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Uli Fahrenberg Axel Legay
Inria Rennes, France

Energy problems are important in the formal analysis of embedded or autonomous systems. Using
recent results on ∗-continuous Kleene ω-algebras, we show here that energy problems can be solved
by algebraic manipulations on the transition matrix of energy automata. To this end, we prove general
results about certain classes of finitely additive functions on complete lattices which should be of a
more general interest.

1 Introduction

Energy problems are concerned with the question whether a given system admits infinite schedules
during which (1) certain tasks can be repeatedly accomplished and (2) the system never runs out of
energy (or other specified resources). These are important in areas such as embedded systems or au-
tonomous systems and, starting with [4], have attracted some attention in recent years, for example
in [3, 5–8, 16, 19, 23, 24].

With the purpose of generalizing some of the above approaches, we have in [12,17] introduced energy
automata. These are finite automata whose transitions are labeled with energy functions which specify
how energy values change from one system state to another. Using the theory of semiring-weighted
automata [9], we have shown in [12] that energy problems in such automata can be solved in a simple
static way which only involves manipulations of energy functions.

In order to put the work of [12] on a more solid theoretical footing and with an eye to future general-
izations, we have recently introduced a new algebraic structure of ∗-continuous Kleene ω-algebras [10]
(see also [11] for the long version). We show here that energy functions form such a ∗-continuous Kleene
ω-algebra. Using the fact, proven in [10], that for automata with transition weights in ∗-continuous
Kleene ω-algebras, reachability and Büchi acceptance can be computed by algebraic manipulations on
the transition matrix of the automaton, the results from [12] follow.

2 Energy Automata

The transition labels on the energy automata which we consider in the paper, will be functions which
model transformations of energy levels between system states. Such transformations have the (natural)
properties that below a certain energy level, the transition might be disabled (not enough energy is avail-
able to perform the transition), and an increase in input energy always yields at least the same increase
in output energy. Thus the following definition:
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2 ∗-Continuous Kleene ω-algebras for energy problems

x 7→ x+2;x≥ 2

x 7→ x+3;x > 1

x 7→ 2x−2;x≥ 1
x 7→ x−1;x > 1

x 7→ x+1;x≥ 0

Figure 1: A simple energy automaton.

Definition 1 An energy function is a partial function f :R≥0 ⇀R≥0 which is defined on a closed interval
[l f ,∞[ or on an open interval ]l f ,∞[, for some lower bound l f ≥ 0, and such that for all x≤ y for which f
is defined,

y f ≥ x f + y− x . (1)

The class of all energy functions is denoted by F .

Note that we write function composition and application in diagrammatical order, from left to right,
in this paper. Hence we write f ;g, or simply f g, for the composition g ◦ f and x; f or x f for function
application f (x). This is because we will be concerned with algebras of functions, in which function
composition is multiplication, and where it is customary to write multiplication in diagrammatical order.

Thus energy functions are strictly increasing, and in points where they are differentiable, the deriva-
tive is at least 1. The inverse functions to energy functions exist, but are generally not energy functions.
Energy functions can be composed, where it is understood that for a composition f g, the interval of
definition is {x ∈R≥0 | x f and x f g defined}.
Lemma 1 Let f ∈F and x∈R≥0. If x f < x, then there is N ∈N for which x f N is not defined. If x f > x,
then for all P ∈R there is N ∈N for which x f N ≥ P.

Proof In the first case, we have x− x f = M > 0. Using (1), we see that x f n+1 ≤ x f n−M for all n ∈N
for which x f n+1 is defined. Hence (x f n)n∈N decreases without bound, so that there must be N ∈N such
that x f N is undefined.

In the second case, we have x f − x = M > 0. Again using (1), we see that x f n+1 > x f n +M for all
n ∈N. Hence (x f n)n∈N increases without bound, so that for any P ∈R there must be N ∈N for which
x f N ≥ P. �

Note that property (1) is not only sufficient for Lemma 1, but in a sense also necessary: if 0 < α <
1 and f : R≥0 → R≥0 is the function x f = 1+αx, then x f n = ∑

n−1
i=0 α i +αnx for all n ∈ N, hence

limn→∞ x f n = 1
1−α

, so Lemma 1 does not hold for f . On the other hand, y f = x f +α(y−x) for all x≤ y,
so (1) “almost” holds.

