4 research outputs found

    ์žฌ๊ตฌ์„ฑํ˜• ๊ตฌ์กฐ์—์„œ์˜ ํšจ์œจ์ ์ธ ์กฐ๊ฑด์‹คํ–‰ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ตœ๊ธฐ์˜.์žฌ๊ตฌ์„ฑํ˜• ๊ตฌ์กฐ๋Š” ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์€ ํ”„๋กœ๊ทธ๋žจ์„ ๋‚ด์žฅํ˜• ์‹œ์Šคํ…œ์—์„œ ๊ฐ€์†์‹œํ‚ค๋Š” ๋ฐ ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋งŽ์€ ์—ฐ์‚ฐ์œ ๋‹›๋“ค๊ณผ ํ•˜๋‚˜์˜ ์ปจํŠธ๋กค๋Ÿฌ๋กœ ๊ตฌ์„ฑ๋˜์–ด ๊ณ ์„ฑ๋Šฅ, ์œ ์—ฐ์„ฑ, ์ €์ „๋ ฅ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค€๋‹ค. ๋งŽ์€ ์—ฐ์‚ฐ์œ ๋‹›์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ๋Š” ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ์‹คํ–‰์†๋„๋ฅผ ๋น ๋ฅด๊ฒŒ ํ•˜๋ฉฐ, ์žฌ๊ตฌ์„ฑ ๊ธฐ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์—์˜ ํ™œ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ค€๋‹ค. ๋˜ํ•œ, ๋ช…๋ น์–ด์™€ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์Šค์ผ€์ฅด์„ ๋ฏธ๋ฆฌ ์ •ํ•ด๋†“์Œ์œผ๋กœ์จ ์ œ์–ด๊ตฌ์กฐ๋ฅผ ๋‹จ์ˆœํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋Š” ์—ฐ์‚ฐ๋Ÿ‰ ๋Œ€๋น„ ์ „๋ ฅ์†Œ๋ชจ๋ฅผ ์ตœ์†Œํ•œ์œผ ๋กœ ์ค„์—ฌ์ค€๋‹ค. ํ•˜์ง€๋งŒ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์ด ๋ณต์žกํ•ด์ง์— ๋”ฐ๋ผ ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์€ ๋ถ€๋ถ„๋“ค์— ๋ถ„๊ธฐ๋ฌธ์ด ์ƒ๊ธฐ๊ฒŒ ๋˜์—ˆ์œผ๋ฉฐ ์ด๋Š” ์žฌ๊ตฌ์„ฑํ˜• ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•จ์— ์žˆ์–ด ํฐ ์œ„ํ˜‘์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ถ„๊ธฐ๋ฌธ์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ์ปจํŠธ๋กค๋Ÿฌ๊ฐ€ ํ•˜๋‚˜์ด๊ธฐ ๋•Œ๋ฌธ์— ์ปจํŠธ๋กค๋Ÿฌ์— ๋ณ‘๋ชฉํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๊ฑฐ๋‚˜ ๋™์‹œ์— ์„œ๋กœ ๋‹ค๋ฅธ ์ œ์–ด๋ฅผ ์š”๊ตฌํ•˜๊ฒŒ ๋˜๋ฉด ํ•ด๋‹น ํ”„๋กœ๊ทธ๋žจ์€ ๊ฐ€์†์ด ๋ถˆ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ์กฐ๊ฑด์‹คํ–‰์ด๋ผ๋Š” ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ด๋ฅผ ๋ถ€๋ถ„์ ์œผ๋กœ ํ•ด์†Œํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๊ธฐ์กด์— ๊ฐœ๋ฐœ๋˜์–ด ์žˆ๋Š” ์กฐ๊ฑด์‹คํ–‰ ๊ธฐ์ˆ ๋“ค์€ ์žฌ๊ตฌ์„ฑํ˜• ๊ตฌ์กฐ์— ์„ฑ๋Šฅ ๋ฐ ์ „๋ ฅ์†Œ๋ชจ ๋ฉด์—์„œ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์ง€๋งŒ ๋ถ„๊ธฐ๋ฌธ์„ ๊ฐ€์ง„ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์—์„œ ์กฐ๊ฑด์‹คํ–‰์ด ์„ฑ๋Šฅ๊ณผ ์ „๋ ฅ ๋ฉด์—์„œ ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๋ฐํžˆ๋ฉฐ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ณ ์„ฑ๋Šฅ๊ณผ ์ €์ „๋ ฅ์„ ๊ฐ€์ง„ ์กฐ๊ฑด์‹คํ–‰ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด ์ œ์•ˆํ•œ ๋ฐฉ์‹์€ ๊ธฐ์กด์˜ ์„ธ๊ฐ€์ง€ ๋ฐฉ์‹๋ณด๋‹ค ์„ฑ๋Šฅ๊ณผ ์ „๋ ฅ์†Œ๋ชจ๋ฅผ ๊ณฑ์œผ๋กœ ํ‘œํ˜„ํ•œ ์ˆ˜์น˜์— ์žˆ์–ด์„œ 11.9%, 14.7%, 23.8% ๋งŒํผ์˜ ์ด๋“์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ์ œ์•ˆํ•œ ์กฐ๊ฑด์‹คํ–‰ ๋ฐฉ๋ฒ•์— ์ ํ•ฉํ•œ ์ปดํŒŒ์ผ ์ฒด๊ณ„๋„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์กฐ๊ฑด์‹คํ–‰์€ ์ ˆ์ „๋ชจ๋“œ๋ฅผ ์‚ฌ์šฉํ•จ์— ๋”ฐ๋ผ ์ „๋ ฅ์„ ์•„๋‚„ ์ˆ˜ ์žˆ์ง€๋งŒ ๊ธฐ์กด์˜ ์ปดํŒŒ์ผ๋ฐฉ์‹์œผ๋กœ๋Š” ์—ฌ๋Ÿฌ ์กฐ๊ฑด๋ฌธ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์ปดํŒŒ์ผํ•  ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ๊ฐ€ ์ƒ๊ธด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ๋ฐํžˆ๊ณ  ์กฐ๊ฑด๋ฌธ๋“ค์„ ์„œ๋กœ ๋‹ค๋ฅธ ์—ฐ์‚ฐ์œ ๋‹›์— ํ• ๋‹นํ•จ์œผ๋กœ์จ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋‹จ์ˆœํ•˜๊ณ  ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์— ๋น„ํ•˜์—ฌ ํ‰๊ท ์ ์œผ๋กœ 2.21๋ฐฐ์˜ ๋†’์€ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค.Coarse-Grained Reconfigurable Architecture (CGRA) is one of viable solutions in embedded systems to accelerate data-intensive applications. It typically consists of an array of processing elements (PEs) and a centralized controller, which can provide high performance, flexibility, and low power. Parallel array processing reduces execution time of applications, reconfigurability of PEs allows changing its functionality, and simplified control structure with static scheduling for instruction fetching and data communication minimizes power consumption. However, as applications become complex so that data-intensive parts are having control flows in them, CGRAs face a challenge for its effectiveness. Since the entire PEs are controlled by a centralized unit, it is impossible to execute programs having control divergence among PEs. To overcome the problem, we can adopt the technique called predicated execution, which is the unique solution known so far, but conventional predication techniques have a negative impact on both performance and power consumption due to longer instruction words and unnecessary instruction-fetching/decoding/nullifying steps. Thus, this thesis reveals performance and power issues in predicated execution when a CGRA executes both data- and control-intensive applications, which have not been well-addressed yet. Then it proposes high-performance and low-power predication mechanisms. Experiments conducted through gate-level simulation show that the proposed mechanism improves energy-delay product by 11.9%, 14.7%, and 23.8% compared to three conventional techniques. In addition, this thesis also reveals mapping issues when mapping applications on CGRAs using the proposed predication. A power-saving mode introduced into PEs prohibits multiple conditionals from being parallelized if conventional mapping algorithms are used. Thus, this thesis proposes the framework to release this problem by mapping conditionals to different PEs. Experiments show that mapping results from the proposed approach lead to 2.21 times higher performance than those of the naรฏve approach.Abstract i Chapter 1 Introduction 1 Chapter 2 Background and Related Work 5 2.1 Coarse-Grained Reconfigurable Architecture . . . . . . . . . . . . 5 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Target Domain . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Comparison with Other Architectures . . . . . . . . . . . 6 2.1.4 Application Mapping . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 Target CGRA . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Predicated Execution Technique . . . . . . . . . . . . . . . . . . 11 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Different Roles in ILP and DLP processors . . . . . . . . 13 2.2.4 Predication Support on CGRAs . . . . . . . . . . . . . . . 14 Chapter 3 Conventional Predicated Execution Techniques 15 3.1 Partial Predication (Partial) . . . . . . . . . . . . . . . . . . . . 16 3.2 Condition-Based Full Predication (CondFull) . . . . . . . . . . 