next loop iteration. For this purpose they define the Cache Block Working Set (CBWS)
which is the ordered vector of all accessed cache lines in one loop. The difference of
CBWS from two consecutive loop iterations gives a good prediction. The compiler
marks the relevant code blocks with special instructions. These instructions control the
calculation of CBWS differentials using dedicated hardware.

The authors of [78] implemented a prefetcher for CGRAs using a similar principle. They
precalculate access patterns for kernels that are mapped onto the CGRA. When that
kernel is executed, the prefetcher loads the corresponding pattern from a cache (Context
Directed Pattern Matching). It is then continuously executed, evaluated and updated if
necessary. While this leads to good results, it comes at the cost of additional hardware
effort.

104 12. Memory Prefetching

In this work the approaches of [24] and [17] are combined with partial loop unrolling
and applied to CGRAs. For the innermost loops we calculate the addresses of future
memory accesses using partial loop unrolling in order to request prefetches. Instead
of a dedicated engine, the processing elements (PE) on the CGRA will perform the
lookahead execution in parallel to the normal execution. Thus, no additional hardware
is needed to find memory access patterns like in [78].

12.1. Lookahead Prefetching

Linear Prefetching assumes that the access pattern is linear for all accesses and all
applications which is obviously not true. Pattern-based prefetchers try to extract
patterns from previous memory accesses, which might not be accurate in the future.
Lookahead Prefetching overcomes these issues by precalculating memory addresses of
future loop iterations exactly. When the i-th iteration of a loop is executed, the memory
addresses of the i + f-th to the ¢ + f 4 p-th iterations are precalculated on the CGRA
using existing PEs.

This means the prefetcher looks f loop iterations (fill iterations) into the future, and
prefetches all data needed for the next p iterations (prefetch iterations). As described
in Section 10.1.1, the innermost loops are unrolled u-times on bytecode level to increase
parallelism. Now the loop is unrolled u + f + p-times. Then the CDFG for this code
sequence is generated and the last p iterations (prefetch iterations) are modified as
follows:

e All memory instructions (both store and load) are transformed to prefetch in-
structions.

e Find groups of prefetches that access a similar memory region assuming that
all of them map to the same cache line. Delete all but one of those prefetches.
(The groups are found by looking for prefetches with the same handle and similar
offsets like i+1 and i+2.)

e All instructions that do not produce data which is relevant for the prefetch
instruction are removed.

e All original conditions are removed.

e All prefetch instructions that need data from another prefetch get a new condition:
The dependent prefetch is only executed when the previous prefetch is unnecessary
because the data is already present in the cache and can be used directly. This is
done using the C-Box.

The previous f iterations (fill iterations) are not needed on their own. Thus, all nodes
from the fill iterations that are not needed in the prefetch iterations are deleted. Figure
12.1 shows the CDFG for Code Example 7 with prefetching (marked instruction) before
and after the modifications.

It is obvious that including the prefetch instructions increases the workload that has to
be performed on the CGRA as more instructions have to be executed. At the same

12.1. Lookahead Prefetching 105

Before modification:

1f(1<m) i —1+1 i —1+2 i'"'=i+3 i'"'=i+q i"'=i+5
v v
LOAD a[i] 1f(1<m) lf(l '<m) if (d'"'<m) if(i''"'<m)
v
f(a[1]) LOAD a[1] LOAD a[1 1 LOAD a[i'''] LOAD a[i'''']
v
f(a[:.]) f(a[l 1) f(a[i'") f(a[i")
j=jm
\
i=jrm
\

After modification:

1f(1<m) it _1+1 it _1+2 i"=i+s iMM=iva
LOAD a[i] 1f(1<m) 1f(1 '<m) PREF a[i'''"]
f(a[l]) LOAD a[1] LOAD a[1 1

f(a[l]) f(a[l 1

i=i"

Figure 12.1.: Dependency graph of Code Example 7 with one fill iteration (blue) and
one prefetch iteration (green)

time the prefetch instructions reduce the cache wait time. The higher the values of
f and p, the higher is the overhead. If f is small, long cache wait times cannot be
masked because the data is needed shortly after the prefetch was started. Additionally,
it is likely that the data already resides in the cache because of locality. The following
heuristic is used to determine values for f and p:

e p=20,f =0, if more than 40 % of all bytecodes in the innermost loop are memory
instructions. Such loops will probably already use the whole memory bandwidth
and prefetches bring no benefit.

e p=1,f =4, if less than 7 % of all bytecodes in the innermost loop are memory
instructions. In such loops the overhead for the prefetches is relatively small, so
it is beneficial to request prefetches that are further in the future.

e p=1,f =0, otherwise

All values above were found empirically and lead to good results for our benchmark
set!.

Experiments have shown that some prefetch instructions need complex offset calculations
even if f =0 and p = 1. In those cases the increased workload on the CGRA outweighs
the benefit of prefetching which leads to a decreased performance. Thus, a metric for

1Simply setting f = p = 0 and increasing u will result in a worse performance because high u decrease
performance as shown in [31]

106 12. Memory Prefetching

1. Initial state 2. Request four 3. Handle one 4. Request one 5. Handle one 6. Request four
prefetches prefetch prefetch prefetch prefetches

Figure 12.2.: Example for execute pointer and request pointer in the prefetch ring buffer.
Green memory cells contain valid requests. Gray memory cells contain discarded
requests

prefetch instructions was defined called longest prefetch path . This is the highest
number of hops in the CDFG from an instruction that is not part of the prefetch or
fill iteration to the prefetch instruction (via instructions of fill or prefetch iterations).
All prefetch instructions with a longest prefetch path longer than a threshold are also
removed (and all the instruction producing data for this prefetch). For the benchmark
set used in this work a threshold of 2 gives good results.

12.2. Prefetch management

12.2.1. Storing Prefetch Requests
Each cache has a ring buffer of length 8 to store prefetch requests. Each ring buffer has
a request pointer and an execute pointer. The pointers are updated as follows:
e PE requests a new prefetch:
1. Store the request at position request pointer
2. Set execute pointer = request pointer

3. Set request pointer = request pointer + 1
(If the ring buffer is full, the oldest value is overwritten)

e (Coherence Controller is idle, arbiter chooses the cache and the request at position
read pointer is valid:

1. Execute the request at position execute pointer
2. Mark request at position ezecute pointer as invalid
3. Set execute pointer = execute pointer - 1

Figure 12.2 shows the position of execute- and request pointer after several prefetches
are requested and executed. This scheme results in the following properties: 1. The
newest requests are executed first. 2. If the Coherence Controller already executed a
request in the buffer (Figure 12.2 step 3) and a new request is inserted (step 4), all

12.2. Prefetch management 107

older requests (marked in gray) will never be executed, because the executed request is
now invalid and blocks the decrement of the execute pointer.

This behavior is desired, as prefetches are most efficient when the actual access to that
memory position is far in the future so that the memory access time can be masked. The
older the prefetch request is, the closer is the actual memory access. So it is beneficial
to favor the newer prefetch requests.

12.2.2. Handling Prefetch Requests

When the Coherence Controller is idle it starts handling prefetch requests. A static
priority list is used to determine the ring buffer whose request is handled?. Afterwards,
the following steps are performed:

1. The Coherence Controller requests the desired data from all other L1 caches. At
the same time it loads the physical address of the desired object from the Handle
Table speculatively.

2. If one of the L1 caches can provide the data it will delivered to the requesting L1
cache and the prefetch request is finished.

3. If none of the L1 caches can provide the data, and the L2 cache is not idle (because
it is for example writing data back to the DRAM) the execution of the prefetch
request is aborted without delivering the data. Waiting on the L2 cache would
block the Coherence Controller too long and actual tasks would be delayed.

4. If the L2 cache is idle the data is requested. In case of a physically addressed L2
cache the request will start as soon as the Handle Table provides the physical
address.

5. If the L2 cache can provide the data, it will be delivered to the requesting L1
cache and the prefetch request is finished.

6. If the L2 cache can not provide the data, the Coherence Controller will abort the
prefetch request without delivering the data. In the background the L2 cache will
load the memory from the main memory.

When the Coherence Controller starts executing a prefetch request, the requesting
cache is notified so that the cache line which will be replaced can be determined. When
the data is eventually delivered, a write back request is sent to the Coherence Controller
if necessary. The L1 cache will discard the prefetched data if the requested data already
resides in the cache or if the prefetch would replace the cache line that is currently
accessed by the PE it is connected to.

2Tests showed that a more sophisticated round robin arbiter does not improve the performance
because prefetches are requested sparsely.

13. Implementation and Timing Analysis

The CGRA is not meant to be an overlay for FPGAs but will be implemented as an
ASIC as described in Section 7. Still, a prototype of both the AMIDAR, processor and
the CGRA will be implemented on a Xilinx FPGA to show the working concept. A
detailed description of the AMIDAR processor can be found in [40]. In this chapter the
implementation and the timing of the memory subsystem is discussed.

13.1. L1 Cache

Figure 13.1 shows a simplified overview of the L1 Cache implementation. The data and
the tag are stored in true dual ported BRAMs. One port is used by the PE to read
and write single data words and one port is used by the Coherence Controller (CC) to
deliver requested or prefetched cache lines, read cache lines requested by another L1
cache or update shared cache lines. Three parallel FSMs control both interfaces. FSM

L1 Cache

BRAM Memory

Port A Port B

To CC
To PE (one cache line)
(one data word) PE Interface CC Interface >
< > LOgiC LOgiC ‘—

»
Ll

A
v

—
FSM

PE <

-~ Stall

- I -

(:ﬂ

> cc <

Request update, read, ouT Request write back
or write back

Figure 13.1.: Simplified L1 cache architecture

PFE controls the PE interface and issues requests to FSM CC OUT which is responsible
to handle outgoing requests to the CC. F'SM CC IN handles incoming requests from

110 13. Implementation and Timing Analysis

the CC and prefetches. It can also issue requests if a prefetch causes a write back.
Those write backs always have a higher priority than all other requests by FSM PE.
This architecture allows parallel accesses on both interfaces if different cache lines are
accessed.

BRAMs have a clocked address input so that data that is written on Port A becomes
visible on Port B only after two cycles (one clock cycle is needed to write it and one to
read it on the other port). Thus, the execution on the second port has to be stalled if
both caches access the same cache line so that no outdated data is used.

When a modified cache line has to be replaced it is buffered until the new cache line is
loaded. Afterwards, a write back request is sent to the Coherence Controller.

13.2. L2 Cache

L2 Cache

BRAM Memory

Port A Port B

To CC ‘ | To DRAM
(one cache line) ’ CC Interface AXI Interface (AXI interface)

Logic Logic < »

Figure 13.2.: Simplified L2 cache architecture

In the prototype a physically addressed L2 cache was implemented. The data is again
stored in a true dual ported BRAM as shown in Figure 13.2. When a cache line is
requested by a L1 cache, possibly two cache lines have to be loaded as described in
Section 11.1. Thus, both ports are used to access both lines in parallel. The CC
interface logic handles the alignment of L1 and L2 cache lines. The communication
with the DRAM is realized via AXI bus. A single FSM controls the functionality of the
L2 Cache. Thus, no parallel accesses from CC and to the DRAM are possible.

13.3. Coherence Controller

The Coherence Controller connects the L1 and L2 caches and arbitrates between the
L1 requests. A fair arbitration between the different caches is not necessary because

13.4. Timing Analysis 111

Coherence Controller

To L1
(one cache line

each)
. I» L1 Interface { - ’L?Q/-)
and L2 Interface ‘one cache line
_‘> Arbitration 4 > Logic
4 Logic

Figure 13.3.: Simplified Coherence Controller architecture

if at least one of the caches cannot handle the PE request directly, the whole CGRA
execution will stall. Thus, the CGRA will stop its execution until all requests are
handled and the order in which the requests are handled is irrelevant. In contrast to
that, the class of request is important. Write back requests always have to be executed
first. Otherwise, the only valid copy of that cache line lies in the write back buffer of
the L1 cache which is not transparent for all other caches and outdated data will be
read from the L2 cache.

13.4. Timing Analysis

1) 2) 3) 4) 5) 6) 7) 8) 9) 10
X stall X
A

Cycle (
(

FsMm cc PE (idle X start X miss {__wait CC X idle
(
(

CGRA state

L1 Cache 0 FSM CC OUT idle) request data Y storedata) idle
FSM CC IN idle

FSM CCPE (__idle
L1 Cachel FSM CCOUT (idle
FSM CCIN idle _load data _deliver data_) idle
(

< — ~
idle Y arbitrate Y wait L1 Y\ deliver data) idle

Coherence Controller

Figure 13.4.: Timing of a LL1 cache miss where the desired data can be provided by
another L1 cache

Figure 13.4 shows the timing of a read miss in LI Cache 0. In cycle 3 the miss is
detected and the CGRA is stalled. A read request is sent to the CC in the next cycle
which is forwarded to all other L1 Caches. Then LI Cache 1 loads the desired data in
the cycles 5 and 6. In cycle 8 the data is stored in the BRAM port B of L1 Cache 0
and it is forwarded to the connected PE. The CGRA is stalled 5 cycles.

112 13. Implementation and Timing Analysis

As mentioned before, the new value can only be read at BRAM Port A two cycles later.
Thus, if an other access to that cache line follows, the execution has to be stalled until
the data is available. Forwarding logic was omitted in this case to keep the complexity
low.

Cycle (1 X 2 X 3) 4 X 5 X 6) 7) 8 X 9 X 10)

CGRA state | X stall
FsMm cc PE (idle X start X miss Y wait CC
L1 Cache 0 FSM CC OUT idle){ request data
FSM CCIN idle
FSM CCPE (__idle
L1 Cachel FSM CCOUT (idle [N]
FSM CCIN (idle X start X miss X idle
€ —
Coherence Controller idle _arbitrate { wait L1 { wait HT Y wait L2
5
Handle Table Cache idle Y load address Y\ deliver addr) idle
L2 Cache (idle X__load data

Cycle | 10 X 11 X 12) 13 X 14)

CGRA state))
FSM CC PE wait CC X idle)
L1 Cache 0 FSM CC OUT request data Y storedata) idle)
FSM CC IN)
FSM CC PE)
L1 Cachel FSMCCOUT wwmn)
FSM CC IN)
Coherence Controller wait L2)\ deliver data) idle)
A
Handle Table Cache)
L2 Cache load data Y\ deliver data idle)

Figure 13.5.: Timing of a L1 cache miss where the desired data can be provided by the
L2 cache

Figure 13.5 shows the timing when a miss on L1 occurs and the data is provided by the
L2 cache. It can be seen that in time step 6 the physical address is requested from the
Handle Table speculatively. In time step 8 the Handle Table is ready and the data is
requested from the L2 cache. In time step 12 the data is available and it will be stored
in the L1 cache in the next cycle. The CGRA is stalled 10 cycles.

Cycle (1 X 2 X 3) 4 X 5 X 6) 7) 8 X 9 X 10)

CGRA state) stall))
A

Fsm cc PE (idle X start X write hit | start X write hit Y wait for[Update) idle)

L1 Cache 0 FSM CC OUT idle __update | idle X update)
FSM CCIN (idle)
FSM CC PE (idle)
L1 Cache 1 ~ FSM CC OUT idle)
FSM CCIN (idle Y update data) idle Y update data)

X —¥ X X —¥

Coherence Controller (idle Y distribute update) idle Y distribute update)

Figure 13.6.: Timing of two consecutive L1 write hits on shared cache lines

Figure 13.6 shows the timing of L1 write hits on shared cache lines. In cycle 3 L1
Cache 0 sends an update to the Coherence Controller which forwards the data to all

13.4. Timing Analysis 113

other caches. In the cycles 5 and 6 the values are updated in the background. At the
same time the second write access takes palace in LI Cache 0. Unfortunately, the
Coherence Controller can not handle the update request, as it is still performing the
first update request. Thus, the CGRA has to be stalled for two cycles so that no cache
reads outdated data.

If the second access to L1 Cache 0 was a read hit or a write hit to an exclusive cache
line, the CGRA would not have been stalled.

Table 13.1 summarizes the cache timing for a cache system with a physically addressed
L2 cache.

Table 13.1.: Cache timing summary

’ L1 Cache Event \ CGRA Wait time ‘
L1 miss Latency
read from another L1 Cache 5 Cycles
read from L2 Cache 10+ Cycles
read from main memory 48+ Cycles
L1 miss Latency + L1 write back
read from another L1 Cache 15 Cycles
read from L2 Cache 194 Cycles
read from main memory 57+ Cycles
L1 update
first of consecutive updates 0 Cycles
following updates 2 Cycles

’ L2 Cache Background Tasks \ Duration ‘
Write back of a single cache line 26 Cycles
Write back of two cache lines 51 Cycles

Part 1V.

