

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

Ph.D. DISSERTATION

Efficient Predication Techniques on
Coarse-Grained Reconfigurable

Architectures

재구성형 구조에서의 효율적인 조건실행 기법

BY

Kyuseung Han

AUGUST 2013

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Efficient Predication Techniques on
Coarse-Grained Reconfigurable

Architectures

재구성형 구조에서의 효율적인 조건실행 기법

BY

Kyuseung Han

AUGUST 2013

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Efficient Predication Techniques on Coarse-Grained

Reconfigurable Architectures

재구성형 구조에서의 효율적인 조건실행 기법

지도교수 최 기 영

이 논문을 공학박사 학위논문으로 제출함

2013 년 5 월

서울대학교 대학원

전기 컴퓨터 공학부

한 규 승

한규승의 공학박사 학위논문을 인준함

2013 년 6 월

위 원 장 채 수 익

부위원장 최 기 영

위 원 백 윤 흥

위 원 이 종 은

위 원 김 윤 진

Abstract

Coarse-Grained Reconfigurable Architecture (CGRA) is one of viable solutions

in embedded systems to accelerate data-intensive applications. It typically con-

sists of an array of processing elements (PEs) and a centralized controller,

which can provide high performance, flexibility, and low power. Parallel ar-

ray processing reduces execution time of applications, reconfigurability of PEs

allows changing its functionality, and simplified control structure with static

scheduling for instruction fetching and data communication minimizes power

consumption.

However, as applications become complex so that data-intensive parts are

having control flows in them, CGRAs face a challenge for its effectiveness. Since

the entire PEs are controlled by a centralized unit, it is impossible to execute

programs having control divergence among PEs. To overcome the problem,

we can adopt the technique called predicated execution, which is the unique

solution known so far, but conventional predication techniques have a negative

impact on both performance and power consumption due to longer instruction

words and unnecessary instruction-fetching/decoding/nullifying steps.

Thus, this thesis reveals performance and power issues in predicated exe-

cution when a CGRA executes both data- and control-intensive applications,

which have not been well-addressed yet. Then it proposes high-performance and

low-power predication mechanisms. Experiments conducted through gate-level

simulation show that the proposed mechanism improves energy-delay product

by 11.9%, 14.7%, and 23.8% compared to three conventional techniques. In

addition, this thesis also reveals mapping issues when mapping applications

i

on CGRAs using the proposed predication. A power-saving mode introduced

into PEs prohibits multiple conditionals from being parallelized if conventional

mapping algorithms are used. Thus, this thesis proposes the framework to re-

lease this problem by mapping conditionals to different PEs. Experiments show

that mapping results from the proposed approach lead to 2.21 times higher

performance than those of the naïve approach.

Keywords: CGRA, reconfigurable, predication, predicated execution, low power,

high performance

Student Number: 2008-21002

ii

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 5

2.1 Coarse-Grained Reconfigurable Architecture 5

2.1.1 Introduction . 5

2.1.2 Target Domain . 6

2.1.3 Comparison with Other Architectures 6

2.1.4 Application Mapping . 8

2.1.5 Target CGRA . 8

2.2 Predicated Execution Technique 11

2.2.1 Introduction . 11

2.2.2 Classification . 12

2.2.3 Different Roles in ILP and DLP processors 13

2.2.4 Predication Support on CGRAs 14

Chapter 3 Conventional Predicated Execution Techniques 15

3.1 Partial Predication (Partial) . 16

iii

3.2 Condition-Based Full Predication (CondFull) 18

Chapter 4 State-Based Full Predication 23

4.1 Previous Approach (PseudoBranch) 24

4.2 Counter-Based Approach (StateFull) 25

4.3 Dual-Issue-Single-Execution (DISE) 28

4.4 Hybrid Predication . 32

4.4.1 Motivation . 32

4.4.2 StateFull+Partial . 34

4.4.3 StateFull+Partial+DISE 35

Chapter 5 Evaluation 39

5.1 Implementation . 39

5.1.1 Conventional Techniques 39

5.1.2 Proposed Techniques . 40

5.2 Experimental Setup . 43

5.3 Experimental Results . 46

5.3.1 Effect of Predication Mechanism on Power Consumption

of a PE . 47

5.3.2 Quantitative Definitions of short-if and long-if 48

5.3.3 Compilation Strategy in StateFull+Partial 48

5.3.4 Conventional Techniques (Partial, CondFull, and Pseu-

doBranch) vs. Proposed StateFull Technique 49

5.3.5 Proposed Hybrid Predication Techniques 53

5.3.6 Putting Together . 54

5.3.7 Speedup of Applications 57

Chapter 6 Mapping Framework 61

iv

6.1 Motivation . 61

6.2 Proposed Approach . 63

6.2.1 Overall Flow . 63

6.2.2 From IR to CDFG . 64

6.2.3 Separation . 65

6.2.4 CDFG Mapping . 68

6.3 Implementation . 69

6.4 Experiments . 69

6.4.1 Experimental Setup . 69

6.4.2 Verification of Mapping Framework 70

6.4.3 Quality of Mapping Results 70

Chapter 7 Conclusion 73

7.1 Summary . 73

7.2 Applicable Scope and Future Work 75

Appendix 77

국문초록 93

감사의 글 95

v

List of Figures

Figure 1.1 Application profiling results. 2

Figure 2.1 The target architecture FloRA. 10

Figure 2.2 Architecture for loop pipelining technique for FloRA. . . 11

Figure 3.1 An example C code and its branch equivalent. 16

Figure 3.2 Partial predication (Partial). 17

Figure 3.3 Condition-based full predication (CondFull). 19

Figure 3.4 An example program that naïve conversion to Cond-

Full produces incorrect assembly code due to its nested-

if structure. 20

Figure 4.1 Instruction-based wake-up for state-based full predica-

tion (PseudoBranch). 24

Figure 4.2 Counter-based wake-up for state-based full predication

(StateFull). 26

Figure 4.3 The concept of the DISE technique. 28

Figure 4.4 Dual-Issue-Single-Execution (DISE). 30

vii

Figure 4.5 Additional nop instructions inserted for DISE to balance

the lengths of if- and else-paths. 32

Figure 4.6 An example program that Partial executes with better

performance than StateFull. 34

Figure 4.7 A solution to eliminate the need for nop instructions. . . 36

Figure 4.8 Applying DISE and StateFull together into nested-if

structures for better performance. 38

Figure 5.1 Modification of architecture to support DISE. 41

Figure 5.2 Power consumption of a PE on an unnecessary path.

Here etc. includes power consumption of state registers

and wires. 48

Figure 5.3 Energy normalized to that of StateFull. 49

Figure 5.4 Execution time normalized to that of StateFull. . . . 50

Figure 5.5 Energy consumption of reconfigurable array normalized

to that of StateFull. 51

Figure 5.6 Energy consumption of configuration memory normal-

ized to that of StateFull. 52

Figure 5.7 Number of fetched instructions normalized to that of

StateFull. 52

Figure 5.8 Comparison among StateFull and hybrid approaches. 55

Figure 6.1 The mapping framework on StateFull-based CGRAs. . 63

Figure 6.2 Conversion process from IR to CDFG. 66

Figure 6.3 Comparison of mapping results on performance. 71

viii

List of Tables

Table 4.1 Characteristics of Predicated Execution Techniques 33

Table 5.1 The Detailed Information of the Applications 46

Table 5.2 Improvements of StateFull+Partial 56

Table 5.3 Improvements of StateFull+Partial+DISE 57

Table 5.4 Execution time of JPEG decoder (cycle) 58

Table 5.5 Execution time of H.264 decoder (cycle) 59

ix

Chapter 1

Introduction

A Coarse-Grained Reconfigurable Architecture (CGRA) is an array of Process-

ing Elements (PEs) which can be reconfigured to perform word-level operations.

It is a viable solution for embedded systems since it can meet performance,

flexibility, and low power consumption at the same time. Parallel execution

on abundant PEs reduces the execution time of applications, and reconfigura-

bility of PEs enables to change its functionality according to applications. To

simplify the control of PEs, the schedule of configuration (or instruction) fetch-

ing and data communication are statically decided at compile time and the

single controller orchestrates all. This feature makes CGRAs have the scala-

bility on the number of PEs despite of the use of a single controller and also

gives the efficiency on power consumption. Due to these benefits, there have

been many researches proposing various kinds of CGRAs [1–10] and surveys on

them [11,12].

1

(a) JPEG decoder (b) H.264 decoder

Figure 1.1: Application profiling results.

However, CGRAs face a challenge for its effectiveness as applications become

complex so that data-intensive parts are having control flows in them. Figure 1.1

shows profiling results when two representative multimedia applications are

running on a single ARM 9 processor1. Pieces with red labels are data-intensive

parts and the dagger symbol (†) indicates that the corresponding part has if

structures. We can observe from the figure that lots of data-intensive parts

consuming big portions of the total execution time have control flows in them.

Although accelerating both data- and control- ntensive parts is becoming

an important issue, conventional CGRAs are not suitable to handle them. Since

they have a single controller for the simplified control structure, it is impossible

to execute programs having control divergence among PEs. The only way to

overcome this architectural limitation is known as the technique called predi-

cated execution [14]. However, conventional predications can threaten the com-

petitiveness of CGRAs since it causes serious overhead in both performance

and power consumption.

1We measured the execution time using ARM Developer Suite 1.2 [13].

2

Thus, in this thesis, we reveal performance and power issues of predicated

execution and propose a novel mechanism to overcome drawbacks of the con-

ventional techniques. The main contributions of the thesis include the following.

• We investigate power consumption related with predicated execution tech-

niques for the first time not only in the domain of CGRAs, but in all

domains related to predicated execution. Most of the previous research

on predicated execution has concentrated only on performance improve-

ment and design automation through architecture-level [15, 16] and/or

compiler-level [17, 18] modifications, but no one has considered power

consumption.

• We propose a low-power predication mechanism to mitigate power con-

sumption overhead of predicated execution. Conventional full predication

techniques require both additional instruction bits for instruction encod-

ing and unnecessary decoding of instructions, which incur extra power

consumption in configuration memory and processing elements, respec-

tively. It reaches 32.0% on average over the main target applications

(H.264 video CODEC).

• We propose a predication mechanism to accelerate execution of control

flows. Conventional predication techniques have focused on “correct exe-

cution” of control flows, and thus have negative or no impact on perfor-

mance. On the contrary, our approach not only correctly executes control

flows, but also accelerates their execution through a technique called DISE

(Dual-Issue-Single-Execution). Experiments show that DISE accelerates

the main target applications by 15.1% on average.

3

• We also reveal mapping issues when using the proposed predication. A

power-saving mode introduced into processing elements prohibits multiple

conditionals from being parallelized if conventional mapping algorithms

are used. Thus, we propose the framework to map conditionals separately.

Experiments show that mapping results from the proposed approach lead

to 2.21 times higher performance than those of the naïve approach.

4

Chapter 2

Background and Related Work

2.1 Coarse-Grained Reconfigurable Architecture

2.1.1 Introduction

As the size of semiconductor reaches physical limits but the amount of computa-

tion required in an application increases, it becomes more and more difficult to

satisfy the performance requirement of an embedded system with just software

running on a processor. Therefore, many embedded systems or System-On-

Chips (SoCs) are equipped with one or more dedicated hardware IPs. Such

hardware IPs may provide sufficient performance but lack flexibility, and so

they should be redesigned from the scratch even when the required functionality

changes slightly. Moreover, since hardware can hardly be fixed after fabrication,

it needs much more time and effort put into the verification of the design be-

fore fabrication. Even further, considering that it is a trend to support various

multimedia applications such as music or video codec in a cellular phone or

5

a portable multimedia player, developing an IP for each application takes too

much cost and development time.

One way to solve such a problem is to use a CGRA, which provides hardware-

like performance through an array processing as well as software-like flexibility

through reconfigurability. Instead of developing a new IP for a new application,

to implement an application on a CGRA, one can just reconfigure the existing

CGRA such that the CGRA provides the necessary functionality of the applica-

tion. Due to these benefits, there have been many researches proposing various

kinds of CGRAs [1–10] and surveys on them [11,12].

2.1.2 Target Domain

CGRAs target both Instruction-Level Parallelism (ILP) and Data-Level Paral-

lelism (DLP), but rely more on DLP to utilize abundant PEs since the amount

of ILP is generally limited [19, 20]. Thread-Level Parallelism (TLP) is hardly

supported due to the simplified control structure although there are some at-

tempts [21, 22]. Thus, many works [3, 6, 23–25] have showed that CGRAs are

suitable for multimedia applications, which are the traditional DLP applica-

tions. In addition, [26–28] have argued that CGRAs can support multiple do-

mains, which include not only multimedia but also 3D graphics, and [29–31]

have proved that the target domains can be extended to wireless communica-

tion system.

2.1.3 Comparison with Other Architectures

Compared to Very Long Instruction Word (VLIW) processors [32], CGRAs

have much simpler control structures. This makes it hard to support dynamic

behaviors like stalls, which requires interactions among PEs or between PEs

6

and the controller. On the other hand, CGRAs have scalability and can have

tens or hundreds of PEs while VLIWs generally have less than ten PEs due to

complexity of such logics.

SIMD is well known to be effective and is used popularly [33, 34], but [35]

recently reported the utilization problem in conventional SIMD architectures.

They found that the amount of DLP is quite varying according to applications

so PEs are wasted when applications do not have as much DLP as the number

of PEs. In such cases, CGRAs can exploit ILP on the unused ones, resulting in

better utilization. Instead, CGRAs have more complex hardware and mapping

process than those of SIMD.

There is another kind of reconfigure architecture, which is Field-Programmable

Gate Array (FPGA) [36,37]. FPGAs have bit-level reconfigurability rather than

word-level one, which makes hardware much more optimized for specific appli-

cations. However, making configuration is much more complex and also takes

longer in order to assign bit-level functionality to reconfigurable logics, and

the area/power efficiency can be lower in cases where the applications consist

mostly of word-level operations and so bit-level reconfigurability is neglected.

Many-core systems and CGRAs are similar in that both have many PEs.

However, PEs of CGRAs are much simpler ones since they do not have au-

tonomy and receive orders from a single shared controller. Thus, CGRAs have

efficiency in exploiting ILP and DLP while many-core systems are suitable for

TLP.

7

2.1.4 Application Mapping

To run applications on CGRAs, it is needed to generate configuration of CGRAs

corresponding to the required functionality. The process of generating the con-

figuration is called application mapping or just mapping in short. Since it is

neither possible nor beneficial to execute the entire application on CGRAs,

only data-intensive parts called kernels that have large parallelism are mapped

to CGRAs. Most of the kernels are a loop where iterations have no dependency

between them and thus can be executed in parallel or have some dependency

but can be pipelined with short initiation interval. The functionality of a ker-

nel is generally expressed as a CDFG (control data flow graph) and the kernel

mapping is a process of generating configuration of CGRAs such that the PEs

perform the operations in the CDFG while communication through the inter-

connections of PEs handles the data dependency among the operations.

Mapping of applications onto CGRAs have been researched actively. Some

researched mapping methodology for better quality of solution or faster running

time [38–45], and some want to integrate new issues on mapping process [16,

44,46,47].