Definition 2 An energy automaton (S,s0,T,F) consists of a finite set S of states, with initial state s0 ∈ S,
a finite set T ⊆ S×F ×S of transitions labeled with energy functions, and a subset F ⊆ S of acceptance
states.

We show an example of a simple energy automaton in Fig. 1. Here we use inequalities to give the
definition intervals of energy functions.

A finite path in an energy automaton is a finite sequence of transitions π = (s0, f1,s1),(s1, f2,s2), . . . ,
(sn−1, fn,sn). We use fπ to denote the combined energy function f1 f2 · · · fn of such a finite path. We will
also use infinite paths, but note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair q = (s,x) with s ∈ S and x ∈ R≥0. A transition
between global states is of the form ((s,x), f ,(s′,x′)) such that (s, f ,s′) ∈ T and x′ = f (x). A (finite or
infinite) run of (S,T ) is a path in the graph of global states and transitions.
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We are ready to state the decision problems with which our main concern will lie. As the input to a
decision problem must be in some way finitely representable, we will state them for subclasses F ′ ⊆F
of computable energy functions; an F ′-automaton is an energy automaton (S,T ) with T ⊆ S×F ′×S.

Problem 1 (Reachability) Given a subset F ′ ⊆ F of computable functions, an F ′-automaton A =
(S,s0,T,F) and a computable initial energy x0 ∈ R≥0: does there exist a finite run of A from (s0,x0)
which ends in a state in F?

Problem 2 (Büchi acceptance) Given a subset F ′ ⊆ F of computable functions, an F ′-automaton
A = (S,s0,T,F) and a computable initial energy x0 ∈ R≥0: does there exist an infinite run of A from
(s0,x0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.

3 Algebraic Preliminaries

We now turn our attention to the algebraic setting of ∗-continuous Kleene algebras and related structures,
before revisiting energy automata in Section 6. In this section we review some results on ∗-continuous
Kleene algebras and ∗-continuous Kleene ω-algebras.

3.1 ∗-Continuous Kleene ω-Algebras

A semiring [1, 18] S = (S,+, ·,0,1) consists of a commutative monoid (S,+,0) and a monoid (S, ·,1)
such that the distributive laws

x(y+ z) = xy+ xz

(y+ z)x = yx+ zx

and the zero laws
0 · x = 0 = x ·0

hold for all x,y,z ∈ S. It follows that the product operation distributes over all finite sums.
An idempotent semiring is a semiring S whose sum operation is idempotent, so that x+ x = x for all

x ∈ S. Each idempotent semiring S is partially ordered by the relation x ≤ y iff x+ y = y, and then sum
and product preserve the partial order and 0 is the least element. Moreover, for all x,y ∈ S, x+ y is the
least upper bound of the set {x,y}. Accordingly, in an idempotent semiring S, we will usually denote the
sum operation by ∨ and 0 by ⊥.

A Kleene algebra [22] is an idempotent semiring S = (S,∨, ·,⊥,1) equipped with a star operation
∗ : S→ S such that for all x,y ∈ S, yx∗ is the least solution of the fixed point equation z = zx∨ y and x∗y
is the least solution of the fixed point equation z = xz∨ y with respect to the natural order.

A ∗-continuous Kleene algebra [22] is a Kleene algebra S = (S,∨, ·,∗ ,⊥,1) in which the infinite
suprema

∨
{xn | n≥ 0} exist for all x ∈ S, x∗ =

∨
{xn | n≥ 0} for every x ∈ S, and product preserves such

suprema:
y
(∨

n≥0

xn)= ∨
n≥0

yxn and
(∨

n≥0

xn)y = ∨
n≥0

xny

for all x,y ∈ S.
A continuous Kleene algebra is a Kleene algebra S = (S,∨, ·,∗ ,⊥,1) in which all suprema

∨
X ,

X ⊆ S, exist and are preserved by products, i.e., y(
∨

X) =
∨

yX and (
∨

X)y =
∨

Xy for all X ⊆ S, y ∈
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S. ∗-continuous Kleene algebras are hence a generalization of continuous Kleene algebras. There are
interesting Kleene algebras which are ∗-continuous but not continuous, for example the Kleene algebra
of all regular languages over some alphabet.