Evaluation

14. AMIDAR Simulator

In order to evaluate the memory subsystem design quickly, the existing AMIDAR
Simulator was reimplemented to match the current hardware implementation [50] [69]'.
Using a software simulator gives the following advantages:

e Quick implementation times: New features can be implemented and tested easily
in software without the need of a hardware design and time consuming synthesis.

e Easy debugging: Modern IDEs provide rich debugging tools which help tremen-
dously to find bugs for example in the scheduler for the CGRA. Debugging this
in Hardware directly is a very complex task.

e BEasy measurements: In software it is easy to record any kind of data during the
simulation. For example it is easy to track the number of unnecessary prefetches
by maintaining a list of all cache lines in the cache that are prefetched and that
were not read. When such a line is replaced, the counter has to be increased.

e Easy to parallelize: Several instances of the simulator can be started in parallel to
increase the simulation speed when several simulations with different configurations
or different applications have to be executed (see Section 14.2).

The next sections will describe the software architecture of the Simulator and how
parallel sweeps are realized. Afterwards, the accuracy and the simulation speed are
discussed.

14.1. Simulator Implementation

The software architecture is based on the hardware architecture. The main class
AmidarSimulator reads configuration files and input parameters and creates and
configures one or more instances of the class Amidar. Then the AmidarSimulator calls
simulate() on the Amidar object(s) as shown in Figure 14.1. In Amidar a loop is
started that only finishes when all simulated FUs are finished. One iteration of this
loop corresponds to one clock cycle in the hardware. In the first step of the loop the
method tick() is called on all FUs. The FUs will then execute their tokens and process
the data that they received in the previous cycle. Optionally, a request to access the
memory can be sent to the memory subsystem by FUs with DMA.

Afterwards, the method tick() is also called on the Bus. This class will grant bus
access to one or more FUs depending on the implemented arbiter and the bus structure.

IThe simulator will be called Java Simulator to avoid confusion with the commercial ModelSim
simulator.

118 14. AMIDAR Simulator

Simulator Kernel Mapping Algorithm

Amidar Simulator | | Amidar | | FU Array | | Bus | | Memory Subsystem HardGen

N simulate() J_

Loop J [while !(all FUs [ready)]
Loop J [for each FU]
tick() o
Opt request() A
(J
< <ready>>
tick()]
Loop J [for each FU]
[:I grantAccess
tick() T
Loop J [for each L1 Cache]
[} deliverData
Opt mﬂE() >
<<CGRA|configuration>> | :|
L
<<results>>
L T

Figure 14.1.: Sequence diagramm of AMIDAR simulator

If the bus access is granted to an FU, it will directly call setOperand(port, op, tag)
on the destination FU.

Then the method tick() is finally called on the memory subsystem. The memory
system is simulated with all L1 caches, the Coherence Controller, L2 cache and the
main memory. When the requested data is available, it will be delivered to the FU.

As a last step in the loop body the kernel mapping algorithm will be called optionally.
It directly delivers the CGRA configuration for a kernel. Here, one important difference
between hardware and simulator becomes obvious. In contrast to the hardware, the
mapping algorithm is called in the simulator instead of executing it on the simulated
AMIDAR processor. This has two advantages: First, the IDE debugger can be used to
debug the kernel mapping algorithm. Second, not simulating the mapping step saves
simulation time, which speeds up the development of the mapping algorithm. The
disadvantage of this approach is that only the steady state speedup of the CGRA based
accelerator can be measured with the simulator, because reconfiguration will always be
done in one clock cycle in the simulator.

Abstraction Like in [55] we will distinguish between the following levels of abstrac-
tion:

14.2. Parallel Sweeps 119

1. Statement accurate - The behavior of a high level statement like
System.out.println("Hello world!") is modeled correctly without regard to
instructions that are executed.

2. Instruction accurate - The behavior and the duration of an instruction is
modeled correctly. The internal state of the simulated component is not modeled.
Thus, the timing of communication with other components can not be reproduced
exactly, because the communication is typically handled in different phases of the
instruction.

3. Cycle accurate - The internal state is modeled exactly so that the state of the
simulator corresponds to the state of the hardware after each clock cycle. This is
sufficient for this work but not always necessary.

4. Phase accurate - Not only the state of the processor after each clock cycle is
modeled exactly but also after certain phases during one clock cycle. This is used
to simulate asynchronous communication between different components.

5. Quasi continuous - The processor state is modeled at theoretically any time.
The accuracy is limited by the time resolution.

The higher the level of abstraction the more inaccurate it gets. At the same time the
simulation time decreases. Like in hardware, FUs can operate totally independent and
can therefore be simulated in different levels of abstraction. Table 14.1 shows the level
of abstraction for all parts of the simulator and lists possible inaccuracies.

All parts that somehow affect multiple FUs have to be simulated cycle accurately.
Otherwise the timing between two accesses to shared devices like bus or Coherence
Controller is not modeled correctly and for example stalls might be introduced wrongly.
So the token generation in the Token Machine, all caches, the Coherence Controller
and the bus are modeled cycle accurate. All other parts can be instruction accurate, as
other parts of the processor are not affected.

However, the CGRA was implemented cycle accurate in order to be able the debug the
CGRA and the mapping algorithm better.

Native methods like System.out.println() are only implemented statement accurate,
because they are mostly only needed before a benchmark to initialize it or afterwards
to print the results. Section 14.3 shows that this level ob abstraction is sufficient and
still gives good simulation times.

14.2. Parallel Sweeps

As shown in previous sections, there are many parameters in the memory subsystem
that have to be tuned. Thus, the design space is enormous. Evaluating all different
configurations is a very time consuming task that should be automated and if possible
be executed in parallel. The next section will describe how the sweep over the design
space can be automated. Afterwards, a scheme to simulate different configurations in
parallel on a remote server is explained.

120 14. AMIDAR Simulator
Table 14.1.: Simulator abstraction levels
\ Component H Abstraction Level \ Possible inaccuracies \
FU Token Ma- || Mixed (token generation . .
. . | e Instruction cache is as-
chine cycle accurate, rest in- .
. sumed to be ideal
struction accurate)
FPU, FDIV, | Instruction accurate -
IALU, IDIV,
IMUL, LALU
Object Heap || Instruction accurate e No Garbage Collection
e Memory allocation for
more than two dimen-
sional arrays not mod-
eled exactly
e Memory Subsystem
(see below)
CGRA Cycle accurate
e Memory Subsystem
(see below)
Memory L1/2 Cache Cycle accurate -
Subsystem
Coherence Cycle accurate -
controller
DRAM con- || Instruction accurate o Access to the DRAM is
troller L
none deterministic
’ Bus H Cycle accurate \ - ‘
Native Methods Statement accurate o Native methods will al-
ways be executed in one
cycle

Automated Sweeps The class AmidarSimulator reads sweep configuration files in
JSON format as shown in Listing 14.1. Here the sweep is three dimensional with the
sizes 2, 3 and 2. Thus, there are 2 -3 -2 = 12 different configurations that have to be
simulated. All those configurations are created automatically and stored in an array
with defined order. Then one or more instances of Amidar can be created to simulate
all those cases either in parallel or sequentially. Afterwards, all measurement results
are saved in an ordered list in a separate file next to a sweepInfo file. This file contains
information which entry of the list corresponds to which configurations. Measurement
results can be for example the number of clock cycles, number of cache misses or the

10

11

12

13

14

15

14.2. Parallel Sweeps 121

Listing 14.1: Sweep configuration file in JSON format

"parameter"

{
"COHERENCE_PROTOCOL" : ["DRAGON", "MOESI"],

i
n full
{
"CGRA" : ["CGRA_4.json", "CGRA_9.json", "CGRA_16.json"],
}
"application"
L
"de/amidar/cacheBench/adpcm/ADPCMencode",
"de/amidar/cacheBench/adpcm/ADPCMdecode",
1 4

cache wait time.

Parallel Execution Attempts to parallelize the simulation on thread level did not
lead to good results. Executing different simulations in separate threads only gives
a limited speedup because the heap space in the JVM is quickly depleted. Another
approach was to simulate each FU in a separate thread because they operate inde-
pendently during one clock cycle. This even lead to a slowdown because of costly
synchronization mechanisms in Java. Thus, the simulation of different configurations
will be parallelized using different processes each executing one JVM. The different
configurations will be transferred to those JVMs via Java Remote Method Invocation
(RMI). The JVMs can even be executed on a remote machine.

Before this can be done, the AMIDAR simulator has to be installed on the remote
machine and the class AmidarRemoteManager has to be started. Scripts to do this via
SSH are provided with the simulator. During startup AmidarRemoteManager starts the
rmiregistry and registers itself. Afterwards, AmidarSimulator can be started on the
local machine. It will call createServers on the AmidarRemoteManager via RMI as
shown in Figure 14.2. The remote manager then starts the desired number of remote
simulators in separate JVMs.

On the local machine the simulator creates the same number of threads which directly
correspond to the remote simulators. All threads synchronize on one pointer object,
that points to the next configuration that has to be executed. This means that only
one thread can access this pointer at once. When a thread gets access to this pointer,
it will save the current pointer value and transfer the corresponding configuration to
its remote simulator and start the simulation. Afterwards, the pointer is increased
by one and the next thread is allowed to access the pointer object. When the remote
simulator has finished the simulation it will return the results via RMI and the results
are stored in the local machine in an array at the position of the saved pointer value.

122 14. AMIDAR Simulator

Local machine Remote machine

Client JVM Remote
Manager JVM

Client Simulator Amidar Remote
Thread Manager
createServers(3) VJW

<<starts>> 1l lJ 1

|Amidar Simulator

<<starts>>

1 1

Remote Remote

Remote
Simulator JVM

Simulator JVM

Amidar Remote
Simulator

Simulator JVM

Amidar Remote
Simulator

Amidar Remote
Simulator
run(si ion[0]; J_ l

run(sil ion[1]

run(si fon(2]

run(si ion[3]] ==

closeServers() m| <<closes>>

—
L

Figure 14.2.: RMI communication of the Amidar Remote Simulator

Then the thread immediately tries to get access to the pointer again to start the next
simulation. This scheme allows to dynamically distribute the workload equally on all
remote simulators without a fixed predefined scheme as shown in Figure 14.2. Here, the
second remote simulator (green) finished its first simulation quickly and immediately
starts the next configuration.

14.3. Performance

This section discusses the performance of the simulator in terms of accuracy and
simulation speed. A common problem is, that typically first the simulator is implemented
to find a good point in the design space for the hardware implementation. In order
to do this, some assumption about the hardware implementation have to be made.
Those assumptions are likely to be inaccurate in this early stage of development. When
a potentially good point in the design space is found, the hardware is implemented.
Then sometimes the assumptions have to be revoked or adjusted and it might turn
out that the design point is not optimal. This was also the case in this work. First, a
physically addressed L2 cache seemed to be the best solution. After the prototype was
implemented, the simulator was tuned and it turned out that a virtually addressed L2
cache actually performs better. In the following the tuned simulator will be evaluated.

~ [} S = w N =

14.3. Performance 123

IS
E 05| \ |
P
S 0
Q
2
;f —0.5 1 —— Java Simulator -
Qﬁ | | | | | |
0 0.5 1 1.5 2 2.5
Number of Pixels 104

Figure 14.3.: Relative error of the simulator in number of clock cycles for sobel filter

Listing 14.2: Code to test the simulation model of the DRAM controller

for(int i = 0; i < a; i++) {
ar[i] = i;

}

int cnt = O;

for(int i = 0; i < a; i++) {

cnt +=ar[i];

}

14.3.1. Accuracy

For all parts of the processor that have instruction accuracy the duration was tuned to
match the hardware by analyzing execution of tokens in ModelSim. The accuracy was
tested using a sobel filter shown in Appendix A. Figure 14.3 shows the relative error
in the number of clock cycles for different picture sizes. Simulator and hardware use
different AXT files because most peripheral devices are modeled as native methods in
the simulator. This means that the same objects have different handles and physical
addresses in simulation and hardware. This leads to slightly different behavior when
the caches are filled. For larger pictures this effect is negligible. It can be seen that
for pictures with more than 1 -10* pixels the relative error is smaller than 0.05 %. For
smaller pictures the relative error is slightly higher.

In order to prove that the majority of the error is caused by the DRAM controller model,
a second synthetic test is used. Both loops shown in Listing 14.2 are executed on a
CGRA with four PEs with mesh interconnect. Two of the PEs have DMA and an unroll
factor of four is used. This benchmark will create a heavy load to the DRAM controller
in order to get a deeper insight of the simulation quality of the simulation model of
the DRAM controller. As a comparison the same benchmark will be simulated in
ModelSim using the Verilog description of the AMIDAR processor. As in our simulator
the DRAM controller is only instruction accurate due to its high complexity caused
by refresh cycles in the DRAM. This gives a cycle accurate simulation of the whole
processor with the only exception of the DRAM controller. Figure 14.4 shows the
relative error in the number of clock cycles for our simulator for different values of a.
Additionally this figure also shows the relative error when the Modelsim Simulator is

124 14. AMIDAR Simulator

ISN
- 20 N
—
5
=
o 0
g
Es Java Simulator
5 -2 —— Modelsim *
m | | I I | |

0 0.2 0.4 0.6 0.8 1

a -10°

Figure 14.4.: Relative error of the simulator in number of clock cycles the application
from Listing 14.2

used?. Two key findings back the claim that the biggest part of the error is caused by
the DRAM controller model. First, in this benchmark where the DRAM controller is
used heavily, the error increases. Second, the error in the Modelsim simulation is even
higher than in the Java simulator and in ModelSim the DRAM controller is the only
source of errors. This means that the DRAM controller that was used in Modelsim is
worse than the model used in the Java simulator. The changes in the relative error at
a=~2-10* and a ~ 8 - 10* are caused by changing DRAM access pattern because at
those sizes the L1 or L2 caches respectively are completely filled. Note that prefetching
combined with the non ideal DRAM controller model can cause unexpected effects. If
for example the real DRAM performs a refresh when the 1.2 cache wants to write back
some data it will be delayed. During this time no data can be prefetched from the 1.2
cache and the next access to that data on the L1 cache is a miss. In the simulator the
refresh cycle is not modeled and the write back is not delayed. Thus, the data can be
prefetched from the L2 and no cache miss occurs in the L1 cache. Thus, the non ideal
DRAM controller model can result not only in small errors in runtime but also in small
errors in other key figures.

Implementing a more accurate DRAM controller model is not productive because Figure
14.3 shows that the accuracy in a real applications like sobel is already sufficient for
large inputs. Thus, a more accurate model would only give a small benefit at the cost
of increased simulation time.

14.3.2. Simulation Speed

Measurements on an Intel i7-6700 processor with 16 GB RAM have shown that the
Java simulator can simulate AMIDAR with a CGRA with 4 PEs at a speed of around
9.3-10° cycles per second while the Modelsim simulator only achieves 7.6-10% cycles per
second. This means that the Java simulator runs about 122 times faster while giving a
better accuracy concerning the execution time. When a remote simulator is used on a
server with two AMD EPYC 7501 32-Core processors running 30 remote instances, the
execution can be accelerated further by a factor of 11.9.

2Modelsim is theoretically able to simulate the processor quasi continuous. Still, only a behavioral
simulation and no post place and route simulation was performed which results in a cycle accurate
simulation.

14.4. Measurement Procedure 125

Tests have shown the simulation speed depends on the number of PEs in the CGRA.
When 16 PEs are used, the simulation speed decreases to 3.7 - 10° cycles per second
and around 86 % of the simulation time is spent to simulate the CGRA.

In order to speed up the simulation more, it would be beneficial to implement a second
CGRA model for the simulator with higher abstraction. Depending on the goal (fast
design space exploration or debugging) the more appropriate model can be used for
simulation.

14.4. Measurement Procedure

The aim of this work is to optimize the memory subsystem of the CGRA based
accelerator. Thus, the transient behavior when the kernels are mapped to the CGRA is
not relevant. Each benchmark will be executed in a short and in a long version. Then
the difference of the relevant figures is taken to calculate speedups. The long versions of
the benchmark starts with the exact same calculations as the short version but performs
additional steps. When the short part is finished, all caches are invalidated so that the
actual figures are not measured on hot caches.

15. Prerequisites

15.1. Benchmark Applications

A great variety of 24 benchmarks was used in order to find a good memory subsystem
configuration for general purpose acceleration. The benchmarks can be divided into four
groups: Cryptographic benchmarks, hash functions, filters and whole applications.

Cryptographic benchmarks and Hash Functions The cryptographic bench-
marks used in this work are AES, DES, Blowfish, IDEA, RC6, Serpent, Skipjack,
Twofish and XTEA. The benchmarks BLAKE256, CubeHash512, ECOH256, MD5,
RadioGatun32, SHA1, SHA256 and SIMD512 represent the group of hash functions.
Those applications typically consist of regular loops with predefined boundaries and
contain lots of logic bit operations like XOR or shift. In some applications lookup tables
like the S-box in AES are used. These accesses are dependent on the input data or the
used cryptographic key. The input data array is read linearly in all cases. In many of
the implementations status values or intermediate results are stored in object fields
which are also stored in the heap.