2.1.5 Target CGRA

The target architecture is a CGRA called FloRA [9, 48]. It mainly targets the

embedded system applications having ILP and DLP, which include multimedia

applications such as video CODEC (MPEG4, H.264) and 3D graphics. It has

been implemented on a chip and its functionality and performance have already

been verified [48].

The overall architecture is shown in Figure 2.1. It consists of four main

8

components: the PE array, configuration memory, data memory, and controllers.

The PE array has 8×8 PEs, each of which is comprised of an integer ALU, a

shifter, and a local register file and can be dynamically reconfigured every cycle

if needed. The configuration memory contains configuration information (or

instructions) used by the PE array, which defines not only the operation of

each PE but also the interconnection among the PEs. Currently, the bit-width

of the information used by one PE for each cycle is 20 bits and configuration

memory can hold at most 3072 entries. The data memory stores the input/

output data used/generated by the PE array. It is accessible from the outside

of the reconfigurable computing module through the bus, which enables host

processors to provide data for the CGRA. The execution controller manages

macro instructions which generate signals that control the execution of the

CGRA at a macro level. A macro instruction controls issuing instructions (in

the form of a configuration stream that specifies the start address and the end

address in the configuration memory) and fetching/storing data from/into the

data memory.

FloRA has three distinguished features compared to other CGRAs. First

one is efficient resource sharing [9]. Multipliers and dividers are area-critical,

but are used less frequently than ALUs. Thus, it is quite wasteful that each PE

has its own such resources. To tackle this problem, [9] proposed the way that

several PEs share area-critical resources.

Second, FloRA has the loop pipelining technique depicted in Figure 2.2 [49].

In this technique, configuration information is pipelined through the PEs in the

same row, instead of being directly fetched from the configuration memory for

each PE. It contributes to reducing the amount of configuration information,

9

AHB

…

Configuration
Memory

Configuration
Memory

Controller

Execution
Controller

Data
Memory

Controller

Data
Memory

Processing
Element Array

CPU DMA Main Memory IP

Processing Element

…

…

…

…

…

…

…

…

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Mux1

…
Various Inputs

Integer ALU
and Shifter

Shared Register

Local
Register

File

…

Mux2

To Neighbors

Processing Element Array

Reconfigurable Computing Module

Figure 2.1: The target architecture FloRA.

10

Area-
Critical

Resources

C
on

fig
ur

at
io

n
M

em
or

y

Area-
Critical

Resources

Figure 2.2: Architecture for loop pipelining technique for FloRA.

and thus saves power consumption in accessing the configuration memory. Also,

it simplifies the programming model for shared area-critical resources by allow-

ing each PE in the same row to use the shared resources in a round-robin

manner.

Lastly, FloRA can perform floating-point operations by combining two in-

teger PEs. If separate floating point units are integrated to architectures, they

are useless when integer operations are performed. On the other hand, when

floating point units are used, integer functional units will be wasted. Thus, this

approach can save area significantly by utilizing integer functional units for

floating point operations.

2.2 Predicated Execution Technique

2.2.1 Introduction

The existence of control flow in programs limits parallelism in two ways [50].

First, instructions having control dependences cannot be executed until they

are released even though data dependences are released. Second, multiple condi-

tionals have to be serialized due to lack of resources that are needed to handle

11

control flow. Processors targeting fine-grained parallelism like ILP and DLP

generally execute single thread at a time, and thus, lack branch handling units,

program counters, and instruction memory ports, preventing several control

flows from being handled concurrently.

To overcome this limitation and exploit more parallelism, predicated (or

guarded) execution technique [14] or predication in short is adopted by proces-

sors [15, 18, 50–54]. It is a technique to converts control flows to data flows by

modifying both architectures and compilers. It handles control flows by fetch-

ing all instructions but selectively executing them, rather than branching. A

predicate indicates whether an instruction is executed or not, and predication

mechanism denotes the way of determining a predicate. An instruction that

can be nullified by a predication mechanism is called a predicated instruction.

2.2.2 Classification

[50] classified predication techniques into partial and full predication and com-

pared their effects on performance in the domain of ILP, not of DLP. Its no-

tion of full predication is limited to a narrow sense in that they consider only

condition-based full predication. We extend their classification by introducing

state-based full predication [54].

There have been several works related to the state-based full predication.

[52] revealed that state-based full predication can virtually implement full pred-

ication only at the cost of partial predication. [51] emphasized that state-based

full predication can handle nested-if structures, whereas condition-based full

predication cannot.

12

2.2.3 Different Roles in ILP and DLP processors

Predication improves the performance of ILP processors directly and indirectly.

Increasing parallelism by removing control dependences is a direct way, which is

stated in Section 2.2.1. However, when an if structure is long, applying predica-

tion to it takes longer time than branching since predicated instructions always

take cycles even if they are not executed actually. If predication is optionally

given, however, speedup of programs is guaranteed by simply not using predi-

cation when it gives worse results than branching. The side effect of predication

is related to branch prediction. It can remove hard-to-predict branches which

cause frequent branch miss [55] and help increase the success ratio of branch

prediction. The removal of branches may make it hard to predict remaining

branches as branch predictors cannot use correlation information anymore, but

the problem can be solved by predicate prediction [56].

On DLP processors including CGRAs, predication is a much more critical

issue. If a loop body has control flows but an architecture does not support pred-

ication, the loop cannot be parallelized and each iteration should be executed

sequentially. The following code shows an example of such programs.

for (i = 0; i < 8; i++)
{

if (c[i] == 1)
x[i] = 0;

else
x[i] = 1;

}

Each loop iteration requires different instruction flows, but each PE cannot

select its own flow since multiple PEs are controlled by a single control unit. This

problem, called control divergence, prevents programs requiring different control

13

for each PE from being parallelized. Thus, in order to exploit DLP on such loops,

it is essential to adopt predication into architectures [16,18,51–54,57].

2.2.4 Predication Support on CGRAs

Partial predication is used for CGRAs in [57–59]. [57] showed how to implement

partial predication efficiently, and [58] maximized performance by using partial

predication in a speculative way. [59] presented automatic mapping framework

proposed in [58]. On the other hand, [16] proposed an automatic way to accel-

erate control-intensive kernels by using condition-based full predication.

However, they all tried to use conventional predications instead of inventing

a better predication, and [16] and [59] showed that only minimal efforts are

needed for automatic mapping of control flows using conventional predications.

By adopting if -conversion (e.g., [60]), control dependency can be converted to

data dependency. As a result, conventional mapping algorithms do not need to

handle control flow explicitly, but only need to consider data dependency as

usual.

14

Chapter 3

Conventional Predicated
Execution Techniques

Through this and next sections, we present detailed comparison of three ex-

isting predication techniques and two proposed ones. We discuss performance

using 3-address form ISA, which can be extended to a general case. We also

discuss power analysis for fetching/decoding/executing instructions in such a

way that it can be adopted in other processing units, not restricted to the do-

main of CGRAs. The characteristics of CGRAs can affect pros and cons of each

predication technique in some cases, but we explicitly separate such parts from

ISA- or machine- independent parts.

To explain the mechanism of each predication technique, we use an example

of C program shown in Figure 3.1a throughout this section. We assume that the

code represents a part of a loop body and the variables c[i], x, and y are stored

in registers R0, R1, and R2, respectively. Also, we consider several types of if

15

1 if (c[i] == 1)
2 {
3 x = x+1;
4 y = y+1;
5 }
6 else
7 {
8 x = x-1;
9 y = y-1;
10 }

(a) C code

1 cmp R0 #1
2 b neq ELSE
3 IF: add R1 R1 #1
4 add R2 R2 #1
5 b uc END
6

7

8 ELSE: sub R1 R1 #1
9 sub R2 R1 #1
10 END:

(b) branch

Figure 3.1: An example C code and its branch equivalent.

structures; if-only structures, if-else structures, and nested-if structures. Since

each predication shows different characteristics according to these types, we will

use if-else structure to show the basic mechanism and add the explanation for

other types.

3.1 Partial Predication (Partial)

Predication is classically divided into two categories, partial and full, according

to the range of predicated instruction [50]. Partial predication (Partial) simply

adds a number of special predicated instructions such as conditional mov to ISA

(Instruction Set Architecture), whereas full predication makes all instructions

predicated using more architectural modification.

To emulate predication effects for normal instructions using some special

ones, Partial first executes instructions for every control path and commits

results from only one path selected according to the condition using the special

predicated instructions, which is called a transformation process. For example,

line 3 in Figure 3.1a is converted to two instructions as shown in Figure 3.2:

one for storing the result of a normal addition to a temporary register R3 (line

16

Assembly Code
R0 == 0 R0 == 1

Executed? Flag Executed? Flag

1 add R3 R1 #1 Yes Yes
2 add R4 R2 #1 Yes Yes
3 sub R5 R1 #1 Yes Yes
4 sub R6 R2 #1 Yes Yes
5 cmp R0 #1 Yes lt Yes eq
6 cmov eq R1 R3 No lt Yes eq
7 cmov eq R2 R4 No lt Yes eq
8 cmov neq R1 R5 Yes lt No eq
9 cmov neq R2 R6 Yes lt No eq

Figure 3.2: Partial predication (Partial).

1) and the other for committing it if the eq flag (in the status register) is set

(line 6).

The main advantage of Partial is minimal architectural support which is to

add a few instructions to an ISA as stated before. Since an ISA usually has spare

encoding space so that the designer can add new instructions, this approach does

not need many changes in the hardware structure. On the other hand, it has

lower performance than other predication mechanisms since the transformation

inserts predicated instructions additionally and increases register pressure [50].

The increased register pressure could threaten potential speedup achievable

through CGRAs. Originally CGRAs do not have many registers since they are

typically targeted for data-intensive kernels2, where the live ranges of most

variables are relatively short and not much overlapped with each other. Also,

the high cost of registers in terms of area and power consumption hinders the

number of registers from being increased. Consequently, it drives the user to

2CGRAs and SIMD processors may be targeted to accelerate the control-intensive part of
programs as well as the data-intensive part, but they generally have two separate hardware
modules, one for each part [7, 34,61,62].

17

rely on software-level approaches, which generally degrade performance.

Register spill is the most popular and intuitive way to solve the problem,

but it is not appropriate for CGRAs since a limited number of load-store units

and a single, centralized control unit act as a bottleneck to spill registers. For

example, the target CGRA requires at least 12 cycles to read the spilled data

back. Instead, we can allocate more PEs to provide more registers per loop

body. For example, if a loop body has 12 variables and each PE has only eight

registers, executing it on only a single PE would spill four variables, whereas

mapping the loop body into two PEs completely eliminates the need for spilling.

However, it could still have lower performance compared to other approaches

since the PEs may be underutilized, or it may make it impossible to map bigger

applications. In the experiments, average 1.75 more registers are required per

PE, and one example (itpl) cannot be accelerated by the CGRA since it has

16 divergent paths.

In addition, Partial could incur additional overhead in energy consumption

because it executes even unnecessary paths whose results will not be taken. This

makes the execution units including ALUs and register files consume up to 2.88

times (1/(1-0.653)) energy compared to other predication techniques that do

not execute instructions on unnecessary paths, which is shown in Section 5.3.1.

The power gap becomes even larger if Partial is used for switch statements

having multiple paths that need not be executed.

3.2 Condition-Based Full Predication (CondFull)

Unlike partial predication, full predication makes all instructions predicated.

Condition-based full predication (CondFull) is a type of full predication that

18

Assembly Code
R0 == 0 R0 == 1

Executed? Flag Executed? Flag

1 uc cmp R0 #1 Yes Yes
2 eq add R1 R1 #1 No lt Yes eq
3 eq add R2 R2 #1 No lt Yes eq
4 neq sub R1 R1 #1 Yes lt No eq
5 neq sub R2 R2 #1 Yes lt No eq

Figure 3.3: Condition-based full predication (CondFull).

introduces an additional field called condition operand in all instructions. This

condition operand is compared to the flag in each PE and the result deter-

mines whether the corresponding instruction should be executed or not. In

other words, each instruction is annotated by its own activating condition. For

example, condition operands uc, eq, and neq in Figure 3.3 denote that the

corresponding instruction is executed unconditionally, only if the eq flag is set,

and only if the neq flag is set, respectively.

Compared to Partial, CondFull does not have overhead in performance

or energy consumption since it does not require the transformation process [50].

However, there are several reasons that make CondFull increase the overall

energy consumption. First, CondFull requires additional instruction bits used

for condition operands. It affects both dynamic and static energy since it in-

creases the capacity of the configuration memory. This could eventually lead

to an increase in energy consumption even when the architecture executes nor-

mal programs that do not use the predication effect. In addition, although

it eliminates the need for executing instructions on unnecessary paths (refer

to Partial), it still needs to decode the instructions to check the condition

operands in them.

19

C Code
a == 0

Assembly Code
R0 == 0

Executed? Executed? Flag

if (a == 1) Yes 1 uc cmp R0 #1 Yes
if (b == 1) No 2 eq cmp R1 #1 No lt

x = 0; No 3 eq mov R2 #0 No lt
else 4

x = 1; No 5 neq mov R2 #1 Yes lt

(a) naïve conversion

C Code
a == 0

Assembly Code
R0 == 0

Executed? Executed? Flag

if (a == 1 && b == 1) Yes 1 uc testeq R3 R0 #1 Yes
2 uc testeq R4 R1 #1 Yes
3 uc and R4 R3 R4 Yes
4 uc cmp R4 #1 Yes lt

x = 0; No 5 eq mov R2 #0 No lt
if (a == 1 && b != 1) Yes 6 uc testneq R4 R1 #1 Yes lt

7 uc and R4 R3 R4 Yes lt
8 uc cmp R4 #0 Yes lt

x = 1; No 9 neq mov R2 #1 No lt

(b) flattened

Figure 3.4: An example program that naïve conversion to CondFull produces
incorrect assembly code due to its nested-if structure.

Also, CondFull has another limitation in handling nested-if structures.

Since the mechanism is based on condition operands, it can express only one

control flow at a time. In other words, the flag that controls the execution

of a predicated instruction is determined only by the most recent comparison

instruction, and that makes CondFull hard to handle nested-if structures. As

an example, Figure 3.4a shows a program that is executed incorrectly with naïve

conversion to CondFull. Assuming that variables a, b, and x are stored in the

registers R0, R1, and R2, respectively, the assembly code generates incorrect

results when the value of a (i.e., R0) is zero.

To overcome this limitation, CondFull uses a flattening technique in soft-

20

ware level, in which nested-if structures are converted into non-nested ones

during architecture-specific optimization in the backend process. For example,

the code in Figure 3.4a could be converted to the one in Figure 3.4b. However,

this flattening technique could incur performance overhead as can be seen in the

figure. This is mainly because it needs to recalculate flags for each combination.

Moreover, it makes register pressure higher due to the need for extra temporary

registers used to keep intermediate values for calculating flags (see R3 and R4

in the figure). For example, the deblock application has an if structure nested

four times, so flattening causes about 13% overhead compared to the proposed

predication technique that can support nested structures.