A semiring-semimodule pair [2,14] (S,V ) consists of a semiring S = (S,+, ·,0,1) and a commutative
monoid V = (V,+,0) which is equipped with a left S-action S×V →V , (s,v) 7→ sv, satisfying

(s+ s′)v = sv+ s′v s(v+ v′) = sv+ sv′

(ss′)v = s(s′v) 0s = 0

s0 = 0 1v = v

for all s,s′ ∈ S and v ∈V . In that case, we also call V a (left) S-semimodule. If S is idempotent, then also
V is idempotent, so that we then write V = (V,∨,⊥).

A generalized ∗-continuous Kleene algebra [10] is a semiring-semimodule pair (S,V ) where S =
(S,∨, ·,∗ ,⊥,1) is a ∗-continuous Kleene algebra such that

xy∗v =
∨
n≥0

xynv

for all x,y ∈ S and v ∈V .
A ∗-continuous Kleene ω-algebra [10] consists of a generalized ∗-continuous Kleene algebra (S,V )

together with an infinite product operation Sω →V which maps every infinite sequence x0,x1, . . . in S to
an element ∏n≥0 xn of V . The infinite product is subject to the following conditions:

(C1) For all x0,x1, . . . ∈ S, ∏
n≥0

xn = x0 ∏
n≥0

xn+1.

(C2) Let x0,x1, . . . ∈ S and 0 = n0 ≤ n1 ≤ ·· · a sequence which increases without a bound. Let yk =
xnk · · ·xnk+1−1 for all k ≥ 0. Then ∏

n≥0
xn = ∏

k≥0
yk.

(C3) For all x0,x1, . . . ,y,z ∈ S, ∏
n≥0

(xn(y∨ z)) =
∨

x′0,x
′
1,...∈{y,z}

∏
n≥0

xnx′n.

(C4) For all x,y0,y1, . . . ∈ S, ∏
n≥0

x∗yn =
∨

k0,k1,...≥0
∏
n≥0

xknyn.

A continuous Kleene ω-algebra [14] is a semiring-semimodule pair (S,V ) in which S is a continuous
Kleene algebra, V is a complete lattice, and the S-action on V preserves all suprema in either argument,
together with an infinite product as above which satisfies conditions (C1) and (C2) above and preserves
all suprema: ∏n≥0(

∨
Xn) =

∨
{∏n≥0 xn | xn ∈ Xn,n≥ 0} for all X0,X1, . . .⊆ S (this property implies (C3)

and (C4) above). ∗-continuous Kleene ω-algebras are hence a generalization of continuous Kleene ω-
algebras. We have in [10] given an example, based on regular languages of finite and infinite words, of a
∗-continuous Kleene ω-algebra which is not a continuous Kleene ω-algebra. In Section 6 we will show
that energy functions give raise to another such example.

3.2 Matrix Semiring-Semimodule Pairs

For any semiring S and n≥ 1, we can form the matrix semiring Sn×n whose elements are n×n-matrices of
elements of S and whose sum and product are given as the usual matrix sum and product. It is known [21]
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that when S is a ∗-continuous Kleene algebra, then Sn×n is also a ∗-continuous Kleene algebra, with the
∗-operation defined by

M∗i, j =
∨

m≥0

∨
1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm, j

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. The above infinite supremum exists, as it is taken over a regular set,
see [13, Thm. 9] and [10, Lemma 4]. Also, if n ≥ 2 and M =

(
a b
c d

)
, where a and d are square matrices

of dimension less than n, then

M∗ =
(

(a∨bd∗c)∗ (a∨bd∗c)∗bd∗

(d∨ ca∗b)∗ca∗ (d∨ ca∗b)∗

)
. (2)

For any semiring-semimodule pair (S,V ) and n ≥ 1, we can form the matrix semiring-semimodule
pair (Sn×n,V n) whose elements are n×n-matrices of elements of S and n-dimensional (column) vectors
of elements of V , with the action of Sn×n on V n given by the usual matrix-vector product.

When (S,V ) is a ∗-continuous Kleene ω-algebra, then (Sn×n,V n) is a generalized ∗-continuous
Kleene algebra [10]. By [10, Lemma 17], there is an ω-operation on Sn×n defined by

Mω
i =

∨
1≤k1,k2,...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Sn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
(

a b
c d

)
, where a and d are square matrices of

dimension less than n, then

Mω =

(
(a∨bd∗c)ω ∨ (a∨bd∗c)∗bdω

(d∨ ca∗b)ω ∨ (d∨ ca∗b)∗caω

)
.

3.3 Weighted automata

Let (S,V ) be a ∗-continuous Kleene ω-algebra and A ⊆ S a subset. We write 〈A〉 for the set of all finite
suprema a1∨·· ·∨am with ai ∈ A for each i = 1, . . . ,m.

A weighted automaton [15] over A of dimension n≥ 1 is a tuple (α,M,k), where α ∈ {⊥,1}n is the
initial vector, M ∈ 〈A〉n×n is the transition matrix, and k is an integer 0 ≤ k ≤ n. Combinatorially, this
may be represented as a transition system whose set of states is {1, . . . ,n}. For any pair of states i, j, the
transitions from i to j are determined by the entry Mi, j of the transition matrix: if Mi, j = a1 ∨ ·· · ∨ am,
then there are m transitions from i to j, respectively labeled a1, . . . ,an. The states i with αi = 1 are initial,
and the states {1, . . . ,k} are accepting.

The finite behavior of a weighted automaton A = (α,M,k) is defined to be

|A|= αM∗κ ,

where κ ∈ {⊥,1}n is the vector given by κi = 1 for i ≤ k and κi = ⊥ for i > k. (Note that α has to be
used as a row vector for this multiplication to make sense.) It is clear by (2) that |A| is the supremum of
the products of the transition labels along all paths in A from any initial to any accepting state.

The Büchi behavior of a weighted automaton A = (α,M,k) is defined to be

‖A‖= α

(
(a+bd∗c)ω

d∗c(a+bd∗c)ω

)
,

where a∈ 〈A〉k×k, b∈ 〈A〉k×(n−k), c∈ 〈A〉(n−k)×n and d ∈ 〈A〉(n−k)×(n−k) are such that M =
(

a b
c d

)
. By [10,

Thm. 20], ‖A‖ is the supremum of the products of the transition labels along all infinite paths in A from
any initial state which infinitely often visit an accepting state.
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4 Generalized ∗-continuous Kleene Algebras of Functions

In the following two sections our aim is to establish properties which ensure that semiring-semimodule
pairs of functions form ∗-continuous Kleene ω-algebras. We will use these properties in Section 6 to
show that energy functions form a ∗-continuous Kleene ω-algebra.

Let L and L′ be complete lattices with bottom and top elements ⊥ and >. Then a function f : L→ L′

is said to be finitely additive if ⊥ f = ⊥ and (x∨ y) f = x f ∨ y f for all x,y ∈ L. (Recall that we write
function application and composition in the diagrammatic order, from left to right.) When f : L→ L′ is
finitely additive, then (

∨
X) f =

∨
X f for all finite sets X ⊆ L.

Consider the collection FinAddL,L′ of all finitely additive functions f : L→ L′, ordered pointwise.
Since the (pointwise) supremum of any set of finitely additive functions is finitely additive, FinAddL,L′

is also a complete lattice, in which the supremum of any set of functions can be constructed pointwise.
The least and greatest elements are the constant functions with value ⊥ and >, respectively. By an abuse
of notation, we will denote these functions by ⊥ and > as well.
Definition 3 A function f ∈ FinAddL,L′ is said to be >-continuous if f = ⊥ or for all X ⊆ L with∨

X =>, also
∨

X f =>.

Note that if f 6=⊥ is >-continuous, then > f =>. The functions id and ⊥ are >-continuous. Also,
the (pointwise) supremum of any set of >-continuous functions is again >-continuous.

We will first be concerned with functions in FinAddL,L, which we just denote FinAddL. Since the
composition of finitely additive functions is finitely additive and the identity function id over L is finitely
additive, and since composition of finitely additive functions distributes over finite suprema, FinAddL,
equipped with the operation ∨ (binary supremum), ; (composition), and the constant function ⊥ and the
identity function id as 1, is an idempotent semiring. It follows that when f is finitely additive, then so is
f ∗ =

∨
n≥0 f n. Moreover, f ≤ f ∗ and f ∗ ≤ g∗ whenever f ≤ g. Below we will usually write just f g for

the composition f ;g.
Lemma 2 Let S be any subsemiring of FinAddL closed under the ∗-operation. Then S is a ∗-continuous
Kleene algebra iff for all g,h ∈ S, g∗h =

∨
n≥0 gnh.