Filter Benchmarks The filter benchmarks used in this work are ContrastFilter,
GrayscaleFilter, SobelFilter and SwizzleFilter. Filters consist of regular loops with
fixed loop boundaries and lots of arithmetic operations. Additionally, they contain lots
of control flow which is used to handle corner cases like the end of a pixel row or an
overflow in a color channel. The access to the processed picture is linear for Contrast-,
Grayscale- and SwizzleFilter. In SobelFilter a two dimensional convolution is calculated.
Thus, also pixels from neighboring rows are accessed.

Whole Application Benchmarks This benchmark group contains the benchmarks
ADPCM de- and encoder and JPEG encoder. All three consist of several different
kernels with different characteristics. The ADPCM encoder calculates an optimal
prediction filter using gaussian elimination and encodes the input data using this filter.
The ADPCM decoder uses this prediction filter to decode the data. Both contain data
dependent loops.

The JPEG encoder contains different kernels like discrete cosine transformation, color
transformation and Huffman encoding which contains data dependent control flow.

128 15. Prerequisites

Figure 15.1.: Evaluated CGRA instances

Benchmark scale Tests have shown that the size of the processed data has a great
impact on the different design options. If for example only little data is processed,
prefetching brings no benefit but only generates overhead. Thus, all benchmarks were
implemented scalable so that different data input sizes can be evaluated. For each
benchmark the smallest input data size was defined (for example a picture with 3x3
pixels for the sobel filter). The input data size was then scaled with a factor 2° with
the s = benchmark scale.

15.2. CGRA Comparison

The performance of the memory subsystem is also dependent on the CGRA structure
itself. The CGRA instances shown in Figure 15.1 will be used to evaluate the memory
subsystem design. The CGRAs have different amount of caches (gray PEs have a cache)
but in sum they all have the same L1 cache size. CGRA (a) has a complex interconnect
with diagonal connections and uses four 128 kB caches. The CGRAs (b) and (c) will
be used to find out whether it is better to have many smaller caches (like in CGRA
(a)) or less larger caches. Thus, they have the same interconnect but only two 256 kB
or one 512kB cache, respectively. CGRA (d) again has 4 caches but has only mesh
interconnect.

All four CGRAs including its L1 caches, heap L1 cache with a size of 512kB and a
2MB L2 cache are mapped to a Virtex 7! FPGA. The cache sizes are chosen that big
in order to avoid artifacts in the BRAM usage. If the caches were smaller, all caches
in CGRA (a) would use the BRAM address space only up to 70 %. The CGRAs (b)
and (c) could then use the BRAM capacity more efficiently which results in higher
frequencies compared to CGRA (a). In the prototype the caches will be smaller. All
PEs can perform comparisons, integer addition, subtraction and multiplication. Table
15.1 shows the results.

In CGRA (a) and (d) 5 L1 caches have to be connected to the Coherence Controller
which results in a long critical path which limits the maximum clock frequency to
115 MHz or 114 MHz respectively. In CGRA (b) only 3 L1 caches are connected so the

!Mapped onto XC7VX485T-2FFG1761 with Vivado 2017.2 wusing the design goals
Flow PerfOptimized__high for Synthesis and Performance__explore for Implementation.

15.2. CGRA Comparison 129

Table 15.1.: Comparison of CGRAs (a) to (d)
‘ CGRA ‘ Max Frequency ‘ Critical path

(a) 115 MHz Data bus between L1 Caches
(b) 118 MHz Data bus between L1 Caches
(c) 114 MHz Way selection path: Cachline information

BRAM output to data BRAM write enable
within one L1 cache
(d) 114 MHz Data bus between L1 Caches

critical path is shorter and the maximum frequency increases to 118 MHz. In CGRA
(c) the increased cache size has an impact so that the critical path is now within one L1
cache. The maximum clock frequency is again 114 MHz.

16. Design Space Exploration

In order to find the best memory subsystem for the AMIDAR FPGA implementation a
design space exploration was done with the AMIDAR simulator. Table 16.1 shows all
parameters that were fixed in order to keep the size of the design space in a reasonable
range. The CGRA parameters were chosen in a way that all applications can be mapped
onto the CGRA and artifacts due to limited memories or registers in the CGRA are
minimized. Te register file allocation for example is not yet optimized in the CGRA
scheduler. Thus, sometimes kernels cannot be mapped to the CGRA because the
register files in the PE are not large enough, even though it would be possible to find
an allocation that fits the given size.

Prior tests have shown that 4 way L1 caches with 8 words per line give generally good
results [61]. In contrast to that, the words per line in the L2 cache is not fixed, as it is
expected that the words per line might influence the choice of the addressing scheme of
the L2 cache.

Table 16.1.: Fixed parameters

’ Parameter \ Value ‘
L1 Cache(s) in CGRA 16 kB (sum of all caches), 8 words per line, 4 ways
L1 Cache in Heap 16 kB, 8 words per line, 4 ways
L2 Cache 256 kB, 4 ways
Context Memory 4096 Contexts
C-Box Condition Memory 128 Bit
PE register file 256 Entries

Table 16.2 shows the parameters that were tested!: This results in a seven dimensional

Table 16.2.: Design space parameters

’ Parameter \ Possible values ‘
Prefetching none, Linear, Lookahead
Coherence protocol Dragon, MOESI
SW supported coherence off, on
Aliasing Speculation off, on
CGRA instance Figure 15.1 (a), (b), (c), (d)
L2 cache design physically addressed, virtually addressed
Words per L2 cache line 8, 16

!The corresponding sweep configuration and the results can be found in Appendix D

132 16. Design Space Exploration

Table 16.3.: Top 5 memory subsystems for CGRA (a)

| Rank 1 [2 |3 [4 |5 |

| Speedup 26.09 [26.04 [2601 [2595 [2584 |
Prefetching Lookahead| Lookahead| Lookahead| Linear Lookahead
Coherence protocol MOESI | MOESI | Dragon MOESI | Dragon
ACD on on on on on
Aliasing Speculation on off off on on
L2 cache address virtually | virtually | virtually | virtually | virtually
Words per L2 cache line | 16 16 16 16 16

Table 16.4.: Top 5 memory subsystems for CGRA (b)

| Rank 1 [2 B |4 |5 |

| Speedup 2635 [26.04 [2588 [2577 [2573 |
Prefetching Linear Linear Lookahead| Linear Linear
Coherence protocol MOESI | MOESI | MOESI Dragon MOESIT
ACD on on on on on
Aliasing Speculation on off on on on
L2 cache address virtually | virtually | virtually | virtually | physically
Words per L2 cache line | 16 16 16 16 16

design space with 384 different configurations. All configurations have to be simulated
with all 24 benchmarks with the benchmark scales 5 and 12 in order to evaluate different
sizes. In total 18432 measurements have to be performed with two simulations each (a
long and a short version of the benchmark) plus the baseline simulation. This was done
remotely with the AMIDAR simulator on a server with two AMD EPYC 7501 32-Core
processors running 30 remote simulator instances. The whole simulation took 16 hours
7 minutes and 24 seconds.

The average speedup in clock cycles over all 24 applications and benchmark scales
was calculated for all configurations®. The values range from 19.30 for the worst
configuration to 26.35 for the best configuration. The mean value is 23.04 with a
variance of 2.34. The results are shown in Appendix D.

The configuration with the highest average speedup is considered the best memory
subsystem configuration for the general case. The Tables 16.3 to 16.6 show the best
five configurations for the CGRAs (a) to (d). The distinction between the CGRAs was
done because the different CGRA structures result in different clock frequencies which
is further discussed in Section 16.5.

It can be seen in Table 16.5 that CGRA (c) is a special case. It has only one PE with
DMA, so ACD on the CGRA has no effect, as all memory accesses will be scheduled to
the one single PE with DMA anyways.

2If not stated otherwise, the term speedup refers always to speedup in clock cycles.

16.1. Discussion of Prefetching 133

Table 16.5.: Top 5 memory subsystems for CGRA (c)

| Rank 1 | 2 |3 E! |5 \
| Speedup | 24.48 | 24.33 [24.22 | 24.17 | 24.04 |
Prefetching Linear Linear Linear Linear Linear
Coherence protocol MOESI | MOESI | MOESI | MOESI | Dragon
ACD - - - - -
Aliasing Speculation on on off off on
L2 cache address virtually | physically | virtually | physically | virtually
Words per L2 cache line | 16 16 16 16 16

Table 16.6.: Top 5 memory subsystems for CGRA (d)

| Rank 1 [2 |3 |4 |5 |

| Speedup 2314 [23.07 [2202 [2291 [2287 |
Prefetching Lookahead| Linear Lookahead| Lookahead| Lookahead
Coherence protocol Dragon MOESI MOESI | Dragon Dragon
ACD on on on off on
Aliasing Speculation on on on on off
L2 cache address virtually | virtually | virtually | virtually | virtually
Words per L2 cache line | 16 16 16 16 16

For almost all shown configurations the words per line in the L2 cache is 16 and ACD is
on. All other parameters vary, so no quick conclusion can be drawn, which configuration
is the best. In the following the influence of all parameters is discussed in detail. This
will be done in the following way: As it is not possible to display a 7 dimensional graph,
the design space will be analyzed in different steps. In each step one or two parameters
will be picked and their influence of the speedup of the accelerator is evaluated. This
will be done by printing key figures like speedup or miss rate on the y-axis over all the
configurations of the design subspace, that remains when the observed parameter(s)
are fixed to one value. The aim is not to analyze and explain the exact behavior of the
graph but rather to find general statements like " Lookahead Prefetcher has a higher miss
rate than the Linear Prefetcher for all configurations in the design subspace" (see Figure
16.3). The ordering of the configuration on the x-axis varies but is always explained if
necessary.

16.1. Discussion of Prefetching

Figure 16.1 shows the speedup of both Linear Prefetcher and Lookahead Prefetcher in
relation to the execution without prefetcher for all configurations. In all configurations
which use the CGRAs (a), (b) and (d) the Lookahead Prefetcher and the Linear
Prefecher have a similar performance. Only for the CGRA (c) the Linear Prefetcher
performs clearly better.

134 16. Design Space Exploration

Lookahead Prefetcher
1.05) —— Linear Prefetcher

Relative Speedup
|

CGRA (a) (1‘1) (c) (5>

Configurations

Figure 16.1.: Speedup for prefetchers relative to execution without prefetcher

Lookahead Prefetcher
10 B —— Linear Prefetcher

0 1 . =
CGRA (a) (b) (¢) (d)

Configurations

Relative #cache line fills

Figure 16.2.: Number of loaded cachelines for prefetchers relative to execution without
prefetcher

When the Lookahead Prefetcher is used, the scheduler maps the prefetch instructions
only on selected PEs. The prefetches are executed in a targeted way so that little
duplicates of data lie in the caches before they are actually needed. In the Linear
Prefetcher the opposite happens. Lines are prefetched less targeted and the performance
decreases if there is more than one cache in the system because each cache prefetches
data after a cache hit. Also, the performance of the Linear Prefetcher decreases when
the line size of the L2 cache is 16 words because now more unnecessary data is loaded
(see second half of all configuration for each CGRA).

The Linear Prefetcher also loads much more cache lines into the caches as shown
in Figure 16.2.> CGRA (c) only contains one cache. This means that the load on
the Coherence Controller is lower, so more prefetches can be performed. Every cache
prefetches data when an array was accessed which results in lower miss rates (see Figure
16.3) but also in more shared cache lines when the Linear Prefetcher is used. More
shared cache lines result in more traffic on the coherence infrastructure which leads to
delays even though the miss rate is lower. This can be seen in Figure 16.4 which shows
the average delay for a memory access relative to the execution without prefetcher.

It can be seen, that for CGRA (c) the average delay is better for the Linear Prefetcher.
No traffic on the coherence structure is generated because there is only one cache in
the CGRA. Thus, the better miss rate can take effect.

Conclusion One can conclude that the Lookahead Prefetcher has the same perfor-
mance as the Linear Prefetcher if there is more than one cache in the CGRA. This is

3Figure 16.2 shows an alternating behavior. This is due to the configuration ordering. They are
ordered in a way that every second configuration uses MOESI protocol and every other configuration
uses DRAGON. In MOESTI the relative increase in cache line fills is lower because in the baseline
without prefetcher already a high amount of cache lines are filled. This is because MOESI invalidates
shared cache lines when they are written in another cache and afterwards the cache line has to be
filled again when needed.

16.2. Discussion of Coherence Mechanisms 135

—
I

Reduction of Missrate
o e
> %
Il Il

Lookahead Prefetcher
—— Linear Prefetcher

CGRA (a) (b) (c) (d)

Configurations

Figure 16.3.: Reduced miss rate due to prefetching relative to execution without
prefetcher

Lookahead Prefetcher
—— Linear Prefetcher

o
0
|

2
>
|

CGRA (a) (b) (c) (d)

Configurations

Reduction in memory access time

Figure 16.4.: Reduced average memory access time due to prefetching relative to
execution without prefetcher

achieved through more purposeful prefetches because it looks ahead in the execution.
It loads far less cache lines which will result in less energy consumption. Additionally,
it requires less hardware overhead than the Linear Prefetcher, as most of the work is
done in the mapping algorithm. The mapping time increases by 49.6 % on average. The
average mapping time for all kernels in one benchmark increases from 1.9s to 2.8s. So
the Lookahead Prefetcher will be considered the best option.

16.2. Discussion of Coherence Mechanisms

The choice of the Coherence protocol is closely linked with the ACD as shown in Figure
16.5. Here the speedup relative to the execution with MOESI without ACD is shown.

Again CGRA (c) is a special case. It has only one PE with DMA which means the
coherence has only to be ensured between the Heap cache and the cache in the CGRA.
In this case MOESI is the better Coherence protocol, because the Heap does only need
the updated value when the execution on the CGRA is finished. So it is better to
invalidate shared cache lines when they are written on the CGRA cache. Then the

1.2

11 A\\f\/\ o 1 MOESI
L '\/\/\\:\\//\M —— Dragon
‘ | — MOESI with ACD

1 N Dragon with ACD

Relative Speedup

Configurations

Figure 16.5.: Speedup for different coherence mechanisms relative to the execution with
MOESI without ACD

136 16. Design Space Exploration

|~ Dragon ACD / MOESI ACD

Relative Speedup
j=1
=
& —

Configurations

Figure 16.6.: Speedup of Dragon with ACD relative to MOESI with ACD. Gray boxes
denote configurations with Linear Prefetcher.

CGRA holds the value exclusively and no further communication is needed with other
caches. In Dragon the delay event 3b) in Table 11.2 occurs. So in a CGRA with a
single cache MOESI outperforms Dragon. As mentioned before, ACD has no effect in
this case.

In all other CGRAs Dragon always outperforms MOESI when ACD is deactivated,
because (as mentioned in the Problem description in Section 4.1) the caches in a
reconfigurable accelerator often access similar memory and share many cache lines.
When two caches write to the same cache line alternately the cache line will be invalidated
and fetched again which leads to high miss rates [2] and long delays (see also delay
event 3a) in Table 11.2). In Dragon the cache lines are not invalidated but updated
directly.

The performance of Dragon can even be improved when ACD used. Then cache line
sharing is minimized so that the load on the Coherence Controller is decreased. The
same effect can be seen when MOESI is used with ACD. A detailed comparison of
Dragon with ACD and MOESI with ACD is shown in Figure 16.6. Here the speedup
of Dragon with ACD in relation to MOESI with ACD is shown. For values smaller 1
MOESI with ACD is better.

It is noticeable that in the first third of all configurations of each CGRA (see gray boxes)
MOESI with ACD outperforms Dragon with ACD clearly. Those configurations are
the ones with Linear Prefetcher. This means that the Linear Prefetcher performs well
with MOESI with ACD. As mentioned in the previous section, one disadvantage of the
Linear Prefetcher is that it does not prefetch targeted. It always prefetches data from
the memory region it just accessed and data will be prefetched in all caches and possibly
the same data will be prefetched multiple times. Using ACD ensures that the data of
one memory region is concentrated on one cache. Thus, the Linear Prefetcher can work
more targeted because now only that cache will prefetch data from that region.

It can also be seen that the performance of MOESI with ACD gets better the less
caches are in the CGRA (The CGRAs (a) and (d) have four caches, CGRA (b) has two
caches and CGRA (c) only has one).

Still, both protocols have a similar performance. The reason for that is that ACD can
be implemented efficiently and the advantage of Dragon is canceled by ACD. ACD
can be implemented efficiently when working on Java bytecode because accesses to the
same memory regions can be detected easily as shown in Chapter 10.2. When other
executable formats are used, this is not as easy due to complex pointer arithmetic.