21

Chapter 4

State-Based Full Predication

State-based full predication is yet another type of full predication proposed

in [54]. It uses a shared state to make instructions predicated instead of adding

a condition operand to each instruction. In this mechanism, only a few special

instructions are added to manage this shared state, thereby minimizing changes

to the architecture. Nevertheless, since the state affects the entire set of instruc-

tions, state-based full predication virtually obtains the effect of full predication

without any modification of normal instructions. To achieve this, an 1-bit state

register is added to each PE, which indicates either awake or sleep state. PEs

execute instructions normally in AWAKE state, whereas they nullify every in-

struction in SLEEP state. Therefore, by controlling the state of each PE using

a special instruction, either the if-path or else-path can be executed selectively.

23

Assembly Code
R0 == 0 R0 == 1

State Tag Flag State Tag Flag

1 cmp R0 #1 AWAKE AWAKE
2 sleep neq END_IF AWAKE lt AWAKE eq
3 add R1 R1 #1 SLEEP END_IF lt AWAKE eq
4 add R2 R2 #1 SLEEP END_IF lt AWAKE eq
5 sleep uc END_ELSE SLEEP END_IF lt AWAKE eq
6 awake END_IF SLEEP END_IF lt SLEEP END_ELSE eq
7 sub R1 R1 #1 AWAKE lt SLEEP END_ELSE eq
8 sub R2 R2 #1 AWAKE lt SLEEP END_ELSE eq
9 awake END_ELSE AWAKE lt SLEEP END_ELSE eq

Figure 4.1: Instruction-based wake-up for state-based full predication
(PseudoBranch).

4.1 Previous Approach (PseudoBranch)

To control the state of each PE, [51] proposed to use sleep and awake instruc-

tions (PseudoBranch). It associates each sleep instruction with a tag in order

to support nested-if structures without flattening them. Each PE has a tag reg-

ister to store the tag of the most recently executed sleep instruction. When

a sleep instruction is invoked, the PE checks the status flag and enters into

SLEEP state with saving a tag to the register if the flag value satisfies the con-

dition. Once the PE enters into SLEEP state, it wakes up only when an awake

instruction with the same tag is invoked.

Figure 4.1 shows an example of using PseudoBranch. “sleep neq END_IF”

in the line 2 denotes a sleep instruction that changes the state of the PE to

SLEEP state and saves tag as END_IF if the neq flag is set. Awake instructions

in the line 6 and 9 have tags as an operand. It can be seen that in the case of

R0 == 1 the awake instruction in line 6 has no effect since the tag of the PE

does not match to the one in the awake instruction.

24

PseudoBranch can support nested-if structures compared to conventional

predications, but it has performance overhead in non-nested structures since it

requires two additional instructions per if structure. In addition, it will consume

as much power as CondFull since it needs to decode every instruction even

in SLEEP state to check for an awake instruction.

4.2 Counter-Based Approach (StateFull)

We propose a novel state-based full predication, which uses per-PE counters

and a sleep instruction for state transition (StateFull). The sleep instruction

changes the state of a PE from AWAKE state to SLEEP state, which has two

operands: condition and offset. When a PE enters SLEEP state, the per-PE

counter is initialized to the value of the offset operand so that the PE returns

to AWAKE state after skipping as many instructions as specified in the offset

operand (i.e., sleep period). The sleep instructions have similar semantics to

branch instructions, except that PEs simply ignore (neither decode nor execute)

the instructions during SLEEP state instead of jumping to a new address by

modifying the program counter.

Figure 4.2 shows the mechanism of StateFull. “csleep neq 3” is a sleep

instruction that makes the PE sleep during the next three instructions if the

neq flag is set. For example, if R0 is not 1, the sleep instruction in line 2 is

activated (see State column) to put the PE into SLEEP state and keep it in

that state until the counter becomes zero. During the sleep period, the counter

keeps track of the number of instructions to be skipped including the current

instruction.

There can be some issues related to multicycle operations or stalls. First,

25

Assembly Code
R0 == 0 R0 == 1

State Counter Flag State Counter Flag

1 cmp R0 #1 AWAKE AWAKE
2 csleep neq 3 AWAKE lt AWAKE eq
3 add R1 R1 #1 SLEEP 3 lt AWAKE eq
4 add R2 R2 #1 SLEEP 2 lt AWAKE eq
5 csleep uc 2 SLEEP 1 lt AWAKE eq
6 sub R1 R1 #1 AWAKE lt SLEEP 2 eq
7 sub R2 R2 #1 AWAKE lt SLEEP 1 eq

Figure 4.2: Counter-based wake-up for state-based full predication
(StateFull).

we assume that no operations require varying number of cycles (e.g., data-

dependent operation cycles) since such operations can be hardly supported by

CGRAs or other parallel architectures having a single controller and passive

PEs. It is almost impossible for the controller to adjust the execution of PEs

considering the status of all PEs. Second, fixed-multicycle operations cause no

problem in the proposed approach since they are converted to the consecution

of several single-cycle operations in the scheduling phase due to exactly the

same reason as the first one. Thus, a PE does not need to consider multicycle

operations at all. Lastly, the architecture can be stalled dynamically due to

runtime conditions. For example, ADRES architecture [7] should be stalled if

data read operations cause bank conflicts. In such situations, however, we can

simply solve the problem by stalling the counters, too.

StateFull improves performance over PseudoBranch, since it does not

require awake instructions which cause performance overhead. On the other

hand, since it still needs to insert special sleep instructions to control the states

of PEs, it could incur performance overhead compared to CondFull for pro-

grams that do not have any nested-if structure. This performance overhead

26

can be relatively large for short-if statements (short-if means the body of

the if structure is short; refer to Section 5.3.2 for the definition). However,

StateFull provides better performance than CondFull for programs hav-

ing nested-if structures, since it naturally can handle them without flattening.

In StateFull, nesting of if structures does not further increase the register

pressure nor the number of instructions.

Moreover, StateFull contributes to reducing power consumption of PEs

compared to CondFull. A major source of the reduction is that a PE knows

a priori whether the next instruction will be executed or not before decoding

the instruction. This is possible since the predicate is determined solely by

the state register thereby completely eliminating the need for decoding the

next instruction. Thus, when the PE is in SLEEP state, it does not need to do

anything but just counts down until it wakes up. We exploit this observation by

activating only some small logic circuits for counters and blocking unnecessary

switching in registers and combinational circuits, including instruction registers

and decoders. This can lead to a huge reduction in dynamic power consumption

if it is implemented through clock-gating techniques. Note that it is impossible

for CondFull since the PEs recognizes the predicate only after the instruction

has been decoded and the corresponding condition has been evaluated. As a

result, the proposed approach reduces power by 43.4% compared to CondFull

(refer to Section 5.3.1).

In addition, it could reduce the power consumption of configuration mem-

ory as well. Considering the fact that StateFull does not require adding any

additional field to the instructions, it uses smaller configuration memory com-

pared to that for CondFull. Thus it reduces the power consumption of the

27

Figure 4.3: The concept of the DISE technique.

configuration memory as well.

4.3 Dual-Issue-Single-Execution (DISE)

We propose another novel approach called Dual-Issue-Single-Execution (DISE)

to accelerate execution of control flows. Figure 4.3 summarizes this concept.

Considering that only one path (branch) is taken for each if-else construct, it is

possible to issue instructions from both paths at the same time and let the PE

execute only one path depending on the predicate. There is an internal 1-bit

state register called path register for each PE to keep track of the path that the

PE is currently executing.

The value of the path register is toggled by a predicated instruction named

changepath. To provide enough instruction bandwidth, the PE fetches two

instructions at each cycle, one for true-path and the other for false-path. Between

them, the PE selects true-path instruction for execution if the value of the path

register is TRUE, and selects the false-path one, otherwise.

28

If the true-path is longer than the false-path, then the false-path should

be filled up with dummy nop instructions, and vice versa. Adding the dummy

nop instructions is done during compile time and thus increases the code size

thereby taking more configuration memory space. In case of normal code that

has no control flow in it3, all the original instructions are put into the true-

path (path register is set to TRUE) and the false-path is filled up with nop

instructions. In this mechanism, however, DISE could waste lots of configu-

ration memory space due to the increased code size. For example, the round

application in the experiments has an if-else structure that takes 16.7% of the

entire execution time. It means that nop instructions should be inserted into the

false-path for the normal code part, which takes 83.3%, so the dynamic energy

on configuration memory will be increased by 83.3% due to more instruction

fetches.

To avoid this problem, we handle the two code parts differently by introduc-

ing two instruction-fetch modes. Normal code is fetched in the normal mode,

where only one instruction is fetched and assigned to the true-path, and if-else

code is fetched in the DISE mode, where two instructions are fetched (refer to

Section 5.1.2 for the implementation detail).

Figure 4.4 shows an example of DISE. “changepath neq” flips the value of

the path register if the specified flag is asserted. In the case of R0 == 0, the

path register, which is initially set to TRUE to fetch normal code, is changed

to FALSE by the changepath instruction in line 2 since the given predicate is

true. After that, three instructions from the false-path are executed instead of

3Hereafter, we call the portions of the program corresponding to if-else paths as if-else code
and all others as normal code.

29

Assembly Code R0 == 0 R0 == 1

True-path False-path Path Flag Path Flag

1 cmp R0 #1 TRUE TRUE
2 changepath neq TRUE lt TRUE eq
3 add R1 R1 #1 sub R1 R1 #1 FALSE lt TRUE eq
4 add R2 R2 #1 sub R2 R2 #1 FALSE lt TRUE eq
5 nop changepath uc FALSE lt TRUE eq

Figure 4.4: Dual-Issue-Single-Execution (DISE).

true-path instructions until another changepath instruction in the false-path is

invoked to return to the true-path, indicating the termination of if-else code.

The major objective of DISE is to accelerate the execution of control flows.

The previous approaches focus mainly on “correct execution” of control flows

and their execution time is proportional to the total number of instructions

in the if-else code. However, since DISE issues two instructions––one from

the true-path and the other from the false-path––at every cycle, its execu-

tion time depends on the number of instructions in the longest side between

if- and else-paths. This can be achieved without any additional functional unit,

but with minimal modification in the memory structure, causing only 2% area

overhead [53]. DISE is also preferable in terms of performance to the exist-

ing technique that uses more PEs to accelerate the execution of control flows

by executing if- and else-paths at the same time and then selecting the right

result [58]. Although their technique may reduce the latency of one iteration,

it does not improve the throughput when the target application has enough

parallelism.

As mentioned in Section 4.2, StateFull reduces dynamic power consump-

tion by not decoding instructions during sleep periods. Similarly, DISE reduces

30

dynamic power consumption since only instructions in either of the two paths

are decoded. Note that dual-issuing does not increase the number of fetched

instructions. Although it issues twice as many instructions as other predica-

tion techniques for each cycle, the total number of fetched instructions over

the entire execution remains almost the same (ignoring the extra instructions

for DISE, which take typically a very small portion), which is the sum of the

lengths of if- and else-paths. Hence, DISE consumes almost the same dynamic

energy as that of StateFull except the overhead to the circuits added to

support dual-issuing and doubled port width of configuration memory. Fortu-

nately, we develop several techniques to keep the overhead very low (2.4% power

overhead in the reconfigurable array and configuration memory) as detailed in

Section 5.3.6. Moreover, DISE could eventually reduce energy consumption

even with the additional circuit overhead through clock/power gating during

the slack period obtained by performance improvement.

However, it could be inefficient in the case that the lengths of if- and else-

paths are unbalanced. The technique requires balancing the lengths of the two

paths, and thus extra nop instructions are inserted for unbalanced if-else paths

as depicted in Figure 4.5. This incurs increase in code size, and eventually leads

to larger dynamic energy consumption in the configuration memory. This prob-

lem should be addressed carefully since real programs may have a considerable

number of unbalanced if-else structures or even if-only structures making DISE

inefficient.

Besides, DISE has a limitation in applying it to nested-if structures. This

is because the mechanism uses path registers to choose the right instructions to

be executed, which can handle only one control flow at a time. Therefore, this

31

C Code
Assembly Code

True-path False-path

if (x[i] == 1) 1 cmp R0 #1
{ 2 changepath neq

a = a + 1; 3 add R1 R1 #1 sub R1 R1 #1
b = b + 1; 4 add R2 R2 #1 nop
c = c + 1; 5 add R3 R3 #1 nop
d = d + 1; 6 add R4 R4 #1 changepath uc

} 7

else 8

a = a - 1; 9

Figure 4.5: Additional nop instructions inserted for DISE to balance the lengths
of if- and else-paths.

mechanism also requires flattening the nested-if structures as in CondFull,

and thus would cause performance degradation. However, its effect is smaller

than that in CondFull since it has the capability of accelerating the execution

of control flows thereby compensating the negative effect of flattening.

4.4 Hybrid Predication

4.4.1 Motivation

Each predication has pros and cons. CondFull shows relatively good perfor-

mance in both short-if and long-if structures, but it incurs notable overhead in

energy consumption and requires significant modification of the existing ISA.

As an alternative, StateFull could be chosen since it does have significantly

lower energy consumption while maintaining or even improving the performance

over CondFull. However, it performs poorly in the case of short-if structures,

which could be a serious problem since short-if structures take a considerable

portion of control flows in real programs. Other predication techniques such as

Partial and DISE are not appropriate to be used solely since their charac-

32

Table 4.1: Characteristics of Predicated Execution Techniques

ISA Config.
Mem.

Performance Energy Consumption

Short-if Long-if Nested-if Short-if Long-if Nested-if

Partial +insts Identical Moderate Slow Slow Moderate High High
CondFull width ↑ Bigger Fast Fast Slow Moderate High High
StateFull +insts Identical Slow Moderate Fast High Low Low
DISE +insts Identical Moderate Very Fast Moderate Moderate Low Moderate

StateFull+Partial +insts Identical Moderate Moderate Fast Moderate Low Low
StateFull+Partial+DISE +insts Identical Moderate Very Fast Very Fast Moderate Low Low

teristics are rather specialized to specific kinds of programs (short-if structures

for Partial and balanced if-else structures for DISE). The first four rows of

Table 4.1 summarize the characteristics of predication techniques introduced in

the previous section.

Therefore, we propose to combine StateFull with Partial and/or DISE.

The key idea behind this is to compensate the weakness of StateFull by

adopting other predication techniques, and so, to bring synergistic effects in

terms of both performance and energy consumption as shown in the last two

rows of Table 4.1. Also they could be easily integrated into the architecture

without interfering with each other as they are implemented as special instruc-

tions rather than modifying the entire ISA. Note that combining CondFull

with Partial is not beneficial since Partial does not provide any benefit

over CondFull. Hybridizing CondFull with DISE is not beneficial either

since neither DISE nor CondFull can execute nested-if structures efficiently.

Lastly, the combination of CondFull and StateFull is inefficient in terms of

power consumption as both provide similar benefits from full predication itself

and CondFull causes lots of overhead in configuration memory.

33

C Code StateFull Partial

if (x[i] > 255) mov R1 #255 mov R1 #255
x[i] = 255; cmp R0 R1 cmp R0 R1

csleep leq 1 cmov gt R0 R1
mov R0 R1

Figure 4.6: An example program that Partial executes with better perfor-
mance than StateFull.