Proof Suppose that the above condition holds. We need to show that f (
∨

n≥0 gn)h =
∨

n≥0 f gnh for
all f ,g,h ∈ S. But f (

∨
n≥0 gn)h = f (

∨
n≥0 gnh) by assumption, and we conclude that f (

∨
n≥0 gnh) =∨

n≥0 f gnh since the supremum is pointwise. �

Compositions of >-continuous functions in FinAddL are again >-continuous, so that the collection
of all >-continuous functions in FinAddL is itself an idempotent semiring.
Definition 4 A function f ∈ FinAddL is said to be locally ∗-closed if for each x ∈ L, either x f ∗ = > or
there exists N ≥ 0 such that x f ∗ = x∨·· ·∨ x f N .

The functions id and ⊥ are locally ∗-closed. As the next example demonstrates, compositions of
locally ∗-closed (and >-continuous) functions are not necessarily locally ∗-closed.
Example 1 Let L be the following complete lattice (the linear sum of three infinite chains):

⊥< x0 < x1 < · · ·< y0 < y1 < · · ·< z0 < z1 < · · ·<>

Since L is a chain, a function L→ L is finitely additive iff it is monotone and preserves ⊥.
Let f ,g : L→ L be the following functions. First, ⊥ f = ⊥g = ⊥ and > f = >g = >. Moreover,

xi f = yi, yi f = zig = > and xig = ⊥, yig = xi+1, and zig = > for all i. Then f ,g are monotone, u f ∗ =
u∨u f ∨u f 2 and ug∗ = u∨ug for all u ∈ L. Also, f and g are >-continuous, since if

∨
X => then either

> ∈ X or X ∩{z0,z1, . . .} is infinite, but then
∨

X f =
∨

Xg = >. However, f g is not locally ∗-closed,
since x0( f g)∗ = x0∨ x0( f g)∨ x0( f g)2 · · ·= x0∨ x1∨·· ·= y0. �
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Lemma 3 Let f ∈ FinAddL be locally ∗-closed. Then also f ∗ is locally ∗-closed. If f is additionally
>-continuous, then so is f ∗.

Proof We prove that x f ∗∗ = x∨ x f ∗ = x f ∗ for all x ∈ L. Indeed, this is clear when x f ∗ = >, since
f ∗ ≤ f ∗∗. Otherwise x f ∗ =

∨
k≤n x f k for some n≥ 0.

By finite additivity, it follows that x f ∗ f ∗ =
∨

k≤n x f k f ∗. But for each k, x f k f ∗ = x f k∨ x f k+1∨·· · ≤
x f ∗, thus x f ∗ = x f ∗ f ∗ and x f ∗ = x f ∗∗. It follows that f ∗ is locally ∗-closed.

Suppose now that f is additionally >-continuous. We need to show that f ∗ is also >-continuous. To
this end, let X ⊆ L with

∨
X = >. Since x ≤ x f ∗ for all x ∈ X , it holds that

∨
X f ∗ ≥

∨
X = >. Thus∨

X f ∗ =>. �

Proposition 4 Let S be any subsemiring of FinAddL closed under the ∗-operation. If each f ∈ S is
locally ∗-closed and >-continuous, then S is a ∗-continuous Kleene algebra.

Proof Suppose that g,h ∈ S. By Lemma 2, it suffices to show that g∗h =
∨

n≥0 gnh. Since this is clear
when h = ⊥, assume that h 6= ⊥. As gnh ≤ g∗h for all n ≥ 0, it holds that

∨
n≥0 gnh ≤ g∗h. To prove

the opposite inequality, suppose that x ∈ L. If xg∗ = >, then
∨

n≥0 xgn = >, so
∨

n≥0 xgnh = > by >-
continuity. Thus, xg∗h =>=

∨
n≥0 xgnh.