16.3. Discussion of Aliasing Speculation 137

é 1,200 - R
% Aliasing Speculation OFF
S 1,000 - -| | —— Aliasing Speculation ON
B

800 ‘ ‘]

CGRA (a) (b) (c) (d)
Configurations
Figure 16.7.: Number of contexts per benchmark.

0.22 - B
<o
)
g 02 8 Aliasing Speculation OFF
2 —— Aliasing Speculation ON
2 o018t 4 £°p

016 ‘ ‘]

CGRA (a) (b) (c) (d)

Configurations

Figure 16.8.: PE usage

Conclusion For the coherence mechanisms no option is clearly superior to the oth-
ers. The following statements can help to find a good solution for the selection of a
mechanism.

e If no ACD is possible (because the executable format does not allow this or
the cache designer has no influence on the mapping tool) it is always better to
implement Dragon if there is more than one cache in the CGRA.

e If possible, ACD should always be enabled.

e If ACD is enabled, Dragon increases performance with increasing number of caches

in the CGRA.
e If a Linear Prefetcher and ACD are used, MOESI performs better than Dragon.

In the setup described in this work ACD is possible and the Lookahead Prefetcher is
used (see previous section). Thus, ACD should be switched on and for CGRAs with
many caches Dragon should be used. For CGRAs with few caches MOESI should be
used. Both Dragon and MOESI have a similar performance. Therefore, an energy
evaluation (not part of this work) is necessary. The result might be that MOESI is better
because updating data upon every write may result in a higher energy consumption for
Dragon.

16.3. Discussion of Aliasing Speculation

Figure 16.7 and 16.8 show the number of contexts and the PE usage for the execution
with and without Aliasing Speculation. As expected in all cases the number of contexts
is decreased and the PE usage increased because now more parallelism can be exploited.
Against expectation this does not lead to a speedup in every case as shown in Figure
16.9. This has two reasons. First, the reduced number of contexts does not necessarily
mean that there are less executed contexts in one kernel. The inner loops have to be
considered. When for example the number of contexts in the outer loop is reduced by

138 16. Design Space Exploration

1.02 T - .
s W ISCAR A A) NV
/j\/\ | - L

1 4 Y |
SN
)

\‘ A B
CGRA (a @

Relative Speedup

‘— Aliasing Speculation ON / Aliasing Speculation OFF

) () (d)

il
D

Configurations

Figure 16.9.: Relative speedup of Aliasing Speculation

——
W / M M A M
[| | A M IV
\ o

VAR WA AW)
CGRA (a) (b) (c) (d)

Configurations

¥

—— Aliasing Speculation OFF
Aliasing Speculation ON

—

Memory access time

Figure 16.10.: Average memory access time

4 and the number of contexts in the inner loop is increased by 3, the total number of
contexts is reduced by 1. In the likely case that the inner loop is executed n times
where n > 2, the number of executed contexts is increased by n - 3 — 4. The reason for
the increased number of contexts in the inner loops is that the increased parallelism
can only be exploited with some effort. Before different PEs can load values from the
same array in parallel, the base address of the array has to be copied to each of these
PEs. Creating these copies takes some time and in the worst case this takes place in
the inner loop. The scheduler could be improved when inner loops are favored. For
example the copies should be made in an outer loop and not in an inner loop.

The second reason for the unexpected behavior is, that the Coherence Controller
gets congested. As discussed before, the average memory access time is higher for
configurations without ACD because more coherence messages have to be exchanged.
When Aliasing Speculation is switched on, the PE usage and the load on the Coherence
Controller increase which results in an even higher average memory access time. The
configurations in which this effect occurs are marked with gray boxes in Figure 16.10.
For the CGRAs (a) and (b) this results in a slow down as shown in the gray boxes in
Figure 16.9. For the CGRA (d) this effect is canceled because of the better inner loop
scheduling.

From Table 13.1 it is known that consecutive updates lead to a delay of two cycles.
When this number is decreased, the effect would be weaker. In an FPGA this could
be done by using Distributed RAM instead of BRAM to store cache line information.
BRAMSs deliver the desired data only after one clock cycle whereas distributed RAM
can deliver the data already in the same cycle. Thus, it would be possible to handle
updates on the Coherence Controller earlier. The implications of this approach on the
critical path of the cache system are not clear, because it was not tested in this work as
this would broaden the scope of this work too much.

Also, an interesting fact is shown exemplary for CGRA (a) in Figure 16.9. The red
boxes contain configurations with MOESI and the green boxes contain configurations
with Dragon. When ACD is switched off (gray box) Aliasing Speculation performs

16.4. Discussion of L2 Cache Design 139

1.06

1.04 Physically 8 words
—— Physically 16 words
—— Virtually 8 words

i Virtually 16 words

1.02

Relative Speedup

—_

Configurations

Figure 16.11.: Speedup of different L2 cache designs relative to a physically addressed
L2 cache with 8 words per line

better with Dragon but when it is switched on, Aliasing Speculation performs better
with MOESI. The reason for that lies in the load the different coherence strategies
create on the Coherence Controller. Aliasing Speculation works better when there is
little load and when no ACD is used, Dragon creates less load, whereas with ACD
MOESTI creates less load because no unnecessary message are exchanged with the heap
cache.

Aliasing Speculation has practically no impact on the mapping time. The increased
effort for the speculation and the handle comparison is canceled by the eased scheduling
effort because of less dependencies in the graph.

Conclusion Aliasing Speculation allows to exploit parallelism more efficiently. Unfor-
tunately, in the current implementation the Coherence Controller can not handle the
load fast enough so that the system is slowed down in some cases. In addition to that,
improvements can be made when the scheduler favors inner loops over outer loops.

16.4. Discussion of L2 Cache Design

Figure 16.11 shows the speedup for different .2 Cache configurations. It is obvious that
a virtually addressed cache is always better than a physically addressed cache, when
the caches have 16 words per line. With 8 words per line this also holds true for most
cases. Only when no prefetcher is used (first third of all configurations of all CGRAs)
the performance is slightly worse for some cases.

For both virtually and physically addressed caches 16 words per line give a better
performance than 8 words per line.

It is interesting to note that the Linear Prefetcher performs better when the words per
line are smaller as shown in the gray boxes. As mentioned before the Linear Prefetcher
fetches cache lines untargeted. Thus, if the words per line is higher, a prefetch takes
longer and more unnecessary data is fetched.

As already expected, the memory access times are smaller for a virtually addressed
cache as shown in Figure 16.12 because the Handle Table has only to be accessed in
case of a L2 cache miss.

Interestingly the L2 miss rate is lower for the virtually addressed caches in most cases.
The reason for that is the mis-alignment of the cache lines in L1 and L2 caches as

140 16. Design Space Exploration

1]
/\/\ Physically 8 words
) W | e

—— Virtually 8 words
Virtually 16 words

Reduction of memory access time

Configurations

Figure 16.12.: Improvement of memory access time relative to a physically addressed
L2 cache with 8 words per line

—
IS

—

Physically 8 words
—— Physically 16 words
—— Virtually 8 words

Virtually 16 words

o
o

o

CGRA (a) (b) (c) (d)

Configurations

Improvement in L2 miss rate

Figure 16.13.: Improvement of the read hit miss rate relative to a physically addressed
L2 cache with 8 words per line

described above. When a small object is accessed it might happen that two L2 cache
lines have to be loaded. This case was counted as two cache misses in this work. As a
result, a virtually addressed L2 cache is better in almost all cases. In CGRA (c) where
no prefetcher is used (gray box in Figure 16.13) both virtually and physically addressed
cache have almost the same hit rate, because the L2 has to be accessed less frequently
as the single L1 cache in this CGRA is larger than the caches in the other CGRAs.
In CGRA (c) the Coherence Controller can handle more prefetch requests, as there is
not much load on the Coherence Controller. Thus, when prefetchers are used, cache
lines are prefetched so that small objects mostly can be accessed with one L2 cache line
access in CGRA (c) and the physically addressed caches have a lower miss rate.

The number of words per line has only a minor impact on the clock frequency of the
cache system. On one hand the critical path lies within in the L1 Caches as shown in
Table 15.1 and on the other hand, only L1 cache lines are transferred in parallel. L2
cache lines are transferred sequentially via AXI. The index generation scheme (virtually
or physically) also has only a minor impact, as it is just bit reordering. The exact
influence of both factors is still to be measured.

In the future energy measurements have to be made. The physical address is loaded
from the Handle Table speculatively and often unnecessarily. It is possible that this
increases the energy consumption to much and the lookup can only be performed
when it is actually necessary. In that case the performance especially of the virtually
addressed cache decreases.

Conclusion If possible the words per line should be high in oder to minimize the
miss rate on the L2 cache. A virtually addressed L2 cache is better as it has a higher

16.5. Discussion of CGRA Design 141

26 b

2 i}
CGRA (a)
2 VAVAVA\///W\/\/\/\/\/\A/\%/\/\/\/ : — CGRA (b)
A (c)

(

20 ‘ ‘) CGRA (d)
MOESI Dragon MOESI ACD Dragon ACD

Configurations

Speedup

Figure 16.14.: Speedup for all four CGRAs in terms of clock cycles

28 T T
26 B

2 | B CGRA (a)
2| ANV VMWV\ANWAWV | — CCRA (b)

— CGRA (c)
20f 1 CGRA (d)

I I
MOESI Dragon MOESI ACD Dragon ACD

Configurations

Speedup (execution time)

Figure 16.15.: Speedup for all four CGRAs in terms of execution time

performance and it eases the Garbage Collection in Java.

16.5. Discussion of CGRA Design

Finding the optimal CGRA design is an complex task which can only be covered briefly
here. This section will concentrate only on the number of caches in the CGRA and the
influence of interconnect. As it can be seen in Figures 16.8 and 16.7 that the PE usage
is better and there are less contexts when there is more interconnect (compare CGRA
(a) and (d)) and if there are more PEs with DMA (compare CGRA (a), (b) and (c)).
In contrast to that the average memory access time increases with the number of PEs
with DMA as shown in Figure 16.10 due to the delay events 3a) and b) from Table
11.2.

Figure 16.14 shows the speedup in terms of clock cycles for all CGRAs. As discussed
before, CGRA (c) has only one cache. Thus, its performance is mostly independent
of the coherence strategy. All other CGRAs benefit from better coherence strategies
and the performance increases on average with the configurations on the x-axis. When
ACD is on, the CGRAs (a) and (b) have almost the same performance in terms of clock
cycles. In Figure 16.15 the clock frequencies are taken into account and the speedup in
terms of execution time is shown. Here it becomes obvious that CGRA (b) gives the
best performance.

A more complex CGRA structure eases the mapping effort. CGRA (a) has high
interconnect and four caches which results in 1.7s mapping time on average. CGRA (d)
has also four caches but only a mesh interconnect. Thus, more copy nodes have to be
inserted in the schedule and the mapping time increases to 2.0s. The reduced number
of caches in CGRA (b) and (c) also increases the scheduling effort and the mapping
time is increased to 1.8s and 2.6 s respectively.

142 16. Design Space Exploration

Table 16.7.: Best memory subsystem configuration for the setup described in this work

] Speedup \ 25.88 \
Prefetching Lookahead
Coherence protocol MOESI
ACD on
Aliasing Speculation on
L2 cache address virtually
Words per L2 cache line | 16
CGRA instance (b)

Conclusion The interconnect of the CGRA has a high impact on the performance.
The more connections are available, the better the performance. Allowing parallel
accesses to the memory increases the PE usage but to many parallel accesses congest
the Coherence Controller and slow the system down. In this work two caches seem to
be optimal but with an improved Coherence Controller design, more PEs with DMA
might be beneficial.

16.6. Summary

General statements can be made for ACD, L2 cache design and the prefetcher. Ideally
ACD is switched on, the L2 cache is virtually addressed with 16 words per line and the
Lookahead Prefetcher is used as it is more energy efficient.

For all other parameters no general statements can be made, as the performance of
the memory subsystem strongly depends on many factors. The best configuration in
terms of speedup in the setup described in this work is the fastest solution of CGRA (b)
with a speedup of 26.35 on average. It uses MOESI, Linear Prefetcher, ACD, Aliasing
Speculation and a virtually addressed L2 cache with 16 words per line. As mentioned
earlier, the Linear Prefetcher achieves this by loading much more cache lines which
results in a higher energy consumption. Thus, the best solution using a Lookahead
Prefetcher will be investigated further. It can be seen in Table 16.4 that using CGRA
(b) with a Lookahead Prefetcher also gives a very good speedup of 25.88 on average but
the energy consumption will be lower.* Thus, this configuration will be considered the
best for the current setup with 16 kB L1 caches with 4 ways and 8 words per line. The
parameters are again listed in Table 16.7.

As mentioned above, this can not be generalized. If for example a specific application
domain is considered or the cache implementation is improved so that updates in other
caches can be done faster, the optimal setup uses the Dragon protocol. With the help
of the AMIDAR simulator this was evaluated quickly®, by reducing the time needed
for a cache line update in the simulator by 2. Then, the design space exploration was

“Note that this configuration is better than the best configuration of CGRA (a) because this CGRA
can only operate at 115 MHz
5This measurement was done in less than two hours including the simulation time of 80 Minutes.

16.6. Summary 143

Table 16.8.: Speedup for different configurations on CGRA (b) when the time needed
to update cache lines is reduced by 2
’ Coherence Protocol \ Aliasing Speculation \ Speedup ‘

Dragon off 26.15
MOESI off 25.72
Dragon on 26.04
MOESI on 25.88

repeated with ACD switched on, a virtually addressed L2 cache with 16 words per line
and a Lookahead Prefetcher. In terms of clock cycle CGRA (a) now outperforms CGRA
(b) but when the maximum clock frequencies are considered, CGRA (b) is still better.
The results are shown in Table 16.8 for CGRA (b).

It can be seen that in this setup Dragon outperforms MOESI while it is better not to
use Aliasing Speculation.

17. Results

To show that the design space exploration brings significant benefits, the solution
found in the previous chapter will be compared to the worst solution using the same
interconnect on the CGRA and also 16 words per line in the L2 cache (in order to have
a fair comparison). This suboptimal solution uses a Linear Prefetcher, the MOESI
protocol, no ACD, a physically addressed 1.2 cache and CGRA (a). During the design
space exploration all benchmarks were used in two different sizes (benchmark scale 5 and
12). Now the benchmark scale 6 will be used to show that the best solution also performs
well with other application sizes and no overfitting occurred during optimization. Figure
17.1 shows the speedup for all applications and both configurations. For all benchmarks

[R R R R B B |
60 - I8 Best configuration =
A I8 Suboptimal configuration
3 40 =
8
" I‘l“ll] ‘I |
o IR b 0w B .
co ‘9 ‘1» 5 o,
S 23 o ‘o & ¢t 6
SRR S %3&@ S RS @\’;@ \y\“ g
R RN

Figure 17.1.: Speedup for all benchmarks with benchmark scale 6 for the best and a
suboptimal memory subsystem configuration.

but Twofish the proposed solution is better than the suboptimal solution. In Twofish
not all kernels could be mapped onto the CGRA when ACD was activated because the
Condition Memory in the C-Box was to small to hold all conditions (140 slots were
required but the C-Box only contained 128). On average the best solution achieves a
speedup of 25.50 while the suboptimal solution only achieves a speedup of 21.34. Thus,
one can say that the optimization of the memory subsystem using the design space
exploration increased the performance of the system by 22.6 % in terms of execution
time (when the maximum frequencies of the CGRAs are taken into account). Figure
17.2 shows that for all benchmark the average delay (in clock cycles) caused by cache
misses is reduced in all cases when the best configuration is used.

In order to get an idea how the overall performance of the system improved during
this work, another comparison is shown in Figure 17.3. Here the best solution is shown
in comparison to a system without all the optimizations shown in in Chapter 10 and
just one single L1 cache and no L2 cache. It can be seen that especially the filter
applications benefit from the optimizations made during this work. On average, the

17. Results

—_
s
D

6 I 1 Best configuration
I8 Suboptimal configuration

4, |
i ‘ i
0 | | I |I Jll I |

Average memory delay / cycles

@‘5 Q) 54 Q% @ @\ \9 \\9
Q @ eﬂQ Qx 44°~}, «b ‘2& @ \3&\ %Q?z%\@ égoz@«;\g §Q§® 00 /BQ
o e

Figure 17.2.: Average delay when accessing the memory

speedup is 14.41 which means that the performance of the whole system was improved
by 83.2% in terms of execution time.!

60 - I8 Best configuration 8
o I8 Original design
= 40} -
8
0 || I” h | “ |
ol Il I I || I || II II I II II |

,\9) Q, ’ﬁ i 6
o (‘) O O
Q’Q\} Q&b Gog&‘bﬂ %% QQ QQ

Figure 17.3.: Speedup for all benchmarks with benchmark scale 6 for the best configu-
ration and the original design that was the starting point of this work.