4.4.2 StateFull+Partial

StateFull inserts sleep instructions into the code to control if structures,

which incurs overhead in energy consumption as well as performance. For long-

if structures, reduction in energy consumption on unnecessary paths is usu-

ally large enough for compensating the overhead of sleep/awake instructions.

However, this overhead could eventually lead to an increase in total energy

consumption in the case of short-if structures, in which energy reduction on

unnecessary paths is small.

To mitigate this overhead, we propose to incorporate Partial into State-

Full to cover short-if structures with very low overhead in performance and en-

ergy consumption. This is based on the observation that mov-only if structures

are common for short-if structures, for example, 79.4% of short-if structures in

three examples (idct, chroma, and max) are composed of only mov operations,

and Partial can handle mov-only if structures without performance overhead

by just replacing mov instructions with conditional mov instructions, as shown

in Figure 4.6.

However, Partial is not always preferred against StateFull in handling

short-if structures, especially when they contain instructions other than mov

instructions. This is because the transformation of short-if structures contain-

34

ing non-mov instructions could degrade performance and consume more energy

due to unnecessary execution of instructions, as explained in Section 3.1. This

is the reason why we decide to use Partial only for mov-only short-if struc-

tures in a software manner. This strategy is investigated through experiments

in Section 5.3.3.

This approach is not ISA specific. Almost all ISAs have mov instructions

and adding a conditional mov instruction into an ISA is a representative

implementation of partial predication [50]. Thus, mov instructions can be easily

transformed to conditional mov instructions added to general ISAs. Note that

the strategy may have to be changed if a different type of partial predication is

implemented (e.g., partial predication based on select instructions [50]).

4.4.3 StateFull+Partial+DISE

We propose to combine DISE with StateFull to further improve performance

and energy efficiency. This is remarkably beneficial because DISE can effectively

accelerate simple if-else structures while StateFull efficiently covers the case

of nested-if structures. StateFull is very effective even for if-only structures

(as well as nested-if structures), which are not efficiently handled by DISE.

Using DISE for unbalanced if-else structures has a problem of increased code

size because the extra nop instructions are inserted to balance the true- and

false-path. This eventually leads to the increase in dynamic power consumption

due to the extra instruction fetches.

To solve this problem, we propose a hardware-level solution to handle un-

balanced if-else structures in a power-efficient way. The solution is adding a

predicated instruction that has the capability of changing the state of a PE

35

Assembly Code R0 == 0

True-path False-path State Counter Path Flag

1 cmp R0 #1 AWAKE TRUE
2 changepath neq AWAKE TRUE lt
3 add R1 R1 #1 sub R1 R1 #1 AWAKE FALSE lt
4 add R2 R2 #1 changepath_csleep uc 2 AWAKE FALSE lt
5 add R3 R3 #1 SLEEP 2 TRUE lt
6 add R4 R4 #1 SLEEP 1 TRUE lt

Figure 4.7: A solution to eliminate the need for nop instructions. This is the
result when the solution is applied to the example code shown in Figure 4.5.

to SLEEP state and, at the same time, alternating between true-path and

false-path. This special instruction, changepath_csleep, eliminates the need

for extra nop instructions completely thereby reducing the size of code so dy-

namic power consumption as well. Figure 4.7 shows an example of using the

special instruction. Instead of filling the false-path (which is shorter than the

true-path) with nop instructions, a changepath_csleep instruction is inserted

right after the termination of the false-path. Note that changing the path right

after the termination of the false-path may not work correctly since it would

result in executing the remaining instructions in the true-path. For example,

changing the path right after the sub instruction in Figure 4.7 would make

the PE execute two add instructions, which leads to incorrect execution of the

program. That is why it sleeps for two cycles before changing the path.

Basically, in nested-if structures, DISE can be applied to either the outer-

most or innermost if-else structures and the rest should be covered by State-

Full. However, such structures can be handled even more efficiently when

DISE and StateFull are applied together. Figure 4.8 shows such an example.

Figure 4.8a shows the C code and Figure 4.8b shows the case of applying DISE

36

to the outermost if-else structure while Figure 4.8c shows the case of applying

it to the innermost one. Figure 4.8d shows how DISE can be applied several

times to further improve the performance by moving multiple code blocks to the

false-path side. Note that in all three cases, converting StateFull to DISE im-

proves the performance but maintains the same number of instructions as that

of the StateFull-only case; applying DISE just requires the change of the

predicated instruction type (csleep to changepath) but does not require ad-

ditional instructions. Therefore, we can accelerate nested structures effectively

by selecting the one giving the maximum performance among the candidates4.

Consequently, these software- and hardware-level techniques help DISE to

overcome its weakness. Moreover, we could further improve the technique by

putting Partial together with it to cover the weakness of StateFull on

short-if structures as discussed in the previous section. Therefore, we use the

technique StateFull+Partial+DISE, as a universal solution to predicated

execution in terms of both performance and power.

4Identifying the best candidate efficiently remains to be a problem to be solved. In the
experiments, we tried all combinations of else code blocks to be moved and chose the one with
highest performance among the feasible (no overlap in the false-path) combinations.

37

C Code StateFull

if (x[i] == 1) 1 cmp R0 #1
{ 2 csleep neq 10

d = 0 3 mov R5 #0
if (y[i] == 1) 4 cmp R1 #1
{ 5 csleep neq 4

a = 0; 6 mov R2 #0
b = 0; 7 mov R3 #0
c = 0; 8 mov R4 #0

} 9 csleep uc 2
else 10 mov R2 #1

a = 1; 11 mov R3 #1
b = 1; 12 csleep uc 1

} 13 mov R5 #1
else 14

d = 1; 15

(a) example

True-path False-path

1 cmp R0 #1
2 changepath neq
3 mov R5 #0 mov R5 #1
4 cmp R1 #1 changepath_csleep uc 7
5 csleep neq 4
6 mov R2 #0
7 mov R3 #0
8 mov R4 #0
9 csleep uc 2
10 mov R2 #1
11 mov R3 #1

(b) applying DISE into the outermost if-else structure

True-path False-path

1 cmp R0 #1
2 csleep neq 7
3 mov R5 #0
4 cmp R1 #1
5 changepath neq
6 mov R2 #0 mov R2 #1
7 mov R3 #0 mov R3 #1
8 mov R4 #0 changepath uc
9 csleep uc 1
10 mov R5 #1

(c) applying DISE into the innermost if-else
structure

True-path False-path

1 cmp R0 #1
2 changepath neq
3 mov R5 #0 mov R5 #1
4 cmp R1 #1 changepath_csleep uc 4
5 changepath neq
6 mov R2 #0 mov R2 #1
7 mov R3 #0 mov R3 #1
8 mov R4 #0 changepath uc

(d) applying DISE into both if-else structures

Figure 4.8: Applying DISE and StateFull together into nested-if structures
for better performance.

38

Chapter 5

Evaluation

5.1 Implementation

5.1.1 Conventional Techniques

Partial Predication (Partial)

We added a conditional mov (cmov) instruction to the ISA for Partial. Instead

of the cmov instruction, a select instruction could have been implemented for

the purpose of Partial. However, it was impossible to integrate the select

instruction into the target architecture because it had four operands, whereas

the ISA allowed only three-address form.

Condition-Based Full Predication (CondFull)

For the implementation of CondFull, we appended a 3-bit condition operand

to each instruction and implemented a mechanism to nullify instructions on

unnecessary paths by generating signals to disable writes into the registers

and latches (disabling writes into the latches keeps the functional units from

39

unnecessary switching). Due to this, the length of each instruction was increased

from 20 bits to 23 bits and the capacity of the configuration memory was

increased from 7.5KB (=3072×20bits) to 8.625 KB (=3072×23bits).

Another State-Based Full Predication (PseudoBranch)

We tried to implement PseudoBranch as proposed in [51]. We added sleep/

awake instructions to the ISA, and added an 1-bit state register (representing

either AWAKE or SLEEP state) and a 5-bit tag register to each PE. However,

as explained in Section 4.1 and Section 4.2, PseudoBranch cannot save power

with extra logic.

5.1.2 Proposed Techniques

State-Based Full Predication (StateFull)

We added a csleep instruction to the ISA. To keep track of information on

sleep states, we added an 1-bit state register (representing either AWAKE or

SLEEP state) and an 8-bit sleep period counter (in short, sleep counter) for

each PE. This sleep counter was implemented by extending the existing 3-bit

counter, which had been originally introduced to support multicycle operations

such as multiplication. The counter could be shared like this since the existing

counter would have not been used otherwise during SLEEP state. The 1-bit

state register is used for gating clock signals of all registers (except the sleep

counter) to prevent unnecessary bit changes during SLEEP state, thereby re-

ducing dynamic power consumption dramatically.

Since we use an 8-bit sleep counter, it limits the maximum sleep period

to 256 instructions. However, it is sufficient for the target applications having

DLP as they do not have extremely long-if structures in most cases. In the ten

40

Area-
Critical

Resources C
on

f.
M

em
or

y

Figure 5.1: Modification of architecture to support DISE.

applications, the longest if structure consists of 143 instructions. Note that this

does not imply that the target architecture cannot execute longer if structures.

Rather, such long-if structures can be handled by applying software-level tech-

niques such as splitting a long sleep period into multiple, short sleep periods

having at most 256 instructions.

Dual-Issue-Single-Execution (DISE)

The implementation of the DISE technique requires adding one more memory

bank and datapath to fetch one more instruction. The actual implementation

can be varying according to the baseline architectures since they have their own

ways of configuration, but Figure 5.1 shows how it is combined with the fea-

ture shown in Figure 2.2. The instruction registers, which pipeline instructions

through the PEs in the same row, were doubled and the configuration memory

was divided into two banks (thus having the same capacity, 1536 entries for

each bank). We also added a changepath instruction to the ISA and incorpo-

rated an 1-bit path register and a two-to-one 20-bit multiplexer into each PE

to select the instructions to be executed.

To control the number of instructions issued per cycle (two for if-else code

and one for normal code), it was necessary to modify the execution controller of

41

FloRA. Since the execution of FloRA was controlled by macro instructions, we

implemented this feature by adding a new type of macro instructions to fetch

two instructions (instead of one) in each cycle. For example, if a program is

composed of a normal code block (A), an if-else code block (B), and another

normal code block (C) in sequence, it is executed by three macro instructions

in sequence: fetch A, fetch_DISE B, and fetch C.

Also, we developed an efficient way to fully utilize both banks of the config-

uration memory. A naïve way of implementing DISE is to place true-path code

and false-path code into the first and the second bank, respectively. However,

it makes the second bank underutilized in the case of normal code since it is

located only in the true-path by default. To solve this problem, we placed the

i-th instruction in normal code into the (i mod 2)-th bank as in interleaved

memory so that normal code instructions reside in both banks. Then, we let

the execution controller give PEs the 2-bit information: the 1-bit control signal

indicating whether it is DISE mode or not and the least significant bit of its pro-

gram counter. Thus, PEs could select instructions considering the information

as well as the internal path register value.

Hybrid Approaches

Hybrid approaches such as StateFull+Partial and StateFull +Partial

+DISE can be easily implemented by applying all changes needed for the in-

volved predication techniques. For StateFull+Partial+DISE, a changepath-

_sleep instruction needs to be added to the ISA additionally, which is discussed

in Section 4.4.3.

42

5.2 Experimental Setup

To evaluate and compare the mentioned predication techniques accurately, we

implemented all of them on the baseline architecture at register-transfer level

using Verilog HDL. From the RTL description, gate-level circuits were synthe-

sized with 500 MHz of target clock frequency using Synopsys Design Compiler

with TSMC 45 nm technology library. We measured the performance and the

energy consumption of the reconfigurable array through the gate-level simula-

tion using Synopsys Design Compiler and Mentor Graphics ModelSim. We used

CACTI 6.5 [63] to estimate power consumption of the configuration memory

also with 500MHz of target clock frequency at 45 nm technology library.

The experiment is conducted on the reconfigurable array and configuration

memory but not on data memory since data memory access is affected minimally

in the experiment. Predication could possibly affect data memory access in two

ways. According to [50], Partial can cause more memory access since it works

in a speculative way compared to full predication. Thus, it can cause notable

differences in ILP applications. However, it does not in DLP applications since

the amount of accessed data is hardly changed even if multiple paths of control

flow are executed. itpl is the only exception in the experiment, but it cannot be

mapped using Partial anyway. Another factor is increased register pressure.

However, we mapped the application to the CGRA using more PEs instead of

spilling registers, which is stated in Section 3.1.

We selected ten kernels from real-world applications and faithfully mapped

each application to architectures with different predication techniques using

libraries [64] and/or manually for comparison. We categorized applications into

43

Short-If and Long-If since the efficiency of predication techniques is much

more important for programs having longer if structures. We define a short-if

structure as an if structure that has size less than or equal to four according

to the experimental results (refer to Section 5.3.2) and Short-If as a set of

applications that have only short-if structures. According to the classification,

the following five examples belong to Short-If.

• IDCT (idct) performs discrete cosine transform and clips values into the

predefined ranges, which is one of the most compute-intensive parts in

the JPEG decoder.

• Chromakey (chroma) is a technique for composition of two images.

• Finding max (max) searches a given set of integers for the maximum value.

• Sum of absolute differences (sad) calculates the sum of absolute differ-

ences in pairs of integers, which is widely used for video applications.

• Shift instead of division (shift) divides the given integer by 16 using a

shift operation. A control flow is necessary due to the case that the given

integer is negative.

On the contrary, the following five examples have much more complex control

flows including long and/or nested-if structures, which we will refer to as Long-

If.

• Rounding (round) approximates the given set of floating point values to

the nearest integer. We use half-away-from-zero rounding.

44

• SECDED decoding (secded), Single-Error-Correction-and-Double-Error-

Detection, is an error-correcting method widely used for communica-

tion. We choose Hamming (8,4) among several different ways to perform

SECDED decoding.

• Deblocking filter (deblock) smooths the sharp edges between macroblocks,

which arise by the effect of block coding techniques in the H.264 video de-

coder. The pixels are handled in different ways according to the strength

of the blocking effect.

• Interpolation (itpl) interpolates values between pixels, which is one of

the most important steps in the H.264 video decoder. It chooses the mode

of interpolation among 16 different modes, and thus forms a long control

flow.

• Efficient pyramid image coder (epic) is the image compression method.

Among kernels in the program, unquantize_image has a nested-if struc-

ture.

Many applications are from real multimedia applications; idct from JPEG de-

coder, sad from MPEG4, and deblock and itpl from H.264. In addition, max,

shift, and round are commonly used operations. Each kernel consists of one

loop and the detailed information for one iteration of the loop is shown in Ta-

ble 5.1. The execution cycles and the percentage of execution cycles taken by if

structures are measured based on the case when StateFull is used. Only the

outermost if structures are considered in the measurement. The average execu-

tion cycles of Short-If and Long-If are 45.80 and 172.75 cycles, respectively.