18 Chapter 4 State-Based Full Predication 23 4.1 Previous Approach (PseudoBranch) . . . . . . . . . . . . . . . 24 4.2 Counter-Based Approach (StateFull) . . . . . . . . . . . . . . 25 4.3 Dual-Issue-Single-Execution (DISE) . . . . . . . . . . . . . . . . 28 4.4 Hybrid Predication . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.2 StateFull+Partial . . . . . . . . . . . . . . . . . . . . 34 4.4.3 StateFull+Partial+DISE . . . . . . . . . . . . . . . . 35 Chapter 5 Evaluation 39 5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 Conventional Techniques . . . . . . . . . . . . . . . . . . . 39 5.1.2 Proposed Techniques . . . . . . . . . . . . . . . . . . . . . 40 5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.1 Effect of Predication Mechanism on Power Consumption of a PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.2 Quantitative Definitions of short-if and long-if . . . . . . 48 5.3.3 Compilation Strategy in StateFull+Partial . . . . . . 48 5.3.4 Conventional Techniques (Partial, CondFull, and PseudoBranch) vs. Proposed StateFull Technique . . . . . 49 5.3.5 Proposed Hybrid Predication Techniques . . . . . . . . . 53 5.3.6 Putting Together . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.7 Speedup of Applications . . . . . . . . . . . . . . . . . . . 57 Chapter 6 Mapping Framework 61 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.2 From IR to CDFG . . . . . . . . . . . . . . . . . . . . . . 64 6.2.3 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.4 CDFG Mapping . . . . . . . . . . . . . . . . . . . . . . . 68 6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 69 6.4.2 Verification of Mapping Framework . . . . . . . . . . . . . 70 6.4.3 Quality of Mapping Results . . . . . . . . . . . . . . . . . 70 Chapter 7 Conclusion 73 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2 Applicable Scope and Future Work . . . . . . . . . . . . . . . . . 75 Appendix 77 ๊ตญ๋ฌธ์ดˆ๋ก 93 ๊ฐ์‚ฌ์˜ ๊ธ€ 95Docto

    ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„์˜ ์›์ž ๋ฐฐ์—ด์— ์˜์กดํ•˜๋Š” ์ „๊ธฐ์  ๋ฌผ์„ฑ์— ๋Œ€ํ•œ ์ œ์ผ์›๋ฆฌ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021.8. ํ™ฉ์ฒ ์„ฑ.์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„๋Š” ์›ํ•˜๋Š” ๋ฌผ์„ฑ์„ ์–ป๊ธฐ ์œ„ํ•ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„๊ฐ€ ๊ณ ์šฉ์ฒด ์ƒํƒœ์ผ ๋•Œ๋Š” ๋Œ€๊ฐœ ์กฐ์„ฑ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„์˜ ๋ฌผ์„ฑ์„ ์กฐ์ •ํ•ด์™”๋‹ค. ์ตœ๊ทผ์—๋Š” ์›์ž๋ฐฐ์—ด์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์ด ๋ฐœ์ „ํ•˜๋ฉด์„œ ๋ฐฐ์—ด์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋ฐ”๋€Œ๋Š” ์—๋„ˆ์ง€, ๋ฐด๋“œ๊ฐญ, ์œ ์ „์œจ๊ณผ ๊ฐ™์€ ํŠน์„ฑ๋“ค์„ ๋ฐฐ์—ด์˜ ๊ด€์ ์—์„œ ์กฐ์‚ฌํ•ด๋ณผ ํ•„์š”์„ฑ์ด ์ปค์ง€๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ์— ์‚ฌ์šฉ๋  ํ›„๋ณด ๋ฌผ์งˆ๋“ค์ธ Ga(As,Sb), (In,Ga)As, (Be,Mg)O์˜ ๋ฐฐ์—ด๊ณผ ์กฐ์„ฑ์— ์˜์กดํ•˜๋Š” ๋ฌผ์„ฑ์— ๋Œ€ํ•˜์—ฌ ์ด๋ก ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„๊ฐ€ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์—„์ฒญ๋‚œ ์ˆ˜์˜ ๋ฐฐ์—ด๋“ค์€ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„, ํŠนํžˆ ๊ณ ์šฉ์ฒด ํ˜•ํƒœ์˜ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„๋ฅผ ์ด๋ก ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“œ๋Š”๋ฐ, ์ด๋ฅผ ๋ฐฐ์—ด ๋ฌธ์ œ๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๋ฐฐ์—ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๊ณ ์šฉ์ฒด์˜ ๋ฌผ์„ฑ์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ํšจ์œจ์ ์ด๊ณ  ์ •ํ™•ํ•œ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋Š” (1) ๋ฐ€๋„๋ฒ”ํ•จ์ˆ˜์ด๋ก (DFT)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋งŽ์€ ๋ฐฐ์—ด๋“ค์˜ ์—๋„ˆ์ง€๋ฅผ ํฌํ•จํ•œ ๋ฌผ์„ฑ๋“ค์„ ๊ณ„์‚ฐํ•˜๊ณ , (2) DFT ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํด๋Ÿฌ์Šคํ„ฐ์ „๊ฐœ๋ชจ๋ธ์„ ์„ธ์›Œ DFT๋งŒ์œผ๋กœ๋Š” ๊ณ„์‚ฐํ•˜๊ธฐ ํž˜๋“  ๋ง‰๋Œ€ํ•œ ๋ฐฐ์—ด ๋ฐ ์กฐ์„ฑ ๊ณต๊ฐ„์„ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ ํ›„, (3) ์ „์ฒด ์‹œ์Šคํ…œ์„ ๋งŽ์€ ์ˆ˜์˜ ๋ฏธ์‹œ์ƒํƒœ๋“ค๋กœ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ํ†ต๊ณ„์—ด์—ญํ•™์„ ํ™œ์šฉํ•˜์—ฌ ํ‰๊ท  ๋ฌผ์„ฑ์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ํ†ต๊ณ„์—ด์—ญํ•™ ๋ถ€๋ถ„์—์„œ๋Š” ์กฐ์„ฑ๋ณ€๋™์„ ํ—ˆ์šฉํ•˜๋ฉฐ ์—ฐ์†๋œ ์กฐ์„ฑ์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์–ด ๋” ํ˜„์‹ค์ ์ธ ๋ชจ์‚ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์ •์ค€ ์•™์ƒ๋ธ”์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์ด ์ƒˆ๋กœ์šด ๋ฌผ์งˆ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด Ga(As,Sb)์™€ (In,Ga)As์˜ ์ƒํƒœ๋„์™€ Ga(As,Sb)์˜ ๋ฐด๋“œ๊ฐญ์„ ์‹คํ—˜ ๋ฌธํ—Œ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ๋Œ€์ •์ค€ ์•™์ƒ๋ธ”์„ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ๊ตญ๋ถ€ ์กฐ์„ฑ ๋ณ€๋™์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋ฏธ์‹œ์ƒํƒœ ๊ฐ„์˜ ๊ฒฉ์ž๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ๊ตญ๋ถ€ ๋ณ€ํ˜•์ด ๊ณ ๋ คํ•˜์—ฌ์•ผ๋งŒ ์‹ค์ œ ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฐพ์•„๋‚ด๊ณ  ์ˆ˜ํ•™์ ์œผ๋กœ ์ฆ๋ช…ํ•˜์˜€๋‹ค. Ga(As,Sb)์˜ ๋ฐฐ์—ด๋“ค์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์กฐ์„ฑ๊ณผ ๋ฐฐ์—ด์„ ๋ชจ๋‘ ์กฐ์ ˆํ•  ์‹œ ์กฐ์„ฑ๋งŒ์„ ์กฐ์ ˆํ•˜์˜€์„ ๋•Œ๋ณด๋‹ค ๋” ๋„“์€ ๋ฐด๋“œ๊ฐญ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, Ga(As,Sb)์— ๋ฐด๋“œ๊ฐญ๊ณผ ์—๋„ˆ์ง€ ์‚ฌ์ด์˜ ์—ญ๊ด€๊ณ„๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , ๋ฌธํ—Œ๋“ค์— ๋‚˜์™€์žˆ๋Š” ์œ ํšจ ํด๋Ÿฌ์Šคํ„ฐ ์ƒํ˜ธ์ž‘์šฉ ๊ณ„์ˆ˜(ECI)๋กœ๋ถ€ํ„ฐ ๋ฐด๋“œ๊ฐญ๊ณผ ์—๋„ˆ์ง€ ์‚ฌ์ด์˜ ์—ญ๊ด€๊ณ„๊ฐ€ ๋‹ค๋ฅธ ๋ฌผ์งˆ์—์„œ๋„ ๋‚˜ํƒ€๋‚  ๊ฒƒ์ž„์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ณ ์œ ์ „์œจ ๋ฌผ์งˆ๋กœ ์‚ฌ์šฉ๋  ํ›„๋ณด ๋ฌผ์งˆ์ธ (Be,Mg)O์— ๋Œ€ํ•ด์„œ๋Š” ๊ณ ์œ ์ „์œจ ๋ฌผ์งˆ์— ์š”๊ตฌ๋˜๋Š” ๋†’์€ ์œ ์ „์œจ๊ณผ ๋†’์€ ๋ฐด๋“œ๊ฐญ์„ ์–ป๊ธฐ ์œ„ํ•˜์—ฌ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ž‘์€ ์…€์— ๋Œ€ํ•œ DFT ๊ณ„์‚ฐ์œผ๋กœ (Be,Mg)O๋Š” Be ์›์ž๊ฐ€ ์•”์—ผ๊ตฌ์กฐ์—์„œ ์ œ์ž๋ฆฌ๋ฅผ ์•ฝ๊ฐ„ ๋ฒ—์–ด๋‚˜์„œ ์ˆ˜์ •๋œ ์•”์—ผ๊ตฌ์กฐ๊ฐ€ ๋˜๋ฉด ์•”์—ผ๊ตฌ์กฐ๋ณด๋‹ค ๋” ์•ˆ์ •ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งŽ์€ ๋ฐฐ์—ด๋“ค์— ๋Œ€ํ•œ DFT ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์ˆ˜์ •๋œ ์•”์—ผ๊ตฌ์กฐ์ธ (Be,Mg)O์˜ ์œ ์ „์œจ์€ ๋ฐฐ์—ด์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋ฐ”๋€Œ๋Š” ๋ฐ˜๋ฉด ๋ฐด๋“œ๊ฐญ์€ ๋ฐฐ์—ด์— ๊ด€๊ณ„์—†์ด ๋†’์€ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋†’์€ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋ฐฐ์—ด์„ ์ฐพ๋Š” ๋ฐฉ์‹์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๊ทธ ๊ฒฐ๊ณผ ALD๋ฅผ ์ด์šฉํ•ด ์ฆ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ์ดˆ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ๋ฐฐ์—ด๋“ค์ด 300 K ์ด์ƒ์˜ ์˜จ๋„์—์„œ ๋†’์€ ์œ ์ „์œจ์„ ๊ฐ€์ง€๊ฒŒ ๋  ๊ฒƒ์ž„์„ ํ™•์ธํ•˜์˜€๊ณ , ์ด๋Š” ๊ธด ์ˆ˜์ง ๋ฐฉํ–ฅ์œผ๋กœ์˜ Be-O ๊ฒฐํ•ฉ๊ธธ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฒˆ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ„์‚ฐํ•˜๊ธฐ ์–ด๋ ต๋‹ค๊ณ  ์•Œ๋ ค์ง„ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„๋ฅผ ๋ฐฐ์—ด์„ ๊ด€์ ์—์„œ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ฐœํ•œ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ๋‹ค๋ฅธ ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„์˜ ๋ฌผ์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ  ์กฐ์ ˆํ•˜๋Š”๋ฐ ๋งŽ์€ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ฉฐ, ๊ธฐ์กด์—๋Š” ์œ ์‚ฌ์ด์„ฑ๋ถ„๊ณ„์˜ ๋ฌผ์„ฑ์„ ์กฐ์„ฑ์œผ๋กœ๋งŒ ์กฐ์ •ํ•˜์˜€์ง€๋งŒ ๋ฐฐ์—ด๊ณผ ์กฐ์„ฑ์„ ๋ชจ๋‘ ์กฐ์ ˆํ•œ๋‹ค๋ฉด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฌผ์„ฑ์˜ ๋ฒ”์œ„๊ฐ€ ํ›จ์”ฌ ๋„“์–ด์ง์„ ํ™•์ธํ•œ ๊ฒƒ์€ ๋ฐฐ์—ด ์กฐ์ ˆ์„ ํ†ตํ•œ ๋ฌผ์„ฑ ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ๋ฐ‘๊ฑฐ๋ฆ„์ด ๋  ๊ฒƒ์ด๋‹ค.The pseudobinary systems have been widely used to obtain the desired properties. The property tuning has been usually conducted by controlling the composition for solid solution state. Recently, the methods to control the configuration have been developed, and thus it is attractive to investigate the pseudobinary system in the scope of configuration because many properties such as energy, bandgap, and dielectric constant vary according to the configuration. In this dissertation, configuration- and composition-dependent properties of the candidate materials to be used in transistor such as Ga(As,Sb), (In,Ga)As and (Be,Mg)O are theoretically investigated in terms of configuration. However, it is hard to theoretically investigate pseudobinary systems, especially the solid solutions, because of its enormous number of configurations, which is called configurational problem. To overcome the configurational problem, this dissertation proposes the efficient and accurate framework to calculate the properties of solid solution systems: (i) calculating the properties including energy of numerous configurations using density functional theory (DFT); (ii) making cluster expansion models for the each property based on DFT results to explore a wide range of composition and configuration space outside DFT capability; (iii) calculating average property using the statistical thermodynamics, in which a system is consist of the large number of microstates. In the statistical thermodynamics part, the grand canonical ensemble is used to simulate more realistically, which allows the compositional fluctuation and continuous composition. To ensure that the proposed methodology can be applied to other new materials, the methodology is validated by comparing the calculated phase diagrams of Ga(As,Sb) and (In,Ga)As, and the calculated average bandgap of Ga(As,Sb) with experimental literature. In the process, it is found and proved mathematically that strain induced by lattice mismatch between microstates which comes from local