17.1. Comparison With Other Approaches

Comparing the CGRA based accelerator presented in this work with other approaches
is no trivial task. First, none of the other approaches can execute Java natively.
Thus, all used benchmarks have to be ported and the results will also reflect language
specific features (like overhead for initialization) and not only features of the system on
which the software was executed. Second, many approaches like Plasticine [56] or the
Layers CGRA [59] have a different design goal and concentrate on regular streaming

1To be exact, the original design of Dobrich [16] did not support method inlining. Thus, all method
calls were inlined manually. If method inlining is also switched off and no manual inlining is
done, the average speedup is only 3.61. Taking this into account, means that during this work the
performance was increased by 731,2 %.

17.1. Comparison With Other Approaches 147

Table 17.1.: System configuration in Brandalero and Becks approach

Memory L1 cache: 32kB, 8-ways, 4 cycles hit latency
Subsystem L2 cache: 256 kB, 8-ways, 12 cycles hit latency
L3 cache: 2MB, 16-ways, 36 cycles hit latency
CGRA Adders 8 per level % cycle latency
Multipliers | 1 row per level 3 cycles latency
Load Units | 2 rows per level 2 cycles latency
Store Units | 1 row per level 1 cycle latency

applications. The approach that is most comparable is the work by Brandalero and
Beck [7]? which was described in Section 3.1.7. Yet, it is important to note that their
work is not based on a hardware implementation but only on a simulation in Gemb
[6] in system-call emulation mode on a high level of abstraction. Numbers from a real
implementation might be different. So the following comparison has to be treated with
caution. A real comparison is only possible if both approaches were implemented on the
same technology. Then not only the clock cycles but also the maximum clock frequency
(and thus wall clock time), energy consumption and chip area could be compared.

Our system as described in Table 16.7 with the configuration found in Chapter 16 will
be compared to Brandalero and Becks CGRA coupled with a dual issue superscalar
processor. This processor is roughly equivalent to an ARM Cortex-A9 processor. The
design parameters are given in Table 17.1. Kernels with up to five basic blocks can
be mapped to the CGRA. The number of Layers was unconstrained, but 90 % of all
kernels use less than 64 PEs.

Figure 17.4 shows the relative runtime for selected benchmarks®. Brandalero and Becks
approach was executed with binaries without gee optimizations (00).

I AMIDAR
I Brandalero and Beck

=N W e ot

Relative runtime

X o > AN &
W xe® > %Q&ﬂ’ ‘5\5\\ ¢

H© o< gD
ngﬁb %\ﬂ\q’

Figure 17.4.: Relative runtime for AMIDAR and Brandalero and Becks approach

When OO0 is used, AMIDAR accelerated with a CGRA outperforms Brandalero and
Becks approach by a factor of 3.7 on average in terms of clock cycles. This gives a
good indication of the high performance of the AMIDAR system. AMIDARs advantage
is that due to the C-Box and inlining, significant code sections can be mapped to

2Both authors offered great help and provided the measurement results reported in this section.

3Due to a small time frame during which this comparison could be made not all benchmarks could be
ported from Java to C. From each benchmark group (with the exception of the whole applications)
two benchmarks were chosen randomly.

148 17. Results

the CGRA, while Brandaleros approach supports only five basic blocks. Yet, tests
have shown that using gcc optimizations (O2 or O3) the performance of Brandaleros
approach can be improved by a factor more than 3. This means that both approaches
have a similar performance in that case.

This backs the results from the previous chapters: Optimizations made during com-
pilation or the mapping process respectively (like ACD) have a great impact on the
performance of the memory subsystem. Also, this gives an indication that the perfor-
mance of AMIDAR can possibly be improved when there is a preprocessing done on the
Java bytecode before the execution. This step could be included in the AXT conversion
and would also accelerate the execution on a pure AMIDAR system without CGRA.

17.2. Prototype Implementation

Note: Parts of this section have already been published in [75]. The marking of self-
citation is omitted in order to improve the reading flow.

A prototype of the whole system was implemented with the parameters shown in Table
17.2. The parameters were found using the simulator which is described in Chapter
14.

Table 17.2.: AMIDAR prototype implementation

’ Parameter ‘ Value ‘
L1 Cache(s) in CGRA 64 kB (sum of all caches), 8 words per line, 4 ways
L1 Cache in Heap 64 kB, 8 words per line, 4 ways
L2 Cache 256 kB, 8 words per line 4 ways, physically addressed
Context memory 1024 Contexts
C-Box Condition Memory 32 Bit
PE register file 256 Entries for gray PEs 64 for all others
Prefetching Lookahead
Coherence protocol Dragon
ACD on
Aliasing Speculation off
CGRA instance Figure 15.1 (a)

This prototype operates at 81 MHz and is fully functional and shows the feasibility
of this accelerator approach. The prototype was also used to improve the simulator
further as described in Chapter 14.

17.2.1. Test Application

An HDMI controller was included in the prototype in order to show the correct
execution and acceleration vividly. The test application is the calculation of the

17.2. Prototype Implementation 149

graphical representation of different Julia sets with 80x60 pixels. Afterwards, a sobel
filter is applied. The resulting picture is shown on a display via HDMI.

The Julia set calculates a complex valued series of numbers in the form Z; = Z2 | +
0.7885 - c. For each pixel a different starting point Z; is chosen. The calculation of Z;
is finished when either |Z;| or ¢ exceeds a threshold. The pixel is now associated with a
color, dependent on the value of 7. This value is read from an array. This means that the
code contains data dependent loop boundaries and irregular memory accesses. When
complete frame is fished, the whole calculation is restarted with a different parameter c.
The value ¢ is moved along the unit circle on the complex plane. Figure 17.5 shows the
time needed per frame over the runtime.

0 \ T I : :

~— Mapping sobel filter Sobel Fllter

I} to CGRA .

= 21 —— Total Time |

§

5 A v S

2, L e o o GORA A

o)

= o \ i : \ \ B
0 100 200 300 400 500

Runtime / s

Figure 17.5.: Time for Julia set calculation and sobel filter per frame over runtime with
unroll factor 1 [75]

In the first 180 seconds the whole benchmark is executed on AMIDAR. During this
interval, the total time per frame (Julia set calculation + sobel filter) is 1155.2ms
on average and is shown in blue. It changes periodically because different Julia sets
take different time to calculate and the parameter c is changed periodically. The time
for the sobel filter (green) is independent of the content of the current frame. After
180 seconds a system thread is started. This thread reads the profiler data and the
sobel filter is identified as the most time consuming kernel. Afterwards the mapping
algorithm is started. The mapping time is about 21.6 seconds. In this interval the
time per frame doubles, because now two threads have to be executed on the single
core AMIDAR processor (first gray box). After the mapping thread is finished, the
sobel filter is executed on the CGRA and the time per frame drops to 148.7ms on
average. Sixty seconds later the mapping thread is started again. Now the Julia set
calculation is the most time consuming kernel. For this kernel, the mapping process
takes 30.0 seconds and again the time per frame doubles (second gray box). When the
mapping is finished the time per frame drops to 53.705ms on average. This corresponds
to an overall speedup of 21.5. Partially unrolling innermost loops can even increase the
speedup [31]. When the unroll factor is set to 4 in this benchmark, the time needed to
map the kernels to the CGRA increases to 43.1s and 129.7s respectively. At the same
time the speedup increases to 29.0.

150 17. Results

Table 17.3.: Results summary

Kernel Unroll | Number | Mapping | Speed- | Total
factor | of Nodes | Time up speedup

Sobel Filter | 1 172 21.6s 7.8

Julia-Set 1 209 30.0s 2.8 21.5

Sobel Filter | 4 287 43.1s 8.3

Julia-Set 4 545 129.7s 3.5 29,0

Table 17.3 summarizes all measurements. These results show that the presented system
is able to accelerate kernels with different code structures and can lead to a speedup of
almost 30. Note that the mapping software is not yet optimized for minimum runtime.
It is rather programmed in a easily maintainable and extensible object oriented way,
as it is still work in progress. Still, when the mapping time is evaluated it has to be
taken into account that the mapping algorithm is executed on AMIDAR which runs
only at 81 MHz on an FPGA. Assuming that an ASIC implementation which operates
at 1 GHz is possible, the mapping time reduces by a factor of more than 12.

18. Conclusion

In Chapter 1 three goals for this work were stated.

The first goal was to implement a prototype of a processor coupled with a CGRA which
fulfills the requirements shown in Table 1.1. Here it will be discussed whether these
requirements were met.

e Support of Arbitrary Applications - This requirement was fully met. During
this work a flexible interface between the host processor and the CGRA was
designed. It allows the exchange of arbitrary local variables. The implemented
memory subsystem is flexible and allows irregular accesses patterns.

e Reconfiguration During Runtime - This goal was also reached. During this
work the support of Java 8 in AMIDAR was realized [49] so that the mapping
process can be executed on AMIDAR without backporting. A simple interface was
implemented so that the generated contexts can be transferred into the CGRA
from the AMIDAR processor [66]. With the help of the profiler it is now possible
to identify kernels, create a CGRA configuration and transfer this configuration
to the CGRA. Then the instructions are patched so that the kernel will now be
executed on the CGRA. The only open point is that the runtime of the mapping
process has to be improved.

e High performance - Previous sections have shown that during this work the
performance of the accelerator was vastly improved. This is done by an efficient
memory interface with prefetching. Also, high level compiler optimizations like
partial loop unrolling and speculative method inlining were applied to improve
the performance. The C-Box was developed during this work with the help of
[74] and [64]. This C-Box allows to execute complex control flow on the CGRA
so that more kernels can be accelerated.

e Low Programming Effort - The accelerator works totally transparent for the
programmer. No knowledge about the hardware is needed and arbitrary Java
code can be accelerated.

In summary this means that the prototype fulfills all requirements.

The second goal was to implement an accurate and fast simulator. In Chapter 14 it is
shown that the simulator is highly accurate. It has a high simulation speed which is
two orders of magnitude faster than the ModelSim simulator which simulates an RTL
description of the processor. Still, the simulation speed is not optimal and performance
degrades when a CGRA with more PEs is simulated. Yet, it is possible to execute
several simulations in parallel on a remote machine automatically, in order to speed up
parameter sweeps.

152 18. Conclusion

The third and last goal was to use the simulator for a design space exploration. Chapter
16 discusses the results thoroughly. The optimal configuration was found for the given
setup. Also, it was shown that this procedure is repeatable and it is possible to evaluate
a different setup quickly by adapting the key parameters in the simulator. For several
parameters the optimal value was found whereas for some parameters only guidelines
could be given depending on the boundary conditions of the system.

All goals were achieved but still there is much room for improvement. These points will
be discussed in the next section.

18.1. Open Points and Future Work

Energy Consumption Model The first and most interesting point is to evaluate
the energy consumption. The design space exploration was mainly done only with
regard to the execution time. It is possible that some design choices made during this
work bring a slight speedup while increasing the energy consumption enormously. For
example Dragon and MOESI give a similar performance when ACD is activated but
it is not clear whether updating all shared cache lines in Dragon might result in a
higher energy consumption. The same holds for Aliasing Speculation. Thus, energy
measurements are required to tune and extend the existing energy consumption model
in the AMIDAR simulator in order to find the best configuration not only in terms of
speedup but also in terms of energy efficiency.

Improved Cache Design and ASIC Implementation As mentioned previously,
the time to update cache lines is to high and leads to congestion when the Dragon
protocol is used. Thus, the caches should be improved so that they use distributed
RAM instead of BRAMs on the FPGA. Then is is possible to get information about the
cache line one cycle earlier and the other caches can be notified quicker. As mentioned
before, the CGRA is meant to be implemented on an ASIC. Thus, this problem will
be solved when using the appropriate memory implementation in an ASIC design of
AMIDAR coupled with a CGRA.

Potential in the Mapping Process The mapping process can still be optimized in
several ways. First, the execution time can be improved as the code was written in an
object oriented way in order to be readable and well maintainable. Furthermore, there
are several open point that will increase the performance of the whole system further:

1. It should be possible for the scheduler to decide whether a write access to a
shared cache line is an exclusive write which will invalidate the cache line in all
other caches or a shared write which will provide the updated value to the other
caches. This could combine the benefits from both coherence protocols Dragon
and MOESI. Also, a solution of mixed caches is thinkable, where for example
the heap cache uses MOESI and invalidates all shared cache lines when another
cache writes that line, while all caches in the CGRA use Dragon and update the

18.2. Summary 153

cache line. This way the CGRA benefits from quick updates while unnecessary
communication with the heap cache is blocked.

2. The unrolling process described in this work is very lightweight and efficient but
still some improvements are possible. For example it is possible to unroll also
outer loops. This will result in multiple versions of the inner loops which can be
merged into a single loop in some cases. This would result in a light version of
polyhedral memory access optimization.

Additionally, the profiler of the AMIDAR processor could be extended so that
the number executed loop iterations is recorded. With this information it would
be possible to find an optimal unroll factor for each loop individually.

Also other optimizations like loop tiling are thinkable.

3. ACD gives good performance but takes not into account what memory regions
were accessed in the kernel previously executed. It is possible that two kernels
access the same memory regions but in each kernel the accesses to that region are
mapped to different caches. By implementing a global scheme the performance of
ACD might be improved.

General Improvements Future work also includes the optimization of the CGRA
structure. Implementations with pipelined ALUs and overlapping operations are
thinkable. Also the scheduler itself can be improved with techniques like modulo
scheduling or prioritization of inner loops.

Including more than one CGRA in one processor gives the possibility to accelerate
different threads in parallel on different CGRAs.

Finally, efficient hand optimized libraries for common problems like FFT should be
provided. Early tests have shown that this leads to substantial speedups [36].

18.2. Summary

During this work the worlds first prototype of a reconfigurable processor-CGRA system
was implemented. It accelerates itself autonomously by reconfiguring the CGRA and
using it as a general purpose hardware accelerator. The theoretical basics were described
in Dobrichs work [12], but especially the interfaces between the host processor and the
CGRA were only covered on a very high abstraction level. Thus, much effort was put in
the design of the interface used to exchange Live-In/Out variables. Also, the interface
to send the configuration (contexts) from the host processor to the CGRA was designed
during this work.

The original concept of this accelerator could only handle simple memory accesses
to one dimensional arrays which were completely loaded into the CGRA prior to the
execution. This proved to be very inefficient for some kernels that work only on a few
elements of a large array. Thus, the focus of this work was to implement and optimize
an efficient and flexible memory interface for the CGRA based accelerator. The result

154 18. Conclusion

was a multi cache system that allows the CGRA to load arbitrary data in parallel
from the memory without prior knowledge of any access patterns. Several strategies to
improve the performance of the memory subsystem were presented. Those strategies
are not limited to the hardware level but also strategies on the software level were
presented. This means that the algorithm that maps a kernel to the CGRA optimizes
the scheduling and binding of memory accesses to increase the performance.

It is not intuitively clear whether combining all the presented strategies deliver a
good performance. Thus, the fast and accurate simulator for the whole system was
implemented to do a design space exploration in order to find the best set of strategies.
The solution that was found exceeds the performance of a naive configuration of the
multi cache system by 22.6 % in the current setup. General statements cannot be
made about all presented strategies because to many factors have an influence on
the performance of the design. Yet, this work shows a way how to find a very good
configuration for a given system quickly and provides powerful tools like an accurate
and fast simulator.

The implementation and optimization of the multi cache system itself and all optimiza-
tions that were developed during this work (like partial loop unrolling) led to a speedup
of more than 83.2 % percent compared to the work originally presented in [12].

Bibliography

1]

[10]

A. Aiken and A. Nicolau. “Optimal Loop Parallelization”. In: Proceedings of
the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation. PLDI ’88. Atlanta, Georgia, USA: ACM, 1988, pp. 308-317. ISBN:
0-89791-269-1. DOI: 10.1145/53990.54021.

Patrick Appenheimer. “Cache Management fiir CGRAs mit DMA”. Bachelors
Thesis. Computer Systems Group: TU Darmstadt, 2016.

James Archibald and Jean-Loup Baer. “Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model”. In: ACM Trans. Comput. Syst. 4.4
(Sept. 1986), pp. 273-298. 1SSN: 0734-2071.

V. Baumgarte, G. Ehlers, F. May, A. Niickel, M. Vorbach, and M. Weinhardt.
“PACT XPP — A Self-Reconfigurable Data Processing Architecture”. In: The
Journal of Supercomputing 26.2 (Sept. 2003), pp. 167-184.

A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro. “Transparent Reconfig-
urable Acceleration for Heterogeneous Embedded Applications”. In: 2008 Design,
Automation and Test in Furope. Mar. 2008, pp. 1208-1213. DOI: 10.1109/DATE.
2008.4484843.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. “The Gemb Simulator”. In: SIGARCH Comput. Archit.
News 39.2 (Aug. 2011), pp. 1-7. 18SN: 0163-5964. DOI: 10.1145/2024716.2024718.