45

Table 5.1: The Detailed Information of the Applications

Short-If Long-If

idct chroma max sad shift round secded deblock itpl epic

Unrolling factor 1 2 1 1 8 4 8 2 4 8
Number of Operations 544 144 328 136 56 128 624 624 3136 176

Data Memory Access (Byte) 32 48 80 32 16 32 24 48 152 24

Execution Cycle 103 25 63 24 14 36 85 105 465 30
If Structures 2.9% 4.0% 7.5% 4.2% 7.1% 19.4% 24.7% 61.0% 50.8% 40.0%

Short If Structures 2.9% 2.0% 7.5% 4.2% 7.1% 0% 0% 0% 5.0% 13.3%
Long If Structures 0% 0% 0% 0% 0% 19.4% 24.7% 61.0% 45.8% 26.7%

As shown in the table, two groups of applications have different charac-

teristics in terms of the portion of execution time spent for the execution of

if structures. For short-if structures, it is beneficial to simply use Partial

(which is also possible for hybrid techniques) or CondFull. However, in the

case of long-if structures, conventional techniques are expected to be inefficient

in terms of performance and power consumption. The problem could be even

more serious if the if structures form nested ones, which is quite common in

long-if structures. Therefore, we are focusing on programs having long and/or

nested-if structures (Long-If).

5.3 Experimental Results

In this section, we first show that the proposed StateFull scheme reduces the

power consumption in a PE significantly. Then, we compare StateFull scheme

and hybrid scheme with conventional approaches to show the improvement in

energy consumption as well as performance.

46

5.3.1 Effect of Predication Mechanism on Power Consumption
of a PE

To show the pure effect of different predication mechanisms, we used synthetic

applications to reproduce unnecessary paths, which lasted for 10 cycles with a

random configuration and input data. If we used real applications, the results

could be slightly different but not much because the power consumption on

an unnecessary path is mainly due to instruction decoding and the amount of

power consumption is about the same regardless of what kind of instructions

are decoded.

Figure 5.2 shows power consumption of major components in one PE. It can

be seen that, although the predication techniques have no notable difference in

static power consumption, they have significant impact on dynamic power con-

sumption. More specifically, StateFull reduced 76.9%, 57.7%, and 65.9% of

dynamic power consumption compared to Partial, CondFull, and Pseu-

doBranch, respectively. This is mainly because StateFull does not require

decoding of instructions, whereas CondFull and PseudoBranch require at

least decoding them and Partial requires even executing them. It enables

StateFull to reduce activities in the main components of a PE including the

decoder, the ALU, and the register file, which eventually leads to huge savings

in dynamic power consumption. Although the counter incurred extra dynamic

power consumption to keep track of the sleep period, reduction in dynamic

power consumption in the aforementioned components was much larger than

the overhead, and thus contributed to reducing the total power consumption

(including static power consumption) by 65.4%, 43.4%, and 52.2% compared to

Partial, CondFull, and PseudoBranch, respectively.

47

Decoder RF ALU/shifter Counter etc. Total
0

100

200

300

400
P
ow

er
(µ
W

)

Partial (Static) CondFull (Static) PseudoBranch (Static) StateFull (Static)

Partial (Dynamic) CondFull (Dynamic) PseudoBranch (Dynamic) StateFull (Dynamic)

Figure 5.2: Power consumption of a PE on an unnecessary path. Here etc.
includes power consumption of state registers and wires.

5.3.2 Quantitative Definitions of short-if and long-if

In order to classify short-if and long-if, we measured energy on synthetic ap-

plications with various sizes of if structures under the environment mentioned

earlier. We tested two cases; one having addition or shift operations in the

body and the other having only mov operations in the body. As mentioned

in Section 4.4.2, it is because mov operations do not use functional units and

Partial does not have performance overhead in handling them. The result is

shown in Figure 5.3. In add/shift cases, CondFull and StateFull consume

almost same energy when the size of body is four. In mov cases, the energy

consumptions of all three become similar for size five or above. Based on this

observation, we define an if structure as short if its size is less than or equal to

four. Otherwise, we regard it as long.

5.3.3 Compilation Strategy in StateFull+Partial

Figure 5.3 also shows why we use Partial for only special cases where short-if

structures are only composed of mov instructions in the combined approach of

StateFull+Partial. Partial consumes much more energy than CondFull

48

1 2 3 4 5 6 1 2 3 4 5 6
0.5

1

1.5

2

Add / Shift Mov only

N
o
rm

al
iz
ed

E
n
er
gy

Partial CondFull StateFull

Figure 5.3: Energy normalized to that of StateFull.

or StateFull in add/shift cases, but it is quite competitive in mov cases.

Actually, Partial outperforms StateFull even for long mov-only structures,

although such cases rarely exist in real applications.

5.3.4 Conventional Techniques (Partial, CondFull, and Pseu-
doBranch) vs. Proposed StateFull Technique

Partial and CondFull are designed to be optimized for simple (non-nested)

if structures, so they will be slow when executing nested-if structures. Pseu-

doBranch can support nested-if structures, but it requires more instructions

to handle control flow than StateFull. Also, StateFull consumes less en-

ergy. Note that Partial could not be used for itpl since it was composed of

16 control paths, and thus required too many (at least 16) registers to store the

outputs of all the paths.

Performance

Figure 5.4 compares the execution time of the four predication techniques, which

is normalized to that of StateFull. In the case of Short-If, Partial shows

almost the same performance as CondFull since if structures in these ap-

49

idct chroma max sad shift round secdeddeblock itpl epic
0.8

0.9

1

1.1

1.2

Short-If Long-If

N
or
m
al
iz
ed

T
im

e
Partial CondFull PseudoBranch StateFull

Figure 5.4: Execution time normalized to that of StateFull.

plications have only mov instructions in most cases; however, PseudoBranch

and StateFull show worse performance than CondFull in every case due to

its control overhead incurred by sleep instructions. On the contrary, Pseudo-

Branch and StateFull show their strengths on Long-If since they can avoid

the overhead of CondFull due to flattening of nested-if structures. Most es-

pecially, StateFull mostly outperformed CondFull in terms of performance

though CondFull executed round faster since the example does not have any

nested-if structures. One outlier is Partial executing deblock much faster

than other mechanisms. This is because Partial can extract common subex-

pressions among different control paths. Considering that Partial executes all

possible paths and takes only one result from the selected path, executing the

common subexpressions only once for multiple paths helps Partial to improve

performance.

Energy Consumption of the Reconfigurable Array

Figure 5.5 shows energy consumption of the reconfigurable array. For Short-

If, Partial, and CondFull consumed less energy than PseudoBranch and

50

idct chroma max sad shift round secdeddeblock itpl epic
0.8

1

1.2

1.4

1.6

Short-If Long-If

N
o
rm

al
iz
ed

E
n
er
gy

Partial CondFull PseudoBranch StateFull

Figure 5.5: Energy consumption of reconfigurable array normalized to that of
StateFull.

StateFull mainly due to their faster execution time. Between Partial and

CondFull, Partial consumed more energy than CondFull for the last two

examples since Partial actually executed arithmetic operations on unnecessary

paths, thereby incurring large overhead in energy consumption of the ALU as

well as the register file. On the other hand, Partial consumed smaller energy

than CondFull for the other examples in Short-If, in which most of the

unnecessary paths have only mov instructions, because the penalty of executing

unnecessary paths was small and Partial did not require any modification

to ISA. For Long-If, StateFull consumed 17.3%, 13.1%, and 18.3% lower

energy compared to Partial, CondFull, and PseudoBranch, respectively,

as it reduced both execution time (Figure 5.4) and power consumption of a PE

(Figure 5.2).

Energy Consumption of Configuration Memory

Predication mechanisms also affect energy consumption of the configuration

memory, which is shown in Figure 5.6. In most cases, Partial and StateFull

consumed less energy on the configuration memory than CondFull though

51

idct chroma max sad shift round secdeddeblock itpl epic
0.6

0.8

1

1.2

1.4

Short-If Long-If

N
o
rm

al
iz
ed

E
n
er
gy

Partial CondFull PseudoBranch StateFull

Figure 5.6: Energy consumption of configuration memory normalized to that of
StateFull.

idct chroma max sad shift round secdeddeblock itpl epic
0.6

0.8

1

1.2

1.4

Short-If Long-If

N
or
m
al
iz
ed

N
u
m
b
er

Partial CondFull PseudoBranch StateFull

Figure 5.7: Number of fetched instructions normalized to that of StateFull.

CondFull fetched less number of instructions in many cases (see Figure 5.7).

This is because CondFull adds a condition field to each instruction, and thus

increases both static and dynamic energy consumption of the configuration

memory. The only exception is max where StateFull suffered from relatively

high performance overhead (see Figure 5.4) due to the increase in the number

of fetched instructions.

52

5.3.5 Proposed Hybrid Predication Techniques

We hybridize StateFull with Partial and DISE to improve performance

in short-if and if-else structures, respectively. Figure 5.8a shows the execu-

tion time of StateFull and hybrid mechanisms. For applications in Short-

If, Partial combined with StateFull contributed to reducing the execution

time by up to 9.5% compared to the StateFull-only mechanism. Moreover,

DISE further reduced the execution time of applications in Long-If by up to

23.7%, which is mainly due to dual-issuing of instructions. The reduced execu-

tion time by Partial directly affected the total energy consumption as depicted

in Figure 5.8b since Partial appeared to have negligible overhead of energy

consumption caused by extra circuits to support it.

On the other hand, the effect of DISE on energy is varying according to the

applications. Basically DISE incurred some degree of extra energy consumption

due to the additional logics, but performance improvement reduced the energy

consumption in some examples (round, deblock, and itpl). When there is no

if-else structure like Short-If applications, you can see from Figure 5.8b that

energy consumption is increased, which is 2.4% of total energy consumption

on the average. Since StateFull and DISE consume almost the same power

as DISE also significantly improve the energy consumption compared with the

three existing approaches as StateFull does, which is proven in the previous

subsections, energy consumption of the three approaches is proportional to the

execution time except the logic overhead.

Meanwhile, we can see from Figure 5.8c that DISE does not affect the num-

ber of fetched instructions except the case of round. As shown in Figure 4.8,

since csleep instructions are directly replaced by changepath instructions and

53

changepath_csleep eliminates the insertion of nop instructions in unbalanced

if-else structures, no additional instruction overhead is needed in most cases.

The only exception is when if-else structures are perfectly balanced, which

round example corresponds to. If the sizes of true-path and false-path are ex-

actly equal, then a nop instruction should be inserted to true-path like Fig-

ure 4.4. However, we can obtain huge benefit inversely in such cases since the

overhead is just one more fetches of instructions but both paths are overlapped

well so the execution time is greatly reduced (see results of round in Figure 5.8a

and Figure 5.8b).

5.3.6 Putting Together

Table 5.2 and Table 5.3 summarize all results discussed so far5. We define

improvement as follows to reflect that less energy/delay/EDP (energy-delay

product) is better.

Improvement = 1−GEOMEAN
(

Energy/Delay/EDP of the hybrid mechanism
Energy/Delay/EDP of the baseline

)
Thus, higher improvement implies better design according to this definition.

The first rows in the tables indicate the baseline mechanisms.

According to the experimental results, StateFull+Partial turned out to

be suitable for a “universal predication mechanism” that operates efficiently for

different kinds of programs, compared to other mechanisms. It consumed less

energy than either Partial or StateFull since any of the two mechanisms

can be applied according to their specialty. For Long-If, performance was

slightly sacrificed compared to Partial to further reduce energy consumption

5Long-If and Total for Partial do not include the results for itpl since Partial could
not be used for it, as explained in Section 5.3.4.

54

idct chroma max sad shift round secdeddeblock itpl epic
0.7

0.8

0.9

1

1.1

Short-If Long-If

N
o
rm

al
iz
ed

T
im

e

StateFull StateFull+Partial StateFull+Partial+DISE

(a) execution time

idct chroma max sad shift round secdeddeblock itpl epic
0.8

0.9

1

1.1

Short-If Long-If

N
or
m
al
iz
ed

E
n
er
gy

StateFull StateFull+Partial StateFull+Partial+DISE

(b) energy consumption of both reconfigurable array and configuration memory

idct chroma max sad shift round secdeddeblock itpl epic
0.7

0.8

0.9

1

1.1

Short-If Long-If

N
o
rm

al
iz
ed

N
u
m
b
er

StateFull StateFull+Partial StateFull+Partial+DISE

(c) number of fetched instructions

Figure 5.8: Comparison among StateFull and hybrid approaches. the values
are normalized to the results of StateFull.

55

Table 5.2: Improvements of StateFull+Partial

Improvement over

Partial CondFull PseudoBranch StateFull

Short-If
Energy 1.5% 3.4% 10.6% 2.9%
Delay 0.0% -2.1% 7.6% 3.0%
EDP 1.5% 1.4% 17.4% 5.8%

Long-If
Energy 12.0% 13.8% 15.7% 0.3%
Delay -1.7% 4.0% 8.8% 0.4%
EDP 10.4% 16.1% 20.1% 0.6%

Total
Energy 6.3% 8.8% 13.2% 1.6%
Delay -0.8% 1.0% 8.2% 1.7%
EDP 5.6% 9.0% 18.7% 3.2%

thus to get lower EDP. Also, compared to CondFull, it reduced much en-

ergy consumption and EDP in Long-If. Even for Short-If, it reduced energy

consumption compared to CondFull despite its slightly worse performance,

eventually resulting in better EDP. Lastly, PseudoBranch, another kind of

state-based full predication, showed notably worse energy as well as perfor-

mance than StateFull, which implies that the proposed mechanism is better

optimized to both high performance and low power consumption.

Moreover, StateFull+Partial+DISE achieved even better performance

with minimal overhead. In particular, it improved performance by 12.2% on av-

erage compared to StateFull+Partial in the case of Long-If. In addition,

the improved performance contributed to reducing energy consumption thereby

making the predication mechanism much more energy efficient, although extra

logic circuits of DISE and dual-bank structure of the configuration memory

incurred 2.4%6 overhead in power consumption. As a result, it improved EDPs

6This can be inferred from the comparison with StateFull+Partial for Short-If in

56

Table 5.3: Improvements of StateFull+Partial+DISE

Improvement over

Partial CondFull
Pseudo

StateFull
StateFull +

Branch Partial

Short-If
Energy -0.9% 1.0% 8.4% 0.5% -2.4%
Delay 0.0% -2.1% 7.6% 3.0% 0.0%
EDP -0.9% -1.0% 15.4% 3.5% -2.4%

Long-If
Energy 16.4% 17.9% 19.7% 4.9% 4.7%
Delay 11.1% 15.7% 19.9% 12.5% 12.2%
EDP 25.7% 27.9% 31.4% 14.7% 14.1%

Total
Energy 7.2% 9.9% 14.2% 2.7% 1.2%
Delay 5.1% 7.2% 13.9% 7.9% 6.3%
EDP 11.9% 14.7% 23.8% 9.3% 6.2%

by 25.7%, 27.9%, and 31.4% compared to the conventional mechanisms of Par-

tial, CondFull, and PseudoBranch, respectively. Especially, H.264 appli-

cations (deblock and itpl) are improved by 38.3%, 39.6%, and 32.7%7. Con-

sidering that there is a trade-off between performance and energy in general,

this hybrid approach provides a unique merit that enables an energy-efficient

acceleration of control flow execution.

5.3.7 Speedup of Applications

We measured how much the two applications shown in the introduction are

accelerated by the proposed hybrid approach (StateFull+Partial+DISE).