compositional fluctuation, called local strain, is necessary to describe the phenomenon when using grand canonical ensemble. The calculated bandgaps of Ga(As,Sb) configurations show that the wider range of Ga(As,Sb) bandgap can be obtained by controlling both configuration and composition than by composition control alone. In addition, the negative proportional relationship between bandgap and energy is found for Ga(As,Sb) and expected for several pseudobinary systems from effective cluster interaction coefficient (ECI) in literature. The calculation on (Be,Mg)O is performed to obtain high dielectric constant and high bandgap, as a new candidate for high-k materials. By DFT calculation for unitcell, (Be,Mg)O with Be atom which is deviated in rocksalt structure, called modified-rocksalt structure (m-RS), become more stable than rocksalt structure. By DFT calculation for various configurations, it is found that the dielectric constant of m-RS (Be,Mg)O varies a lot according to the configuration while the bandgap keeps high value regardless of configuration. The large variation of (Be,Mg)O dielectric constant according to configuration becomes driving force for searching configurations with high dielectric constant rather than calculating the average dielectric constant. As a result, it is found that the configurations with superlattice-like structure, which can be deposited using ALD, have a high dielectric constant over 300 K, which can be explained by long apical Be-O bond length. The method for simulating a pesudobinary system proposed in this dissertation can be utilized in predicting and controlling the properties of other pseudobinary systems. Confirming that the range of possible properties is broadened through controlling both composition and configuration will be a foundation for the study of pseudobinary systemโ€™s properties.CHAPTER 1 Introduction 1 1.1 Overview of pseudobinary systems in electronic devices 1 1.2 Challenges in calculating pseudobinary systems 2 1.3 Outline of the dissertation 3 CHAPTER 2 Theoretical Background 5 2.1 Introduction 5 2.2 Density functional theory (DFT) 6 2.3 Cluster expansion 8 2.4 Statistical thermodynamics 9 2.5 Dielectric constant 12 CHAPTER 3 Methodology for Average Property 15 3.1 Introduction 15 3.2 Density functional theory (DFT) 16 3.3 Cluster expansion 21 3.4 Statistical thermodynamics 21 3.4.1 Ensemble average 21 3.4.2 Number of samples 23 CHAPTER 4 Phase diagram of III-V Semiconductor Solid Solution 25 4.1 Introduction 25 4.2 Computation details 29 4.3 Phase diagrams of Ga(As,Sb) and (In,Ga)As 31 4.4 Upper critical solution temperature 46 4.5 Conclusion 49 4.6 Appendix 50 CHAPTER 5 Bandgap of III-V Semiconductor Solid Solution 55 5.1 Introduction 55 5.2 Computation details 57 5.3 Bandgaps and energies of configurations 60 5.4 Average bandgap of Ga(As,Sb) 70 5.5 Conclusion 77 CHAPTER 6 (Be,Mg)O Solid Solution 79 6.1 Introduction 79 6.2 Computation details 82 6.3 Energetics and structure stability 84 6.4 Bandgap 91 6.5 Temperature-dependent dielectric constant 93 6.6 Conclusion 104 6.7 Appendix 105 Bibliography 107 Abstract in Korean 130๋ฐ•
    corecore