M. Brandalero and A. C. S. Beck. “A Mechanism for energy-efficient reuse of
decoding and scheduling of x86 instruction streams”. In: Design, Automation Test
in Europe Conference Exhibition (DATE), 2017. Mar. 2017, pp. 1468-1473. DOI:
10.23919/DATE.2017.7927223.

J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. “A Fully Pipelined and
Dynamically Composable Architecture of CGRA”. In: 201 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing Machines.
May 2014, pp. 9-16. DOI: 10.1109/FCCM.2014.12.

F. Dahlgren and P. Stenstrom. “Evaluation of hardware-based stride and sequential
prefetching in shared-memory multiprocessors”. In: TPDS 7.4 (Apr. 1996), pp. 385—
398. 1SSN: 1045-9219.

G. Dimitroulakos, M. D. Galanis, and C. E. Goutis. “Alleviating the data memory
bandwidth bottleneck in coarse-grained reconfigurable arrays”. In: 2005 IEEE

International Conference on Application-Specific Systems, Architecture Processors
(ASAP’05). July 2005, pp. 161-168. DOI: 10.1109/ASAP.2005. 12.

https://doi.org/10.1145/53990.54021
https://doi.org/10.1109/DATE.2008.4484843
https://doi.org/10.1109/DATE.2008.4484843
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.23919/DATE.2017.7927223
https://doi.org/10.1109/FCCM.2014.12
https://doi.org/10.1109/ASAP.2005.12

156

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[23]

[24]

Stefan Dobrich and Christian Hochberger. “Effects of Simplistic Online Synthesis
in AMIDAR Processors”. In: ReConFig. 2009, pp. 433-438.

Stefan Dobrich and Christian Hochberger. “Exploring online synthesis for CGRAs
with specialized operator sets”. In: International Journal of Reconfigurable Com-
puting 2011 (2011), p. 10.

Stefan Dobrich and Christian Hochberger. “Low-Complexity Online Synthesis for
AMIDAR Processors”. In: International Journal of Reconfigurable Computing -
Selected Papers from ReconFig 2009 International Conference on Reconfigurable
Computing and FPGAs (ReconFig 2009) 2010 (2010).

Stefan Dobrich and Christian Hochberger. “Low-Complexity Online Synthesis
for AMIDAR Processors”. In: International Journal of Reconfigurable Computing
2010 (2010), p. 15.

Stefan Dobrich and Christian Hochberger. “Towards Dynamic Software/Hardware
Transformation in AMIDAR Processors”. In: it - Information Technology 50.5
(2008), pp. 311-316.

Stefean Débrich. “Performance Improvement of Adaptive Processors - Hardware
Synthesis, Instruction Folding and Microcode Assembly”. PhD thesis. Dresden
University of Technology, 2012.

A. Fuchs, S. Mannor, U. Weiser, and Y. Etsion. “Loop-Aware Memory Prefetching
Using Code Block Working Sets”. In: 2014 MICRO. Dec. 2014, pp. 533-544.

S. Gatzka and C. Hochberger. “Hardware Based Online Profiling in AMIDAR
Processors”. In: Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEFE International. Apr. 2005, 144b—144b. DOI: 10.1109/IPDPS.2005.239.

Stephan Gatzka and Christian Hochberger. “On the Scope of Hardware Ac-
celeration of Reconfigurable Processors in Mobile Devices”. In: HICSS. 2005,
p- 299.

Stephan Gatzka and Christian Hochberger. “The AMIDAR Class of Reconfigurable
Processors”. In: The Journal of Supercomputing 32.2 (2005), pp. 163-181.

James Gosling. The Java Language Specification, Java SE 8 Edition (Java Series).
Addison Wesley Professional, 2014.

V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. “DySER: Unifying Functionality and Parallelism Specialization for
Energy-Efficient Computing”. In: IEEE Micro 32.5 (Sept. 2012), pp. 38-51. ISSN:
0272-1732. por: 10.1109/MM.2012.51.

V. Govindaraju, C. H. Ho, and K. Sankaralingam. “Dynamically Specialized
Datapaths for energy efficient computing”. In: 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. Feb. 2011, pp. 503-514.
DOI: 10.1109/HPCA.2011.5749755.

M. Hashemi, O. Mutlu, and Y. N. Patt. “Continuous runahead: Transparent
hardware acceleration for memory intensive workloads”. In: 2016 MICRO. Oct.
2016, pp. 1-12.

https://doi.org/10.1109/IPDPS.2005.239
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/HPCA.2011.5749755

157

[25]

[20]

[28]

[29]

[33]

[34]

Chen-Han Ho. “Mechanisms Towards Energy-Efficient Dynamic Hardware Spe-
cialization”. PhD thesis. University of Wisconsin-Madison, 2014.

C. Hochberger, L. J. Jung, A. Engel, and A. Koch. “Synthilation: JIT-compilation
of microinstruction sequences in AMIDAR processors”. In: Proceedings of the

2014 Conference on Design and Architectures for Signal and Image Processing.
Oct. 2014, pp. 1-6. DOI: 10.1109/DASIP.2014.7115634.

C. H. Hoy, V. Govindarajuz, T. Nowatzki, R. Nagaraju, Z. Marzec, P. Agar-
wal, C. Frericks, R. Cofell, and K. Sankaralingam. “Performance evaluation of a
DySER FPGA prototype system spanning the compiler, microarchitecture, and
hardware implementation”. In: 2015 IEEFE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). Mar. 2015, pp. 203-214. DOT:
10.1109/ISPASS.2015.7095806.

B. Janflen, P. Zimprich, and M. Hiibner. “A dynamic partial reconfigurable
overlay concept for PYNQ”. In: 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). Sept. 2017, pp. 1-4. DOI: 10.23919/
FPL.2017.8056786.

Amit D. Joshi, Satyanarayana Vollala, B. Shameedha Begum, and N. Ramasub-
ramanian. “Performance Analysis of Cache Coherence Protocols for Multi-core
Architectures: A System Attribute Perspective”. In: Proceedings of the Inter-
national Conference on Advances in Information Communication Technology €
Computing. AICTC ’16. Bikaner, India: ACM, 2016, 22:1-22:7. 1SBN: 978-1-4503-
4213-1. por: 10.1145/2979779.2979801.

L. J. Jung and C. Hochberger. “Optimal processor interface for CGRA-based
accelerators implemented on FPGAs”. In: 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). Nov. 2016, pp. 1-7. DOI:
10.1109/ReConFig.2016.7857178.

Lukas Johannes Jung and Christian Hochberger. “Feasibility of High Level Com-
piler Optimizations in Online Synthesis”. In: ReConFigurable Computing and
FPGAs (ReConkFig), 2015 International Conference on. Dec. 2015, pp. 1-7.

Lukas Johannes Jung and Christian Hochberger. “Lookahead Memory Prefetching
for CGRAs Using Partial Loop Unrolling”. In: Applied Reconfigurable Computing.
Architectures, Tools, and Applications. Ed. by Nikolaos Voros, Michael Huebner,
Georgios Keramidas, Diana Goehringer, Christos Antonopoulos, and Pedro C.
Diniz. Cham: Springer International Publishing, 2018, pp. 93—-104. 1SBN: 978-3-
319-78890-6.

Matthias Jung and Norbert Wehn. “Driving Against the Memory Wall: The Role
of Memory for Autonomous Driving”. In: Workshop 23.03. 2018: New Platforms

for Future Cars: Current and Emerging Trends at IEEE Conference Design,
Automation and Test in Europe (DATE). 2018.

Yongjoo Kim, Jongeun Lee, Toan X. Mai, and Yunheung Pack. “Improving
Performance of Nested Loops on Reconfigurable Array Processors”. In: ACM
Trans. Archit. Code Optim. 8.4 (Jan. 2012), 32:1-32:23. 1SSN: 1544-3566. DOTI:
10.1145/2086696.2086711.

https://doi.org/10.1109/DASIP.2014.7115634
https://doi.org/10.1109/ISPASS.2015.7095806
https://doi.org/10.23919/FPL.2017.8056786
https://doi.org/10.23919/FPL.2017.8056786
https://doi.org/10.1145/2979779.2979801
https://doi.org/10.1109/ReConFig.2016.7857178
https://doi.org/10.1145/2086696.2086711

158

Bibliography

[35]

[36]

[37]

[38]

[39]

[44]

[45]

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee Yoon, and Yunheung
Paek. “Memory-Aware Application Mapping on Coarse-Grained Reconfigurable
Arrays”. In: High Performance Embedded Architectures and Compilers. Ed. by
Yale N. Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo Faraboschi, and
Xavier Martorell. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 171
185. 1SBN: 978-3-642-11515-8.

Stefan Knipp and Ramon Wirsch. “Handoptimized DSP-Kernel for the Amidar
CGRA”. Project Seminar. Computer Systems Group: TU Darmstadt, 2017.

T. Kojima, N. Ando, H. Okuhara, and H. Amano. “Glitch-aware variable pipeline
optimization for CGRAs”. In: 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). Dec. 2017, pp. 1-6. DOI: 10.1109/RECONFIG.
2017 .8279797.

Hongsik Lee, Dong Nguyen, and Jongeun Lee. “Optimizing Stream Program
Performance on CGRA-based Systems”. In: Proceedings of the 52Nd DAC. DAC
"15. San Francisco, California: ACM, 2015, 110:1-110:6. 1SBN: 978-1-4503-3520-1.

Ming-Hau Lee, Hartej Singh, Guangming Lu, Nader Bagherzadeh, Fadi J. Kurdahi,
Eliseu M.C. Filho, and Vladimir Castro Alves. “Design and Implementation of
the MorphoSys Reconfigurable Computing Processor”. In: Journal of VLSI signal
processing systems for signal, image and video technology 24.2 (Mar. 2000),
pp. 147-164. 18SN: 0922-5773. DOI: 10.1023/A:1008189221436.

Changgong Li. “Implementation of an AMIDAR based Java Processor”. PhD
thesis. Technische Universitat Darmstadt, 2019.

Roman Lysecky, Greg Stitt, and Frank Vahid. “Warp Processors”. In: Proceedings
of the 41st Annual Design Automation Conference. DAC ’04. San Diego, CA, USA:
ACM, 2004, pp. 659-681. 1SBN: 1-58113-828-8. DOI: 10.1145/996566.1142986.

Roman Lysecky and Frank Vahid. “Design and Implementation of a MicroBlaze-
based Warp Processor”. In: ACM Trans. Embed. Comput. Syst. 8.3 (Apr. 2009),
22:1-22:22. 18SN: 1539-9087. DOI: 10.1145/1509288.1509294.

Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. “Dynamic FPGA Routing
for Just-in-time FPGA Compilation”. In: Proceedings of the 41st Annual Design
Automation Conference. DAC '04. San Diego, CA, USA: ACM, 2004, pp. 954-959.
ISBN: 1-58113-828-8. DOI: 10.1145/996566.996819.

B. Mei, M. Berekovic, and J-Y. Mignolet. “ADRES & DRESC: Architecture and
Compiler for Coarse-GrainReconfigurable Processors”. In: Fine- and Coarse-Grain
Reconfigurable Computing. Ed. by Stamatis Vassiliadis and Dimitrios Soudris.
Dordrecht: Springer Netherlands, 2007, pp. 255-297. 1SBN: 978-1-4020-6505-7.

B. Mei, B. De Sutter, T. Vander Aa, M. Wouters, A. Kanstein, and S. Dupont.
“Implementation of a Coarse-Grained Reconfigurable Media Processor for AVC
Decoder”. In: Journal of Signal Processing Systems 51.3 (June 2008), pp. 225-243.
ISSN: 1939-8115. por: 10.1007/s11265-007-0152-8.

https://doi.org/10.1109/RECONFIG.2017.8279797
https://doi.org/10.1109/RECONFIG.2017.8279797
https://doi.org/10.1023/A:1008189221436
https://doi.org/10.1145/996566.1142986
https://doi.org/10.1145/1509288.1509294
https://doi.org/10.1145/996566.996819
https://doi.org/10.1007/s11265-007-0152-8

159

[46]

[47]

[48]

[54]

[55]

[56]

[57]

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. “Exploiting
loop-level parallelism on coarse-grained reconfigurable architectures using modulo
scheduling”. In: IEE Proceedings - Computers and Digital Techniques 150.5 (Sept.
2003), pp. 255-61-. 1sSN: 1350-2387. DOIL: 10.1049/ip-cdt:20030833.

Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. “DRESC:
a retargetable compiler for coarse-grained reconfigurable architectures”. In: 2002
IEEE International Conference on Field-Programmable Technology, 2002. (FPT).
Proceedings. Dec. 2002, pp. 166-173. pDo1: 10.1109/FPT.2002.1188678.

Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. “ADRES: An Architecture with Tightly Coupled VLIW Processor and
Coarse-Grained Reconfigurable Matrix”. In: Field Programmable Logic and Ap-
plication. Ed. by Peter Y. K. Cheung and George A. Constantinides. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 61-70. 1SBN: 978-3-540-45234-8.

Michael Meister. “Erweiterung des AMIDAR-Java-Prozessors von Java 1.4 auf
Java 8”. Bachelors Thesis. Computer Systems Group: TU Darmstadt, 2017.

Karsten Miiller. “Anpassung des AMIDAR Simulators an die aktuelle Hardware
Implementierung”. Bachelors Thesis. Computer Systems Group: TU Darmstadt,
2016.

NVIDIA TESLA V100 GPU ARCHITECTURE, THE WORLD’S MOST AD-
VANCED DATA CENTER GPU. Whitepaper. WP-08608-001 v1.1. 2017.

NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM. Whitepa-
per. 2009.

N. M. C. Paulino, J. C. Ferreira, and J. M. P. Cardoso. “Trace-Based Recon-
figurable Acceleration with Data Cache and External Memory Support”. In:
2014 IEEE International Symposium on Parallel and Distributed Processing with
Applications. Aug. 2014, pp. 158-165. DOT: 10.1109/ISPA.2014.29.

Nuno Paulino, Joao Canas Ferreira, Jodo Bispo, and Joao M. P. Cardoso. “Trans-
parent Acceleration of Program Execution Using Reconfigurable Hardware”. In:
Proceedings of the 2015 Design, Automation € Test in Europe Conference &
Exhibition. DATE ’15. Grenoble, France: EDA Consortium, 2015, pp. 1066—1071.

Stefan Pees. “Modeling Embedded Processors and Generating Fast Simulators Us-
ing the Machine Description Language LISA”. PhD thesis. Rheinisch—Westfélischen
Technischen Hochschule Aachen, 2003.

Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Ste-
fan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. “Plasticine:
A Reconfigurable Architecture For Parallel Paterns”. In: SIGARCH Comput. Ar-
chit. News 45.2 (June 2017), pp. 389-402. 1sSN: 0163-5964. DOI: 10.1145/3140659.
3080256.

Z. E. Rékossy, F. Merchant, A. Acosta-Aponte, S. K. Nandy, and A. Chattopad-
hyay. “Scalable and energy-efficient reconfigurable accelerator for column-wise
givens rotation”. In: 2014 22nd International Conference on Very Large Scale Inte-
gration (VLSI-SoC). Oct. 2014, pp. 1-6. DOL: 10.1109/VLSI-SoC.2014.7004166.

https://doi.org/10.1049/ip-cdt:20030833
https://doi.org/10.1109/FPT.2002.1188678
https://doi.org/10.1109/ISPA.2014.29
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1109/VLSI-SoC.2014.7004166

160

Bibliography

[58]

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

[68]

Z. E. Réakossy, T. Naphade, and A. Chattopadhyay. “Design and analysis of layered
coarse-grained reconfigurable architecture”. In: 2012 International Conference
on Reconfigurable Computing and FPGAs. Dec. 2012, pp. 1-6. DOI: 10.1109/
ReConFig.2012.6416736.

Zoltan Endre Rakossy, Dominik Stengele, Axel Acosta-Aponte, Saumitra Chafekar,
Paolo Bientinesi, and Anupam Chattopadhyay. “Scalable and Efficient Linear
Algebra Kernel Mapping for Low Energy Consumption on the Layers CGRA”.
In: Applied Reconfigurable Computing. Ed. by Kentaro Sano, Dimitrios Soudris,
Michael Hiibner, and Pedro C. Diniz. Cham: Springer International Publishing,
2015, pp. 301-310. 1SBN: 978-3-319-16214-0.

M. Reichenbach, T. Lieske, S. Vaas, K. Haublein, and D. Fey. “FAUPU - A design
framework for the development of programmable image processing architectures”.
In: 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). Dec. 2015, pp. 1-8. DOI: 10.1109/ReConFig.2015.73933009.

Johanna Rohde, L. J. Jung, and C. Hochberger. “Update or Invalidate: Influence of
Coherence Protocols on Configurable HW Accelerators”. In: Applied Reconfigurable
Computing. Architectures, Tools, and Applications. Apr. 2019, pp. 305-316.