The execution time is obtained from ARM Developer Suite 1.2 [13] when the

applications are running on a single ARM 9 processor. We assume that there is

no communication overhead between the processor and the CGRA, which can

be eliminated by sharing memory partially [65–68] or entirely [7].

Table 5.3 because DISE is not used for Short-If.
7The results are not separately shown in the table, but one can calculate it from the

absolute values in the appendix.

57

Table 5.4: Execution time of JPEG decoder (cycle)

Function Name ARM9 CGRA w/o
Predication Support

CGRA with
StateFull+Partial+DISE

D
at

a-
In

te
ns

iv
e

P
ar

ts IDCT

Part1 7,716k 784k
900kPart2† 2,335k 2,335k

Part3† 4,283k 4,283k

Total 14,336k 7,404k 900k
(x1.0) (x1.9) (x15.9)

Dequantization* 3,303k

Control-Intensive Parts 2,983k

Entire 20,622k 13,692k 7,188k
Application (x1.0) (x1.5) (x2.9)

†a data- and control- intensive part.
*a data-intensive part which has not been mapped yet onto the CGRA.

The results of JPEG decoder are shown in Table 5.4. Part1 of idct is

just a data-intensive part so the CGRA can accelerate it as usual. On the

other hand, since Part2 and Part3 of idct have control flows, the ARM 9

processor should execute them if predication is not supported on the CGRA.

As a result, without predication, idct is accelerated by only 1.9 times while the

speedup on the predication-supporting CGRA reaches 15.9 times. Since idct

takes considerable portion of the entire execution time (69.5%, see Figure 1.1),

performance of the entire application is improved by 2.9 times. This result

can be improved further if another data-intensive part (dequantization) is

mapped to the CGRA, but in this thesis we concentrate on both data- and

control-intensive parts to see the effect of predications.

Table 5.5 shows the execution time of H.264 decoder. Since most data-

intensive parts in H.264 decoder have if statements, the CGRA rarely accel-

erates the application without predication. On the contrary, by using State-

58

Table 5.5: Execution time of H.264 decoder (cycle)

Function Name ARM9 CGRA w/o
Predication Support

CGRA with
StateFull+Partial+DISE

D
at

a-
In

te
ns

iv
e

P
ar

ts

MC_part1† 38,273k 38,273k 11,021k
(x1.0) (x1.0) (x3.5)

MC_part2† 13,805k 13,805k 3,065k
(x1.0) (x1.0) (x4.5)

DB_part1† 9,909k 9,909k 1,940k
(x1.0) (x1.0) (x5.1)

DB_part2† 7,981k 7,981k 1,700k
(x1.0) (x1.0) (x4.7)

Integer Transform* 13,449k

Control-Intensive Parts 126,069k

Entire 209,487k 209,487k 157,245k
Application (x1.0) (x1.0) (x1.3)

†a data- and control- intensive part.
*a data-intensive part which has not been mapped yet onto the CGRA.

Full+Partial+DISE, one can accelerate four kernels by 3.5 to 5.1 times,

which results in 1.3 times improvement over the entire execution time. Simi-

larly to the case of JPEG decoder, this result can also be improved if more

parts are mapped onto the CGRA.

59

Chapter 6

Mapping Framework

6.1 Motivation

There are a number of challenges in compiling loops for CGRAs that support

StateFull. At the core of the problem lies operation-to-PE binding, which

would be trivial if the target architecture has only one PE like simple SIMD

execution. But if the target architecture allows non-SIMD execution, that is,

different operations can be performed by different PEs in the same cycle as in

a VLIW processor, the ways to map operations to multiple PEs can affect the

performance of the CGRA significantly.

First, operations in one conditional need to be scattered among multiple

PEs to exploit ILP in the conditional, but the overhead of managing the state

registers of several PEs may be large. Thus, to decide how many PEs execute one

conditional, we need to consider ILP inside the conditional and the existence of

other parts which can run in parallel with it. Second, if operations from several

61

conditionals are interleaved in their schedule on the same PE, switching the

state register will cause large overhead. To avoid such overhead, conditionals

should not be mapped in the mixed way.

Another issue arises from the fact that power saving mode of a PE renders

almost all the resources of a PE including the local register file of a PE inacces-

sible. If a PE in a power-saving (sleep) state has a variable stored in its register

file, and the variable is needed by another PE, we must route the variable in

advance before the first PE goes into the power-saving state. Otherwise, rout-

ing must be processed after exiting the power-saving mode so performance will

be greatly degraded. Even worse, if another routing is required in the opposite

direction (i.e., the PE in sleep state wakes up when the data from the other PE

is available) at the same time, then the execution can go into deadlock and will

be failed.

To handle the above issues, we need to know the size of each conditionals and

parallelism among conditionals and let multiple conditionals mapped separately.

However, since several conditionals are merged into one DFG by if -conversion

technique (e.g., [60]) in conventional mapping algorithms using conventional

predications, we cannot know the information nor use the algorithms directly.

Thus, we propose CDFG representation that expresses conditionals (each will

be a DFG) explicitly and reveals parallelism between DFGs. Then, we generate

information to map DFGs separately in a temporal or spatial manner. With

this information, we can map DFGs not to be mixed each other.

62

Figure 6.1: The mapping framework on StateFull-based CGRAs.

6.2 Proposed Approach

6.2.1 Overall Flow

Figure 6.1 illustrates the overall flow of the proposed framework for mapping

loops with control flow on StateFull-based CGRAs. It starts from IR (inter-

mediate representation), which can be obtained easily by frontend tools. The

framework largely consists of two parts. The first part converts IR to CDFG

(control data flow graph), extracting parallelism on the way. The second part

takes the CDFG and allocates PEs to different parts of the CDFG (each part is

a DFG) so that each part can be mapped separately in a temporal or a spatial

manner using known mapping algorithms.

63

6.2.2 From IR to CDFG

CDFG Generation

The IR for a loop body is given as a CFG of DFGs, where each node (DFG)

represents a basic block. Figure 6.2a illustrates the CFG of a loop body, which

contains one nested-if construct followed by a simple if-else.

We first transform the CFG to our CDFG representation so that the control

structure and parallelism can be captured more explicitly. We use a hierarchical

CDFG defined as follows. Each node of the CDFG is a block of either of two

types: unipath and multipath. A unipath block is simply a DFG, whereas a

multipath block contains one or more CDFGs with a condition for each CDFG.

Figure 6.2b illustrates the CDFG corresponding to the IR in Figure 6.2a. In

the figure, ovals, solid round boxes, and dashed ones represent DFGs, blocks,

and CDFGs, respectively. Directed edges indicate data dependency between

two blocks. Note that the edges in Figure 6.2b are obtained through data flow

analysis and are different from those in Figure 6.2a.

To transform an IR to a CDFG representation, we first identify conditionals

to generate CDFGs at lower levels of hierarchy (see Figure 6.2b). Since mul-

tipath blocks can contain other multipath blocks in such lower level CDFGs,

nested-if structures can be naturally represented.

Exploiting Parallelism

We then update data dependence among blocks, which may reveal parallelism

between blocks. In Figure 6.2b, if DFGs D, E0, and E1 are not dependent on

B0, B1, or C0, we can remove the dependence edge between them, making D

an immediate successor of A as illustrated in Figure 6.2c. In addition, we exploit

64

more parallelism by extracting operations from A or F if they have no depen-

dency with any operation in the conditionals. We separate those operations out

as new DFGs (G and H) as shown in Figure 6.2c.

6.2.3 Separation

To ensure correctness and maximize performance, we map operations from dif-

ferent conditionals separately either in temporal or spatial manner, which can

be achieved by DFG grouping and PE-to-DFG allocation. A DFG group is de-

fined as a set of DFGs running in parallel. We group DFGs and order groups

as a list. Within a group, we allocate different PEs to different DFGs, which

corresponds to spatial separation. The groups are put into a list in the order of

their generation, which corresponds to temporal separation.

When grouping DFGs, we need to consider two aspects. If many DFGs

are put into one group so that they can run in parallel, it can help increase

performance especially when each DFG has low ILP. On the other hand, if too

many DFGs are in one group, registers can be spilled, resulting in performance

degradation. Thus our strategy is to assign enough number of PEs to each DFG

to avoid register spills and then to group DFGs as long as PEs are available.

Therefore we first estimate the register requirement of each DFG, followed by

DFG grouping and PE-to-DFG allocation.

Register Requirement Estimation

To group as many DFGs as possible, we need to calculate the minimum number

of registers that guarantees no registers spill during CDFG mapping. The reg-

ister requirement of the components of CDFGs can be calculated recursively as

follows. The register requirement of a CDFG is the maximum of all the register

65

(a) A loop body repre-
sented as a CFG of DFGs

(b) Identifying conditionals (i.e.,
fork-join structures)

(c) Exploiting parallelism

Figure 6.2: Conversion process from IR to CDFG.

66

requirements of its blocks. For a unipath block, its register requirement is that

of its DFG. For a multipath block, its register requirement is the maximum of

those of its CDFGs. Thus we only need to obtain the register requirement of

DFGs.

The register requirement of a DFG is rather complex since it is related to

the actual mapping algorithm. Depending on the number of operations mapped

together in DFGs and the order of mapping of operations, register requirement

can differ. In this thesis, we will use the mapping algorithm where only one

operation is considered at a time and the mapping order of operations is decided

dynamically. Thus, we calculate the register requirement by assuming the worst

case mapping order that uses registers maximally, which will guarantee that

registers are not spilled even if operations are mapped in any order.

DFG Grouping and PE-to-DFG Allocation

Based on register requirements, we calculate PE requirements of ready DFGs

considering available number of registers. If an architecture has four PEs and

total eight registers are available now and if a DFG requires three registers, then

the PE requirement of the DFG is two since there are two available registers

per PE on the average (in the later mapping phase, if the actual number of

available registers is different from the requirement, then we may have to take

extra cycles to move data around).

After obtaining PE requirements, grouping is performed in a way similar

to heaviest-first selection in the knapsack problem. That is, DFGs are selected

with most PE requirement first and packed into a sack while the capacity of

the sack is not exceeded. If PEs remain but more DFGs cannot be packed due

67

to the capacity violation, spare PEs are distributed to balance the number of

operations in DFGs and that of PEs allocated to DFGs. After packing one sack,

we calculate the number of registers that will be available after the execution

of the previous group and update ready DFGs. And then we pack another sack

by repeating the above processes starting from calculating PE requirements of

ready DFGs.

6.2.4 CDFG Mapping

CDFG mapping flow is shown in Figure 6.1 surrounded by the dotted line. Dif-

fering from conventional DFG mapping flow, the proposed framework requires

two more simple processes. First, after selecting a DFG group, we route their

input data that are not in the PEs assigned to their DFGs. Then, we move data

irrelevant to each DFG to PEs that do not belong to the DFG if the number

of available registers in the allocated PEs is not sufficient compared to its reg-

ister requirement. Note that the total number of available registers in all PEs

is enough since we group DFGs not to violate it. The second process is that

state-controlling operations (sleep instructions) are inserted at the entry of the

DFGs for conditionally executed DFGs.

After the two processes, mapping a DFG to a set of PEs can be done using

known mapping algorithms (e.g., [38, 40, 43, 69]). Since the framework solves

the problem of handling CDFG by separating control flow and data flow, con-

trol flow needs not be considered during data flow mapping, thus conventional

algorithms can be easily integrated into our framework. However, note that

according to DFG mapping algorithm, we need to modify the algorithm to

estimate register requirement of DFGs presented in Section 6.2.3.

68

6.3 Implementation

We extended the LLVM compiler infrastructure [70] to implement the proposed

mapping framework. Clang compiler [71] was used as the frontend tool to obtain

IR. For the DFG mapping we used a variant of list-scheduling-based mapping

algorithm that performs scheduling, operation-to-PE binding, and register bind-

ing all at once, similarly to [38] except that we do not adopt modulo scheduling

and the mapping order of operations is decided dynamically. However, other

mapping algorithms can also be used as mentioned in Section 6.2.4.

6.4 Experiments

6.4.1 Experimental Setup

Any kernel having control flow can be a target application. Especially, parallel

conditionals often appear as a result of loop unrolling, although they can also

appear within a single iteration. Thus, we experimented with the following

applications with various unrolling factors (1,2,4, and 8).

• Clipping (clip): it saturates values into the predefined ranges.

• Sum of absolute differences (sad): it calculates the sum of absolute dif-

ferences between pairs of integers.

• Shift instead of division (shift): it divides the given integers by 16 using

shift operations. If the integer is negative, then control flow is needed.

• SECDED decoding (secded): it means single-error-correction-and-double-

error-detection.

For the architecture, we use the one verified in the previous chapter.

69

6.4.2 Verification of Mapping Framework

We verified the functional correctness of the proposed mapping framework by

simulating mapping results obtained from the framework on FloRA at RTL

using ModelSim. We tested with total 16 cases (4 examples with 4 unrolling

factors for each), and confirmed that the proposed framework works correctly

in all cases.

6.4.3 Quality of Mapping Results

We need to check the framework to see if it really exploits parallelism among

multiple conditionals well. It is hard to measure the relative quality of mapping

results since this is the first work for compiling applications using StateFull,

but one way is to compare with a naïve approach where multiple conditionals

are handled sequentially. The comparison results are shown in Figure 6.3. We

assume that there are total 64 iterations. 8-way SIMD is supported in the

architecture.

In the figure, all the examples show a similar tendency, but the results of

‘sad’ show what we want to do in this thesis. Each iteration in ‘sad’ has low

ILP so there exist many idle PEs if it executes only one iteration in a column (8

PEs). Thus, we unroll the loop to increase the utilization. However, if structures

are serialized in the naïve approach, thus unrolling does not give enough benefit.

On the other hand, the proposed method fully parallelizes eight if structures

in one column, maximizing benefit from unrolling. The average improvement of

our approach for the cases with unroll factor of 8 is 2.21 in the harmonic mean.

Note that our work is irrelevant to how much benefit loop unrolling gives, but

tries to maximize the performance given that a loop is unrolled.

70

Figure 6.3: Comparison of mapping results on performance. The upper X axis
means the unrolling factors. The values are normalized to baselines. A baseline
of each example is the case when unrolling factor is 1 and the naïve approach
is used.

71

Chapter 7

Conclusion

7.1 Summary

This thesis has presented a comprehensive analysis of predicated execution tech-

niques in terms of performance and power consumption. Although predication

is imperatively necessary to leverage on data-level parallelism, little has been

known about its impact on performance, and more importantly, power consump-

tion. We have found that conventional predication techniques have deficiency

in power consumption due to the instruction decoding (and execution in some

cases) over unnecessary paths which do not need to be executed at all.

Based on this analysis, this thesis has proposed power-efficient and high-

performance mechanisms for predicated execution. In particular, state-based

full predication (StateFull) has been developed to eliminate the need for

decoding, executing, and committing instructions on unnecessary paths as well

as to fully support nested-if structures in an efficient way. Moreover, Dual-

73

Issue-Single-Execution (DISE) has been proposed to accelerate the execution

of if-else structures. On top of that, hybrid mechanisms have been developed

to further improve the proposed techniques in terms of both performance and

energy consumption.