Suppose that xg∗ 6=>. Then there is m≥ 0 with

xg∗h = (x∨·· ·∨ xgm)h = xh∨·· ·∨ xgmh≤
∨
n≥0

xgnh = x(
∨
n≥0

gnh) . �

Now define a left action of FinAddL on FinAddL,L′ by f v = f ;v, for all f ∈ FinAddL and v ∈
FinAddL,L′ . It is a routine matter to check that FinAddL,L′ , equipped with the above action, the bi-
nary supremum operation ∨ and the constant ⊥ is an (idempotent) left FinAddL-semimodule, that is,
(FinAddL,FinAddL,L′) is a semiring-semimodule pair.

Lemma 5 Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′ an S-semimodule.
Then (S,V ) is a generalized ∗-continuous Kleene algebra iff for all f ∈ S and v ∈V , f ∗v =

∨
n≥0 f nv.

Proof Similar to the proof of Lemma 2 �

Proposition 6 Let S⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′ an S-semimodule.
If each f ∈ S is locally ∗-closed and >-continuous and each v ∈ V is >-continuous, then (S,V ) is a
generalized ∗-continuous Kleene algebra.

Proof Similar to the proof of Proposition 4. �

5 ∗-continuous Kleene ω-Algebras of Functions

In this section, let L be an arbitrary complete lattice and L′ = 2, the 2-element lattice {⊥,>}. We define
an infinite product FinAddω

L → FinAddL,2. Let f0, f1, . . . ∈ FinAddL be an infinite sequence and define
v = ∏n≥0 fn : L→ 2 by

xv =

{
⊥ if there is n≥ 0 such that x f0 · · · fn =⊥,
> otherwise

for all x ∈ L. We will write ∏n≥k fn, for k ≥ 0, as a shorthand for ∏n≥0 fn+k.
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It is easy to see that ∏n≥0 fn is finitely additive. Indeed, ⊥∏n≥0 fn = ⊥ clearly holds, and for
all x ≤ y ∈ L, x∏n≥0 fn ≤ y∏n≥0 fn. Thus, to prove that (x∨ y)∏n≥0 fn = x∏n≥0 fn ∨ y∏n≥0 fn for all
x,y∈ L, it suffices to show that if x∏n≥0 fn = y∏n≥0 fn =⊥, then (x∨y)∏n≥0 fn =⊥. But if x∏n≥0 fn =
y∏n≥0 fn = ⊥, then there exist m,k ≥ 0 such that x f0 · · · fm = y f0 · · · fk = ⊥. Let n = max{m,k}. We
have (x∨ y) f0 · · · fn = x f0 · · · fn∨ y f0 · · · fn =⊥, and thus (x∨ y)∏n≥0 fn =⊥.

It is clear that this infinite product satisfies conditions (C1) and (C2) in the definition of ∗-continuous
Kleene ω-algebra. Below we show that also (C3) and (C4) hold.

Lemma 7 For all f0, f1, . . . ,g0,g1, . . . ∈ FinAddL,

∏
n≥0

( fn∨gn) =
∨

hn∈{ fn,gn}
∏
n≥0

hn .

Proof Since infinite product is monotone, the term on the right-hand side of the equation is less than
or equal to the term on the left-hand side. To prove that equality holds, let x ∈ L and suppose that
x∏n≥0( fn ∨ gn) = >. It suffices to show that there is a choice of the functions hn ∈ { fn,gn} such that
x∏n≥0 hn =>.

Consider the infinite ordered binary tree where each node at level n ≥ 0 is the source of an edge
labeled fn and an edge labeled gn, ordered as indicated. We can assign to each node u the composition
hu of the functions that occur as the labels of the edges along the unique path from the root to that node.

Let us mark a node u if xhu 6= ⊥. As x∏n≥0( fn ∨ gn) = >, each level contains a marked node.
Moreover, whenever a node is marked and has a predecessor, its predecessor is also marked. By König’s
lemma [20] there is an infinite path going through marked nodes. This infinite path gives rise to the
sequence h0,h1, . . . with x∏n≥0 hn =>. �

Lemma 8 Let f ∈ FinAddL and v ∈ FinAddL,2 such that f is locally ∗-closed and v is >-continuous. If
x f ∗v =>, then there exists k ≥ 0 such that x f kv =>.

Proof If x f ∗ =
∨N

n=0 x f n for some N ≥ 0, then x f ∗v =
∨N

n=0 x f nv = > implies the claim of the lemma.
If x f ∗ =>, then >-continuity of v implies that

∨
n≥0 x f nv =>, which again implies the claim. �

Lemma 9 Let f ,g0,g1, . . . ∈ FinAddL be locally ∗-closed and >-continuous such that for each m ≥ 0,
gm ∏n≥m+1 f ∗gn ∈ FinAddL,2 is >-continuous. Then

∏
n≥0

f ∗gn =
∨

k0,k1,...≥0
∏
n≥0

f kngn .

Proof As infinite product is monotone, the term on the right-hand side of the equation is less than or equal
to the term on the left-hand side. To prove that equality holds, let x∈ L and suppose that x∏n≥0 f ∗gn =>.
We want to show that there exist integers k0,k1, . . .≥ 0 such that x∏n≥0 f kngn =>.

Let x0 = x. By Lemma 8, x∏n≥0 f ∗gn = x0 f ∗g0 ∏n≥1 f ∗gn => implies that there is k0 ≥ 0 for which
x0 f k0g0 ∏n≥1 f ∗gn = >. We finish the proof by induction. Assume we have k0, . . . ,km ≥ 0 such that
x f k0g0 · · · f kmgm ∏n≥m+1 f ∗gn => and let xm+1 = x f k0g0 · · · f kmgm. Then xm+1 f ∗gm+1 ∏n≥m+2 f ∗gn =>
implies, using Lemma 8, that there exists km+1 ≥ 0 for which xm+1 f km+1gm+1 ∏n≥m+2 f ∗gn =>. �

Proposition 10 Let S ⊆ FinAddL and V ⊆ FinAddL,2 such that (S,V ) is a generalized ∗-continuous
Kleene algebra of locally ∗-closed and>-continuous functions L→ L and>-continuous functions L→ 2.
If ∏n≥0 fn ∈ V for all sequences f0, f1, . . . of functions in S, then (S,V ) is a ∗-continuous Kleene ω-
algebra.
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Proof This is clear from Lemmas 7 and 9. �

We finish the section by a lemma which exhibits a condition on the lattice L which ensures that
infinite products of locally ∗-closed and >-continuous functions are again >-continuous.

Lemma 11 Assume that L has the property that whenever
∨

X => for some X ⊆ L, then for all x <>
in L there is y ∈ X with x≤ y. If f0, f1, . . . ∈ FinAddL is a sequence of locally ∗-closed and >-continuous
functions, then ∏n≥0 fn ∈ FinAddL,2 is >-continuous.

Proof Let v = ∏n≥0 fn. We already know that v is finitely additive. We need to show that if v 6=⊥, then
v is >-continuous. But if v 6=⊥, then there is some x <> with xv =>, i.e., such that x f0 · · · fn >⊥ for
all n. By assumption, there is some y ∈ X with x ≤ y. It follows that y f0 · · · fn ≥ x f0 · · · fn > ⊥ for all n
and thus

∨
Xv =>. �

6 Energy Automata Revisited

We finish this paper by showing how the setting developed in the last sections can be applied to solve
the energy problems of Section 2. Let L = [0,>]⊥ be the complete lattice of nonnegative real numbers
together with > = ∞ and an extra bottom element ⊥, and extend the usual order and operations on real
numbers to L by declaring that ⊥ < x < >, ⊥− x = ⊥ and >+ x = > for all x ∈ R≥0. Note that L
satisfies the precondition of Lemma 11.

We extend the definition of energy function:

Definition 5 An extended energy function is a mapping f : L→ L for which⊥ f =⊥,> f =⊥ if x f =⊥
for all x < > and > f = > otherwise, and y f ≥ x f + y− x whenever ⊥ < x < y < >. The set of such
functions is denoted E .

Every energy function f :R≥0 ⇀R≥0 as of Definition 1 gives rise to an extended energy function
f̃ : L→ L given by ⊥ f̃ = ⊥, x f̃ = ⊥ if x f is undefined, x f̃ = x f otherwise for x ∈R≥0, and > f̃ = >.
This defines an embedding F ↪→ E .

The definition entails that for all f ∈ E and all x < y∈ L, x f => implies y f => and y f =⊥ implies
x f = ⊥. Note that E is closed under (pointwise) binary supremum ∨ and composition and contains the
functions ⊥ and id.

Lemma 12 Extended energy functions are finitely additive and >-continuous, hence E ⊆ FinAddL is a
semiring.