T. Ruschke, L. J. Jung, and C. Hochberger. “A Near Optimal Integrated Solution
for Resource Constrained Scheduling, Binding and Routing on CGRAs”. In: 2017

IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). May 2017, pp. 213-218. DOI: 10.1109/IPDPSW.2017.99.

T. Ruschke, L. J. Jung, D. Wolf, and C. Hochberger. “Scheduler for Inhomoge-
neous and Irregular CGRAs with Support for Complex Control Flow”. In: 2016
IEEFE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). May 2016, pp. 198-207. DOI: 10.1109/IPDPSW.2016.72.

Tajas Ruschke. “Design and Implementation of a Scheduling Algorithm for a
CGRA with regard to Routing Constraints”. Masters Thesis. Computer Systems
Group: TU Darmstadt, 2015.

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Reed Taylor.
“PipeRench: A virtualized programmable datapath in 0.18 micron technology”.
In: Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat.
No.02CH37285). May 2002, pp. 63-66. DOI: 10.1109/CICC.2002.1012767.

Hendrik Schéffmann. “Implementierung eines Verfahrens zum nachfragegetriebe-
nen Laden von CGRA-Kontexten”. Project Seminar. Computer Systems Group:
TU Darmstadt, 2018.

Yan Solihin. Fundamentals of Parallel Multicore Architecture. Chapman and
Hall/CRC, 2015.

Jeckson Dellagostin Souza, Anderson L. Sartor, Luigi Carro, Mateus Beck Rutzig,
Stephan Wong, and Antonio C. S. Beck. “DIM-VEX: Exploiting Design Time
Configurability and Runtime Reconfigurability”. In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications. Ed. by Nikolaos Voros, Michael
Huebner, Georgios Keramidas, Diana Goehringer, Christos Antonopoulos, and

https://doi.org/10.1109/ReConFig.2012.6416736
https://doi.org/10.1109/ReConFig.2012.6416736
https://doi.org/10.1109/ReConFig.2015.7393309
https://doi.org/10.1109/IPDPSW.2017.99
https://doi.org/10.1109/IPDPSW.2016.72
https://doi.org/10.1109/CICC.2002.1012767

[73]
[74]

[75]

Pedro C. Diniz. Cham: Springer International Publishing, 2018, pp. 367-378. ISBN:
978-3-319-78890-6.

Sven Stroher. “Implementierung eines verbesserten Simulators fir AMIDAR
Prozessoren”. Bachelors Thesis. Computer Systems Group: TU Darmstadt, 2016.

C. -. Su, C. -. Tsui, and A. M. Despain. “Saving power in the control path of
embedded processors”. In: IEEE Design Test of Computers 11.4 (Winter 1994),
pp. 24-31. 1SSN: 0740-7475. DOI: 10.1109/54.329448.

Anita Tino and Kaamran Raahmifar. “Assessing Multi-Task Placement Algo-
rithms in RCUSs”. In: Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2016 IEEE International. May 2016, pp. 1-6.

Francisco-Javier Veredas, M. Scheppler, W. Moffat, and Bingfeng Mei. “Custom
implementation of the coarse-grained reconfigurable ADRES architecture for
multimedia purposes”. In: International Conference on Field Programmable Logic
and Applications, 2005. Aug. 2005, pp. 106-111. por: 10. 1109 /FPL . 2005 .
1515707.

Adrian Weber. “Implementierung eines Hardware-Profilers fiir AMIDAR Prozes-
soren”. Bachelors Thesis. Computer Systems Group: TU Darmstadt, 2017.

Dennis Leander Wolf. “Implementation of a Coarse Grained Reconfigurable Array”.
Masters Thesis. Computer Systems Group: TU Darmstadt, 2015.

Dennis Leander Wolf, Lukas Johannes Jung, Tajas Ruschke, Changgong Li,
and Christian Hochberger. “AMIDAR Project: Lessons Learned in 15 Years of
Researching Adaptive Processors”. In: 2018 13th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). July 2018,

pp. 1-8.
S. Wong, T. van As, and G. Brown. “ro-VEX: A reconfigurable and extensible soft-

core VLIW processor”. In: 2008 International Conference on Field-Programmable
Technology. Dec. 2008, pp. 369-372. DOI: 10.1109/FPT.2008.4762420.

Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications of
the Obvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), pp. 20-24.
ISSN: 0163-5964. DOI: 10.1145/216585.216588.

C. Yang, L. Liu, S. Yin, and S. Wei. “Data cache prefetching via context directed
pattern matching for coarse-grained reconfigurable arrays”. In: 2016 53nd DAC.
June 2016, pp. 1-6.

https://doi.org/10.1109/54.329448
https://doi.org/10.1109/FPL.2005.1515707
https://doi.org/10.1109/FPL.2005.1515707
https://doi.org/10.1109/FPT.2008.4762420
https://doi.org/10.1145/216585.216588

© N o o [w N =

w w w W w W w W N [N [~ [(%) [%) N [) N = — - - — —- — - - (=
~ (= S S w N = o © [N4 O ot =W Y] = o ©) ~ (=} w B w N =

w
[

A. AMIDAR Simulator Accuracy

The AMIDAR simulator accuracy was evaluated by executing the following sobel
filter.

Listing A.1: Sobel filter used to test the AMIDAR simulator accuracy

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

IV

A. AMIDAR Simulator Accuracy

© o] ~ [ut s W [=

NN NN N NN NN 2 R R e s e s
S ® 9N o o A ® N = O © 0w N4 O G & W N = O

w
(=}

N O ot W [N =

B. CGRA Description

In the following a CGRA description in JSON format is shown exemplarily.

Listing B.1: CGRA descriptrion

Listing B.2: CGRA mesh interconnect Interconnect_16pe_mesh. json

B. CGRA Description

Listing B.3: PE description PE_mem. json

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

VII

C. Nested Loops in The Schedule

Figure C.1 shows an excerpt of the schedule of the ADPCM decoder mapped on a 2x2
CGRA with unroll factor 2. It can be seen that a nested loop starts at ¢ = 178 and
ends at ¢ = 188. The loop condition is checked at ¢ = 178 on PE2. If it is evaluated
to false, the CCU performs a relative jump of distance 11 to t = 189. Note that the
instruction that checks the loop condition (1261:IFLE) is marked green which means
that it will be executed conditionally. The result of the instruction can only be true
when the result of the instruction 466: IFGE was also true (see C-Box column on the
right).

C. Nested Loops in The Schedule

PE 0 PE 1 PE 2 PE3 C-Box
Qut : 257 128.CONST:1-J6 [Out: 612561SUB__| [Out: 01237:IADD- 0| | | [0 466IFGER |
t=177 P N
| 1257:STORE:5- 6 Ol [| | 1223 1AND= 0 I | 1239 ISHR= 2. I [|
] (ut: 6 1257.STORES> 1 fut : 127 78:CONST 1o b |] [] [0 466IFGER |
t=178 s —
276:1ADD- 13 | 1273:1SUB- 6 I | 1261:ELE 0| [| F‘ngm
[[Out: 6 1257:STORE:S | [Out: 612731SUB= 6 | |] [| [0 6LIFLEm |
t=179 ———
[1274pma-L0aD0 O [CcioszsToREs. s | | | [| [|
Out : 13 1276/ADD~ 14| Dut : 6 1257:STORE:S~ 1 |] [| [O I6LIFLEQ) |
t =180 —
| - £ C1276:1ADD= 7 I 1281:IFLE 0| I 1293:|ADD= 3. I mm
Offt : 14 T274DWA-LOADY) |] [] |] |]
t =181 ——
[| [cr2zapmatoani= a] | | |]
[DT 8 1274DMALOAD(N} § | [Ow:312931ADD | [O I26LIFLEQW) |
t=182 /‘7
[_12750mMA-sTORE(O] [c1oomiapnaa | | | [| [|
[] [] [] [0 I6LIFLED |
t=183
[12750MA-STORE(0] [| [| [| [|
[] |] [] | | [0 mBrEs |
t=184
[| [| | [20apmatoapaof []
[] [] [| [O IBLIFLEG) |
t=185
[| [] [| [2oapmatompi=l []
[] [] [] [] [0 D6LIFLEm |
t=186
[1276stores. 6 0 |] [] [] []
[| [ou:712761ADD | |] [| [0 I2BLIFLEG) |
t =187
[[| | [2mpmastorecd []
[] [Ou:812931ADD | | | [O DBLFLEG) |
t=188 /
L] [1omstoREs. 6 0O |] [] [1205:pMA-STORE(0] [|
(ut : 257 128:CONST:1- 6 |] [Out: 012231AND> 0| [Out: 2123%ISHR | [0 466IFGE(|
t =189 — —
| 1310:STORE:5- 6 Ol | 1240:INEG> 7 I | 1230:1SHR= 0 I | 1224:|ENE Ol mTﬁ
[Out: 12646:1SUB> 11] |] [Out: 01230ISHR] [| [0 1224IFNEm |
t =190 ——
[122astoreeoms 10l [camisipn e | |] | [|
[| Qut: 16 437:CONST: 134} |] [] [0 466IFGE@ |
t =191
[] [] [] [626:1FLT q F‘WEW
[| [Out: 71240INEG | |] [] [0 22&FNEm |
t=192 /
[[1224:5T0RE 8000, 110] | | [| |]

Figure C.1.: Excerpt of the schedule of the ADPCM decoder on a 2x2 CGRA

© N o o [w N =

w w w W w W w W N [N [~ [(%) [%) N [) N = — - - — —- — - - (=
~ (= S S w N = o © [~ [ot =W Y] = o ©) ~ (=} w B w N - o

w
[

D. Design Space Exploration

Listing D.1 shows the sweep configuration of the design space exploration. In total this
results in 18432 different simulations.

Listing D.1: Design space exploration sweep configuration

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

XII

D. Design Space Exploration

D.1. Results

The following table shows the results of the design space exploration

Speedup| CGRA | ACD | Prefetcher | Aliasing | Coherence | L2 Cache | Words
Specula- | Protocol | address per L2
tion scheme cache

line

23.6 (a) off Linear off Dragon physical | 8

23.89 (a) off Linear off Dragon physical | 16

24.46 (a) off Linear off Dragon virtual 8

24.99 (a) off Linear off Dragon virtual 16

21.55 (a) off Linear off MOESI physical 8

21.8 (a) off Linear off MOESI physical | 16

22.29 (a) off Linear off MOESI virtual 8

22.64 (a) off Linear off MOESI virtual 16

23.59 (a) off Linear on Dragon physical | 8

23.9 (a) oft Linear on Dragon physical 16

24.25 (a) off Linear on Dragon virtual 8

24.77 (a) off Linear on Dragon virtual 16

21.15 (a) off Linear on MOESI physical | 8

D.1. Results XIII

21.41 (a) off Linear on MOESI physical | 16
21.93 (a) off Linear on MOESI virtual 8
22.2 (a) off Linear on MOESI virtual 16
23.0 (a) off none off Dragon physical 8
24.16 (a) off none off Dragon physical | 16
23.01 (a) off none off Dragon virtual 8
24.23 (a) off none off Dragon virtual 16
21.01 (a) off none off MOESI physical | 8
22.04 (a) off none off MOESI physical | 16
21.07 (a) off none off MOESI virtual 8
22.15 (a) off none off MOESI virtual 16
22.85 (a) off none on Dragon physical | 8
24.01 (a) off none on Dragon physical | 16
22.86 (a) off none on Dragon virtual 8
24.08 (a) off none on Dragon virtual 16
20.66 (a) off none on MOESI physical | 8
21.67 (a) off none on MOESI physical 16
20.72 (a) off none on MOESI virtual 8
21.78 (a) off none on MOESI virtual 16
23.98 (a) off Lookahead | off Dragon physical | 8
24.66 (a) off Lookahead | off Dragon physical | 16
24.18 (a) off Lookahead | off Dragon virtual 8
25.07 (a) off Lookahead | off Dragon virtual 16
21.79 (a) off Lookahead | off MOESI physical | 8
22.39 (a) off Lookahead | off MOESI physical | 16
21.99 (a) off Lookahead | off MOESI virtual 8
22.76 (a) off Lookahead | off MOESI virtual 16
23.86 (a) off Lookahead| on Dragon physical | 8
24.57 (a) off Lookahead | on Dragon physical 16
24.09 (a) off Lookahead | on Dragon virtual 8
25.06 (a) off Lookahead | on Dragon virtual 16
21.62 (a) off Lookahead | on MOESI physical | 8
22.2 (a) off Lookahead | on MOESI physical | 16
21.88 (a) off Lookahead| on MOESI virtual 8
22.7 (a) off Lookahead | on MOESI virtual 16
24.54 (a) on Linear off Dragon physical 8
24.68 (a) on Linear off Dragon physical 16
25.14 (a) on Linear off Dragon virtual 8
25.52 (a) on Linear off Dragon virtual 16
24.71 (a) on Linear off MOESI physical | 8
25.01 (a) on Linear off MOESI physical | 16
25.21 (a) on Linear off MOESI virtual 8
25.72 (a) on Linear off MOESI virtual 16
24.57 (a) on Linear on Dragon physical 8

X1V D. Design Space Exploration

24.85 (a) on Linear on Dragon physical | 16
25.24 (a) on Linear on Dragon virtual 8
25.65 (a) on Linear on Dragon virtual 16
24.93 (a) on Linear on MOESI physical | 8
25.29 (a) on Linear on MOESI physical 16
25.39 (a) on Linear on MOESI virtual 8
25.95 (a) on Linear on MOESI virtual 16
23.21 (a) on none off Dragon physical | 8
24.41 (a) on none off Dragon physical 16
23.2 (a) on none off Dragon virtual 8
24.48 (a) on none off Dragon virtual 16
23.09 (a) on none off MOESI physical | 8
24.29 (a) on none off MOESI physical | 16
23.08 (a) on none off MOESI virtual 8
24.37 (a) on none off MOESI virtual 16
23.28 (a) on none on Dragon physical 8
24.49 (a) on none on Dragon physical 16
23.27 (a) on none on Dragon virtual 8
24.57 (a) on none on Dragon virtual 16
23.28 (a) on none on MOESI physical | 8
24.5 (a) on none on MOESI physical | 16
23.28 (a) on none on MOESI virtual 8
24.58 (a) on none on MOESI virtual 16
24.83 (a) on Lookahead | off Dragon physical 8
25.7 (a) on Lookahead | off Dragon physical | 16
24.97 (a) on Lookahead | off Dragon virtual 8
26.01 (a) on Lookahead | off Dragon virtual 16
24.81 (a) on Lookahead | off MOESI physical | 8
25.75 (a) on Lookahead | off MOESI physical | 16
24.96 (a) on Lookahead | off MOESI virtual 8
26.03 (a) on Lookahead | off MOESI virtual 16
24.68 (a) on Lookahead | on Dragon physical | 8
25.49 (a) on Lookahead | on Dragon physical | 16
24.8 (a) on Lookahead | on Dragon virtual 8
25.84 (a) on Lookahead| on Dragon virtual 16
24.87 (a) on Lookahead | on MOESI physical 8
25.77 (a) on Lookahead | on MOESI physical 16
25.01 (a) on Lookahead | on MOESI virtual 8
26.09 (a) on Lookahead | on MOESI virtual 16
23.79 (b) off Linear off Dragon physical | 8
24.06 (b) off Linear off Dragon physical | 16
24.69 (b) off Linear off Dragon virtual 8
24.97 (b) off Linear off Dragon virtual 16
22.62 (b) off Linear off MOESI physical | 8

D.1. Results

23.11 (b) off Linear off MOESI physical
23.42 (b) off Linear off MOESI virtual
23.8 (b) off Linear off MOESI virtual
23.52 (b) off Linear on Dragon physical
23.99 (b) off Linear on Dragon physical
24.4 (b) off Linear on Dragon virtual
24.84 (b) off Linear on Dragon virtual
22.29 (b) off Linear on MOESI physical
22.8 (b) off Linear on MOESI physical
23.14 (b) off Linear on MOESI virtual
23.45 (b) off Linear on MOESI virtual
23.08 (b) off none off Dragon physical
24.26 (b) off none off Dragon physical
23.06 (b) off none off Dragon virtual
24.32 (b) off none off Dragon virtual
21.85 (b) off none off MOESI physical
22.94 (b) off none off MOESI physical
21.87 (b) off none off MOESI virtual
23.02 (b) off none off MOESI virtual
22.81 (b) off none on Dragon physical
24.0 (b) off none on Dragon physical
22.8 (b) off none on Dragon virtual
24.05 (b) off none on Dragon virtual
21.47 (b) off none on MOESI physical
22.54 (b) off none on MOESI physical
21.49 (b) off none on MOESI virtual
22.62 (b) off none on MOESI virtual
24.14 (b) off Lookahead | off Dragon physical
24.92 (b) off Lookahead | off Dragon physical
24.24 (b) off Lookahead | off Dragon virtual
25.25 (b) off Lookahead | off Dragon virtual
22.88 (b) off Lookahead | off MOESI physical
23.55 (b) off Lookahead | off MOESI physical
23.03 (b) off Lookahead | off MOESI virtual
23.81 (b) off Lookahead | off MOESI virtual
23.72 (b) off Lookahead | on Dragon physical
24.5 (b) off Lookahead | on Dragon physical
23.81 (b) off Lookahead | on Dragon virtual
24.81 (b) off Lookahead | on Dragon virtual
22.47 (b) off Lookahead | on MOESI physical
23.07 (b) off Lookahead| on MOESI physical
22.65 (b) off Lookahead| on MOESI virtual
23.4 (b) off Lookahead | on MOESI virtual
24.36 (b) on Linear off Dragon physical