Experimental results obtained by gate-level simulation of RTL design have

shown that the proposed techniques successfully improved both performance

and power consumption at the same time. More specifically, compared to the

conventional mechanisms, the hybrid mechanism combining StateFull, par-

tial predication (Partial), and DISE improved energy-delay product by 11.9%

on average over all applications used for the experiments compared to Partial,

14.7% compared to condition-based full predication (CondFull), and 23.8%

compared to another state-based approach (PseudoBranch). Especially on

H.264 applications (deblock and itpl), energy-delay product is improved by

38.3%, 39.6%, and 32.7% compared to Partial, CondFull, and Pseudo-

Branch, respectively. We believe that the proposed mechanisms could be com-

petitive candidates for a “universal predication technique” that makes better use

of data-level parallelism in CGRAs.

This thesis also has presented a mapping framework for CGRAs that re-

lies on StateFull for conditional execution. While StateFull can remove

wasteful power consumption by introducing the sleep state into the processing

elements, mapping becomes more challenging when handling multiple condition-

als. The proposed framework uses a new CDFG structure that can succinctly

capture the parallelism existing between conditionals and makes it possible to

be integrated with conventional mapping algorithms by separating the handling

of control flow and data flow. Experimental results demonstrate that our frame-

74

work successfully finds and exploits parallelism between multiple conditionals,

thereby leading to 2.21 times higher performance than the naïve approach.

7.2 Applicable Scope and Future Work

The contribution of this thesis can be divided into two categories, predication

techniques and mapping framework. Since predication is a PE-based approach,

the proposed predications can be used for any DLP processors including SIMD

units and CGRAs, where branch is not possible and the use of predication is

mandatory to handle control flow. On the other hand, the mapping problems

occur only when one iteration of a loop is mapped onto several PEs. It is natural

to other CGRAs but not to SIMD units. It means that the proposed mapping

framework is adaptable only to CGRAs. However, as [35] recently revealed,

conventional SIMD can be inefficient and it is needed to exploit ILP partially

in some applications, and thus it is expected that our framework will be used

for SIMD units in the future.

There remains some work not fully covered in this thesis. First, the opti-

mality of the separation algorithm is not fully addressed. As a future research,

we may be able to analyze the optimality and refine the algorithms for better

results. Second, in JPEG decoder and H.264 decoder, although we cover only

some parts related to our topic in order to focus on the effect of predications,

accelerating full applications can also be valuable work to prove the compet-

itiveness of CGRAs. Lastly, since predication is a general approach as stated

in the previous paragraph, we can adopt the proposed ones into general SIMD

units or GPUs, which makes our work more influential.

75

Appendix

Execution Time (µs)

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 0.210 0.208 0.220 0.214 0.210 0.210
chroma 0.056 0.056 0.060 0.058 0.056 0.056

max 0.134 0.134 0.162 0.148 0.134 0.134
sad 0.056 0.054 0.058 0.056 0.056 0.056
shift 0.036 0.034 0.038 0.036 0.036 0.036
round 0.078 0.076 0.084 0.080 0.080 0.068
secded 0.186 0.186 0.194 0.178 0.178 0.178
deblock 0.202 0.246 0.242 0.218 0.214 0.172

itpl - 1.006 0.998 0.938 0.936 0.84
epic 0.066 0.068 0.078 0.068 0.068 0.058

77

Dynamic Energy Consumption on Reconfigurable Array (pJ)

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 4206 4232 4566 4269 4246 4408
chroma 914 944 1035 946 932 995

max 1594 1638 2165 1747 1556 1624
sad 630 541 616 571 568 608
shift 528 446 528 466 480 507
round 1332 1090 1263 1176 1166 1158
secded 3485 3273 3226 2746 2760 3040
deblock 3790 3754 3505 2527 2551 2424

itpl - 16488 18012 12852 12867 13151
epic 1268 1152 1350 1058 1053 1037

Static Energy Consumption on Reconfigurable Array (pJ)

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 663 665 704 689 674 699
chroma 177 179 192 187 180 186

max 378 383 472 431 385 398
sad 178 173 186 181 181 187
shift 113 108 120 115 115 119
round 246 242 269 258 257 226
secded 588 595 623 575 573 595
deblock 640 787 777 704 691 573

itpl - 3239 3214 3058 3033 2822
epic 209 218 250 220 219 193

Number of Fetched Instructions

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 544 536 584 560 544 544
chroma 136 136 136 136 136 136

max 264 264 408 336 264 264
sad 144 136 152 144 144 144
shift 568 560 576 568 568 568
round 120 112 144 128 128 136
secded 624 656 688 624 624 624
deblock 624 736 720 624 608 608

itpl - 4024 4448 4208 4200 4216
epic 168 176 232 176 176 176

78

Dynamic Energy Consumption on Configuration Memory (pJ)

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 458 517 495 473 458 403
chroma 126 145 126 126 126 108

max 222 254 355 288 222 195
sad 110 118 118 110 110 100
shift 341 383 348 341 341 334
round 111 119 134 119 119 108
secded 579 698 638 579 579 496
deblock 579 783 668 579 564 484

itpl - 3565 3499 3276 3269 2954
epic 156 187 215 163 163 140

Static Energy Consumption on Configuration Memory (pJ)

Application Partial CondFull PseudoBranch StateFull
StateFull + StateFull +

Partial Partial +DISE

dct 1246 1409 1305 1270 1246 1261
chroma 332 379 356 344 332 336

max 795 908 961 878 795 805
sad 332 366 344 332 332 336
shift 214 230 225 214 214 216
round 463 515 498 475 475 408
secded 1104 1260 1151 1056 1056 1069
deblock 1199 1667 1436 1294 1270 1033

itpl - 6817 5922 5566 5554 5044
epic 392 461 463 404 404 348

79

Bibliography

[1] D. Chen and J. Rabaey, “A reconfigurable multiprocessor IC for rapid pro-

totyping of algorithmic-specific high speed DSP data paths,” IEEE Journal

of Solid-State Circuits, vol. 27, pp. 1895–1904, Dec. 1992.

[2] C. Ebeling, D. C. Cronquist, and P. Franklin, “Configurable computing: the

catalyst for high-performance architectures,” in Proceedings of the IEEE

International Conference on Application-Specific Systems, Architectures

and Processors, 1997.

[3] T. Miyamori and K. Olukotun, “REMARC: reconfigurable multimedia ar-

ray coprocessor,” IEICE Transactions on Information and Systems, pp.

389–397, 1998.

[4] S. C. Goldstein, H. Schmit, M. Moe, M. Budiuy, S. Cadambi, R. R. Tay-

lor, and R. Laufer, “PipeRench: a coprocessor for streaming multimedia

acceleration,” in Proceedings of the International Symposium on Computer

Architecture, 1999.

[5] H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and M. C.

Filho, “MorphoSys: an integrated reconfigurable system for data-parallel

80

and computation-intensive applications,” IEEE Transactions on Comput-

ers, vol. 49, pp. 465–481, May 2000.

[6] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Wein-

hardt, “PACT XPP–A self-reconfigurable data processing architecture,”

Journal of Supercomputing, vol. 26, pp. 167–184, Sep. 2003.

[7] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “ADRES:

an architecture with tightly coupled VLIW processor and coarse-grained

reconfigurable matrix,” in Proceedings of the International Conference on

Field Programmable Logic and Application, 2003.

[8] F. Garzia, W. Hussain, and J. Nurmi, “CREMA: a coarse-grain reconfig-

urable array with mapping adaptiveness,” in Proceedings of the Interna-

tional Conference on Field Programmable Logic and Applications, 2009.

[9] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource sharing

and pipelining in coarse-grained reconfigurable architecture for domain-

specific optimization,” in Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition, 2005.

[10] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, M. Kimura, and

H. Amano, “MuCCRA-3: a low power dynamically reconfigurable processor

array,” in Proceedings of the Asia and South Pacific Design Automation

Conference, 2010.

[11] R. Hartenstein, “A decade of reconfigurable computing: a visionary retro-

spective,” in Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, 2001.

81

[12] K. Choi, “Coarse-grained reconfigurable array: architecture and application

mapping,” IPSJ Transactions on System LSI Design Methodology, vol. 4,

pp. 31–46, Feb. 2011.

[13] “ARM development suite,” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.subset.swdev.ads/index.html.

[14] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of con-

trol dependence to data dependence,” in Proceedings of the ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 1983.

[15] P. Dang, “An efficient implementation of in-loop deblocking filters for H.264

using VLIW architecture and predication,” in International Conference on

Consumer Electronics Digest of Technical Papers, 2005.

[16] C. Arbelo, A. Kanstein, S. Lopez, J. Lopez, M. Berekovic, R. Sarmiento,

and J. Y. Mignolet, “Mapping control-intensive video kernels onto a coarse-

grain reconfigurable architecture: the H.264/AVC deblocking filter,” in Pro-

ceedings of the Design, Automation and Test in Europe Conference and

Exhibition, 2007.

[17] W. Chuang, B. Calder, and J. Ferrante, “Phi-predication for light-weight if-

conversion,” in Proceedings of the International Symposium on Code Gen-

eration and Optimization, 2003.

[18] J. Shin, M. Hall, and J. Chame, “Superword-level parallelism in the pres-

ence of control flow,” in Proceedings of the International Symposium on

Code Generation and Optimization, 2005.

82

[19] T. J. Callahan and J. Wawrzynek, “Instruction-level parallelism for re-

configurable computing,” in Proceedings on the International Workshop on

Field Programmable Logic, 1998.

[20] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and

S. Amarasinghe, “Space-time scheduling of instruction-level parallelism on

a Raw machine,” in Proceedings on the international Conference on Ar-

chitectural Support for Programming Languages and Operating Systems,

1998.

[21] K. Wu, A. Kanstein, J. Madsen, and M. Berekovic, “MT-ADRES: multi-

threading on coarse-grained reconfigurable architecture,” in Proceedings of

the International Conference on Reconfigurable Computing: Architectures,

Tools and Applications, 2007.

[22] T. V. Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejonghe, and L. V.

der Perre, “A multi-threaded coarse-grained array processor for wireless

baseband,” in Proceedings of the IEEE Symposium on Application Specific

Processors, 2011.

[23] H. Singh, G. Lu, F. Kurdahi, N. Bagherzadeh, E. Filho, and R. Maestre,

“MorphoSys: case study of a reconfigurable computing system targeting

multimedia applications,” in Proceedings of the Design Automation Con-

ference, 2000.

[24] F. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom implementation

of the coarse-grained reconfigurable ADRES architecture for multimedia

83

purposes,” in Proceedings of the International Conference on Field Pro-

grammable Logic and Applications, 2005.

[25] S. Purohit, S. R. Chalamalasetti, M. Margala, and W. Vanderbauwhede,

“Throughput/resource-efficient reconfigurable processor for multimedia ap-

plications,” IEEE Transactions on Very Large Scale Integration Systems,

2012, in press.

[26] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexi-

ble multicore accelerator with virtualized execution for mobile multime-

dia applications,” in Proceedings of the IEEE/ACM Annual International

Symposium on Microarchitecture, 2009.

[27] M. Jo, G. Lee, K. Chang, K. Han, K. Choi, H. Yang, and K. Yoon, “Coarse-

grained reconfigurable architecture for multiple application domains: a case

study,” in Proceedings of the International Conference on Hybrid Informa-

tion Technology, 2009.

[28] C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi, “A coarse-grain reconfig-

urable architecture for multimedia applications supporting subword and

floating-point calculations,” vol. 56, pp. 38–47, Jan. 2010.

[29] D. Novo, W. Moffat, V. Derudder, and B. Bougard, “Mapping a multi-

ple antenna SDM-OFDM receiver on the ADRES coarse-grained reconfig-

urable processor,” in Proceedings of the IEEE Workshop on Signal Process-

ing Systems Design and Implementation, 2005.

[30] H. Parizi, A. Niktash, A. Kamalizad, and N. Bagherzadeh, “A reconfig-

urable architecture for wireless communication systems,” in Processing

84

on the International Conference on Information Technology: New Gen-

erations, 2006.

[31] X. Chen, A. Minwegen, Y. Hassan, D. Kammler, S. Li, T. Kempf, A. Chat-

topadhyay, and G. Ascheid, “FLEXDET: flexible, efficient multi-mode

MIMO detection using reconfigurable ASIP,” in Proceedings of the IEEE

International Symposium on Field-Programmable Custom Computing Ma-

chines, 2012.

[32] J. A. Fisher, “Very long instruction word architectures and the ELI-512,”

in Proceedings of the International Symposium on Computer Architecture,

1983.

[33] http://www.intel.com.

[34] “The ARM R⃝ NEONTM general-purpose SIMD engine,” http://www.arm.

com/products/processors/technologies/neon.php.

[35] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, “Libra: tailoring SIMD

execution using heterogeneous hardware and dynamic configurability,” in

Proceedings of the IEEE/ACM Annual International Symposium on Mi-

croarchitecture, 2012.

[36] http://www.xilinx.com/.

[37] http://www.altera.com/.

[38] B. Mei, S. Vemaldet, D. Verkestt, H. D. Man, and R. Lauwereins, “DRESC:

a retargetable compiler for coarse-grained reconfigurable architectures,” in

85

Proceedings of the International Conference on Field-Programmable Tech-

nology, 2002.

[39] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. Kim, “Edge-centric

modulo scheduling for coarse-grained reconfigurable architectures,” in Pro-

ceedings of the International Conference on Parallel Architectures and

Compilation Techniques, 2008.

[40] T. Toi, N. Nakamura, Y. Kato, T. Awashima, and K. Wakabayashi, “High-

level synthesis challenges and solutions for a dynamically reconfigurable

processor,” in Proceedings of the International Conference on Computer-

Aided Design, 2008.

[41] G. Lee, S. Lee, and K. Choi, “Automatic mapping of application to coarse-

grained reconfigurable architecture based on high-level synthesis tech-

niques,” in Proceedings of the International SoC Design Conference, 2008.

[42] B. D. Sutter, P. Coene, T. V. Aa, and B. Mei, “Placement-and-routing-

based register allocation for coarse-grained reconfigurable arrays,” in Pro-

ceedings of the ACM SIGPLAN Conference on Languages, Compilers, and

Tools for Embedded Systems, 2008.

[43] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek, “A graph draw-

ing based spatial mapping algorithm for coarse-grained reconfigurable ar-

chitectures,” IEEE Transactions on Very Large Scale Integration Systems,

vol. 17, pp. 1565–1578, Nov. 2009.

86

[44] S. Friedman, A. Carroll, B. Essen, B. Ylvisaker, C. Ebeling, and S. Hauck,

“SPR: an architecture-adaptive CGRA mapping tool,” in Proceedings of

the International Symposium on Field Programmable Gate Arrays, 2009.

[45] G. Lee, S. Lee, K. Choi, and N. Dutt, “Routing-aware application mapping

considering steiner points for coarse-grained reconfigurable architecture,”

in Proceedings of the International Conference on Reconfigurable Comput-

ing: Architectures, Tools and Applications, 2010.

[46] Y. Kim, J. Lee, and A. Shrivastava, “Operation and data mapping for

CGRAs with multi-bank memory,” in Proceedings of the International Con-

ference on Languages, Compilers, Tools and Theory for Embedded Systems,

2012.

