1,820 research outputs found

    Average-energy games

    Get PDF
    Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Optimal Reachability in Divergent Weighted Timed Games

    Full text link
    Weighted timed games are played by two players on a timed automaton equipped with weights: one player wants to minimise the accumulated weight while reaching a target, while the other has an opposite objective. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. Decidability results exist for subclasses of one-clock games, and for a subclass with non-negative weights defined by a semantical restriction on the weights of cycles. In this work, we introduce the class of divergent weighted timed games as a generalisation of this semantical restriction to arbitrary weights. We show how to compute their optimal value, yielding the first decidable class of weighted timed games with negative weights and an arbitrary number of clocks. In addition, we prove that divergence can be decided in polynomial space. Last, we prove that for untimed games, this restriction yields a class of games for which the value can be computed in polynomial time

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Multiplayer Cost Games with Simple Nash Equilibria

    Full text link
    Multiplayer games with selfish agents naturally occur in the design of distributed and embedded systems. As the goals of selfish agents are usually neither equivalent nor antagonistic to each other, such games are non zero-sum games. We study such games and show that a large class of these games, including games where the individual objectives are mean- or discounted-payoff, or quantitative reachability, and show that they do not only have a solution, but a simple solution. We establish the existence of Nash equilibria that are composed of k memoryless strategies for each agent in a setting with k agents, one main and k-1 minor strategies. The main strategy describes what happens when all agents comply, whereas the minor strategies ensure that all other agents immediately start to co-operate against the agent who first deviates from the plan. This simplicity is important, as rational agents are an idealisation. Realistically, agents have to decide on their moves with very limited resources, and complicated strategies that require exponential--or even non-elementary--implementations cannot realistically be implemented. The existence of simple strategies that we prove in this paper therefore holds a promise of implementability.Comment: 23 page
    • …
    corecore