XVI D. Design Space Exploration

24.85 (b) on Linear off Dragon physical | 16
25.18 (b) on Linear off Dragon virtual 8
25.65 (b) on Linear off Dragon virtual 16
24.84 (b) on Linear off MOESI physical | 8
25.36 (b) on Linear off MOESI physical 16
25.43 (b) on Linear off MOESI virtual 8
26.04 (b) on Linear off MOESI virtual 16
24.47 (b) on Linear on Dragon physical | 8
24.99 (b) on Linear on Dragon physical 16
25.2 (b) on Linear on Dragon virtual 8
25.77 (b) on Linear on Dragon virtual 16
25.15 (b) on Linear on MOESI physical | 8
25.72 (b) on Linear on MOESI physical 16
25.62 (b) on Linear on MOESI virtual 8
26.35 (b) on Linear on MOESI virtual 16
23.3 (b) on none off Dragon physical 8
24.54 (b) on none off Dragon physical 16
23.3 (b) on none off Dragon virtual 8
24.6 (b) on none off Dragon virtual 16
23.26 (b) on none off MOESI physical | 8
24.48 (b) on none off MOESI physical | 16
23.26 (b) on none off MOESI virtual 8
24.55 (b) on none off MOESI virtual 16
23.2 (b) on none on Dragon physical 8
24.45 (b) on none on Dragon physical | 16
23.21 (b) on none on Dragon virtual 8
24.52 (b) on none on Dragon virtual 16
23.36 (b) on none on MOESI physical | 8
24.62 (b) on none on MOESI physical 16
23.37 (b) on none on MOESI virtual 8
24.69 (b) on none on MOESI virtual 16
24.35 (b) on Lookahead | off Dragon physical 8
25.3 (b) on Lookahead | off Dragon physical | 16
24.5 (b) on Lookahead | off Dragon virtual 8
25.61 (b) on Lookahead| off Dragon virtual 16
24.51 (b) on Lookahead | off MOESI physical | 8
25.5 (b) on Lookahead | off MOESI physical 16
24.59 (b) on Lookahead | off MOESI virtual 8
25.72 (b) on Lookahead | off MOESI virtual 16
24.17 (b) on Lookahead | on Dragon physical | 8
25.13 (b) on Lookahead| on Dragon physical | 16
24.33 (b) on Lookahead| on Dragon virtual 8
25.45 (b) on Lookahead | on Dragon virtual 16
24.66 (b) on Lookahead | on MOESI physical | 8

D.1. Results XVII

25.67 (b) on Lookahead | on MOESI physical | 16
24.74 (b) on Lookahead | on MOESI virtual 8
25.88 (b) on Lookahead | on MOESI virtual 16
23.17 (c) off Linear off Dragon physical 8
23.69 (c) off Linear off Dragon physical 16
23.33 (c) off Linear off Dragon virtual 8
23.78 (c) off Linear off Dragon virtual 16
23.66 (c) off Linear off MOESI physical | 8
24.17 (c) off Linear off MOESI physical | 16
23.73 (c) off Linear off MOESI virtual 8
24.22 (c) off Linear off MOESI virtual 16
23.34 (c) off Linear on Dragon physical | 8
23.84 (c) off Linear on Dragon physical | 16
23.59 (c) off Linear on Dragon virtual 8
24.04 (c) off Linear on Dragon virtual 16
23.83 (c) off Linear on MOESI physical | 8
24.33 (c) off Linear on MOESI physical 16
23.99 (c) off Linear on MOESI virtual 8
24.48 (c) off Linear on MOESI virtual 16
20.98 (c) off none off Dragon physical | 8
22.07 (c) off none off Dragon physical | 16
20.98 (c) off none off Dragon virtual 8
22.11 (c) off none off Dragon virtual 16
21.29 (c) off none off MOESI physical | 8
22.39 (c) off none off MOESI physical | 16
21.28 (c) off none off MOESI virtual 8
22.44 (c) off none off MOESI virtual 16
21.18 (c) off none on Dragon physical | 8
22.27 (c) off none on Dragon physical 16
21.17 (c) off none on Dragon virtual 8
22.31 (c) off none on Dragon virtual 16
21.49 (c) off none on MOESI physical | 8
22.6 (c) off none on MOESI physical | 16
21.47 (c) off none on MOESI virtual 8
22.64 (c) off none on MOESI virtual 16
21.59 (c) off Lookahead | off Dragon physical 8
22.69 (c) off Lookahead | off Dragon physical 16
21.62 (c) off Lookahead | off Dragon virtual 8
22.84 (c) off Lookahead | off Dragon virtual 16
21.89 (c) off Lookahead | off MOESI physical | 8
23.02 (c) off Lookahead | off MOESI physical | 16
21.93 (c) off Lookahead | off MOESI virtual 8
23.18 (c) off Lookahead | off MOESI virtual 16
21.73 (c) off Lookahead | on Dragon physical 8

XVIII D. Design Space Exploration

22.85 (c) off Lookahead| on Dragon physical | 16
21.81 (c) off Lookahead | on Dragon virtual 8
23.08 (c) off Lookahead | on Dragon virtual 16
22.04 (c) off Lookahead | on MOESI physical | 8
23.19 (c) off Lookahead | on MOESI physical | 16
22.13 (c) off Lookahead | on MOESI virtual 8
23.43 (c) off Lookahead | on MOESI virtual 16
23.17 (c) on Linear off Dragon physical | 8
23.69 (c) on Linear off Dragon physical 16
23.33 (c) on Linear off Dragon virtual 8
23.78 (c) on Linear oft Dragon virtual 16
23.66 (c) on Linear off MOESI physical | 8
24.17 (c) on Linear off MOESI physical | 16
23.73 (c) on Linear off MOESI virtual 8
24.22 (c) on Linear off MOESI virtual 16
23.34 (c) on Linear on Dragon physical 8
23.84 (c) on Linear on Dragon physical 16
23.59 (c) on Linear on Dragon virtual 8
24.04 (c) on Linear on Dragon virtual 16
23.83 (c) on Linear on MOESI physical | 8
24.33 (c) on Linear on MOESI physical | 16
23.99 (c) on Linear on MOESI virtual 8
24.48 (c) on Linear on MOESI virtual 16
20.98 (c) on none off Dragon physical 8
22.07 (c) on none off Dragon physical | 16
20.98 (c) on none off Dragon virtual 8
22.11 (c) on none off Dragon virtual 16
21.29 (c) on none off MOESI physical | 8
22.39 (c) on none off MOESI physical | 16
21.28 (c) on none off MOESI virtual 8
22.44 (c) on none off MOESI virtual 16
21.18 (c) on none on Dragon physical | 8
22.27 (c) on none on Dragon physical | 16
21.17 (c) on none on Dragon virtual 8
22.31 (c) on none on Dragon virtual 16
21.49 (c) on none on MOESI physical 8
22.6 (c) on none on MOESI physical 16
21.47 (c) on none on MOESI virtual 8
22.64 (c) on none on MOESI virtual 16
21.59 (c) on Lookahead | off Dragon physical | 8
22.69 (c) on Lookahead | off Dragon physical | 16
21.62 (c) on Lookahead | off Dragon virtual 8
22.84 (c) on Lookahead | off Dragon virtual 16
21.89 (c) on Lookahead | off MOESI physical | 8

D.1. Results XIX

23.02 (c) on Lookahead | off MOESI physical | 16
21.93 (c) on Lookahead| off MOESI virtual 8
23.18 (c) on Lookahead | off MOESI virtual 16
21.73 (c) on Lookahead | on Dragon physical 8
22.85 (c) on Lookahead | on Dragon physical | 16
21.81 (c) on Lookahead | on Dragon virtual 8
23.08 (c) on Lookahead| on Dragon virtual 16
22.04 (c) on Lookahead | on MOESI physical 8
23.19 (c) on Lookahead| on MOESI physical | 16
22.13 (c) on Lookahead | on MOESI virtual 8
23.43 (c) on Lookahead | on MOESI virtual 16
21.55 (d) off Linear off Dragon physical | 8
21.89 (d) off Linear off Dragon physical | 16
21.93 (d) off Linear off Dragon virtual 8
22.38 (d) off Linear off Dragon virtual 16
20.11 (d) off Linear off MOESI physical | 8
20.37 (d) off Linear off MOESI physical 16
20.52 (d) off Linear off MOESI virtual 8
20.87 (d) off Linear off MOESI virtual 16
21.92 (d) off Linear on Dragon physical | 8
22.27 (d) off Linear on Dragon physical | 16
22.18 (d) off Linear on Dragon virtual 8
22.63 (d) off Linear on Dragon virtual 16
20.14 (d) off Linear on MOESI physical | 8
20.35 (d) off Linear on MOESI physical 16
20.48 (d) off Linear on MOESI virtual 8
20.81 (d) off Linear on MOESI virtual 16
20.76 (d) off none off Dragon physical | 8
21.69 (d) off none off Dragon physical 16
20.75 (d) off none off Dragon virtual 8
21.75 (d) off none off Dragon virtual 16
19.3 (d) off none off MOESI physical | 8
20.15 (d) off none off MOESI physical | 16
19.33 (d) off none off MOESI virtual 8
20.24 (d) off none off MOESI virtual 16
20.92 (d) off none on Dragon physical 8
21.86 (d) off none on Dragon physical 16
20.91 (d) off none on Dragon virtual 8
21.93 (d) off none on Dragon virtual 16
19.32 (d) off none on MOESI physical | 8
20.16 (d) off none on MOESI physical | 16
19.35 (d) off none on MOESI virtual 8
20.26 (d) off none on MOESI virtual 16
21.74 (d) off Lookahead | off Dragon physical 8

XX D. Design Space Exploration

22.3 (d) off Lookahead | off Dragon physical | 16
21.98 (d) off Lookahead| off Dragon virtual 8
22.59 (d) off Lookahead | off Dragon virtual 16
20.16 (d) off Lookahead | off MOESI physical | 8
20.62 (d) off Lookahead | off MOESI physical | 16
20.37 (d) off Lookahead | off MOESI virtual 8
20.87 (d) off Lookahead | off MOESI virtual 16
22.0 (d) off Lookahead | on Dragon physical | 8
22.59 (d) off Lookahead | on Dragon physical 16
22.23 (d) off Lookahead | on Dragon virtual 8
22.91 (d) off Lookahead | on Dragon virtual 16
20.29 (d) off Lookahead | on MOESI physical | 8
20.79 (d) off Lookahead | on MOESI physical | 16
20.51 (d) off Lookahead| on MOESI virtual 8
21.07 (d) off Lookahead| on MOESI virtual 16
21.74 (d) on Linear off Dragon physical 8
22.11 (d) on Linear off Dragon physical 16
22.19 (d) on Linear off Dragon virtual 8
22.6 (d) on Linear off Dragon virtual 16
21.83 (d) on Linear off MOESI physical | 8
22.15 (d) on Linear off MOESI physical | 16
22.25 (d) on Linear off MOESI virtual 8
22.71 (d) on Linear off MOESI virtual 16
22.0 (d) on Linear on Dragon physical 8
22.3 (d) on Linear on Dragon physical | 16
22.35 (d) on Linear on Dragon virtual 8
22.85 (d) on Linear on Dragon virtual 16
2221 (d) on Linear on MOESI physical | 8
22.48 (d) on Linear on MOESI physical 16
22.53 (d) on Linear on MOESI virtual 8
23.06 (d) on Linear on MOESI virtual 16
20.64 (d) on none off Dragon physical | 8
21.63 (d) on none off Dragon physical | 16
20.63 (d) on none off Dragon virtual 8
21.67 (d) on none off Dragon virtual 16
20.42 (d) on none off MOESI physical | 8
21.4 (d) on none off MOESI physical 16
20.42 (d) on none off MOESI virtual 8
21.46 (d) on none off MOESI virtual 16
20.9 (d) on none on Dragon physical | 8
21.9 (d) on none on Dragon physical | 16
20.9 (d) on none on Dragon virtual 8
21.96 (d) on none on Dragon virtual 16
20.76 (d) on none on MOESI physical | 8

D.1. Results XXI

21.75 (d) on none on MOESI physical | 16
20.77 (d) on none on MOESI virtual 8
21.82 (d) on none on MOESI virtual 16
21.89 (d) on Lookahead | off Dragon physical 8
22.61 (d) on Lookahead | off Dragon physical 16
22.07 (d) on Lookahead | off Dragon virtual 8
22.86 (d) on Lookahead | off Dragon virtual 16
21.7 (d) on Lookahead | off MOESI physical | 8
22.42 (d) on Lookahead | off MOESI physical 16
21.85 (d) on Lookahead | off MOESI virtual 8
22.64 (d) on Lookahead | off MOESI virtual 16
22.1 (d) on Lookahead | on Dragon physical | 8
22.82 (d) on Lookahead | on Dragon physical | 16
22.31 (d) on Lookahead | on Dragon virtual 8
23.14 (d) on Lookahead | on Dragon virtual 16
22.06 (d) on Lookahead | on MOESI physical | 8
22.79 (d) on Lookahead | on MOESI physical 16
22.19 (d) on Lookahead | on MOESI virtual 8
23.01 (d) on Lookahead | on MOESI virtual 16

E. Contributions of this Work in Part 11

This section aims to make clear the contributions of this work. Part two describes the
processor-accelerator system. The Chapters 5, 6 and 7 describe mostly work that was
done prior to this work. The only exception are the hardware implementation of the
profiler described in 6.4, which needed some changes[73] and the C-Box in Chapter 7.4.
The C-Box was developed together with the student works [74] and [64]. The CGRA
generator was also developed during this work in a supervised Masters Thesis [74]. The
contents of Chapter 8 were completely developed during this work. Chapter 9 is mostly
based on previous work. Exceptions are the speculative method inlining described in
Section 9.1 which was completely developed during this work and the Sections 9.5 and
9.6. Also, the scheduler was re-implemented during this work in a supervised Masters
Thesis [64].

XXIV E. Contributions of this Work in Part I1

	Titelseite
	Abstract
	Inhaltsverzeichnis
	Introduction
	Introduction
	Motivation
	Contribution of this Work

	Technical Background
	Reconfigurable Hardware
	Caches

	Related Work
	Reconfigurable Accelerators
	Graphic Processing Units
	Compiler-based Approaches
	Summary

	Description of Our Approach
	Problem Formulation
	Thesis Outline

	System Description
	Java as Instruction Set Architecture
	Java Memory System
	Java Bytecode
	Java Method calls

	AMIDAR Processor
	Basic Principle
	Functional Units
	AMIDAR Executable Format
	Online Profiler

	CGRA Architecture
	Processing Element Array
	Context Memories
	Context Control Unit
	Condition Box
	Important Features of the CGRA

	AMIDAR CGRA Interface
	Interface Configuration Memories
	CGRA Bytecodes
	Live-In/Out Strategies

	Kernel Mapping Algorithm
	Speculative Method Inlining
	Instruction Graph Generation
	Control and Dataflow Graph Generation
	Resource and Routing Constrained Scheduling
	Context Management
	Bytecode Patching

	Memory Subsystem Optimization
	High-Level Compiler Optimizations
	Software Pipelining
	Aliasing Speculation

	Memory Subsystem
	Cache Architecture
	Coherence Protocol
	Access Classification and Distribution

	Memory Prefetching
	Lookahead Prefetching
	Prefetch management

	Implementation and Timing Analysis
	L1 Cache
	L2 Cache
	Coherence Controller
	Timing Analysis

	Evaluation
	AMIDAR Simulator
	Simulator Implementation
	Parallel Sweeps
	Performance
	Measurement Procedure

	Prerequisites
	Benchmark Applications
	CGRA Comparison

	Design Space Exploration
	Discussion of Prefetching
	Discussion of Coherence Mechanisms
	Discussion of Aliasing Speculation
	Discussion of L2 Cache Design
	Discussion of CGRA Design
	Summary

	Results
	Comparison With Other Approaches
	Prototype Implementation

	Conclusion
	Open Points and Future Work
	Summary

	Bibliography
	AMIDAR Simulator Accuracy
	CGRA Description
	Nested Loops in The Schedule
	Design Space Exploration
	Results

	Contributions of this Work in Part II