[47] G. Lee, K. Choi, and N. Dutt, “Mapping multi-domain applications

onto coarse-grained reconfigurable architectures,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, pp.

637–650, May 2011.

[48] D. Lee, M. Jo, K. Han, and K. Choi, “FloRA: coarse-grained reconfigurable

architecture with floating-point operation capability,” in Proceedings of the

International Conference on Field-Programmable Technology, 2009.

[49] Y. Kim, I. Park, K. Choi, and Y. Paek, “Power-conscious configuration

cache structure and code mapping for coarse-grained reconfigurable ar-

chitecture,” in Proceedings of the International Symposium on Low Power

Electronics and Design, 2006.

87

[50] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu,

“A comparison of full and partial predicated execution support for ILP

processors,” in Proceedings of the International Symposium on Computer

Architecture, 1995.

[51] M. L. Anido, A. Paar, and N. Bagherzadeh, “Improving the operation au-

tonomy of SIMD processing elements by using guarded instructions and

pseudo branches,” in Proceedings of the Euromicro Symposium on Digital

System Design, 2002.

[52] L. Huang, L. Shen, S. Ma, N. Xiao, and Z. Wang, “DM-SIMD: a new

SIMD predication mechanism for exploiting superword level parallelism,”

in Proceedings of the International Conference on ASIC, 2009.

[53] K. Han, J. K. Paek, and K. Choi, “Acceleration of control flow on CGRA

using advanced predicated execution,” in Proceedings of the International

Conference on Field-Programmable Technology, 2010.

[54] K. Han, S. Park, and K. Choi, “State-based full predication for low power

coarse-grained reconfigurable architecture,” in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, 2012.

[55] Y. Choi, A. Knies, L. Gerke, and T. Ngai, “The impact of if-conversion

and branch prediction on program execution on the Intel Itanium proces-

sor,” in Proceedings of the IEEE/ACM Annual International Symposium

on Microarchitecture, 2001.

[56] E. Quinones, J. M. Parcerisa, and A. Gonzalez, “Improving branch predic-

tion and predicated execution in out-of-order processors,” in Proceedings

88

of the International Symposium on High Performance Computer Architec-

ture, 2007.

[57] J. Lee, Y. Kim, J. Jung, S. Kand, and K. Choi, “Reconfigurable ALU

array architecture with conditional execution,” in Proceedings on the in-

ternational SoC Design Conference, 2004.

[58] K. Chang and K. Choi, “Mapping control intensive kernels onto coarse-

grained reconfigurable array architecture,” in Proceedings of the Interna-

tional SoC Design Conference, 2008.

[59] G. Lee, K. Chang, and K. Choi, “Automatic mapping of control-intensive

kernels onto coarse-grained reconfigurable array architecture with specu-

lative execution,” in Proceedings of the IEEE International Symposium on

Parallel & Distributed Processing, Workshops and PhD Forum, 2010.

[60] S. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Ef-

fective compiler support for predicated execution using the hyperblock,”

in Proceedings of the IEEE/ACM Annual International Symposium on Mi-

croarchitecture, 1992.

[61] G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlke, “Mighty-

morphing power-SIMD,” in Proceedings of the International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, 2010.

[62] A. Fijany and F. Hosseini, “Image processing applications on a low power

highly parallel SIMD architecture,” in Proceedings of the IEEE Aerospace

Conference, 2011.

89

[63] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:

a tool to model large caches,” HP Laboratories, Tech. Rep. HPL-2009-85,

2009.

[64] K. Han and K. Choi, “Library-based mapping of application to reconfig-

urable array architecture,” Jounal of Semiconductor Technology and Sci-

ence, vol. 9, pp. 209–215, Dec. 2009.

[65] K. Chang and K. Choi, “Memory-centric communication architecture for

reconfigurable computing,” in Proceedings of the International Conference

on Reconfigurable Computing: Architectures, Tools and Applications, 2010.

[66] J. Paek, J. Lee, and K. Choi, “CRM: configurable range memory for fast

reconfigurable computing,” in Proceedings of the IEEE International Sym-

posium on Parallel & Distributed Processing, Workshops and PhD Forum,

2010.

[67] Y. Kim, K. Han, and K. Choi, “A host-accelerator communication archi-

tecture design for efficient binary acceleration,” in Proceedings of the In-

ternational SoC Design Conference, 2011.

[68] T. X. Mai and J. Lee, “Software-managed automatic data sharing for

coarse-grained reconfigurable coprocessors,” in Proceedings of the Inter-

national Conference on Field-Programmable Technology, 2012.

[69] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: using epimor-

phism to map applications on CGRAs,” in Proceedings of the Design Au-

tomation Conference, 2012.

90

[70] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong pro-

gram analysis transformation,” in Proceedings of the International Sympo-

sium on Code Generation and Optimization, 2004.

[71] http://clang.llvm.org/.

91

국문초록

재구성형 구조는 연산량이 많은 프로그램을 내장형 시스템에서 가속시키는

데 적합한 방법 중 하나이다. 이는 일반적으로 많은 연산유닛들과 하나의

컨트롤러로 구성되어 고성능, 유연성, 저전력을 동시에 달성할 수 있도록

해준다. 많은 연산유닛을 바탕으로 한 병렬처리는 응용프로그램의 실행속

도를 빠르게 하며, 재구성 기능은 다양한 응용프로그램에의 활용을 가능하

게 해준다. 또한, 명령어와 데이터에 대한 스케쥴을 미리 정해놓음으로써

제어구조를 단순화시킬 수 있으며 이는 연산량 대비 전력소모를 최소한으

로 줄여준다.

하지만 응용프로그램이 복잡해짐에 따라 연산량이 많은 부분들에 분

기문이 생기게 되었으며 이는 재구성형 구조를 사용함에 있어 큰 위협이

되고 있다. 분기문을 다룰 수 있는 컨트롤러가 하나이기 때문에 컨트롤러

에 병목현상이 발생하거나 동시에 서로 다른 제어를 요구하게 되면 해당

프로그램은 가속이 불가능해진다. 조건실행이라는 기술을 사용할 경우 이

를 부분적으로 해소할 수 있지만 기존에 개발되어 있는 조건실행 기술들은

재구성형 구조에 성능 및 전력소모 면에서 부정적인 영향을 끼친다.

따라서 본 논문에서는 연산량이 많지만 분기문을 가진 응용프로그램에

서 조건실행이 성능과 전력 면에서 어떠한 영향을 미치는지 밝히며 이를

바탕으로 고성능과 저전력을 가진 조건실행 방법을 제안한다. 실험 결과에

따르면 제안한 방식은 기존의 세가지 방식보다 성능과 전력소모를 곱으로

표현한 수치에 있어서 11.9%, 14.7%, 23.8% 만큼의 이득을 보였다. 또한,

제안한 조건실행 방법에 적합한 컴파일 체계도 제안하였다. 제안한 조건

93

실행은 절전모드를 사용함에 따라 전력을 아낄 수 있지만 기존의 컴파일

방식으로는 여러 조건문을 병렬적으로 수행하도록 컴파일할 수 없는 문

제가 생긴다. 따라서 본 논문에서는 이런 문제를 밝히고 조건문들을 서로

다른 연산유닛에 할당함으로써 문제를 해결하는 방식을 제안하고 있다. 제

안한 방식을 사용할 경우 단순하고 직관적인 방법에 비하여 평균적으로

2.21배의 높은 성능을 얻을 수 있었다.

주요어: 재구성형 구조, 재구성형, 조건실행, 저전력, 고성능

학번: 2008-21002

94

감사의 글

학위 논문을 완성하기까지 그리고 박사학위를 받기까지 부족한 저에게 도

움을 주신 많은 분들께 감사의 마음을 표현하고자 합니다.

우선 누구보다도 부모님께 감사의 인사를 드리고 싶습니다. 제가 연

구에 전념할 수 있도록 물심양면으로 지원을 아끼시지 않으신 부모님이

계셨기에 지금의 결과를 얻을 수 있었다고 생각합니다. 비단 대학원 생활

에서 뿐만이 아니라 지금까지 살면서 맞닥뜨린 여러 어려운 순간들에도

저를 믿고 지원해주신 점, 감사드립니다.

학문적으로 저를 이끌어주신 최기영 교수님께 깊은 감사를 드립니다.

자유롭게 생각을 펼칠 수 있도록 도와주시고 그러한 생각이 발전적인 방

향으로 나아가도록 지도해주신 덕에 좋은 논문들을 쓸 수 있었습니다. 학

문에 대한 진실됨과 연구에 대한 끊임없는 열의는 학자로서의 본보기가

되어주셨으며 학생들을 인격적으로 존중해주시는 인자하신 성품은 인간적

인 면에 있어서도 큰 귀감이 되었습니다.

같은 연구실 선후배, 동기에게도 감사한 마음을 전합니다. 학부생 때

졸업프로젝트를 맡아준 석형이형과 강희형, 같은 팀으로 연구 주제의 기

반을 닦을 수 있도록 도와준 만휘형과 경욱이, 칩 테스트를 같이 진행한

동욱이형, 연구를 도와준 종경이, 성식이, 양수, 준환이, 그리고 언제든 아

이디어 논의 대상이 되어준 준희형과 진호에게 감사의 마음을 전합니다.

이외에도 지식적으로 도움을 주시고 부족한 제 성격을 받아준 연구실 선배

들인 기성이형, 임용이형, 현직이형, 한민이형에게도 감사합니다. 영철이형,

동엽이형, 혁중이형, 영배형, 우디, 밍양, 재훈이형, 경훈이형, 학림이, 동우,

95

재민이, 선욱이, 성주, 남형이, 지현이도 연구실 생활을 함께 할 수 있어서

즐거웠습니다.

바쁘신 와중에도 논문지도를 기꺼이 허락해주신 채수익 교수님, 백윤

흥 교수님, 이종은 교수님, 김윤진 교수님께도 감사의 말씀을 드리며, 오랜

시간을 함께한 중학교 친구들, 대학교 생활을 즐겁게 할 수 있도록 해준

컴반04학번들, 긴 시간을 함께하지 못 하였지만 어려울 때 힘이 되어준 시

그마 동아리 사람들에게도 감사합니다. 형으로써 많은 신경을 써주진 못한

동생 규문이에게는 미안한 마음을 전하며, 곁에서 힘이 되어준 여자친구에

게도 감사의 마음을 전합니다.

저를 도와주신 모든 분들도 원하시는 바를 이루시기 바라며, 끝은 새

로운 시작이라는 마음으로 앞으로도 열심히 살도록 하겠습니다.

96

	Chapter 1 Introduction
	Chapter 2 Background and Related Work
	2.1 Coarse-Grained Reconfigurable Architecture
	2.1.1 Introduction
	2.1.2 Target Domain
	2.1.3 Comparison with Other Architectures
	2.1.4 Application Mapping
	2.1.5 Target CGRA

	2.2 Predicated Execution Technique
	2.2.1 Introduction
	2.2.2 Classification
	2.2.3 Different Roles in ILP and DLP processors
	2.2.4 Predication Support on CGRAs

	Chapter 3 Conventional Predicated Execution Techniques
	3.1 Partial Predication (Partial)
	3.2 Condition-Based Full Predication (CondFull)

	Chapter 4 State-Based Full Predication
	4.1 Previous Approach (PseudoBranch)
	4.2 Counter-Based Approach (StateFull)
	4.3 Dual-Issue-Single-Execution (DISE)
	4.4 Hybrid Predication
	4.4.1 Motivation
	4.4.2 StateFull+Partial
	4.4.3 StateFull+Partial+DISE

	Chapter 5 Evaluation
	5.1 Implementation
	5.1.1 Conventional Techniques
	5.1.2 Proposed Techniques

	5.2 Experimental Setup
	5.3 Experimental Results
	5.3.1 Effect of Predication Mechanism on Power Consumption of a PE
	5.3.2 Quantitative Definitions of short-if and long-if
	5.3.3 Compilation Strategy in StateFull+Partial
	5.3.4 Conventional Techniques (Partial, CondFull, and

	vs. Proposed StateFull Technique
	5.3.5 Proposed Hybrid Predication Techniques
	5.3.6 Putting Together
	5.3.7 Speedup of Applications

	Chapter 6 Mapping Framework
	6.1 Motivation
	6.2 Proposed Approach
	6.2.1 Overall Flow
	6.2.2 From IR to CDFG
	6.2.3 Separation
	6.2.4 CDFG Mapping

	6.3 Implementation
	6.4 Experiments
	6.4.1 Experimental Setup
	6.4.2 Verification of Mapping Framework
	6.4.3 Quality of Mapping Results

	Chapter 7 Conclusion
	7.1 Summary
	7.2 Applicable Scope and Future Work

	Appendix
	국문초록
	감사의 글

<startpage>18
Chapter 1 Introduction 1
Chapter 2 Background and Related Work 5
 2.1 Coarse-Grained Reconfigurable Architecture 5
 2.1.1 Introduction 5
 2.1.2 Target Domain 6
 2.1.3 Comparison with Other Architectures 6
 2.1.4 Application Mapping 8
 2.1.5 Target CGRA 8
 2.2 Predicated Execution Technique 11
 2.2.1 Introduction 11
 2.2.2 Classification 12
 2.2.3 Different Roles in ILP and DLP processors 13
 2.2.4 Predication Support on CGRAs 14
Chapter 3 Conventional Predicated Execution Techniques 15
 3.1 Partial Predication (Partial) 16
 3.2 Condition-Based Full Predication (CondFull) 18
Chapter 4 State-Based Full Predication 23
 4.1 Previous Approach (PseudoBranch) 24
 4.2 Counter-Based Approach (StateFull) 25
 4.3 Dual-Issue-Single-Execution (DISE) 28
 4.4 Hybrid Predication 32
 4.4.1 Motivation 32
 4.4.2 StateFull+Partial 34
 4.4.3 StateFull+Partial+DISE 35
Chapter 5 Evaluation 39
 5.1 Implementation 39
 5.1.1 Conventional Techniques 39
 5.1.2 Proposed Techniques 40
 5.2 Experimental Setup 43
 5.3 Experimental Results 46
 5.3.1 Effect of Predication Mechanism on Power Consumption of a PE 47
 5.3.2 Quantitative Definitions of short-if and long-if 48
 5.3.3 Compilation Strategy in StateFull+Partial 48
 5.3.4 Conventional Techniques (Partial, CondFull, and PseudoBranch)
vs. Proposed StateFull Technique 49
 5.3.5 Proposed Hybrid Predication Techniques 53
 5.3.6 Putting Together 54
 5.3.7 Speedup of Applications 57
Chapter 6 Mapping Framework 61
 6.1 Motivation 61
 6.2 Proposed Approach 63
 6.2.1 Overall Flow 63
 6.2.2 From IR to CDFG 64
 6.2.3 Separation 65
 6.2.4 CDFG Mapping 68
 6.3 Implementation 69
 6.4 Experiments 69
 6.4.1 Experimental Setup 69
 6.4.2 Verification of Mapping Framework 70
 6.4.3 Quality of Mapping Results 70
Chapter 7 Conclusion 73
 7.1 Summary 73
 7.2 Applicable Scope and Future Work 75
Appendix 77
국문초록 93
감사의 글 95
</body>