Proof Finite additivity follows from monotonicity. For >-continuity, let X ⊆ L such that
∨

X = > and
f ∈ E , f 6= ⊥. We have X 6= {⊥}, so let x0 ∈ X \ {⊥} and, for all n ≥ 0, xn = x0 + n. Let yn = xn f . If
yn = ⊥ for all n ≥ 0, then also n f = ⊥ for all n ≥ 0 (as xn ≥ n), hence f = ⊥. We must thus have an
index N for which yN >⊥. But then yN+k ≥ yN + k for all k ≥ 0, hence

∨
X f =>. �

Lemma 13 For f ∈ E , f ∗ is given by x f ∗ = x if x f ≤ x and x f ∗ = > if x f > x. Hence f is locally
∗-closed and f ∗ ∈ E .

Proof We have ⊥ f ∗ = ⊥ and > f ∗ = >. Let x 6= ⊥,>. If x f ≤ x, then x f n ≤ x for all n ≥ 0, so that
x ≤

∨
n≥0 x f n ≤ x, whence x f ∗ = x. If x f > x, then let a = x f − x > 0. We have x f ≥ x+ a, hence

x f n ≥ x+na for all n≥ 0, so that x f ∗ =
∨

n≥0 x f n =>. �

Not all locally ∗-closed functions f : L→ L are energy functions: the function f defined by x f = 1
for x < 1 and x f = x for x≥ 1 is locally ∗-closed, but f /∈ E .
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Corollary 14 E is a ∗-continuous Kleene algebra.

Proof This is clear by Proposition 4. �

Remark It is not true that E is a continuous Kleene algebra: Let fn,g∈E be defined by x fn = x+1− 1
n+1

for x ≥ 0, n ≥ 0 and xg = x for x ≥ 1, xg = ⊥ for x < 1. Then 0(
∨

n≥0 fn)g = (
∨

n≥0 0 fn)g = 1g = 1,
whereas 0

∨
n≥0( fng) =

∨
n≥0(0 fng) =

∨
n≥0((1− 1

n+1)g) =⊥.

Let V denote the E -semimodule of all >-continuous functions L→ 2. For f0, f1, . . . ∈ E , define the
infinite product f = ∏n≥0 fn : L→ 2 by x f =⊥ if there is an index n for which x f0 · · · fn =⊥ and x f =>
otherwise, like in Section 5. By Lemma 11, ∏n≥0 fn is >-continuous, i.e., ∏n≥0 fn ∈ V .

By Proposition 6, (E ,V ) is a generalized ∗-continuous Kleene algebra.

Corollary 15 (E ,V ) is a ∗-continuous Kleene ω-algebra.

Proof This is clear by Proposition 10. �

Remark As E is not a continuous Kleene algebra, it also holds that (E ,V ) is not a continuous Kleene
ω-algebra; in fact it is clear that there is no E -semimodule V ′ for which (E ,V ) would be a continuous
Kleene ω-algebra. The initial motivation for the work in [10] and the present paper was to generalize the
theory of continuous Kleene ω-algebras so that it would be applicable to energy functions.

Noting that energy automata are weighted automata over E in the sense of Section 3.3, we can now
solve the reachability and Büchi problem for energy automata:

Theorem 1 Let A = (α,M,k) be an energy automaton and x0 ∈R≥0. There exists a finite run of A from
an initial state to an accepting state with initial energy x0 iff x0|A|>⊥.

Theorem 2 Let A = (α,M,k) be an energy automaton and x0 ∈R≥0. There exists an infinite run of A
from an initial state which infinitely often visits an accepting state iff x0‖A‖=>.

Corollary 16 Problems 1 and 2 are decidable.

In [12], the complexity of the decision procedure has been established for important subclasses of
energy functions.

7 Conclusion and Further Work

We have shown that energy functions form a ∗-continuous Kleene ω-algebra [10], hence that ∗-continuous
Kleene ω-algebras provide a proper algebraic setting for energy problems. On our way, we have proven
more general results about properties of finitely additive functions on complete lattices which should be
of a more general interest.

There are interesting generalizations of our setting of energy automata which, we believe, can be
attacked using techniques similar to ours. One such generalization are energy problems for real time or
hybrid models, as for example treated in [3–5, 23]. Another generalization is to higher dimensions, like
in [16, 19, 24] and other papers.
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